51
|
Nie F, Wong-Riley MT. Metabolic and neurochemical plasticity of gamma-aminobutyric acid-immunoreactive neurons in the adult macaque striate cortex following monocular impulse blockade: quantitative electron microscopic analysis. J Comp Neurol 1996; 370:350-66. [PMID: 8799861 DOI: 10.1002/(sici)1096-9861(19960701)370:3<350::aid-cne6>3.0.co;2-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The purpose of the present study was to examine the effects of retinal impulse blockade on gamma-aminobutyric acid (GABA)-immunoreactive (GABA-IR) neurons in cytochrome oxidase (CO)-rich puffs of the adult monkey striate cortex. Specifically, we wished to know if changes occurred in their CO activity, GABA immunoreactivity, and synaptic organization. A double-labeling technique, which combined CO histochemistry and postembedding GABA immunocytochemistry on the same ultrathin sections, was used to reveal simultaneously the distribution of the two markers. We quantitatively compared changes in GABA-IR neurons of deprived puffs (DPs) with respect to non-deprived puffs (NPs) 2 weeks after monocular tetrodotoxin treatment. We found that the proportion of darkly CO reactive mitochondria in GABA-IR neurons of DPs drastically decreased to about half of those in NPs. There was a greater reduction of CO levels in GABA-IR axon terminals than in their cell bodies and dendrites. In contrast, most non-GABA-IR neurons displayed no significant change in their CO levels. Morphologically, GABA-IR neurons and axon terminals in DPs showed a significant shrinkage in their mean size. GABA immunoreactivity, as indicated by the density of immunogold particles in GABA-IR neurons, declined in DPs, and a greater decrease was also found in axon terminals than in cell bodies or dendrites. Moreover, the numerical density of GABA-IR axon terminals and synapses in DPs was significantly reduced without changes in that of asymmetric and symmetric synapses. Thus, the present results support the following conclusions: 1) Oxidative metabolism and neurotransmitter expression in GABA-IR neurons are tightly regulated by neuronal activity in adult monkey striate cortex; 2) GABA-IR neurons are much more vulnerable to functional deprivation than non-GABA-IR ones, suggesting that these inhibitory neurons have stringent requirement for sustained excitatory input to maintain their heightened oxidative capacity; and 3) intracortical inhibition mediated by GABA transmission following afferent deprivation may be decreased in deprived puffs, because the oxidative capacity and transmitter level in GABAergic neurons, especially in their axon terminals, are dramatically reduced.
Collapse
Affiliation(s)
- F Nie
- Department of Cellular Biology and Anatomy, Medical College of Wisconsin, Milwaukee 53226, USA
| | | |
Collapse
|
52
|
Abstract
Spine-free calretinin-immunoreactive (CR-IR) interneurons form a subpopulation of GABAergic cells in the rat hippocampus. A characteristic feature of these cells--located in all areas and layers--is the frequent dendro-dendritic and axo-dendritic contacts they form with each other. In this study we examined in detail the connectivity of these neurons by reconstructing their dendritic and axonal arbor and by identifying their postsynaptic targets. Radially running dendrites of CR-IR cells, located in different layers, intermingled into long braids. An average cell was in contact with dendrites of three to seven other CR-IR cells. Reconstruction of the dendritic trees from six consecutive sections demonstrated that at least 15 cells may participate in a dendro-dendritically connected cluster. Electron microscopical examination revealed that regularly spaced zonula adherentia connect the touching dendrites. The postsynaptic targets of CR-IR neurons have been examined using postembedding immunogold staining for GABA. CR-containing GABA-immunoreactive axons of local origin formed multiple symmetrical synaptic contacts (two to five) exclusively on GABAergic dendrites (CR-negative as well as CR-positive). Two to 10 CR-IR axons may converge onto a single CR-IR neuron, often from cells belonging to the same dendro-dendritically connected cluster. Using double immunocytochemistry, CR-IR cells were shown to heavily innervate calbindin D28k-containing interneurons and VIP-containing basket cells but avoided the parvalbumin-containing basket and axo-axonic cells. The unique connectivity of CR-IR cells may enable them to play a crucial role in the generation of synchronous, rhythmic hippocampal activity by controlling other interneurons terminating on different dendritic and somatic compartments of principal cells.
Collapse
|
53
|
Nie F, Wong-Riley MT. Differential glutamatergic innervation in cytochrome oxidase-rich and -poor regions of the macaque striate cortex: quantitative EM analysis of neurons and neuropil. J Comp Neurol 1996; 369:571-90. [PMID: 8761929 DOI: 10.1002/(sici)1096-9861(19960610)369:4<571::aid-cne7>3.0.co;2-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
One of the hallmarks of the primate striate cortex is the presence of cytochrome oxidase (CO)-rich puffs and CO-poor interpuffs in its supragranular layers. However, the neurochemical basis for their differences in metabolic activity and physiological properties is not well understood. The goals of the present study were to determine whether CO levels in postsynaptic neuronal compartments were correlated with the proportion of excitatory glutamate-immunoreactive (Glu-IR) synapses they received and if Glu-IR terminals and synapses in puffs differed from those in interpuffs. By combining CO histochemistry and postembedding Glu immunocytochemistry on the same ultrathin sections, the simultaneous distribution of the two markers in individual neuronal profiles was quantitatively analyzed. As a comparison, adjacent sections were identically processed for the double labeling of CO and GABA, an inhibitory neurotransmitter. In both puffs and interpuffs, most axon terminals forming asymmetric synapses (84%)--but not symmetric ones, which were GABA-IR--were intensely immunoreactive for Glu. GABA-IR neurons received mainly Glu-IR synapses on their cell bodies, and they had three times as many mitochondria darkly reactive for CO than Glu-rich neurons, which received only GABA-IR axosomatic synapses. In puffs, GABA-IR neurons received a significantly higher ratio of Glu-IR to GABA-IR axosomatic synapses and contained about twice as many darkly CO-reactive mitochondria than those in interpuffs. There were significantly more Glu-IR synapses and a higher ratio of Glu- to GABA-IR synapses in the neuropil of puffs than of interpuffs. Moreover, Glu-IR axon terminals in puffs contained approximately three times more darkly CO-reactive mitochondria than those in interpuffs, suggesting that the former may be synaptically more active. Thus, the present results are consistent with our hypothesis that the levels of oxidative metabolism in postsynaptic neurons and neuropil are positively correlated with the proportion of excitatory synapses they receive. Our findings also suggest that excitatory synaptic activity may be more prominent in puffs than in interpuffs, and that the neurochemical and synaptic differences may constitute one of the bases for physiological and functional diversities between the two regions.
Collapse
Affiliation(s)
- F Nie
- Department of Cellular Biology and Anatomy, Medical College of Wisconsin, Milwaukee, 53226, USA
| | | |
Collapse
|
54
|
Abstract
Afferents to the prefrontal cortex (PFC) from the hippocampal formation and from midbrain dopamine (DA) neurons have been implicated in the cognitive and adaptive functions of this cortical region. In the present study, we investigated the ultrastructure and synaptic targets of hippocampal terminals, as well as their relation to DA terminals within the PFC of adult rats. Hippocampal afferents were labeled either by anterograde transport of wheat germ agglutinin-horseradish peroxidase (WGA-HRP) from the ventral hippocampal formation or by anterograde degeneration following fimbria lesion. Hippocampal terminals in the PFC, identified by either method, formed primarily asymmetric axospinous synapses, with a small percentage forming asymmetric axodendritic synapses. Dopamine terminals in the PFC were identified by peroxidase immunocytochemistry for either tyrosine hydroxylase or DA and formed primarily symmetric synapses onto dendritic spines and small caliber dendritic shafts. Spines that received symmetric synaptic contact from DA terminals invariably also received an asymmetric synapse from an unlabeled terminal, forming a triadic complex. Hippocampal and DA terminals in the PFC were not often observed in the same area of the neuropil, and no examples of convergence of hippocampal and DA terminals onto common postsynaptic targets were observed. Further analysis revealed that spines receiving synaptic contact from hippocampal terminals did not receive additional synaptic contact from any other source. However, when localized to the same area of the neuropil, hippocampal and DA terminals were often in direct apposition to one another, without forming axo-axonic synapses. These results suggest that 1) hippocampal terminals primarily form excitatory synapses onto spiny pyramidal neurons, 2) hippocampal afferents are unlikely to be synaptically modulated by DA or non-DA terminals at the level of the dendritic spine, and 3) appositions between hippocampal and DA terminals may facilitate presynaptic interactions between these afferents to the PFC.
Collapse
Affiliation(s)
- D B Carr
- Department of Neuroscience, University of Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
55
|
Abstract
Visual cortex in mammals is composed of many distinct areas that are linked by reciprocal connections to form a multilevel hierarchy. Ascending information is sent via forward connections from lower to higher areas and is thought to contribute to the emergence of increasingly complex receptive field properties at higher levels. Descending signals are transmitted via feedback connections from higher to lower areas and are believed to provide information about the context in which a stimulus appears, to contribute to modulation of visual responses by attention, and to play a role in memory processes. To determine whether forward and feedback pathways in rat visual cortex constitute distinct intracortical circuits, we have studied the distribution of reciprocal corticocortical inputs to pyramidal cells and gamma-aminobutyric acid (GABA)ergic interneurons. For this purpose, we chose forward and feedback connections between primary visual cortex and the secondary extrastriate lateromedial (LM) area as a model system. Pathways were traced with the axonal marker phaseolus vulgaris-leucoagglutinin. Labeled terminals were identified in the electron microscope, and GABA immunocytochemistry was used to identify the postsynaptic dendritic shafts of GABAergic interneurons. In both pathways, inputs to pyramidal cells were directed preferentially to dendritic spines and not to shafts. In the forward pathway, 90% of labeled inputs were distributed to pyramidal cells and 10% to interneurons. This proportion was similar to that of nearby unlabeled connections in the neuropil, indicating that forward connections are not selective for pyramidal cells or interneurons. In sharp contrast, feedback connections were significantly different from the unlabeled connections and supplied almost exclusively pyramidal cells (98%). Feedback inputs to GABAergic neurons were five times weaker (2%) relative to the forward direction. These structural differences suggest that disynaptic GABAergic inhibition is much stronger in forward than in feedback pathways. Recent physiological experiments have confirmed this prediction (Shao et al. [1995] Soc. Neurosci. Abstr., 21:1274) and we, therefore, conclude that relatively small anatomical differences in the microcircuitry can have important functional consequences. It remains an open question whether generally reciprocal interareal circuits at all levels of the cortical hierarchy are organized in similar fashion.
Collapse
Affiliation(s)
- R R Johnson
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
56
|
Lahjouji F, Barbe A, Chazal G, Bras H. Evidence for colocalization of GABA and glycine in afferents to retrogradely labelled rat abducens motoneurones. Neurosci Lett 1996; 206:161-4. [PMID: 8710176 DOI: 10.1016/s0304-3940(96)12465-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The coexistence of gamma-aminobutyric acid (GABA) and glycine in axon terminals impinging on rat abducens motoneurones was investigated using a double staining procedure combining retrograde labelling of the motoneurones with HRP and post-embedding immunocytochemical staining of axon terminals. Adjacent ultrathin sections of cell bodies of identified motoneurones were individually treated with GABA or glycine antibodies. The terminals single labelled for GABA represented 11.4% of the terminals analyzed, while 8% of them were glycine immunoreactive and 9% were both GABA and glycine immunoreactive. All the labelled terminals contained pleomorphic vesicles. The mean length of apposition of the double labelled terminals was statistically larger (2.20 +/- 0.97 microns) than the GABA (1.65 +/- 0.57 microns) or glycine immunoreactive ones (1.37 +/- 0.35 microns).
Collapse
Affiliation(s)
- F Lahjouji
- Unité de Neurocybernétique Cellulaire, CNRS UPR 9041, Marseille, France
| | | | | | | |
Collapse
|
57
|
Spencer RF, Wang SF. Immunohistochemical localization of neurotransmitters utilized by neurons in the rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF) that project to the oculomotor and trochlear nuclei in the cat. J Comp Neurol 1996; 366:134-48. [PMID: 8866850 DOI: 10.1002/(sici)1096-9861(19960226)366:1<134::aid-cne9>3.0.co;2-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF) contains excitatory and inhibitory burst neurons that are related to the control of vertical and torsional eye movements. In the present study, light microscopic examination of the immunohistochemical localization of amino acid neurotransmitters demonstrated that the riMLF in the cat contains overlapping populations of neurons that are immunoreactive to the putative inhibitory neurotransmitter gamma-aminobutyric acid (GABA) and the excitatory neurotransmitters glutamate and aspartate. By using a double-labelling paradigm, GABA-, glutamate-, and aspartate-immunoreactive neurons in the riMLF were retrogradely labelled by transport of horseradish peroxidase (HRP) from the oculomotor and trochlear nuclei. Electron microscopy showed that the oculomotor and trochlear nuclei contain synaptic endings that are immunoreactive to GABA, glutamate, or aspartate. Each neurotransmitter-specific population of synaptic endings has distinctive ultrastructural and synaptic features. Synaptic endings in the oculomotor and trochlear nuclei that are anterogradely labelled by transport of biocytin from the riMLF are immunoreactive to GABA, glutamate, or aspartate. Taken together, the findings from these complimentary retrograde and anterograde double-labelling studies provide rather conclusive evidence that GABA is the inhibitory neurotransmitter, and glutamate and aspartate are the excitatory neurotransmitters, utilized by premotor neurons in the riMLF that are related to the control of vertical saccadic eye movements.
Collapse
Affiliation(s)
- R F Spencer
- Department of Anatomy, Virginia Commonwealth University, Richmond 23298, USA
| | | |
Collapse
|
58
|
Azkue J, Bidaurrazaga A, Mateos JM, Sarría R, Streit P, Grandes P. Glutamate-like immunoreactivity in synaptic terminals of the posterior cingulopontine pathway: a light and electron microscopic study in the rabbit. J Chem Neuroanat 1995; 9:261-9. [PMID: 8719275 DOI: 10.1016/0891-0618(95)00090-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A postembedding immunoperoxidase method for light microscopy was used to localize glutamate-like immunoreactivity in the rabbit basilar pontine nuclei. Labelled fibre bundles, neuronal cell bodies and numerous puncta of diverse size were heavily glutamate immunoreactive throughout all subdivisions of the pontine nuclei. To determine whether some of the glutamate-immunoreactive puncta were synaptic terminals of posterior cingulate cortical neurons, a double-labelling technique involving an anterograde tract-tracing method and a postembedding immunogold procedure for electron microscopy was used. A quantitative evaluation of gold particle densities revealed that anterogradely labelled cingulopontine synaptic terminals were about twice as immunoreactive as their postsynaptic dendrites, perikaryal and glial profiles and about three times more than symmetric synaptic terminals. The present results indicate that the posterior cingulopontine projection contains high levels of glutamate at its synaptic terminals. This observation provides further support to the role for glutamate as a neurotransmitter in the corticopontine pathway.
Collapse
Affiliation(s)
- J Azkue
- Department of Neurosciences, Basque Country University, Bilbao, Spain
| | | | | | | | | | | |
Collapse
|
59
|
Chang HT, Tian Q, Herron P. GABAergic axons in the ventral forebrain of the rat: an electron microscopic study. Neuroscience 1995; 68:207-20. [PMID: 7477926 DOI: 10.1016/0306-4522(95)00109-v] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ventral forebrain, including the ventral striatum, the ventral pallidum and the substantia innominata, is an important region involved in the functions of the basal ganglia and the limbic system, as well as the magnocellular corticopetal neurons of the nucleus basalis of Meynert. Although previous studies have shown that this region is richly innervated by GABAergic fibers, little is known with respect to the relative densities of GABAergic to non-GABAergic axon terminals in this region. To address this issue, we have developed a specific rabbit antiserum to GABA and used a postembedding immunocytochemical reaction to analyse the distribution of GABA-like immunoreactive axon terminals in the rat ventral striatum, ventral pallidum and substantia innominata. Of all axon terminals that form identifiable synapses within single ultrathin sections taken from these regions, 11.6% in the ventral striatum, 85.5% in the ventral pallidum and 64.8% in the substantia innominata were GABAergic. Differences were also found in the distribution patterns of these terminals with respect to the size of their synaptic target dendrites. These findings are consistent with previous findings that a majority of inputs to the ventral striatum are excitatory, and that a majority of inputs to the ventral pallidum are inhibitory. Our results provide a first approximation of the anatomical substrate for the physiology and pharmacology of GABA actions in the ventral forebrain region. These results also show that GABA may play an important role in the substantia innominata, where both the cholinergic and the non-cholinergic magnocellular corticopetal neurons reside within a neuropil innervated by many different non-cholinergic fibers.
Collapse
Affiliation(s)
- H T Chang
- Department of Anatomy & Neurobiology, University of Tennessee, College of Medicine, Memphis 38163, USA
| | | | | |
Collapse
|
60
|
Ortega F, Hennequet L, Sarría R, Streit P, Grandes P. Changes in the pattern of glutamate-like immunoreactivity in rat superior colliculus following retinal and visual cortical lesions. Neuroscience 1995; 67:125-34. [PMID: 7477893 DOI: 10.1016/0306-4522(95)00057-p] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have investigated the pattern of glutamate-like immunoreactivity in the superficial layers of the rat superior colliculus by means of postembedding immunocytochemical methods for light and electron microscopy. At the light microscopic level, labelling was faintly to moderately intense in most perikarya of the stratum zonale, stratum griseum superficiale and stratum opticum. Furthermore, strong glutamate-immunoreactive terminal-like elements were accumulated most densely in stratum zonale, stratum griseum superficiale and stratum opticum. At the electron microscopic level, a postembedding immunogold method revealed that the vast majority of those labelled elements corresponded to retinal and visual cortical terminals. These profiles were about twice as heavily labelled as their postsynaptic partners. To determine the contribution of retinal and cortical afferents to the pattern of glutamate-like immunoreactivity, rats were subjected to right retinal ablation, left cortical ablation or combined right retinal and left cortical ablations. After retinal ablation, strongly labelled perikarya were observed in the retinorecipient layers. Furthermore, a prominent loss of glutamate-immunoreactive terminal-like elements occurred in stratum zonale and stratum griseum superficiale. Ipsilateral superior colliculus to cortical ablation exhibited subtle changes characterized by a moderate increase in perikaryal immunostaining in stratum zonale, stratum griseum superficiale and stratum opticum and by an apparent discrete reduction of labelled dots in stratum griseum superficiale and stratum opticum. In cases with combined lesions, strongly immunoreactive cell bodies and dendrites were accompanied by a massive disappearance of labelled terminal-like elements in stratum zonale, stratum griseum superficiale and stratum opticum. The effect of retinal and visual cortical ablations on the pattern of glutamate-like immunoreactivity suggests that these afferents are the major sources for glutamate-immunoreactive terminals in the rat superior colliculus. In addition, these findings provide further evidence for glutamate as neurotransmitter in the visual pathways studied.
Collapse
Affiliation(s)
- F Ortega
- Department of Neurosciences, Faculty of Medicine and Dentistry, Basque Country University, Bilbao, Spain
| | | | | | | | | |
Collapse
|
61
|
Cabot JB, Bushnell A, Alessi V, Mendell NR. Postsynaptic gephyrin immunoreactivity exhibits a nearly one-to-one correspondence with gamma-aminobutyric acid-like immunogold-labeled synaptic inputs to sympathetic preganglionic neurons. J Comp Neurol 1995; 356:418-32. [PMID: 7642803 DOI: 10.1002/cne.903560309] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Peripheral regulation of cardiovascular function is fundamentally influenced by central excitation and inhibition of sympathetic preganglionic neurons in thoracic spinal cord. This electron microscopy study investigated whether the gamma-aminobutyric acid (GABA)-ergic and glycinergic inhibitory innervation of sympathetic preganglionic neurons arises from mutually exclusive afferent populations. Sympathetic preganglionic neurons were retrogradely labeled with cholera beta subunit. GABAergic terminals were identified using strict quantitative statistical analyses as those boutons containing significantly elevated levels of GABA-like immunogold labeling (GABA+). Glycinergic terminals were classified as those boutons opposite postsynaptic gephyrin immunostaining containing background levels of GABA-like immunogold labeling (gephyrin+/GABA- association). Approximately 43% of the synaptic terminals that contacted sympathetic preganglionic somata and proximal dendrites and that were opposite gephyrin were GABA-; the remaining 57% were GABA+. Only two GABA+ boutons (4%) that synapsed on identified sympathetic preganglionic neuron (SPN) processes were not opposite gephyrin immunostaining (GABA+/gephyrin- association). GABA-/gephyrin+ associations were anticipated given prior anatomical, physiological, and pharmacological data. The observed nearly one-to-one correspondence between postsynaptic gephyrin immunoreactivity and GABA+ boutons was unexpected. Prior physiological and pharmacological experiments suggest that the postsynaptic effects of GABAergic inputs to sympathetic preganglionic neurons are mediated by activation of GABAA receptors. Those data, the present results, and other molecular, biochemical, and anatomical studies of gephyrin in the central nervous system (CNS) are consistent with two hypotheses: 1) Postsynaptic gephyrin is associated with GABAA receptors in the membranes of sympathetic preganglionic neurons, and 2) GABA+/gephyrin+ associations do not necessarily predict colocalization of GABA and glycine within single boutons synapsing on sympathetic preganglionic somata and dendrites.
Collapse
Affiliation(s)
- J B Cabot
- Department of Neurobiology and Behavior, State University of New York at Stony Brook 11794-5230, USA
| | | | | | | |
Collapse
|
62
|
Nie F, Wong-Riley MT. Double labeling of GABA and cytochrome oxidase in the macaque visual cortex: quantitative EM analysis. J Comp Neurol 1995; 356:115-31. [PMID: 7629306 DOI: 10.1002/cne.903560108] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In the primate striate cortex, cytochrome oxidase (CO)-rich puffs differ from CO-poor interpuffs in their metabolic levels and physiological properties. The neurochemical basis for their metabolic and physiological differences is not well understood. The goal of the present study was to examine the relationship between the distribution of gamma aminobutyric acid (GABA)/non-GABA synapses and CO levels in postsynaptic neuronal profiles and to determine whether or not a difference existed between puffs and interpuffs. By combining CO histochemistry and postembedding GABA immunocytochemistry on the same ultrathin sections, the simultaneous distribution of the two markers in individual neuronal profiles was quantitatively analyzed. In both puffs and interpuffs, GABA-immunoreactive (GABA-IR) neurons were the only cell type that received both non-GABA-IR (presumed excitatory) and GABA-IR (presumed inhibitory) axosomatic synapses, and they had three times as many mitochondria darkly reactive for CO than non-GABA-IR neurons, which received only GABA-IR axosomatic synapses. GABA-IR neurons and terminals in puffs had a larger mean size, about twice as many darkly reactive mitochondria, and a higher ratio of non-GABA-IR to GABA-IR axosomatic synapses than those in interpuffs (2.3:1 vs. 1.6:1; P < 0.01). There were significantly more synapses of both non-GABA-IR and GABA-IR types in the neuropil of puffs than of interpuffs; however, the ratio of non-GABA-IR to GABA-IR synapses was significantly higher in puffs (2.86:1) than in interpuffs (2.08:1; P < 0.01). Our results are consistent with the hypothesis that the level of oxidative metabolism in postsynaptic neurons and neuronal processes is tightly governed by the strength and proportion of excitatory over inhibitory synapses. Thus, the present results suggest that (1) GABA-IR neurons in the macaque striate cortex have a higher level of oxidative metabolism than non-GABA ones because their somata receive direct excitatory synapses and their terminals are more tonically active; (2) the higher proportion of presumed excitatory synapses in puffs imposes a greater energy demand there than in interpuffs; and (3) excitatory synaptic activity may be more prominent in puffs than in interpuffs because puffs receive a greater proportion of excitatory synapses from multiple sources including the lateral geniculate nucleus, which is not known to project to the interpuffs.
Collapse
Affiliation(s)
- F Nie
- Department of Cellular Biology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
63
|
Winer JA, Larue DT, Pollak GD. GABA and glycine in the central auditory system of the mustache bat: structural substrates for inhibitory neuronal organization. J Comp Neurol 1995; 355:317-53. [PMID: 7636017 DOI: 10.1002/cne.903550302] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The distribution and morphology of neurons and axonal endings (puncta) immunostained with antibodies to gamma-aminobutyric acid (GABA) and glycine (Gly) were analyzed in auditory brainstem, thalamic, and cortical centers in the mustache bat. The goals of the study were (1) to compare and contrast the location of GABAergic and glycinergic neurons and puncta, (2) to determine whether nuclei containing immunoreactive neurons likewise have a similar concentration of puncta, (3) to assess the uniformity of immunostaining within a nucleus and to consider regional differences that were related to or independent of cytoarchitecture, and (4) to compare the patterns recognized in this bat with those in other mammals. There are nine major conclusions. (1) Glycinergic immunostaining is most pronounced in the hindbrain. (2) In the forebrain, GABA alone is present. (3) Some nuclei have GABAergic or glycinergic neurons exclusively; a few have neither. (4) Although there is sometimes a close relationship between the relative number of immunopositive neurons and the density of the puncta, just as often there is no particular correlation between them; this reflects the fact that many GABAergic and glycinergic neurons project beyond their nucleus of origin. (5) Even nuclei devoid of or with few GABAergic or glycinergic neurons contain relatively abundant numbers of puncta; some neurons receive axosomatic terminals of each type. (6) In a few nuclei there are physiological subregions with specific local patterns of immunostaining. (7) The patterns of immunostaining resemble those in other mammals; the principal exceptions are in nuclei that, in the bat, are hypertrophied (such as those of the lateral lemniscus) and in the medial geniculate body. (8) Cellular colocalization of GABA and Gly is specific to only a few nuclei. (9) GABA and glutamic acid decarboxylase (GAD) immunostaining have virtually identical distributions in each nucleus. Several implications follow. First, the arrangements of GABA and Gly in the central auditory system represent all possible patterns, ranging from mutually exclusive to overlapping within a nucleus to convergence of both types of synaptic endings on single neurons. Second, although both transmitters are present in the hindbrain, glycine appears to be dominant, and it is often associated with circuitry in which precise temporal control of aspects of neuronal discharge is critical. Third, the auditory system, especially at or below the level of the midbrain, contains significant numbers of GABAergic or glycinergic projection neurons. The latter feature distinguishes it from the central visual and somatic sensory pathways.
Collapse
Affiliation(s)
- J A Winer
- Department of Molecular and Cell Biology, University of California at Berkeley 94720-3200, USA
| | | | | |
Collapse
|
64
|
Lahjouji F, Bras H, Barbe A, Chazal G. GABAergic innervation of rat abducens motoneurons retrogradely labelled with HRP: quantitative ultrastuctural analysis of cell bodies and proximal dendrites. JOURNAL OF NEUROCYTOLOGY 1995; 24:29-44. [PMID: 7769399 DOI: 10.1007/bf01370158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this quantitative electron microscopic study we investigated the distribution of GABA axon terminals on rat abducens motoneurons by combining retrograde labelling of montoneurons with post-embedding immunodetection of GABA. We analysed the synapses on 13 cell bodies and 60 proximal dendritic profiles distributed along the entire rostro-caudal extent of the nucleus. For each of these two compartments, we analysed 1754 and 1176 axon terminals in contact with 6042 and 3299 microns of postsynaptic membrane. The axon terminals were classified as Sv-type (containing spherical vesicles) or Pv-type (containing pleomorphic vesicles). The GABAergic terminals contained pleomorphic vesicles and established mainly symmetrical synaptic contacts. Their apposition lengths were greater than those of unlabelled terminals. On cell bodies, the percentage of GABAergic synaptic covering varied from 2.5% to 14.1% and the synaptic frequency of GABAergic axon terminals varied from 0.6% to 8.9%. These two parameters were significantly correlated with the diameter of the motoneurons. The percentage of synaptic covering and synaptic frequency were smaller on dendrites of small motoneurons than on those of large ones. The proximal dendrites of small motoneurons had a lesser GABAergic innervation than large ones. The total synaptic covering and frequency were smaller on somata than on dendrites. However, the percentage of synaptic covering by GABA terminals was higher on cell bodies than on proximal dendrites.
Collapse
Affiliation(s)
- F Lahjouji
- Unité de Neurocybernétique Cellulaire, CNRS UPR 418, Marseille, France
| | | | | | | |
Collapse
|
65
|
Abstract
A fragile balance between excitation and inhibition maintains the normal functioning of the CNS. The dominant inhibitory neurotransmitter of the mammalian brain is GABA, which acts mainly through GABAA and GABAB receptors. Small changes in GABA-mediated inhibition can alter neuronal excitability profoundly and, therefore, a wide range of compounds that clearly modify GABAA-receptor function are used clinically as anesthetics or for the treatment of various nervous system disorders. Recent findings have started to unravel the operation of central GABA synapses where inhibitory events appear to result from the synchronous opening of only tens of GABAA receptors activated by a saturating concentration of GABA. Such properties of GABA synapses impose certain constraints on the physiological and pharmacological modulation of inhibition in the brain.
Collapse
Affiliation(s)
- I Mody
- Dept of Anesthesiology and Pain Management, UT Southwestern Medical Center, Dallas
| | | | | | | |
Collapse
|
66
|
Rybicka KK, Udin SB. Ultrastructure and GABA immunoreactivity in layers 8 and 9 of the optic tectum of Xenopus laevis. Eur J Neurosci 1994; 6:1567-82. [PMID: 7850020 DOI: 10.1111/j.1460-9568.1994.tb00547.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This study presents an ultrastructural analysis of layers 8 and 9 in the optic tectum of Xenopus laevis. Retinotectal axons were labelled with horseradish peroxidase and tectal cells were labelled with antibody to GABA. Four distinct axonal and dendritic structures were identified. GABA-negative axon terminals formed asymmetric synapses and were categorized as type a-1 (which included retinotectal axons), characterized by medium size synaptic vesicles and pale mitochondria, and type a-2 (non-retinotectal) with large vesicles and dense mitochondria. GABA-negative dendrites (type d) contained dense mitochondria, microtubules in the dendritic shafts, and dendritic spines devoid of microtubules. GABA-positive structures contained small synaptic vesicles and dense mitochondria. Some dendrites (type D) were not only postsynaptic but were also presynaptic elements, as defined by the presence of vesicles and distinct synaptic clefts with symmetric specializations. GABA-positive presynaptic structures were mostly located in vesicle-filled, bulbous extensions of dendritic shafts and usually terminated onto dendritic spines. Some type D dendrites were the middle element in serial synapses, with input from either GABA-positive or GABA-negative structures and output to GABA-negative structures. Retinotectal terminals were identified as one of the synaptic inputs to GABA-positive processes. Glia were characterized by granular cytoplasm and large mitochondria, often displaying a crystalline matrix structure. These results indicate that GABA-positive neurons are a prominent component of circuitry in the superficial layers of the tectum of Xenopus and that, as in mammals, they participate in serial synaptic arrangements in which retinotectal axons are the first element. These arrangements are consistent with complex processing of visual input to the tectum and a central role for inhibitory processes in the shaping of tectal responses.
Collapse
Affiliation(s)
- K K Rybicka
- Department of Physiology, State University of New York, Buffalo 14214
| | | |
Collapse
|
67
|
Grandes P, Ortega F, Streit P. Glutamate-immunoreactive climbing fibres in the cerebellar cortex of the rat. HISTOCHEMISTRY 1994; 101:427-37. [PMID: 7960942 DOI: 10.1007/bf00269493] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The climbing fibre system, one of the two main excitatory inputs to the cerebellar cortex, is anatomically and physiologically well characterized, while the nature of its neurotransmitter is still a matter of debate. We wished to determine whether glutamate-immunoreactive profiles with the morphological characteristics of climbing fibres could be found in the rat cerebellar cortex. For this purpose, a monoclonal 'anti-glutamate' antibody has been used in combination with a sensitive postembedding immunoperoxidase method on semi-thin sections or in combination with a postembedding immunogold method on ultrathin sections. At the light microscopic level, climbing fibres appeared as strongly stained fibrous profiles, chains of interconnected varicosities or heavily labelled dots of various sizes, often in close apposition to principal Purkinje cell dendrites. At the electron microscopic level, certain labelled varicosities or more elongated profiles resembling climbing fibre terminals were in synaptic contact with dendritic spines of Purkinje cells. Quantitative analysis of gold particle densities showed that such elements were about three to four times more heavily labelled than their postsynaptic partners. The results obtained in this study demonstrate that at least a subset of climbing fibres and their terminals contain relatively high levels of glutamate-like immunoreactivity and provide additional evidence for a role of glutamate as transmitter in these cerebellar afferents.
Collapse
Affiliation(s)
- P Grandes
- Department of Neurosciences, Faculty of Medicine and Dentistry, Basque Country University, Bilbao, Spain
| | | | | |
Collapse
|
68
|
Montero VM. Quantitative immunogold evidence for enrichment of glutamate but not aspartate in synaptic terminals of retino-geniculate, geniculo-cortical, and cortico-geniculate axons in the cat. Vis Neurosci 1994; 11:675-81. [PMID: 7918218 DOI: 10.1017/s0952523800002984] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A postembedding immunogold procedure was used on thin sections of the dorsal lateral geniculate nucleus (LGN) and perigeniculate nucleus (PGN) of the cat to estimate qualitatively and quantitatively, at the electron-microscopic (EM) level, the intensity of glutamate or aspartate immunoreactivities on identifiable synaptic terminals and other profiles of the neuropil. On sections incubated with a glutamate antibody, terminals of retinal and cortical axons in the LGN, and of collaterals of geniculo-cortical axons in the PGN, contain significantly higher density of immunogold particles than GABAergic terminals, glial cells, dendrites, and cytoplasm of geniculate cells. By contrast, in sections incubated with an aspartate antibody, terminals of retino-geniculate, cortico-geniculate, and geniculo-cortical axons did not show a selective enrichment of immunoreactivity, but instead the density of immunogold particles was generally low in the different profiles of the neuropil, with the exception of nucleoli. These results suggest that glutamate, but not aspartate, is a neurotransmitter candidate in the retino-geniculo-cortical pathways.
Collapse
Affiliation(s)
- V M Montero
- Department of Neurophysiology, University of Wisconsin, Madison
| |
Collapse
|
69
|
Prieto JJ, Peterson BA, Winer JA. Laminar distribution and neuronal targets of GABAergic axon terminals in cat primary auditory cortex (AI). J Comp Neurol 1994; 344:383-402. [PMID: 8063959 DOI: 10.1002/cne.903440305] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The form, density, and neuronal targets of presumptive axon terminals (puncta) that were immunoreactive for gamma-aminobutyric acid (GABA) or its synthesizing enzyme, glutamic acid decarboxylase (GAD), were studied in cat primary auditory cortex (AI) in the light microscope. High-resolution, plastic-embedded material and frozen sections were used. The chief results were: 1) There was a three-tiered numerical distribution of puncta, with the highest density in layer Ia, an intermediate number in layers Ib-IVb, and the lowest concentration in layers V and VI, respectively. 2) Each layer had a particular arrangement: layer I puncta were fine and granular (less than 1 micron in diameter), endings in layers II-IV were coarser and more globular (larger than 1 micron), and layer V and VI puncta were mixed in size and predominantly small. 3) The form and density of puncta in every layer were distinctive. 4) Immunonegative neurons received, in general, many more axosomatic puncta than immunopositive cells, with the exception of the large multipolar (presumptive basket) cells, which invariably had many puncta in layers II-VI. 5) The number of puncta on the perikarya of GABAergic neurons was sometimes related to the number of puncta in the layer, and in other instances it was independent of the layer. Thus, while layer V had a proportion of GABAergic neurons similar to layer IV, it had only a fraction of the number of puncta; perhaps the intrinsic projections of supragranular GABAergic cells are directed toward layer IV, as those of infragranular GABAergic neurons may be. Since puncta are believed to be the light microscopic correlate of synaptic terminals, they can suggest how inhibitory circuits are organized. Even within an area, the laminar puncta patterns may reflect different inhibitory arrangements. Thus, in layer I the fine, granular endings could contact preferentially the distal dendrites of pyramidal cells in deeper layers. The remoteness of such terminals from the spike initiation zone contrasts with the many puncta on all pyramidal cell perikarya and the large globular endings on basket cell somata. Basket cells might receive feed-forward disinhibition, pyramidal cells feed-forward inhibition, and GABAergic non-basket cells would be the target of only sparse inhibitory axosomatic input. Such arrangements imply that the actions of GABA on AI neurons are neither singular nor simple and that the architectonic locus, laminar position, and morphological identity of a particular neuron must be integrated for a more refined view of its role in cortical circuitry.
Collapse
Affiliation(s)
- J J Prieto
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-2097
| | | | | |
Collapse
|
70
|
Prieto JJ, Peterson BA, Winer JA. Morphology and spatial distribution of GABAergic neurons in cat primary auditory cortex (AI). J Comp Neurol 1994; 344:349-82. [PMID: 7914896 DOI: 10.1002/cne.903440304] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This is a survey of the distribution, form, and proportion of neurons immunoreactive for gamma-aminobutyric acid (GABA) or glutamic acid decarboxylase (GAD) in cat primary auditory cortex (AI). The cells were studied in adult animals and were classified with respect to their somatic size, shape, and laminar location, and with regard to the origins and branching pattern of their dendrites. These attributes were used to relate each of the GAD-positive neuronal types to their counterparts in Golgi preparations. Each layer had a particular set of GABAergic cell types that is unique to it. There were 10 different GABAergic cell types in AI. Some were specific to one layer, such as the horizontal cells in layer I or the extraverted multipolar cells in layer II, while other types, such as the small and medium-sized multipolar cells, were found in every layer. The number and proportion of GABAergic cells were determined by using postembedding immunocytochemistry. The proportion of GABAergic neurons was 24.6%. This was slightly higher than the values reported elsewhere in the neocortex. The laminar differences in density and proportion of GABAergic and non-GABAergic neurons were also comparable (though somewhat higher) to those found in other cortical areas: thus, 94% of layer I cells were GABAergic, while the values in other layers ranged from 27% (layer V) to 16% (layer VI). Layer VI had the most heterogeneous population of GABAergic neurons. The proportion of these cells across different regions within AI was studied. Since some receptive field properties such as sharpness of tuning and aurality are distributed non-uniformly across AI, these might be reflected by regional differences across the cerebral cortex. There were significantly more GABAergic somata in layers III and IV in the central part of AI, along the dorsoventral axis, where physiological studies report that the neurons are tuned most sharply (Schreiner and Mendelson [1990] J. Neurophysiol. 64:1442-1459). Thus, there may be a structural basis for certain aspects of local inhibitory neuronal organization.
Collapse
Affiliation(s)
- J J Prieto
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-2097
| | | | | |
Collapse
|
71
|
Nagy I, Sik A, Polgár E, Petkó M, Antal M. Combination of cobalt labelling with immunocytochemical reactions for electron microscopic investigations on frog spinal cord. Microsc Res Tech 1994; 28:60-6. [PMID: 7520303 DOI: 10.1002/jemt.1070280107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cobalt staining of primary afferents in frog spinal cord was combined with peroxidase-antiperoxidase pre-embedding or immunogold post-embedding immunocytochemical labelling. Our results have shown that cobalt labelling can easily be distinguished from both of the immunoreaction end products. The protocol of cobalt labelling did not affect the immunoreactivity of structures. The morphology and synaptology of cobalt labelled and immunostained profiles in our sections were very similar to those reported in previous studies using different double labelling techniques. These results indicate that this new combined method could be used as an alternative double labelling technique in electron microscopic studies on nervous tissues.
Collapse
Affiliation(s)
- I Nagy
- Department of Anatomy, Histology and Embryology, University Medical School of Debrecen, Hungary
| | | | | | | | | |
Collapse
|
72
|
White EL, Amitai Y, Gutnick MJ. A comparison of synapses onto the somata of intrinsically bursting and regular spiking neurons in layer V of rat SmI cortex. J Comp Neurol 1994; 342:1-14. [PMID: 8207123 DOI: 10.1002/cne.903420102] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Regular spiking (RS) and intrinsically bursting (IB) neurons show distinct differences in their inhibitory responses. Under various conditions, the synaptic responses of RS cells display marked inhibitory postsynaptic potentials (IPSPs), whereas the responses of most IB cells do not (Silva et al: Soc Neurosci Abstr 14:883, 1988; Chagnac-Amitai and Connors: J Neurophysiol 61:747, 62:1149, 1989; Connors and Gutnick: TINS 13:99, 1990). This investigation is designed to determine if differences in the inhibitory responses of RS versus IB cells are reflected in differences in the concentration of inhibitory synapses onto their somata. RS and IB neurons in rat somatosensory cortex were identified by using intracellular recording and labeling, examined with the light microscope, and then serial thin-sectioned prior to examination with the electron microscope. Axonal terminals presynaptic to their somata and proximal dendrites were identified and classified according to criteria described by Peters and coworkers (Peters et al: J Neurocytol 19:584, 1990; Peters and Harriman: J Neurocytol 19:154, 1990; 21:679, 1992). The locations of these boutons were displayed on the surfaces of 3-D reconstructions of the somata and proximal dendrites. The reconstructions were produced directly from the serial thin sections by using a novel, electron microscopic, image-processing computer resource. Our analysis showed no significant difference in the types and concentration of boutons presynaptic to the cell bodies and proximal dendrites of intrinsically bursting versus regular spiking neurons. We conclude that the differences observed in the inhibitory responses of intrinsically bursting versus regular spiking neurons cannot be explained by differences in the concentrations of synapses onto their somata.
Collapse
Affiliation(s)
- E L White
- Department of Morphology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | | | |
Collapse
|
73
|
Anderson JC, Douglas RJ, Martin KA, Nelson JC. Synaptic output of physiologically identified spiny stellate neurons in cat visual cortex. J Comp Neurol 1994; 341:16-24. [PMID: 8006220 DOI: 10.1002/cne.903410103] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Spiny stellate neurons of area 17 of the cat's visual cortex were physiologically characterised and injected intracellularly with horseradish peroxidase. Six neurons from sublamina 4A were selected. Five had the S-type of simple receptive fields; one had a complex receptive field. Their axons formed boutons mainly in layers 3 and 4. An electron microscopic examination of 45 boutons showed that each bouton formed one asymmetric synapse on average. Spines were the most frequent synaptic target (74%); dendritic shafts formed the remainder (26%). On the basis of ultrastructural characteristics, 8% of the target dendrites were characterised as originating from smooth gamma-aminobutyrate-ergic (GABAergic) neurons. Thus the major output of spiny stellate neurons is to other spiny neurons, probably pyramidal neurons in layer 3 and spiny stellates in layer 4.
Collapse
Affiliation(s)
- J C Anderson
- Medical Research Council Anatomical Neuropharmacology Unit, Oxford, United Kingdom
| | | | | | | |
Collapse
|
74
|
Anderson JC, Douglas RJ, Martin KA, Nelson JC. Map of the synapses formed with the dendrites of spiny stellate neurons of cat visual cortex. J Comp Neurol 1994; 341:25-38. [PMID: 8006221 DOI: 10.1002/cne.903410104] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The synaptic input of six spiny stellate neurons in sublamina 4A of cat area 17 was assessed by electron microscopy. The neurons were physiologically characterized and filled with horseradish peroxidase in vivo. After processing the neurons were reconstructed at the light microscopic level using computer-assisted methods and analyzed quantitatively. The extensive branching of the dendritic tree about 50 microns from the soma meant that the distal branches constituted five times the length of proximal dendrite. Proximal and distal portions of a single dendrite from each neuron were examined in series of ultrathin sections (1,456 sections) in the electron microscope. The majority (79%) of the 263 synapses examined were asymmetric; the remainder (21%) were symmetric. Symmetric synapses formed 35% of synapses sampled on proximal dendrites and were usually located on the shaft. They formed only 4% of synapses sampled on distal dendrites. Spines accounted for less than half of the total asymmetric synapses (45%); the remainder were on shafts. Symmetric synapses formed with four of 92 spines. Nine spines formed no synapses. Spiny stellate neurons in cat visual cortex appear to differ considerably from pyramidal neurons in having a significant asymmetric (excitatory) synaptic input to the dendritic shaft.
Collapse
Affiliation(s)
- J C Anderson
- Medical Research Council Anatomical Neuropharmacology Unit, Oxford, United Kingdom
| | | | | | | |
Collapse
|
75
|
Ahmed B, Anderson JC, Douglas RJ, Martin KA, Nelson JC. Polyneuronal innervation of spiny stellate neurons in cat visual cortex. J Comp Neurol 1994; 341:39-49. [PMID: 8006222 DOI: 10.1002/cne.903410105] [Citation(s) in RCA: 263] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Our hypothesis was that spiny stellate neurons in layer 4 of cat visual cortex receive polyneuronal innervation. We characterised the synapses of four likely sources of innervation by three simple criteria: the type of synapse, the target (spine, dendritic shaft), and the area of the presynaptic bouton. The layer 6 pyramids had the smallest boutons and formed asymmetric synapses mainly with the dendritic shaft. The thalamic afferents had the largest boutons and formed asymmetric synapses mainly with spines. The spiny stellates had medium-sized boutons and formed asymmetric synapses mainly with spines. We used these to make a "template" to match against the boutons forming synapses with the spiny stellate dendrite. Of the asymmetric synapses, 45% could have come from layer 6 pyramidal neurons, 28% from spiny stellate neurons, and 6% from thalamic afferents. The remaining 21% of asymmetric synapses could not be accounted for without assuming some additional selectivity of the presynaptic axons. Additional asymmetric synapses may come from a variety of sources, including other cortical neurons and subcortical nuclei such as the claustrum. Of the symmetric synapses, 84% could have been provided by clutch cells, which form large boutons. The remainder, formed by small boutons, probably come from other smooth neurons in layer 4, e.g., neurogliaform and bitufted neurons. Our analysis supports the hypothesis that the spiny stellate receives polyneuronal innervation, perhaps from all the sources of boutons in layer 4. Although layer 4 is the major recipient of thalamic afferents, our results show that they form only a few percent of the synapses of layer 4 spiny stellate neurons.
Collapse
Affiliation(s)
- B Ahmed
- Medical Research Council Anatomical Neuropharmacology Unit, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
76
|
Sun N, Yi H, Cassell MD. Evidence for a GABAergic interface between cortical afferents and brainstem projection neurons in the rat central extended amygdala. J Comp Neurol 1994; 340:43-64. [PMID: 7513719 DOI: 10.1002/cne.903400105] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The synaptic circuitry of the intrinsic GABAergic system of the central extended amygdala (CEA) in relation to efferent neurons and cortical afferents was examined in the present study. Neurons in the CEA projecting to the dorsal vagal complex and the parabrachial complex were identified by the retrograde transport of wheat germ agglutinin-horseradish peroxidase (WGA-HRP). Postembedding GABA-immunocytochemistry revealed that GABA-immunoreactive (GABA-IR) terminals formed largely symmetrical synaptic contacts with the perikarya and proximal dendritic processes of almost all WGA-HRP-labeled neurons in the CEA. To determine the relationship between cortical afferents and CEA GABAergic neurons, WGA-HRP was used to anterogradely label afferents from the insular cortex in combination with postembedding immunogold detection of GABA. Cortical afferents formed asymmetrical synaptic contacts predominantly on small dendrites and dendritic spines. Many of the dendrites postsynaptic to cortical terminals in the central nucleus were immunoreactive for GABA although only relatively few spines were GABA-IR. Combining pre-embedding GAD-immunocytochemistry with cortical lesions resulted in approximately 40% of degenerating terminals of insular cortical origin in the central nucleus in contact with small, GAD-IR dendrites and spines. The present results demonstrate that the neurons providing the major CEA outputs to the brainstem receive an extensive GABAergic innervation, strongly supporting our proposal that CEA efferent neurons are under strong tonic inhibition by intrinsic GABAergic neurons. Further, our finding that the major cortical input to the central nucleus preferentially innervates intrinsic GABAergic neurons suggests that these neurons in the CEA may serve as an interface between the principal inputs and outputs of this forebrain region.
Collapse
Affiliation(s)
- N Sun
- Department of Anatomy, University of Iowa, Iowa City 52242
| | | | | |
Collapse
|
77
|
Vaughan DW. Effects of peripheral axotomy on presynaptic axon terminals with GABA-like immunoreactivity. Anat Rec (Hoboken) 1994; 238:248-62. [PMID: 8154610 DOI: 10.1002/ar.1092380211] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The facial nerve was unilaterally crushed at its exit from the stylomastoid foramen in three 3-month old male rats. After 10 days survival, before the regenerating axons had reinnervated their target muscles, the facial nucleus was examined to determine central patterns of response in material prepared to demonstrate the presence of GABA-like immunoreactivity with postembedding procedures using gold-labeled secondary antibody. The uninjured nucleus served as a control. In both control and injured nuclei, the GABAergic terminals synapse with all parts of the motor neurons, except the axon, and exhibit diverse morphologies. GABAergic axon terminals vary in their size and in the electron density of their axoplasm and the majority of the terminals contain pleomorphic vesicle profiles that display a range in their packing density and size. In both control and injured facial nuclei, only approximately 40% of the axon terminal profiles with pleomorphic vesicles exhibit GABA immunoreactivity. A morphometric analysis of the synaptic vesicle profiles in the GABA-positive terminals reveals that following axotomy there is no change in the mean number of synaptic vesicle profiles per GABAergic terminal profile. However, the mean size of the synaptic vesicle profiles in these terminals shows an axotomy-induced 50% increase, without change in the shapes of the enlarged vesicle profiles. Also, the numerical density of gold particles associated with the GABA-positive terminals is consistently greater in the injured than the control axon terminals. In the control animals quantitative analysis of the relative distribution of all axon terminal profiles in the neuropil categorized by the shape of their vesicle profiles as round, pleomorphic, or flat is 57:37:6. Ten days after axotomy the ratio of these categories in the injured nucleus has shifted to 35:60:5. This study demonstrates that the functional state of a postsynaptic target can influence the morphology of vesicle profiles in presynaptic elements as well as patterns of its afferent input.
Collapse
Affiliation(s)
- D W Vaughan
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Massachusetts 02118
| |
Collapse
|
78
|
Beaulieu C, Campistron G, Crevier C. Quantitative aspects of the GABA circuitry in the primary visual cortex of the adult rat. J Comp Neurol 1994; 339:559-72. [PMID: 8144746 DOI: 10.1002/cne.903390407] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The number and size of synaptic contacts made by GABA-immunoreactive axonal boutons were estimated in each layer of the primary visual cortex (area Oc1M) of adult rats by using the dissector method. Immunoreactivity for GABA was detected with the postembedding immunogold technique on ultrathin sections. Targets of GABA synaptic contacts were also identified to predict the sites of GABA influence in the rat visual cortex. For the total cortical depth, 82 million out of an overall population of 666 million synaptic contacts per mm3 of tissue (or 1 in 8 contacts, 12%) were GABA. Layer IV averaged 62% more GABA contacts per unit volume than did any other cortical layer. Consequently, these represented a larger proportion (1 in 6, 17%) of the overall population of layer IV synaptic contacts. This higher number of GABA contacts was not due to a greater density of GABA boutons, but to an increased number of contacts made by each layer IV GABA bouton (mean of 1.4 contacts per bouton compared to 1.1 in other cortical layers). The total area occupied by the contacts on an average GABA bouton was similar in all layers; the higher number of contacts per GABA bouton in layer IV being compensated for by their smaller size. This observed constancy in the area of synaptic contacts suggests the presence of one or more regulatory mechanisms maintaining optimal numbers of the different macromolecules forming the synaptic contacts. The increased density of GABA contacts in layer IV compared to other cortical layers was due to their greater number targeting distal regions of the dendritic tree. Since layer IV receives the vast majority of thalamocortical terminals and since these axons preferentially target dendritic spines, the specific arrangement of GABA synaptic contacts in this layer could be designed to exert a precise inhibition near the site of the thalamic input and thus serve as the structural basis for the strong GABA-related hyperpolarization that followed the excitatory response after physiological stimulations of the thalamocortical pathway.
Collapse
Affiliation(s)
- C Beaulieu
- Département de Pathologie, Université de Montréal, Canada
| | | | | |
Collapse
|
79
|
Gulyás AI, Miles R, Hájos N, Freund TF. Precision and variability in postsynaptic target selection of inhibitory cells in the hippocampal CA3 region. Eur J Neurosci 1993; 5:1729-51. [PMID: 8124523 DOI: 10.1111/j.1460-9568.1993.tb00240.x] [Citation(s) in RCA: 197] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Non-pyramidal cells were filled intracellularly with biocytin in the CA3 region of the guinea-pig hippocampus in vitro, within or close to stratum pyramidale. On the basis of camera lucida reconstructions and electron microscopy, six different cell types with distinct laminar distribution of axon terminals could be distinguished. The axon of three axo-axonic cells, three typical basket cells, and atypical basket cells of two types arborized in the perisomatic and proximal dendritic region of CA3 pyramidal cells. Two cells with axons innervating the distal dendritic segments of pyramidal cells were also found; one terminated in stratum radiatum and the other in stratum lacunosum-moleculare. Electron microscopy demonstrated that symmetrical synapses were formed by the labelled boutons on axon initial segments, somata, and proximal or distal dendrites of mostly pyramidal neurons. Axo-axonic cells showed absolute target selectivity for axon initial segments, whereas for the other cells the distribution of contacted elements was determined by the laminar distribution of axon terminals. In two cases, where additional cells were labelled with biocytin, multiple (up to nine) light microscopically identified contacts (presumed synaptic contacts) were established by the interneurons on several pyramidal cells and on an axo-axonic cell. Our results show that a restricted set of inhibitory cells, with somata within or close to CA3 stratum pyramidale, possess variable patterns of axonal arborization. Various types of postsynaptic elements are contacted, but precision in selecting certain targets and ignoring others is maintained within a particular cell type and layer. In contrast to the diversity of axonal arbors the structure of the dendritic trees shows no consistent differences, suggesting that the cells may be activated by a similar set of afferents. It seems probable that the innervation of precise regions of postsynaptic pyramidal cells by different types of interneurons--often in conjunction with particular excitatory afferents (Han et al., Eur. J. Neurosci., 5, 395-410, 1993)--underlies functional differences in inhibitory synaptic actions.
Collapse
Affiliation(s)
- A I Gulyás
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest
| | | | | | | |
Collapse
|
80
|
Stewart MG, Siucińska E, Kossut M, Davies H. Loss of glutamate immunoreactivity from mouse first somatosensory (SI) cortex following neonatal vibrissal lesion. Brain Res 1993; 621:331-8. [PMID: 7902186 DOI: 10.1016/0006-8993(93)90123-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Whisker follicles were surgically ablated (lesioned) on two entire rows (B and C) of the left snout of two groups of Swiss mice, in the first 2 days after birth (neonatally lesioned) with the animals being allowed to survive for 4 weeks. In the second group at 8 weeks of age (adults), the whisker follicles of rows B and C were similarly lesioned and a survival period of 3 days allowed. Glutamate-immunoreactivity (Glu-IR) was examined in tangential sections of the first somatosensory (SI) 'barrel' cortex of these two groups (at which time it was also confirmed that the follicles had not regrown). In the neonatally lesioned mice, barrel rows B and C were more poorly defined in the right (experimental) hemisphere sections and a semi-quantitative study showed that there was a decrease in Glu-IR cell number (up to 41%) in rows B and C of the right hemisphere compared to the spared barrel rows (A and D). The loss appears to occur over almost the entire area of each deprived barrel rather than being confined to the sides or hollows. In contrast to neonatally lesioned animals, the barrels of the adult-lesioned mice appeared intact and visually similar in both the experimental (right) and control hemispheres (left). The only notable change in Glu-IR observed in the adult-lesioned animals was a decrease of 38% in the number of Glu-IR cells in the sides between the two deafferented rows of barrels (B and C), compared to the cell number between the unaffected barrels (D and E), a change also seen in the neonatally lesioned mice.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M G Stewart
- Brain and Behaviour Research Group, Open University, Milton Keynes, UK
| | | | | | | |
Collapse
|
81
|
Dennison-Cavanagh ME, Papadopoulos G, Parnavelas JG. The emergence of the cortical GABAergic neuron: with particular reference to some peptidergic subpopulations. JOURNAL OF NEUROCYTOLOGY 1993; 22:805-14. [PMID: 8270963 DOI: 10.1007/bf01181325] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The technical developments which have led to our present ability to make predictions about neurochemical identity from morphological observations are retraced with particular reference to the GABAergic neuron and its many subdivisions. The synaptology of four peptidergic sub-populations in the cerebral cortex is examined and described in detail. It is concluded that the recognition of Gray Type 1 and Type 2 synapse types continues to provide a key element in our analysis and understanding of the connectivity of the CNS.
Collapse
|
82
|
Alvarez FJ, Kavookjian AM, Light AR. Ultrastructural morphology, synaptic relationships, and CGRP immunoreactivity of physiologically identified C-fiber terminals in the monkey spinal cord. J Comp Neurol 1993; 329:472-90. [PMID: 7681070 DOI: 10.1002/cne.903290405] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The spinal cord terminations of two electrophysiologically identified single C-fibers (one identified as a C-nociceptor) were intra-axonally labeled with horseradish peroxidase and analyzed with both light and electron microscopy. Serial section ultrastructural analysis and postembedding immunocytochemical techniques for calcitonin gene-related peptide (CGRP), substance P (SP), and GABA were used to study the synaptology, and neuropeptide content. All C-terminal synapses were in laminae I and II. The terminals sampled (n = 73) from these two C-fibers rarely established glomerular synaptic complexes, but rather, simple terminals, usually measuring 1-4 microns in length and 1-3 microns in diameter. They most often established 1 or 2 (range 1 to 5) quite large asymmetric axodendritic synaptic contacts. Postsynaptic structures included dendritic spines and shafts with and without vesicles. C-terminals were filled with small round synaptic vesicles (45-60 nm) and also contained variable numbers of large dense-core vesicles (LDCVs, 80-110 nm). LDCVs inside identified C-terminals frequently displayed CGRP immunoreactivity. We were unable to detect SP immunoreactivity inside our sample of C-fiber LDCVs. C-terminals were never found postsynaptic to other profiles. Thus, the C-fiber terminals sampled in this study have simple synaptology, do not receive presynaptic control and contain CGRP immunoreactivity. They differ greatly from the terminals of A delta nociceptors studied previously by our group that had glomerular endings, often received presynaptic input and did not contain CGRP immunoreactivity. This suggests the existence of different processing mechanisms, at the level of the first synapse, for nociceptive inputs arriving to lamina I and II through different types of primary afferents.
Collapse
Affiliation(s)
- F J Alvarez
- Department of Physiology, School of Medicine, University of North Carolina, Chapel Hill 27599
| | | | | |
Collapse
|
83
|
Kisvárday ZF, Beaulieu C, Eysel UT. Network of GABAergic large basket cells in cat visual cortex (area 18): implication for lateral disinhibition. J Comp Neurol 1993; 327:398-415. [PMID: 8440773 DOI: 10.1002/cne.903270307] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Anatomical and immunohistochemical data indicate that, in addition to pyramidal neurons, nonpyramidal cells are exposed to perisomatic inhibition mediated by gamma-aminobutyric acid (GABA)-containing terminals. However, no direct information is available as yet for the origin of GABAergic inputs to morphologically identified GABAergic neurons. In the present paper, we studied the topographical and synaptic relationship between identified GABAergic large basket cells and their immunohistochemically characterized target neurons revealed by parvalbumin-(PV) and GABA immunostaining in the same material. Extracellularly applied biocytin labelled a total of 36 and 9 large basket cells in layers III and V, respectively. Of these, the axonal arborizations of two basket cells, BC1 and BC2, were reconstructed. The axon of BC1 occupied an area of about 2.3 x 2.2 mm2 in layer III, providing a total of 2,755 terminals. The axon of BC2 showed an overall extent of 3.8 x 1.7 mm2 in layer V elongated in the anteroposterior direction, and gave off 1,599 terminals. Immunostaining for PV was carried out to reveal putative nonpyramidal targets for BC1 and BC2. It was found that in addition to immunonegative cells, they established an average of 4-6 perisomatic contacts onto each of 58 (BC1) and 33 (BC2) PV-immunopositive neurons. For electron microscopic verification, 23 terminals apposing the somata of 12 PV-immunopositive neurons were selected. Each terminal was found to establish symmetrical (type II) contacts with its targeted cell. Furthermore, the distribution of soma area of the targeted PV-immunopositive cells and of identified large basket cells showed remarkable similarity, implying that the two populations were actually the same. In addition, the average horizontal distance between neighbouring PV-immunopositive target cells was found to be about 100 microns both in layers III and V. The results suggest that in area 18 the same large basket cell provides direct inhibition to certain pyramidal cells and facilitation to other pyramidal neurons, by inhibiting their presynaptic large basket cells at regular intervals.
Collapse
Affiliation(s)
- Z F Kisvárday
- Ruhr-Universität Bochum, Abteilung für Neurophysiologie, Germany
| | | | | |
Collapse
|
84
|
Kunkel DD, Scharfman HE, Schmiege DL, Schwartzkroin PA. Electron microscopy of intracellularly labeled neurons in the hippocampal slice preparation. Microsc Res Tech 1993; 24:67-84. [PMID: 7679592 DOI: 10.1002/jemt.1070240107] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have assessed the properties of three intracellular markers, horseradish peroxidase, biocytin/Neurobiotin, and Lucifer Yellow, and have compared their usefulness as neuronal markers for light and electron microscopic visualization. Neurons in the acute slice preparation of rat hippocampus were filled with one of these markers, and the marker was converted to an optical and electron-dense reaction product. Dimethylsulfoxide (DMSO) greatly facilitated penetration of recognition reagents while preserving membrane integrity. The markers were compared with respect to injection parameters, mobility and recognition, stability and visibility, and ultrastructural clarity. Horseradish peroxidase (HRP)-labeled neurons, recognized histochemically with diaminobenzedine (DAB), were easily visualized by the density of the DAB reaction product; however, the electron density was often so great as to obscure ultrastructural details. Biocytin (BC)-/Neurobiotin (NB)-labeled neurons were recognized by avidin-HRP, followed by histochemical localization of HRP with DAB. The optically dense reaction product gave complete visualization of the soma and processes at the light microscopic level. The electron density was homogeneously distributed throughout the cell, so that ultrastructural features were easily identified. Lucifer Yellow (LY), a fluorescent marker, was converted to an optical and electron-dense reaction product via immunocytochemical staining with a rabbit anti-LY antibody, followed by goat anti-rabbit IgG-HRP and DAB histochemical localization. Similar to BC/NB, the reaction product was evenly dispersed, providing good light microscopic and ultrastructural clarity. Under our experimental conditions, BC/NB and LY were superior markers that could be used routinely to label neurons, and give excellent visualization not only at the light but also at the electron microscopic level.
Collapse
Affiliation(s)
- D D Kunkel
- Department of Neurological Surgery, University of Washington, Seattle 98195
| | | | | | | |
Collapse
|
85
|
Sherry DM, Yazulla S. Immunofluorescent identification of endogenous neurotransmitter content in Golgi-impregnated neurons. J Neurosci Methods 1993; 46:41-8. [PMID: 7681517 DOI: 10.1016/0165-0270(93)90139-i] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A combined Golgi-impregnation/immunocytochemistry procedure was developed to identify the endogenous neurotransmitter content of morphologically characterized neurons. Golgi-impregnated retinal amacrine cells in the lizard Anolis carolinensis were characterized morphologically in thick resin sections. Cells of interest were remounted, resectioned at 1 micron thickness and subjected to a postembedding immunofluorescence procedure to visualize the amino acid neurotransmitters gamma-aminobutyric acid (GABA) or glycine. Double-labeled cells were identified by opaque Golgi deposits in the cytoplasm under bright-field illumination and nuclear immunofluorescence under ultraviolet illumination. Twenty-seven Golgi-impregnated amacrine cells, exhibiting morphological features of GABA-immunoreactive (GABA-IR) cells, were tested for GABA-IR; 21 showed double labeling. Glycine-IR amacrine cells also were identified using the Golgi/immunocytochemistry procedure. This double-labeling procedure allows rapid assessment of endogenous neurotransmitter content in large samples of morphologically characterized neurons.
Collapse
Affiliation(s)
- D M Sherry
- SUNY-Stony Brook, Department of Neurobiology and Behavior 11794-5230
| | | |
Collapse
|
86
|
Fairén A, Smith-Fernández A. Electron microscopy of Golgi-impregnated interneurons: notes on the intrinsic connectivity of the cerebral cortex. Microsc Res Tech 1992; 23:289-305. [PMID: 1295614 DOI: 10.1002/jemt.1070230405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Golgi-electron microscope technique has opened new avenues to explore the synaptic organization of the brain. In this article, we shall discuss basic methodological principles necessary to analyze axonal arborizations with this combined technique. To illustrate the applications of the method, we shall review the forms and distribution of the synapses in which the axonal arborizations of local cortical interneurons engage.
Collapse
Affiliation(s)
- A Fairén
- Instituto Cajal, CSIC, Madrid, Spain
| | | |
Collapse
|
87
|
DeFelipe J, Fariñas I. The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Prog Neurobiol 1992; 39:563-607. [PMID: 1410442 DOI: 10.1016/0301-0082(92)90015-7] [Citation(s) in RCA: 589] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
88
|
Antal M, Sholomenko GN, Moschovakis AK, Storm-Mathisen J, Heizmann CW, Hunziker W. The termination pattern and postsynaptic targets of rubrospinal fibers in the rat spinal cord: a light and electron microscopic study. J Comp Neurol 1992; 325:22-37. [PMID: 1484116 DOI: 10.1002/cne.903250103] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The spinal course, termination pattern, and postsynaptic targets of the rubrospinal tract, which is known to contribute to the initiation and execution of movements, were studied in the rat at the light and electron microscopic levels by using the anterograde tracer Phaseolus vulgaris-leucoagglutinin (PHA-L) in combination with calbindin-D28k (CaBP), gamma-aminobutyric acid (GABA), and glycine immunocytochemistry. After injections of PHA-L unilaterally into the red nucleus, labelled fibers and terminals were detected at cervical, thoracic, and lumbar segments of the spinal cord. Most of the descending fibers were located in the dorsolateral funiculus contralateral to the injection site, but axons descending ipsilaterally were also revealed. Rubrospinal axon terminals were predominantly found in laminae V-VI and in the dorsal part of lamina VII at all levels and on both sides of the spinal cord, but stained collaterals were also seen in the ventrolateral aspect of Clark's column and in the ventral regions of lamina VII on both sides. The proportion of axonal varicosities revealed on the ipsilateral side varied at different segments and represented 10-28% of the total number of labelled boutons. Most of the labelled boutons were engaged in synaptic contacts with dendrites. Of the 137 rubrospinal boutons investigated, only 2 were found to establish axosomatic synaptic junctions in the lumbar spinal cord contralateral to the PHA-L injection. With the postembedding immunogold method, 80.8% of dendrites establishing synaptic contacts with rubrospinal terminals did not show immunoreactivity for either GABA or glycine, whereas 19.2% of them were immunoreactive for both amino acids. Rubrospinal axons made multiple contacts with CaBP-immunoreactive neurons in laminae V-VI. Synaptic contacts between rubrospinal terminals and CaBP-immunoreactive dendrites were identified at the electron microscopic level, and all CaBP-containing postsynaptic dendrites investigated were negative for both GABA and glycine. The results suggest that rubrospinal terminals establish synaptic contacts with both excitatory and inhibitory interneurons in the rat spinal cord, and a population of excitatory interneurons receiving monosynaptic rubrospinal input is located in laminae V-VI.
Collapse
Affiliation(s)
- M Antal
- Laboratory of Neural Control, NINDS, NIH, Bethesda, Maryland 20892
| | | | | | | | | | | |
Collapse
|
89
|
McCormick DA. Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog Neurobiol 1992; 39:337-88. [PMID: 1354387 DOI: 10.1016/0301-0082(92)90012-4] [Citation(s) in RCA: 743] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- D A McCormick
- Section of Neurobiology, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
90
|
Peters A, Harriman KM. Different kinds of axon terminals forming symmetric synapses with the cell bodies and initial axon segments of layer II/III pyramidal cells. III. Origins and frequency of occurrence of the terminals. JOURNAL OF NEUROCYTOLOGY 1992; 21:679-92. [PMID: 1403013 DOI: 10.1007/bf01191729] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The cell bodies of the layer II/III pyramidal cells in rat visual cortex receive three morphologically distinct types of axon terminals. These axon terminals all form symmetric synapses and have been termed large, medium-sized, and dense axon terminals. The present study shows that each of these different kinds of axon terminals contains gamma-aminobutyric acid (GABA) which suggests that they are inhibitory. From an analysis of the profiles of 50 cell bodies it is calculated that the average layer II/III pyramidal cell has 65 axosomatic synapses, of which 43 are formed by medium-sized terminals, 10 by large terminals, and 12 by dense terminals. Comparison of these different kinds of axon terminals with labelled axon terminals of known origin suggests that the medium-sized terminals are derived from smooth multipolar cells with unmyelinated axons, and that at least some of the dense terminals originate from bipolar cells that contain vasoactive intestinal polypeptides. The source of the large axon terminals is not known, but it is suggested that they originate from multipolar non-pyramidal cells with myelinated axons. Since the initial axon segments of these same neurons receive GABAergic axon terminals from chandelier cells, at least four different types of neurons provide inhibition to the cell bodies and axons of layer II/III pyramidal cells. This serves as an illustration of the complexity of the neuronal circuits in which pyramidal cells are involved.
Collapse
Affiliation(s)
- A Peters
- Department of Anatomy and Neurobiology, Boston University School of Medicine, MA 02118
| | | |
Collapse
|
91
|
Merighi A, Cruz F, Coimbra A. Immunocytochemical staining of neuropeptides in terminal arborization of primary afferent fibers anterogradely labeled and identified at light and electron microscopic levels. J Neurosci Methods 1992; 42:105-13. [PMID: 1383643 DOI: 10.1016/0165-0270(92)90140-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A method is described to combine, at the ultrastructural level, horseradish peroxidase (HRP) anterograde tracing of primary afferents and peptide immunocytochemistry, using the lateral plexus of primary afferent fibers in laminae I-IIo of the rat dorsal horn as a model system. Free HRP was crushed against the dorsal roots. After a 14-h survival, animals were perfused, and the spinal cord was sliced at 50 microns with a Vibratome in a parasagittal plane. From these thick sections, camera lucida drawings of HRP-labeled fibers were obtained. Following osmication and Epon flat embedding, thick sections were re-cut at 5 microns and the labeled arbors matched with those previously drawn from the 50-microns sections. Ultrathin sections were cut from the 5-microns semithin sections and directly stained on grids using a post-embedding immunogold labeling procedure. Single and/or double immunocytochemical staining was performed using a rat monoclonal antibody against substance P and a rabbit polyclonal antiserum against calcitonin gene-related peptide (CGRP). Immunocytochemical reactions were visualized using appropriate immunoglobulin G-gold conjugates and the double-labeled synaptic boutons were matched with the varicosities previously visualized at the light level in the thick and semi-thin sections. The major advantages of this method are: (i) correlative studies at light and electron microscope level are made possible; (ii) tissue ultrastructure and antigenicity are adequately preserved so that a reliable subcellular localization of antigens under study is obtained; (iii) the markers used for tracing and immunocytochemistry are clearly distinguishable, even when present in the same nerve profile; and (iv) anterograde tracing can easily be combined with multiple immunolabeling.
Collapse
Affiliation(s)
- A Merighi
- Dipartimento di Morfofisiologia Veterinaria, Università degli Studi di Torino, Italy
| | | | | |
Collapse
|
92
|
Abstract
The organization of glycine-like immunoreactive (GLY-LIR) processes was investigated within the sympathetic preganglionic neuropils of male Sprague-Dawley rats and pigeons (Columba livia). Sympathetic preganglionic neurons were retrogradely labeled with horseradish peroxidase following injections into the superior cervical ganglion in rats or into the avian homologue of the mammalian stellate ganglion (paravertebral ganglion 14) in pigeons. Glycine-like immunoreactivity was visualized using postembedding immunoperoxidase and immunogold labeling methods. The neuropils surrounding pigeon sympathetic preganglionic neurons in the principal preganglionic cell column (nucleus of Terni) and in the nucleus intercalatus contained numerous GLY-LIR puncta. Many of these processes appeared to be 'terminal-like' swellings which closely apposed retrogradely labeled preganglionic perikarya and proximal dendrites. GLY-LIR somal and dendritic processes were intermingled among retrogradely labeled preganglionic neurons in the nucleus of Terni. None of these GLY-LIR cells were retrogradely labeled. The neuropils surrounding sympathetic preganglionic neurons in the rat also contained numerous GLY-LIR puncta; there were, however, qualitative differences in the density of such profiles across the preganglionic subnuclei. Within the central autonomic and intercalated regions there were numerous GLY-LIR processes, many of which closely apposed retrogradely labeled sympathetic preganglionic somas and proximal dendrites. Within the principal preganglionic cell column, the nucleus intermediolateralis pars principalis (Ilp), there were very few GLY-LIR 'terminal-like' swellings closely apposed to cell bodies in regions of high somal packing density. In regions were this density diminished, GLY-LIR puncta closely apposed retrogradely labeled perikarya and proximal dendritic processes. GLY-LIR spinal neurons were never observed to be within Ilp proper but were present in areas immediately dorsal (lateral lamina V), medial and ventral (lateral lamina VII). GLY-LIR neurons were never retrogradely labeled. The ultrastructural features of GLY-LIR terminals within the sympathetic preganglionic neuropils of both vertebrates were nearly identical. GLY-LIR terminal boutons formed synaptic contacts with retrogradely labeled preganglionic somas as well as with large and medium-sized proximal dendrites. The majority of identified GLY-LIR terminals, however, contacted non-retrogradely labeled medium and small caliber dendrites within the preganglionic neuropils. Ninety-eight percent of GLY-LIR synapses formed symmetric specializations with the postsynaptic element. Ninety-six percent of the GLY-LIR terminal boutons contained some combination of pleomorphic vesicles. These light and electron microscopic observations support the hypothesis that glycine is localized in terminals presynaptic to sympathetic preganglionic perikarya and dendrites.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J B Cabot
- Department of Neurobiology and Behavior, State University of New York, Stony Brook 11794-5230
| | | | | |
Collapse
|
93
|
Berman NJ, Douglas RJ, Martin KA. GABA-mediated inhibition in the neural networks of visual cortex. PROGRESS IN BRAIN RESEARCH 1992; 90:443-76. [PMID: 1631309 DOI: 10.1016/s0079-6123(08)63626-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- N J Berman
- MRC Anatomical Neuropharmacology Unit, Oxford, England, UK
| | | | | |
Collapse
|
94
|
Hendry S, Carder RK. Organization and plasticity of GABA neurons and receptors in monkey visual cortex. PROGRESS IN BRAIN RESEARCH 1992; 90:477-502. [PMID: 1321463 DOI: 10.1016/s0079-6123(08)63627-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The GABA neurons of monkey area 17 are a morphologically and chemically heterogeneous population of interneurons that are normally distributed most densely within the geniculocortical recipient zones of the visual cortex. In adult monkeys deprived of visual input from one eye, the levels of immunoreactivity for GABA and GAD within neurons of these geniculocortical zones is reduced. Similar changes are seen in the levels of proteins that make up the GABAA receptor sub-type. The effects of monocular deprivation on other substances suggest that specific types of GABA neurons, such as those in which the tachykinin neuropeptide family and parvalbumin coexist with GABA, are greatly influenced by changes in visual input. That some proteins remain normal within deprived-eye neurons and that other proteins are increased indicates the changes in the GABA cells of the cortex are not the result of a general reduction in protein synthesis. Comparisons of what is known about the morphological and synaptic features of GABA cells in area 17 and the characteristics of cells affected by monocular deprivation suggests that certain classes, such as the clutch cell, may be preferential targets of deprivation. Such a selective loss of certain GABA neurons would have broad implications for the possible physiological plasticity of cortical cells, for if ongoing studies determine that specific receptive field properties are affected by monocular deprivation in adults, the correlation of functional properties and classes of GABA cells would be possible.
Collapse
Affiliation(s)
- S Hendry
- Department of Anatomy and Neurobiology, University of California, Irvine 92717
| | | |
Collapse
|
95
|
Oliver DL, Beckius GE. Fine structure of GABA-labeled axonal endings in the inferior colliculus of the cat: immunocytochemistry on deplasticized ultrathin sections. Neuroscience 1992; 46:455-63. [PMID: 1542418 DOI: 10.1016/0306-4522(92)90065-a] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Antisera to GABA conjugates and postembedding techniques were used to identify GABA-containing axonal endings at the electron microscopic level in the inferior colliculus. Over 90% of the GABA-labeled axonal endings had a similar morphology. They contained pleomorphic synaptic vesicles and made symmetrical synapses. The exceptional endings contained round vesicles and made symmetrical synaptic contacts or had pleomorphic vesicles with asymmetrical contacts. The majority of GABA-labeled axonal endings synapsed on dendrites; however, a few labeled axosomatic synapses were also found. Potential sources for these GABAergic synapses are neurons intrinsic to the inferior colliculus or from the dorsal nucleus of the lateral lemniscus. These findings suggest a basic similarity for most GABAergic endings in the inferior colliculus despite their possible origin from different cell types.
Collapse
Affiliation(s)
- D L Oliver
- Department of Anatomy, University of Connecticut Health Center, Farmington 06030
| | | |
Collapse
|
96
|
Kisvárday ZF. GABAergic networks of basket cells in the visual cortex. PROGRESS IN BRAIN RESEARCH 1992; 90:385-405. [PMID: 1631306 DOI: 10.1016/s0079-6123(08)63623-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Z F Kisvárday
- Department of Neurophysiology, Ruhr-Universität Bochum, FRG
| |
Collapse
|
97
|
Martinez-Guijarro FJ, Soriano E, Del Rio JA, Lopez-Garcia C. Zinc-positive boutons in the cerebral cortex of lizards show glutamate immunoreactivity. JOURNAL OF NEUROCYTOLOGY 1991; 20:834-43. [PMID: 1723751 DOI: 10.1007/bf01191734] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Zinc-positive boutons, originating in the medial cortex of lizards, exhibit glutamate immunoreactivity. This finding supports the presumed homology between lizard zinc-positive boutons and the hippocampal mossy fibres of mammals, which are also glutamate-immunoreactive and zinc-positive. Zinc-positive boutons of lizards contain a chelatable pool of zinc located in the hippocampal mossy fibres of mammals. These synaptic systems also contain glutamate, which indicates a possible simultaneous action of zinc and glutamate during synaptic transmission.
Collapse
Affiliation(s)
- F J Martinez-Guijarro
- Catedra de Citologia e Histologia, Facultad de Ciencias Biologicas, Universidad de Valencia, Burjasot, Spain
| | | | | | | |
Collapse
|
98
|
Montero VM. A quantitative study of synaptic contacts on interneurons and relay cells of the cat lateral geniculate nucleus. Exp Brain Res 1991; 86:257-70. [PMID: 1756802 DOI: 10.1007/bf00228950] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The relative proportions of synapses made by retinal and extraretinal terminals on interneurons and relay cells in lamina A of the dorsal lateral geniculate nucleus (LGN) of the cat were estimated quantitatively in a sample of 4003 synapses. Processes of interneurons or relay cells were identified by presence or absence of GABA immunoreactivity, respectively, in thin sections treated with post-embedding anti-GABA immunogold. On the basis of ultrastructural features, synaptic terminals were interpreted as belonging to retinal axons, cortical axons or axon collaterals of relay cells. GABAergic terminals were positively identified by being immunoreactive. GABA(-) terminals with heterogeneous and poorly defined characteristics, which could not be identified in the above classes, were grouped together in an "undetermined" category. Among the total synaptic inputs to interneurons, the following relative percentages of synapses from different terminals were obtained: retinal 25%, cortical 37%, GABAergic 26%, axon collaterals 2%, undetermined 6%. The vast majority of retinal terminals synapse on dendritic appendages of interneurons rather than on their dendritic trunks (about 20:1). By contrast, the majority of cortical terminals synapse on dendrites rather than on dendritic appendages (about 5:1). Virtually all axon-collaterals synapses were established on dendritic appendages. 17% of the dendritic profiles of interneurons contain synaptic vesicles; many of these profiles were seen in postsynaptic relation to cortical axons and in presynaptic relation with relay dendrites. Given the extensive electrotonic lengths of these cells observed by others, and the expected high electric resistance of the slender stalks that are known to connect the dendritic appendages to interneurons, these results suggest that microcircuits involving the interneuronal dendritic appendages with dendrites of relay cells are under predominantly retinal control. The microcircuits established by presynaptic dendritic trunks with relay dendrites, are under predominantly cortical control. The axonal (spiking) output of interneurons would be under control of the few retinal synapses on proximal dendrites of these cells. Among the total synaptic inputs to relay cells, the following relative percentages of different synapses were obtained: retinal 12%, cortical 58%, GABAergic 24%, axon collaterals 0.3%, undetermined 5%. Relay cells receive twice the number of cortical synapses than interneurons, suggesting that direct cortical excitatory influences on relay cells are more preponderant than cortico-interneuron mediated inhibition on these cells. The observed proportions of dendritic profiles of relay cells and interneurons (80% and 20%, respectively) in the geniculate neuropil are similar to the known proportions of somata of both types of cells in the A-laminae.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- V M Montero
- Department of Neurophysiology, University of Wisconsin, Madison 53705
| |
Collapse
|
99
|
Lowenstein PR, Somogyi P. Synaptic organization of cortico-cortical connections from the primary visual cortex to the posteromedial lateral suprasylvian visual area in the cat. J Comp Neurol 1991; 310:253-66. [PMID: 1955584 DOI: 10.1002/cne.903100209] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The synaptic organization of the projection from the cat striate visual cortex to the posteromedial lateral suprasylvian cortical area (PMLS) was examined. The anterograde tracer Phaseolus vulgaris leucoagglutinin (PHA-L) was iontophorectically delivered into area 17, and anterogradely labeled fibers were revealed in PMLS by means of an immunocytochemical detection method. Most axons and presumptive terminal swellings were found in layers III and IV. The neuronal elements (n = 190) that were postsynaptic to anterogradely labeled boutons were quantitatively analyzed. All anterogradely labeled cortico-cortical boutons (n = 182) established type 1 synapses. The results show that 83% of the postsynaptic targets were dendritic spines, probably belonging to pyramidal cells. Dendritic shafts constituted 17% of the targets. The dendritic shafts postsynaptic to cortico-cortical boutons were studied for the presence of gamma-aminobutyric acid (GABA) with a postembedding immunogold method. Most dendritic shafts (85%) that were tested were found to be GABA-positive, demonstrating that they originate from local inhibitory neurons. Taking into account that most postsynaptic targets were spines and extending the results of the immunocytochemical testing to the total population of postsynaptic dendrites, it was calculated that at least 14% of targets originated from GABA-positive cells. Thus cortico-cortical axons establish direct monosynpatic connections mainly with pyramidal and to a lesser extent with GABAergic nonpyramidal neurons in area PMLS, providing both feedforward excitation and feedforward inhibition to a visual associational area known to be involved in the processing of motion information. The results are consistent with previously demonstrated deficits in physiological properties of neurons in PMLS following removal of cortico-cortical afferents.
Collapse
Affiliation(s)
- P R Lowenstein
- Medical Research Council, Anatomical Neuropharmacology Unit, Oxford United Kingdom
| | | |
Collapse
|
100
|
Cournil I, Meyrand P, Moulins M. A method for the determination of projection areas of GABA immunoreactive neurons in the invertebrate nervous system. J Neurosci Methods 1991; 39:53-63. [PMID: 1722268 DOI: 10.1016/0165-0270(91)90093-f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Axonal transport of metallic salts (nickel or cobalt chloride) has been widely used for the anatomical mapping of neural pathways. We show here that when nickel is introduced into GABAergic neurons it completely eliminates GABA immunolabelling. We have used this property to determine the axonal projections of GABAergic neurons in the stomatogastric system of Crustacea. For example, following nickel backfills from either cut axons or from terminals, GABA immunostaining labels only those GABA-immunoreactive neurons which had not been retrogradely labelled with nickel and hence did not project in the cut nerve or to the neuropile uptake site. By comparing such immunolabelled preparations with those not pretreated with nickel the projection patterns of all the GABA immunoreactive neurons in a given system can be revealed. This effect of nickel appears to be selective for GABA immunostaining, insofar as it does not interfere with the immunodetection of either the peptide proctolin or a FMRFamide-like peptide. This method may prove to be a useful tool for analyzing GABAergic neuronal pathways in the nervous systems of invertebrates.
Collapse
Affiliation(s)
- I Cournil
- Laboratoire de Neurobiologie et Physiologie Comparées, Université de Bordeaux I, Arcachon, France
| | | | | |
Collapse
|