51
|
Gasterich N, Wetz S, Tillmann S, Fein L, Seifert A, Slowik A, Weiskirchen R, Zendedel A, Ludwig A, Koschmieder S, Beyer C, Clarner T. Inflammatory Responses of Astrocytes Are Independent from Lipocalin 2. J Mol Neurosci 2020; 71:933-942. [PMID: 32959226 DOI: 10.1007/s12031-020-01712-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022]
Abstract
The central nervous system (CNS) responds to diverse neurologic injuries with a vigorous activation of astrocytes. In addition to their role in the maintenance of CNS homeostasis and neuronal function, astrocytes are thought to participate in the regulation of innate and adaptive immune responses in the CNS. Following antigen recognition, reactive astrocytes may participate in the initiation of innate immune responses, and modulate adaptive immune response leading to the recruitment of peripheral immune cells. Among activation, astrocytes undergo morphological changes and express several molecules, e.g., chemokines. Lipocalin 2 (LCN2) is involved in the control of innate immune responses, regulation of excess iron, and reactive oxygen production. Here, we investigated the influence of LCN2 on basic astrocytic functions linked to inflammatory responses. In vitro studies revealed a similar chemokine expression pattern in wild-type and Lcn2-deficient astrocyte cultures after treatment with lipopolysaccharides (LPS). Increased wound closure and morphological changes upon LPS treatment are independent of Lcn2 expression. We conclude that LCN2 is not necessary for basic astrocytic functions in the context of inflammation. However, CNS-derived LCN2 might have a regulatory effect on other cells, e.g., endothelial cells of the blood-brain barrier.
Collapse
Affiliation(s)
- Natalie Gasterich
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany.
| | - Sophie Wetz
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| | - Stefan Tillmann
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Lena Fein
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| | - Anke Seifert
- Institute of Molecular Pharmacology, RWTH University Hospital Aachen, Aachen, Germany
| | - Alexander Slowik
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| | - Andreas Ludwig
- Institute of Molecular Pharmacology, RWTH University Hospital Aachen, Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| | - Tim Clarner
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
52
|
Slamon ND, Pentreath VW. A Comparison of the Acute and Chronic Effects of Antidepressants in Cultured C6 and 1321N1 Cells. Altern Lab Anim 2020. [DOI: 10.1177/026119299802600306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cytotoxicities of the antidepressants amitriptyline, imipramine (both tricyclic), fluoxetine (a selective serotonin re-uptake inhibitor) and tranylcypromine (a monoamine oxidase inhibitor) were compared in vitro in rat (C6) glioma and human (1321N1) astrocytoma cell lines. Differences in toxicity were determined after acute (24-hour) and chronic (7-day) administration and assessed by using the neutral red uptake (NRU) assay, the MTT assay, increased expression of glial fibrillary acidic protein (GFAp), and reactive morphology criteria. The relative toxicities (EC50 [concentration causing an effect in 50% of cells] value range) were fluoxetine > amitriptyline > imipramine > tranylcypromine for all the tests employed, in both cell lines and at both exposure times. There was a high and significant positive correlation between the different cell types, at both exposure times, with both the NRU and MTT assays. Increases in MTT reduction, NRU, and GFAp expression associated with cell activation were noted in C6 cells after exposure for 24 hours, but decreased after exposure for 7 days. For 1321N1 cells, increases in NRU were only observed after exposure for 24 hours. Reactive-type changes in morphology were seen after exposure to all the antidepressants, in both the C6 and 1321N1 cell lines. The data show that low concentrations of antidepressants induce metabolic changes in the astrocyte cell lines, with some significant differences in the patterns of toxicity of the tested substances.
Collapse
Affiliation(s)
- N. Debbie Slamon
- Department of Biological Sciences, University of Salford, Salford M5 4WT, UK
| | - Vic W. Pentreath
- Department of Biological Sciences, University of Salford, Salford M5 4WT, UK
| |
Collapse
|
53
|
Sulimai N, Lominadze D. Fibrinogen and Neuroinflammation During Traumatic Brain Injury. Mol Neurobiol 2020; 57:4692-4703. [PMID: 32776201 DOI: 10.1007/s12035-020-02012-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022]
Abstract
Many neurodegenerative diseases such as Alzheimer's disease (AD), multiple sclerosis, and traumatic brain injury (TBI) are associated with systemic inflammation. Inflammation itself results in increased blood content of fibrinogen (Fg), called hyperfibrinogenemia (HFg). Fg is not only considered an acute phase protein and a marker of inflammation, but has been shown that it can cause inflammatory responses. Fibrin deposits have been associated with memory reduction in neuroinflammatory diseases such as AD and TBI. Reduction in short-term memory has been seen during the most common form of TBI, mild-to-moderate TBI. Fibrin deposits have been found in brains of patients with mild-to-moderate TBI. The vast majority of the literature emphasizes the role of fibrin-activated microglia as the mediator in the neuroinflammation pathway. However, the recent discovery that astrocytes, which constitute approximately 30% of the cells in the mammalian central nervous system, manifest different reactive states warrants further investigations in the causative role of HFg in astrocyte-mediated neuroinflammation. Our previous study showed that Fg deposited in the vasculo-astrocyte interface-activated astrocytes. However, little is known of how Fg directly affects astrocytes and neurons. In this review, we summarize studies that show the effect of Fg on different types of cells in the vasculo-neuronal unit. We will also discuss the possible mechanism of HFg-induced neuroinflammation during TBI.
Collapse
Affiliation(s)
- Nurul Sulimai
- Departments of Surgery, University of South Florida Morsani College of Medicine, MDC-4024, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612, USA
| | - David Lominadze
- Departments of Surgery, University of South Florida Morsani College of Medicine, MDC-4024, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612, USA.
- Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA.
| |
Collapse
|
54
|
Ding W, Wang Y, Cheng Y, Chen X, Chen W, Zuo P, Chen W, Qiao Z, Fan X. Lin28 is associated with astrocytic proliferation during intracerebral hemorrhage. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:1136-1145. [PMID: 32509088 PMCID: PMC7270688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
As an evolutionarily conserved RNA-binding protein, LIN28 is known to be involved in the regulation of the translation and stability of a large number of mRNAs and the biogenesis of certain miRNAs. Increasing evidence indicates that LIN28 regulates many cellular processes, such as embryonic stem cell proliferation, cell fate succession, developmental timing, and oncogenesis. However, the expression and function of LIN28 after intracerebral hemorrhage (ICH) are still unclear. In this study, we performed an intracranial hemorrhage model in adult rats and western blot, immunohistochemistry, as well as immunofluorescence showed that LIN28 was obviously up-regulation in neurons adjacent to the hematoma after ICH. Besides, the transitory increase of LIN28 expression was paralleled with the up-regulation of proliferating cell nuclear antigen (PCNA) as well as GFAP. Hence, LIN28 might play an important role in astrocyte proliferation after ICH.
Collapse
Affiliation(s)
- Wensen Ding
- Department of Intensive Care Unit, Affiliated Haian Hospital of Nantong UniversityNantong 226600, Jiangsu, China
| | - Yuqin Wang
- Department of Neurology, Affiliated Hospital of Nantong UniversityNantong 226001, Jiangsu, China
| | - Yaqin Cheng
- Department of Neurology, Affiliated Hospital of Nantong UniversityNantong 226001, Jiangsu, China
| | - Xin Chen
- Department of Neurology, Affiliated Hospital of Nantong UniversityNantong 226001, Jiangsu, China
| | - Weiguan Chen
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong UniversityNantong 226001, Jiangsu, China
| | - Peng Zuo
- Department of Neurology, Affiliated Hospital of Nantong UniversityNantong 226001, Jiangsu, China
| | - Weihai Chen
- Department of Cardiology, Suzhou Ninth People’s Hospital, Affiliated Wujiang Hospital of Nantong UniversitySuzhou 215200, Jiangsu, China
| | - Zhenguo Qiao
- Department of Gastroenterology, Suzhou Ninth People’s Hospital, Affiliated Wujiang Hospital of Nantong UniversitySuzhou 215200, Jiangsu, China
| | - Xingjuan Fan
- Department of Neurology, Affiliated Hospital of Nantong UniversityNantong 226001, Jiangsu, China
| |
Collapse
|
55
|
Korte SM, Straub RH. Fatigue in inflammatory rheumatic disorders: pathophysiological mechanisms. Rheumatology (Oxford) 2020; 58:v35-v50. [PMID: 31682277 PMCID: PMC6827268 DOI: 10.1093/rheumatology/kez413] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/09/2019] [Indexed: 12/13/2022] Open
Abstract
Today, inflammatory rheumatic disorders are effectively treated, but many patients still suffer from residual fatigue. This work presents pathophysiological mechanisms of fatigue. First, cytokines can interfere with neurotransmitter release at the preterminal ending. Second, a long-term increase in serum concentrations of proinflammatory cytokines increase the uptake and breakdown of monoamines (serotonin, noradrenaline and dopamine). Third, chronic inflammation can also decrease monoaminergic neurotransmission via oxidative stress (oxidation of tetrahydrobiopterin [BH4]). Fourth, proinflammatory cytokines increase the level of enzyme indoleamine-2, 3-dioxygenase activity and shunt tryptophan away from the serotonin pathway. Fifth, oxidative stress stimulates astrocytes to inhibit excitatory amino acid transporters. Sixth, astrocytes produce kynurenic acid that acts as an antagonist on the α7-nicotinic acetylcholine receptor to inhibit dopamine release. Jointly, these actions result in increased glutamatergic and decreased monoaminergic neurotransmission. The above-described pathophysiological mechanisms negatively affect brain functioning in areas that are involved in fatigue.
Collapse
Affiliation(s)
- S Mechiel Korte
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, (UIPS), Utrecht University, Utrecht, The Netherlands.,Department of Biopsychology, Faculty of Psychology, Ruhr-Universität, Bochum
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital, Regensburg, Germany
| |
Collapse
|
56
|
Strohm L, Behrends C. Glia-specific autophagy dysfunction in ALS. Semin Cell Dev Biol 2020; 99:172-182. [DOI: 10.1016/j.semcdb.2019.05.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/30/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
|
57
|
Buckenmeyer MJ, Meder TJ, Prest TA, Brown BN. Decellularization techniques and their applications for the repair and regeneration of the nervous system. Methods 2020; 171:41-61. [PMID: 31398392 PMCID: PMC11948521 DOI: 10.1016/j.ymeth.2019.07.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/11/2019] [Accepted: 07/26/2019] [Indexed: 01/15/2023] Open
Abstract
A variety of surgical and non-surgical approaches have been used to address the impacts of nervous system injuries, which can lead to either impairment or a complete loss of function for affected patients. The inherent ability of nervous tissues to repair and/or regenerate is dampened due to irreversible changes that occur within the tissue remodeling microenvironment following injury. Specifically, dysregulation of the extracellular matrix (i.e., scarring) has been suggested as one of the major factors that can directly impair normal cell function and could significantly alter the regenerative potential of these tissues. A number of tissue engineering and regenerative medicine-based approaches have been suggested to intervene in the process of remodeling which occurs following injury. Decellularization has become an increasingly popular technique used to obtain acellular scaffolds, and their derivatives (hydrogels, etc.), which retain tissue-specific components, including critical structural and functional proteins. These advantageous characteristics make this approach an intriguing option for creating materials capable of stimulating the sensitive repair mechanisms associated with nervous system injuries. Over the past decade, several diverse decellularization methods have been implemented specifically for nervous system applications in an attempt to carefully remove cellular content while preserving tissue morphology and composition. Each application-based decellularized ECM product requires carefully designed treatments that preserve the unique biochemical signatures associated within each tissue type to stimulate the repair of brain, spinal cord, and peripheral nerve tissues. Herein, we review the decellularization techniques that have been applied to create biomaterials with the potential to promote the repair and regeneration of tissues within the central and peripheral nervous system.
Collapse
Affiliation(s)
- Michael J Buckenmeyer
- Department of Bioengineering, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States.
| | - Tyler J Meder
- Department of Bioengineering, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States.
| | - Travis A Prest
- Department of Bioengineering, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States.
| | - Bryan N Brown
- Department of Bioengineering, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States; Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States.
| |
Collapse
|
58
|
Pflüger P, Pinnell RC, Martini N, Hofmann UG. Chronically Implanted Microelectrodes Cause c-fos Expression Along Their Trajectory. Front Neurosci 2020; 13:1367. [PMID: 31998057 PMCID: PMC6965008 DOI: 10.3389/fnins.2019.01367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/03/2019] [Indexed: 01/05/2023] Open
Abstract
When designing electrodes and probes for brain–machine interfaces, one of the challenges faced involves minimizing the brain-tissue response, which would otherwise create an environment that is detrimental for the accurate functioning of such probes. Following the implantation process, the brain reacts with a sterile inflammation response and resulting astrocytic glial scar formation, potentially resulting in neuronal cell loss around the implantation site. Such alterations in the naïve brain tissue can hinder both the quality of neuronal recordings, and the efficacy of deep-brain stimulation. In this study, we chronically implanted a glass-supported polyimide microelectrode in the dorsolateral striatum of Sprague–Dawley rats. The effect of high-frequency stimulation (HFS) was investigated using c-fos immunoreactivity techniques. GFAP and ED1 immunohistochemistry were used to analyze the brain-tissue response. No changes in c-fos expression were found for either the acute or chronic stimulus groups; although a c-fos expression was found along the length of the implantation trajectory, following chronic implantation of our stiffened polyimide microelectrode. Furthermore, we also observed the formation of a glial scar around the microelectrode, with an accompanying low number of inflammation cells. Histological and statistical analysis of NeuN-positive cells did not demonstrate a pronounced “kill zone” with accompanying neuronal cell death around the implantation site, neither on the polymer side, nor on the glass side of the PI-glass probe.
Collapse
Affiliation(s)
- Patrick Pflüger
- Section for Neuroelectronic Systems, Clinic for Neurosurgery, Medical Center - University of Freiburg, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Richard C Pinnell
- Section for Neuroelectronic Systems, Clinic for Neurosurgery, Medical Center - University of Freiburg, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Nadja Martini
- Section for Neuroelectronic Systems, Clinic for Neurosurgery, Medical Center - University of Freiburg, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Ulrich G Hofmann
- Section for Neuroelectronic Systems, Clinic for Neurosurgery, Medical Center - University of Freiburg, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
59
|
Liu Z, Lu S, Zhang J, Chen X, Mickymaray S. Limonin: A triterpenoid exerts protective effect during lipopolysaccharide stimulated inflammation in BV2 microglial cells. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_304_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
60
|
Neuroinflammation in Post-Traumatic Epilepsy: Pathophysiology and Tractable Therapeutic Targets. Brain Sci 2019; 9:brainsci9110318. [PMID: 31717556 PMCID: PMC6895909 DOI: 10.3390/brainsci9110318] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a common chronic consequence of traumatic brain injury (TBI), contributing to increased morbidity and mortality for survivors. As post-traumatic epilepsy (PTE) is drug-resistant in at least one-third of patients, there is a clear need for novel therapeutic strategies to prevent epilepsy from developing after TBI, or to mitigate its severity. It has long been recognized that seizure activity is associated with a local immune response, characterized by the activation of microglia and astrocytes and the release of a plethora of pro-inflammatory cytokines and chemokines. More recently, increasing evidence also supports a causal role for neuroinflammation in seizure induction and propagation, acting both directly and indirectly on neurons to promote regional hyperexcitability. In this narrative review, we focus on key aspects of the neuroinflammatory response that have been implicated in epilepsy, with a particular focus on PTE. The contributions of glial cells, blood-derived leukocytes, and the blood–brain barrier will be explored, as well as pro- and anti-inflammatory mediators. While the neuroinflammatory response to TBI appears to be largely pro-epileptogenic, further research is needed to clearly demonstrate causal relationships. This research has the potential to unveil new drug targets for PTE, and identify immune-based biomarkers for improved epilepsy prediction.
Collapse
|
61
|
Abstract
Leukodystrophies are genetically determined disorders affecting the white matter of the central nervous system. The combination of MRI pattern recognition and next-generation sequencing for the definition of novel disease entities has recently demonstrated that many leukodystrophies are due to the primary involvement and/or mutations in genes selectively expressed by cell types other than the oligodendrocytes, the myelin-forming cells in the brain. This has led to a new definition of leukodystrophies as genetic white matter disorders resulting from the involvement of any white matter structural component. As a result, the research has shifted its main focus from oligodendrocytes to other types of neuroglia. Astrocytes are the housekeeping cells of the nervous system, responsible for maintaining homeostasis and normal brain physiology and to orchestrate repair upon injury. Several lines of evidence show that astrocytic interactions with the other white matter cellular constituents play a primary pathophysiologic role in many leukodystrophies. These are thus now classified as astrocytopathies. This chapter addresses how the crosstalk between astrocytes, other glial cells, axons and non-neural cells are essential for the integrity and maintenance of the white matter in health. It also addresses the current knowledge of the cellular pathomechanisms of astrocytic leukodystrophies, and specifically Alexander disease, vanishing white matter, megalencephalic leukoencephalopathy with subcortical cysts and Aicardi-Goutière Syndrome.
Collapse
Affiliation(s)
- M S Jorge
- Department of Pathology, Free University Medical Centre, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, Free University Medical Centre, Amsterdam, The Netherlands.
| |
Collapse
|
62
|
Laug D, Huang TW, Huerta NAB, Huang AYS, Sardar D, Ortiz-Guzman J, Carlson JC, Arenkiel BR, Kuo CT, Mohila CA, Glasgow SM, Lee HK, Deneen B. Nuclear factor I-A regulates diverse reactive astrocyte responses after CNS injury. J Clin Invest 2019; 129:4408-4418. [PMID: 31498149 PMCID: PMC6763246 DOI: 10.1172/jci127492] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 07/16/2019] [Indexed: 01/09/2023] Open
Abstract
Reactive astrocytes are associated with every form of neurological injury. Despite their ubiquity, the molecular mechanisms controlling their production and diverse functions remain poorly defined. Because many features of astrocyte development are recapitulated in reactive astrocytes, we investigated the role of nuclear factor I-A (NFIA), a key transcriptional regulator of astrocyte development whose contributions to reactive astrocytes remain undefined. Here, we show that NFIA is highly expressed in reactive astrocytes in human neurological injury and identify unique roles across distinct injury states and regions of the CNS. In the spinal cord, after white matter injury (WMI), NFIA-deficient astrocytes exhibit defects in blood-brain barrier remodeling, which are correlated with the suppression of timely remyelination. In the cortex, after ischemic stroke, NFIA is required for the production of reactive astrocytes from the subventricular zone (SVZ). Mechanistically, NFIA directly regulates the expression of thrombospondin 4 (Thbs4) in the SVZ, revealing a key transcriptional node regulating reactive astrogenesis. Together, these studies uncover critical roles for NFIA in reactive astrocytes and illustrate how region- and injury-specific factors dictate the spectrum of reactive astrocyte responses.
Collapse
Affiliation(s)
- Dylan Laug
- Center for Cell and Gene Therapy and,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Navish A. Bosquez Huerta
- Center for Cell and Gene Therapy and,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Anna Yu-Szu Huang
- Center for Cell and Gene Therapy and,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Joshua Ortiz-Guzman
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA.,Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, USA
| | - Jeffrey C. Carlson
- Center for Cell and Gene Therapy and,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Benjamin R. Arenkiel
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA.,Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, USA.,Department of Neuroscience and,Department of Human and Molecular Genetics Baylor College of Medicine, Houston, Texas, USA
| | - Chay T. Kuo
- Department of Cell Biology, Duke University, Durham, North Carolina, USA
| | - Carrie A. Mohila
- Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | | | - Hyun Kyoung Lee
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA.,Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, USA.,Department of Neuroscience and,Department of Pediatrics, Division of Neurology, Texas Children’s Hospital, Houston, Texas, USA
| | - Benjamin Deneen
- Center for Cell and Gene Therapy and,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA.,Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, USA.,Department of Neuroscience and,Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
63
|
Hermann JK, Ravikumar M, Shoffstall AJ, Ereifej ES, Kovach KM, Chang J, Soffer A, Wong C, Srivastava V, Smith P, Protasiewicz G, Jiang J, Selkirk SM, Miller RH, Sidik S, Ziats NP, Taylor DM, Capadona JR. Inhibition of the cluster of differentiation 14 innate immunity pathway with IAXO-101 improves chronic microelectrode performance. J Neural Eng 2019; 15:025002. [PMID: 29219114 DOI: 10.1088/1741-2552/aaa03e] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Neuroinflammatory mechanisms are hypothesized to contribute to intracortical microelectrode failures. The cluster of differentiation 14 (CD14) molecule is an innate immunity receptor involved in the recognition of pathogens and tissue damage to promote inflammation. The goal of the study was to investigate the effect of CD14 inhibition on intracortical microelectrode recording performance and tissue integration. APPROACH Mice implanted with intracortical microelectrodes in the motor cortex underwent electrophysiological characterization for 16 weeks, followed by endpoint histology. Three conditions were examined: (1) wildtype control mice, (2) knockout mice lacking CD14, and (3) wildtype control mice administered a small molecule inhibitor to CD14 called IAXO-101. MAIN RESULTS The CD14 knockout mice exhibited acute but not chronic improvements in intracortical microelectrode performance without significant differences in endpoint histology. Mice receiving IAXO-101 exhibited significant improvements in recording performance over the entire 16 week duration without significant differences in endpoint histology. SIGNIFICANCE Full removal of CD14 is beneficial at acute time ranges, but limited CD14 signaling is beneficial at chronic time ranges. Innate immunity receptor inhibition strategies have the potential to improve long-term intracortical microelectrode performance.
Collapse
Affiliation(s)
- John K Hermann
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Rehabilitation Research and Development, 10701 East Blvd. Mail Stop 151 AW/APT, Cleveland OH 44106, United States of America. Department of Biomedical Engineering, Case Western Reserve University, School of Engineering, 2071 Martin Luther King Jr Drive, Wickenden Bldg, Cleveland OH 44106, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Klemens J, Ciurkiewicz M, Chludzinski E, Iseringhausen M, Klotz D, Pfankuche VM, Ulrich R, Herder V, Puff C, Baumgärtner W, Beineke A. Neurotoxic potential of reactive astrocytes in canine distemper demyelinating leukoencephalitis. Sci Rep 2019; 9:11689. [PMID: 31406213 PMCID: PMC6690900 DOI: 10.1038/s41598-019-48146-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 07/25/2019] [Indexed: 12/20/2022] Open
Abstract
Canine distemper virus (CDV) causes a fatal demyelinating leukoencephalitis in young dogs resembling human multiple sclerosis. Astrocytes are the main cellular target of CDV and undergo reactive changes already in pre-demyelinating brain lesions. Based on their broad range of beneficial and detrimental effects in the injured brain reactive astrogliosis is in need of intensive investigation. The aim of the study was to characterize astrocyte plasticity during the course of CDV-induced demyelinating leukoencephalitis by the aid of immunohistochemistry, immunofluorescence and gene expression analysis. Immunohistochemistry revealed the presence of reactive glial fibrillary acidic protein (GFAP)+ astrocytes with increased survivin and reduced aquaporin 4, and glutamine synthetase protein levels, indicating disturbed blood brain barrier function, glutamate homeostasis and astrocyte maladaptation, respectively. Gene expression analysis revealed 81 differentially expressed astrocyte-related genes with a dominance of genes associated with neurotoxic A1-polarized astrocytes. Accordingly, acyl-coA synthetase long-chain family member 5+/GFAP+, and serglycin+/GFAP+ cells, characteristic of A1-astrocytes, were found in demyelinating lesions by immunofluorescence. In addition, gene expression revealed a dysregulation of astrocytic function including disturbed glutamate homeostasis and altered immune function. Observed findings indicate an astrocyte polarization towards a neurotoxic phenotype likely contributing to lesion initiation and progression in canine distemper leukoencephalitis.
Collapse
Affiliation(s)
- J Klemens
- Department of Pathology, University of Veterinary Medicine Hanover, Hannover, Germany
| | - M Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hanover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - E Chludzinski
- Department of Pathology, University of Veterinary Medicine Hanover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - M Iseringhausen
- Department of Pathology, University of Veterinary Medicine Hanover, Hannover, Germany
| | - D Klotz
- Department of Pathology, University of Veterinary Medicine Hanover, Hannover, Germany
| | - V M Pfankuche
- Department of Pathology, University of Veterinary Medicine Hanover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - R Ulrich
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - V Herder
- Department of Pathology, University of Veterinary Medicine Hanover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - C Puff
- Department of Pathology, University of Veterinary Medicine Hanover, Hannover, Germany
| | - W Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hanover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - A Beineke
- Department of Pathology, University of Veterinary Medicine Hanover, Hannover, Germany.
- Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
65
|
Diene LD, Costa-Ferro ZSM, Barbosa S, Milanesi BB, Lazzari GZ, Neves LT, Paz LV, Neves PFR, Battisti V, Martins LA, Gehlen G, Mestriner RG, Da Costa JC, Xavier LL. Selective brain neuronal and glial losses without changes in GFAP immunoreactivity: Young versus mature adult Wistar rats. Mech Ageing Dev 2019; 182:111128. [PMID: 31404554 DOI: 10.1016/j.mad.2019.111128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/18/2019] [Accepted: 08/06/2019] [Indexed: 10/26/2022]
Abstract
Normal ageing results in brain selective neuronal and glial losses. In the present study we analyze neuronal and glial changes in Wistar rats at two different ages, 45 days (young) and 420 days (mature adult), using Nissl staining and glial fibrillary acidic protein (GFAP) immunohistochemistry associated to the Sholl analysis. Comparing mature adults with young rats we noted the former present a decrease in neuronal density in the cerebral cortex, corpus callosum, pyriform cortex, L.D.D.M., L.D.V.L., central medial thalamic nucleus and zona incerta. A decrease in glial density was found in the dorsomedial and ventromedial hypothalamic nuclei. Additionally, the neuron/glia ratio was reduced in the central medial thalamic nucleus and increased in the habenula. No changes were found in the neuronal and glial densities or neuron/glia ratio in the other studied regions. The number of astrocytic primary processes and the number of intersections counted in the Sholl analysis presented no significant difference in any of the studied regions. Overall, neither GFAP positive astrocytic density nor GFAP immunoreactivity showed alteration.
Collapse
Affiliation(s)
- Leonardo D Diene
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Silvia Barbosa
- Laboratório de Histofisiologia Comparada, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bruna Bueno Milanesi
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriele Zenato Lazzari
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Laura Tartari Neves
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lisiê Valéria Paz
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Paula Fernanda Ribas Neves
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vanessa Battisti
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lucas A Martins
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Régis Gemerasca Mestriner
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jaderson C Da Costa
- Instituto do Cérebro do Rio Grande do Sul (InsCer/RS), Porto Alegre, RS, Brazil
| | - Léder L Xavier
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
66
|
Smith NA, Germundson DL, Combs CK, Vendsel LP, Nagamoto-Combs K. Astrogliosis Associated With Behavioral Abnormality in a Non-anaphylactic Mouse Model of Cow's Milk Allergy. Front Cell Neurosci 2019; 13:320. [PMID: 31379506 PMCID: PMC6646667 DOI: 10.3389/fncel.2019.00320] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/28/2019] [Indexed: 12/22/2022] Open
Abstract
Etiology of neuropsychiatric disorders is complex, involving multiple factors that can affect the type and severity of symptoms. Although precise causes are far from being identified, allergy or other forms of hypersensitivity to dietary ingredients have been implicated in triggering or worsening of behavioral and emotional symptoms, especially in patients suffering from depression, anxiety, attention-deficit hyperactivity, and/or autism. Among such ingredients, cow's milk, along with wheat gluten, is commonly suspected. However, the contributory role of cow's milk in these disorders has not been elucidated due to insufficient pathophysiological evidence. In the present study, we therefore investigated neuroinflammatory changes that are associated with behavioral abnormality using a non-anaphylactic mouse model of cow's milk allergy (CMA). Male and female C57BL/6J mice were subjected to a 5-week oral sensitization procedure without or with a major milk allergen, beta-lactoglobulin (BLG). All mice were then later challenged with BLG, and their anxiety- and depression-associated behaviors were subsequently assessed during the 6th and 7th weeks. We found that BLG-sensitized male mice exhibited significantly increased anxiety- and depression-like behavior, although they did not display anaphylactic reactions when challenged with BLG. Female behavior was not noticeably affected by BLG sensitization. Upon examination of the small intestines, reduced immunoreactivity to occludin was detected in the ileal mucosa of BLG-sensitized mice although the transcriptional expression of this tight-junction protein was not significantly altered when measured by quantitative RT-PCR. On the other hand, the expression of tumor necrosis factor alpha (TNFα) in the ileal mucosa was significantly elevated in BLG-sensitized mice, suggesting the sensitization had resulted in intestinal inflammation. Inflammatory responses were also detected in the brain of BLG-sensitized mice, determined by the hypertrophic morphology of GFAP-immunoreactive astrocytes. These reactive astrocytes were particularly evident near the blood vessels in the midbrain region, resembling the perivascular barrier previously reported by others in experimental autoimmune encephalitis (EAE) mouse models. Interestingly, increased levels of COX-2 and TNFα were also found in this region. Taken together, our results demonstrated that BLG sensitization elicits inflammatory responses in the intestine and brain without overt anaphylactic signs of milk allergy, signifying food allergy as a potential pathogenic factor of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Nicholas A Smith
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Danielle L Germundson
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Colin K Combs
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Lane P Vendsel
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Kumi Nagamoto-Combs
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| |
Collapse
|
67
|
Rodríguez AM, Delpino MV, Miraglia MC, Giambartolomei GH. Immune Mediators of Pathology in Neurobrucellosis: From Blood to Central Nervous System. Neuroscience 2019; 410:264-273. [PMID: 31128159 DOI: 10.1016/j.neuroscience.2019.05.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 01/18/2023]
Abstract
Neurobrucellosis, which is the most morbid form of brucellosis disease, presents with inflammatory signs and symptoms. Recent experimental evidence clearly indicates that deregulation of astrocytes and microglia caused by Brucella infection creates a microenvironment in the central nervous system (CNS) in which secretion of pro-inflammatory mediators lead to destabilization of the glial structure, the damage of the blood brain barrier (BBB) and neuronal demise. This review of Brucella interactions with cells of the CNS and the BBB is intended to present recent immunological findings that can explain, at least in part, the basis for the inflammatory pathogenesis of the nervous system that takes place upon Brucella infection.
Collapse
Affiliation(s)
- Ana M Rodríguez
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Cruz Miraglia
- Instituto de Virología, Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA)
| | - Guillermo H Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
68
|
Yuan J, Botchway BOA, Zhang Y, Tan X, Wang X, Liu X. Curcumin Can Improve Spinal Cord Injury by Inhibiting TGF-β-SOX9 Signaling Pathway. Cell Mol Neurobiol 2019; 39:569-575. [PMID: 30915623 PMCID: PMC11462994 DOI: 10.1007/s10571-019-00671-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
Abstract
Spinal cord injury (SCI) is a severe nervous system disease with high morbidity and disability rate. Signaling pathways play a key role in the neuronal restorative mechanism following SCI. SRY-related high mobility group (HMG)-box gene 9 (SOX9) affects glial scar formation via Transforming growth factor beta (TGF-β) signaling pathway. Activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is transferred into nucleus to upregulate TGF-β-SOX9. Curcumin exhibits potent anti-inflammatory and anti-oxidant properties. Curcumin can play an important role in SCI recovery by inhibiting the expression of NF-κB and TGF-β-SOX9. Herein, we review the potential mechanism of curcumin-inhibiting SOX9 signaling pathway in SCI treatment. The inhibition of NF-κB and SOX9 signaling pathway by curcumin has the potentiality of serving as neuronal regenerative mechanism following SCI.
Collapse
Affiliation(s)
- Jiaying Yuan
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
| | - Xiaoning Tan
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Xizhi Wang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China.
| |
Collapse
|
69
|
Cohen J, Torres C. Astrocyte senescence: Evidence and significance. Aging Cell 2019; 18:e12937. [PMID: 30815970 PMCID: PMC6516680 DOI: 10.1111/acel.12937] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/14/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
Astrocytes participate in numerous aspects of central nervous system (CNS) physiology ranging from ion balance to metabolism, and disruption of their physiological roles can therefore be a contributor to CNS dysfunction and pathology. Cellular senescence, one of the mechanisms of aging, has been proposed as a central component of the age dependency of neurodegenerative disorders. Cumulative evidence supports an integral role of astrocytes in the initiation and progression of neurodegenerative disease and cognitive decline with aging. The loss of astrocyte function or the gain of neuroinflammatory function as a result of cellular senescence could have profound implications for the aging brain and neurodegenerative disorders, and we propose the term “astrosenescence” to describe this phenotype. This review summarizes the current evidence pertaining to astrocyte senescence from early evidence, in vitro characterization and relationship to age‐related neurodegenerative disease. We discuss the significance of targeting senescent astrocytes as a novel approach toward therapies for age‐associated neurodegenerative disease.
Collapse
Affiliation(s)
- Justin Cohen
- Department of Pathology and Laboratory Medicine Drexel University College of Medicine Philadelphia Pennsylvania
| | - Claudio Torres
- Department of Pathology and Laboratory Medicine Drexel University College of Medicine Philadelphia Pennsylvania
| |
Collapse
|
70
|
Cohen S, Liu Q, Wright M, Garvin J, Rarick K, Harder D. High glucose conditioned neonatal astrocytes results in impaired mitogenic activity in cerebral microvessel endothelial cells in co-culture. Heliyon 2019; 5:e01795. [PMID: 31193586 PMCID: PMC6536426 DOI: 10.1016/j.heliyon.2019.e01795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/22/2019] [Accepted: 05/20/2019] [Indexed: 11/20/2022] Open
Abstract
Angiogenesis is a highly complex and coordinated process in the brain. Under normal conditions, it is a vital process in growth and development, but under adverse conditions such as diabetes mellitus, it can lead to severe pathology. Astrocytes are a key constituent of the neurovascular unit and contribute to cerebral function, not only bridging the gap between metabolic supplies from blood vessels to neurons, but also regulating angiogenesis. Astrocytes affect angiogenesis by secreting angiogenic factors such as vascular endothelial growth factor (VEGF) into its microenvironment and regulating mitogenic activity in cerebral microvessel endothelial cells (CMEC). We hypothesized that astrocytes conditioned in high glucose media would produce and secrete decreased VEGF which would lead to impaired proliferation, migration, and tube formation of CMEC in vitro. Using neonatal rat astrocytes, we used normal glucose (NG, 5.5mM) vs. high glucose (HG, 25mM) feeding media and measured VEGF message and protein levels as well as secreted VEGF. We co-cultured conditioned astrocytes with isolated rat CMEC and measured mitogenic activity of endothelial cells using BrdU assay, scratch recovery assay, and tube formation assay. HG astrocytes produced and secreted decreased VEGF protein and resulted in impaired mitogenic activity when co-cultured with CMEC as demonstrated by decreased BrdU uptake, decreased scratch recovery, and slower tube formation. Our study provides insight into gliovascular adaptations to increased glucose levels resulting in impaired cellular cross-talk between astrocytes and CMEC which could be one explanation for cerebral microangiopathy seen in diabetic conditions.
Collapse
Affiliation(s)
- Susan Cohen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Corresponding author.
| | - Qiuli Liu
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Jodi Garvin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kevin Rarick
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David Harder
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
71
|
Kramann N, Menken L, Pförtner R, Schmid SN, Stadelmann C, Wegner C, Brück W. Glial fibrillary acidic protein expression alters astrocytic chemokine release and protects mice from cuprizone-induced demyelination. Glia 2019; 67:1308-1319. [DOI: 10.1002/glia.23605] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/31/2019] [Accepted: 02/07/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Nadine Kramann
- Institute of Neuropathology, University Medical Center Göttingen; Göttingen Germany
| | - Lena Menken
- Institute of Neuropathology, University Medical Center Göttingen; Göttingen Germany
| | - Ramona Pförtner
- Institute of Neuropathology, University Medical Center Göttingen; Göttingen Germany
| | - Susanne N. Schmid
- Institute of Neuropathology, University Medical Center Göttingen; Göttingen Germany
| | - Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen; Göttingen Germany
| | - Christiane Wegner
- Institute of Neuropathology, University Medical Center Göttingen; Göttingen Germany
- Institute of Pathology, University Medical Center Göttingen; Göttingen Germany
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center Göttingen; Göttingen Germany
| |
Collapse
|
72
|
Zuidema JM, Gilbert RJ, Gottipati MK. Biomaterial Approaches to Modulate Reactive Astroglial Response. Cells Tissues Organs 2018; 205:372-395. [PMID: 30517922 PMCID: PMC6397084 DOI: 10.1159/000494667] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/18/2018] [Indexed: 11/19/2022] Open
Abstract
Over several decades, biomaterial scientists have developed materials to spur axonal regeneration and limit secondary injury and tested these materials within preclinical animal models. Rarely, though, are astrocytes examined comprehensively when biomaterials are placed into the injury site. Astrocytes support neuronal function in the central nervous system. Following an injury, astrocytes undergo reactive gliosis and create a glial scar. The astrocytic glial scar forms a dense barrier which restricts the extension of regenerating axons through the injury site. However, there are several beneficial effects of the glial scar, including helping to reform the blood-brain barrier, limiting the extent of secondary injury, and supporting the health of regenerating axons near the injury site. This review provides a brief introduction to the role of astrocytes in the spinal cord, discusses astrocyte phenotypic changes that occur following injury, and highlights studies that explored astrocyte changes in response to biomaterials tested within in vitro or in vivo environments. Overall, we suggest that in order to improve biomaterial designs for spinal cord injury applications, investigators should more thoroughly consider the astrocyte response to such designs.
Collapse
Affiliation(s)
- Jonathan M Zuidema
- Department of Chemistry and Biochemistry, University of California, San Diego, California, USA
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Manoj K Gottipati
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA,
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA,
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA,
| |
Collapse
|
73
|
Ramadan WS, Abdel-Hamid GA, Al-Karim S, Zakar NAMB, Elassouli MZ. Neuroectodermal stem cells: A remyelinating potential in acute compressed spinal cord injury in rat model. J Biosci 2018; 43:897-909. [PMID: 30541950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The outcomes of compressed spinal cord injury (CSCI) necessitate radical treatment. The therapeutic potential of neuroectodermal stem cells (NESCs) in a rat model of CSCI in acute and subacute stages was assessed. White Wistar rat were divided into control, sham-operated, CSCI untreated model, CSCI grafted with NESCs at 1 day after CSCI, and at 7 days after CSCI. Primary NESC cultures were prepared from brains of embryonic day 10 (E10) mice embryos. NESCs were transplanted at the site of injury using a Hamilton syringe. Locomotor functional assessment, routine histopathology, immunostaining for (GFAP), and ultrastructure techniques for evaluating the CSI were conducted. In CSCI, areas of hemorrhage, cavitation, reactive astrocytosis, upregulated GFAP expression of immunostained areas, degeneration of the axoplasm and demyelination were observed. One day after grafting with NESCs, a decrease in astrocyte reaction and pathological features, quantitative and qualitative enhancement of remyelination and improved locomotor activity were observed. Treatment with NESCs at 7 days after CSCI did not mitigatethe reactive astrocytosis and glial scar formation that hindered the ability of the NESCs to enhance remyelination of axons. In conclusion, the microenvironment and time of NESCs transplantation affect activity of astrocytes and remyelination of axons.
Collapse
Affiliation(s)
- Wafaa S Ramadan
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,
| | | | | | | | | |
Collapse
|
74
|
Cassé F, Richetin K, Toni N. Astrocytes' Contribution to Adult Neurogenesis in Physiology and Alzheimer's Disease. Front Cell Neurosci 2018; 12:432. [PMID: 30538622 PMCID: PMC6277517 DOI: 10.3389/fncel.2018.00432] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/31/2018] [Indexed: 12/22/2022] Open
Abstract
Adult neurogenesis is one of the most drastic forms of brain plasticity in adulthood and there is a growing body of evidence showing that, in the hippocampus, this process contributes to mechanisms of memory as well as depression. Interestingly, adult neurogenesis is tightly regulated by the neurogenic niche, which provides a structural and molecular scaffold for stem cell proliferation and the differentiation and functional integration of new neurons. In this review, we highlight the role of astrocytes in the regulation of adult neurogenesis in the context of cognitive function. We also discuss how the changes in astrocytes function may dysregulate adult neurogenesis and contribute to cognitive impairment in the context of Alzheimer's disease.
Collapse
Affiliation(s)
- Frédéric Cassé
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Kevin Richetin
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Nicolas Toni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
75
|
Pereiro X, Ruzafa N, Acera A, Fonollosa A, Rodriguez FD, Vecino E. Dexamethasone protects retinal ganglion cells but not Müller glia against hyperglycemia in vitro. PLoS One 2018; 13:e0207913. [PMID: 30475883 PMCID: PMC6258116 DOI: 10.1371/journal.pone.0207913] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 11/08/2018] [Indexed: 12/21/2022] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes, for which hyperglycemia is a major etiological factor. It is known that retinal glia (Müller cells) and retinal ganglion cells (RGCs) are affected by diabetes, and there is evidence that DR is associated with neural degeneration. Dexamethasone is a glucocorticoid used to treat many inflammatory and autoimmune conditions, including several eye diseases like DR. Thus, our goal was to study the effect of dexamethasone on the survival of RGCs and Müller glial cells isolated from rat retinas and maintained in vitro under hyperglycemic conditions. The behavior of primary RGC cell cultures, and of mixed RGC and Müller cell co-cultures, was studied in hyperglycemic conditions (30 mM glucose), both in the presence and absence of Dexamethasone (1 μM). RGC and Müller cell survival was evaluated, and the conditioned media of these cultures was collected to quantify the inflammatory cytokines secreted by these cells using a multiplex assay. The role of IL-1β, IL-6 and TNFα in RGC death was also evaluated by adding these cytokines to the co-cultures. RGC survival decreased significantly when these cells were grown in high glucose conditions, reaching 54% survival when they were grown alone and only 33% when co-cultured with Müller glia. The analysis of the cytokines in the conditioned media revealed an increase in IL-1β, IL-6 and TNFα under hyperglycemic conditions, which reverted to the basal concentration in co-cultures maintained in the presence of dexamethasone. Finally, when these cytokines were added to co-cultures they appeared to have a direct effect on RGC survival. Hence, these cytokines could be implicated in the death of RGCs when glucose concentrations increase and dexamethasone might protect RGCs from the cell death induced in these conditions.
Collapse
Affiliation(s)
- Xandra Pereiro
- Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Vizcaya, Spain
- * E-mail:
| | - Noelia Ruzafa
- Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Vizcaya, Spain
| | - Arantxa Acera
- Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Vizcaya, Spain
| | - Alex Fonollosa
- Servicio Oftalmología Hospital de Cruces, BioCruces, Barakaldo, Vizcaya, Spain
| | - F. David Rodriguez
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca, Spain
| | - Elena Vecino
- Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Vizcaya, Spain
| |
Collapse
|
76
|
Kim E, Hwang SU, Yoon JD, Kim H, Lee G, Hyun SH. Isolation and characterization of GFAP-positive porcine neural stem/progenitor cells derived from a GFAP-CreER T2 transgenic piglet. BMC Vet Res 2018; 14:331. [PMID: 30404643 PMCID: PMC6222979 DOI: 10.1186/s12917-018-1660-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 10/22/2018] [Indexed: 01/17/2023] Open
Abstract
Background The porcine brain is gyrencephalic with similar gray and white matter composition and size more comparable to the human rather than the rodent brain; however, there is lack of information about neural progenitor cells derived from this model. Results Here, we isolated GFAP-positive porcine neural stem cells (NSCs) from the brain explant of a transgenic piglet, with expression of CreERT2 under the control of the GFAP promoter (pGFAP-CreERT2). The isolated pGFAP-CreERT2 NSCs showed self-renewal and expression of representative NSC markers such as Nestin and Sox2. Pharmacological inhibition studies revealed that Notch1 signaling is necessary to maintain NSC identity, whereas serum treatment induced cell differentiation into reactive astrocytes and neurons. Conclusions Collectively, these results indicate that GFAP promoter-driven porcine CreERT2 NSCs would be a useful tool to study neurogenesis of the porcine adult central nervous system and furthers our understanding of its potential clinical application in the future. Graphical abstract ᅟ![]() Electronic supplementary material The online version of this article (10.1186/s12917-018-1660-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eunhye Kim
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea.,Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, 28644, Chungbuk, Republic of Korea
| | - Seon-Ung Hwang
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea.,Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, 28644, Chungbuk, Republic of Korea
| | - Junchul David Yoon
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea.,Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, 28644, Chungbuk, Republic of Korea
| | - Hyunggee Kim
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, 02841, Seoul, Republic of Korea
| | - Gabsang Lee
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea. .,Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, 28644, Chungbuk, Republic of Korea.
| |
Collapse
|
77
|
Bribian A, Pérez-Cerdá F, Matute C, López-Mascaraque L. Clonal Glial Response in a Multiple Sclerosis Mouse Model. Front Cell Neurosci 2018; 12:375. [PMID: 30405357 PMCID: PMC6205976 DOI: 10.3389/fncel.2018.00375] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/02/2018] [Indexed: 12/17/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease causing central nervous system (CNS) demyelination and axonal injury. In the last years the importance of astrocytes in MS is rapidly increasing, recognizing astrocytes as highly active players in MS pathogenesis. Usually the role assigned to astrocytes in MS lesions has been the formation of the glial scar, but now their implication during lesion formation and the immune response increasingly recognized. Since astrocytes are a heterogeneous cell population with diverse roles in the CNS, the aim of this study was to analyze the putative clonal response of astrocytes in a demyelinating scenario. To undertake this aim, we used the induced experimental autoimmune encephalomyelitis (EAE) as a murine model for MS in previously electroporated mice with in vivo multicolor lineage tracing system, the StarTrack methodology. Our data revealed a variety of morphological changes that were different among distinct clones. In many cases, cells of the same clone responded equally to the injury, while in other cases clonally-related cells responded differently to the injury. Therefore, whereas some clones exhibited a strong morphological alteration, other clones located at similar distances to the lesion were apparently unresponsive. Thus, at present there is no compelling evidences that clonal relationship influences the position or function of astrocytes in the EAE model. Further, the coexistence of different astroglial clonal responses to the bran injury reveals the significance of development to determine the astrocyte features that respond to brain injuries.
Collapse
Affiliation(s)
- Ana Bribian
- Departamento de Neurobiología Molecular, Celular y del Desarrollo, Instituto Cajal-CSIC, Madrid, Spain
| | - Fernando Pérez-Cerdá
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain.,Departamento de Neurociencias, Universidad del País Vasco (UPV)/EHU, Leioa, Spain
| | - Carlos Matute
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain.,Departamento de Neurociencias, Universidad del País Vasco (UPV)/EHU, Leioa, Spain
| | - Laura López-Mascaraque
- Departamento de Neurobiología Molecular, Celular y del Desarrollo, Instituto Cajal-CSIC, Madrid, Spain
| |
Collapse
|
78
|
Impact of monomeric, oligomeric and fibrillar alpha-synuclein on astrocyte reactivity and toxicity to neurons. Biochem J 2018; 475:3153-3169. [PMID: 30185433 DOI: 10.1042/bcj20180297] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/11/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022]
Abstract
Synucleinopathies are a group of neurodegenerative disorders characterized by the presence of aggregated and fibrillar forms of alpha-synuclein (α-syn). Here, we analyze the effect of different species of α-syn, including monomeric, oligomeric and fibrillar forms of the protein, on rat astrocytes. Astrocytes treated with these distinct forms of α-syn showed an increase in long and thin processes and glial fibrillary acidic protein expression, indicating cell activation, high levels of intracellular oxidants and increased expression of cytokines. Moreover, astrocytes incubated with the different species induced hippocampal neuronal death in co-culture, and cytotoxicity was particularly enhanced by exposure to fibrillar α-syn. Further exploration of the mechanisms behind astrocyte activation and cytotoxicity revealed differences between the assessed α-syn species. Only oligomers induced mitochondrial dysfunction in astrocytes and significantly increased extracellular hydrogen peroxide production by these cells. Besides, TNF-α and IL-1β (interleukin 1β) expression presented different kinetics and levels depending on which species induced the response. Our data suggest that α-syn species (monomeric, oligomeric and fibrillar) induce astrocyte activation that can lead to neuronal death. Nevertheless, the tested α-syn species act through different preferential mechanisms and potency. All together these results help to understand the effect of α-syn species on astrocyte function and their potential impact on the pathogenesis of Parkinson's disease and related α-synucleinopathies.
Collapse
|
79
|
Ramadan WS, Abdel-Hamid GA, Al-Karim S, Zakar NAMB, Elassouli MZ. Neuroectodermal stem cells: A remyelinating potential in acute compressed spinal cord injury in rat model. J Biosci 2018. [DOI: 10.1007/s12038-018-9812-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
80
|
Hermann JK, Lin S, Soffer A, Wong C, Srivastava V, Chang J, Sunil S, Sudhakar S, Tomaszewski WH, Protasiewicz G, Selkirk SM, Miller RH, Capadona JR. The Role of Toll-Like Receptor 2 and 4 Innate Immunity Pathways in Intracortical Microelectrode-Induced Neuroinflammation. Front Bioeng Biotechnol 2018; 6:113. [PMID: 30159311 PMCID: PMC6104445 DOI: 10.3389/fbioe.2018.00113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/19/2018] [Indexed: 12/13/2022] Open
Abstract
We have recently demonstrated that partial inhibition of the cluster of differentiation 14 (CD14) innate immunity co-receptor pathway improves the long-term performance of intracortical microelectrodes better than complete inhibition. We hypothesized that partial activation of the CD14 pathway was critical to a neuroprotective response to the injury associated with initial and sustained device implantation. Therefore, here we investigated the role of two innate immunity receptors that closely interact with CD14 in inflammatory activation. We implanted silicon planar non-recording neural probes into knockout mice lacking Toll-like receptor 2 (Tlr2-/-), knockout mice lacking Toll-like receptor 4 (Tlr4-/-), and wildtype (WT) control mice, and evaluated endpoint histology at 2 and 16 weeks after implantation. Tlr4-/- mice exhibited significantly lower BBB permeability at acute and chronic time points, but also demonstrated significantly lower neuronal survival at the chronic time point. Inhibition of the Toll-like receptor 2 (TLR2) pathway had no significant effect compared to control animals. Additionally, when investigating the maturation of the neuroinflammatory response from 2 to 16 weeks, transgenic knockout mice exhibited similar histological trends to WT controls, except that knockout mice did not exhibit changes in microglia and macrophage activation over time. Together, our results indicate that complete genetic removal of Toll-like receptor 4 (TLR4) was detrimental to the integration of intracortical neural probes, while inhibition of TLR2 had no impact within the tests performed in this study. Therefore, approaches focusing on incomplete or acute inhibition of TLR4 may still improve intracortical microelectrode integration and long term recording performance.
Collapse
Affiliation(s)
- John K. Hermann
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Shushen Lin
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Arielle Soffer
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Chun Wong
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Vishnupriya Srivastava
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Jeremy Chang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Smrithi Sunil
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Shruti Sudhakar
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - William H. Tomaszewski
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Grace Protasiewicz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Stephen M. Selkirk
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
- Department of Neurology, Case Western Reserve University, Cleveland, OH, United States
- Spinal Cord Injury Division, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Robert H. Miller
- Neurosciences, George Washington University, Washington, DC, United States
| | - Jeffrey R. Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| |
Collapse
|
81
|
Drenger B, Blanck TJJ, Piskoun B, Jaffrey E, Recio-Pinto E, Sideris A. Minocycline Before Aortic Occlusion Reduces Hindlimb Motor Impairment, Attenuates Spinal Cord Damage and Spinal Astrocytosis, and Preserve Neuronal Cytoarchitecture in the Rat. J Cardiothorac Vasc Anesth 2018; 33:1003-1011. [PMID: 30195965 DOI: 10.1053/j.jvca.2018.07.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Indexed: 11/11/2022]
Abstract
OBJECTIVES Spinal cord ischemia secondary to trauma or a vascular occlusive event is a threatening phenomenon. The neuroprotective properties of minocycline have been shown in several models of central nervous system diseases and after spinal cord ischemia; however, the benefit of using the drug requires additional confirmation in different animal models. Astrocytes are essential as regulators of neuronal functions and for providing nutrients. The authors hypothesized that astrocytes in the spinal cord may be an important target for minocycline action after ischemia and thus in the prevention of secondary spreading damage. DESIGN A prospective, randomized animal study. SETTING University research laboratory, single institution. PARTICIPANTS Adult male Sprague Dawley rats, weighing between 400 and 450 g. INTERVENTIONS A model of spinal cord ischemia in the rat was used for this study to determine whether a single, high-dose (10 mg/kg) of minocycline protects against damage to the neuronal cytoskeleton, both in the white and gray matter, and whether it reduces glial fibrillary acidic protein levels, which is an index for prevention of astrocyte activation during ischemia. Thirty minutes before thoracic aorta occlusion, minocycline was administered for 18 minutes using a 2 F Fogarty catheter. MEASUREMENTS AND MAIN RESULTS Minocycline given prophylactically significantly mitigated severe hindlimb motor impairment and reduced glial fibrillary acidic protein plus astrocytosis in both the white and gray matter of the spinal cord, caudal to the occlusion. Neuronal histologic cytoarchitecture, which was severely and significantly compromised in control animals, was preserved in the minocycline-treated animals. CONCLUSIONS This study's data imply that minocycline may attenuate reactive astrocytosis in response to injury with better neurologic outcome in a model of spinal cord ischemia in rats. The data suggest that future use of minocycline, clinically, might be advantageous in surgeries with a potential risk for paraplegia due to spinal cord ischemia.
Collapse
Affiliation(s)
- Benjamin Drenger
- Department of Anesthesiology and Critical Care Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | - Thomas J J Blanck
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Langone Medical Center, New York, NY
| | - Boris Piskoun
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Langone Medical Center, New York, NY
| | - E Jaffrey
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Langone Medical Center, New York, NY
| | - Esperanza Recio-Pinto
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Langone Medical Center, New York, NY; Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY
| | - Alexandra Sideris
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Langone Medical Center, New York, NY; Department of Perioperative Care and Pain Medicine, New York University Langone Medical Center, New York, NY
| |
Collapse
|
82
|
Hypothalamic inflammation and malfunctioning glia in the pathophysiology of obesity and diabetes: Translational significance. Biochem Pharmacol 2018; 153:123-133. [PMID: 29337002 DOI: 10.1016/j.bcp.2018.01.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/09/2018] [Indexed: 12/25/2022]
|
83
|
Li N, Wang F, Zhang Q, Jin M, Lu Y, Chen S, Guo C, Zhang X. Rapamycin mediates mTOR signaling in reactive astrocytes and reduces retinal ganglion cell loss. Exp Eye Res 2018; 176:10-19. [PMID: 29928901 DOI: 10.1016/j.exer.2018.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/20/2018] [Accepted: 06/14/2018] [Indexed: 11/18/2022]
Abstract
Damage and loss of retinal ganglion cells (RGCs) can cause visual impairment. The underlying molecular mechanisms that mediate RGC death in ischemic retinal diseases are still unclear. In this study, we sought to understand the neuroprotective effect of rapamycin, the selective inhibitor of mTORC1, on RGC survival and the cellular mechanics that mediate this effect. Recent studies have reported that the epidermal growth factor (EGF) receptor shows an increase in expression in astrocytes after injury, and this receptor can promote their transformation into reactive astrocytes. Our results, along with previous works from others, show the colocalization of phosphor-EGF receptors with the astrocyte marker glial fibrillary acidic proteins in reactive astrocytes in the injured retina. In our in vitro studies, using primary astrocyte cultures of the optic nerve head of rats, showed that rapamycin significantly blocked EGF-induced mTOR signaling mainly through the PI3K/Akt pathway in primary astrocytes, but not through the MAPK/Erk pathway. Additionally, rapamycin dramatically inhibited the activation of mTOR signaling in our ratinal ischemia-reperfusion (I/R) injury model in vivo. Astrocyte activation was assessed by immunostaining retinal flat mounts or cross sections with antibody against GFAP, and we also used western blots to detect the expression of GFAP. Taken together, these results revealed that rapamycin decreases the activation of astrocytes after retinal ischemia-reperfusion injury. Furthermore, rapamycin can improve retinal RGC survival in rats during I/R, as detected by FluoroGold labeling. Our data reveals the neuroprotective effects of rapamycin in an experimental retina injury model, possibly through decreasing glial-dependent intracellular signaling mechanisms for suppressing apoptosis of RGCs. Our study also presents an approach to targeting reactive astrocytes for the treatment of optic neurodegenerations.
Collapse
Affiliation(s)
- Ningfeng Li
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Feifei Wang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Qinglin Zhang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Ming Jin
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Ye Lu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Shanshan Chen
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Cuiju Guo
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China.
| |
Collapse
|
84
|
He M, Gu J, Zhu J, Wang X, Wang C, Duan C, Ni Y, Lu X, Li J. Up-regulation of Dyrk1b promote astrocyte activation following lipopolysaccharide-induced neuroinflammation. Neuropeptides 2018; 69:76-83. [PMID: 29751999 DOI: 10.1016/j.npep.2018.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/11/2018] [Accepted: 04/15/2018] [Indexed: 02/07/2023]
Abstract
Astrocytes become activated in response to different stimulation. Dyrk1b is an arginine-directed serine/threonineprotein kinase that is expressed at elevated levels in many cancers but remains unknown in the pathologies of neuroinflammation. In this study, in vivo, we demonstrated that Dyrk1b expression was significantly increased and reached a peak at 12 h after LPS injection via Western blot. Double immunofluorescence staining showed that Dyrk1b co-located with GFAP and Ki67. In vitro, the expression of Dyrk1b, Ki67 and cyclinD1 was gradually increased and reached a peak at 12 h in a time-dependent manner after 1 μg/mL LPS stimulation. Knockdown of Dyrk1b significantly reduced the expression of Ki67 and cyclinD1. In addition, the data exhibited that silenced Dyrk1b decreased the expression of p-STAT3 in primary astrocyte cells, and Dyrk1b interacted with STAT3 in LPS-induced neuroinflammation. In conclusion, these results suggested that Dyrk1b is increased and may play a crucial role in regulating astrocyte cell activation via interact with STAT3 in LPS-induced neuroinflammation.
Collapse
Affiliation(s)
- Mingqing He
- Department of Geriatrics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing 210011, Jiangsu, China
| | - Jun Gu
- Department of Orthopaedics, XiShan People's Hospital, Wuxi 214011, Jiangsu, China
| | - Jinzhou Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Xiaoyan Wang
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Chengniu Wang
- Basic Medical Research Centre, Medical College, Nantong University, Nantong 226001,Jiangsu, China
| | - Chengwei Duan
- The Second People's Hospital of Nantong, Nantong 226002, Jiangsu, China
| | - Yingjie Ni
- Department of Orthopaedics, XiShan People's Hospital, Wuxi 214011, Jiangsu, China
| | - Xiang Lu
- Department of Geriatrics, The Affiliated Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing 210011, Jiangsu, China.
| | - Jianzhong Li
- Department of Geriatrics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China.
| |
Collapse
|
85
|
Circadian regulator NR1D2 regulates glioblastoma cell proliferation and motility. Oncogene 2018; 37:4838-4853. [PMID: 29773903 DOI: 10.1038/s41388-018-0319-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 02/08/2023]
Abstract
Nuclear receptor NR1D2 is originally characterized as the repressor of genes involved in circadian rhythm. Recently, it is documented that NR1D2 is overexpressed in various cancers. However, the pathways and biological functions that NR1D2 involved in cancers remain poorly understood. Here, we reported that NR1D2 was abundant in human glioblastoma (GBM) tissue and cell lines but not primary human astrocytes. Silencing of NR1D2 changed the morphology of GBM cells, inhibited cell proliferation and motility, whereas had no effects on apoptosis. Importantly, based on RNA-seq and ChIP assay, we identified receptor tyrosine kinase AXL as a new transcriptional target of NR1D2 in GBM cells. AXL mediated partially the regulatory effects of NR1D2 on PI3K/AKT axis and promoted proliferation, migration, and invasion of GBM cells. Besides, NR1D2 knockdown remarkably impaired the maturation of focal adhesion and assembly of F-actin, along with downregulated p-FAK, and proteins involved in actin nucleation and polymerization (p-Rac1/Cdc42, WAVE and PFN2). Moreover, NR1D2 had more targets other than AXL to regulate epithelial-to-mesenchymal transition and cell motility in GBM cells. Altogether, our findings uncover a GBM-promoting role of NR1D2 and provide the rationale for targeting NR1D2 as a potential therapeutic approach.
Collapse
|
86
|
Comparative regenerative mechanisms across different mammalian tissues. NPJ Regen Med 2018; 3:6. [PMID: 29507774 PMCID: PMC5824955 DOI: 10.1038/s41536-018-0044-5] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/18/2018] [Accepted: 01/23/2018] [Indexed: 02/08/2023] Open
Abstract
Stimulating regeneration of complex tissues and organs after injury to effect complete structural and functional repair, is an attractive therapeutic option that would revolutionize clinical medicine. Compared to many metazoan phyla that show extraordinary regenerative capacity, which in some instances persists throughout life, regeneration in mammalians, particularly humans, is limited or absent. Here we consider recent insights in the elucidation of molecular mechanisms of regeneration that have come from studies of tissue homeostasis and injury repair in mammalian tissues that span the spectrum from little or no self-renewal, to those showing active cell turnover throughout life. These studies highlight the diversity of factors that constrain regeneration, including immune responses, extracellular matrix composition, age, injury type, physiological adaptation, and angiogenic and neurogenic capacity. Despite these constraints, much progress has been made in elucidating key molecular mechanisms that may provide therapeutic targets for the development of future regenerative therapies, as well as previously unidentified developmental paradigms and windows-of-opportunity for improved regenerative repair.
Collapse
|
87
|
Bali A, Jaggi AS. Angiotensin II-triggered kinase signaling cascade in the central nervous system. Rev Neurosci 2018; 27:301-15. [PMID: 26574890 DOI: 10.1515/revneuro-2015-0041] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/26/2015] [Indexed: 12/26/2022]
Abstract
Recent studies have projected the renin-angiotensin system as a central component of the physiological and pathological processes of assorted neurological disorders. Its primary effector hormone, angiotensin II (Ang II), not only mediates the physiological effects of vasoconstriction and blood pressure regulation in cardiovascular disease but is also implicated in a much wider range of neuronal activities and diseases, including Alzheimer's disease, neuronal injury, and cognitive disorders. Ang II produces different actions by acting on its two subtypes of receptors (AT1 and AT2); however, the well-known physiological actions of Ang II are mainly mediated through AT1 receptors. Moreover, recent studies also suggest the important functional role of AT2 receptor in the brain. Ang II acts on AT1 receptors and conducts its functions via MAP kinases (ERK1/2, JNK, and p38MAPK), glycogen synthase kinase, Rho/ROCK kinase, receptor tyrosine kinases (PDGF and EGFR), and nonreceptor tyrosine kinases (Src, Pyk2, and JAK/STAT). AT1R-mediated NADPH oxidase activation also leads to the generation of reactive oxygen species, widely implicated in neuroinflammation. These signaling cascades lead to glutamate excitotoxicity, apoptosis, cerebral infarction, astrocyte proliferation, nociception, neuroinflammation, and progression of other neurological disorders. The present review focuses on the Ang II-triggered signal transduction pathways in central nervous system.
Collapse
|
88
|
Ludwig PE, Thankam FG, Patil AA, Chamczuk AJ, Agrawal DK. Brain injury and neural stem cells. Neural Regen Res 2018; 13:7-18. [PMID: 29451199 PMCID: PMC5840995 DOI: 10.4103/1673-5374.224361] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2017] [Indexed: 12/26/2022] Open
Abstract
Many therapies with potential for treatment of brain injury have been investigated. Few types of cells have spurred as much interest and excitement as stem cells over the past few decades. The multipotentiality and self-renewing characteristics of stem cells confer upon them the capability to regenerate lost tissue in ischemic or degenerative conditions as well as trauma. While stem cells have not yet proven to be clinically effective in many such conditions as was once hoped, they have demonstrated some effects that could be manipulated for clinical benefit. The various types of stem cells have similar characteristics, and largely differ in terms of origin; those that have differentiated to some extent may exhibit limited capability in differentiation potential. Stem cells can aid in decreasing lesion size and improving function following brain injury.
Collapse
Affiliation(s)
- Parker E. Ludwig
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, USA
| | - Finosh G. Thankam
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, USA
| | - Arun A. Patil
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, USA
- Department of Neurosurgery, Creighton University School of Medicine, Omaha, NE, USA
| | - Andrea J. Chamczuk
- Department of Neurosurgery, Creighton University School of Medicine, Omaha, NE, USA
| | - Devendra K. Agrawal
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
89
|
Lin YH, Liang HY, Xu K, Ni HY, Dong J, Xiao H, Chang L, Wu HY, Li F, Zhu DY, Luo CX. Dissociation of nNOS from PSD-95 promotes functional recovery after cerebral ischaemia in mice through reducing excessive tonic GABA release from reactive astrocytes. J Pathol 2017; 244:176-188. [DOI: 10.1002/path.4999] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/12/2017] [Accepted: 10/12/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Yu-Hui Lin
- Department of Pharmacology, School of Pharmacy; Nanjing Medical University; Nanjing PR China
| | - Hai-Ying Liang
- Department of Pharmacology, School of Pharmacy; Nanjing Medical University; Nanjing PR China
| | - Ke Xu
- Department of Pharmacology, School of Pharmacy; Nanjing Medical University; Nanjing PR China
| | - Huan-Yu Ni
- Department of Pharmacology, School of Pharmacy; Nanjing Medical University; Nanjing PR China
| | - Jian Dong
- Department of Pharmacology, School of Pharmacy; Nanjing Medical University; Nanjing PR China
| | - Hui Xiao
- Department of Pharmacology, School of Pharmacy; Nanjing Medical University; Nanjing PR China
| | - Lei Chang
- Department of Pharmacology, School of Pharmacy; Nanjing Medical University; Nanjing PR China
- Laboratory of Cerebrovascular Disease; Nanjing Medical University; Nanjing PR China
| | - Hai-Yin Wu
- Department of Pharmacology, School of Pharmacy; Nanjing Medical University; Nanjing PR China
- Laboratory of Cerebrovascular Disease; Nanjing Medical University; Nanjing PR China
| | - Fei Li
- Department of Medicinal Chemistry, School of Pharmacy; Nanjing Medical University; Nanjing PR China
| | - Dong-Ya Zhu
- Department of Pharmacology, School of Pharmacy; Nanjing Medical University; Nanjing PR China
- Laboratory of Cerebrovascular Disease; Nanjing Medical University; Nanjing PR China
| | - Chun-Xia Luo
- Department of Pharmacology, School of Pharmacy; Nanjing Medical University; Nanjing PR China
- Laboratory of Cerebrovascular Disease; Nanjing Medical University; Nanjing PR China
| |
Collapse
|
90
|
Song JJ, Oh SM, Kwon OC, Wulansari N, Lee HS, Chang MY, Lee E, Sun W, Lee SE, Chang S, An H, Lee CJ, Lee SH. Cografting astrocytes improves cell therapeutic outcomes in a Parkinson's disease model. J Clin Invest 2017; 128:463-482. [PMID: 29227284 DOI: 10.1172/jci93924] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 10/31/2017] [Indexed: 12/20/2022] Open
Abstract
Transplantation of neural progenitor cells (NPCs) is a potential therapy for treating neurodegenerative disorders, but this approach has faced many challenges and limited success, primarily because of inhospitable host brain environments that interfere with enriched neuron engraftment and function. Astrocytes play neurotrophic roles in the developing and adult brain, making them potential candidates for helping with modification of hostile brain environments. In this study, we examined whether astrocytic function could be utilized to overcome the current limitations of cell-based therapies in a murine model of Parkinson's disease (PD) that is characterized by dopamine (DA) neuron degeneration in the midbrain. We show here that cografting astrocytes, especially those derived from the midbrain, remarkably enhanced NPC-based cell therapeutic outcomes along with robust DA neuron engraftment in PD rats for at least 6 months after transplantation. We further show that engineering of donor astrocytes with Nurr1 and Foxa2, transcription factors that were recently reported to polarize harmful immunogenic glia into the neuroprotective form, further promoted the neurotrophic actions of grafted astrocytes in the cell therapeutic approach. Collectively, these findings suggest that cografting astrocytes could be a potential strategy for successful cell therapeutic outcomes in neurodegenerative disorders.
Collapse
Affiliation(s)
- Jae-Jin Song
- Department of Biochemistry and Molecular Biology, College of Medicine.,Hanyang Biomedical Research Institute, and.,Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Sang-Min Oh
- Department of Biochemistry and Molecular Biology, College of Medicine.,Hanyang Biomedical Research Institute, and.,Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Oh-Chan Kwon
- Department of Biochemistry and Molecular Biology, College of Medicine.,Hanyang Biomedical Research Institute, and.,Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Noviana Wulansari
- Department of Biochemistry and Molecular Biology, College of Medicine.,Hanyang Biomedical Research Institute, and.,Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Hyun-Seob Lee
- Genomic Core Facility, Transdisciplinary Research and Collaboration Division, Translational Research Institute, and.,Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Mi-Yoon Chang
- Department of Biochemistry and Molecular Biology, College of Medicine.,Hanyang Biomedical Research Institute, and
| | - Eunsoo Lee
- Department of Anatomy and Division of Brain Korea 21 PLUS Program for Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Woong Sun
- Department of Anatomy and Division of Brain Korea 21 PLUS Program for Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Sang-Eun Lee
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Sunghoe Chang
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Heeyoung An
- Center for Neuroscience and.,Center for Glia-Neuron Interaction, Korea Institute of Science and Technology (KIST), Seoul, South Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| | - C Justin Lee
- Center for Neuroscience and.,Center for Glia-Neuron Interaction, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Sang-Hun Lee
- Department of Biochemistry and Molecular Biology, College of Medicine.,Hanyang Biomedical Research Institute, and.,Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| |
Collapse
|
91
|
Szostak KM, Grand L, Constandinou TG. Neural Interfaces for Intracortical Recording: Requirements, Fabrication Methods, and Characteristics. Front Neurosci 2017; 11:665. [PMID: 29270103 PMCID: PMC5725438 DOI: 10.3389/fnins.2017.00665] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/15/2017] [Indexed: 01/30/2023] Open
Abstract
Implantable neural interfaces for central nervous system research have been designed with wire, polymer, or micromachining technologies over the past 70 years. Research on biocompatible materials, ideal probe shapes, and insertion methods has resulted in building more and more capable neural interfaces. Although the trend is promising, the long-term reliability of such devices has not yet met the required criteria for chronic human application. The performance of neural interfaces in chronic settings often degrades due to foreign body response to the implant that is initiated by the surgical procedure, and related to the probe structure, and material properties used in fabricating the neural interface. In this review, we identify the key requirements for neural interfaces for intracortical recording, describe the three different types of probes-microwire, micromachined, and polymer-based probes; their materials, fabrication methods, and discuss their characteristics and related challenges.
Collapse
Affiliation(s)
- Katarzyna M. Szostak
- Next Generation Neural Interfaces Lab, Department of Electrical and Electronic Engineering, Centre for Bio-Inspired Technology, Imperial College London, London, United Kingdom
| | - Laszlo Grand
- Next Generation Neural Interfaces Lab, Department of Electrical and Electronic Engineering, Centre for Bio-Inspired Technology, Imperial College London, London, United Kingdom
- Department of Neurology and Neurosurgery, Johns Hopkins University, Baltimore, MD, United States
| | - Timothy G. Constandinou
- Next Generation Neural Interfaces Lab, Department of Electrical and Electronic Engineering, Centre for Bio-Inspired Technology, Imperial College London, London, United Kingdom
| |
Collapse
|
92
|
Chen J, He W, Hu X, Shen Y, Cao J, Wei Z, Luan Y, He L, Jiang F, Tao Y. A role for ErbB signaling in the induction of reactive astrogliosis. Cell Discov 2017; 3:17044. [PMID: 29238610 PMCID: PMC5717352 DOI: 10.1038/celldisc.2017.44] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023] Open
Abstract
Reactive astrogliosis is a hallmark of many neurological disorders, yet its functions and molecular mechanisms remain elusive. Particularly, the upstream signaling that regulates pathological responses of astrocytes is largely undetermined. We used a mouse traumatic brain injury model to induce astrogliosis and revealed activation of ErbB receptors in reactive astrocytes. Moreover, cell-autonomous inhibition of ErbB receptor activity in reactive astrocytes by a genetic approach suppressed hypertrophic remodeling possibly through the regulation of actin dynamics. However, inhibiting ErbB signaling in reactive astrocytes did not affect astrocyte proliferation after brain injury, although it aggravated local inflammation. In contrast, active ErbB signaling in mature astrocytes of various brain regions in mice was sufficient to initiate reactive responses, reproducing characterized molecular and cellular features of astrogliosis observed in injured or diseased brains. Further, prevalent astrogliosis in the brain induced by astrocytic ErbB activation caused anorexia in animals. Therefore, our findings defined an unrecognized role of ErbB signaling in inducing reactive astrogliosis. Mechanistically, inhibiting ErbB signaling in reactive astrocytes prominently reduced Src and focal adhesion kinase (FAK) activity that is important for actin remodeling, although ErbB signaling activated multiple downstream signaling proteins. The discrepancies between the results from loss- and gain-of-function studies indicated that ErbB signaling regulated hypertrophy and proliferation of reactive astrocytes by different downstream signaling pathways. Our work demonstrated an essential mechanism in the pathological regulation of astrocytes and provided novel insights into potential therapeutic targets for astrogliosis-implicated diseases.
Collapse
Affiliation(s)
- Jing Chen
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.,Key Lab of Organ Development and Regeneration of Zhejiang Province, Hangzhou, China.,Key Lab of GEM Resource and Model Research of Hangzhou, Hangzhou, Zhejiang, China
| | - Wanwan He
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xu Hu
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yuwen Shen
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Junyan Cao
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Zhengdong Wei
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yifei Luan
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Li He
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Fangdun Jiang
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yanmei Tao
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.,Key Lab of Organ Development and Regeneration of Zhejiang Province, Hangzhou, China.,Key Lab of GEM Resource and Model Research of Hangzhou, Hangzhou, Zhejiang, China
| |
Collapse
|
93
|
Kumari K, Koivisto H, Viluksela M, Paldanius KMA, Marttinen M, Hiltunen M, Naarala J, Tanila H, Juutilainen J. Behavioral testing of mice exposed to intermediate frequency magnetic fields indicates mild memory impairment. PLoS One 2017; 12:e0188880. [PMID: 29206232 PMCID: PMC5714647 DOI: 10.1371/journal.pone.0188880] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/14/2017] [Indexed: 12/27/2022] Open
Abstract
Human exposure to intermediate frequency magnetic fields (MF) is increasing due to applications like electronic article surveillance systems and induction heating cooking hobs. However, limited data is available on their possible health effects. The present study assessed behavioral and histopathological consequences of exposing mice to 7.5 kHz MF at 12 or 120 μT for 5 weeks. No effects were observed on body weight, spontaneous activity, motor coordination, level of anxiety or aggression. In the Morris swim task, mice in the 120 μT group showed less steep learning curve than the other groups, but did not differ from controls in their search bias in the probe test. The passive avoidance task indicated a clear impairment of memory over 48 h in the 120 μT group. No effects on astroglial activation or neurogenesis were observed in the hippocampus. The mRNA expression of brain-derived neurotrophic factor did not change but expression of the proinflammatory cytokine tumor necrosis factor alpha mRNA was significantly increased in the 120 μT group. These findings suggest that 7.5 kHz MF exposure may lead to mild learning and memory impairment, possibly through an inflammatory reaction in the hippocampus.
Collapse
Affiliation(s)
- Kajal Kumari
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
- * E-mail:
| | | | - Matti Viluksela
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
- National Institute for Health and Welfare, Environmental Health Unit, Kuopio, Finland
| | | | - Mikael Marttinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Jonne Naarala
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Heikki Tanila
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Jukka Juutilainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
94
|
Langford D, Oh Kim B, Zou W, Fan Y, Rahimain P, Liu Y, He JJ. Doxycycline-inducible and astrocyte-specific HIV-1 Tat transgenic mice (iTat) as an HIV/neuroAIDS model. J Neurovirol 2017; 24:168-179. [PMID: 29143286 DOI: 10.1007/s13365-017-0598-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/08/2017] [Accepted: 11/01/2017] [Indexed: 12/18/2022]
Abstract
HIV-1 Tat is known to be neurotoxic and important for HIV/neuroAIDS pathogenesis. However, the overwhelming majority of the studies involved use of recombinant Tat protein. To understand the contributions of Tat protein to HIV/neuroAIDS and the underlying molecular mechanisms of HIV-1 Tat neurotoxicity in the context of a whole organism and independently of HIV-1 infection, a doxycycline-inducible astrocyte-specific HIV-1 Tat transgenic mouse (iTat) was created. Tat expression in the brains of iTat mice was determined to be in the range of 1-5 ng/ml and led to astrocytosis, loss of neuronal dendrites, and neuroinflammation. iTat mice have allowed us to define the direct effects of Tat on astrocytes and the molecular mechanisms of Tat-induced GFAP expression/astrocytosis, astrocyte-mediated Tat neurotoxicity, Tat-impaired neurogenesis, Tat-induced loss of neuronal integrity, and exosome-associated Tat release and uptake. In this review, we will provide an overview about the creation and characterization of this model and its utilities for our understanding of Tat neurotoxicity and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Dianne Langford
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Byung Oh Kim
- School of Food Science & Biotechnology and College of Agriculture & Life Sciences, Kyungpook National University, Daegu, 702-701, South Korea
| | - Wei Zou
- The 1st Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yan Fan
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Pejman Rahimain
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Ying Liu
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Johnny J He
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA.
| |
Collapse
|
95
|
Pointer CB, Klegeris A. Cardiolipin in Central Nervous System Physiology and Pathology. Cell Mol Neurobiol 2017; 37:1161-1172. [PMID: 28039536 PMCID: PMC11482151 DOI: 10.1007/s10571-016-0458-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/19/2016] [Indexed: 02/08/2023]
Abstract
Cardiolipin, an anionic phospholipid found primarily in the inner mitochondrial membrane, has many well-defined roles within the peripheral tissues, including the maintenance of mitochondrial membrane fluidity and the regulation of mitochondrial functions. Within the central nervous system (CNS), cardiolipin is found within both neuronal and non-neuronal glial cells, where it regulates metabolic processes, supports mitochondrial functions, and promotes brain cell viability. Furthermore, cardiolipin has been shown to act as an elimination signal and participate in programmed cell death by apoptosis of both neurons and glia. Since cardiolipin is associated with regulating brain homeostasis, the modification of its structure, or even a decrease in the overall levels of cardiolipin, can result in mitochondrial dysfunction, which is a characteristic feature of many diseases. In this review, we outline the various functions of cardiolipin within the cells of the CNS, including neurons, astrocytes, microglia, and oligodendrocytes. In addition, we discuss the role cardiolipin may play in the pathogenesis of the neurodegenerative disorders Alzheimer's disease and Parkinson's disease, as well as traumatic brain injury.
Collapse
Affiliation(s)
- Caitlin B Pointer
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
96
|
Andrade EF, Orlando DR, Gomes JAS, Foureaux RDC, Costa RC, Varaschin MS, Rogatto GP, de Moura RF, Pereira LJ. Exercise attenuates alveolar bone loss and anxiety-like behaviour in rats with periodontitis. J Clin Periodontol 2017; 44:1153-1163. [DOI: 10.1111/jcpe.12794] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Eric F. Andrade
- Department of Veterinary Sciences; Federal University of Lavras; Lavras Brazil
| | - Débora R. Orlando
- Department of Agricultural Sciences; Federal University of Jequitinhonha and Mucuri Valleys; Unaí Brazil
| | - Júlia A. S. Gomes
- Department of Biological Sciences; Federal University of Minas Gerais; Belo Horizonte Brazil
| | | | - Rafael C. Costa
- Department of Veterinary Pathology; Federal University of Lavras; Lavras Brazil
| | - Mary S. Varaschin
- Department of Veterinary Pathology; Federal University of Lavras; Lavras Brazil
| | - Gustavo P. Rogatto
- Department of Physical Education; Federal University of Lavras; Lavras Brazil
| | | | - Luciano J. Pereira
- Department of Health Sciences; Federal University of Lavras; Lavras Brazil
| |
Collapse
|
97
|
Abstract
Astrocytes constitute approximately 30% of the cells in the mammalian central nervous system (CNS). They are integral to brain and spinal-cord physiology and perform many functions important for normal neuronal development, synapse formation, and proper propagation of action potentials. We still know very little, however, about how these functions change in response to immune attack, chronic neurodegenerative disease, or acute trauma. In this review, we summarize recent studies that demonstrate that different initiating CNS injuries can elicit at least two types of "reactive" astrocytes with strikingly different properties, one type being helpful and the other harmful. We will also discuss new methods for purifying and investigating reactive-astrocyte functions and provide an overview of new markers for delineating these different states of reactive astrocytes. The discovery that astrocytes have different types of reactive states has important implications for the development of new therapies for CNS injury and diseases.
Collapse
Affiliation(s)
- Shane A Liddelow
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Ben A Barres
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
98
|
Affiliation(s)
- Eduardo Fernández
- Bioengineering Institute; Miguel Hernández University of Elche and CIBER BBN; Elche 03202 Spain
| | - Pablo Botella
- Instituto de Tecnología Química; Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas; Valencia 46022 Spain
| |
Collapse
|
99
|
Real CC, Garcia PC, Britto LRG. Treadmill Exercise Prevents Increase of Neuroinflammation Markers Involved in the Dopaminergic Damage of the 6-OHDA Parkinson’s Disease Model. J Mol Neurosci 2017; 63:36-49. [DOI: 10.1007/s12031-017-0955-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/21/2017] [Indexed: 12/21/2022]
|
100
|
Abstract
In the brain, the astrocentric view has increasingly changed in the past few years. The classical and old view of astrocytes as "just supporting cells" has assigned these cells some functions to help neurons maintain their homeostasis. This neuronal supportive function of astrocytes includes maintenance of ion and extracellular pH equilibrium, neuroendocrine signaling, metabolic support, clearance of glutamate and other neurotransmitters, and antioxidant protection. However, recent findings have shed some light on the new roles, some controversial though, performed by astrocytes that might change our view about the central nervous system functioning. Since astrocytes are important for neuronal survival, it is a potential approach to favor astrocytic functions in order to improve the outcome. Such translational strategies may include the use of genetically targeted proteins, and/or pharmacological therapies by administering androgens and estrogens, which have shown promising results in vitro and in vivo models. It is noteworthy that successful strategies reviewed in here shall be extrapolated to human subjects, and this is probably the next step we should move on.
Collapse
Affiliation(s)
- George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia.
| |
Collapse
|