51
|
Vieira C, Ferreirinha F, Magalhães-Cardoso MT, Silva I, Marques P, Correia-de-Sá P. Post-inflammatory Ileitis Induces Non-neuronal Purinergic Signaling Adjustments of Cholinergic Neurotransmission in the Myenteric Plexus. Front Pharmacol 2017; 8:811. [PMID: 29167643 PMCID: PMC5682326 DOI: 10.3389/fphar.2017.00811] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/26/2017] [Indexed: 12/11/2022] Open
Abstract
Uncoupling between ATP overflow and extracellular adenosine formation changes purinergic signaling in post-inflammatory ileitis. Adenosine neuromodulation deficits were ascribed to feed-forward inhibition of ecto-5′-nucleotidase/CD73 by high extracellular adenine nucleotides in the inflamed ileum. Here, we hypothesized that inflammation-induced changes in cellular density may also account to unbalance the release of purines and their influence on [3H]acetylcholine release from longitudinal muscle-myenteric plexus preparations of the ileum of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-treated rats. The population of S100β-positive glial cells increase, whereas Ano-1-positive interstitial cells of Cajal (ICCs) diminished, in the ileum 7-days after the inflammatory insult. In the absence of changes in the density of VAChT-positive cholinergic nerves detected by immunofluorescence confocal microscopy, the inflamed myenteric plexus released smaller amounts of [3H]acetylcholine which also became less sensitive to neuronal blockade by tetrodotoxin (1 μM). Instead, [3H]acetylcholine release was attenuated by sodium fluoroacetate (5 mM), carbenoxolone (10 μM) and A438079 (3 μM), which prevent activation of glial cells, pannexin-1 hemichannels and P2X7 receptors, respectively. Sodium fluoroacetate also decreased ATP overflow without significantly affecting the extracellular adenosine levels, thus indicating that surplus ATP release parallels reactive gliosis in post-inflammatory ileitis. Conversely, loss of ICCs may explain the lower amounts of adenosine detected in TNBS-treated preparations, since blockade of Cav3 (T-type) channels existing in ICCs with mibefradil (3 μM) or inhibition of the equilibrative nucleoside transporter 1 with dipyridamole (0.5 μM), both decreased extracellular adenosine. Data indicate that post-inflammatory ileitis operates a shift on purinergic neuromodulation reflecting the upregulation of ATP-releasing enteric glial cells and the depletion of ICCs accounting for decreased adenosine overflow via equilibrative nucleoside transporters.
Collapse
Affiliation(s)
- Cátia Vieira
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Maria T Magalhães-Cardoso
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Isabel Silva
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Patrícia Marques
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
52
|
Terra SA, de Arruda Lourenção PL, G Silva M, A Miot H, Rodrigues MAM. A critical appraisal of the morphological criteria for diagnosing intestinal neuronal dysplasia type B. Mod Pathol 2017; 30:978-985. [PMID: 28304401 DOI: 10.1038/modpathol.2017.4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 01/03/2017] [Accepted: 01/03/2017] [Indexed: 01/23/2023]
Abstract
Intestinal neuronal dysplasia type B is a controversial entity expressed by complex changes in the enteric nervous system. Diagnosis depends on rectal biopsy histopathology and diagnostic criteria, both qualitative and quantitative, have changed over time, hindering the diagnostic practice. We analyzed the morphological criteria for the histological diagnosis of intestinal neuronal dysplasia type B in a series of patients with intestinal neuronal dysplasia type B according to the 1990 Frankfurt Consensus criteria and verified the applicability of the numerical criteria proposed by Meier-Ruge et al in 2004 and 2006. Qualitative criteria adopted for the histological diagnosis of intestinal neuronal dysplasia type B included hyperplasia of the submucous plexus with hyperganglionosis and hypertrophy of the nerve trunks. Quantitative criteria considered more than 20% giant ganglia in the submucosa, with more than eight neurons each on 25 ganglia, and children aged over 1 year. Distal colon surgical specimens from 29 patients, aged 0-16 years, diagnosed with intestinal neuronal dysplasia type B were retrospectively analyzed using sections processed for conventional histology (H&E) and calretinin immunohistochemistry. Hyperplasia of the submucosal nerve plexi with hyperganglionosis and hypertrophy of the nerve trunks was observed in all cases. Ganglia with small, immature neurons were detected in the majority of cases. Quantitative analysis confirmed hyperganglionosis (mean number=10.7 neurons per ganglion) and hypertrophy of the nerve trunks (median=44.6 μm thickness). Neurons showed immunostaining for calretinin, but neuron counts in calretinin-stained sections were lower compared with H&E (P<0.01). No significant differences were verified between children aged under and over 1 year regarding hyperganglionosis (P=0.79), neuron counts (P=0.36), and immature ganglia (P=0.66). Only one patient met the numerical criteria proposed by Meier-Ruge et al in 2004 and 2006. In conclusion, the numerical criteria showed limited applicability when transposed to conventional histopathology. Children aged over 1 year presented very similar histological features of neuronal immaturity to younger children, questioning the need for an age criterion when diagnosing intestinal neuronal dysplasia type B.
Collapse
Affiliation(s)
- Simone A Terra
- Department of Pathology, Botucatu School of Medicine, São Paulo State University (Unesp), Botucatu, Brazil
| | - Pedro L de Arruda Lourenção
- Department of Surgery, Division of Pediatric Surgery, Botucatu School of Medicine, São Paulo State University (Unesp), Botucatu, Brazil
| | - Márcia G Silva
- Department of Pathology, Botucatu School of Medicine, São Paulo State University (Unesp), Botucatu, Brazil
| | - Hélio A Miot
- Department of Pathology, Botucatu School of Medicine, São Paulo State University (Unesp), Botucatu, Brazil
| | - Maria A M Rodrigues
- Department of Pathology, Botucatu School of Medicine, São Paulo State University (Unesp), Botucatu, Brazil
| |
Collapse
|
53
|
Spencer NJ, Keating DJ. Is There a Role for Endogenous 5-HT in Gastrointestinal Motility? How Recent Studies Have Changed Our Understanding. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 891:113-22. [PMID: 27379639 DOI: 10.1007/978-3-319-27592-5_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Over the past few years, there have been dramatic changes in our understanding of the role of endogenous 5-hydroxytryptamine (5-HT) in the generation of gastrointestinal (GI) motility patterns in the small and large intestine. The idea that endogenous 5-HT played a major role in the generation of peristalsis in the small intestine was first proposed in the mid 1950s, after it was discovered that endogenous 5-HT could be released from the mucosa at a similar time that peristalsis occurred; and that exogenous 5-HT could potently stimulate peristalsis. The fact that exogenous 5-HT stimulated peristalsis and that there was a similarity in timing between the release of 5-HT from the mucosa and the onset of peristalsis led investigators to propose that release of endogenous 5-HT from the mucosa was causally related to the generation of peristalsis. In further support of this, other studies showed that selective 5-HT antagonists could inhibit or block peristalsis, and other motor patterns, such as the migrating motor complex. Taken together, based on these findings, some laboratories believed that endogenous 5-HT (synthesized in the gut wall) was an important mediator, or initiator, of different propulsive motor patterns in the lower GI tract. This notion changed dramatically in the past few years, however, after it was discovered that removal of the mucosa abolished all cyclical release of endogenous 5-HT, but did not block peristalsis, nor the cyclical migrating complex. Furthermore, other laboratories revealed that genetic deletion of the gene tryptophan hydroxylase 1 (TPH-1) (that synthesizes endogenous 5-HT in the mucosa) actually had no inhibitory effect on transit of intestinal contents in live animals. Then, perhaps one of the most startling of all observations was the discovery that selective 5-HT receptor antagonists actually have the same inhibitory effects on peristalsis and the migrating complex in segments of intestine that had been depleted of all endogenous 5-HT. Taken together, these recent findings have led to a major revision in our understanding of the functional role of endogenous 5-HT in the generation of propulsive motor patterns in the lower GI tract. This review will focus on how our understanding of endogenous 5-HT in the GI tract has changed substantially in recent times.
Collapse
Affiliation(s)
- Nick J Spencer
- Department of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University of South Australia, Adelaide, SA, Australia.
| | - Damien J Keating
- Department of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
54
|
Shajib MS, Baranov A, Khan WI. Diverse Effects of Gut-Derived Serotonin in Intestinal Inflammation. ACS Chem Neurosci 2017; 8:920-931. [PMID: 28288510 DOI: 10.1021/acschemneuro.6b00414] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The gut is the largest producer of serotonin or 5-hydroxytryptamine (5-HT) in the human body, and 5-HT has been recognized as an important signaling molecule in the gut for decades. There are two distinct sources of enteric 5-HT. Mucosal 5-HT is predominantly produced by enterochromaffin (EC) cells of the gastrointestinal (GI) tract, and neuronal 5-HT in the gut is produced by serotonergic neurons of the enteric nervous system (ENS). The quantity of mucosal 5-HT produced vastly eclipses the amount of neuronal 5-HT in the gut. Though it is difficult to separate the functions of neuronal and mucosal 5-HT, in the normal gut both types of enteric 5-HT work synergistically playing a prominent role in the maintenance of GI functions. In inflammatory conditions of the gut, like inflammatory bowel disease (IBD) recent studies have revealed new diverse functions of enteric 5-HT. Mucosal 5-HT plays an important role in the production of pro-inflammatory mediators from immune cells, and neuronal 5-HT provides neuroprotection in the ENS. Based on searches for terms such as "5-HT", "EC cell", "ENS", and "inflammation" in pubmed.gov as well as by utilizing pertinent reviews, the current review aims to provide an update on the role of enteric 5-HT and its immune mediators in the context of intestinal inflammation.
Collapse
Affiliation(s)
- Md. Sharif Shajib
- Farncombe Family Digestive Health Research Institute, Hamilton, Ontario L8S
4K1, Canada
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Adriana Baranov
- Farncombe Family Digestive Health Research Institute, Hamilton, Ontario L8S
4K1, Canada
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Waliul I. Khan
- Farncombe Family Digestive Health Research Institute, Hamilton, Ontario L8S
4K1, Canada
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4K1, Canada
- Hamilton
Regional Laboratory Medicine Program, Hamilton Health Sciences, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
55
|
Martin AM, Young RL, Leong L, Rogers GB, Spencer NJ, Jessup CF, Keating DJ. The Diverse Metabolic Roles of Peripheral Serotonin. Endocrinology 2017; 158:1049-1063. [PMID: 28323941 DOI: 10.1210/en.2016-1839] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 02/23/2017] [Indexed: 02/07/2023]
Abstract
Serotonin (5-hydroxytryptamine or 5-HT) is a multifunctional bioamine with important signaling roles in a range of physiological pathways. Almost all of the 5-HT in our bodies is synthesized in specialized enteroendocrine cells within the gastrointestinal (GI) mucosa called enterochromaffin (EC) cells. These cells provide all of our circulating 5-HT. We have long appreciated the important contributions of 5-HT within the gut, including its role in modulating GI motility. However, evidence of the physiological and clinical significance of gut-derived 5-HT outside of the gut has recently emerged, implicating 5-HT in regulation of glucose homeostasis, lipid metabolism, bone density, and diseases associated with metabolic syndrome, such as obesity and type 2 diabetes. Although a new picture has developed in the last decade regarding the various metabolic roles of peripheral serotonin, so too has our understanding of the physiology of EC cells. Given that they are scattered throughout the lining of the GI tract within the epithelial cell layer, these cells are typically difficult to study. Advances in isolation procedures now allow the study of pure EC-cell cultures and single cells, enabling studies of EC-cell physiology to occur. EC cells are sensory cells that are capable of integrating cues from ingested nutrients, the enteric nervous system, and the gut microbiome. Thus, levels of peripheral 5-HT can be modulated by a multitude of factors, resulting in both local and systemic effects for the regulation of a raft of physiological pathways related to metabolism and obesity.
Collapse
Affiliation(s)
- Alyce M Martin
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide 5042, Australia
| | - Richard L Young
- Nutrition and Metabolism, South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5001, Australia
- Adelaide Medical School, University of Adelaide, Adelaide 5005, Australia
| | - Lex Leong
- Infection and Immunity, SAHMRI, Adelaide 5001, Australia
- SAHMRI Microbiome Research Laboratory, School of Medicine, Flinders University of South Australia, Adelaide 5042, Australia
| | - Geraint B Rogers
- Infection and Immunity, SAHMRI, Adelaide 5001, Australia
- SAHMRI Microbiome Research Laboratory, School of Medicine, Flinders University of South Australia, Adelaide 5042, Australia
| | - Nick J Spencer
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide 5042, Australia
| | - Claire F Jessup
- Adelaide Medical School, University of Adelaide, Adelaide 5005, Australia
- Discipline of Anatomy and Histology, Flinders University of South Australia, Adelaide 5042, Australia
| | - Damien J Keating
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide 5042, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5001, Australia
| |
Collapse
|
56
|
Sharrad DF, Chen BN, Gai WP, Vaikath N, El-Agnaf OM, Brookes SJH. Rotenone and elevated extracellular potassium concentration induce cell-specific fibrillation of α-synuclein in axons of cholinergic enteric neurons in the guinea-pig ileum. Neurogastroenterol Motil 2017; 29. [PMID: 27997067 DOI: 10.1111/nmo.12985] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 10/03/2016] [Accepted: 10/03/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Parkinson's disease is a progressive neurodegenerative disorder that results in the widespread loss of select classes of neurons throughout the nervous system. The pathological hallmarks of Parkinson's disease are Lewy bodies and neurites, of which α-synuclein fibrils are the major component. α-Synuclein aggregation has been reported in the gut of Parkinson's disease patients, even up to a decade before motor symptoms, and similar observations have been made in animal models of disease. However, unlike the central nervous system, the nature of α-synuclein species that form these aggregates and the classes of neurons affected in the gut are unclear. We have previously reported selective expression of α-synuclein in cholinergic neurons in the gut (J Comp Neurol. 2013; 521:657), suggesting they may be particularly vulnerable to degeneration in Parkinson's disease. METHODS In this study, we used immunohistochemistry to detect α-synuclein oligomers and fibrils via conformation-specific antibodies after rotenone treatment or prolonged exposure to high [K+ ] in ex vivo segments of guinea-pig ileum maintained in organotypic culture. KEY RESULTS Rotenone and prolonged raising of [K+ ] caused accumulation of α-synuclein fibrils in the axons of cholinergic enteric neurons. This took place in a time- and, in the case of rotenone, concentration-dependent manner. Rotenone also caused selective necrosis, indicated by increased cellular autofluorescence, of cholinergic enteric neurons, labeled by ChAT-immunoreactivity, also in a concentration-dependent manner. CONCLUSIONS & INFERENCES To our knowledge, this is the first report of rotenone causing selective loss of a neurochemical class in the enteric nervous system. Cholinergic enteric neurons may be particularly susceptible to Lewy pathology and degeneration in Parkinson's disease.
Collapse
Affiliation(s)
- D F Sharrad
- Discipline of Human Physiology, FMST, School of Medicine, Flinders University, Bedford Park, SA, Australia
| | - B N Chen
- Discipline of Human Physiology, FMST, School of Medicine, Flinders University, Bedford Park, SA, Australia
| | - W P Gai
- Discipline of Human Physiology, FMST, School of Medicine, Flinders University, Bedford Park, SA, Australia
| | - N Vaikath
- Neurological Disorders Center, Qatar Biomedical Research Institute, College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, Doha, Qatar
| | - O M El-Agnaf
- Neurological Disorders Center, Qatar Biomedical Research Institute, College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, Doha, Qatar
| | - S J H Brookes
- Discipline of Human Physiology, FMST, School of Medicine, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
57
|
Spencer NJ, Zagorodnyuk V, Brookes SJ, Hibberd T. Spinal afferent nerve endings in visceral organs: recent advances. Am J Physiol Gastrointest Liver Physiol 2016; 311:G1056-G1063. [PMID: 27856418 DOI: 10.1152/ajpgi.00319.2016] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/02/2016] [Indexed: 01/31/2023]
Abstract
Spinal afferent neurons play a major role in detection and transduction of painful stimuli from internal (visceral) organs. Recent technical advances have made it possible to visualize the endings of spinal afferent axons in visceral organs. Although it is well known that the sensory nerve cell bodies of spinal afferents reside within dorsal root ganglia (DRG), identifying their endings in internal organs has been especially challenging because of a lack of techniques to distinguish them from endings of other extrinsic and intrinsic neurons (sympathetic, parasympathetic, and enteric). We recently developed a surgical approach in live mice that allows selective labeling of spinal afferent axons and their endings, revealing a diverse array of different types of varicose and nonvaricose terminals in visceral organs, particularly the large intestine. In total, 13 different morphological types of endings were distinguished in the mouse distal large intestine, originating from lumbosacral DRG. Interestingly, the stomach, esophagus, bladder, and uterus had less diversity in their types of spinal afferent endings. Taken together, spinal afferent endings (at least in the large intestine) appear to display greater morphological diversity than vagal afferent endings that have previously been extensively studied. We discuss some of the new insights that these findings provide.
Collapse
Affiliation(s)
- Nick J Spencer
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University of South Australia, Adelaide, Australia
| | - Vladimir Zagorodnyuk
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University of South Australia, Adelaide, Australia
| | - Simon J Brookes
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University of South Australia, Adelaide, Australia
| | - Tim Hibberd
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University of South Australia, Adelaide, Australia
| |
Collapse
|
58
|
Hughes PA, Costello SP, Bryant RV, Andrews JM. Opioidergic effects on enteric and sensory nerves in the lower GI tract: basic mechanisms and clinical implications. Am J Physiol Gastrointest Liver Physiol 2016; 311:G501-13. [PMID: 27469369 DOI: 10.1152/ajpgi.00442.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 07/21/2016] [Indexed: 01/31/2023]
Abstract
Opioids are one of the most prescribed drug classes for treating acute pain. However, chronic use is often associated with tolerance as well as debilitating side effects, including nausea and dependence, which are mediated by the central nervous system, as well as constipation emerging from effects on the enteric nervous system. These gastrointestinal (GI) side effects limit the usefulness of opioids in treating pain in many patients. Understanding the mechanism(s) of action of opioids on the nervous system that shows clinical benefit as well as those that have unwanted effects is critical for the improvement of opioid drugs. The opioidergic system comprises three classical receptors (μ, δ, κ) and a nonclassical receptor (nociceptin), and each of these receptors is expressed to varying extents by the enteric and intestinal extrinsic sensory afferent nerves. The purpose of this review is to discuss the role that the opioidergic system has on enteric and extrinsic afferent nerves in the lower GI tract in health and diseases of the lower GI tract, particularly inflammatory bowel disease and irritable bowel syndrome, and the implications of opioid treatment on clinical outcomes. Consideration is also given to emerging developments in our understanding of the immune system as a novel source of endogenous opioids and the mechanisms underlying opioid tolerance, including the potential influence of opioid receptor splice variants and heteromeric complexes.
Collapse
Affiliation(s)
- Patrick A Hughes
- Centre for Nutrition and Gastrointestinal Disease, Department of Medicine, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia;
| | - Samuel P Costello
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia; and Department of Gastroenterology, The Queen Elizabeth Hospital, Woodville, South Australia, Australia
| | - Robert V Bryant
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia; and
| | - Jane M Andrews
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia; and
| |
Collapse
|
59
|
Spencer NJ, Sia TC, Brookes SJ, Costa M, Keating DJ. CrossTalk opposing view: 5-HT is not necessary for peristalsis. J Physiol 2016; 593:3229-31. [PMID: 26228548 DOI: 10.1113/jp270183] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/06/2015] [Indexed: 01/12/2023] Open
Affiliation(s)
- Nick J Spencer
- Department of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia
| | - Tiong Cheng Sia
- Department of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia
| | - Simon J Brookes
- Department of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia
| | - Marcello Costa
- Department of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia
| | - Damien J Keating
- Department of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia
| |
Collapse
|
60
|
Enteric nervous system assembly: Functional integration within the developing gut. Dev Biol 2016; 417:168-81. [PMID: 27235816 DOI: 10.1016/j.ydbio.2016.05.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/26/2016] [Accepted: 05/24/2016] [Indexed: 02/08/2023]
Abstract
Co-ordinated gastrointestinal function is the result of integrated communication between the enteric nervous system (ENS) and "effector" cells in the gastrointestinal tract. Unlike smooth muscle cells, interstitial cells, and the vast majority of cell types residing in the mucosa, enteric neurons and glia are not generated within the gut. Instead, they arise from neural crest cells that migrate into and colonise the developing gastrointestinal tract. Although they are "later" arrivals into the developing gut, enteric neural crest-derived cells (ENCCs) respond to many of the same secreted signalling molecules as the "resident" epithelial and mesenchymal cells, and several factors that control the development of smooth muscle cells, interstitial cells and epithelial cells also regulate ENCCs. Much progress has been made towards understanding the migration of ENCCs along the gastrointestinal tract and their differentiation into neurons and glia. However, our understanding of how enteric neurons begin to communicate with each other and extend their neurites out of the developing plexus layers to innervate the various cell types lining the concentric layers of the gastrointestinal tract is only beginning. It is critical for postpartum survival that the gastrointestinal tract and its enteric circuitry are sufficiently mature to cope with the influx of nutrients and their absorption that occurs shortly after birth. Subsequently, colonisation of the gut by immune cells and microbiota during postnatal development has an important impact that determines the ultimate outline of the intrinsic neural networks of the gut. In this review, we describe the integrated development of the ENS and its target cells.
Collapse
|
61
|
PEREIRA RENATAV, LINDEN DAVIDR, MIRANDA-NETO MARCÍLIOH, ZANONI JACQUELINEN. Differential effects in CGRPergic, nitrergic, and VIPergic myenteric innervation in diabetic rats supplemented with 2% L-glutamine. ACTA ACUST UNITED AC 2016; 88 Suppl 1:609-22. [DOI: 10.1590/0001-3765201620150228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/03/2015] [Indexed: 12/29/2022]
Abstract
ABSTRACT The objective of this study was to investigate the effects of 2% L-glutamine supplementation on myenteric innervation in the ileum of diabetic rats, grouped as follows: normoglycemic (N); normoglycemic supplemented with L-glutamine (NG); diabetic (D); and diabetic supplemented with L-glutamine (DG). The ileums were subjected to immunohistochemical techniques to localize neurons immunoreactive to HuC/D protein (HuC/D-IR) and neuronal nitric oxide synthase enzyme (nNOS-IR) and to analyze varicosities immunoreactive to vasoactive intestinal polypeptide (VIP-IR) and calcitonin gene-related peptide (CGRP-IR). L-Glutamine in the DG group (i) prevented the increase in the cell body area of nNOS-IR neurons, (ii) prevented the increase in the area of VIP-IR varicosities, (iii) did not prevent the loss of HuC/D-IR and nNOS-IR neurons per ganglion, and (iv) reduced the size of CGRP-IR varicosities. L-Glutamine in the NG group reduced (i) the number of HuC/D-IR and nNOS-IR neurons per ganglion, (ii) the cell body area of nNOS-IR neurons, and (iii) the size of VIP-IR and CGRP-IR varicosities. 2% L-glutamine supplementation exerted differential neuroprotective effects in experimental diabetes neuropathy that depended on the type of neurotransmitter analyzed. However, the effects of this dose of L-glutamine on normoglycemic animals suggests there are additional actions of this beyond its antioxidant capacity.
Collapse
|
62
|
Young HM, Stamp LA, McKeown SJ. ENS Development Research Since 1983: Great Strides but Many Remaining Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 891:53-62. [PMID: 27379634 DOI: 10.1007/978-3-319-27592-5_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The first enteric nervous system (ENS) conference, organized by Marcello Costa and John Furness, was held in Adelaide, Australia in 1983. In this article, we review what was known about the development of the ENS in 1983 and then summarize some of the major advances in the field since 1983.
Collapse
Affiliation(s)
- Heather M Young
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Lincon A Stamp
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Sonja J McKeown
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, 3010, Australia
| |
Collapse
|
63
|
Advanced 3D Optical Microscopy in ENS Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 891:193-9. [DOI: 10.1007/978-3-319-27592-5_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
64
|
Costa M. Memories and Promises of the Enteric Nervous System and Its Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 891:1-9. [PMID: 27379629 DOI: 10.1007/978-3-319-27592-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This is a very personal reminiscence of the long period of Enteric Nervous System research in which I have been involved. I started to work on the gut in the early 60s really because in Turin when I arrived from Argentina, where my family migrated temporarily after the WWII, nobody was seriously working on the brain. In Anatomy they were studying the neural "intramural plexuses" and that for me was close enough to the nervous system. I grew up in the mountains near Turin near the French border where our ex-family house still bears our name. I joined the Department of Anatomy as an intern student and I was privileged to seat at a desk where a previous generation of young scientists, who studied under the professor of Anatomy A. Levi, the founder of the methods for culturing neural tissue. They were Salvador Luria, Renato Dulbecco and Rita Levi-Montalcini, who, after migrating to the USA, were each were given the Noble prize.
Collapse
Affiliation(s)
- Marcello Costa
- Department of Human Physiology, School of Medicine, Flinders University, Adelaide, SA, Australia.
| |
Collapse
|
65
|
Spencer NJ. Constitutively Active 5-HT Receptors: An Explanation of How 5-HT Antagonists Inhibit Gut Motility in Species Where 5-HT is Not an Enteric Neurotransmitter? Front Cell Neurosci 2015; 9:487. [PMID: 26732863 PMCID: PMC4683187 DOI: 10.3389/fncel.2015.00487] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/30/2015] [Indexed: 11/19/2022] Open
Abstract
Antagonists of 5-Hydroxytryptamine (5-HT) receptors are well known to inhibit gastrointestinal (GI)-motility and transit in a variety of mammals, including humans. Originally, these observations had been interpreted by many investigators (including us) as evidence that endogenous 5-HT plays a major role in GI motility. This seemed a logical assumption. However, the story changed dramatically after recent studies revealed that 5-HT antagonists still blocked major GI motility patterns (peristalsis and colonic migrating motor complexes) in segments of intestine depleted of all 5-HT. Then, these results were further supported by Dr. Gershons' laboratory, which showed that genetic deletion of all genes that synthesizes 5-HT had minor, or no inhibitory effects on GI transit in vivo. If 5-HT was essential for GI motility patterns and transit, then one would expect major disruptions in motility and transit when 5-HT synthesis was genetically ablated. This does not occur. The inhibitory effects of 5-HT antagonists on GI motility clearly occur independently of any 5-HT in the gut. Evidence now suggests that 5-HT antagonists act on 5-HT receptors in the gut which are constitutively active, and don't require 5-HT for their activation. This would explain a long-standing mystery of how 5-HT antagonists inhibit gut motility in species like mice, rats, and humans where 5-HT is not an enteric neurotransmitter. Studies are now increasingly demonstrating that the presence of a neurochemical in enteric neurons does not mean they function as neurotransmitters. Caution should be exercised when interpreting any inhibitory effects of 5-HT antagonists on GI motility.
Collapse
Affiliation(s)
- Nick J Spencer
- Department of Human Physiology and Centre for Neuroscience, Flinders University of South Australia Adelaide, SA, Australia
| |
Collapse
|
66
|
Kestell GR, Anderson RL, Clarke JN, Haberberger RV, Gibbins IL. Primary afferent neurons containing calcitonin gene-related peptide but not substance P in forepaw skin, dorsal root ganglia, and spinal cord of mice. J Comp Neurol 2015; 523:2555-69. [PMID: 26010480 DOI: 10.1002/cne.23804] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 04/20/2015] [Accepted: 04/29/2015] [Indexed: 12/11/2022]
Abstract
In mice dorsal root ganglia (DRG), some neurons express calcitonin gene-related peptide (CGRP) without substance P (SP; CGRP(+) SP(-) ). The projections and functions of these neurons are unknown. Therefore, we combined in vitro axonal tracing with multiple-labeling immunohistochemistry to neurochemically define these neurons and characterize their peripheral and central projections. Cervical spinal cord, DRG, and forepaw skin were removed from C57Bl/6 mice and multiple-labeled for CGRP, SP, and either marker for the sensory neuron subpopulations transient receptor potential vanilloid type 1 (TRPV1), neurofilament 200 (NF200), or vesicular glutamate transporter 2 (VGluT1). To determine central projections of CGRP(+) SP(-) neurons, Neurobiotin (NB) was applied to the C7 ventral ramus and visualized in DRG and spinal cord sections colabeled for CGRP and SP. Half (50%) of the CGRP-immunoreactive DRG neurons lacked detectable SP and had a mean soma size of 473 ± 14 μm(2) (n = 5); 89% of the CGRP(+) SP(-) neurons expressed NF200 (n = 5), but only 32% expressed TRPV1 (n = 5). Cutaneous CGRP(+) SP(-) fibers were numerous within dermal papillae and around hair shafts (n = 4). CGRP(+) SP(-) boutons were prevalent in lateral lamina I and in lamina IV/V of the dorsal horn (n = 5). NB predominantly labeled fibers penetrating lamina IV/V, 6 ± 3% contained CGRP (n = 5), and 21 ± 2% contained VGluT1 (n = 3). CGRP(+) SP(-) afferent neurons are likely to be non-nociceptive. Their soma size, neurochemical profile, and peripheral and central targets suggest that CGRP(+) SP(-) neurons are polymodal mechanoceptors.
Collapse
Affiliation(s)
- Garreth R Kestell
- Department of Anatomy and Histology, and Centre for Neuroscience, Flinders University, Adelaide, South Australia, 5001, Australia
| | - Rebecca L Anderson
- Department of Anatomy and Histology, and Centre for Neuroscience, Flinders University, Adelaide, South Australia, 5001, Australia
| | - Jennifer N Clarke
- Department of Anatomy and Histology, and Centre for Neuroscience, Flinders University, Adelaide, South Australia, 5001, Australia
| | - Rainer V Haberberger
- Department of Anatomy and Histology, and Centre for Neuroscience, Flinders University, Adelaide, South Australia, 5001, Australia
| | - Ian L Gibbins
- Department of Anatomy and Histology, and Centre for Neuroscience, Flinders University, Adelaide, South Australia, 5001, Australia
| |
Collapse
|
67
|
Galligan JJ. HIV, opiates, and enteric neuron dysfunction. Neurogastroenterol Motil 2015; 27:449-54. [PMID: 25817054 PMCID: PMC4380218 DOI: 10.1111/nmo.12539] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/09/2015] [Indexed: 12/20/2022]
Abstract
Human immune deficient virus (HIV) is an immunosuppressive virus that targets CD4(+) T-lymphocytes. HIV infections cause increased susceptibility to opportunistic infections and cancer. HIV infection can also alter central nervous system (CNS) function causing cognitive impairment. HIV does not infect neurons but it does infect astrocytes and microglia in the CNS. HIV can also infect enteric glia initiating an intestinal inflammatory response which causes enteric neural injury and gut dysfunction. Part of the inflammatory response is HIV induced production of proteins including, Transactivator of transcription (Tat) which contribute to neuronal injury after release from HIV infected glial cells. A risk factor for HIV infection is intravenous drug use with contaminated needles and chronic opiate use can exacerbate neural injury in the nervous system. While most research focuses on the actions of Tat and other HIV related proteins and opiates on the brain, recent data indicate that Tat can cause intestinal inflammation and disruption of enteric neuron function, including alteration of Na(+) channel activity and action potential generation. A paper published in this issue of Neurogastroenterology and Motility extends these findings by identifying an interaction between Tat and morphine on enteric neuron Na(+) channels and on intestinal motility in vivo using a Tat expressing transgenic mouse model. These new data show that Tat protein can enhance the inhibitory actions of morphine on action potential generation and propulsive motility. These findings are important to our understanding of how HIV causes diarrhea in infected patients and for the use of opioid drugs to treat HIV-induced diarrhea.
Collapse
Affiliation(s)
- James J. Galligan
- Neuroscience Program and the Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
68
|
Cascio MG, Valeri D, Tucker SJ, Marini P. A1-adenosine acute withdrawal response and cholecystokinin-8 induced contractures are regulated by Ca(2+)- and ATP-activated K(+) channels. Pharmacol Res 2015; 95-96:82-91. [PMID: 25836919 DOI: 10.1016/j.phrs.2015.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/23/2015] [Accepted: 03/23/2015] [Indexed: 01/29/2023]
Abstract
In isolated guinea-pig ileum (GPI), the A1-adenosine acute withdrawal response is under the control of several neuronal signalling systems, including the μ/κ-opioid and the cannabinoid CB1 systems. It is now well established that after the stimulation of the A1-adenosine system, the indirect activation of both μ/κ-opioid and CB1 systems is prevented by the peptide cholecystokinin-8 (CCk-8). In the present study, we have investigated the involvement of the Ca(2+)/ATP-activated K(+) channels in the regulation of both acute A1-withdrawal and CCk-8-induced contractures in the GPI preparation. Interestingly, we found that: (a) the A1-withdrawal contracture is inhibited by voltage dependent Ca(2+)-activated K(+) channels, Kv, while it is enhanced by the voltage independent Ca(2+)-activated K(+) channels, SKCa; (b) in the presence of CCk-8, the inhibitory effect of the A1 agonist, CPA, on the peptide induced contracture is significantly enhanced by the voltage independent Ca(2+)-activated K(+) channel, SKCa; and (c) the A1-withdrawal contracture precipitated in the presence of CCk-8 is controlled by the ATP-sensitive potassium channels, KATP. Our data suggest, for the first time, that both Ca(2+)- and ATP-activated K(+) channels are involved in the regulation of both A1-withdrawal precipitated and CCk-8 induced contractures.
Collapse
Affiliation(s)
- Maria Grazia Cascio
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Daniela Valeri
- Department of Human Physiology and Pharmacology 'Vittorio Erspamer', University of Rome "La Sapienza", Rome, Italy
| | - Steven J Tucker
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Pietro Marini
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
69
|
Wilhelm M, Lawrence JJ, Gábriel R. Enteric plexuses of two choline-acetyltransferase transgenic mouse lines: chemical neuroanatomy of the fluorescent protein-expressing nerve cells. Brain Res Bull 2015; 111:76-83. [PMID: 25592616 DOI: 10.1016/j.brainresbull.2015.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/23/2014] [Accepted: 01/05/2015] [Indexed: 12/31/2022]
Abstract
We studied cholinergic circuit elements in the enteric nervous system (ENS) of two distinct transgenic mouse lines in which fluorescent protein expression was driven by the choline-acetyltransferase (ChAT) promoter. In the first mouse line, green fluorescent protein was fused to the tau gene. This construct allowed the visualization of the fiber tracts and ganglia, however the nerve cells were poorly resolved. In the second mouse line (ChATcre-YFP), CRE/loxP recombination yielded cytosolic expression of yellow fluorescent protein (YFP). In these preparations the morphology of enteric neurons could be well studied. We also determined the neurochemical identity of ENS neurons in muscular and submucous layers using antibodies against YFP, calretinin (CALR), calbindin (CALB), and vasoactive intestinal peptide (VIP). Confocal microscopic imaging was used to visualize fluorescently-conjugated secondary antibodies. In ChATcre-YFP preparations, YFP was readily apparent in somatodendritic regions of ENS neurons. In the myenteric plexus, YFP/CALR/VIP staining revealed that 34% of cholinergic cells co-labeled with CALR. Few single-stained CR-positive cells were observed. Neither YFP nor CALR co-localized with VIP. In GFP/CALB/CALR staining, all co-localization combinations were represented. In the submucosal plexus, YFP/CALR/VIP staining revealed discrete neuronal populations. However, in separate preparations, double labeling was observed for YFP/CALR and CALR/VIP. In YFP/CALR/CALB staining, all combinations of double staining and triple labeling were verified. In conclusion, the neurochemical coding of ENS neurons in these mouse lines is consistent with many observations in non-transgenic animals. Thus, they provide useful tools for physiological and pharmacological studies on distinct neurochemical subtypes of ENS neurons.
Collapse
Affiliation(s)
- Márta Wilhelm
- Institute of Sport Sciences and Physical Education, University of Pécs, Pécs, Hungary
| | - J Josh Lawrence
- COBRE Center for Structural and Functional Neuroscience; Department of Biomedical Sciences, University of Montana, Missoula, Montana, USA
| | - Robert Gábriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.
| |
Collapse
|
70
|
Li JP, Wang XY, Gao CJ, Liao YH, Qu J, He ZY, Zhang T, Wang GD, Li YQ. Neurochemical phenotype and function of endomorphin 2-immunopositive neurons in the myenteric plexus of the rat colon. Front Neuroanat 2014; 8:149. [PMID: 25565974 PMCID: PMC4267282 DOI: 10.3389/fnana.2014.00149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 11/22/2014] [Indexed: 12/20/2022] Open
Abstract
The distribution and activity of endomorphins (EMs), which are endogenous μ-opioid receptor (MOR) ligands in the gastrointestinal tract (GI), are yet to be elucidated. The current study aimed to shed light on this topic. EM2 was expressed in the enteric neurons in the myenteric plexus of the mid-colon. Of the EM2-immunoreactive (EM2-IR) neurons, 53 ± 4.6%, 26 ± 4.5%, 26 ± 2.8% and 49 ± 4.2% displayed immunopositive staining for choline acetyl transferase (ChAT), substance P (SP), vasoactive intestinal peptide (VIP) and nitric oxide synthetase (NOS), respectively. A bath application of EM2 (2 μM) enhanced spontaneous contractile amplitude and tension, which were reversed by β-FNA (an antagonist of MOR) but not NG-nitro-L-arginine methyl ether (L-NAME, a non-selective inhibitor of NOS) or VIP6-28 (an antagonist of the VIP receptor) in the colonic strips. EM2 significantly suppressed inhibitory junction potentials (IJPs) in 14 of the 17 examined circular muscle cells, and this effect was not antagonized by preincubation in L-NAME. EM2 was widely expressed in interneurons and motor neurons in the myenteric plexus and presynaptically inhibited fast IJPs, thereby enhancing spontaneous contraction and tension in the colonic smooth muscle.
Collapse
Affiliation(s)
- Jun-Ping Li
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi’an, China
- Department of Anatomy, Histology and Embryology, Ningxia Medical UniversityYinchuan, China
| | - Xi-Yu Wang
- Department of Physiology and Cell Biology, Medical Center, Ohio State UniversityColumbus, OH, USA
| | - Chang-Jun Gao
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi’an, China
| | - Yong-Hui Liao
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi’an, China
| | - Juan Qu
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi’an, China
| | - Zhong-Yi He
- Department of Anatomy, Histology and Embryology, Ningxia Medical UniversityYinchuan, China
| | - Ting Zhang
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi’an, China
| | - Guo-Du Wang
- Department of Physiology and Cell Biology, Medical Center, Ohio State UniversityColumbus, OH, USA
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi’an, China
| |
Collapse
|
71
|
Chen BN, Sharrad DF, Hibberd TJ, Zagorodnyuk VP, Costa M, Brookes SJ. Neurochemical characterization of extrinsic nerves in myenteric ganglia of the guinea pig distal colon. J Comp Neurol 2014; 523:742-56. [DOI: 10.1002/cne.23704] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/24/2014] [Accepted: 10/29/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Bao Nan Chen
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| | - Dale F. Sharrad
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| | - Timothy J. Hibberd
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| | - Vladimir P. Zagorodnyuk
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| | - Marcello Costa
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| | - Simon J.H. Brookes
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| |
Collapse
|
72
|
Spencer NJ, Kyloh M, Duffield M. Identification of different types of spinal afferent nerve endings that encode noxious and innocuous stimuli in the large intestine using a novel anterograde tracing technique. PLoS One 2014; 9:e112466. [PMID: 25383884 PMCID: PMC4226564 DOI: 10.1371/journal.pone.0112466] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/10/2014] [Indexed: 11/18/2022] Open
Abstract
In mammals, sensory stimuli in visceral organs, including those that underlie pain perception, are detected by spinal afferent neurons, whose cell bodies lie in dorsal root ganglia (DRG). One of the major challenges in visceral organs has been how to identify the different types of nerve endings of spinal afferents that transduce sensory stimuli into action potentials. The reason why spinal afferent nerve endings have been so challenging to identify is because no techniques have been available, until now, that can selectively label only spinal afferents, in high resolution. We have utilized an anterograde tracing technique, recently developed in our laboratory, which facilitates selective labeling of only spinal afferent axons and their nerve endings in visceral organs. Mice were anesthetized, lumbosacral DRGs surgically exposed, then injected with dextran-amine. Seven days post-surgery, the large intestine was removed. The characteristics of thirteen types of spinal afferent nerve endings were identified in detail. The greatest proportion of nerve endings was in submucosa (32%), circular muscle (25%) and myenteric ganglia (22%). Two morphologically distinct classes innervated myenteric ganglia. These were most commonly a novel class of intraganglionic varicose endings (IGVEs) and occasionally rectal intraganglionic laminar endings (rIGLEs). Three distinct classes of varicose nerve endings were found to innervate the submucosa and circular muscle, while one class innervated internodal strands, blood vessels, crypts of lieberkuhn, the mucosa and the longitudinal muscle. Distinct populations of sensory endings were CGRP-positive. We present the first complete characterization of the different types of spinal afferent nerve endings in a mammalian visceral organ. The findings reveal an unexpectedly complex array of different types of primary afferent endings that innervate specific layers of the large intestine. Some of the novel classes of nerve endings identified must underlie the transduction of noxious and/or innocuous stimuli from the large intestine.
Collapse
Affiliation(s)
- Nick J. Spencer
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University of South Australia, Adelaide, Australia
- * E-mail:
| | - Melinda Kyloh
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University of South Australia, Adelaide, Australia
| | - Michael Duffield
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University of South Australia, Adelaide, Australia
| |
Collapse
|
73
|
Feed-forward inhibition of CD73 and upregulation of adenosine deaminase contribute to the loss of adenosine neuromodulation in postinflammatory ileitis. Mediators Inflamm 2014; 2014:254640. [PMID: 25210228 PMCID: PMC4152956 DOI: 10.1155/2014/254640] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 01/31/2023] Open
Abstract
Purinergic signalling is remarkably plastic during gastrointestinal inflammation. Thus, selective drugs targeting the “purinome” may be helpful for inflammatory gastrointestinal diseases. The myenteric neuromuscular transmission of healthy individuals is fine-tuned and controlled by adenosine acting on A2A excitatory receptors. Here, we investigated the neuromodulatory role of adenosine in TNBS-inflamed longitudinal muscle-myenteric plexus of the rat ileum. Seven-day postinflammation ileitis lacks adenosine neuromodulation, which may contribute to acceleration of gastrointestinal transit. The loss of adenosine neuromodulation results from deficient accumulation of the nucleoside at the myenteric synapse despite the fact that the increases in ATP release were observed. Disparity between ATP outflow and adenosine deficit in postinflammatory ileitis is ascribed to feed-forward inhibition of ecto-5′-nucleotidase/CD73 by high extracellular ATP and/or ADP. Redistribution of NTPDase2, but not of NTPDase3, from ganglion cell bodies to myenteric nerve terminals leads to preferential ADP accumulation from released ATP, thus contributing to the prolonged inhibition of muscle-bound ecto-5′-nucleotidase/CD73 and to the delay of adenosine formation at the inflamed neuromuscular synapse. On the other hand, depression of endogenous adenosine accumulation may also occur due to enhancement of adenosine deaminase activity. Both membrane-bound and soluble forms of ecto-5′-nucleotidase/CD73 and adenosine deaminase were detected in the inflamed myenteric plexus. These findings provide novel therapeutic targets for inflammatory gut motility disorders.
Collapse
|
74
|
Hexamethonium-induced augmentation of the electrical twitch response in the guinea-pig ileum longitudinal muscle–myenteric plexus strip. Neurosci Lett 2014; 577:34-7. [DOI: 10.1016/j.neulet.2014.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/21/2014] [Accepted: 06/06/2014] [Indexed: 11/22/2022]
|
75
|
Rychter J, Espín F, Gallego D, Vergara P, Jiménez M, Clavé P. Colonic smooth muscle cells and colonic motility patterns as a target for irritable bowel syndrome therapy: mechanisms of action of otilonium bromide. Therap Adv Gastroenterol 2014; 7:156-66. [PMID: 25057296 PMCID: PMC4107708 DOI: 10.1177/1756283x14525250] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Otilonium bromide (OB) is a spasmolytic compound of the family of quaternary ammonium derivatives and has been successfully used in the treatment of patients with irritable bowel syndrome (IBS) due to its specific pharmacodynamic effects on motility patterns in the human colon and the contractility of colonic smooth muscle cells. This article examines how. OB inhibits the main patterns of human sigmoid motility in vitro, which are spontaneous rhythmic phasic contractions, smooth muscle tone, contractions induced by stimulation of excitatory motor neurons and contractions induced by direct effect of excitatory neurotransmitters. It does this mainly by blocking calcium influx through L-type calcium channels and interfering with mobilization of cellular calcium required for smooth muscle contraction, thereby limiting excessive intestinal contractility and abdominal cramping. OB also inhibits T-type calcium channels and muscarinic responses. Finally, OB inhibits tachykinin receptors on smooth muscle and primary afferent neurons which may have the joint effect of reducing motility and abdominal pain. All these mechanisms mediate the therapeutic effects of OB in patients with IBS and might be useful in patients with other spastic colonic motility disorders such as diverticular disease.
Collapse
Affiliation(s)
- Jakub Rychter
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Barcelona, Spain
| | - Francisco Espín
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Barcelona, Spain,Department of Surgery, Hospital de Mataró, Mataró, Spain
| | - Diana Gallego
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Barcelona, Spain
| | - Patri Vergara
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Barcelona, Spain,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marcel Jiménez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Barcelona, Spain,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pere Clavé
- Department of Surgery, Hospital de Mataró, Universitat Autónoma de Barcelona, C/ Cirera s/n, Mataró, Barcelona 08304, Spain
| |
Collapse
|
76
|
Dinning PG, Wiklendt L, Omari T, Arkwright JW, Spencer NJ, Brookes SJH, Costa M. Neural mechanisms of peristalsis in the isolated rabbit distal colon: a neuromechanical loop hypothesis. Front Neurosci 2014; 8:75. [PMID: 24795551 PMCID: PMC3997013 DOI: 10.3389/fnins.2014.00075] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/26/2014] [Indexed: 11/13/2022] Open
Abstract
Propulsive contractions of circular muscle are largely responsible for the movements of content along the digestive tract. Mechanical and electrophysiological recordings of isolated colonic circular muscle have demonstrated that localized distension activates ascending and descending interneuronal pathways, evoking contraction orally and relaxation anally. These polarized enteric reflex pathways can theoretically be sequentially activated by the mechanical stimulation of the advancing contents. Here, we test the hypothesis that initiation and propagation of peristaltic contractions involves a neuromechanical loop; that is an initial gut distension activates local and oral reflex contraction and anal reflex relaxation, the subsequent movement of content then acts as new mechanical stimulus triggering sequentially reflex contractions/relaxations at each point of the gut resulting in a propulsive peristaltic contraction. In fluid filled isolated rabbit distal colon, we combined spatiotemporal mapping of gut diameter and intraluminal pressure with a new analytical method, allowing us to identify when and where active (neurally-driven) contraction or relaxation occurs. Our data indicate that gut dilation is associated with propagating peristaltic contractions, and that the associated level of dilation is greater than that preceding non-propagating contractions (2.7 ± 1.4 mm vs. 1.6 ± 1.2 mm; P < 0.0001). These propagating contractions lead to the formation of boluses that are propelled by oral active neurally driven contractions. The propelled boluses also activate neurally driven anal relaxations, in a diameter dependent manner. These data support the hypothesis that neural peristalsis is the consequence of the activation of a functional loop involving mechanical dilation which activates polarized enteric circuits. These produce propulsion of the bolus which activates further anally, polarized enteric circuits by distension, thus closing the neuromechanical loop.
Collapse
Affiliation(s)
- Phil G Dinning
- Department of Gastroenterology and Surgery, Flinders Medical Centre, Flinders University Bedford Park, SA, Australia ; Department of Human Physiology, School of Medicine, Flinders University Bedford Park, SA, Australia
| | - Lukasz Wiklendt
- Department of Human Physiology, School of Medicine, Flinders University Bedford Park, SA, Australia
| | - Taher Omari
- Department of Human Physiology, School of Medicine, Flinders University Bedford Park, SA, Australia ; Gastroenterology Unit, Child, Youth and Women's Health Service Adelaide, SA, Australia
| | | | - Nick J Spencer
- Department of Human Physiology, School of Medicine, Flinders University Bedford Park, SA, Australia
| | - Simon J H Brookes
- Department of Human Physiology, School of Medicine, Flinders University Bedford Park, SA, Australia
| | - Marcello Costa
- Department of Human Physiology, School of Medicine, Flinders University Bedford Park, SA, Australia
| |
Collapse
|
77
|
Localisation and activation of the neurokinin 1 receptor in the enteric nervous system of the mouse distal colon. Cell Tissue Res 2014; 356:319-32. [PMID: 24728885 DOI: 10.1007/s00441-014-1822-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/20/2014] [Indexed: 12/31/2022]
Abstract
The substance P neurokinin 1 receptor (NK1R) regulates motility, secretion, inflammation and pain in the intestine. The distribution of the NK1R is a key determinant of the functional effects of substance P in the gut. Information regarding the distribution of NK1R in subtypes of mouse enteric neurons is lacking and is the focus of the present study. NK1R immunoreactivity (NK1R-IR) is examined in whole-mount preparations of the mouse distal colon by indirect immunofluorescence and confocal microscopy. The distribution of NK1R-IR within key functional neuronal subclasses was determined by using established neurochemical markers. NK1R-IR was expressed by a subpopulation of myenteric and submucosal neurons; it was mainly detected in large multipolar myenteric neurons and was colocalized with calcitonin gene-related peptide, neurofilament M, choline acetyltransferase and calretinin. The remaining NK1R-immunoreactive neurons were positive for nitric oxide synthase. NK1R was expressed by most of the submucosal neurons and was exclusively co-expressed with vasoactive intestinal peptide, with no overlap with choline acetyltransferase. Treatment with substance P resulted in the concentration-dependent internalisation of NK1R from the cell surface into endosome-like structures. Myenteric NK1R was mainly expressed by intrinsic primary afferent neurons, with minor expression by descending interneurons and inhibitory motor neurons. Submucosal NK1R was restricted to non-cholinergic secretomotor neurons. These findings highlight key differences in the neuronal distribution of NK1R-IR between the mouse, rat and guinea-pig, with important implications for the functional role of NK1R in regulating intestinal motility and secretion.
Collapse
|
78
|
Sharrad DF, Gai WP, Brookes SJH. Selective coexpression of synaptic proteins, α-synuclein, cysteine string protein-α, synaptophysin, synaptotagmin-1, and synaptobrevin-2 in vesicular acetylcholine transporter-immunoreactive axons in the guinea pig ileum. J Comp Neurol 2014; 521:2523-37. [PMID: 23296877 DOI: 10.1002/cne.23296] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/10/2012] [Accepted: 12/27/2012] [Indexed: 12/25/2022]
Abstract
Parkinson's disease is a neurodegenerative disorder characterized by Lewy bodies and neurites composed mainly of the presynaptic protein α-synuclein. Frequently, Lewy bodies and neurites are identified in the gut of Parkinson's disease patients and may underlie associated gastrointestinal dysfunctions. We recently reported selective expression of α-synuclein in the axons of cholinergic neurons in the guinea pig and human distal gut; however, it is not clear whether α-synuclein expression varies along the gut, nor how closely expression is associated with other synaptic proteins. We used multiple-labeling immunohistochemistry to quantify which neurons in the guinea pig ileum expressed α-synuclein, cysteine string protein-α (CSPα), synaptophysin, synaptotagmin-1, or synaptobrevin-2 in their axons. Among the 10 neurochemically defined axonal populations, a significantly greater proportion of vesicular acetylcholine transporter-immunoreactive (VAChT-IR) varicosities (80% ± 1.7%, n = 4, P < 0.001) contained α-synuclein immunoreactivity, and a significantly greater proportion of α-synuclein-IR axons also contained VAChT immunoreactivity (78% ± 1.3%, n = 4) compared with any of the other nine populations (P < 0.001). Among synaptophysin-, synaptotagmin-1-, synaptobrevin-2-, and CSPα-IR varicosities, 98% ± 0.7%, 96% ± 0.7%, 88% ± 1.6%, and 85% ± 2.9% (n = 4) contained α-synuclein immunoreactivity, respectively. Among α-synuclein-IR varicosities, 96% ± 0.9%, 99% ± 0.6%, 83% ± 1.9%, and 87% ± 2.3% (n = 4) contained synaptophysin-, synaptotagmin-1-, synaptobrevin-2-, and CSPα immunoreactivity, respectively. We report a close association between the expression of α-synuclein and the expression of other synaptic proteins in cholinergic axons in the guinea pig ileum. Selective expression of α-synuclein may relate to the neurotransmitter system utilized and predispose cholinergic enteric neurons to degeneration in Parkinson's disease.
Collapse
Affiliation(s)
- Dale F Sharrad
- Department of Human Physiology and Centre for Neuroscience, Flinders Medical Science and Technology, School of Medicine, Flinders University, Bedford Park, South Australia 5042, Australia
| | | | | |
Collapse
|
79
|
Zaccone G, Lauriano ER, Silvestri G, Kenaley C, Icardo JM, Pergolizzi S, Alesci A, Sengar M, Kuciel M, Gopesh A. Comparative neurochemical features of the innervation patterns of the gut of the basal actinopterygian,Lepisosteus oculatus, and the euteleost,Clarias batrachus. ACTA ZOOL-STOCKHOLM 2013. [DOI: 10.1111/azo.12059] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Giacomo Zaccone
- Dipartimento di Scienze dell'Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute (S.A.S.T.A.S.); University of Messina; Viale Stagno d'Alcontres 31 Messina I-98166 Italy
| | - Eugenia Rita Lauriano
- Dipartimento di Scienze dell'Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute (S.A.S.T.A.S.); University of Messina; Viale Stagno d'Alcontres 31 Messina I-98166 Italy
| | - Giuseppa Silvestri
- Dipartimento di Scienze dell'Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute (S.A.S.T.A.S.); University of Messina; Viale Stagno d'Alcontres 31 Messina I-98166 Italy
| | | | - José M. Icardo
- Department of Anatomy and Cell Biology; University of Cantabria; 39011 Santander Spain
| | - Simona Pergolizzi
- Dipartimento di Scienze dell'Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute (S.A.S.T.A.S.); University of Messina; Viale Stagno d'Alcontres 31 Messina I-98166 Italy
| | - Alessio Alesci
- Dipartimento di Scienze dell'Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute (S.A.S.T.A.S.); University of Messina; Viale Stagno d'Alcontres 31 Messina I-98166 Italy
| | - Manvendra Sengar
- Department of Zoology; Institute of Basic Sciences; Bundelkhand University; Jhansi 284128 India
| | - Michal Kuciel
- Department of Comparative Anatomy; Jagiellonian University; Krakow 30-387 Poland
| | - Anita Gopesh
- Department of Zoology; University of Allahabad; Allahabad 211002 India
| |
Collapse
|
80
|
Beuscher N, Jabari S, Strehl J, Neuhuber W, Brehmer A. What neurons hide behind calretinin immunoreactivity in the human gut? Histochem Cell Biol 2013; 141:393-405. [PMID: 24203089 DOI: 10.1007/s00418-013-1163-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2013] [Indexed: 12/11/2022]
Abstract
Calretinin (CALR) is often used as an immunohistochemical marker for the histopathological diagnosis of human intestinal neuropathies. However, little is known about its distribution pattern with respect to specific human enteric neuron types. Prior studies revealed CALR in both myenteric and submucosal neurons, most of which colabel with choline acetyl transferase (ChAT). Here, we specified the chemical code of CALR-positive neurons in small and large intestinal wholemounts in a series of 28 patients. Besides other markers, we evaluated the labeling pattern of CALR in combination with vasoactive intestinal peptide (VIP). In colonic submucosa, CALR and VIP were almost completely colocalized in about three-quarters of all submucosal neurons. In the small intestinal submucosa, both the colocalization rate of CALR and VIP as well as the proportion of these neurons were lower (about one-third). In the myenteric plexus of both small intestine and colon, CALR amounted to 11 and 10 %, respectively, whereas VIP to 5 and 4 % of the whole neuron population, respectively. Colocalization of both markers was found in only 2 and 3 % of myenteric neurons, respectively. In section specimens, nerve fibers coreactive for CALR and VIP were found in the mucosa but not in the muscle coat. Summarizing the present and earlier results, CALR was found in at least one submucosal and two myenteric neuron populations. Submucosal CALR+/VIP+/ChAT± neurons innervate mucosal structures. Furthermore, CALR immunoreactivity in the myenteric plexus was observed in morphological type II (supposed primary afferent) and spiny type I (supposed inter- or motor-) neurons.
Collapse
Affiliation(s)
- Nicholas Beuscher
- Institute of Anatomy I, University of Erlangen-Nuremberg, Krankenhausstraße 9, 91054, Erlangen, Germany
| | | | | | | | | |
Collapse
|
81
|
Sia TC, Whiting M, Kyloh M, Nicholas SJ, Oliver J, Brookes SJ, Dinning PG, Wattchow DA, Spencer NJ. 5-HT3 and 5-HT4 antagonists inhibit peristaltic contractions in guinea-pig distal colon by mechanisms independent of endogenous 5-HT. Front Neurosci 2013; 7:136. [PMID: 23935564 PMCID: PMC3732893 DOI: 10.3389/fnins.2013.00136] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/15/2013] [Indexed: 11/23/2022] Open
Abstract
Recent studies have shown that endogenous serotonin is not required for colonic peristalsis in vitro, nor gastrointestinal (GI) transit in vivo. However, antagonists of 5-Hydroxytryptamine (5-HT) receptors can inhibit peristalsis and GI-transit in mammals, including humans. This raises the question of how these antagonists inhibit GI-motility and transit, if depletion of endogenous 5-HT does not cause any significant inhibitory changes to either GI-motility or transit? We investigated the mechanism by which 5-HT3 and 5-HT4 antagonists inhibit distension-evoked peristaltic contractions in guinea-pig distal colon. In control animals, repetitive peristaltic contractions of the circular muscle were evoked in response to fixed fecal pellet distension. Distension-evoked peristaltic contractions were unaffected in animals with mucosa and submucosal plexus removed, that were also treated with reserpine (to deplete neuronal 5-HT). In control animals, peristaltic contractions were blocked temporarily by ondansetron (1–10 μM) and SDZ-205–557 (1–10 μM) in many animals. Interestingly, after this temporary blockade, and whilst in the continued presence of these antagonists, peristaltic contractions recovered, with characteristics no different from controls. Surprisingly, similar effects were seen in mucosa-free preparations, which had no detectable 5-HT, as detected by mass spectrometry. In summary, distension-evoked peristaltic reflex contractions of the circular muscle layer of the guinea-pig colon can be inhibited temporarily, or permanently, in the same preparation by selective 5-HT3 and 5-HT4 antagonists, depending on the concentration of the antagonists applied. These effects also occur in preparations that lack any detectable 5-HT. We suggest caution should be exercised when interpreting the effects of 5-HT3 and 5-HT4 antagonists; and the role of endogenous 5-HT, in the generation of distension-evoked colonic peristalsis.
Collapse
Affiliation(s)
- Tiong C Sia
- Discipline of Human Physiology and Center for Neuroscience, Flinders University Adelaide, SA, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Abstract
Serotonin (5-HT) has been recognized for decades as an important signalling molecule in the gut, but it is still revealing its secrets. Novel gastrointestinal functions of 5-HT continue to be discovered, as well as distant actions of gut-derived 5-HT, and we are learning how 5-HT signalling is altered in gastrointestinal disorders. Conventional functions of 5-HT involving intrinsic reflexes include stimulation of propulsive and segmentation motility patterns, epithelial secretion and vasodilation. Activation of extrinsic vagal and spinal afferent fibres results in slowed gastric emptying, pancreatic secretion, satiation, pain and discomfort, as well as nausea and vomiting. Within the gut, 5-HT also exerts nonconventional actions such as promoting inflammation and serving as a trophic factor to promote the development and maintenance of neurons and interstitial cells of Cajal. Platelet 5-HT, originating in the gut, promotes haemostasis, influences bone development and serves many other functions. 5-HT3 receptor antagonists and 5-HT4 receptor agonists have been used to treat functional disorders with diarrhoea or constipation, respectively, and the synthetic enzyme tryptophan hydroxylase has also been targeted. Emerging evidence suggests that exploiting epithelial targets with nonabsorbable serotonergic agents could provide safe and effective therapies. We provide an overview of these serotonergic actions and treatment strategies.
Collapse
|
83
|
Hao MM, Bornstein JC, Young HM. Development of myenteric cholinergic neurons inChAT-Cre;R26R-YFPmice. J Comp Neurol 2013; 521:3358-70. [DOI: 10.1002/cne.23354] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/16/2013] [Accepted: 04/25/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Marlene M. Hao
- Department of Anatomy and Neuroscience; University of Melbourne; Melbourne; Australia; 3010
| | - Joel C. Bornstein
- Department of Physiology; University of Melbourne; Melbourne; Australia; 3010
| | - Heather M. Young
- Department of Anatomy and Neuroscience; University of Melbourne; Melbourne; Australia; 3010
| |
Collapse
|
84
|
Abstract
There is now abundant functional and anatomical evidence that autonomic motor pathways represent a highly organized output of the central nervous system. Simplistic notions of antagonistic all-or-none activation of sympathetic or parasympathetic pathways are clearly wrong. Sympathetic or parasympathetic pathways to specific target tissues generally can be activated tonically or phasically, depending on current physiological requirements. For example, at rest, many sympathetic pathways are tonically active, such as those limiting blood flow to the skin, inhibiting gastrointestinal tract motility and secretion, or allowing continence in the urinary bladder. Phasic parasympathetic activity can be seen in lacrimation, salivation or urination. Activity in autonomic motor pathways can be modulated by diverse sensory inputs, including the visual, auditory and vestibular systems, in addition to various functional populations of visceral afferents. Identifying the central pathways responsible for coordinated autonomic activity has made considerable progress, but much more needs to be done.
Collapse
Affiliation(s)
- Ian Gibbins
- Anatomy & Histology; Flinders University; SA Austraila
| |
Collapse
|
85
|
Mondal A, Aizawa S, Sakata I, Goswami C, Oda SI, Sakai T. Mechanism of ghrelin-induced gastric contractions in Suncus murinus (house musk shrew): involvement of intrinsic primary afferent neurons. PLoS One 2013; 8:e60365. [PMID: 23565235 PMCID: PMC3614873 DOI: 10.1371/journal.pone.0060365] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 02/26/2013] [Indexed: 12/13/2022] Open
Abstract
Here, we have reported that motilin can induce contractions in a dose-dependent manner in isolated Suncus murinus (house musk shrew) stomach. We have also shown that after pretreatment with a low dose of motilin (10(-10) M), ghrelin also induces gastric contractions at levels of 10(-10) M to 10(-7) M. However, the neural mechanism of ghrelin action in the stomach has not been fully revealed. In the present study, we studied the mechanism of ghrelin-induced contraction in vitro using a pharmacological method. The responses to ghrelin in the stomach were almost completely abolished by hexamethonium and were significantly suppressed by the administration of phentolamine, prazosin, ondansetron, and naloxone. Additionally, N-nitro-l-arginine methylester significantly potentiated the contractions. Importantly, the mucosa is essential for ghrelin-induced, but not motilin-induced, gastric contractions. To evaluate the involvement of intrinsic primary afferent neurons (IPANs), which are multiaxonal neurons that pass signals from the mucosa to the myenteric plexus, we examined the effect of the IPAN-related pathway on ghrelin-induced contractions and found that pretreatment with adenosine and tachykinergic receptor 3 antagonists (SR142801) significantly eliminated the contractions and GR113808 (5-hydroxytryptamine receptor 4 antagonist) almost completely eliminated it. The results indicate that ghrelin stimulates and modulates suncus gastric contractions through cholinergic, adrenergic, serotonergic, opioidergic neurons and nitric oxide synthases in the myenteric plexus. The mucosa is also important for ghrelin-induced gastric contractions, and IPANs may be the important interneurons that pass the signal from the mucosa to the myenteric plexus.
Collapse
Affiliation(s)
- Anupom Mondal
- Area of Regulatory Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Sayaka Aizawa
- Area of Regulatory Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Ichiro Sakata
- Area of Regulatory Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Chayon Goswami
- Area of Regulatory Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Sen-ichi Oda
- Laboratory of Animal Management and Resources, Department of Zoology, Okayama University of Science, Okayama, Japan
| | - Takafumi Sakai
- Area of Regulatory Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- * E-mail:
| |
Collapse
|
86
|
Obermayr F, Stamp LA, Anderson CR, Young HM. Genetic fate-mapping of tyrosine hydroxylase-expressing cells in the enteric nervous system. Neurogastroenterol Motil 2013; 25:e283-91. [PMID: 23438425 DOI: 10.1111/nmo.12105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/31/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND During development of the enteric nervous system, a subpopulation of enteric neuron precursors transiently expresses catecholaminergic properties. The progeny of these transiently catecholaminergic (TC) cells have not been fully characterized. METHODS We combined in vivo Cre-lox-based genetic fate-mapping with phenotypic analysis to fate-map enteric neuron subtypes arising from tyrosine hydroxylase (TH)-expressing cells. KEY RESULTS Less than 3% of the total (Hu(+) ) neurons in the myenteric plexus of the small intestine of adult mice are generated from transiently TH-expressing cells. Around 50% of the neurons generated from transiently TH-expressing cells are calbindin neurons, but their progeny also include calretinin, neurofilament-M, and serotonin neurons. However, only 30% of the serotonin neurons and small subpopulations (<10%) of the calbindin, calretinin, and neurofilament-M neurons are generated from TH-expressing cells; only 0.2% of nitric oxide synthase neurons arise from TH-expressing cells. CONCLUSIONS & INFERENCES Transiently, catecholaminergic cells give rise to subpopulations of multiple enteric neuron subtypes, but the majority of each of the neuron subtypes arises from non-TC cells.
Collapse
Affiliation(s)
- F Obermayr
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Vic., Australia
| | | | | | | |
Collapse
|
87
|
Sia TC, Flack N, Robinson L, Kyloh M, Nicholas SJ, Brookes SJ, Wattchow DA, Dinning P, Oliver J, Spencer NJ. Is serotonin in enteric nerves required for distension-evoked peristalsis and propulsion of content in guinea-pig distal colon? Neuroscience 2013; 240:325-35. [PMID: 23500097 DOI: 10.1016/j.neuroscience.2013.02.061] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/26/2013] [Accepted: 02/28/2013] [Indexed: 10/27/2022]
Abstract
Recent studies have shown genetic deletion of the gene that synthesizes 5-HT in enteric neurons (tryptophan hydroxylase-2, Tph-2) leads to a reduction in intestinal transit. However, deletion of the Tph-2 gene also leads to major developmental changes in enteric ganglia, which could also explain changes in intestinal transit. We sought to investigate this further by acutely depleting serotonin from enteric neurons over a 24-h period, without the confounding influences induced by genetic manipulation. Guinea-pigs were injected with reserpine 24h prior to euthanasia. Video-imaging and spatio-temporal mapping was used to record peristalsis evoked by natural fecal pellets, or slow infusion of intraluminal fluid. Immunohistochemical staining for 5-HT was used to detect the presence of serotonin in the myenteric plexus. It was found that endogenous 5-HT was always detected in myenteric ganglia of control animals, but never in guinea-pigs treated with reserpine. Interestingly, peristalsis was still reliably evoked by either intraluminal fluid, or fecal pellets in reserpine-treated animals that also had their entire mucosa and submucosal plexus removed. In these 5-HT depleted animals, there was no change in the frequency of peristalsis or force generated during peristalsis. In control animals, or reserpine treated animals, high concentrations (up to 10 μM) of ondansetron and SDZ-205-557, or granisetron and SDZ-205-557 had no effect on peristalsis. In summary, acute depletion of serotonin from enteric nerves does not prevent distension-evoked peristalsis, nor propulsion of luminal content. Also, we found no evidence that 5-HT3 and 5-HT4 receptor activation is required for peristalsis, or propulsion of contents to occur. Taken together, we suggest that the intrinsic mechanisms that generate peristalsis and entrain propagation along the isolated guinea-pig distal colon are independent of 5-HT in enteric neurons or the mucosa, and do not require the activation of 5-HT3 or 5-HT4 receptors.
Collapse
Affiliation(s)
- T C Sia
- Discipline of Human Physiology & Center for Neuroscience, Flinders Medical Center, South Australia, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Substance P- and choline acetyltransferase immunoreactivities in somatostatin-containing, human submucosal neurons. Histochem Cell Biol 2013; 140:157-67. [PMID: 23361835 DOI: 10.1007/s00418-013-1078-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2013] [Indexed: 01/24/2023]
Abstract
The submucous layers of human small and large intestines contain at least two separate neuron populations. Besides morphological features, they differ in their immunoreactivities for calretinin (CALR) and somatostatin (SOM), respectively. In this study, submucosal wholemounts of 23 patients or body donors (including all segments of small intestine and colon) were immunohistochemically quadruple stained for CALR and SOM as well as for substance P (SP) and choline acetyltransferase (ChAT). We found that all SOM-positive neurons co-stained for ChAT and the majority for SP [between 50% in the small intestinal external submucosal plexus (ESP) and 75% in the colonic ESP]. In contrast, a majority of CALR-neurons contained ChAT (between 77% in the small intestinal ESP and 92% in the large intestinal ESP) whereas less than 4% of CALR-neurons were co-immunoreactive for SP. Another set of wholemounts was co-stained for peripherin, a marker enabling morphological analysis. Where identifiable, both SOM alone- and SOM/SP-neurons displayed a uniaxonal (supposed pseudouniaxonal) morphology. We suggest that the chemical code of SOM-immunoreactive, human submucosal neurons may be "ChAT+/SOM+/SP±". In additional sections double stained for SOM and SP, we regularly found double-labelled nerve fibres only in the mucosa. In contrast, around submucosal arteries mostly SOM alone- fibres were found and the muscularis propria contained numerous SP-alone fibres. We conclude that the main target of submucosal SOM(/SP)-neurons may be the mucosa. Due to their morpho-chemical similarity to human myenteric type II neurons, we further suggest that one function of human submucosal SOM-neurons may be a primary afferent one.
Collapse
|
89
|
Sharrad DF, de Vries E, Brookes SJ. Selective expression of α-synuclein-immunoreactivity in vesicular acetylcholine transporter-immunoreactive axons in the guinea pig rectum and human colon. J Comp Neurol 2012; 521:657-76. [DOI: 10.1002/cne.23198] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/03/2012] [Accepted: 07/19/2012] [Indexed: 12/21/2022]
|
90
|
Marini P, Romanelli L, Valeri D, Cascio MG, Tucci P, Valeri P, Palmery M. The NOP receptor involvement in both withdrawal- and CCk-8-induced contracture responses of guinea pig isolated ileum after acute activation of κ-opioid receptor. Peptides 2012; 38:418-26. [PMID: 23059394 DOI: 10.1016/j.peptides.2012.09.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/27/2012] [Accepted: 09/27/2012] [Indexed: 02/06/2023]
Abstract
In isolated guinea-pig ileum (GPI), the κ-opioid acute withdrawal response is under the control of several neuronal signaling systems, including the μ-opioid, the A(1)-adenosine and the CB(1) receptors, which are involved in the inhibitory control of the κ-withdrawal response. After κ-opioid system stimulation, indirect activation of μ-opioid, A(1)-adenosine and CB(1) systems is prevented by the peptide cholecystokinin-8 (CCk-8). In the present study, we have investigated whether the NOP system is also involved in the regulation of the acute κ-withdrawal response. Interestingly, we found that in GPI preparation, the NOP system is not indirectly activated by the κ-opioid receptor stimulation, but instead this system is able by itself to directly regulate the acute κ-withdrawal response. Specifically, our results clearly highlight first the existence of an endogenous tone of the NOP system in GPI, and second that it behaves as a functional anti-opioid system. We also found that, the NOP receptor system is involved in the regulation of the CCk-8-induced contracture intensity, only when in the presence of the κ-opioid receptor stimulation. This effect seems to be regulated by an activation threshold mechanism. In conclusion, the NOP system could act as neuromodulatory system, whose action is strictly related to the modulation of both excitatory and inhibitory neurotransmitters released in GPI enteric nervous system.
Collapse
Affiliation(s)
- Pietro Marini
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.
| | | | | | | | | | | | | |
Collapse
|
91
|
Sharrad DF, Chen BN, Brookes SJH. Neurochemical coding compared between varicose axons and cell bodies of myenteric neurons in the guinea-pig ileum. Neurosci Lett 2012; 534:171-6. [PMID: 23123789 DOI: 10.1016/j.neulet.2012.10.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/15/2012] [Accepted: 10/17/2012] [Indexed: 10/27/2022]
Abstract
The discrete functional classes of enteric neurons in the mammalian gastrointestinal tract have been successfully distinguished on the basis of the unique combination of molecules and enzymes in their cell bodies ("chemical coding"). Whether the same chemical coding exists in varicose axons of different functional classes has not been systematically tested. In this study, we quantified the coexistence of markers that define classes of nerve cell bodies in the myenteric plexus of the guinea-pig ileum, in varicose axons of the same neurons. Profound differences between the combinations of immunohistochemical markers in myenteric nerve cell bodies and in their varicosities were identified. These discrepancies were particularly notable for classes of neurons that had previously been classified as cholinergic, based on immunoreactivity for choline acetyltransferase (ChAT) in their cell bodies. To detect cholinergic varicose axons of enteric neurons in this study, we used antiserum against the vesicular acetylcholine transporter (VAChT). ChAT-immunoreactivity has been reported to be consistently co-localized with 5-hydroxytryptamine (5-HT) in interneuronal cell bodies, yet only 29±5% (n=4) of 5-HT-immunoreactive varicosities contained vesicular acetylcholine transporter (VAChT). Somatostatin coexists with ChAT-immunoreactivity in a class of descending interneuron but only 21±1% (n=4) of somatostatin-immunoreactive varicosities were VAChT-immunoreactive. Comparable discrepancies were also noted for non-cholinergic markers. The results suggest that chemical coding of cell bodies does not necessarily reflect chemical coding of varicose axon terminals and that the assumption that nerve cell bodies that contain ChAT are functionally cholinergic may be questionable.
Collapse
Affiliation(s)
- Dale F Sharrad
- Department of Human Physiology and Centre for Neuroscience, Flinders Medical Science and Technology, School of Medicine, Flinders University, Bedford Park, South Australia, Australia
| | | | | |
Collapse
|
92
|
Smith TH, Grider JR, Dewey WL, Akbarali HI. Morphine decreases enteric neuron excitability via inhibition of sodium channels. PLoS One 2012; 7:e45251. [PMID: 23028881 PMCID: PMC3448635 DOI: 10.1371/journal.pone.0045251] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/14/2012] [Indexed: 12/31/2022] Open
Abstract
Gastrointestinal peristalsis is significantly dependent on the enteric nervous system. Constipation due to reduced peristalsis is a major side-effect of morphine, which limits the chronic usefulness of this excellent pain reliever in man. The ionic basis for the inhibition of enteric neuron excitability by morphine is not well characterized as previous studies have mainly utilized microelectrode recordings from whole mount myenteric plexus preparations in guinea pigs. Here we have developed a Swiss-Webster mouse myenteric neuron culture and examined their electrophysiological properties by patch-clamp techniques and determined the mechanism for morphine-induced decrease in neuronal excitability. Isolated neurons in culture were confirmed by immunostaining with pan-neuronal marker, β-III tubulin and two populations were identified by calbindin and calretinin staining. Distinct neuronal populations were further identified based on the presence and absence of an afterhyperpolarization (AHP). Cells with AHP expressed greater density of sodium currents. Morphine (3 µM) significantly reduced the amplitude of the action potential, increased the threshold for spike generation but did not alter the resting membrane potential. The decrease in excitability resulted from inhibition of sodium currents. In the presence of morphine, the steady-state voltage dependence of Na channels was shifted to the left with almost 50% of channels unavailable for activation from hyperpolarized potentials. During prolonged exposure to morphine (two hours), action potentials recovered, indicative of the development of tolerance in single enteric neurons. These results demonstrate the feasibility of isolating mouse myenteric neurons and establish sodium channel inhibition as a mechanism for morphine-induced decrease in neuronal excitability.
Collapse
Affiliation(s)
- Tricia H. Smith
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - John R. Grider
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - William L. Dewey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Hamid I. Akbarali
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
93
|
Neurochemical characterization of zinc transporter 3-like immunoreactive (ZnT3(+)) neurons in the intramural ganglia of the porcine duodenum. J Mol Neurosci 2012; 48:766-76. [PMID: 22791190 PMCID: PMC3447136 DOI: 10.1007/s12031-012-9855-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 07/01/2012] [Indexed: 12/24/2022]
Abstract
The SLC30 family of divalent cation transporters is thought to be involved in the transport of zinc in a variety of cellular pathways. Zinc transporter 3 (ZnT3) is involved in the transport of zinc into synaptic vesicles or intracellular organelles. As the presence of ZnT3 immunoreactive neurons has recently been reported in both the central and peripheral nervous systems of the rat, the present study was aimed at disclosing the presence of a zinc-enriched neuron enteric population in the porcine duodenum to establish a preliminary insight into their neurochemical coding. Double- and triple-immunofluorescence labeling of the porcine duodenum for ZnT3 with the pan-neuronal marker (PGP 9.5), substance P, somatostatin, vasoactive intestinal peptide (VIP), nitric oxide synthase (NOS), leu-enkephalin, vesicular acetylcholine transporter (VAChT), neuropeptide Y, galanin (GAL), and calcitonin gene-related peptide were performed. Immunohistochemistry revealed that approximately 35, 43, and 48 % of all PGP9.5-postive neurons in the myenteric (MP), outer submucous (OSP), and inner submucous (ISP) plexuses, respectively, of the porcine duodenum were simultaneously ZnT3+. In the present study, ZnT3+ neurons coexpressed a broad spectrum of active substances, but co-localization patterns unique to the plexus were studied. In the ISP, all ZnT3+ neurons were VAChT positive, and the largest populations among these cells formed ZnT3+/VAChT+/GAL+ and ZnT3+/VAChT+/VIP+ cells. In the OSP and MP, the numbers of ZnT3+/VAChT+ neurons were two times smaller, and substantial subpopulations of ZnT3+ neurons in both these plexuses formed ZnT3+/NOS+ cells. The large population of ZnT3+ neurons in the porcine duodenum and a broad spectrum of active substances which co-localize with this peptide suggest that ZnT3 takes part in the regulation of various processes in the gut both in normal physiology and during pathological processes.
Collapse
|
94
|
Noorian AR, Taylor GM, Annerino DM, Greene JG. Neurochemical phenotypes of myenteric neurons in the rhesus monkey. J Comp Neurol 2012; 519:3387-401. [PMID: 21618236 DOI: 10.1002/cne.22679] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Understanding the neurochemical composition of the enteric nervous system (ENS) is critical for elucidating neurological function in the gastrointestinal (GI) tract in health and disease. Despite their status as the closest models of human neurological systems, relatively little is known about enteric neurochemistry in nonhuman primates. We describe neurochemical coding of the enteric nervous system, specifically the myenteric plexus, of the rhesus monkey (Macaca mulatta) by immunohistochemistry and directly compare it to human tissues. There are considerable differences in the myenteric plexus along different segments of the monkey GI tract. While acetylcholine neurons make up the majority of myenteric neurons in the stomach (70%), they are a minority in the rectum (47%). Conversely, only 22% of gastric myenteric neurons express nitric oxide synthase (NOS) compared to 52% in the rectum. Vasoactive intestinal peptide (VIP) is more prominent in the stomach (37%) versus the rest of the GI tract (≈10%), and catecholamine neurons are rare (≈1%). There is significant coexpression of NOS and VIP in myenteric neurons that is more prominent in the proximal GI tract. Taken as a whole, these data provide insight into the neurochemical anatomy underlying GI motility. While overall similarity to other mammalian species is clear, there are some notable differences between the ENS of rhesus monkeys, humans, and other species that will be important to take into account when evaluating models of human diseases in animals.
Collapse
Affiliation(s)
- Ali Reza Noorian
- Department of Neurology and the Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
95
|
Jabari S, da Silveira ABM, de Oliveira EC, Neto SG, Quint K, Neuhuber W, Brehmer A. Selective survival of calretinin- and vasoactive-intestinal-peptide-containing nerve elements in human chagasic submucosa and mucosa. Cell Tissue Res 2012; 349:473-81. [PMID: 22555304 DOI: 10.1007/s00441-012-1406-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 03/08/2012] [Indexed: 01/26/2023]
Abstract
Chronic Chagas' disease is frequently characterized by massive myenteric neuron loss resulting in megacolon with severely and irreversibly disturbed motility. Here, we focused on two submucosal neuron populations, immunoreactive for calretinin (CALR) or somatostatin (SOM), and their respective mucosal nerve fibres in chagasic megacolon. Surgically removed megacolonic segments of seven chagasic patients were compared with seven age- and region-matched non-chagasic control segments. Evaluation included immunohistochemical triple-staining of cryosections for CALR, SOM and peripherin or for CALR and vasoactive intestinal peptide (VIP) and of submucosal whole-mounts for CALR, SOM and the pan-neuronal marker anti-HuC/D. Submucosal neuron counts in chagasic tissue revealed neuron numbers reduced to 51.2 % of control values. In cryosections, nerve fibre area measurements revealed 8.6 % nerve fibre per mucosal area in control segments, but this value decreased to 1.5 % in megacolonic segments. In both evaluations, a disproportionate decrease of SOM-reactive nerve elements was observed. The proportions of SOM-positive neurons related to the total neuron number declined to 2 % (control 10 %) and the proportion of SOM-reactive mucosal nerve fibres related to the whole mucosal area to 0.014 % (control 1.8 %)in chagasic tissue. The second set of cryosections revealed extensive colocalization of CALR with VIP in both surviving submucosal perikarya and mucosal nerve fibres. We suggest that VIP, a neuroprotective and neuroeffectory peptide typically contained in submucosal neurons, allows both the VIP-containing neurons to endure and the patients to survive by maintaining their mucosal barrier, despite the almost complete loss of colonic motility for decades.
Collapse
Affiliation(s)
- Samir Jabari
- Institute of Anatomy I, University of Erlangen-Nuremberg, Krankenhausstr. 9, 91054 Erlangen, Germany.
| | | | | | | | | | | | | |
Collapse
|
96
|
Vieira C, Ferreirinha F, Silva I, Duarte-Araújo M, Correia-de-Sá P. Localization and function of adenosine receptor subtypes at the longitudinal muscle--myenteric plexus of the rat ileum. Neurochem Int 2011; 59:1043-55. [PMID: 21924311 DOI: 10.1016/j.neuint.2011.08.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/11/2011] [Accepted: 08/22/2011] [Indexed: 10/17/2022]
Abstract
Adenosine plays a dual role on acetylcholine (ACh) release from myenteric motoneurons via the activation of high-affinity inhibitory A₁ and facilitatory A(2A) receptors. The therapeutic potential of adenosine-related compounds for controlling intestinal motility and inflammation, prompted us to investigate further the role of low-affinity adenosine receptors, A(2B) and A₃, on electrically-evoked (5 Hz, 200 pulses) [³H]ACh release from myenteric neurons. Immunolocalization studies showed that A(2B) receptors exhibit a pattern of distribution similar to the glial cell marker, GFAP. Regarding A₁ and A₃ receptors, they are mainly distributed to cell bodies of ganglionic myenteric neurons, whereas A(2A) receptors are localized predominantly on cholinergic nerve terminals. Using selective antagonists (DPCPX, ZM241385 and MRS1191), data indicate that modulation of evoked [³H]ACh release is balanced through tonic activation of inhibitory (A₁) and facilitatory (A(2A) and A₃) receptors by endogenous adenosine. The selective A(2B) receptor antagonist, PSB603, alone was devoid of effect and failed to modify the inhibitory effect of NECA. The A₃ receptor agonist, 2-Cl-IB MECA (1-10 nM), concentration-dependently increased the release of [³H]ACh. The effect of 2-Cl-IB MECA was attenuated by MRS1191 and by ZM241385, which selectively block respectively A₃ and A(2A) receptors. In contrast to 2-Cl-IB MECA, activation of A(2A) receptors with CGS21680C attenuated nicotinic facilitation of ACh release induced by focal depolarization of myenteric nerve terminals in the presence of tetrodotoxin. Tandem localization of excitatory A₃ and A(2A) receptors along myenteric neurons explains why stimulation of A₃ receptors (with 2-Cl-IB MECA) on nerve cell bodies acts cooperatively with prejunctional facilitatory A(2A) receptors to up-regulate acetylcholine release. The results presented herein consolidate and expand the current understanding of adenosine receptor distribution and function in the myenteric plexus of the rat ileum, and should be taken into consideration for data interpretation regarding the pathophysiological implications of adenosine on intestinal motility disorders.
Collapse
Affiliation(s)
- Cátia Vieira
- Laboratório de Farmacologia e Neurobiologia/UMIB, Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto-ICBAS-UP, Portugal
| | | | | | | | | |
Collapse
|
97
|
Régis AC, Rojas-Moscoso JA, Gonçalves FLL, Schmidt AF, Mónica FZ, Antunes E, Sbragia L. The cholinergic response is increased in isolated ileum from gastroschisis rat model. Pediatr Surg Int 2011; 27:1015-9. [PMID: 21590478 DOI: 10.1007/s00383-011-2923-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/04/2011] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Babies with gastroschisis (G) have high morbidity rate and long hospital stay due to bowel hypomotility caused by chronic exposure of the bowel to the amniotic fluid. Our aim was to evaluate the reactivity of isolated ileum in fetal rats selected for experimental gastroschisis. METHOD G was surgically created at 18.5 days of gestation (term = 22 days). Concentration-dependent curve to the muscarinic agonist methacholine (1-30 μM) and contractions induced by electrical field stimulation (EFS, 1-16 Hz, 50 V, 1 ms) were carried out in isolated ileum of groups control (C), sham (S) and gastroschisis (G) (n = 30). Protein expression for M(3) was assessed by western blot analysis. RESULTS The frequency and amplitude of spontaneous contractions were decreased in G (p < 0.001). Methacholine produced concentration-dependent contractions being the maximal response values higher in G (p < 0.01). EFS-induced frequency-dependent contractions showed 1.8 times higher in G as well as an increase of M(3) expression. CONCLUSION The frequency and the amplitude of rhythmic contractions were reduced along with an increase in the contraction induced by mucarinic agonist and by EFS in G. These results suggest the occurrence of an adaptative supersensitivity to cholinergic response via increases in the protein expression for M(3) receptor.
Collapse
Affiliation(s)
- Aline Cristina Régis
- Department of Surgery, School of Medical Sciences, State University of Campinas-UNICAMP, Campinas, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
98
|
Cellini J, Zaura Jukic AM, LePard KJ. Neostigmine-induced contraction and nitric oxide-induced relaxation of isolated ileum from STZ diabetic guinea pigs. Auton Neurosci 2011; 165:178-90. [PMID: 21880552 DOI: 10.1016/j.autneu.2011.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/14/2011] [Accepted: 07/27/2011] [Indexed: 02/06/2023]
Abstract
Both delayed gastrointestinal transit and autonomic neuropathy have been documented in patients with diabetes mellitus. The mechanism of neostigmine, an agent that mimics release of acetylcholine from autonomic neurons by prokinetic agents, to contract smooth muscle, despite dysfunctional enteric neural pathways, was determined using isolated ilea from STZ-treated and control guinea pigs. Both bethanechol- and neostigmine-induced contractions were stronger in diabetic ileum. Bethanechol-induced contractions of control but not diabetic ileum were increased by low dose scopolamine suggesting reduced activation of presynaptic muscarinic autoreceptors in diabetic ileum. The muscarinic receptor antagonist 4-DAMP strongly, but the nicotinic receptor antagonist hexamethonium only weakly, reduced neostigmine-induced contractions of control and diabetic ilea. The amount of acetylcholine, inferred from tissue choline content, was increased in diabetic ileum. Nicotinic neural and noncholinergic postjunctional smooth muscle receptors contributed more strongly to neostigmine-induced contractions in diabetic than control ileum. Relaxation of diabetic ileum by exogenous nitric oxide generated from sodium nitroprusside was comparable to control ileum, but smooth muscle relaxation by l-arginine using neuronal nitric oxide synthase to generate nitric oxide was weaker in diabetic ileum with evidence for a role for inducible nitric oxide synthase. Despite autonomic neuropathy, neostigmine strongly contracted ileum from diabetic animals but by a different mechanism including stronger activation of postjunctional muscarinic receptors, greater synaptic acetylcholine, stronger activation of noncholinergic excitatory pathways, and weaker activation of inhibitory pathways. A selective medication targeting a specific neural pathway may more effectively treat disordered gastrointestinal transit in patients with diabetes mellitus.
Collapse
Affiliation(s)
- Joseph Cellini
- Department of Physiology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | | | | |
Collapse
|
99
|
Kaszaki J, Erces D, Varga G, Szabó A, Vécsei L, Boros M. Kynurenines and intestinal neurotransmission: the role of N-methyl-D-aspartate receptors. J Neural Transm (Vienna) 2011; 119:211-23. [PMID: 21617892 DOI: 10.1007/s00702-011-0658-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 05/13/2011] [Indexed: 12/16/2022]
Abstract
Gastrointestinal neuroprotection involves the net effect of many mechanisms which protect the enteral nervous system and its cells from death, dysfunction or degeneration. Neuroprotection is also a therapeutic strategy, aimed at slowing or halting the progression of primary neuronal loss following acute or chronic diseases. The neuroprotective properties of a compound clearly have implications for an understanding of the mechanism of dysfunctions and for therapeutic approaches in a number of gastrointestinal diseases.This paper focused on the roles of glutamate and N-methyl-D-aspartate (NMDA) receptors in the intrinsic neuronal control of gastrointestinal motility; the consequences of inflammation on gastrointestinal motility changes; and the involvement of tryptophan metabolites (especially kynurenic acid) in the regulatory function of the enteral nervous system and the modulation of the inflammatory response. Common features in the mechanisms of action, illustrative evidence from animal models, and experimental neuroprotective therapies making use of the currently available possibilities are also discussed.Overall, the evidence suggests that gastrointestinal neuroprotection against inflammation and glutamate-induced neurotoxicity may be mediated synergistically through the blockade of NMDA receptors and the inhibition of neuronal nitric oxide synthase activity and xanthine oxidoreductase-dependent superoxide production. These components are likewise significant factors in the pathomechanism of gastrointestinal inflammatory diseases and inflammation-linked motility alterations. Inhibition of the enteric NMDA receptors by kynurenic acid or its analogues may provide a novel option via which to influence intestinal hypermotility and inflammatory processes simultaneously.
Collapse
Affiliation(s)
- József Kaszaki
- Institute of Surgical Research, Albert Szent-Györgyi Medical and Pharmaceutical Centre, University of Szeged, P.O. Box 464, Szeged, 6701, Hungary
| | | | | | | | | | | |
Collapse
|
100
|
Liu S, Gao N, Hu HZ, Wang X, Wang GD, Fang X, Gao X, Xia Y, Wood JD. Activation of corticotropin-releasing factor receptor 2 mediates the colonic motor coping response to acute stress in rodents. Gastroenterology 2011; 494:63-74. [PMID: 16304680 PMCID: PMC2582187 DOI: 10.1002/cne.20781] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND & AIMS Corticotropin-releasing factor receptor-1 (CRF(1)) mediates the stress-induced colonic motor activity. Less is known about the role of CRF(2) in the colonic response to stress. METHODS We studied colonic contractile activity in rats and CRF(2)-/-, CRF-overexpressing, and wild-type mice using still manometry; we analyzed defecation induced by acute partial-restraint stress (PRS), and/or intraperitoneal injection of CRF ligands. In rats, we monitored activation of the colonic longitudinal muscle myenteric plexus (LMMP) neurons and localization of CRF(1) and CRF(2) using immunohistochemical and immunoblot analyses. We measured phosphorylation of extracellular signal-regulated kinase 1/2 by CRF ligands in primary cultures of LMMP neurons (PC-LMMPn) and cyclic adenosine monophosphate (cAMP) production in human embryonic kidney-293 cells transfected with CRF(1) and/or CRF(2). RESULTS In rats, a selective agonist of CRF(2) (urocortin 2) reduced CRF-induced defecation (>50%), colonic contractile activity, and Fos expression in the colonic LMMP. A selective antagonist of CRF(2) (astressin(2)-B) increased these responses. Urocortin 2 reduced PRS-induced colonic contractile activity in wild-type and CRF-overexpressing mice, whereas disruption of CRF(2) increased PRS-induced colonic contractile activity and CRF-induced defecation. CRF(2) colocalized with CRF(1) and neuronal nitric oxide synthase in the rat colon, LMMP, and PC-LMMPn. CRF-induced phosphorylation of extracellular signal-regulated kinase in PC-LMMPn; this was inhibited or increased by a selective antagonist of CRF(1) (NBI35965) or astressin(2)-B, respectively. The half maximal effective concentration, EC(50), for the CRF-induced cAMP response was 8.6 nmol/L in human embryonic kidney-293 cells that express only CRF(1); this response was suppressed 10-fold in cells that express CRF(1) and CRF(2). CONCLUSIONS In colon tissues of rodents, CRF(2) activation inhibits CRF(1) signaling in myenteric neurons and the stress-induced colonic motor responses. Disruption of CRF(2) function impairs colonic coping responses to stress.
Collapse
Affiliation(s)
- Sumei Liu
- Department of Physiology and Cell Biology, College of Medicine and Public Health, The Ohio State University, Columbus, 43210-1218, USA
| | | | | | | | | | | | | | | | | |
Collapse
|