51
|
Abstract
This study tested the role of the superior colliculus in generating movements of the mystacial vibrissae--whisking. First, we compared the kinematics of whisking generated by the superior colliculus with those generated by the motor cortex. We found that in anesthetized rats, microstimulation of the colliculus evoked a sustained vibrissa protraction, whereas stimulation of motor cortex produced rhythmic protractions. Movements generated by the superior colliculus are independent of motor cortex and can be evoked at lower thresholds and shorter latencies than those generated by the motor cortex. Next we tested the hypothesis that the colliculus is acting as a simple reflex loop with the neurons that drive vibrissa movement receiving sensory input evoked by vibrissa contacts. We found that most tecto-facial neurons do not receive sensory input. Not only did these neurons not spike in response to sensory stimulation, but field potential analysis revealed that subthreshold sensory inputs do not overlap spatially with tecto-facial neurons. Together these findings suggest that the superior colliculus plays a pivotal role in vibrissa movement--regulating vibrissa set point and whisk amplitude--but does not function as a simple reflex loop. With the motor cortex controlling the whisking frequency, the superior colliculus control of set point and amplitude would account for the main parameters of voluntary whisking.
Collapse
Affiliation(s)
- Marie E Hemelt
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | |
Collapse
|
52
|
Coizet V, Overton PG, Redgrave P. Collateralization of the tectonigral projection with other major output pathways of superior colliculus in the rat. J Comp Neurol 2007; 500:1034-49. [PMID: 17183537 PMCID: PMC3124759 DOI: 10.1002/cne.21202] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Dopaminergic (DA) neurons exhibit a short-latency, phasic response to unexpected, biologically salient stimuli. The superior colliculus (SC) is also sensitive to such stimuli and sends a projection directly to DA-containing regions of the ventral midbrain. Recent evidence suggests that the SC is a critical relay for transmitting short-latency visual information to DA neurons. An important question is whether the ventral midbrain is an exclusive target of tectonigral neurons, or whether the tectonigral projection is a collateral branch of other tectofugal pathways. Double-label retrograde anatomical tracing techniques were used to address this issue. Injections of either Diamidino Yellow or Fluorogold into substantia nigra pars compacta (SNc) were combined with larger injections of True Blue into one of the following efferent projections of the SC: 1) target regions of the ipsilateral ascending projection to the thalamus; 2) the crossed descending tecto-reticulo-spinal pathway; 3) target structures of the ipsilateral descending projection; and 4) the contralateral superior colliculus. Moderate numbers of double-labeled neurons were observed following combined injections into substantia nigra and individual nuclei in the thalamus (ventromedial nucleus, 21.3%; central lateral, 18.4%; parafasicular nucleus 6.0%). Much less double-labeling was associated with injections into either of the descending projections (crossed, 1.0-3.2%; uncrossed, 0.2-2.7%) or the contralateral SC (0.7-1.9%). These results suggest: i) the SC may provide a coordinated input concerning the occurrence of unpredicted sensory events to both the substantia nigra and striatum (via the thalamus); and ii) few gaze-related motor signals are simultaneously relayed to DA-containing regions of the ventral midbrain.
Collapse
Affiliation(s)
- Véronique Coizet
- Neuroscience Research Unit, Department of Psychology, University of Sheffield, Sheffield, S10 2TP, UK.
| | | | | |
Collapse
|
53
|
Saitoh K, Ménard A, Grillner S. Tectal control of locomotion, steering, and eye movements in lamprey. J Neurophysiol 2007; 97:3093-108. [PMID: 17303814 DOI: 10.1152/jn.00639.2006] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The intrinsic function of the brain stem-spinal cord networks eliciting the locomotor synergy is well described in the lamprey-a vertebrate model system. This study addresses the role of tectum in integrating eye, body orientation, and locomotor movements as in steering and goal-directed behavior. Electrical stimuli were applied to different areas within the optic tectum in head-restrained semi-intact lampreys (n = 40). Motions of the eyes and body were recorded simultaneously (videotaped). Brief pulse trains (<0.5 s) elicited only eye movements, but with longer stimuli (>0.5 s) lateral bending movements of the body (orientation movements) were added, and with even longer stimuli locomotor movements were initiated. Depending on the tectal area stimulated, four characteristic response patterns were observed. In a lateral area conjugate horizontal eye movements combined with lateral bending movements of the body and locomotor movements were elicited, depending on stimulus duration. The amplitude of the eye movement and bending movements was site specific within this region. In a rostromedial area, bilateral downward vertical eye movements occurred. In a caudomedial tectal area, large-amplitude undulatory body movements akin to struggling behavior were elicited, combined with large-amplitude eye movements that were antiphasic to the body movements. The alternating eye movements were not dependent on vestibuloocular reflexes. Finally, in a caudolateral area locomotor movements without eye or bending movements could be elicited. These results show that tectum can provide integrated motor responses of eye, body orientation, and locomotion of the type that would be required in goal-directed locomotion.
Collapse
Affiliation(s)
- Kazuya Saitoh
- Department of Neuroscience, Nobel Institute for Neurophysiology, Karolinska Institutet, Stockholm Brain Institute, Retzius väg 8, SE-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
54
|
Kobayashi K, Hoshino K, Homma S, Takagi S, Norita M. A possible monosynaptic pathway links the pedunculopontine tegmental nucleus to thalamostriatal neurons in the hooded rat. ACTA ACUST UNITED AC 2007; 70:207-14. [DOI: 10.1679/aohc.70.207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kazumasa Kobayashi
- Division of Neurobiology and Anatomy, Department of Sensory and Integrative Medicine, Niigata University Graduate School of Medical and Dental Sciences
| | - Kaeko Hoshino
- Division of Neurobiology and Anatomy, Department of Sensory and Integrative Medicine, Niigata University Graduate School of Medical and Dental Sciences
| | - Shigeyuki Homma
- Division of Neurobiology and Anatomy, Department of Sensory and Integrative Medicine, Niigata University Graduate School of Medical and Dental Sciences
| | - Shigeru Takagi
- Division of Neurobiology and Anatomy, Department of Sensory and Integrative Medicine, Niigata University Graduate School of Medical and Dental Sciences
| | - Masao Norita
- Division of Neurobiology and Anatomy, Department of Sensory and Integrative Medicine, Niigata University Graduate School of Medical and Dental Sciences
| |
Collapse
|
55
|
Yeomans JS, Lee J, Yeomans MH, Steidl S, Li L. Midbrain pathways for prepulse inhibition and startle activation in rat. Neuroscience 2006; 142:921-9. [PMID: 16996220 DOI: 10.1016/j.neuroscience.2006.06.025] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 06/14/2006] [Accepted: 06/16/2006] [Indexed: 10/24/2022]
Abstract
The midbrain is essential for prepulse inhibition (PPI) of the startle reflex, but the exact neural circuits for PPI are not yet determined. Electrical stimulation of the superior colliculus (SC) or pedunculopontine tegmentum was used to characterize the neurons and pathways that mediate PPI and the activation of startle that also occurs at higher currents in the same sites. Startle was inhibited by prepulses in most, but not all SC sites, with the lowest intensity sites in intermediate layers of SC. PPI latencies in SC sites were 4-6 ms longer than in inferior colliculus, intercollicular nucleus or pedunculopontine sites. Contrary to previous serial models, there must be two parallel midbrain pathways for PPI, a faster auditory pathway from inferior colliculus to pedunculopontine tegmentum, and a slower multimodal SC output for PPI. Double-pulse stimulation of SC sites shows that PPI results from direct stimulation of neurons with moderate refractory periods (0.4-1.0 ms), similar to SC neurons that mediate contraversive turning responses. By contrast, startle activation occurring at higher currents in all SC sites (even sites where PPI could not be elicited) results from stimulation of very short refractory period neurons (0.3-0.5 ms) and very long refractory period neurons (1.0-2.0 ms), with startle inhibition often found from 0.5-1.0 ms. Startle activation appears to result from stimulation of short refractory period neurons in deep SC layers that mediate fear-potentiated startle, plus long refractory period substrates in more dorsal SC sites.
Collapse
Affiliation(s)
- J S Yeomans
- Department of Psychology, University of Toronto, 100 St George Street, Toronto, Ontario, Canada M5S 3G3
| | | | | | | | | |
Collapse
|
56
|
Crish SD, Dengler-Crish CM, Comer CM. Population coding strategies and involvement of the superior colliculus in the tactile orienting behavior of naked mole-rats. Neuroscience 2006; 139:1461-6. [PMID: 16603320 DOI: 10.1016/j.neuroscience.2005.11.073] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 11/14/2005] [Accepted: 11/20/2005] [Indexed: 11/20/2022]
Abstract
Even simple behaviors of vertebrates are typically generated by the concerted action of large numbers of brain cells. However, the mechanisms by which groups of neurons work together as functional populations to guide behavior remain largely unknown. One of the major model systems for exploring these mechanisms has been mammalian visuomotor behavior. We describe here experiments that establish a new model system for analyzing the sensory control of behavior by neuronal populations using a mammalian somatosensory response: orientation to touch cues in a rodent. We found that the CNS mechanisms used to direct these orientation responses to touch can be delineated from behavioral experiments. In this study we demonstrate that the superior colliculus, a component of the vertebrate midbrain most often thought of as a visual structure, is an essential component of the naked mole-rat's unique tactile orienting behavior. Furthermore, the information processing that underlies this behavior displays striking parallels with that used for visual orientation at anatomical and computational levels.
Collapse
Affiliation(s)
- S D Crish
- Laboratory of Integrative Neuroscience, and Department of Biological Sciences, University of Illinois at Chicago, 60607, USA.
| | | | | |
Collapse
|
57
|
|
58
|
May PJ. The mammalian superior colliculus: laminar structure and connections. PROGRESS IN BRAIN RESEARCH 2006; 151:321-78. [PMID: 16221594 DOI: 10.1016/s0079-6123(05)51011-2] [Citation(s) in RCA: 462] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The superior colliculus is a laminated midbrain structure that acts as one of the centers organizing gaze movements. This review will concentrate on sensory and motor inputs to the superior colliculus, on its internal circuitry, and on its connections with other brainstem gaze centers, as well as its extensive outputs to those structures with which it is reciprocally connected. This will be done in the context of its laminar arrangement. Specifically, the superficial layers receive direct retinal input, and are primarily visual sensory in nature. They project upon the visual thalamus and pretectum to influence visual perception. These visual layers also project upon the deeper layers, which are both multimodal, and premotor in nature. Thus, the deep layers receive input from both somatosensory and auditory sources, as well as from the basal ganglia and cerebellum. Sensory, association, and motor areas of cerebral cortex provide another major source of collicular input, particularly in more encephalized species. For example, visual sensory cortex terminates superficially, while the eye fields target the deeper layers. The deeper layers are themselves the source of a major projection by way of the predorsal bundle which contributes collicular target information to the brainstem structures containing gaze-related burst neurons, and the spinal cord and medullary reticular formation regions that produce head turning.
Collapse
Affiliation(s)
- Paul J May
- Department of Anatomy, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
| |
Collapse
|
59
|
Abstract
The nucleus reuniens (RE) is the largest of the midline nuclei of the thalamus and the major source of thalamic afferents to the hippocampus and parahippocampal structures. Nucleus reuniens has recently been shown to exert powerful excitatory actions on CA1 of the hippocampus. Few reports on any species have examined afferent projections to nucleus reuniens. By using the retrograde anatomical tracer Fluorogold, we examined patterns of afferent projections to RE in the rat. We showed that RE receives a diverse and widely distributed set of afferents projections. The main sources of input to nucleus reuniens were from the orbitomedial, insular, ectorhinal, perirhinal, and retrosplenial cortices; CA1/subiculum of hippocampus; claustrum, tania tecta, lateral septum, substantia innominata, and medial and lateral preoptic nuclei of the basal forebrain; medial nucleus of amygdala; paraventricular and lateral geniculate nuclei of the thalamus; zona incerta; anterior, ventromedial, lateral, posterior, supramammillary, and dorsal premammillary nuclei of the hypothalamus; and ventral tegmental area, periaqueductal gray, medial and posterior pretectal nuclei, superior colliculus, precommissural/commissural nuclei, nucleus of the posterior commissure, parabrachial nucleus, laterodorsal and pedunculopontine tegmental nuclei, nucleus incertus, and dorsal and median raphe nuclei of the brainstem. The present findings of widespread projections to RE, mainly from limbic/limbic-associated structures, suggest that nucleus reuniens represents a critical relay in the transfer of limbic information (emotional/cognitive) from RE to its major targets, namely, to the hippocampus and orbitomedial prefrontal cortex. RE appears to be a major link in the two-way exchange of information between the hippocampus and the medial prefrontal cortex.
Collapse
Affiliation(s)
- James Timothy McKenna
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida 33431, USA
| | | |
Collapse
|
60
|
Pérez-Pérez MP, Luque MA, Herrero L, Nunez-Abades PA, Torres B. Connectivity of the goldfish optic tectum with the mesencephalic and rhombencephalic reticular formation. Exp Brain Res 2003; 151:123-35. [PMID: 12748838 DOI: 10.1007/s00221-003-1432-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2002] [Accepted: 01/24/2003] [Indexed: 12/19/2022]
Abstract
The optic tectum of goldfish, as in other vertebrates, plays a major role in the generation of orienting movements, including eye saccades. To perform these movements, the optic tectum sends a motor command through the mesencephalic and rhombencephalic reticular formation, to the extraocular motoneurons. Furthermore, the tectal command is adjusted by a feedback signal arising from the reticular targets. Since the features of the motor command change with respect to the tectal site, the present work was devoted to determining, quantitatively, the particular reciprocal connectivity between the reticular regions and tectal sites having different motor properties. With this aim, the bidirectional tracer, biotin dextran amine, was injected into anteromedial tectal sites, where eye movements with small horizontal and large vertical components were evoked, or into posteromedial tectal sites, where eye movements with large horizontal and small vertical components were evoked. Labeled boutons and somas were then located and counted in the reticular formation. Both were more numerous in the mesencephalon than in the rhombencephalon, and ipsilaterally than contralaterally, with respect to the injection site. Furthermore, the somas showed a tendency to be located in the area containing the most dense labeling of synaptic endings. In addition, labeled boutons were often observed in close association with retrogradely stained neurons, suggesting the presence of a tectoreticular feedback circuit. Following the injection in the anteromedial tectum, most of the boutons and labeled neurons were found in the reticular formation rostral to the oculomotor nucleus. Conversely, following the injection in the posteromedial tectum, most of the boutons and neurons were also located in the caudal mesencephalic reticular formation. Finally, boutons and neurons were found in the rhombencephalic reticular formation surrounding the abducens nucleus. They were more numerous following the injection in the posteromedial tectum. These results demonstrate characteristic patterns of reciprocal connectivity between physiologically different tectal sites and the mesencephalic and rhombencephalic reticular formation. These patterns are discussed in the framework of the neural substratum that underlies the codification of orienting movements in goldfish.
Collapse
Affiliation(s)
- M P Pérez-Pérez
- Lab. Neurobiologia de Vertebrados, Dept. Fisiologia y Zoología, Univ. Sevilla, Seville, Spain
| | | | | | | | | |
Collapse
|
61
|
King SM, Dean P, Redgrave P. Bypassing the Saccadic Pulse Generator: Possible Control of Head Movement Trajectory by Rat Superior Colliculus. Eur J Neurosci 2002; 3:790-801. [PMID: 12106465 DOI: 10.1111/j.1460-9568.1991.tb01675.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Saccades produced by electrical stimulation of the superior colliculus in primates are influenced primarily by the location of the stimulating electrode, with the suprathreshold intensity or frequency of the stimulating pulse train having little effect. Any given collicular site produces a characteristic movement of relatively fixed amplitude and velocity. In accordance with this finding, in models of the saccadic eye movement system the superior colliculus specifies the change of eye position: the velocity of movement components are determined by 'pulse generators' located between the superior colliculus and the oculomotor neurons. Previous findings in rodents, however, have suggested that eye and head movements induced by stimulation at some collicular sites may be critically dependent on stimulation parameters, implying that in these animals the superior colliculus has access to a non-saccadic control system. To investigate this possibility, rats with electrodes implanted into the lateral intermediate layers were stimulated with pulse trains of varying frequency and duration, and the resultant head movements analysed from video tape. At seven of the nine sites studied, amplitude of the horizontal component of the head movement was linearly related to stimulating frequency for fixed-duration trains, in some cases over a ten-fold range. Subsequent variation of train duration showed that amplitude was affected not by frequency as such, but by the number of pulses in the train; frequency was related to the mean velocity of the movement. By appropriate setting of these parameters, independent control of head movement amplitude and velocity could be achieved. These results suggest that the rodent superior colliculus may be able to control head movement without recourse to a pulse generator, and thus influence the trajectory of the movement directly. If so, it may prove to be a useful preparation for testing theories of trajectory formation.
Collapse
Affiliation(s)
- Sheila M. King
- Department of Psychology, University of Sheffield, Sheffield S10 2UR, UK
| | | | | |
Collapse
|
62
|
Abstract
The superior colliculus (SC) projections to the midline and intralaminar thalamic nuclei were examined in the rat. The retrograde tracer cholera toxin beta (CTb) was injected into one of the midline thalamic nuclei-paraventricular, intermediodorsal, rhomboid, reuniens, submedius, mediodorsal, paratenial, anteroventral, caudal ventromedial, or parvicellular part of the ventral posteriomedial nucleus-or into one of the intralaminar thalamic nuclei-medial parafascicular, lateral parafascicular, central medial, paracentral, oval paracentral, or central lateral nucleus. After 10-14 days, the brains from these animals were processed histochemically, and the retrogradely labeled neurons in the SC were mapped. The lateral sector of the intermediate gray and white layers of the SC send axonal projections to the medial and lateral parafascicular, central lateral, paracentral, central medial, rhomboid, reuniens, and submedius nuclei. The medial sector of the intermediate and deep SC layers project to the parafascicular and central lateral thalamic nuclei. The paraventricular thalamic nucleus is innervated almost exclusively by the medial sectors of the deep SC layers. The superficial gray and optic layers of the SC do not project to any of these thalamic areas. The discussion focuses on the role these SC-thalamic inputs may have on forebrain circuits controlling orienting and defense (i.e., fight-or-flight) reactions.
Collapse
Affiliation(s)
- K E Krout
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
63
|
Abstract
The periaqueductal gray matter (PAG) projections to the intralaminar and midline thalamic nuclei were examined in rats. Phaseolus vulgaris-leucoagglutinin (PHA-L) was injected in discrete regions of the PAG, and axonal labeling was examined in the thalamus. PHA-L was also placed into the dorsal raphe nuclei or nucleus of Darkschewitsch and interstitial nucleus of Cajal as controls. In a separate group of rats, the retrograde tracer cholera toxin beta-subunit (CTb) was injected into one of the intralaminar thalamic nuclei-lateral parafascicular, medial parafascicular, central lateral (CL), paracentral (PC), or central medial nucleus-or one of the midline thalamic nuclei-paraventricular (PVT), intermediodorsal (IMD), mediodorsal, paratenial, rhomboid (Rh), reuniens (Re), or caudal ventral medial (VMc) nucleus. The distribution of CTb labeled neurons in the PAG was then mapped. All PAG regions (the four columns of the caudal two-thirds of the PAG plus rostral PAG) and the precommissural nucleus projected to the rostral PVT, IMD, and CL. The ventrolateral, lateral, and rostral PAG provided additional inputs to most of the other intralaminar and midline thalamic nuclei. PAG inputs to the VMc originated from the rostral and ventrolateral PAG areas. In addition, the lateral and rostral PAG projected to the zona incerta. No evidence was found for a PAG input to the ventroposterior lateral parvicellular, ventroposterior medial parvicellular, caudal PC, oval paracentral, and reticular thalamic nuclei. PAG --> thalamic circuits may modulate autonomic-, nociceptive-, and behavior-related forebrain circuits associated with defense and emotional responses.
Collapse
Affiliation(s)
- K E Krout
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
64
|
Sañudo-Peña MC, Tsou K, Romero J, Mackie K, Walker JM. Role of the superior colliculus in the motor effects of cannabinoids and dopamine. Brain Res 2000; 853:207-14. [PMID: 10640618 DOI: 10.1016/s0006-8993(99)02291-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied the cellular distribution of CB1 cannabinoid receptors in the superior colliculus of the rat using an antibody raised against the N-terminal of the receptor. The effect of unilateral cannabinoid receptor stimulation in the intermediate layers of the superior colliculus on rotational behavior in rats was also explored. The antibody against CB1 receptors outlined the crossed descending system of the superior colliculus (predorsal bundle output system) as well as the collicular commisure. The potent cannabinoid agonist CP55,940 (5 microgram/0.25 microliter) induced strong contralateral turning when microinjected unilaterally into the lateral intermediate layers of the superior colliculus. The levels of turning obtained with the intracollicular administration of the cannabinoid were comparable to the highest levels obtained with dopamine agonists in the basal ganglia. The D(2) dopamine agonist quinpirole or the D(1) dopamine agonist SKF82958 reversed this contralateral rotation but failed to affect motor behavior on their own. A new motor pathway for cannabinoids is discussed.
Collapse
Affiliation(s)
- M C Sañudo-Peña
- Schrier Research Laboratory, Department of Psychology, Brown University, 89 Waterman Street, Providence, RI, USA.
| | | | | | | | | |
Collapse
|
65
|
P�rez-P�rez MP, Herrero L, Torres B. Connectivity of the tectal zones coding for upward and downward oblique eye movements in goldfish. J Comp Neurol 2000. [DOI: 10.1002/1096-9861(20001120)427:3<405::aid-cne7>3.0.co;2-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
66
|
|
67
|
Arts MP, Cools AR. 6-hydroxydopamine lesion in the A8 cell group of cats produces a short-lasting decreased accuracy in goal-directed forepaw-movements. Behav Brain Res 1999; 103:13-21. [PMID: 10475160 DOI: 10.1016/s0166-4328(99)00023-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Recently, feline studies have shown that a lesion in the retrorubral area, which includes the dopaminergic A8 cell group, produces motor programming deficits inherent to a hypofunction of the A9 system. A hypofunction in the striatal terminal area of A9 fibers, in turn, is known to produce a hypofunction of its first-order output station, namely the substantia nigra pars reticulata (SNR). The integrity of the SNR allows animals to execute (1) 'postural adjustments that rely on proprioceptive stimuli that originate in body parts at rest' and (2) 'non-externally guided' targeting movements. In view of these considerations, the (dys)function of the SNR of cats with a bilaterally 6-hydroxydopamine lesion of A8 cells in the retrorubral area was tested in an experimental set-up that allows the assessment of changes in these functions. The A8 lesion produced: (a) a short-lasting increase in the number of accurate targeting movements as well as an increase in the time required for the collection of six pellets: these deficits disappeared 4-7 days after the lesion; (b) a long-lasting disappearance of (1) 'postural adjustments that rely on proprioceptive stimuli that originate in body parts at rest' and (2) 'non-externally guided targeting movements'; and (c) a long-lasting display of a new strategy that allowed the lesioned cat to collect its pellets despite of its other deficits. These data led to the conclusion that a lesion of A8 cells even disrupts the function of the SNR, being one of the outputstations of the A8 cell group.
Collapse
Affiliation(s)
- M P Arts
- Department of Psychoneuropharmacology, Graduate School of Pathophysiology of the Nervous System, University of Nijmegen, The Netherlands
| | | |
Collapse
|
68
|
Abstract
Changes in stimulant-induced behavioral effects and subcortical c-Fos expression were compared between rodent models of Parkinson's disease (PD) and Huntington's disease (HD). Rats received either a unilateral 6-hydroxydopamine (6-OHDA)-induced lesion of the nigrostriatal dopamine pathway (PD model) or a unilateral infusion of antisense oligodeoxynucleotides targeting c-fos into the striatum (HD model). Dopamine-lesioned animals received intraperitoneal injections of either d-amphetamine (6-OHDAamp group) or apomorphine (6-OHDAapo group), whereas all animals that received antisense infusions received d-amphetamine (ASF group). All groups exhibited robust circling behavior upon stimulant challenge. Changes in subcortical activation, as assessed by the induction of Fos-like immunoreactivity (Fos-LI), were examined in several brain regions. The 6-OHDAamp and ASF groups exhibited robust, ipsiversive circling behavior, with similar changes in Fos-LI in the striatum, entopeduncular nucleus, superior colliculus, and ventromedial thalamus. The 6-OHDAapo group exhibited contraversive rotation and had reciprocal patterns of Fos-LI in these regions. Despite exhibiting the same direction of rotation, the 6-OHDAamp and ASF groups had markedly different patterns of Fos-LI in the globus pallidus and the pontine reticular formation. These results suggest that the globus pallidus may undergo distinct alterations in PD and HD and that the pontine reticular formation is particularly susceptible to changes in mesencephalic dopamine sources.
Collapse
Affiliation(s)
- M O Hebb
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
69
|
King SM. Escape-related behaviours in an unstable, elevated and exposed environment. II. Long-term sensitization after repetitive electrical stimulation of the rodent midbrain defence system. Behav Brain Res 1999; 98:127-42. [PMID: 10210529 DOI: 10.1016/s0166-4328(98)00061-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The behavioural indices of anxiety/fear/panic range from freezing/inhibition of ongoing behaviour to active defence strategies i.e. fight/flight, depending on the proximity or intensity of the aversive stimulus. However, evidence suggests that when the initial stressor is sufficiently intense, the neural defence circuitry may undergo a long-term increase in sensitivity. Such sensitization has been evoked to explain the chronically hyper-aroused fight/flight state of patients suffering from extreme anxiety states. The purpose of this study was to establish whether direct activation of the rodent midbrain defence system could result in a similar long-term alteration of the animal's responses to subsequent stressful events. This was achieved by studying the behaviour of animals in a threatening environment after repetitive electrical stimulation of the superior colliculus. Animals were then placed on an unstable, elevated and exposed plus maze and their behaviour recorded. Testing was carried out regularly over 3 months. Stimulated animals reliably exhibited significantly increased levels of behaviours designed to escape the aversive conditions of the unstable plus maze. These included visual scanning, end-reaching, preparing to jump, and jumping off the apparatus. Unstimulated control animals, on the other hand, exhibited decreased levels of these behaviours post-stimulation. In contrast, the experimental animals' performance on standard anxiety tests did not differ from controls. These results demonstrate that repetitive tactile stimulation can produce a long-term change in reactions to threat, and is proposed as a functional model of extreme anxiety.
Collapse
Affiliation(s)
- S M King
- University of Oxford, Department of Experimental Psychology, UK.
| |
Collapse
|
70
|
Herrero L, Corvisier J, Hardy and O, Torres B. Influence of the tectal zone on the distribution of synaptic boutons in the brainstem of goldfish. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19981123)401:3<411::aid-cne8>3.0.co;2-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
71
|
Spence C, Nicholls ME, Gillespie N, Driver J. Cross-modal links in exogenous covert spatial orienting between touch, audition, and vision. PERCEPTION & PSYCHOPHYSICS 1998; 60:544-57. [PMID: 9628989 DOI: 10.3758/bf03206045] [Citation(s) in RCA: 185] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Three experiments investigated cross-modal links between touch, audition, and vision in the control of covert exogenous orienting. In the first two experiments, participants made speeded discrimination responses (continuous vs. pulsed) for tactile targets presented randomly to the index finger of either hand. Targets were preceded at a variable stimulus onset asynchrony (150, 200, or 300 msec) by a spatially uninformative cue that was either auditory (Experiment 1) or visual (Experiment 2) on the same or opposite side as the tactile target. Tactile discriminations were more rapid and accurate when cue and target occurred on the same side, revealing cross-modal covert orienting. In Experiment 3, spatially uninformative tactile cues were presented prior to randomly intermingled auditory and visual targets requiring an elevation discrimination response (up vs. down). Responses were significantly faster for targets in both modalities when presented ipsilateral to the tactile cue. These findings demonstrate that the peripheral presentation of spatially uninformative auditory and visual cues produces cross-modal orienting that affects touch, and that tactile cues can also produce cross-modal covert orienting that affects audition and vision.
Collapse
Affiliation(s)
- C Spence
- Department of Experimental Psychology, University of Oxford, England.
| | | | | | | |
Collapse
|
72
|
Spence C, Driver J. Auditory and audiovisual inhibition of return. PERCEPTION & PSYCHOPHYSICS 1998; 60:125-39. [PMID: 9503917 DOI: 10.3758/bf03211923] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two experiments examined any inhibition-of-return (IOR) effects from auditory cues and from preceding auditory targets upon reaction times (RTs) for detecting subsequent auditory targets. Auditory RT was delayed if the preceding auditory cue was on the same side as the target, but was unaffected by the location of the auditory target from the preceding trial, suggesting that response inhibition for the cue may have produced its effects. By contrast, visual detection RT was inhibited by the ipsilateral presentation of a visual target on the preceding trial. In a third experiment, targets could be unpredictably auditory or visual, and no peripheral cues intervened. Both auditory and visual detection RTs were now delayed following an ipsilateral versus contralateral target in either modality on the preceding trial, even when eye position was monitored to ensure central fixation throughout. These data suggest that auditory target-target IOR arises only when target modality is unpredictable. They also provide the first unequivocal evidence for cross-modal IOR, since, unlike other recent studies (e.g., Reuter-Lorenz, Jha, & Rosenquist, 1996; Tassinari & Berlucchi, 1995; Tassinari & Campara, 1996), the present cross-modal effects cannot be explained in terms of response inhibition for the cue. The results are discussed in relation to neurophysiological studies and audiovisual links in saccade programming.
Collapse
Affiliation(s)
- C Spence
- Department of Experimental Psychology, University of Oxford, England.
| | | |
Collapse
|
73
|
Ciaramitaro VM, Todd WE, Rosenquist AC. Disinhibition of the superior colliculus restores orienting to visual stimuli in the hemianopic field of the cat. J Comp Neurol 1997; 387:568-87. [PMID: 9373014 DOI: 10.1002/(sici)1096-9861(19971103)387:4<568::aid-cne7>3.0.co;2-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Following unilateral removal of all known visual cortical areas, a cat is rendered hemianopic in the contralateral visual field. Visual orientation can be restored to the blind hemifield by transection of the commissure of the superior colliculus or by destruction of the superior colliculus (SC) or the substantia nigra pars reticulata (SNpr) contralateral to the cortical lesion. It is hypothesized that a mechanism mediating recovery is disinhibition of the SC ipsilateral to the cortical lesion. The ipsilateral nigrotectal projection exerts a robust inhibitory tone onto cells in the SC. However, ibotenic acid destruction of SNpr neurons, which should decrease inhibition onto the SC, does not result in recovery. The failure of ipsilateral SNpr lesions to produce recovery puts into question the validity of SC disinhibition as a mechanism of recovery. We directly tested the disinhibition hypothesis by reversibly disinhibiting the SC ipsilateral to a visual cortical lesion with a gamma-aminobutyric acid (GABA)A antagonist, bicuculline methiodide. In accordance with the hypothesis, transient disinhibition of the SC restored visual orienting for several hours in three of eight animals. Recovery was not a volume or pH effect and was distinct from the release of irrepressible motor effects (i.e., approach and avoidance behaviors) seen within the first hour after injection. Thus, in the absence of all visual cortical areas unilaterally, disinhibition of the SC can transiently restore the ability of the cat to orient to visual stimuli in the previously "blind" hemifield.
Collapse
Affiliation(s)
- V M Ciaramitaro
- Department of Neuroscience, University of Pennsylvania, Philadelphia 19104, USA
| | | | | |
Collapse
|
74
|
Freedman EG, Sparks DL. Activity of cells in the deeper layers of the superior colliculus of the rhesus monkey: evidence for a gaze displacement command. J Neurophysiol 1997; 78:1669-90. [PMID: 9310452 DOI: 10.1152/jn.1997.78.3.1669] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
When the head is free to move, microstimulation of the primate superior colliculus (SC) evokes coordinated movements of the eyes and head. The similarity between these stimulation-induced movements and visually guided movements indicates that the SC of the primate is involved in redirecting the line of sight (gaze). To determine how movement commands are represented by individual collicular neurons, we recorded the activity of single cells in the deeper layers of the superior colliculus of the rhesus monkey during coordinated eye-head gaze shifts. Two alternative hypotheses were tested. The "separate channel" hypothesis states that two displacement commands are generated by the SC: one signal specifying the amplitude and direction of eye movements and a second signal specifying the amplitude and direction of head movements. Alternatively, a single gaze displacement command could be generated by the SC ("gaze displacement" hypothesis). The activity of collicular neurons was examined during three behavioral dissociations of gaze, eye, and head movement amplitude and direction (metrics). Subsets of trials were selected in which the amplitude and direction of either gaze shifts or eye movements or head movements were relatively constant but the metrics of the other two varied over wide ranges. Under these conditions, the separate channel and gaze displacement hypotheses make differential predictions about the patterns of SC activity. We tested these differential predictions by comparing observed patterns with predicted patterns of neuronal activity. We obtained data consistent with the predictions of the gaze displacement hypothesis. The predictions of the separate channel hypothesis were not confirmed. Thus microstimulation data, single-unit recording data, and behavioral data are all consistent with the gaze displacement hypothesis of collicular function--the hypothesis that a gaze displacement signal is derived from the locus of activity within the motor map of the SC and subsequently is decomposed into separate eye and head displacement signals downstream from the colliculus.
Collapse
Affiliation(s)
- E G Freedman
- Institute of Neurological Sciences, University of Pennsylvania, Philadelphia 19104-6196, USA
| | | |
Collapse
|
75
|
Salas C, Herrero L, Rodriguez F, Torres B. Tectal codification of eye movements in goldfish studied by electrical microstimulation. f. Neuroscience 1997; 78:271-88. [PMID: 9135107 DOI: 10.1016/s0306-4522(97)83048-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This work compares the tectal codification of eye movements in goldfish with those reported for other vertebrate groups. Focal electrical stimulation was applied in various tectal zones and the characteristics of evoked eye movements were examined as a function of (i) the position of the stimulation over the tectal surface, (ii) the initial position of the eyes and (iii) the parameters (pulse rate, current strength, duration) of the stimulus. In a large medial zone, stimulation within the intermediate and deep layers of the tectum evoked contraversive saccades of both eyes, whose direction and amplitude were roughly congruent with the retinotopic representation of the visual world within overlying layers. These saccades were minimally influenced by the initial position of the eye in the orbit. The topographical arrangement of evoked saccades and body movements suggests that this tectal zone triggers orienting responses in a similar way to those described in other vertebrates. Stimulations applied within the caudal tectum also evoked contraversive saccades, but in disagreement with the overlying retinotopic map--the vertical component was absent. Taken together with electrically evoked body movements reported in free-swimming fish, these saccades could reveal that this zone is involved in escape responses. When stimulations were applied within the anteromedial zone of the tectum, contraversive movements of both eyes appeared much more dependent on initial eye position. Saccades elicited from this area displayed characteristics of "goal-directed saccades" which were similar to those described in the cat. The generation of goal-directed movements from the anteromedial zone suggests that this portion of the goldfish optic tectum has a different intrinsic organization or is connected with the brainstem saccade generator in a different fashion than the medial zone. Finally, stimulation of the extreme anteromedial zone evoked convergent eye movements. These movements and those reported in free-swimming fish following electrical stimulation of this tectal area suggest that this zone could be involved in feeding responses. The relationships between the parameters of electrical stimulation and the characteristics of elicited saccades suggest that the stimulated location within the tectum determines a constant direction in the evoked saccade, whereas the amount and duration of tectal activity, as mimicked by changes in stimulus parameters, together with the tectal locus, determine the velocity and amplitude of the evoked saccade.
Collapse
Affiliation(s)
- C Salas
- Dpt. Psicologia Experimental, Fac. Psicología, Univ. Sevilla, Spain
| | | | | | | |
Collapse
|
76
|
Abstract
Hyperexcitable reflex blinks are a cardinal sign of Parkinson's disease. The first step in the circuit linking the basal ganglia and brainstem reflex blink circuits is the inhibitory nigrostriatal pathway (Basso et al., 1996). The current study reports the circuits linking the superior colliculus (SC) to trigeminal reflex blink circuits. Microstimulation of the deep layers of the SC suppresses subsequent reflex blinks at a latency of 5.4 msec. This microstimulation does not activate periaqueductal gray antinociceptive circuits. The brainstem structure linking SC to reflex blink circuits must suppress reflex blinks at a shorter latency than the SC and produce the same effect on reflex blink circuits as SC stimulation, and removal of the structure must block SC modulation of reflex blinks. Only the nucleus raphe magnus (NRM) meets these requirements. NRM microstimulation suppresses reflex blinks with a latency of 4.4 msec. Like SC stimulation, NRM microstimulation reduces the responsiveness of the spinal trigeminal nucleus. Finally, blocking the receptors for the NRM transmitter serotonin eliminates SC modulation of reflex blinks, and muscimol inactivation of the NRM transiently prevents SC modulation of reflex blinks. Thus, the circuit through which the basal ganglia modulates reflex blinking is (1) the substantia nigra pars reticulata inhibits SC neurons, (2) the SC excites tonically active NRM neurons, and (3) NRM neurons inhibit spinal trigeminal neurons involved in reflex blink circuits.
Collapse
|
77
|
King SM, Shehab S, Dean P, Redgrave P. Differential expression of fos-like immunoreactivity in the descending projections of superior colliculus after electrical stimulation in the rat. Behav Brain Res 1996; 78:131-45. [PMID: 8864045 DOI: 10.1016/0166-4328(95)00241-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In rodent, there is evidence that the orienting behaviour elicited by direct stimulation of the superior colliculus (SC) is partly mediated by contralateral descending projections, while avoidance-type behaviour is associated with ipsilateral descending projections. However, the identity of target structures in the brainstem which mediate these different behavioural responses is unknown. The c-fos immediate early gene is expressed polysynaptically in neurons in response to a wide range of extracellular stimuli, and hence has been proposed as a technique for mapping functional pathways. The purpose of this study was, therefore, to use the c-fos technique to investigate the functional specificity of brainstem regions which are innervated by the two main descending projections of the SC. Patterns of fos-like immunoreactivity (FLI) were observed throughout the brainstem following electrical stimulation of the SC in Urethane-anaesthetized rats. Previously, the electrical stimulation had been shown to elicit either approach-like or avoidance-like movement. The main results of this experiment were; (i) animals in which the stimulation elicited defensive behaviour had elevated levels of immunostaining in specific terminal areas of the ipsilateral descending projections, e.g. the ventrolateral midbrain/pontine reticular formation, the cuneiform area and rostral periaqueductal grey; (ii) there was no FLI expression in any of the terminal areas of the crossed descending projection, even in animals where the electrical stimulation elicited approach. Control experiments showed that the lack of expression in the crossed descending pathway was not due to the restricted range of stimulation parameters used in the main study, or to the effects of the anaesthetic. In conclusion, this experiment was able to identify likely substrates for the mediation of defensive reactions elicited by tectal stimulation. However, given the total lack of expression in a pathway which is known to be activated, it also provides further evidence that c-fos cannot simply be used as a high resolution neuronal activity marker for mapping functional pathways.
Collapse
Affiliation(s)
- S M King
- Department of Psychology, University of Sheffield, UK.
| | | | | | | |
Collapse
|
78
|
Redgrave P, McHaffie JG, Stein BE. Nociceptive neurones in rat superior colliculus. I. Antidromic activation from the contralateral predorsal bundle. Exp Brain Res 1996; 109:185-96. [PMID: 8738369 DOI: 10.1007/bf00231780] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Accumulating evidence suggests that the rodent superior colliculus (SC) plays as important a role in avoidance and defensive behaviours as it does in orientation and approach. These two complementary behaviours are associated with two anatomically segregated tectofugal output pathways, such that orientation and approach are mediated by the crossed descending projection, whereas avoidance and defence are subserved via the uncrossed projection. Because nociceptive neurones in the SC have been presumed to participate in withdrawal or defensive behaviours, it has been proposed that they have direct access only to the uncrossed efferent pathway. However, in certain behavioural situations, the most adaptive response to injury, or to a painful object in prolonged contact with the skin, is to orient towards the source of discomfort so that the skin can be licked and/or the offending object removed. Presumably then, nociceptive as well as low-threshold neurones would have access to the crossed descending pathway in order to initiate such behaviours. Determining whether or not this is the case was the objective of the present study. Both nociceptive-specific (82%) and wide-dynamic-range (18%) SC neurones were identified using long-duration (up to 6 s), frankly noxious mechanical and thermal stimuli in urethane-anaesthetised Long-Evans hooded rats. The majority (85.7%) of the nociceptive neurones encountered were located within the intermediate layers, which corresponds with the location of the cells-of-origin of the crossed descending projection. Nearly half (44.9%) were activated antidromically from electrical stimulation of the crossed descending pathway at a site in the brainstem below its decussation. The mean conduction velocity of these nociceptive output neurones was 9.02 m/s, which corresponds well to previous estimates of conduction velocity in the crossed tecto-reticulo-spinal tract. These data demonstrate that a significant proportion of nociceptive neurones in the rat SC have axons that project to the contralateral brainstem via the crossed descending projection. Nociceptive neurones could, therefore, effect orientation responses to noxious stimuli via similar output pathways that low-threshold neurones utilize to initiate orientation to innocuous stimuli.
Collapse
Affiliation(s)
- P Redgrave
- Department of Psychology, University of Sheffield, UK.
| | | | | |
Collapse
|
79
|
Redgrave P, Simkins M, McHaffie JG, Stein BE. Nociceptive neurones in rat superior colliculus. II. Effects of lesions to the contralateral descending output pathway on nocifensive behaviours. Exp Brain Res 1996; 109:197-208. [PMID: 8738370 DOI: 10.1007/bf00231781] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A wealth of evidence implicates the crossed descending projection from the superior colliculus (SC) in orientation and approach behaviours directed towards novel, non-noxious stimuli. In our preceding paper, we identified a population of nociceptive neurones in the rat SC that have axons that project to the contralateral brainstem via this output pathway. The purpose of the present study was, therefore, to evaluate the prediction that the crossed descending projection of the SC is also involved in the control of orientation and approach movements of the head and mouth made during the localisation of persistent noxious stimuli. An independent-groups design was used to test the effects of interrupting the contralateral descending projection from the SC on the behavioural reactions elicited by noxious mechanical stimuli presented to the tail and hindpaws. In different groups of animals, a microwire knife was used to cut the contralateral descending fibres at two different locations: (1) a sagittal cut at the level of the dorsal tegmental decussation; (2) a bilateral coronal cut of the predorsal bundle at the level of the medial pontine reticular formation. Retrograde anatomical tracing techniques were then used to evaluate the effectiveness of the cuts and to assess possible involvement of non-collicular fibre systems in both lesioned and control animals. Additional behavioural procedures were performed to test for general neurological status and responsiveness of animals to non-noxious stimuli. Anatomical tracing data indicated that the largest population of neurones with fibres severed by both cuts were the cells-of-origin of the contralateral descending projection in the intermediate white layer of the SC. Behavioural results showed that significantly more animals in both lesion groups failed to locate and bite a mechanical clip placed on the tail. Instead of switching to motor behaviours to localise and remove noxious stimuli, they persisted with defensive reactions, which included freezing, vocalisation or forward and backward escape. In contrast, when the clip was placed on the hindpaws, it was successfully localised by most lesioned and control animals; however, lesioned animals had reliably longer latencies and spent less time in close contact with the clip. Consistent with the established role of the contralateral descending projection in non-noxious orientation, lesioned animals also showed orienting deficits to a range of non-noxious sensory stimuli. These data suggest that, under certain behavioural circumstances, nociceptive information from the SC is integral to the elaboration of orienting and approach movements of the head and mouth elicited by persistent noxious stimuli.
Collapse
Affiliation(s)
- P Redgrave
- Department of Psychology, University of Sheffield, UK.
| | | | | | | |
Collapse
|
80
|
Inglis WL, Semba K. Colocalization of ionotropic glutamate receptor subunits with NADPH-diaphorase-containing neurons in the rat mesopontine tegmentum. J Comp Neurol 1996; 368:17-32. [PMID: 8725291 DOI: 10.1002/(sici)1096-9861(19960422)368:1<17::aid-cne2>3.0.co;2-n] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Tegmental cholinergic neurons vary their discharge patterns across the sleep-wake cycle, and glutamate is suggested to play an important role in determining these firing patterns. Cholinergic and noncholinergic neurons in the mesopontine tegmentum have different susceptibilities to various excitotoxins, presumably because of heterogeneity in the expression of glutamate receptor subtypes in this area. By using a double-labeling procedure that combines nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-diaphorase) histochemistry and avidin-biotin-peroxidase immunocytochemistry with diaminobenzidine as the chromogen, we compared the colocalization of AMPA receptor subunits GluR1, GluR2/3, and GluR4, kainate receptor subunits GluR5/6/7, and an NMDA receptor subunit NMDAR1 on NADPH-diaphorase-positive (cholinergic) neurons in the mesopontine tegmentum. Throughout the brainstem, neurons immunoreactive for GluR2/3 and NMDAR1 were most numerous, whereas neurons labeled for GluR1, GluR4, and GluR5/6/7 were less common. Specifically within the mesopontine tegmentum, the proportion of double-labeled neurons in the diaphorase-containing cell population was highest with GluR1 (43%) and lowest with GluR5/6/7 (12%). Regardless of the receptor subunit type, the greatest numbers of double-labeled neurons were observed in the pedunculopontine tegmental nucleus pars compacta and the fewest in the dorsal aspect of the laterodorsal tegmental nucleus. In addition, there were regional differences in the relative expression of receptor subunits and diaphorase-positive neurons across the subdivisions of the tegmental cholinergic column. Because each ionotropic subunit confers distinctive properties to a receptor channel, the present results suggest that mesopontine cholinergic neurons have nonuniform responses to glutamate and are also discriminable from basal forebrain cholinergic neurons in terms of glutamate receptor configuration.
Collapse
Affiliation(s)
- W L Inglis
- Department of Anatomy and Neurobiology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
81
|
Kurimoto Y, Kawaguchi S, Murata M. Cerebellotectal projection in the rat: anterograde and retrograde WGA-HRP study of individual cerebellar nuclei. Neurosci Res 1995; 22:57-71. [PMID: 7540742 DOI: 10.1016/0168-0102(95)00874-s] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cerebellotectal projections were studied in the rat by the anterograde and retrograde tracing methods using wheat-germ-agglutinin-conjugated horseradish peroxidase. The pathway arises from all four cerebellar nuclei on the contralateral side; mainly from the posterior interpositus nucleus and lateral nucleus and to a lesser extent from the medial nucleus and anterior interpositus nucleus. The fibers arising from the medial nucleus and the posterior interpositus nucleus terminate mainly in the deeper zone of layer IV and in layer VI throughout the entire rostrocaudal extent of the contralateral superior colliculus. Those arising from the anterior interpositus nucleus and the lateral nucleus terminate mainly in the superficial zone of layer IV in the rostral three-fourths of the contralateral superior colliculus. In addition, the fibers from the lateral nucleus terminate densely in a zone extending from the deep part of layer III through layer VII in the lateral portion of the rostral half of the superior colliculus. In comparison with data on other species the present findings are discussed with respect to the evolutional changes from monocular to binocular vision.
Collapse
Affiliation(s)
- Y Kurimoto
- Department of Integrative Brain Science, Faculty of Medicine, Kyoto University, Japan
| | | | | |
Collapse
|
82
|
Zhu JJ, Lo FS. Physiological properties of the output neurons in the deep layers of the superior colliculus of the rabbit. Brain Res Bull 1995; 38:495-505. [PMID: 8665274 DOI: 10.1016/0361-9230(95)02021-i] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Using antidromic and orthodromic stimulation techniques, we studied physiological properties of the output neurons in the deep layers of the superior colliculus (SC) of 34 Now Zealand rabbits. SC cells antidromically activated from the contralateral predorsal bundle (PDB) could also be activated by stimulation of the contralateral SC and ipsilateral central lateral nucleus of the thalamus (CL). The majority of these output neurons responded predominantly to the stimulation of the optic nerve, and only a small proportion of the output neurons were responsive to the stimulation of somatosensory and auditory (and/or vestibular) nerves. These results suggest that the orienting reflex might be elicited mainly by visual afferents in the rabbit. The output SC neurons were subject to a 70 ms inhibition after antidromic stimulation of the PDB and a 40 ms inhibition after transsynaptic (orthodromic) stimulation of the optic chiasm (OX), indicating that the output neurons in the deep layers of the SC might be subject to at least two inhibitory circuits. These results are discussed in the context of a putative saccadic suppression circuitry model.
Collapse
Affiliation(s)
- J J Zhu
- Brain Research Institute, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | | |
Collapse
|
83
|
Westby GW, Collinson C, Redgrave P, Dean P. Opposing excitatory and inhibitory influences from the cerebellum and basal ganglia converge on the superior colliculus: an electrophysiological investigation in the rat. Eur J Neurosci 1994; 6:1335-42. [PMID: 7981875 DOI: 10.1111/j.1460-9568.1994.tb00324.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We recently showed (Westby et al., Eur. J. Neurosci., 5, 1378-1388, 1993) that the cerebellar interpositus nucleus is a source of excitatory drive for a population of spontaneously active neurons in the lateral intermediate layers of the contralateral superior colliculus. Anatomical and physiological studies have shown that this region of the colliculus contains cells of origin of the crossed descending tectoreticulospinal tract and receives GABAergic input from the ipsilateral basal ganglia. In the present study we tested the hypothesis that the same neurons receiving excitatory drive from the cerebellum also receive tonic inhibitory input from the substantia nigra pars reticulata. From a sample of 73 spontaneously active collicular cells we found that in 53% the firing rate was suppressed by GABA microinjection into the contralateral deep cerebellar nuclei; a further 15% showed a frequency increase. Of the collicular cells identified as receiving excitatory cerebellar input, 85% were found to be disinhibited by nigral GABA microinjection. The remainder were all inhibited by nigral GABA. These data show that the main excitatory influence from the cerebellum and the main inhibitory influence from the substantia nigra converge on at least one population of spontaneously active cells in the lateral intermediate layers of the superior colliculus. This finding is discussed in relation to the possible function of these spontaneous cells in movement control and nociception.
Collapse
Affiliation(s)
- G W Westby
- Department of Psychology, Sheffield University, UK
| | | | | | | |
Collapse
|
84
|
Baldissera F, Di Loreto S, Florio T, Scarnati E. Short-latency excitation of hindlimb motoneurons induced by electrical stimulation of the pontomesencephalic tegmentum in the rat. Neurosci Lett 1994; 169:13-6. [PMID: 8047268 DOI: 10.1016/0304-3940(94)90345-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The monosynaptic reflex response evoked by stimulating the dorsal root L6 was greatly facilitated when a low intensity conditioning stimulus was applied to the pontomesencephalic tegmentum (PT) 1-2 ms in advance. When increasing the stimulus strength or the number of stimuli, motor discharges were recorded in the ventral roots and in nerves innervating hindlimb muscles. The lowest threshold site for reflex facilitation was found in a region just ventral to the superior colliculus. A descending volley was recorded from the medulla midline, in the region of the medial longitudinal fascicle (MLF) and from the spinal cord surface at thoracic and lumbar level. The latency of the descending volley and of the motor responses indicates that excitation of hindlimb motoneurons was due to activation of a disynaptic pathway having a relay in the lower brainstem. All spinal and peripheral responses evoked by PT stimulation disappeared when a small electrolytic lesion was placed in the MLF 1-2 mm rostral to the obex. The results show that in the rat the PT region may exert a powerful facilitatory action on hindlimb motoneurons.
Collapse
Affiliation(s)
- F Baldissera
- Department of Biomedical Technology, University of L'Aquila, Italy
| | | | | | | |
Collapse
|
85
|
Westby GW, Collinson C, Dean P. Excitatory drive from deep cerebellar neurons to the superior colliculus in the rat: an electrophysiological mapping study. Eur J Neurosci 1993; 5:1378-88. [PMID: 8275237 DOI: 10.1111/j.1460-9568.1993.tb00924.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The cerebello-tectal projection arising from the interpositus nucleus was investigated electrophysiologically to test the hypothesis that the deep cerebellar nuclei constitute a source of tonic excitation in the superior colliculus. A total of 117 spontaneously active collicular neurons were recorded during GABA microinjection into 26 interpositus sites, where tonic single-cell deep cerebellar activity was also simultaneously recorded. GABA injection always led to suppression of interpositus activity, while in the colliculus a clear pattern of results emerged. 58% of superior colliculus cells showed no response to suppression of interpositus activity, 35% showed a frequency decrease and 7% showed a frequency increase. The majority of these responsive cells were found in a laterally located sheet of cells mainly restricted to the intermediate white layer, in close register with the known cells of origin of the predorsal bundle and completely overlapping the terminals of the nigrotectal pathway originating in dorsolateral substantia nigra pars reticulata. The implications of these results for cooperative theories of head movement control involving the superior colliculus, cerebellum and precerebellar nuclei are discussed.
Collapse
Affiliation(s)
- G W Westby
- Department of Psychology, Sheffield University, UK
| | | | | |
Collapse
|
86
|
Abstract
Stimulation of the superior colliculus (SC) of rodents, following knife cuts to the predorsal bundle decussation, evokes ipsiversive circling along with "cringing" or avoidance responses. A major uncut SC output is the uncrossed tectopontine pathway that projects heavily to the ventrolateral pons (VLP). Stimulation of this pathway in the VLP also evokes ipsiversive circling, but the circling is smoother, lacks the avoidance components, and begins with a shorter latency than SC circling. To determine whether continuous tectopontine axons mediate ipsiversive circling in both sites, the collision method of Shizgal et al. was used. Pairs of stimulating pulses were presented to the two sites, conditioning (C) pulses to one site and testing (T) pulses to the other site. Collision was evidenced when the frequencies required to evoke circling were higher at short conditioning-testing (C-T) intervals than at long C-T intervals. Between SC and VLP, collision varied from 25 to 64%. Refractory periods ranged from 0.4 to 1.0 ms in most VLP sites, and from 0.45 to roughly 3 ms in SC sites. Conduction velocities ranged from 1.2 to 19 m/s, but most were concentrated in two ranges, 1.2 to 2.7 m/s and 10 to 19 m/s. The contribution of the slower population was higher in electrode pairs where the percent collision was higher. Therefore, continuous axons from colliculus to ventrolateral pons mediate most of the ipsiversive circling produced by collicular stimulation. Slight asymmetries in the collision were observed between 3 pairs with high threshold colliculus electrodes, suggesting transsynaptic collisions across colliculus synapses transmitting from dorsal to ventral.
Collapse
Affiliation(s)
- K E Buckenham
- University of Toronto, Department of Psychology, Ont., Canada
| | | |
Collapse
|
87
|
Redgrave P, Westby GW, Dean P. Functional architecture of rodent superior colliculus: relevance of multiple output channels. PROGRESS IN BRAIN RESEARCH 1993; 95:69-77. [PMID: 8493354 DOI: 10.1016/s0079-6123(08)60358-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- P Redgrave
- Department of Psychology, University of Sheffield, U.K
| | | | | |
Collapse
|
88
|
Masino T, Knudsen EI. Anatomical pathways from the optic tectum to the spinal cord subserving orienting movements in the barn owl. Exp Brain Res 1992; 92:194-208. [PMID: 1493861 DOI: 10.1007/bf00227965] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Electrical stimulation of the optic tectum in many vertebrate species elicits eye, head or body orienting movements in the direction of the receptive field location recorded at the site of stimulation; in the barn owl, tectal stimulation produces short latency saccadic head movements (du Lac and Knudsen 1990). However, the barn owl, like other avians, lacks a direct projection from the tectum to the spinal cord, implying that less direct connections underlie tectally mediated head movements. In order to determine the pathways by which the tectum gains access to spinal cord circuitry, we searched for overlap regions between tectal efferent projections and the locations of cells afferent to the spinal cord. Tectal efferent pathways and terminal fields were revealed by anterograde labeling using horseradish peroxidase (HRP) or tritiated amino acids injected into the optic tectum. Cells afferent to the spinal cord were identified by means of retrograde labeling using HRP, rhodamine, or rhodamine-coupled latex beads injected into the cervical spinal cord. A comparison of results from the anterograde and retrograde labeling experiments demonstrated several areas of overlap. All of the cell groups that both received heavy tectal input and contained a high proportion of cells projecting to the spinal cord were located in the medial half of the midbrain and rhombencephalic tegmentum, and included the red nucleus, the interstitial nucleus of Cajal, the medial reticular formation, the nucleus reticularis pontis giganto-cellularis, and the nucleus reticularis pontis oralis. All of these cell groups receive their tectal input from the medial efferent pathway, one of three major output pathways from the tectum. The other two output pathways (the rostral and the caudal) project to regions containing no more than a few scattered cells that are afferent to the spinal cord. Based on these data and on the functions of homologous cell groups in other vertebrates, we hypothesize that the medial efferent pathway and its brainstem target nuclei are primarily responsible for tectally mediated orienting head movements in the barn owl.
Collapse
Affiliation(s)
- T Masino
- Department of Neurobiology, Stanford University School of Medicine, CA 94305-5401
| | | |
Collapse
|
89
|
Redgrave P, Marrow L, Dean P. Topographical organization of the nigrotectal projection in rat: evidence for segregated channels. Neuroscience 1992; 50:571-95. [PMID: 1279464 DOI: 10.1016/0306-4522(92)90448-b] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recent evidence suggests that projections from the superior colliculus to the brainstem in rat are organized into a series of anatomically segregated output channels. To understand how collicular function may be modified by the basal ganglia it is important to know whether particular output modules of the superior colliculus can be selectively influenced by input from substantia nigra. The purpose of the present study was, therefore, to examine in more detail topography within the nigrotectal system in the rat. Small injections (10-50 nl) of a 1% solution of wheatgerm agglutinin conjugated with horseradish peroxidase were made at different locations within substantia nigra and surrounding structures. A discontinuous puff-like pattern of anterogradely transported label was found in medial and caudal parts of the ipsilateral intermediate layers of the superior colliculus. In contrast, the rostrolateral enlargement of the intermediate layers contained a greater density of more evenly distributed terminal label. Injection sites associated with this dense pattern of laterally located label were concentrated in lateral pars reticulata, while the puff-like pattern was produced by injections into ventromedial pars reticulata. Retrograde tracing experiments with the fluorescent dyes True Blue and Fast Blue revealed that injections involving the rostrolateral intermediate layers were consistently associated with a restricted column of labelled cells in the dorsolateral part of ipsilateral pars reticulata. Comparable injections into medial and caudal regions of the superior colliculus produced retrograde labelling in ventral and medial parts of the rostral two-thirds of pars reticulata. Both anterograde and retrograde tracing data indicated that contralateral nigrotectal projections arise from cells located in ventral and medial pars reticulata. The present results suggest that the main ipsilateral projection from substantia nigra pars reticulata to the superior colliculus comprises two main components characterized by regionally segregated populations of output cells and spatially separated zones of termination. Of particular interest is the apparent close alignment between terminal zones of the nigrotectal channels and previously defined populations of crossed descending output cells in the superior colliculus. Thus, the rostrolateral intermediate layers contain a concentration of terminals specifically from dorsolateral pars reticulata and output cells which project to the contralateral caudal medulla and spinal cord. Conversely, the medial and caudal intermediate layers receive terminals from ventral and medial pars reticulata and contain cells which project specifically to contralateral regions of the paramedian pontine and medullary reticular formation.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- P Redgrave
- Department of Psychology, University of Sheffield, U.K
| | | | | |
Collapse
|
90
|
Krauthamer GM, Krol JG, Grunwerg BS. Effect of superior colliculus lesions on sensory unit responses in the intralaminar thalamus of the rat. Brain Res 1992; 576:277-86. [PMID: 1515921 DOI: 10.1016/0006-8993(92)90691-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effects of kainic acid lesions of the intermediate and deep layers of the superior colliculus on the sensory input to the intralaminar thalamus of the rat were determined. Ipsiversive circling and contralateral sensory neglect were consistently seen after lesion placement. Two to 7 days later, the intralaminar thalamus was systematically explored for extracellular mechanoreceptive unit responses to high threshold and low threshold stimuli. On the side ipsilateral to the lesion the number of responsive units was reduced by 51%. The loss was particularly marked for nociceptive units (80%), and low threshold and complex units with orofacial receptive fields (73%). This effect may involve a partial deafferentation of the intralaminar thalamus as well as altered excitatory thresholds of thalamic neurons. It is suggested that the functionally distinct direct tectothalamic projection as well as the indirect tecto-reticulo-thalamic pathway are implicated.
Collapse
Affiliation(s)
- G M Krauthamer
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway 08854
| | | | | |
Collapse
|
91
|
Abstract
Single units were recorded using extracellular glass microelectrodes in all laminae of the superior colliculus of the rat under halothane nitrous oxide anaesthesia. Fifty-one units were encountered which responded to a low intensity mechanical stimulus applied to a contralateral or bilateral field located in the oral sphere (intraoral 11, perioral 16), on the face (29) or on the rest of the body (21). Sixteen units responded to a jaw movement. Sixty-one cells were recorded which were preferentially (10) or only (51) activated (30) or inhibited (21) by noxious stimuli. Contralateral or bilateral mechanoreceptive fields located in intraoral (34) and perioral (35) areas were frequent. There is therefore a high incidence of the nociceptive representation of the mouth in the superior colliculus. The other functional properties of the nociceptive units were similar to those reported in other studies. From the subsequent histological localization of the recorded units, it appeared that the nociceptive projections from the intraoral and perioral regions to the superior colliculus reach the lateral part of the intermediate and deep layers of the superior colliculus.
Collapse
Affiliation(s)
- P Auroy
- Laboratoire de Physiologie Orofaciale, Faculté de Chirurgie Dentaire, Clermont Ferrand France
| | | | | |
Collapse
|
92
|
Westby GW, Keay KA, Redgrave P, Dean P, Bannister M. Output pathways from the rat superior colliculus mediating approach and avoidance have different sensory properties. Exp Brain Res 1990; 81:626-38. [PMID: 2226694 DOI: 10.1007/bf02423513] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Neuroanatomical studies have demonstrated that the two major descending pathways from the superior colliculus arise from regionally segregated, distinct, cells of origin. Stimulation and lesion studies have implicated the crossed descending tecto-reticulo-spinal projection in approach movements towards novel stimuli whereas the ipsilateral pathway appears to be involved in the control of avoidance and escape-like behaviours. The present electrophysiological study attempted to characterise the sensory properties of antidromically identified cells of origin of these pathways in anaesthetised rats. We found that the contralaterally projecting predorsal bundle (PDB) efferents were primarily somatosensory while the ipsilateral cuneiform (CNF) projection was primarily visual. PDB cells, mainly found in the intermediate layers, responded principally to vibrissal stimulation with their overlying visual fields optimally stimulated by small dark moving objects in the lower rostral and lateral field. In contrast, most CNF cells were located rostromedially, with the greatest contribution from visual cells responsive to stimuli in the upper rostral field. A significant proportion of these showed no response to small moving dark discs but fired vigorously to 'looming' stimuli. Ethological considerations suggest that these are appropriate stimulus characteristics for a system controlling approach and avoidance behaviour in an animal such as the rat where predators generally appear from above and prey is found on the ground.
Collapse
Affiliation(s)
- G W Westby
- Department of Psychology, University of Sheffield, UK
| | | | | | | | | |
Collapse
|
93
|
Yamasaki DS, Krauthamer GM. Somatosensory neurons projecting from the superior colliculus to the intralaminar thalamus in the rat. Brain Res 1990; 523:188-94. [PMID: 2400905 DOI: 10.1016/0006-8993(90)91486-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neurons of the rat superior colliculus projecting to the intralaminar thalamus were tested for their responses to somatosensory stimulation. They were identified by antidromic stimulation of the parafascicular nucleus and central lateral nucleus. To establish the existence of descending as well as ascending axon collaterals antidromic stimulation was applied to the upper cervical spinal cord in some cases. Somatosensory receptive fields were delineated and their laminar location in the superior colliculus was noted. Units were distributed throughout the intermediate and deep tectal layers, none were located in the superficial layers. Units with somatosensory receptive fields could be classified as low threshold, high threshold, wide dynamic range or complex. The majority of the peripherally responsive units (52%) were low threshold somatosensory units with contralateral receptive fields. All units were distributed throughout the intermediate and deep layers. Their distribution reflected the typical somatotopic organization of the superior colliculus. These results indicate that the intralaminar thalamus receives some sensory information by way of the tectum. In turn, the basal ganglia may gain direct access to this information by way of the thalamoneostriatal projection.
Collapse
Affiliation(s)
- D S Yamasaki
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway 08854
| | | |
Collapse
|
94
|
Keay K, Westby GW, Frankland P, Dean P, Redgrave P. Organization of the crossed tecto-reticulo-spinal projection in rat--II. Electrophysiological evidence for separate output channels to the periabducens area and caudal medulla. Neuroscience 1990; 37:585-601. [PMID: 2247216 DOI: 10.1016/0306-4522(90)90093-j] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The previous paper (Redgrave et al., Neuroscience 37, 571-584, 1990) presented anatomical evidence indicating there are at least two largely segregated components of the crossed tecto-reticulo-spinal pathway which project to the periabducens area and caudal medulla. An immediate question arising from this finding is whether tectal cells which project either to the periabducens area or to the caudal medulla have different electrophysiological response properties. An answer to this question would be relevant to the issue of whether different components of the tecto-reticulo-spinal system are specialized for the production of different classes of orienting movement. Accordingly, extracellularly recorded units in the superior colliculus of urethane anaesthetized rats were tested for antidromic activity following electrical stimulation of the periabducens area or the caudal medulla. When antidromic potentials were successfully recorded the sensory properties of the units were tested with a range of unimodal visual, somatosensory and auditory stimuli. The following results were obtained. (i) Tectal cells antidromically activated by stimulation of the caudal medulla were preferentially sensitive to somatosensory stimuli from the perioral region, while cells activated from the periabducens area were more frequently responsive to auditory stimuli. (ii) Tectal fibres activated by stimulation of the caudal medulla had significantly higher conduction velocities than the fibres activated by electrodes in the periabducens region. (iii) More than 90% of antidromically activated cells were located in stratum album intermediale or dorsal stratum profundum. These electrophysiological findings confirm and extend previous anatomical observations which indicate that components of the crossed descending projection of the colliculus may be functionally specialized for the production of different classes of orienting movements.
Collapse
Affiliation(s)
- K Keay
- Department of Psychology, University of Sheffield, U.K
| | | | | | | | | |
Collapse
|
95
|
Redgrave P, Dean P, Westby GW. Organization of the crossed tecto-reticulo-spinal projection in rat--I. Anatomical evidence for separate output channels to the periabducens area and caudal medulla. Neuroscience 1990; 37:571-84. [PMID: 1701037 DOI: 10.1016/0306-4522(90)90092-i] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The superior colliculus has been used to study principles of sensorimotor transformation underlying the guidance of orienting movements by multimodal sensory stimuli. We have previously suggested that there may be two different classes of mechanism which can produce orienting-like movements towards a novel event; one that locates a stimulus on the basis of remembered position, and another which uses continuous feedback relating to target velocity. The crossed descending pathway of the superior colliculus is widely considered the projection most likely to relay signals associated with the production of orienting movements. However, if different neural mechanisms are used to produce functionally distinct types of orienting, we might expect this pathway to have separate anatomical components related to function. The purpose of the present experiment was to see if collicular fibres innervating two important pre-motor targets of the crossed descending pathway, the periabducens area and the caudal medulla-spinal cord, come from the same population of tectal cells. One of the retrogradely transported fluorescent tracers (Diamidino Yellow) was injected into the periabducens area, and another (True Blue or Fast Blue) was injected into tectospinal fibres at the level of the ventromedial caudal medulla. Under these conditions we found: (i) less than 10% of labelled cells within the superior colliculus contained both tracers; (ii) the bulk of singly labelled cells projecting to the periabducens area or the caudal medulla were concentrated at different locations within the colliculus, (iii) in regions of the superior colliculus where there was overlap of singly labelled cells, neurons projecting to the periabducens area or the caudal medulla could be distinguished morphologically. These data provide three classes of evidence which indicate that the crossed descending projection in rat can be subdivided into at least two relatively independent anatomical components. This conclusion may, in part, provide an anatomical substrate for the functional dissociations proposed for orienting movements.
Collapse
Affiliation(s)
- P Redgrave
- Department of Psychology, University of Sheffield, U.K
| | | | | |
Collapse
|
96
|
Rhoades RW, Fish SE, Chiaia NL, Bennett-Clarke C, Mooney RD. Organization of the projections from the trigeminal brainstem complex to the superior colliculus in the rat and hamster: anterograde tracing with Phaseolus vulgaris leucoagglutinin and intra-axonal injection. J Comp Neurol 1989; 289:641-56. [PMID: 2592602 DOI: 10.1002/cne.902890409] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Anterograde tracing with Phaseolus vulgaris leucoagglutinin (PHA-L) and intra-axonal recording and injection techniques were employed to describe the projection from the trigeminal (V) brainstem complex to the deep laminae of the superior colliculus (SC) in the hamster and the rat. The organization of these projections was the same in the two species. Deposits of PHA-L into V nucleus principalis (PrV) produced labelled axons and boutonlike swellings in the lower stratum griseum intermediale (SGI) and upper stratum album intermedium (SAI) in the SC bilaterally. Plots of boutonlike swellings indicated that the terminals of this projection were arrayed in clusters. Nucleus principalis also projected to the stratum griseum profundum (SGP) and stratum album profundum (SAP). This deeper projection did not terminate in clusters and it was most prominent in the lateral SC. The ipsilateral PrV-SC projection appeared to arise mainly from axons that recrossed the midline at the level of the SC commissure. Reconstruction of individual PHA-L labelled fibers demonstrated that single axons gave rise to terminals on both sides of the midline. Deposits of PHA-L into V subnucleus interpolaris (SpI) yielded results that were identical to those obtained with PrV injections with one exception: none of these deposits produced any labelled terminals in the ipsilateral SC. Deposits of PHA-L into V subnucleus caudalis (SpC) produced only sparse labelling in SC. Most labelled swellings were located in the SGP and SAP and they were visible only in the SC contralateral to the PHA-L injection site. Single axons arising from cells in SpI were recorded and injected with horseradish peroxidase (HRP) in the hamster's SC. These fibers all responded to stimulation of multiple mystacial vibrissae and gave rise to 2-5 clusters of bouton-like swellings in the lower SGI and upper SAI.
Collapse
Affiliation(s)
- R W Rhoades
- Department of Anatomy, Medical College of Ohio, Toledo 43699-0008
| | | | | | | | | |
Collapse
|
97
|
Sun XD, Jen PH. Electrical stimulation of bat superior colliculus influences responses of inferior collicular neurons to acoustic stimuli. Brain Res 1989; 497:214-22. [PMID: 2819421 DOI: 10.1016/0006-8993(89)90265-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The influence of electrical stimulation of the superior colliculus (SC) on acoustically evoked responses of inferior collicular (IC) neurons was examined in 24 barbiturate-anesthetized Rufous horseshoe bats, Rhinolophus rouxi. Acoustic stimuli (50 ms, 0.5 ms rise-decay times) were delivered from a loudspeaker placed 68 cm in front of each bat and a total of 354 IC neurons were isolated. The response latencies of these neurons were mainly between 7.5 and 17.5 ms. When the ipsilateral SC was electrically stimulated, responses of 227 (64%) neurons were not affected, but responses of the remaining (127 neurons, 36%) were either inhibited (102 neurons, 29%) or facilitated (25 neurons, 7%). The degree of inhibition and the response latency of the inhibited neurons increased with the amplitude of electrical stimulation. Inhibition of a neuron's activity was also dependent upon the time interval between acoustic and electrical stimuli. The best inhibitory latency measured at maximal inhibition was between 12 and 20 ms. Conversely, facilitation shortened the response latency of IC neurons and the degree of facilitation increased with the amplitude of the acoustic stimulus. Since the SC plays an essential role in orienting an animal's responses toward sensory stimuli, our findings suggest that the SC may affect the processing of acoustic signals in the auditory system during acoustically guided orientation.
Collapse
Affiliation(s)
- X D Sun
- Department of Biology, East China Normal University, Shanghai, People's Republic of China
| | | |
Collapse
|
98
|
Tehovnik EJ. Head and body movements evoked electrically from the caudal superior colliculus of rats: pulse frequency effects. Behav Brain Res 1989; 34:71-8. [PMID: 2765173 DOI: 10.1016/s0166-4328(89)80091-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The effects of pulse frequency and current intensity on circling elicited from the caudal superior colliculus (SC) of rats were studied. The displacement of the head with respect to the body were measured for different levels of frequency (20, 29, and 50 Hz) and current (200 or 500 microA) at a pulse duration of 0.1 ms. The rate of circling increased monotonically with frequency and current. The rate at which the head was displaced laterally varied as a function of frequency. It is postulated that lateral head and body movements are affected by the firing frequency of SC output neurons.
Collapse
Affiliation(s)
- E J Tehovnik
- Department of Psychology, University of Toronto, Canada
| |
Collapse
|
99
|
Dean P, Redgrave P, Westby GW. Event or emergency? Two response systems in the mammalian superior colliculus. Trends Neurosci 1989; 12:137-47. [PMID: 2470171 DOI: 10.1016/0166-2236(89)90052-0] [Citation(s) in RCA: 400] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent studies of the effects of stimulating the superior colliculus (SC) in rodents suggest that this structure mediates at least two classes of response to novel sensory stimuli. One class contains the familiar orienting response, together with movements resembling tracking or pursuit, and appears appropriate for undefined sensory 'events'. The second class contains defensive movements such as avoidance or flight, together with cardiovascular changes, that would be appropriate for a sudden emergency such as the appearance of a predator, or of an object on collision course. The two response systems appear to depend on separate output projections, and are probably subject to different sensory and forebrain influences. These findings (1) suggest an explanation for the complex anatomical organization of the SC, with multiple output pathways differentially accessed by a very wide variety of inputs, (2) emphasize the similarities between the SC and the optic tectum in non-mammalian species, and (3) suggest that the SC may be useful as a model for studying both the sensory control of defensive responses, and how intelligent decisions can be taken about relatively simple sensory inputs.
Collapse
|
100
|
Masino T, Grobstein P. The organization of descending tectofugal pathways underlying orienting in the frog, Rana pipiens. II. Evidence for the involvement of a tecto-tegmento-spinal pathway. Exp Brain Res 1989; 75:245-64. [PMID: 2785926 DOI: 10.1007/bf00247932] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In the frog, identical orienting deficits, involving a failure to turn toward stimuli in the ipsilateral hemifield, can be produced by small white matter lesions either in the caudal mesencephalon (Kostyk and Grobstein, 1987a) or in the caudal medulla (Masino and Grobstein, 1989). These findings suggest that descending turn signals may run uninterrupted from the midbrain to the spinal cord, and that something other than tectospinal axons may carry such signals. We here report studies to determine whether there is a tecto-recipient structure whose axons pass through the known critical lesion sites in the caudal mesencephalon and medulla, and whether damage to such a structure, sparing tectospinal pathways, produces an orienting deficit. Horseradish peroxidase (HRP) was applied to behaviorally effective lesions in the caudal medulla and the resulting labelling patterns compared with those resulting from application of HRP to nearby but behaviorally ineffective lesions at the same rostrocaudal level. A column of large cells in the ventrolateral midbrain tegmentum (including nMLF as well as parts of AV and PV) was robustly labelled in all effective lesion cases, and less frequently labelled in ineffective cases. A quantitative analysis showed labelling in this region to be more highly correlated with the existence of a behavioral deficit than that in any other brain region. Reconstructions of single retrogradely labelled cells in the rostral part of the column (nMLF) showed that they have dendrites in a position to receive tectal input and axons which pass through the critical lesion sites in both the caudal mesencephalon and the caudal medulla. Tegmental lesions, sparing the tectospinal tracts, produced ipsilateral turning deficits in cases where the large cell column was completely removed but did not when the column was spared. The findings support the hypothesis that tectofugal signals involved in orienting turns descend uninterrupted to the spinal cord on something other than tectospinal axons, and suggest that the critical projections derive from the large cell column of the ventral tegmentum.
Collapse
Affiliation(s)
- T Masino
- Department of Anatomy, University of Chicago, IL 60637
| | | |
Collapse
|