51
|
González-Cuello A, Mora L, Hidalgo JM, Meca N, Lasheras C, Milanés MV, Laorden ML. Enhanced tyrosine hydroxylase phosphorylation in the nucleus accumbens and nucleus tractus solitarius-A2 cell group after morphine-conditioned place preference. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2010; 382:525-34. [PMID: 20924561 DOI: 10.1007/s00210-010-0567-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 09/19/2010] [Indexed: 11/28/2022]
Abstract
Although dopamine (DA) has been extensively implicated in the morphine-induced conditioned place preference (CPP; a measure of reward), noradrenaline (NA) and other systems may play a larger role than previously suspected. The mesolimbic DA system, comprised of projections from the ventral tegmental area (VTA) to the nucleus accumbens (NAc), receives noradrenergic innervations from the nucleus tractus solitaries (NTS)-A2 cell group and is modulated by NA. The purpose of the present study was to evaluate the turnover of DA and NA in the NAc and the site-specific phosphorylation of TH in the NAc, VTA, and NTS on the CPP mice conditioned by morphine. A dose-effect curve for morphine-induced CPP (0.5-8 mg/kg, s.c.) was obtained using 6-day conditioning sessions followed by a CPP test. TH phosphorylation was determined by quantitative blot immunolabeling and immunohistochemistry using phosphorylation state-specific antibodies; NA and DA turnover was evaluated by high-performance liquid chromatography. Morphine-induced CPP phosphorylates TH at serine (Ser)40 but not Ser31 in NAc, which is associated with an enhanced of DA and NA turnover. We also found that morphine-induced CPP increased levels of TH phosphorylated at Ser31 and Ser40 in the NTS. The present study demonstrates that morphine-induced CPP might stimulate TH activity and accelerate DA and NA turnover in the NAc via a mechanism involving phosphorylation of TH.
Collapse
Affiliation(s)
- A González-Cuello
- Department of Nursing, Faculty of Medicine, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
52
|
Iñiguez SD, Warren BL, Neve RL, Russo SJ, Nestler EJ, Bolaños-Guzmán CA. Viral-mediated expression of extracellular signal-regulated kinase-2 in the ventral tegmental area modulates behavioral responses to cocaine. Behav Brain Res 2010; 214:460-4. [PMID: 20561901 DOI: 10.1016/j.bbr.2010.05.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 05/18/2010] [Accepted: 05/24/2010] [Indexed: 01/13/2023]
Abstract
Chronic exposure to cocaine increases the activity of extracellular signal-regulated kinase (ERK1/2) in the ventral tegmental area (VTA), a neural substrate for drugs of abuse. However, the functional significance of changes in ERK1/2 activity in this brain region is unknown. Using herpes simplex virus-mediated gene transfer to regulate ERK2 activity within the VTA in male rats, we show that overexpressing ERK2 increases preference for environments previously paired with low doses of cocaine and enhances cocaine-induced locomotion, whereas blocking ERK2 activity blocks cocaine-induced place conditioning and locomotor activity. These results demonstrate that ERK2-signaling within the VTA is a key modulator of functional responses to cocaine.
Collapse
Affiliation(s)
- Sergio D Iñiguez
- Department of Psychology and Program in Neuroscience, The Florida State University, 1107 West Call Street, Tallahassee, FL 32306, USA
| | | | | | | | | | | |
Collapse
|
53
|
Gallego X, Murtra P, Zamalloa T, Canals JM, Pineda J, Amador-Arjona A, Maldonado R, Dierssen M. Increased opioid dependence in a mouse model of panic disorder. Front Behav Neurosci 2010; 3:60. [PMID: 20204153 PMCID: PMC2831706 DOI: 10.3389/neuro.08.060.2009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 12/16/2009] [Indexed: 11/17/2022] Open
Abstract
Panic disorder is a highly prevalent neuropsychiatric disorder that shows co-occurrence with substance abuse. Here, we demonstrate that TrkC, the high-affinity receptor for neurotrophin-3, is a key molecule involved in panic disorder and opiate dependence, using a transgenic mouse model (TgNTRK3). Constitutive TrkC overexpression in TgNTRK3 mice dramatically alters spontaneous firing rates of locus coeruleus (LC) neurons and the response of the noradrenergic system to chronic opiate exposure, possibly related to the altered regulation of neurotrophic peptides observed. Notably, TgNTRK3 LC neurons showed an increased firing rate in saline-treated conditions and profound abnormalities in their response to met5-enkephalin. Behaviorally, chronic morphine administration induced a significantly increased withdrawal syndrome in TgNTRK3 mice. In conclusion, we show here that the NT-3/TrkC system is an important regulator of neuronal firing in LC and could contribute to the adaptations of the noradrenergic system in response to chronic opiate exposure. Moreover, our results indicate that TrkC is involved in the molecular and cellular changes in noradrenergic neurons underlying both panic attacks and opiate dependence and support a functional endogenous opioid deficit in panic disorder patients.
Collapse
Affiliation(s)
- Xavier Gallego
- Genes and Disease Program, Genomic Regulation Center-CRG, Barcelona Biomedical Research Park-PRBB and CIBER de Enfermedades Raras Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
54
|
McGinty JF, Whitfield TW, Berglind WJ. Brain-derived neurotrophic factor and cocaine addiction. Brain Res 2010; 1314:183-93. [PMID: 19732758 PMCID: PMC2819624 DOI: 10.1016/j.brainres.2009.08.078] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 08/18/2009] [Accepted: 08/23/2009] [Indexed: 12/23/2022]
Abstract
The effects of brain-derived neurotrophic factor (BDNF) on cocaine-seeking are brain region-specific. Infusion of BDNF into subcortical structures, like the nucleus accumbens and ventral tegmental area, enhances cocaine-induced behavioral sensitization and cocaine-seeking. Conversely, repeated administration of BDNF antiserum into the nucleus accumbens during chronic cocaine self-administration attenuates cocaine-induced reinstatement. In contrast, BDNF infusion into the dorsomedial prefrontal cortex immediately following a final session of cocaine self-administration attenuates relapse to cocaine-seeking after abstinence, as well as cue- and cocaine prime-induced reinstatement of cocaine-seeking following extinction. BDNF-induced alterations in the ERK-MAP kinase cascade and in prefronto-accumbens glutamatergic transmission are implicated in BDNF's ability to alter cocaine-seeking. Within 22 hours after infusion into the prefrontal cortex, BDNF increases BDNF protein in prefrontal cortical targets, including nucleus accumbens, and restores cocaine-mediated decreases in phospho-ERK expression in the nucleus accumbens. Furthermore, 3 weeks after BDNF infusion in animals with a cocaine self-administration history, suppressed basal levels of glutamate are normalized and a cocaine prime-induced increase in extracellular glutamate levels in the nucleus accumbens is prevented. Thus, BDNF may have local effects at the site of infusion and distal effects in target areas that are critical to mediating or preventing cocaine-induced dysfunctional neuroadaptations.
Collapse
Affiliation(s)
- Jacqueline F McGinty
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Ave MSC 510, Charleston, SC 29425, USA.
| | | | | |
Collapse
|
55
|
Flores J, Galan-Rodriguez B, Rojo A, Ramiro-Fuentes S, Cuadrado A, Fernandez-Espejo E. Fibroblast growth factor-1 within the ventral tegmental area participates in motor sensitizing effects of morphine. Neuroscience 2010; 165:198-211. [DOI: 10.1016/j.neuroscience.2009.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 09/03/2009] [Accepted: 10/03/2009] [Indexed: 11/16/2022]
|
56
|
Hu L, Chu NN, Sun LL, Zhang R, Han JS, Cui CL. Electroacupuncture treatment reverses morphine-induced physiological changes in dopaminergic neurons within the ventral tegmental area. Addict Biol 2009; 14:431-7. [PMID: 19489751 DOI: 10.1111/j.1369-1600.2009.00163.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chronic morphine administration decreases the size of dopamine (DA) neurons in the ventral tegmental area (VTA). These transient morphological changes are accompanied by a reduced sensitivity of morphine-induced conditioned place preference (CPP) after chronic exposure to the drug. In this study we examined alterations in the firing rate of DAergic neurons by means of extracellular recording following chronic morphine exposure and applied 100 Hz electroacupuncture (EA) treatment to reverse the reduced firing rate of these neurons. In the first set of experiments we show that in rats, which received chronic morphine treatment for 14 days, a small dose of morphine was not able to induce a CPP response anymore. However, the sensitivity to morphine was reinstated by consecutive EA treatment for 10 days. The electrophysiological response of VTA DA neurons to morphine was markedly reduced in chronic morphine-treated rats compared to saline-treated controls. A substantial recovery of the reactivity of VTA DA neurons to morphine was observed in rats that received 100 Hz EA for 10 days. Our findings suggest that 100 Hz EA is a potential therapy for the treatment of opiate addiction by normalizing the activity of VTA DA neurons.
Collapse
Affiliation(s)
- Ling Hu
- Neuroscience Research Institute, Peking University, China
| | | | | | | | | | | |
Collapse
|
57
|
Fernandez-Espejo E, Ramiro-Fuentes S, Rodriguez de Fonseca F. The absence of a functional peroxisome proliferator-activated receptor-alpha gene in mice enhances motor sensitizing effects of morphine, but not cocaine. Neuroscience 2009; 164:667-75. [PMID: 19698765 DOI: 10.1016/j.neuroscience.2009.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 08/10/2009] [Accepted: 08/12/2009] [Indexed: 11/18/2022]
Abstract
Neuroinflammation of the CNS seems to participate in sensitizing effects of drugs of abuse such as psychostimulants and morphine. The nuclear receptor peroxisome proliferator-activated receptor alpha (PPAR-alpha) plays a prominent role in several physiological processes including the inflammatory response, and its activation mediates a reduced production of pro-inflammatory factors. The objectives were to examine the involvement of nuclear PPAR-alpha in motor sensitization to morphine and cocaine, by using null mice (PPAR-alpha -/-mice), or the injection of a selective PPAR-alpha agonist, [[4-chloro-6-[(2,3-dimethylphenyl)amino]-2-pyrimidinyl] thio]acetic acid (WY14643), in morphine-treated mice. The findings indicate that PPAR-alpha plays an inhibitory role in the expression (not induction) of motor sensitization to morphine, but it is devoid of effects on sensitization to cocaine, suggesting that this nuclear receptor participates in motor activating effects of opiates but not psychostimulants. Furthermore, brain PPAR-alpha expression is upregulated after the highest dose of repeated morphine, but not chronic cocaine, suggesting that this receptor could play a homeostatic role. In accordance, systemic WY14643 was able to block sensitization to morphine, confirming that PPAR-alpha plays a homeostatic role opposing morphine-induced motor sensitization, likely through a reduction of inflammation-associated changes.
Collapse
Affiliation(s)
- E Fernandez-Espejo
- Departamento de Fisiología Medica, Universidad de Sevilla, 41009 Sevilla, Spain.
| | | | | |
Collapse
|
58
|
Martín F, Laorden ML, Milanés MV. Morphine withdrawal regulates phosphorylation of cAMP response element binding protein (CREB) through PKC in the nucleus tractus solitarius-A2 catecholaminergic neurons. J Neurochem 2009; 110:1422-32. [PMID: 19545278 DOI: 10.1111/j.1471-4159.2009.06234.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The transcription factor cAMP response element binding protein (CREB) has been implicated in the actions of drugs of abuse in several brain areas. However, little is known about CREB regulation in the nucleus tractus solitarius (NTS)-A(2) catecholaminergic cell group, one of the key regions of the brain stress system. Morphine withdrawal modulates gene expression in the NTS through various second-messenger signal transduction systems including activation of extracellular signal-regulated kinases 1/2 (ERK(1/2)) and protein kinase C (PKC). In the current study we used immunoblotting and immunohistochemistry to investigate changes in CREB phosphorylation in the NTS and kinases that may mediate the morphine withdrawal-triggered activation of CREB and hypothalamo-pituitary-adrenocortical (HPA) axis (another stress system circuit) response after naloxone-induced morphine withdrawal. We found an increased phosphorylation of CREB (pCREB) selectively within tyrosine hydroxylase (TH) immunoreactive neurons in the NTS from morphine-withdrawn rats, which parallel elevated corticosterone levels. We also measured expression levels of TH and phosphorylated ERK(1/2) (pERK(1/2)), and found that both are up-regulated following morphine withdrawal. SL327, an inhibitor of ERK activation, at doses which reduced the hyperactive pERK(1/2) levels, did not attenuated the rise in pCREB and TH immunoreactivity or plasma corticosterone secretion during morphine withdrawal, indicating that ERK kinase/ERK pathway was not directly needed for either activation of CREB and TH expression in the NTS or HPA axis hyperactivity. In contrast, PKC inhibitor calphostin C reduced the withdrawal-triggered rise in pCREB, pERK(1/2), TH expression and corticosterone secretion. The results indicate that PKC mediates both CREB activation and HPA response by morphine withdrawal and might suggest that CREB activation in the NTS is related to TH expression associated with morphine withdrawal.
Collapse
Affiliation(s)
- Fátima Martín
- Department of Pharmacology, University School of Medicine, Murcia 30100, Spain
| | | | | |
Collapse
|
59
|
Lohoff FW, Bloch PJ, Ferraro TN, Berrettini WH, Pettinati HM, Dackis CA, O'Brien CP, Kampman KM, Oslin DW. Association analysis between polymorphisms in the conserved dopamine neurotrophic factor (CDNF) gene and cocaine dependence. Neurosci Lett 2009; 453:199-203. [PMID: 19429035 DOI: 10.1016/j.neulet.2009.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 02/12/2009] [Accepted: 02/12/2009] [Indexed: 01/17/2023]
Abstract
Cocaine-induced neuroplasticity changes in the mesocorticolimbic dopamine systems are thought to be involved in the pathophysiology of cocaine dependence. Since neurotrophic factors have been observed to prevent/reverse and mimic cocaine-induced neurobiological changes in the brain, related genes are plausible candidates for susceptibility to cocaine dependence. The novel conserved dopamine neurotrophic factor protein (CDNF) promotes the survival, growth, and function of dopamine-specific neurons and is expressed in brain regions that undergo cocaine-induced neuroplasticity. In this study, we hypothesize that polymorphisms in the CDNF gene (CDNF/ARMETL1) contribute to increased risk for cocaine dependence. Cocaine dependent individuals (n=351) and unaffected controls (n=257) of African descent were genotyped for four single nucleotide polymorphisms (SNPs) in the CDNF gene (rs11259365, rs7094179, rs7900873, rs2278871). We observed no significant differences in allele, genotype, or haplotype frequencies between cases and controls for any of the tested SNPs. Our study suggests that there is no association between variants in the CDNF gene and cocaine dependence. However, additional studies using larger sample sizes, comprehensive SNP coverage, and clinically homogenous populations are necessary before confidently excluding CDNF as a significant genetic risk factor for cocaine dependence.
Collapse
Affiliation(s)
- Falk W Lohoff
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Matsushita Y, Ueda H. Curcumin blocks chronic morphine analgesic tolerance and brain-derived neurotrophic factor upregulation. Neuroreport 2009; 20:63-8. [PMID: 19033880 DOI: 10.1097/wnr.0b013e328314decb] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This study was carried out based on the assumption that brain-derived neurotrophic factor (BDNF) may counterbalance the action of morphine in the brain. Morphine analgesic tolerance after daily administrations for six days was blocked by intracerebroventricular injection of anti-BDNF IgG on day 5, but not by administrations on days 1-4. Chronic morphine treatment significantly increased the expression of exon I and IV BDNF transcripts, indicating differential regulation of BDNF gene expression. Daily administration of the CREB-binding protein inhibitor curcumin abolished the upregulation of BDNF transcription and morphine analgesic tolerance. These results suggest that curcumin might be a promising adjuvant to reduce morphine analgesic tolerance, and that epigenetic control could be a new strategy useful for the control of this problem.
Collapse
Affiliation(s)
- Yosuke Matsushita
- aDivision of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | |
Collapse
|
61
|
Trang T, Koblic P, Kawaja M, Jhamandas K. Attenuation of opioid analgesic tolerance in p75 neurotrophin receptor null mutant mice. Neurosci Lett 2009; 451:69-73. [PMID: 19114089 DOI: 10.1016/j.neulet.2008.12.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 12/16/2008] [Accepted: 12/17/2008] [Indexed: 11/23/2022]
Abstract
Repeated exposure to opioid drugs can lead to the development of tolerance, which manifests as a reduction in analgesic potency, and physical dependence, a response indicated by a withdrawal syndrome. Accumulating evidence suggests that the nerve growth factor (NGF) family of neurotrophins may have an important modulatory role in the induction of opioid analgesia and opioid addiction. Because neurotrophins universally bind the p75 neurotrophin receptor (p75NTR), we investigated whether the activity of this receptor is involved in the development of opioid analgesic tolerance and physical dependence. We found that in both the wild-type and p75NTR-/- mice an acute systemic (i.p.) injection of morphine produced a maximal analgesic response as measured by the thermal tail-immersion test. Repeated injection of morphine over 5 days in wild-type mice resulted in a progressive decline of the analgesic effect and a concomitant loss of the agonist potency, reflecting development of morphine tolerance. However, the loss of morphine analgesia was not observed in p75NTR-/- mice. In the second part of this study, mice were given escalating doses of systemic (i.p.) morphine over 5 days and subsequently challenged with the opioid receptor antagonist naloxone. This challenge precipitated a robust withdrawal syndrome that was comparable in wild-type mice and p75NTR-/- mice. The findings suggest that p75NTR activity plays a critical role in the development of opioid analgesic tolerance but not in the induction or the expression of opioid physical dependence.
Collapse
Affiliation(s)
- Tuan Trang
- Department of Pharmacology and Toxicology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | |
Collapse
|
62
|
Abstract
The glial cell line-derived neurotrophic factor (GDNF) is a secreted protein, best known for its role in the development of the central and peripheral nervous systems and the survival of adult dopaminergic neurons. More recently, accumulating evidence suggests that GDNF plays a unique role in negatively regulating the actions of drugs of abuse. In this article, we review these data and highlight the possibility that the GDNF pathway may be a promising target for the treatment of addiction.
Collapse
|
63
|
Almela P, Victoria Milanés M, Luisa Laorden M. Tyrosine hydroxylase phosphorylation after naloxone-induced morphine withdrawal in the left ventricle. Basic Res Cardiol 2008; 104:366-76. [DOI: 10.1007/s00395-008-0768-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 11/19/2008] [Indexed: 12/27/2022]
|
64
|
|
65
|
Zweifel LS, Argilli E, Bonci A, Palmiter RD. Role of NMDA receptors in dopamine neurons for plasticity and addictive behaviors. Neuron 2008; 59:486-96. [PMID: 18701073 DOI: 10.1016/j.neuron.2008.05.028] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 05/19/2008] [Accepted: 05/20/2008] [Indexed: 11/18/2022]
Abstract
A single exposure to drugs of abuse produces an NMDA receptor (NMDAR)-dependent long-term potentiation (LTP) of AMPA receptor (AMPAR) currents in DA neurons; however, the importance of LTP for various aspects of drug addiction is unclear. To test the role of NMDAR-dependent plasticity in addictive behavior, we genetically inactivated functional NMDAR signaling exclusively in DA neurons (KO mice). Inactivation of NMDARs results in increased AMPAR-mediated transmission that is indistinguishable from the increases associated with a single cocaine exposure, yet locomotor responses to multiple drugs of abuse were unaltered in the KO mice. The initial phase of locomotor sensitization to cocaine is intact; however, the delayed sensitization that occurs with prolonged cocaine withdrawal did not occur. Conditioned behavioral responses for cocaine-testing environment were also absent in the KO mice. These findings provide evidence for a role of NMDAR signaling in DA neurons for specific behavioral modifications associated with drug seeking behaviors.
Collapse
Affiliation(s)
- Larry S Zweifel
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
66
|
Characterizing intercellular signaling peptides in drug addiction. Neuropharmacology 2008; 56 Suppl 1:196-204. [PMID: 18722391 DOI: 10.1016/j.neuropharm.2008.07.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 07/23/2008] [Accepted: 07/28/2008] [Indexed: 11/23/2022]
Abstract
Intercellular signaling peptides (SPs) coordinate the activity of cells and influence organism behavior. SPs, a chemically and structurally diverse group of compounds responsible for transferring information between neurons, are broadly involved in neural plasticity, learning and memory, as well as in drug addiction phenomena. Historically, SP discovery and characterization has tracked advances in measurement capabilities. Today, a suite of analytical technologies is available to investigate individual SPs, as well as entire intercellular signaling complements, in samples ranging from individual cells to entire organisms. Immunochemistry and in situ hybridization are commonly used for following preselected SPs. Discovery-type investigations targeting the transcriptome and proteome are accomplished using high-throughput characterization technologies such as microarrays and mass spectrometry. By integrating directed approaches with discovery approaches, multiplatform studies fill critical gaps in our knowledge of drug-induced alterations in intercellular signaling. Throughout the past 35 years, the National Institute on Drug Abuse has made significant resources available to scientists that study the mechanisms of drug addiction. The roles of SPs in the addiction process are highlighted, as are the analytical approaches used to detect and characterize them.
Collapse
|
67
|
Bahi A, Boyer F, Chandrasekar V, Dreyer JL. Role of accumbens BDNF and TrkB in cocaine-induced psychomotor sensitization, conditioned-place preference, and reinstatement in rats. Psychopharmacology (Berl) 2008; 199:169-82. [PMID: 18551281 DOI: 10.1007/s00213-008-1164-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 03/20/2008] [Indexed: 12/23/2022]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is involved in the survival and function of midbrain DA neurons. BDNF action is mediated by the TrkB receptor-tyrosine kinase, and both BDNF and TrkB transcripts are widely expressed in the rat mesolimbic pathway, including the nucleus accumbens (NAc) and the ventral tegmentum area (VTA). OBJECTIVE BDNF was previously shown to be involved in cocaine reward and relapse, as assessed in rat models. The goal of this study is to explore the role of BDNF and TrkB in the rat nucleus accumbens (NAc) in cocaine-induced psychomotor sensitization and in conditioned-place preference acquisition, expression, and reinstatement. MATERIALS AND METHODS In vivo genetic manipulations of BDNF and TrkB were performed using a lentiviral gene delivery approach to over-express these genes in the NAc and siRNA-based technology to locally knockdown gene expression. Behavioral experiments consisted of locomotor activity monitoring or cocaine-induced conditioned-place preference (CPP). RESULTS BDNF and/or its receptor TrkB in the NAc enhance drug-induced locomotor activity and induce sensitization in rats. Furthermore, LV-BDNF- and LV-TrkB-treated rats display enhanced cocaine-induced CPP, delayed CPP-extinction upon repeated measurements, and increased CPP reinstatement. In contrast, expression of TrkT1 (truncated form of TrkB, acting as a dominant negative) inhibits these behavioral changes. This inhibition is also observed when rats are fed doxycycline (to block lentivirus-mediated gene expression) or when injected with siRNAs-expressing lentiviruses against TrkB. In addition, we investigate the establishment, maintenance, extinction, and reinstatement of cocaine-induced CPP. We show that BDNF and TrkB-induced CPP takes place during the learning period (conditioning), whereas extinction leads to the loss of CPP. Extinction is delayed when rats are injected LV-BDNF or LV-TrkB, and in turn, priming injections of 2 mg/kg of cocaine reinstates it. CONCLUSIONS These results demonstrate the crucial function of BDNF-through its receptor TrkB-in the enhancement of locomotor activity, sensitization, conditioned-place preference, CPP-reinstatement, and rewarding effects of cocaine in the mesolimbic dopaminergic pathway.
Collapse
Affiliation(s)
- Amine Bahi
- Department of Psychiatry, Yale University School of Medicine, 301 Cedar Street, New Haven, CT 06508, USA
| | | | | | | |
Collapse
|
68
|
Núñez C, Castells MT, Laorden ML, Milanés MV. Regulation of extracellular signal-regulated kinases (ERKs) by naloxone-induced morphine withdrawal in the brain stress system. Naunyn Schmiedebergs Arch Pharmacol 2008; 378:407-20. [PMID: 18548233 DOI: 10.1007/s00210-008-0304-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2008] [Accepted: 04/24/2008] [Indexed: 11/30/2022]
Abstract
Our previous studies have shown that morphine withdrawal increases the hypothalamic-pituitary-adrenocortical axis activity, which is dependent on a hyperactivity of noradrenergic pathways (nucleus tractus solitarius-A(2)) innervating the hypothalamic paraventricular nucleus. The extracellular signal-regulated kinase has been implicated in drug addiction, but its role in activation of paraventricular nucleus and nucleus tractus solitarius during morphine dependence remain poorly understood. We have determined the activation of extracellular signal-regulated kinase during morphine dependence and withdrawal as well as its involvement in morphine withdrawal-induced gene expression. We show that naloxone-induced morphine withdrawal activates extracellular signal-regulated kinases(1/2) and increases c-Fos expression in rat paraventricular nucleus and nucleus tractus solitarius-A(2) neurons. Activated extracellular signal-regulated kinases(1/2) was colocalized with c-Fos in both nuclei, and this response was blocked by SL327, a drug that prevents extracellular signal-regulated kinase activation. In the paraventricular nucleus from morphine-withdrawn rats, the number of neurons expressing CRF was increased. Immunohistochemical study showed a dramatic increase in c-Fos immunoreactivity within CRF-positive cells. These results suggest that extracellular signal-regulated kinases1/2 signaling pathway is necessary for morphine withdrawal-induced activation of brain areas associated with the stress system.
Collapse
Affiliation(s)
- Cristina Núñez
- Department of Pharmacology, University School of Medicine, Campus de Espinardo, 30100, Murcia, Spain
| | | | | | | |
Collapse
|
69
|
Almela P, Milanés M, Laorden M. The PKs PKA and ERK 1/2 are involved in phosphorylation of TH at Serine 40 and 31 during morphine withdrawal in rat hearts. Br J Pharmacol 2008; 155:73-83. [PMID: 18536752 DOI: 10.1038/bjp.2008.224] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND AND PURPOSE Our previous studies have shown that morphine withdrawal induced hyperactivity of cardiac noradrenergic pathways. The purpose of the present study was to evaluate the effects of morphine withdrawal on site-specific phosphorylation of TH in the heart. EXPERIMENTAL APPROACH Dependence on morphine was induced by a 7-day s.c. implantation of morphine pellets in rats. Morphine withdrawal was precipitated on day 8 by an injection of naloxone (2 mg kg(-1)). TH phosphorylation was determined by quantitative blot immunolabelling using phosphorylation state-specific antibodies. KEY RESULTS Naloxone-induced morphine withdrawal induced phosphorylation of TH at serine (Ser)40 and Ser31 in the right ventricle, associated with both an increase in total TH levels and an enhancement of TH activity. When HA-1004 (PK A inhibitor) was infused, concomitantly with morphine, it diminished the increase in noradrenaline turnover, total TH levels and TH phosphorylation at Ser40 in morphine-withdrawn rats. In contrast, the infusion of calphostin C (PKC inhibitor), did not modify the morphine withdrawal-induced increase in noradrenaline turnover and total TH levels. In addition, we show that the ability of morphine withdrawal to stimulate phosphorylation at Ser31 was reduced by SL327, an inhibitor of ERK 1/2 activation. CONCLUSIONS AND IMPLICATIONS The present findings demonstrate that the enhancement of total TH levels and the increased phosphorylation state of TH during morphine withdrawal were dependent on PKA and ERK activities and suggest that these transduction pathways might contribute to the activation of the cardiac catecholaminergic neurons in response to morphine withdrawal.
Collapse
Affiliation(s)
- P Almela
- Department of Pharmacology, University School of Medicine, Murcia University, Murcia, Spain
| | | | | |
Collapse
|
70
|
Fernandez-Espejo E, Ramiro-Fuentes S, Portavella M, Moreno-Paublete R. Role for D-serine within the ventral tegmental area in the development of cocaine's sensitization. Neuropsychopharmacology 2008; 33:995-1003. [PMID: 17609678 DOI: 10.1038/sj.npp.1301495] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Repeated exposure to cocaine results in motor sensitization that, in the ventral tegmental area (VTA), is associated to enhanced glutamate release, which in turn leads to enhanced calcium levels in dopaminergic neurons. Calcium influx activates calcium-calmodulin-dependent protein kinases such as CaMKII. D-Serine could participate on these effects, and the objective was to discern the role of VTA D-serine after a sensitizing regimen of cocaine (10 mg/kg daily), and to discern consequent expression changes in CaMKII and its activated form. For this purpose, D-serine, sodium benzoate (inhibitor of D-amino acid oxidase, the degradating enzyme of D-serine), and 7-chlorokynurenate (inhibitor of the glycine site of NMDA receptors) were injected into the VTA (in either the induction or expression phase of sensitization), and activation state of CaMKII was assessed through blotting. The findings indicated that intra-VTA administration of D-serine (5 mM) and sodium benzoate (100 and 200 microg/microl) during the induction phase (not expression) reliably augmented the expression of behavioral sensitization to cocaine, providing evidence that D-serine in the VTA participates in the initiation of motor sensitization to this psychostimulant drug. Intra-VTA infusions of D-serine, sodium benzoate and 7-chlorokynurenate did not elicit a motor effect of their own. Confirming the important role of NMDA receptors and their activation at the glycine site, the employment of 7-chlorokynurenate (2 and 5 microg/microl) led to blocking of the development of sensitization to cocaine. CaMKII within the VTA was found to participate in D-serine's effects because this kinase, that is activated after repeated cocaine, was further activated after co-treatment with D-serine or sodium benzoate. Besides CaMKII activity was otherwise reduced by 7-chlorokynurenate.
Collapse
|
71
|
Leggio L, Ferrulli A, Malandrino N, Miceli A, Capristo E, Gasbarrini G, Addolorato G. Insulin But Not Insulin Growth Factor-1 Correlates With Craving in Currently Drinking Alcohol-Dependent Patients. Alcohol Clin Exp Res 2008; 32:450-8. [DOI: 10.1111/j.1530-0277.2007.00589.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
72
|
Logrip ML, Janak PH, Ron D. Dynorphin is a downstream effector of striatal BDNF regulation of ethanol intake. FASEB J 2008; 22:2393-404. [PMID: 18310464 DOI: 10.1096/fj.07-099135] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We recently identified brain-derived neurotrophic factor (BDNF) in the dorsal striatum to be a major component of a homeostatic pathway controlling ethanol consumption. We hypothesized that ethanol-mediated activation of the BDNF signaling cascade is required for the ethanol-related function of the neurotrophic factor. Here, we demonstrate that exposure of striatal neurons to ethanol results in the activation of the BDNF receptor TrkB, leading to the activation of the mitogen-activated protein kinase (MAP kinase) signaling pathway and the subsequent increase in the expression of preprodynorphin (Pdyn) via BDNF. Finally, we show that activation of the dynorphin receptor, the kappa opioid receptor (KOR), is required for the BDNF-mediated decrease in ethanol intake, illustrating a function of dynorphin in BDNF's homeostatic control of ethanol consumption. Taken together, these results demonstrate that BDNF regulates ethanol intake by initiation of MAP kinase signaling and the ensuing production of downstream gene products, including Pdyn.
Collapse
|
73
|
Núñez C, Laorden ML, Milanés MV. Regulation of serine (Ser)-31 and Ser40 tyrosine hydroxylase phosphorylation during morphine withdrawal in the hypothalamic paraventricular nucleus and nucleus tractus solitarius-A2 cell group: role of ERK1/2. Endocrinology 2007; 148:5780-93. [PMID: 17823252 DOI: 10.1210/en.2007-0510] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Our previous studies have shown that naloxone-induced morphine withdrawal increases the hypothalamic-pituitary-adrenocortical (HPA) axis activity, which is dependent on a hyperactivity of noradrenergic pathways [nucleus tractus solitarius (NTS) A(2)] innervating the hypothalamic paraventricular nucleus (PVN). Short-term regulation of catecholamine biosynthesis occurs through phosphorylation of tyrosine hydroxylase (TH), which enhances enzymatic activity. In the present study, the effect of morphine withdrawal on site-specific TH phosphorylation in the PVN and NTS-A(2) was determined by quantitative blot immunolabeling and immunohistochemistry using phosphorylation state-specific antibodies. We show that naloxone-induced morphine withdrawal phosphorylates TH at Serine (Ser)-31 but not Ser40 in PVN and NTS-A(2), which is associated with both an increase in total TH immunoreactivity in NTS-A(2) and an enhanced TH activity in the PVN. In addition, we demonstrated that TH neurons phosphorylated at Ser31 coexpress c-Fos in NTS-A(2). We then tested whether pharmacological inhibition of ERK activation by ERK kinase contributes to morphine withdrawal-induced phosphorylation of TH at Ser31. We show that the ability of morphine withdrawal to stimulate phosphorylation at this seryl residue is reduced by SL327, an inhibitor of ERK(1/2) activation. These results suggest that morphine withdrawal increases noradrenaline turnover in the PVN, at least in part, via ERK(1/2)-dependent phosphorylation of TH at Ser31.
Collapse
Affiliation(s)
- Cristina Núñez
- Department of Pharmacology, University School of Medicine, Campus de Espinardo, Murcia, Spain
| | | | | |
Collapse
|
74
|
Chu NN, Zuo YF, Meng L, Lee DYW, Han JS, Cui CL. Peripheral electrical stimulation reversed the cell size reduction and increased BDNF level in the ventral tegmental area in chronic morphine-treated rats. Brain Res 2007; 1182:90-8. [PMID: 17945205 DOI: 10.1016/j.brainres.2007.08.086] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 08/27/2007] [Accepted: 08/30/2007] [Indexed: 10/22/2022]
Abstract
Chronic morphine administration induces functional and morphological alterations in the mesolimbic dopamine system (MLDS), which is believed to be the neurobiological substrate of opiate addiction. Our previous studies have demonstrated that peripheral electrical stimulation (PES) can suppress morphine withdrawal syndrome and morphine-induced conditioned place preference (CPP) in rats. The present study was designed to investigate if PES could reverse the cell size reduction induced by chronic morphine treatment in the ventral tegmental area (VTA), which is an important area of the MLDS. Immunohistochemical observations showed that the cell size of dopaminergic neurons in the VTA reduced significantly in the chronic morphine-treated rats with a concomitant decrease in the number of BDNF-positive cells compared to the saline-treated rats. A much milder morphological change, accompanying with an increased number of BDNF-positive cells, was observed in dopaminergic neurons in the rats that received repeated 100 Hz PES after morphine withdrawal. In another experiment, enzyme-linked immunosorbent assay (ELISA) reconfirmed a significant up-regulation of BDNF protein level in the VTA in the rats received 100 Hz PES after morphine abstinence. These results indicate that PES could facilitate the morphological recovery of the VTA dopaminergic cells damaged by chronic morphine treatment and up-regulate the BDNF protein level in the VTA. Activation of endogenous BDNF by PES may play a role in the recovery of the injured dopaminergic neurons in the morphine addictive rats.
Collapse
Affiliation(s)
- Ning-Ning Chu
- Neuroscience Research Institute, The Ministry of Education and Ministry of Public Health, Peking University, Beijing 100083, PR China
| | | | | | | | | | | |
Collapse
|
75
|
Kozisek ME, Middlemas D, Bylund DB. Brain-derived neurotrophic factor and its receptor tropomyosin-related kinase B in the mechanism of action of antidepressant therapies. Pharmacol Ther 2007; 117:30-51. [PMID: 17949819 DOI: 10.1016/j.pharmthera.2007.07.001] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 07/24/2007] [Indexed: 12/12/2022]
Abstract
The focus of this review is to critically examine and review the literature on the role of brain-derived neurotrophic factor (BDNF) and its primary receptor, tropomyosin-related kinase B (TrkB), in the actions of pharmacologically diverse antidepressant treatments for depression. This will include a review of the studies on the regulation of BDNF and TrkB by different types of antidepressant drug treatments and animal in models of depression, as well as altered levels of BDNF and TrkB in the blood and postmortem brain of patients with depression. Results from clinical and basic studies have demonstrated that stress and depression decrease BDNF expression and neurogenesis and antidepressant treatment reverses or blocks these effects, leading to the neurotrophic hypothesis of depression. Clinical studies demonstrate an association between BDNF levels and several disorders, including depression, epilepsy, bipolar disorder, Parkinson's and Alzheimer's diseases. Physical activity and diet exert neurotrophic effects and positively modulate BDNF levels. A common single nucleotide polymorphism (SNP) in the BDNF gene, a methionine substitution for valine, is associated with alterations in brain anatomy and memory, but what role it has in clinical disorders is unclear. Findings suggest that early childhood events and adult stress produce neurodegenerative alterations in the brain that can eventually cause breakdown of information processing in the neuronal networks regulating mood. Antidepressant treatments elevate activity-dependent neuronal plasticity by activating BDNF, thereby gradually restoring network function and ultimately mood.
Collapse
Affiliation(s)
- Megan E Kozisek
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, United States.
| | | | | |
Collapse
|
76
|
Almela P, Milanés MV, Laorden ML. Activation of the ERK signalling pathway contributes to the adaptive changes in rat hearts during naloxone-induced morphine withdrawal. Br J Pharmacol 2007; 151:787-97. [PMID: 17549049 PMCID: PMC2014132 DOI: 10.1038/sj.bjp.0707301] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE We have previously demonstrated that morphine withdrawal induced hyperactivity of the heart by activation of noradrenergic pathways innervating the left and right ventricle, as evaluated by noradrenaline turnover and c-Fos expression. The extracellular signal-regulated kinase (ERK) has been implicated in drug addiction, but its role in activation of the heart during morphine dependence remains poorly understood. Here, we have looked for activation of ERK during morphine withdrawal and if this activation induced gene expression. EXPERIMENTAL APPROACH Dependence on morphine was induced by s.c. implantation of morphine pellets for 7 days. Morphine withdrawal was precipitated on day 8 by injection of naloxone (2 mg kg(-1), s.c.). ERK1/2, their phosphorylated forms and c-Fos were measured by western blotting and immunohistochemistry of cardiac tissue. KEY RESULTS Naloxone-induced morphine withdrawal activated ERK1/2 and increased c-Fos expression in cardiac tissues. c-Fos expression was blocked by SL327, a drug that prevents ERK activation. CONCLUSIONS AND IMPLICATIONS These results indicate that signalling through the ERKs is necessary for morphine withdrawal-induced hyperactivity of the heart and suggest that this pathway may also be involved in activation of immediate-early genes in both cytosolic and nuclear effector mechanisms that have the potential to bring about long-term changes in the heart.
Collapse
Affiliation(s)
- P Almela
- Department of Pharmacology, University School of Medicine Murcia, Spain
| | - M V Milanés
- Department of Pharmacology, University School of Medicine Murcia, Spain
| | - M L Laorden
- Department of Pharmacology, University School of Medicine Murcia, Spain
- Author for correspondence:
| |
Collapse
|
77
|
Wolf DH, Nestler EJ, Russell DS. Regulation of neuronal PLCgamma by chronic morphine. Brain Res 2007; 1156:9-20. [PMID: 17524370 PMCID: PMC2020853 DOI: 10.1016/j.brainres.2007.04.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 04/19/2007] [Accepted: 04/22/2007] [Indexed: 02/03/2023]
Abstract
Alterations in neurotrophic signaling pathways may contribute to the changes in the mesolimbic dopamine system induced by chronic morphine exposure. In a rat model of morphine dependence, we previously identified increased levels of phospholipase C gamma-1 (PLCgamma1) immunoreactivity specifically within the ventral tegmental area (VTA) following chronic morphine treatment. Using an antibody specific for the tyrosine-phosphorylated, activated form of PLCgamma1, we now show that chronic morphine also significantly upregulates PLCgamma1 activity in the VTA, as well as in the nucleus accumbens and hippocampus, regions which are also implicated in the reinforcing properties of morphine. In contrast, no increase in PLCgamma1 activity was found in the substantia nigra or dorsal striatum. HSV-mediated overexpression of PLCgamma1 in PC12 cells induced ERK activation via a mechanism dependent, in part, on both MAP-ERK kinase (MEK) and protein kinase C. PLCgamma1 overexpression in the VTA similarly induced ERK activation in the VTA in vivo. As chronic morphine treatment has been shown to increase ERK activity within the VTA, the current results suggest that increased PLCgamma1 activity may be an upstream mediator of this effect.
Collapse
Affiliation(s)
- Daniel H Wolf
- Interdepartmental Neuroscience Program, Yale University School of Medicine, and Connecticut Mental Health Center, New Haven, CT 06508, USA.
| | | | | |
Collapse
|
78
|
Stanwood GD, Levitt P. Waved-1 mutant mice are hypersensitive to the locomotor actions of cocaine. Synapse 2007; 61:259-62. [PMID: 17230552 DOI: 10.1002/syn.20364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Transforming growth factor-alpha (TGFalpha) is a well-known regulator of many developmental processes, and is expressed heavily in basal forebrain and striatal regions. When TGFalpha is reduced in Waved-1 (Wa-1) mutant mice, brain anatomy, biogenic amines, stress response, and behavior are normal prior to, but altered following puberty. As an initial screen for possible alterations in nigrostriatal and mesolimbic dopamine (DA) systems, we tested adult Wa-1 mutant mice in an open field, following acute injection with cocaine (15 mg/kg). Wa-1 mice exhibited significantly greater ambulatory distance, number of ambulatory episodes, and cocaine-induced motor stereotypies than do controls. These data indicate that adult Wa-1 mice are hypersensitive to the locomotor effects of cocaine and provide a new potential link between neurodevelopmental processes and adult psychostimulant responsiveness.
Collapse
Affiliation(s)
- Gregg D Stanwood
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
| | | |
Collapse
|
79
|
Lynch WJ, Kiraly DD, Caldarone BJ, Picciotto MR, Taylor JR. Effect of cocaine self-administration on striatal PKA-regulated signaling in male and female rats. Psychopharmacology (Berl) 2007; 191:263-71. [PMID: 17180335 DOI: 10.1007/s00213-006-0656-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 11/21/2006] [Indexed: 10/23/2022]
Abstract
RATIONALE Chronic cocaine produces changes in the dopamine (DA)/D1/cAMP/protein kinase A (PKA)-regulated signaling pathway that may underlie the development of addiction. OBJECTIVE Given sex differences in the progression to cocaine addiction, we examined the possibility that the PKA pathway is differentially activated by cocaine in male and female rats. MATERIALS AND METHODS Rats were given 24-h access to cocaine (1.5 mg/kg) or saline for 7 days under a discrete trial procedure (four trials per hour). Rats were then retested on responding for cocaine under a progressive-ratio schedule after either 0 (no-delay retest) or 10 (10-day-delay retest) days of abstinence. Markers of PKA-regulated signaling in the striatum and nucleus accumbens were evaluated by Western blotting, including phosphorylation of DA and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) at Thr 34 and glutamate receptor 1 (GluR1) at Ser 845. RESULTS Compared to males, females had higher levels of DARPP-32 phosphorylated at the PKA site in the striatum. Increased phosphorylation of DARPP-32 at the PKA site was also seen in the nucleus accumbens of females compared to males, particularly among controls and rats tested after a 10-day abstinence period. DARPP-32 phosphorylation was also increased as a consequence of cocaine when tested after a 0-day abstinence period in male rats but not female rats. CONCLUSION These findings indicate sex differences in PKA-regulated signaling in drug-naïve controls. Furthermore, these data suggest that regulation of PKA signaling by cocaine is differentially influenced in male and female rats as a consequence of cocaine exposure and cocaine abstinence period.
Collapse
Affiliation(s)
- Wendy J Lynch
- Division of Molecular Psychiatry and Center for Genes and Behavior, Department of Psychiatry, Yale University School of Medicine and Connecticut Mental Health Center, 34 Park Street, New Haven, CT 06508, USA.
| | | | | | | | | |
Collapse
|
80
|
Russo SJ, Bolanos CA, Theobald DE, DeCarolis NA, Renthal W, Kumar A, Winstanley CA, Renthal NE, Wiley MD, Self DW, Russell DS, Neve RL, Eisch AJ, Nestler EJ. IRS2-Akt pathway in midbrain dopamine neurons regulates behavioral and cellular responses to opiates. Nat Neurosci 2006; 10:93-9. [PMID: 17143271 DOI: 10.1038/nn1812] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 11/09/2006] [Indexed: 11/09/2022]
Abstract
Chronic morphine administration (via subcutaneous pellet) decreases the size of dopamine neurons in the ventral tegmental area (VTA), a key reward region in the brain, yet the molecular basis and functional consequences of this effect are unknown. In this study, we used viral-mediated gene transfer in rat to show that chronic morphine-induced downregulation of the insulin receptor substrate 2 (IRS2)-thymoma viral proto-oncogene (Akt) signaling pathway in the VTA mediates the decrease in dopamine cell size seen after morphine exposure and that this downregulation diminishes morphine reward, as measured by conditioned place preference. We further show that the reduction in size of VTA dopamine neurons persists up to 2 weeks after morphine withdrawal, which parallels the tolerance to morphine's rewarding effects caused by previous chronic morphine exposure. These findings directly implicate the IRS2-Akt signaling pathway as a critical regulator of dopamine cell morphology and opiate reward.
Collapse
Affiliation(s)
- Scott J Russo
- Department of Psychiatry and Center for Basic Neuroscience, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9070, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Almela P, Cerezo M, González-Cuello A, Milanés MV, Laorden ML. Differential involvement of 3′, 5′-cyclic adenosine monophosphate-dependent protein kinase in regulation of Fos and tyrosine hydroxylase expression in the heart after naloxone induced morphine withdrawal. Naunyn Schmiedebergs Arch Pharmacol 2006; 374:293-303. [PMID: 17216288 DOI: 10.1007/s00210-006-0120-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 11/02/2006] [Indexed: 11/25/2022]
Abstract
We previously demonstrated that morphine withdrawal induced hyperactivity of the heart by the activation of noradrenergic pathways innervating the left and right ventricle, as evaluated by noradrenaline (NA) turnover and Fos expression. We investigated whether cAMP-dependent protein kinase (PKA) plays a role in this process by estimating changes in PKA immunoreactivity and the influence of inhibitor of PKA on Fos protein expression, tyrosine hydroxylase (TH) immunoreactivity levels and NA turnover in the left and right ventricle. Dependence on morphine was induced by a 7-day s.c. implantation of morphine pellets. Morphine withdrawal was precipitated on day 8 by an injection of naloxone (5 mg/kg). When opioid withdrawal was precipitated, an increase in PKA immunoreactivity and phospho-CREB (cyclic AMP response element protein) levels were observed in the heart. Moreover, morphine withdrawal induces Fos expression, an enhancement of NA turnover and an increase in the total TH levels. When the selective PKA inhibitor HA-1004 was infused, concomitantly with morphine pellets, it diminished the increase in NA turnover and the total TH levels observed in morphine-withdrawn rats. However, this inhibitor neither modifies the morphine withdrawal induced Fos expression nor the increase of nonphosphorylated TH levels. The present findings indicate that an up-regulated PKA-dependent transduction pathway might contribute to the activation of the cardiac catecholaminergic neurons in response to morphine withdrawal and suggest that Fos is not a target of PKA at heart levels.
Collapse
Affiliation(s)
- Pilar Almela
- Equip of Cellular and Molecular Pharmacology, University School of Medicine, Murcia, Spain
| | | | | | | | | |
Collapse
|
82
|
Airavaara M, Tuomainen H, Piepponen TP, Saarma M, Ahtee L. Effects of repeated morphine on locomotion, place preference and dopamine in heterozygous glial cell line-derived neurotrophic factor knockout mice. GENES BRAIN AND BEHAVIOR 2006; 6:287-98. [PMID: 16879618 DOI: 10.1111/j.1601-183x.2006.00260.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) has been shown to be involved in the maintenance of striatal dopaminergic neurons. Neurotrophic factors are crucial for the plasticity of central nervous system and may be involved in long-term responses to drug exposure. To study the effects of reduced GDNF on dopaminergic behaviour related to addiction, we compared the effects of morphine on locomotor activity, conditioned place preference (CPP) and extracellular accumbal dopamine in heterozygous GDNF knockout mice (GDNF+/-) with those in their wild-type (Wt) littermates. When morphine 30 mg/kg was administered daily for 4 days, tolerance developed towards its locomotor stimulatory action only in the GDNF+/- mice. A morphine 5 mg/kg challenge dose stimulated locomotor activity only in the GDNF+/- mice withdrawn for 96 h from repeated morphine treatment, whereas clear and similar sensitization of the locomotor response was seen after a 10 mg/kg challenge dose in mice of both genotypes. Morphine-induced CPP developed initially similarly in Wt and GDNF+/- mice, but it lasted longer in the Wt mice. The small challenge dose of morphine increased accumbal dopamine output slightly more in the GDNF+/- mice than in the Wt mice, but doubling the challenge dose caused a dose-dependent response only in the Wt mice. In addition, repeated morphine treatment counteracted the increase in the accumbal extracellular dopamine concentration we previously found in drug-naive GDNF+/- mice. Thus, reduced endogenous GDNF level alters the dopaminergic behavioural effects to repeatedly administered morphine, emphasizing the involvement of GDNF in the neuroplastic changes related to long-term effects of drugs of abuse.
Collapse
Affiliation(s)
- M Airavaara
- Division of Pharmacology and Toxicology, Faculty of Pharmacy, University of Helsinki, Finland.
| | | | | | | | | |
Collapse
|
83
|
Janak PH, Wolf FW, Heberlein U, Pandey SC, Logrip ML, Ron D. BIG news in alcohol addiction: new findings on growth factor pathways BDNF, insulin, and GDNF. Alcohol Clin Exp Res 2006; 30:214-21. [PMID: 16441270 DOI: 10.1111/j.1530-0277.2006.00026.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In recent years, it has become clear that growth factors are not only critical for the development of the central nervous system (CNS) but may also be important contributors to other neuronal functions in the adult brain. This symposium, presented at the 2005 RSA meeting, discussed evidence to support the hypothesis that alterations in growth factor pathways produce dramatic changes in the effects of alcohol on the CNS. The 4 speakers showed that the behavioral effects of alcohol in the adult are regulated by 3 growth factors, insulin, glial cell line-derived neurotrophic factor (GDNF), and brain-derived neurotrophic factor (BDNF). Dr. Wolf from the Heberlein laboratory presented findings obtained from genetic manipulations in Drosophila melanogaster, demonstrating that the insulin pathway controls sensitivity to the intoxicating effects of alcohol. Marian Logrip from the Ron and Janak laboratories presented evidence obtained in rodents that low concentrations of alcohol increase the expression of BDNF in the brain to regulate alcohol consumption. Dr. Pandey showed that amygdalar BDNF regulates alcohol's anxiolytic effects and preference. Finally, Dr. Janak presented evidence that increases in the expression of GDNF in the midbrain reduce alcohol self-administration in rats.
Collapse
Affiliation(s)
- Patricia H Janak
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, California, USA
| | | | | | | | | | | |
Collapse
|
84
|
Nestler EJ, Carlezon WA. The mesolimbic dopamine reward circuit in depression. Biol Psychiatry 2006; 59:1151-9. [PMID: 16566899 DOI: 10.1016/j.biopsych.2005.09.018] [Citation(s) in RCA: 1492] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 09/02/2005] [Accepted: 09/08/2005] [Indexed: 01/21/2023]
Abstract
The neural circuitry that mediates mood under normal and abnormal conditions remains incompletely understood. Most attention in the field has focused on hippocampal and frontal cortical regions for their role in depression and antidepressant action. While these regions no doubt play important roles in these phenomena, there is compelling evidence that other brain regions are also involved. Here we focus on the potential role of the nucleus accumbens (NAc; ventral striatum) and its dopaminergic input from the ventral tegmental area (VTA), which form the mesolimbic dopamine system, in depression. The mesolimbic dopamine system is most often associated with the rewarding effects of food, sex, and drugs of abuse. Given the prominence of anhedonia, reduced motivation, and decreased energy level in most individuals with depression, we propose that the NAc and VTA contribute importantly to the pathophysiology and symptomatology of depression and may even be involved in its etiology. We review recent studies showing that manipulations of key proteins (e.g. CREB, dynorphin, BDNF, MCH, or Clock) within the VTA-NAc circuit of rodents produce unique behavioral phenotypes, some of which are directly relevant to depression. Studies of these and other proteins in the mesolimbic dopamine system have established novel approaches to modeling key symptoms of depression in animals, and could enable the development of antidepressant medications with fundamentally new mechanisms of action.
Collapse
Affiliation(s)
- Eric J Nestler
- Department of Psychiatry and Center for Basic Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070, USA.
| | | |
Collapse
|
85
|
Abstract
Neurotrophic signaling is thought to be important for neuroplasticity in certain forebrain regions following psychostimulant exposure. In this study, we found that repeated administration of amphetamine (5 mg/kg, once daily, 5 days) to rats significantly increased tyrosine kinase-B receptor mRNA levels in the striatum, ventral bed nucleus, and piriform cortex. The most robust increase in tyrosine kinase-B expression occurred in dorsal aspects of the striatum, which also showed elevated levels after a single amphetamine injection. These findings indicate that changes in striatal tyrosine kinase-B signaling could play a role in neuroadaptations and behavioral changes induced by amphetamine treatment.
Collapse
Affiliation(s)
- Gloria E Meredith
- Department of Cellular and Molecular Pharmacology, Chicago Medical School/Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, USA.
| | | |
Collapse
|
86
|
Almela P, Cerezo M, Milanés MV, Laorden ML. Role of PKC in regulation of Fos and TH expression after naloxone induced morphine withdrawal in the heart. Naunyn Schmiedebergs Arch Pharmacol 2006; 372:374-82. [PMID: 16474935 DOI: 10.1007/s00210-006-0032-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 12/19/2005] [Indexed: 11/29/2022]
Abstract
We previously demonstrated that morphine withdrawal induced hyperactivity of the heart by activation of noradrenergic pathways innervating the left and right ventricle, as evaluated by noradrenaline (NA) turnover and Fos expression. The present study was designed to investigate the role of protein kinase C (PKC) in this process, by estimating whether pharmacological inhibition of PKC would attenuate morphine withdrawal induced Fos expression and changes in tyrosine hydroxylase (TH) immunoreactivity levels and NA turnover in the left and right ventricle. Dependence on morphine was induced on day 8 by an injection of naloxone. Morphine withdrawal induced Fos expression and increased TH levels and NA turnover in the right and left ventricle. Infusion of calphostin C, a selective PKC inhibitor, did not modify the morphine withdrawal-induced increase in NA turnover and TH levels. However, this inhibitor produced a reduction in the morphine withdrawal-induced Fos expression. The results of the present study provide new information on the mechanisms that underlie morphine withdrawal-induced up-regulation of Fos expression in the heart and suggest that TH is not a target of PKC during morphine withdrawal at heart levels.
Collapse
Affiliation(s)
- Pilar Almela
- Equip of Cellular and Molecular Pharmacology, University School of Medicine, Murcia, Spain
| | | | | | | |
Collapse
|
87
|
Eisch AJ, Harburg GC. Opiates, psychostimulants, and adult hippocampal neurogenesis: Insights for addiction and stem cell biology. Hippocampus 2006; 16:271-86. [PMID: 16411230 DOI: 10.1002/hipo.20161] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Once thought to produce global, nonspecific brain injury, drugs of abuse are now known to produce selective neuro-adaptations in particular brain regions. These neuro-adaptations are being closely examined for clues to the development, maintenance, and treatment of addiction. The hippocampus is an area of particular interest, as it is central to many aspects of the addictive process, including relapse to drug taking. A recently appreciated hippocampal neuro-adaptation produced by drugs as diverse as opiates and psychostimulants is decreased neurogenesis in the sub-granular zone (SGZ). While the role of adult-generated neurons is not clear, their functional integration into hippocampal circuitry raises the possibility that decreased adult SGZ neurogenesis may alter hippocampal function in such a way as to maintain addictive behavior or contribute to relapse. Here, we review the impact of opiates and psychostimulants on the different stages of cell development in the adult brain, as well as the different stages of the addictive process. We discuss how examination of drug-induced alterations of adult neurogenesis advances our understanding of the complex mechanisms by which opiates and psychostimulants affect brain function while also opening avenues for novel ways of assessing the functional role of adult-generated neurons. In addition, we highlight key discrepancies in the field and underscore the necessity to move "beyond BrdU"--beyond merely counting new hippocampal cells labeled with the S phase marker bromodeoxyuridine--so as to probe mechanistic questions about how drug-induced alterations in adult hippocampal neurogenesis occur and what the functional ramifications of alterations in neurogenesis are for addiction.
Collapse
Affiliation(s)
- Amelia J Eisch
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070, USA.
| | | |
Collapse
|
88
|
Abstract
Drug addiction is a chronic disease characterized by compulsive drug use despite the severe negative consequences associated with it. Repeated exposure to drugs of abuse results in molecular adaptations in neuronal signaling pathways, which eventually manifest in the complex behavioral alterations that characterize addiction. These include tolerance, sensitization, dependence, drug craving, and relapse. In this Review, we focus on recent studies highlighting signaling cascades initiated by cocaine, as a representative of a drug of abuse with a defined site of action, and alcohol, as a drug with an undefined primary site of action. Specifically, we describe recent studies that emphasize the role of protein-protein interactions, phosphorylation, and compartmentalization in the molecular mechanisms that result in the cellular and behavioral adaptations that underlie addiction. Signaling cascades that contribute to addiction, as well as those that protect or delay the development of addiction, are presented.
Collapse
Affiliation(s)
- Dorit Ron
- Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, CA 94608, USA.
| | | |
Collapse
|
89
|
Cerezo M, Milanés MV, Laorden ML. Alterations in protein kinase A and different protein kinase C isoforms in the heart during morphine withdrawal. Eur J Pharmacol 2005; 522:9-19. [PMID: 16202991 DOI: 10.1016/j.ejphar.2005.08.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 07/21/2005] [Accepted: 08/15/2005] [Indexed: 10/25/2022]
Abstract
The present study was designed to investigate the possible changes of protein kinase A (PKA) and different isoforms of protein kinase C (PKC): PKC alpha, PKC delta and PKC zeta after naloxone induced morphine withdrawal in the heart. Male rats were implanted with placebo (naïve) or morphine (tolerant/dependent) pellets for 7 days. On day 8 rats received saline s.c. or naloxone (5 mg/kg s.c.). The protein levels of PKA, PKC delta and PKC zeta were significantly up-regulated in the heart from morphine withdrawal rats. By contrast, morphine withdrawal induced down-regulation of PKC alpha. These results suggest that both PKA and PKC may be involved in the cardiac adaptive changes observed during morphine withdrawal.
Collapse
Affiliation(s)
- Manuela Cerezo
- Equip of Cellular and Molecular Pharmacology, University School of Medicine, Murcia, Spain
| | | | | |
Collapse
|
90
|
Benavides M, Laorden ML, Marín MT, Milanés MV. Role of PKC-α,γ isoforms in regulation of c-Fos and TH expression after naloxone-induced morphine withdrawal in the hypothalamic PVN and medulla oblongata catecholaminergic cell groups. J Neurochem 2005; 95:1249-58. [PMID: 16190878 DOI: 10.1111/j.1471-4159.2005.03445.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We previously demonstrated that morphine withdrawal induced hyperactivity of the hypothalamus-pituitary-adrenocortical axis by activation of noradrenergic pathways innervating the hypothalamic paraventricular nucleus (PVN), as evaluated by Fos expression and corticosterone release. The present study was designed to investigate the role of protein kinase C (PKC) in this process by estimating changes in PKCalpha and PKCgamma immunoreactivity, and whether pharmacological inhibition of PKC would attenuate morphine withdrawal-induced c-Fos expression and changes in tyrosine hydroxylase (TH) immunoreactivity levels in the PVN and nucleus tractus solitarius/ ventrolateral medulla (NTS/VLM). Dependence on morphine was induced in rats by 7 day s.c. implantation of morphine pellets. Morphine withdrawal was induced on day 8 by an injection of naloxone. The protein levels of PKCalpha and gamma were significantly down-regulated in the PVN and NTS/VLM from the morphine-withdrawn rats. Morphine withdrawal induced c-Fos expression in the PVN and NTS/VLM, indicating an activation of neurons in those nuclei. TH immunoreactivity was increased in the NTS/VLM after induction of morphine withdrawal, whereas there was a decrease in TH levels in the PVN. Infusion of calphostin C, a selective protein kinase C inhibitor, produced a reduction in the morphine withdrawal-induced c-Fos expression. Additionally, the changes in TH levels in the PVN and NTS/VLM were significantly modified by calphostin C. The present results suggest that activated PKC in the PVN and catecholaminergic brainstem cell groups may be critical for the activation of the hypothalamic-pituitary adrenocortical axis in response to morphine withdrawal.
Collapse
Affiliation(s)
- Marta Benavides
- Equip of Cellular and Molecular Pharmacology, University School of Medicine, Murcia, Spain
| | | | | | | |
Collapse
|
91
|
He DY, McGough NNH, Ravindranathan A, Jeanblanc J, Logrip ML, Phamluong K, Janak PH, Ron D. Glial cell line-derived neurotrophic factor mediates the desirable actions of the anti-addiction drug ibogaine against alcohol consumption. J Neurosci 2005; 25:619-28. [PMID: 15659598 PMCID: PMC1193648 DOI: 10.1523/jneurosci.3959-04.2005] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alcohol addiction manifests as uncontrolled drinking despite negative consequences. Few medications are available to treat the disorder. Anecdotal reports suggest that ibogaine, a natural alkaloid, reverses behaviors associated with addiction including alcoholism; however, because of side effects, ibogaine is not used clinically. In this study, we first characterized the actions of ibogaine on ethanol self-administration in rodents. Ibogaine decreased ethanol intake by rats in two-bottle choice and operant self-administration paradigms. Ibogaine also reduced operant self-administration of ethanol in a relapse model. Next, we identified a molecular mechanism that mediates the desirable activities of ibogaine on ethanol intake. Microinjection of ibogaine into the ventral tegmental area (VTA), but not the substantia nigra, reduced self-administration of ethanol, and systemic administration of ibogaine increased the expression of glial cell line-derived neurotrophic factor (GDNF) in a midbrain region that includes the VTA. In dopaminergic neuron-like SHSY5Y cells, ibogaine treatment upregulated the GDNF pathway as indicated by increases in phosphorylation of the GDNF receptor, Ret, and the downstream kinase, ERK1 (extracellular signal-regulated kinase 1). Finally, the ibogaine-mediated decrease in ethanol self-administration was mimicked by intra-VTA microinjection of GDNF and was reduced by intra-VTA delivery of anti-GDNF neutralizing antibodies. Together, these results suggest that GDNF in the VTA mediates the action of ibogaine on ethanol consumption. These findings highlight the importance of GDNF as a new target for drug development for alcoholism that may mimic the effect of ibogaine against alcohol consumption but avoid the negative side effects.
Collapse
Affiliation(s)
- Dao-Yao He
- Ernest Gallo Research Center, University of California, San Francisco, Emeryville, California 94608, USA
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Hope BT, Crombag HS, Jedynak JP, Wise RA. Neuroadaptations of total levels of adenylate cyclase, protein kinase A, tyrosine hydroxylase, cdk5 and neurofilaments in the nucleus accumbens and ventral tegmental area do not correlate with expression of sensitized or tolerant locomotor responses to cocaine. J Neurochem 2005; 92:536-45. [PMID: 15659224 DOI: 10.1111/j.1471-4159.2004.02891.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neuroadaptations induced by high-dose cocaine treatment have been hypothesized to persist after the cessation of drug treatment and mediate the expression of sensitization and tolerance to cocaine. We looked for evidence of these neuroadaptations in rats receiving more modest behaviorally effective cocaine treatments. Rats were exposed to either a sensitizing regimen of seven once-daily injections of 15 mg/kg cocaine or a tolerance-producing regimen involving a continuous infusion of the same daily dose. We assessed enzyme activity levels of protein kinase A and adenylate cyclase, and protein levels of tyrosine hydroxylase, cdk5 and neurofilaments in the nucleus accumbens and ventral tegmental area. Only protein kinase A activity levels were altered by cocaine treatment, but this alteration persisted for only 7 days, whereas a sensitized locomotor response was still evident at 21 days. Although behavioral tolerance to cocaine was seen the day after the termination of treatment, none of the molecular measures was altered on this or any other day. Thus, although increased protein kinase A activity can temporarily modulate sensitized responses to cocaine, alterations in total levels of the molecules assessed in our study do not correlate with the expression of sensitized or tolerant locomotor responses to cocaine.
Collapse
Affiliation(s)
- B T Hope
- National Institute on Drug Abuse, National Institutes of Health/DHHS, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | | | |
Collapse
|
93
|
McGough NNH, He DY, Logrip ML, Jeanblanc J, Phamluong K, Luong K, Kharazia V, Janak PH, Ron D. RACK1 and brain-derived neurotrophic factor: a homeostatic pathway that regulates alcohol addiction. J Neurosci 2005; 24:10542-52. [PMID: 15548669 PMCID: PMC6730316 DOI: 10.1523/jneurosci.3714-04.2004] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alcoholism is a devastating disease that manifests as uncontrolled drinking. Consumption of alcohol is regulated by neurochemical systems within specific neural circuits, but endogenous systems that may counteract and thus suppress the behavioral effects of ethanol intake are unknown. Here we demonstrate that BDNF plays a role in reducing the behavioral effects of ethanol, including consumption, in rodents. We found that decreasing the levels of BDNF leads to increased behavioral responses to ethanol, whereas increases in the levels of BDNF, mediated by the scaffolding protein RACK1, attenuate these behaviors. Interestingly, we found that acute exposure of neurons to ethanol leads to increased levels of BDNF mRNA via RACK1. Importantly, acute systemic administration of ethanol and voluntary ethanol consumption lead to increased levels of BDNF expression in the dorsal striatum. Taken together, these findings suggest that RACK1 and BDNF are part of a regulatory pathway that opposes adaptations that lead to the development of alcohol addiction.
Collapse
MESH Headings
- Alcohol Drinking/metabolism
- Alcohol Drinking/psychology
- Alcoholism/metabolism
- Alcoholism/psychology
- Animals
- Behavior, Animal/drug effects
- Brain-Derived Neurotrophic Factor/biosynthesis
- Brain-Derived Neurotrophic Factor/physiology
- Cells, Cultured
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Ethanol/administration & dosage
- Ethanol/pharmacology
- Gene Products, tat/genetics
- Hippocampus/cytology
- Hippocampus/drug effects
- Hippocampus/metabolism
- Homeostasis
- Injections, Intraventricular
- Male
- Mice
- Mice, Inbred C57BL
- RNA, Messenger/biosynthesis
- Rats
- Rats, Long-Evans
- Rats, Sprague-Dawley
- Receptors for Activated C Kinase
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Recombinant Fusion Proteins/pharmacology
- Self Administration
Collapse
Affiliation(s)
- Nancy N H McGough
- Ernest Gallo Research Center, University of California, San Francisco, Emeryville, California 94608, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Abstract
Opiate addiction is a central nervous system disorder of unknown mechanism. Neuronal basis of positive reinforcement, which is essential to the action of opioids, relies on activation of dopaminergic neurons resulting in an increased dopamine release in the mesolimbic brain structures. Certain aspects of opioid dependence and withdrawal syndrome are also related to the activity of noradrenergic and serotonergic systems, as well as to both excitatory and inhibitory amino acid and peptidergic systems. The latter pathways have been recently proven to be involved both in the development of dependence and in counteracting the states related to relapse. An important role in neurochemical mechanisms of opioid reward, dependence and vulnerability to addiction has been ascribed to endogenous opioid peptides, particularly those acting via the mu- and kappa-opioid receptors. Opiate abuse leads to adaptive reactions in the nervous system which occur at the cellular and molecular levels. Recent research indicates that intracellular mechanisms of signal transmission-from the receptor, through G proteins, cyclic AMP, MAP kinases to transcription factors--also play an important role in opioid tolerance and dependence. The latter link in this chain of reactions may modify synthesis of target genes and in this manner, it may be responsible for opiate-induced long-lasting neural plasticity.
Collapse
Affiliation(s)
- Ryszard Przewlocki
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland.
| |
Collapse
|
95
|
Bahi A, Dreyer JL. Cocaine-induced expression changes of axon guidance molecules in the adult rat brain. Mol Cell Neurosci 2005; 28:275-91. [PMID: 15691709 DOI: 10.1016/j.mcn.2004.09.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Revised: 09/23/2004] [Accepted: 09/24/2004] [Indexed: 11/23/2022] Open
Abstract
Administration of drugs of abuse induces strong molecular adaptations and plasticity within the mesolimbic dopamine (DA) system, a pathway essential for reward-seeking behavior. Little is known about the specific targets involved in this neuroadaptation process, but there are indications that cocaine and other drugs of abuse share the ability to alter the morphology of neuronal dendrites and spines, the primary site of excitatory synapses in the brain. Axon guidance molecules, the very molecular cues that regulate the formation of axon-target connections during development, may mediate these alterations. To test this hypothesis, we investigated mRNA expression changes of 39 axon guidance molecules, including 17 Semaphorins, 12 Ephs, 8 Ephrins, and 2 neuropilins in the mesolimbic dopamine system of cocaine-treated animals under different paradigms by mean of DNA-Microarray and quantitative real-time PCR. In all cases, strong changes in gene expression are observed, yielding to up or downregulation of these axon guidance molecules. Our data suggest that cocaine treatment induces activation of a complex program of synaptic rearrangements, which may partly recapitulate the plastic changes occurring during development, and may underlie the important neuroplastic adaptations that occur in the reward- and memory-related brain centers following drug action. We conclude that in some brain regions, exposure to psychomotor-stimulant drugs produce expression changes in axon guidance molecules, which may contribute to cognitive deficits associated with drug abuse.
Collapse
Affiliation(s)
- Amine Bahi
- Institute of Biochemistry, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland
| | | |
Collapse
|
96
|
Yeom M, Shim I, Lee HJ, Hahm DH. Proteomic analysis of nicotine-associated protein expression in the striatum of repeated nicotine-treated rats. Biochem Biophys Res Commun 2005; 326:321-8. [PMID: 15582580 DOI: 10.1016/j.bbrc.2004.11.034] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Indexed: 01/26/2023]
Abstract
Through the proteomic analysis using 2-dimensional electrophoresis, the nicotine addiction-associated proteins were extensively screened in the striatum of rat brains. The nicotine addiction was developed by repeated nicotine injection (0.4mg/kg s.c.), twice daily for 7 days, followed by one challenge injection after a 3 day withdrawal period, and then confirmed by observing a 2.3-fold increase in locomoter activity. The 3 up- and 4 down-regulated proteins were selected and identified to be zinc-finger binding protein-89 (ZBP-89), 2'3'-cyclic nucleotide 3'-phosphodiesterase 1, deoxyribonuclease 1-like 3 (DNase1l3), tandem pore domain halothane inhibited K(+) channel (THIK-2), brain-specific hyaluronan-binding protein (BRAL-1), death effector domain-containing DNA binding protein (DEDD), and brain-derived neurotrophic factor (BDNF) by mass spectrophotometric fingerprinting. Among them, the expression patterns of ZEB-89, DNase1l3, THIK-2, DEDD, and BDNF mRNAs were found to be coincident with those of cognate proteins, by using RT-PCR analysis. These proteins could be suggested as drug targets to develop a new therapy for nicotine-associated diseases, as well as the clues to understand the mechanism of nicotine.
Collapse
Affiliation(s)
- Mijung Yeom
- Department of Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Gihung-up, Yongin-si, Gyeonggi-do 449-701, Republic of Korea
| | | | | | | |
Collapse
|
97
|
Benavides M, Laorden ML, Milanés MV. Involvement of 3',5'-cyclic adenosine monophosphate-dependent protein kinase in regulation of Fos expression and tyrosine hydroxylase levels during morphine withdrawal in the hypothalamic paraventricular nucleus and medulla oblongata catecholaminergic cell groups. J Neurochem 2005; 92:246-54. [PMID: 15663473 DOI: 10.1111/j.1471-4159.2004.02865.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Morphine withdrawal stimulates the hypothalamic-pituitary-adrenocortical axis activity by activation of nucleus tractus solitarius (NTS)/ventrolateral medulla (VLM) noradrenergic pathways innervating the hypothalamic paraventricular nucleus (PVN). We investigated whether cAMP-dependent protein kinase (PKA) plays a role in this process by estimating changes in PKA immunoreactivity and the influence of inhibition of PKA on Fos protein expression and tyrosine hydroxylase (TH) immunoreactivity levels in the PVN and NTS/VLM during morphine withdrawal. Dependence on morphine was induced by a 7-day s.c. implantation of morphine pellets. Morphine withdrawal was precipitated on day 8 by an injection of naloxone (5 mg/kg s.c.). When opioid withdrawal was precipitated, an increase in PKA immunoreactivity levels was observed 90 min after naloxone administration in the PVN and NTS/VLM areas. Morphine withdrawal induced expression of Fos in the PVN and NTS/VLM, indicating an activation of neurones in those nuclei. TH immunoreactivity in NTS/VLM was increased 90 min after induction of morphine withdrawal, whereas there was a decrease in TH levels in the PVN at the same time point. When the selective PKA inhibitor HA-1004 was infused it greatly diminished the Fos expression observed in morphine-withdrawn rats. Furthermore, the changes in TH immunoreactivity were significantly modified by infusion of HA-1004. The present findings suggest that an up-regulated PKA-dependent transduction pathway might contribute to the activation of the hypothalamic-pituitary-adrenocortical axis in response to morphine withdrawal.
Collapse
Affiliation(s)
- Marta Benavides
- Equip of Cellular and Molecular Pharmacology, University School of Medicine, Murcia, Spain
| | | | | |
Collapse
|
98
|
Abstract
Biochemical adaptations to drugs of abuse and alcohol are especially profound in midbrain dopaminergic neurons. Long-lasting molecular and structural changes in mesolimbic dopaminergic neurons that result from chronic exposure to drugs of abuse and alcohol are thought to underlie adverse behaviors such as compulsive drug seeking and relapse. Recent studies suggest that a subset of these changes is prevented/reversed by activation of the glial cell line-derived neurotrophic factor (GDNF) signaling pathway. Behavioral effects of drugs of abuse such as cocaine and alcohol are also negatively regulated by GDNF: inhibition of the endogenous GDNF pathway enhances the activity of drugs of abuse, while administration of GDNF reduces the severity of the effects. In this review, we summarize the data implicating GDNF as a negative regulator of drug and alcohol addiction. We also provide evidence to suggest that therapies that activate GDNF signaling may be useful for the treatment of drug and alcohol addiction.
Collapse
Affiliation(s)
- Dorit Ron
- Ernest Gallo Research Center, Department of Neurology, University of California, San Francisco, Emeryville, USA.
| | | |
Collapse
|
99
|
Webster MJ, O'Grady J, Kleinman JE, Weickert CS. Glial fibrillary acidic protein mRNA levels in the cingulate cortex of individuals with depression, bipolar disorder and schizophrenia. Neuroscience 2005; 133:453-61. [PMID: 15885920 DOI: 10.1016/j.neuroscience.2005.02.037] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 01/27/2005] [Accepted: 02/02/2005] [Indexed: 11/29/2022]
Abstract
Recent studies have shown a decrease in glial number and glial fibrillary acidic protein (GFAP) levels in the frontal and cingulate cortices of individuals with mood disorders and schizophrenia. In an attempt to verify and expand these findings we examined GFAP messenger ribonucleic acid (mRNA) levels in postmortem sections of the anterior cingulate cortex (ACC) from the Stanley Neuropathology Consortium (SNC). The consortium consists of 15 cases in each of four groups (schizophrenia, bipolar disorder, non-psychotic depression and unaffected controls). By in situ hybridization, we found higher levels of GFAP mRNA in white matter and at the pial surface as compared with gray matter levels in all cases. In the white matter of ACC we detected a significant effect of diagnosis (P<0.04) with GFAP mRNA levels decreased in individuals with schizophrenia and bipolar disorder as compared with normal controls. In the gray matter there was a significant effect of layer (P<0.01) with the highest levels of GFAP mRNA in layer VI in all groups. As in the white matter, the mean GFAP mRNA levels were decreased in individuals with schizophrenia and bipolar disorder as compared with the unaffected controls, however the difference failed to reach statistical significance. Thus, astrocytes positive for GFAP may contribute to the decrease in glial density previously described in subjects with major mental illness, however the relative contribution of astrocytes may vary with diagnosis.
Collapse
Affiliation(s)
- M J Webster
- Stanley Lab of Brain Research, Department of Psychiatry, Uniformed Services University for the Health Sciences, Bethesda, MD 20814-4799, USA.
| | | | | | | |
Collapse
|
100
|
Kreibich AS, Blendy JA. The Role of cAMP Response Element–Binding Proteins in Mediating Stress‐Induced Vulnerability to Drug Abuse. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2005; 65:147-78. [PMID: 16140056 DOI: 10.1016/s0074-7742(04)65006-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Arati Sadalge Kreibich
- Department of Pharmacology, Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|