51
|
Van Bergen T, Hu TT, Little K, De Groef L, Moons L, Stitt AW, Vermassen E, Feyen JHM. Targeting Plasma Kallikrein With a Novel Bicyclic Peptide Inhibitor (THR-149) Reduces Retinal Thickening in a Diabetic Rat Model. Invest Ophthalmol Vis Sci 2021; 62:18. [PMID: 34677569 PMCID: PMC8556562 DOI: 10.1167/iovs.62.13.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 08/27/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate the effect of plasma kallikrein (PKal)-inhibition by THR-149 on preventing key pathologies associated with diabetic macular edema (DME) in a rat model. Methods Following streptozotocin-induced diabetes, THR-149 or its vehicle was administered in the rat via either a single intravitreal injection or three consecutive intravitreal injections (with a 1-week interval; both, 12.5 µg/eye). At 4 weeks post-diabetes, the effect of all groups was compared by histological analysis of Iba1-positive retinal inflammatory cells, inflammatory cytokines, vimentin-positive Müller cells, inwardly rectifying potassium and water homeostasis-related channels (Kir4.1 and AQP4, respectively), vascular leakage (fluorescein isothiocyanate-labeled bovine serum albumin), and retinal thickness. Results Single or repeated THR-149 injections resulted in reduced inflammation, as depicted by decreasing numbers and activation state of immune cells and IL-6 cytokine levels in the diabetic retina. The processes of reactive gliosis, vessel leakage, and retinal thickening were only significantly reduced after multiple THR-149 administrations. Individual retinal layer analysis showed that repeated THR-149 injections significantly decreased diabetes-induced thickening of the inner plexiform, inner nuclear, outer nuclear, and photoreceptor layers. At the glial-vascular interface, reduced Kir4.1-channel levels in the diabetic retina were restored to control non-diabetic levels in the presence of THR-149. In contrast, little or no effect of THR-149 was observed on the AQP4-channel levels. Conclusions These data demonstrate that repeated THR-149 administration reduces several DME-related key pathologies such as retinal thickening and neuropil disruption in the diabetic rat. These observations indicate that modulation of the PKal pathway using THR-149 has clinical potential to treat patients with DME.
Collapse
Affiliation(s)
| | | | - Karis Little
- Queen's University Belfast, Belfast, United Kingdom
| | - Lies De Groef
- Neural Circuit Development and Regeneration Research Group, Department of Biology and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Department of Biology and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Alan W. Stitt
- Oxurion NV, Heverlee, Belgium
- Queen's University Belfast, Belfast, United Kingdom
| | | | | |
Collapse
|
52
|
Balogh B, Szarka G, Tengölics ÁJ, Hoffmann G, Völgyi B, Kovács-Öller T. LED-Induced Microglial Activation and Rise in Caspase3 Suggest a Reorganization in the Retina. Int J Mol Sci 2021; 22:ijms221910418. [PMID: 34638759 PMCID: PMC8508983 DOI: 10.3390/ijms221910418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
Vision is our primary sense as the human eye is the gateway for more than 65% of information reaching the human brain. Today's increased exposure to different wavelengths and intensities of light from light emitting diode (LED) sources could induce retinal degeneration and accompanying neuronal cell death. Damage induced by chronic phototoxic reactions occurring in the retina accumulates over years and it has been suggested as being responsible for the etiology of many debilitating ocular conditions. In this work, we examined how LED stimulation affects vision by monitoring changes in the expression of death and survival factors as well as microglial activation in LED-induced damage (LID) of the retinal tissue. We found an LED-exposure-induced increase in the mRNA levels of major apoptosis-related markers BAX, Bcl-2, and Caspase-3 and accompanying widespread microglial and Caspase-3 activation. Everyday LED light exposure was accounted for in all the described changes in the retinal tissue of mice in this study, indicating that overuse of non-filtered direct LED light can have detrimental effects on the human retina as well.
Collapse
Affiliation(s)
- Boglárka Balogh
- János Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (B.B.); (G.S.); (Á.J.T.); (G.H.); (B.V.)
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, 1051 Budapest, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, 7624 Pécs, Hungary
| | - Gergely Szarka
- János Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (B.B.); (G.S.); (Á.J.T.); (G.H.); (B.V.)
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, 1051 Budapest, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, 7624 Pécs, Hungary
| | - Ádám J. Tengölics
- János Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (B.B.); (G.S.); (Á.J.T.); (G.H.); (B.V.)
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, 1051 Budapest, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, 7624 Pécs, Hungary
| | - Gyula Hoffmann
- János Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (B.B.); (G.S.); (Á.J.T.); (G.H.); (B.V.)
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, 1051 Budapest, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, 7624 Pécs, Hungary
| | - Béla Völgyi
- János Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (B.B.); (G.S.); (Á.J.T.); (G.H.); (B.V.)
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, 1051 Budapest, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, 7624 Pécs, Hungary
- Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Tamás Kovács-Öller
- János Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (B.B.); (G.S.); (Á.J.T.); (G.H.); (B.V.)
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, 1051 Budapest, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, 7624 Pécs, Hungary
- Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
53
|
Augusto-Oliveira M, Arrifano GP, Delage CI, Tremblay MÈ, Crespo-Lopez ME, Verkhratsky A. Plasticity of microglia. Biol Rev Camb Philos Soc 2021; 97:217-250. [PMID: 34549510 DOI: 10.1111/brv.12797] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023]
Abstract
Microglial cells are the scions of foetal macrophages which invade the neural tube early during embryogenesis. The nervous tissue environment instigates the phenotypic metamorphosis of foetal macrophages into idiosyncratic surveilling microglia, which are generally characterised by a small cell body and highly ramified motile processes that constantly scan the nervous tissue for signs of changes in homeostasis and allow microglia to perform crucial homeostatic functions. The surveilling microglial phenotype is evolutionarily conserved from early invertebrates to humans. Despite this evolutionary conservation, microglia show substantial heterogeneity in their gene and protein expression, as well as morphological appearance. These differences are age, region and context specific and reflect a high degree of plasticity underlying the life-long adaptation of microglia, supporting the exceptional adaptive capacity of the central nervous system. Microgliocytes are essential elements of cellular network formation and refinement in the developing nervous tissue. Several distinct patrolling modes of microglial processes contribute to the formation, modification, and pruning of synapses; to the support and protection of neurones through microglial-somatic junctions; and to the control of neuronal and axonal excitability by specific microglia-axonal contacts. In pathology, microglia undergo proliferation and reactive remodelling known as microgliosis, which is context dependent, yet represents an evolutionarily conserved defence response. Microgliosis results in the emergence of multiple disease and context-specific reactive states; in addition, neuropathology is associated with the appearance of specific protective or recovery microglial forms. In summary, the plasticity of microglia supports the development and functional activity of healthy nervous tissue and provides highly sophisticated defences against disease.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-110, Belém, Brazil
| | - Gabriela P Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-110, Belém, Brazil
| | - Charlotte Isabelle Delage
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, V8P 5C2, Canada.,Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, 2705 Boulevard Laurier, Québec City, QC, G1V 4G2, Canada.,Neurology and Neurosurgery Department, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada.,Department of Molecular Medicine, Université Laval, Pavillon Ferdinand-Vandry, Bureau 4835, 1050 Avenue de la Médecine, Québec City, QC, G1V 0A6, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Center, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Maria Elena Crespo-Lopez
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-110, Belém, Brazil
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, U.K.,Achucarro Center for Neuroscience, IKERBASQUE, 48011, Bilbao, Spain.,Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania
| |
Collapse
|
54
|
da Silva Creão LS, Neto JBT, de Lima CM, dos Reis RR, de Sousa AA, dos Santos ZA, Diniz JAP, Diniz DG, Diniz CWP. Microglial Metamorphosis in Three Dimensions in Virus Limbic Encephalitis: An Unbiased Pictorial Representation Based on a Stereological Sampling Approach of Surveillant and Reactive Microglia. Brain Sci 2021; 11:brainsci11081009. [PMID: 34439628 PMCID: PMC8393838 DOI: 10.3390/brainsci11081009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 12/03/2022] Open
Abstract
Microglia influence pathological progression in neurological diseases, reacting to insults by expressing multiple morphofunctional phenotypes. However, the complete morphological spectrum of reactive microglia, as revealed by three-dimensional microscopic reconstruction, has not been detailed in virus limbic encephalitis. Here, using an anatomical series of brain sections, we expanded on an earlier Piry arbovirus encephalitis study to include CA1/CA2 and assessed the morphological response of homeostatic and reactive microglia at eight days post-infection. Hierarchical cluster and linear discriminant function analyses of multimodal morphometric features distinguished microglial morphology between infected animals and controls. For a broad representation of the spectrum of microglial morphology in each defined cluster, we chose representative cells of homeostatic and reactive microglia, using the sum of the distances of each cell in relation to all the others. Based on multivariate analysis, reactive microglia of infected animals showed more complex trees and thicker branches, covering a larger volume of tissue than in control animals. This approach offers a reliable representation of microglia dispersion in the Euclidean space, revealing the morphological kaleidoscope of surveillant and reactive microglia morphotypes. Because form precedes function in nature, our findings offer a starting point for research using integrative methods to understand microglia form and function.
Collapse
Affiliation(s)
- Leonardo Sávio da Silva Creão
- Núcleo de Pesquisas em Oncologia, Programa de Pós-Graduação em Oncologia e Ciências Médicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, Brazil; (L.S.d.S.C.); (C.W.P.D.)
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66073-005, Brazil; (J.B.T.N.); (C.M.d.L.); (R.R.d.R.); (A.A.d.S.); (Z.A.d.S.)
| | - João Bento Torres Neto
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66073-005, Brazil; (J.B.T.N.); (C.M.d.L.); (R.R.d.R.); (A.A.d.S.); (Z.A.d.S.)
- Faculdade de Fisioterapia e Terapia Ocupacional, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Camila Mendes de Lima
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66073-005, Brazil; (J.B.T.N.); (C.M.d.L.); (R.R.d.R.); (A.A.d.S.); (Z.A.d.S.)
| | - Renata Rodrigues dos Reis
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66073-005, Brazil; (J.B.T.N.); (C.M.d.L.); (R.R.d.R.); (A.A.d.S.); (Z.A.d.S.)
| | - Aline Andrade de Sousa
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66073-005, Brazil; (J.B.T.N.); (C.M.d.L.); (R.R.d.R.); (A.A.d.S.); (Z.A.d.S.)
| | - Zaire Alves dos Santos
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66073-005, Brazil; (J.B.T.N.); (C.M.d.L.); (R.R.d.R.); (A.A.d.S.); (Z.A.d.S.)
| | | | - Daniel Guerreiro Diniz
- Núcleo de Pesquisas em Oncologia, Programa de Pós-Graduação em Oncologia e Ciências Médicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, Brazil; (L.S.d.S.C.); (C.W.P.D.)
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66073-005, Brazil; (J.B.T.N.); (C.M.d.L.); (R.R.d.R.); (A.A.d.S.); (Z.A.d.S.)
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém 66093-020, Brazil;
- Correspondence:
| | - Cristovam Wanderley Picanço Diniz
- Núcleo de Pesquisas em Oncologia, Programa de Pós-Graduação em Oncologia e Ciências Médicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, Brazil; (L.S.d.S.C.); (C.W.P.D.)
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66073-005, Brazil; (J.B.T.N.); (C.M.d.L.); (R.R.d.R.); (A.A.d.S.); (Z.A.d.S.)
| |
Collapse
|
55
|
Chinnery HR, Zhang XY, Wu CY, Downie LE. Corneal immune cell morphometry as an indicator of local and systemic pathology: A review. Clin Exp Ophthalmol 2021; 49:729-740. [PMID: 34240800 DOI: 10.1111/ceo.13972] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 11/26/2022]
Abstract
The corneal epithelium contains a population of resident immune cells commonly referred to as dendritic cells (DCs), or Langerhans cells. A unique advantage of the transparent cornea being situated at the surface of the eye is that these cells can be readily visualised using in vivo confocal microscopy. Over the past decade, interest in the involvement of corneal DCs in a range of ocular and systemic diseases has surged. For most studies, the number of corneal DCs has been the main outcome of interest. However, more recently attention has shifted towards understanding how DC morphology may provide insights into the inflammatory status of the cornea, and in some cases, the health of the peripheral nervous system. In this review, we provide examples of recent methodologies that have been used to classify and measure corneal DC morphology and discuss how this relates to local and systemic inflammatory conditions in humans and rodents.
Collapse
Affiliation(s)
- Holly R Chinnery
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Xin Yuan Zhang
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Ching Yi Wu
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Laura E Downie
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
56
|
Stoessel MB, Majewska AK. Little cells of the little brain: microglia in cerebellar development and function. Trends Neurosci 2021; 44:564-578. [PMID: 33933255 PMCID: PMC8222145 DOI: 10.1016/j.tins.2021.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/23/2021] [Accepted: 04/05/2021] [Indexed: 12/31/2022]
Abstract
Microglia are long-lived resident macrophages of the brain with diverse roles that span development, adulthood, and aging. Once thought to be a relatively homogeneous population, there is a growing recognition that microglia are highly specialized to suit their specific brain region. Cerebellar microglia represent an example of such specialization, exhibiting a dynamical, transcriptional, and immunological profile that differs from that of other microglial populations. Here we review the evidence that cerebellar microglia shape the cerebellar environment and are in turn shaped by it. We examine the roles microglia play in cerebellar function, development, and aging. The emerging findings on cerebellar microglia may also provide insights into disease processes involving cerebellar dysfunction.
Collapse
Affiliation(s)
- Mark B Stoessel
- Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA; Neuroscience Graduate Program, University of Rochester, Rochester, NY 14642, USA
| | - Ania K Majewska
- Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
57
|
Zetter MA, Hernández VS, Roque A, Hernández-Pérez OR, Gómora MJ, Ruiz-Velasco S, Eiden LE, Zhang L. Microglial synaptic pruning on axon initial segment spines of dentate granule cells: Sexually dimorphic effects of early-life stress and consequences for adult fear response. J Neuroendocrinol 2021; 33:e12969. [PMID: 33890333 DOI: 10.1111/jne.12969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/22/2022]
Abstract
Axon initial segments (AIS) of dentate granule cells in the hippocampus exhibit prominent spines (AISS) during early development that are associated with microglial contacts. In the present study, we investigated whether developmental changes in AISS could be modified by early-life stress (ELS), specifically neonatal maternal separation (MS), through stress hormones and microglial activation and examined the potential behavioural consequences. We examined AISS at postnatal day (PND)5, 15 and 50, using Golgi-Cox staining and anatomical analysis. Neurone-microglial interaction was assessed using antibodies against ankyrin-G, PSD-95 and Iba1, for AIS, AISS and microglia visualisation, respectively, in normally reared and neonatal maternally separated male and female rats. We observed a higher density of AISS in ELS rats at both PND15 and PND50 compared to controls. Effects were more pronounced in females than males. AIS-associated microglia in ELS rats showed a hyper-ramified morphology and less co-localisation with PSD-95 compared to controls at PND15. ELS-associated alteration in microglial morphology and synaptic pruning was mimicked by treatment of acute hippocampal slices of normally reared rats with vasopressin. ELS rats exhibited increased freezing behaviour during auditory fear memory testing, which was more pronounced in female subjects and corresponded with increased Fos expression in dorsal and ventral dentate granule cells. Thus, microglial synaptic pruning in dentate AIS of hippocampus is influenced by ELS, with demonstrable sex bias regarding its anatomical characteristics and subsequent fear-induced defensive behaviours.
Collapse
Affiliation(s)
- Mario A Zetter
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Vito S Hernández
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Angélica Roque
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Oscar R Hernández-Pérez
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - María J Gómora
- Department of Embryology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Silvia Ruiz-Velasco
- Department of Probability and Statistics, Applied Mathematics and Systems Research Institute, National Autonomous University of Mexico, Mexico City, Mexico
| | - Lee E Eiden
- Section on Molecular Neuroscience, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - Limei Zhang
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
58
|
Beyond the lesion site: minocycline augments inflammation and anxiety-like behavior following SCI in rats through action on the gut microbiota. J Neuroinflammation 2021; 18:144. [PMID: 34174901 PMCID: PMC8234629 DOI: 10.1186/s12974-021-02123-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
Background Minocycline is a clinically available synthetic tetracycline derivative with anti-inflammatory and antibiotic properties. The majority of studies show that minocycline can reduce tissue damage and improve functional recovery following central nervous system injuries, mainly attributed to the drug’s direct anti-inflammatory, anti-oxidative, and neuroprotective properties. Surprisingly the consequences of minocycline’s antibiotic (i.e., antibacterial) effects on the gut microbiota and systemic immune response after spinal cord injury have largely been ignored despite their links to changes in mental health and immune suppression. Methods Here, we sought to determine minocycline’s effect on spinal cord injury-induced changes in the microbiota-immune axis using a cervical contusion injury in female Lewis rats. We investigated a group that received minocycline following spinal cord injury (immediately after injury for 7 days), an untreated spinal cord injury group, an untreated uninjured group, and an uninjured group that received minocycline. Plasma levels of cytokines/chemokines and fecal microbiota composition (using 16s rRNA sequencing) were monitored for 4 weeks following spinal cord injury as measures of the microbiota-immune axis. Additionally, motor recovery and anxiety-like behavior were assessed throughout the study, and microglial activation was analyzed immediately rostral to, caudal to, and at the lesion epicenter. Results We found that minocycline had a profound acute effect on the microbiota diversity and composition, which was paralleled by the subsequent normalization of spinal cord injury-induced suppression of cytokines/chemokines. Importantly, gut dysbiosis following spinal cord injury has been linked to the development of anxiety-like behavior, which was also decreased by minocycline. Furthermore, although minocycline attenuated spinal cord injury-induced microglial activation, it did not affect the lesion size or promote measurable motor recovery. Conclusion We show that minocycline’s microbiota effects precede its long-term effects on systemic cytokines and chemokines following spinal cord injury. These results provide an exciting new target of minocycline as a therapeutic for central nervous system diseases and injuries. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02123-0.
Collapse
|
59
|
Gozal E, Jagadapillai R, Cai J, Barnes GN. Potential crosstalk between sonic hedgehog-WNT signaling and neurovascular molecules: Implications for blood-brain barrier integrity in autism spectrum disorder. J Neurochem 2021. [PMID: 34169527 DOI: 10.1111/jnc.15081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disease originating from combined genetic and environmental factors. Post-mortem human studies and some animal ASD models have shown brain neuroinflammation, oxidative stress, and changes in blood-brain barrier (BBB) integrity. However, the signaling pathways leading to these inflammatory findings and vascular alterations are currently unclear. The BBB plays a critical role in controlling brain homeostasis and immune response. Its dysfunction can result from developmental genetic abnormalities or neuroinflammatory processes. In this review, we explore the role of the Sonic Hedgehog/Wingless-related integration site (Shh/Wnt) pathways in neurodevelopment, neuroinflammation, and BBB development. The balance between Wnt-β-catenin and Shh pathways controls angiogenesis, barriergenesis, neurodevelopment, central nervous system (CNS) morphogenesis, and neuronal guidance. These interactions are critical to maintain BBB function in the mature CNS to prevent the influx of pathogens and inflammatory cells. Genetic mutations of key components of these pathways have been identified in ASD patients and animal models, which correlate with the severity of ASD symptoms. Disruption of the Shh/Wnt crosstalk may therefore compromise BBB development and function. In turn, impaired Shh signaling and glial activation may cause neuroinflammation that could disrupt the BBB. Elucidating how ASD-related mutations of Shh/Wnt signaling could cause BBB leaks and neuroinflammation will contribute to our understanding of the role of their interactions in ASD pathophysiology. These observations may provide novel targeted therapeutic strategies to prevent or alleviate ASD symptoms while preserving normal developmental processes. Cover Image for this issue: https://doi.org/10.1111/jnc.15081.
Collapse
Affiliation(s)
- Evelyne Gozal
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Rekha Jagadapillai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Jun Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Gregory N Barnes
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA.,Department of Neurology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
60
|
Gozal E, Jagadapillai R, Cai J, Barnes GN. Potential crosstalk between sonic hedgehog-WNT signaling and neurovascular molecules: Implications for blood-brain barrier integrity in autism spectrum disorder. J Neurochem 2021; 159:15-28. [PMID: 34169527 DOI: 10.1111/jnc.15460] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/19/2021] [Accepted: 06/20/2021] [Indexed: 12/19/2022]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disease originating from combined genetic and environmental factors. Post-mortem human studies and some animal ASD models have shown brain neuroinflammation, oxidative stress, and changes in blood-brain barrier (BBB) integrity. However, the signaling pathways leading to these inflammatory findings and vascular alterations are currently unclear. The BBB plays a critical role in controlling brain homeostasis and immune response. Its dysfunction can result from developmental genetic abnormalities or neuroinflammatory processes. In this review, we explore the role of the Sonic Hedgehog/Wingless-related integration site (Shh/Wnt) pathways in neurodevelopment, neuroinflammation, and BBB development. The balance between Wnt-β-catenin and Shh pathways controls angiogenesis, barriergenesis, neurodevelopment, central nervous system (CNS) morphogenesis, and neuronal guidance. These interactions are critical to maintain BBB function in the mature CNS to prevent the influx of pathogens and inflammatory cells. Genetic mutations of key components of these pathways have been identified in ASD patients and animal models, which correlate with the severity of ASD symptoms. Disruption of the Shh/Wnt crosstalk may therefore compromise BBB development and function. In turn, impaired Shh signaling and glial activation may cause neuroinflammation that could disrupt the BBB. Elucidating how ASD-related mutations of Shh/Wnt signaling could cause BBB leaks and neuroinflammation will contribute to our understanding of the role of their interactions in ASD pathophysiology. These observations may provide novel targeted therapeutic strategies to prevent or alleviate ASD symptoms while preserving normal developmental processes.
Collapse
Affiliation(s)
- Evelyne Gozal
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Rekha Jagadapillai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Jun Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Gregory N Barnes
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA.,Department of Neurology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
61
|
Rosa JM, Farré-Alins V, Ortega MC, Navarrete M, Lopez-Rodriguez AB, Palomino-Antolín A, Fernández-López E, Vila-Del Sol V, Decouty C, Narros-Fernández P, Clemente D, Egea J. TLR4 pathway impairs synaptic number and cerebrovascular functions through astrocyte activation following traumatic brain injury. Br J Pharmacol 2021; 178:3395-3413. [PMID: 33830504 PMCID: PMC8453872 DOI: 10.1111/bph.15488] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 03/20/2021] [Accepted: 03/26/2021] [Indexed: 12/30/2022] Open
Abstract
Background and Purpose Activation of astrocytes contributes to synaptic remodelling, tissue repair and neuronal survival following traumatic brain injury (TBI). The mechanisms by which these cells interact to resident/infiltrated inflammatory cells to rewire neuronal networks and repair brain functions remain poorly understood. Here, we explored how TLR4‐induced astrocyte activation modified synapses and cerebrovascular integrity following TBI. Experimental Approach To determine how functional astrocyte alterations induced by activation of TLR4 pathway in inflammatory cells regulate synapses and neurovascular integrity after TBI, we used pharmacology, genetic approaches, live calcium imaging, immunofluorescence, flow cytometry, blood–brain barrier (BBB) integrity assessment and molecular and behavioural methods. Key Results Shortly after a TBI, there is a recruitment of excitable and reactive astrocytes mediated by TLR4 pathway activation with detrimental effects on post‐synaptic density‐95 (PSD‐95)/vesicular glutamate transporter 1 (VGLUT1) synaptic puncta, BBB integrity and neurological outcome. Pharmacological blockage of the TLR4 pathway with resatorvid (TAK‐242) partially reversed many of the observed effects. Synapses and BBB recovery after resatorvid administration were not observed in IP3R2−/− mice, indicating that effects of TLR4 inhibition depend on the subsequent astrocyte activation. In addition, TBI increased the astrocytic‐protein thrombospondin‐1 necessary to induce a synaptic recovery in a sub‐acute phase. Conclusions and Implications Our data demonstrate that TLR4‐mediated signalling, most probably through microglia and/or infiltrated monocyte–astrocyte communication, plays a crucial role in the TBI pathophysiology and that its inhibition prevents synaptic loss and BBB damage accelerating tissue recovery/repair, which might represent a therapeutic potential in CNS injuries and disorders.
Collapse
Affiliation(s)
- Juliana M Rosa
- Experimental Neurophysiology and Neuronal Circuits Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, SESCAM, Toledo, Spain.,Research Unit, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain
| | - Víctor Farré-Alins
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Research Unit, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain
| | - María Cristina Ortega
- Neuroinmune-Repair Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, SESCAM, Toledo, Spain
| | - Marta Navarrete
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Ana Belen Lopez-Rodriguez
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Research Unit, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain
| | - Alejandra Palomino-Antolín
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Research Unit, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain
| | - Elena Fernández-López
- Experimental Neurophysiology and Neuronal Circuits Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, SESCAM, Toledo, Spain
| | - Virginia Vila-Del Sol
- Flow Cytometry Service, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, SESCAM, Toledo, Spain
| | - Céline Decouty
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Research Unit, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain
| | - Paloma Narros-Fernández
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Research Unit, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain
| | - Diego Clemente
- Neuroinmune-Repair Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, SESCAM, Toledo, Spain
| | - Javier Egea
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Research Unit, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain
| |
Collapse
|
62
|
Schneider JS. A critical role for GM1 ganglioside in the pathophysiology and potential treatment of Parkinson's disease. Glycoconj J 2021; 39:13-26. [PMID: 34037912 DOI: 10.1007/s10719-021-10002-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is slowly progressing neurodegenerative disorder that affects millions of patients worldwide. While effective symptomatic therapies for PD exist, there is no currently available disease modifying agent to slow or stop the progression of the disease. Many years of research from various laboratories around the world have provided evidence in favor of the potential ability of GM1 ganglioside to be a disease modifying agent for PD. In this paper, information supporting the use of GM1 as a disease modifying therapeutic for PD is reviewed along with information concerning the role that deficiencies in GM1 ganglioside (and potentially other important brain gangliosides) may play in the pathogenesis of PD.
Collapse
Affiliation(s)
- J S Schneider
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, JAH 521, Philadelphia, PA, 19107, USA.
| |
Collapse
|
63
|
Candadai AA, Liu F, Fouda AY, Alfarhan M, Palani CD, Xu Z, Caldwell RB, Narayanan SP. Deletion of arginase 2 attenuates neuroinflammation in an experimental model of optic neuritis. PLoS One 2021; 16:e0247901. [PMID: 33735314 PMCID: PMC7971528 DOI: 10.1371/journal.pone.0247901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
Vision impairment due to optic neuritis (ON) is one of the major clinical presentations in Multiple Sclerosis (MS) and is characterized by inflammation and degeneration of the optic nerve and retina. Currently available treatments are only partially effective and have a limited impact on the neuroinflammatory pathology of the disease. A recent study from our laboratory highlighted the beneficial effect of arginase 2 (A2) deletion in suppressing retinal neurodegeneration and inflammation in an experimental model of MS. Utilizing the same model, the present study investigated the impact of A2 deficiency on MS-induced optic neuritis. Experimental autoimmune encephalomyelitis (EAE) was induced in wild-type (WT) and A2 knockout (A2-/-) mice. EAE-induced cellular infiltration, as well as activation of microglia and macrophages, were reduced in A2-/- optic nerves. Axonal degeneration and demyelination seen in EAE optic nerves were observed to be reduced with A2 deletion. Further, the lack of A2 significantly ameliorated astrogliosis induced by EAE. In conclusion, our findings demonstrate a critical involvement of arginase 2 in mediating neuroinflammation in optic neuritis and suggest the potential of A2 blockade as a targeted therapy for MS-induced optic neuritis.
Collapse
Affiliation(s)
- Amritha A. Candadai
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States of America
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States of America
- Charlie Norwood VA Medical Center, Augusta, GA, United States of America
| | - Fang Liu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States of America
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States of America
- Charlie Norwood VA Medical Center, Augusta, GA, United States of America
- Vascular Biology Center, Augusta University, Augusta, GA, United States of America
| | - Abdelrahman Y. Fouda
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States of America
- Charlie Norwood VA Medical Center, Augusta, GA, United States of America
- Vascular Biology Center, Augusta University, Augusta, GA, United States of America
| | - Moaddey Alfarhan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States of America
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States of America
- Charlie Norwood VA Medical Center, Augusta, GA, United States of America
| | - Chithra D. Palani
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States of America
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States of America
- Vascular Biology Center, Augusta University, Augusta, GA, United States of America
| | - Zhimin Xu
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States of America
- Vascular Biology Center, Augusta University, Augusta, GA, United States of America
| | - Ruth B. Caldwell
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States of America
- Vascular Biology Center, Augusta University, Augusta, GA, United States of America
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States of America
| | - S. Priya Narayanan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States of America
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States of America
- Charlie Norwood VA Medical Center, Augusta, GA, United States of America
- Vascular Biology Center, Augusta University, Augusta, GA, United States of America
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States of America
| |
Collapse
|
64
|
Age-dependent and region-specific alteration of parvalbumin neurons, perineuronal nets and microglia in the mouse prefrontal cortex and hippocampus following obesogenic diet consumption. Sci Rep 2021; 11:5593. [PMID: 33692414 PMCID: PMC7970944 DOI: 10.1038/s41598-021-85092-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/18/2021] [Indexed: 02/08/2023] Open
Abstract
Emergent evidence demonstrates that excessive consumption of high fat and high sugar (HFHS) diets has negative consequences on hippocampal and prefrontal cortex (PFC) function. Moreover, the delayed maturation of the PFC including the late development of parvalbumin-expressing (PV) interneurons and perineuronal nets (PNNs) may promote vulnerability to HFHS diet-induced nutritional stress. However, the young brain may have some resistance to diet-induced neuroinflammation. Thus, we examined the impact of a HFHS diet commencing either in adolescence or adulthood in male mice. PV interneurons, PNNs and microglia were assessed using immunohistochemistry. We observed greater numbers of PV neurons and PNNs in the hippocampus and the prelimbic and infralimbic PFC in adult mice in comparison to our younger cohort. Mice that consumed HFHS diet as adults had reduced numbers of hippocampal PV neurons and PNNs, which correlated with adiposity. However, we saw no effects of diet on PV and PNNs in the PFC. HFHS diet increased microgliosis in the adult cohort, and morphological changes to microglia were observed in the PFC and hippocampus of the adolescent cohort, with a shift to activated microglia phenotypes. Taken together, these findings demonstrate different regional and age-specific effects of obesogenic diets on PV neurons, PNNs and microglia.
Collapse
|
65
|
Bacterial sepsis increases hippocampal fibrillar amyloid plaque load and neuroinflammation in a mouse model of Alzheimer's disease. Neurobiol Dis 2021; 152:105292. [PMID: 33556539 DOI: 10.1016/j.nbd.2021.105292] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/06/2020] [Accepted: 02/03/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Sepsis, a leading cause for intensive care unit admissions, causes both an acute encephalopathy and chronic brain dysfunction in survivors. A history of sepsis is also a risk factor for future development of dementia symptoms. Similar neuropathologic changes are associated with the cognitive decline of sepsis and Alzheimer's disease (AD), including neuroinflammation, neuronal death, and synaptic loss. Amyloid plaque pathology is the earliest pathological hallmark of AD, appearing 10 to 20 years prior to cognitive decline, and is present in 30% of people over 65. As sepsis is also more common in older adults, we hypothesized that sepsis might exacerbate amyloid plaque deposition and plaque-related injury, promoting the progression of AD-related pathology. METHODS We evaluated whether the brain's response to sepsis modulates AD-related neurodegenerative changes by driving amyloid deposition and neuroinflammation in mice. We induced polymicrobial sepsis by cecal ligation and puncture (CLP) in APP/PS1-21 mice, a model of AD-related β-amyloidosis. We performed CLP or sham surgery at plaque onset (2 months of age) and examined pathology 2 months after CLP in surviving mice. RESULTS Sepsis significantly increased fibrillar amyloid plaque formation in the hippocampus of APP/PS1-21 mice. Sepsis enhanced plaque-related astrocyte activation and complement C4b gene expression in the brain, both of which may play a role in modulating amyloid formation. CLP also caused large scale changes in the gut microbiome of APP/PS1 mice, which have been associated with a pro-amyloidogenic and neuroinflammatory state. CONCLUSIONS Our results suggest that experimental sepsis can exacerbate amyloid plaque deposition and plaque-related inflammation, providing a potential mechanism for increased dementia in older sepsis survivors.
Collapse
|
66
|
Rübsam A, Wernecke L, Rau S, Pohlmann D, Müller B, Zeitz O, Joussen AM. Behavior of SD-OCT Detectable Hyperreflective Foci in Diabetic Macular Edema Patients after Therapy with Anti-VEGF Agents and Dexamethasone Implants. J Diabetes Res 2021; 2021:8820216. [PMID: 33937416 PMCID: PMC8060103 DOI: 10.1155/2021/8820216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/16/2021] [Accepted: 03/27/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Diabetic macular edema (DME) is the most common cause of blindness in the working-age population. Spectral-domain optical coherence tomography (SD-OCT) allows detection and monitoring of the edema and a detailed analysis of the retinal structure. Hyperreflective foci (HF) are small, circumscribed lesions on OCT, and their origin is yet to be determined. Our study was aimed to shed light on HF pathophysiology, by analyzing their number and location in DME patients at baseline and after therapy. METHODS A prospective, observational study on 59 eyes of 51 DME patients who were treated with antivascular endothelial growth factor (VEGF) therapy (VEGF group, n = 40 eyes) or dexamethasone implant (DEX group, n = 19). HF and hard exudates (HE) were discriminated by their appearance on fundus photographs and their size on OCT. Quantity and location of HF and HE were analyzed at baseline and after therapy. RESULTS DME decreased in 75% of patients in the VEGF (455.5 μm vs. 380.8 μm, p = 0.02) and in 95% of patients in the DEX group (471.6 μm vs. 381.9 μm, p = 0.007). The number of foci decreased in 62.5% of patients after anti-VEGF (130.6 vs. 111.1, p = 0.07) and in 68% of patients after dexamethasone injection ((123.4 vs. 94.9, p = 0.02) 5.1). A subgroup of 15% of eyes, all treated with anti-VEGF, showed accumulation of larger HF in outer retinal layers to visible HE during DME resolution, whereas smaller HF, found in all retinal layers, remained unchanged. There was a trend towards a dynamic shift of the foci from inner to outer retinal layers. CONCLUSION The dynamic rearrangement of the small HF and their slightly greater reduction after anti-inflammatory therapy suggest inflammatory cells as their origin, whereas larger HF in the outer retinal layers correspond to microexudates. Furthermore, we found a more favourable outcome in patients with HF after treatment with dexamethasone implants compared to anti-VEGF agents.
Collapse
Affiliation(s)
- Anne Rübsam
- Department of Ophthalmology, Charité Universtätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Laura Wernecke
- Department of Ophthalmology, Charité Universtätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany
| | - Saskia Rau
- Department of Ophthalmology, Charité Universtätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany
| | - Dominika Pohlmann
- Department of Ophthalmology, Charité Universtätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Bert Müller
- Department of Ophthalmology, Charité Universtätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany
| | - Oliver Zeitz
- Department of Ophthalmology, Charité Universtätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Antonia M. Joussen
- Department of Ophthalmology, Charité Universtätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
67
|
Ahmadpour D, Grange-Messent V. Involvement of Testosterone Signaling in the Integrity of the Neurovascular Unit in the Male: Review of Evidence, Contradictions, and Hypothesis. Neuroendocrinology 2021; 111:403-420. [PMID: 32512571 DOI: 10.1159/000509218] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 06/08/2020] [Indexed: 11/19/2022]
Abstract
Age-related central nervous system function decline and increased susceptibility of females compared to males with respect to prevalence of several neurodegenerative and neuropsychiatric diseases are both based on the principle that hormonal factors could be involved. These cerebral disorders are characterized by an alteration of blood-brain barrier (BBB) properties and chronic neuroinflammation, which lead to disease progression. Neuroinflammation, in turn, contributes to BBB dysfunction. The BBB and its environment, called the neurovascular unit (NVU), are crucial for cerebral homeostasis and neuronal function. Interestingly, sex steroids influence BBB properties and modulate neuroinflammatory responses. To date however, the majority of work reported has focused on the effects of estrogens on BBB function and neuroinflammation in female mammals. In contrast, the effects of testosterone signaling on the NVU in males are still poorly studied. The aim of this review was to summarize and discuss the literature, providing insights and contradictions to highlight hypothesis and the need for further investigations.
Collapse
Affiliation(s)
- Delnia Ahmadpour
- Sorbonne Université, INSERM U1130, CNRS UMR 8246, Neuroscience Paris-Seine, Institut de Biologie Paris-Seine, Paris, France
| | - Valérie Grange-Messent
- Sorbonne Université, INSERM U1130, CNRS UMR 8246, Neuroscience Paris-Seine, Institut de Biologie Paris-Seine, Paris, France,
| |
Collapse
|
68
|
Valdez M, Valdez JM, Freeborn D, Johnstone AFM, Kodavanti PRS. The effects of ozone exposure and sedentary lifestyle on neuronal microglia and mitochondrial bioenergetics of female Long-Evans rats. Toxicol Appl Pharmacol 2020; 408:115254. [PMID: 32991914 PMCID: PMC7730534 DOI: 10.1016/j.taap.2020.115254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/07/2020] [Accepted: 09/24/2020] [Indexed: 11/27/2022]
Abstract
Ozone (O3) is a widespread air pollutant that produces cardiovascular and pulmonary dysfunction possibly mediated by activation of central stress centers. Epidemiological data suggest that sedentary lifestyles may exacerbate responses to air pollutants such as O3. We sought to assess neurological changes in response to O3 exposure and an active lifestyle. We developed an animal model in which female Long-Evans rats were either sedentary or active with continuous access to running wheels starting at postnatal day (PND) 22 until the age of PND 100 and then exposed to O3 (0, 0.25, 0.5 or 1.0 ppm) 5 h/day for two consecutive days. We found significantly more reactive microglia within the hippocampus (HIP) in animals exposed to O3 in both sedentary and active rats. No changes were detected in astrocytic coverage. We next analyzed mitochondrial bioenergetic parameters (complex I, complex II and complex IV). Complex I activity was significantly affected by exercise in hypothalamus (HYP). Complex II activity was significantly affected by both exercise and O3 exposure in the HIP. Concomitant with the changes in enzymatic activity, there were also effects on expression of genes related to mitochondrial bioenergetics and antioxidant production. These results demonstrate that O3 induces microglia reactivity within stress centers of the brain and that mitochondrial bioenergetics are altered. Some of these effects may be augmented by exercise, suggesting a role for lifestyle in O3 effects on brain mitochondrial bioenergetics parameters in agreement with our previous reports on other endpoints.
Collapse
Affiliation(s)
- Matthew Valdez
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA; Oak Ridge Institute for Science and Education, U.S. Department of Energy, Oak Ridge, TN 37831, United States of America
| | - Joseph M Valdez
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Danielle Freeborn
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Andrew F M Johnstone
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Prasada Rao S Kodavanti
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
69
|
Onizawa H, Kato H, Kimura H, Kudo T, Soda N, Shimizu S, Funabiki M, Yagi Y, Nakamoto Y, Priller J, Nishikomori R, Heike T, Yan N, Tsujimura T, Mimori T, Fujita T. Aicardi-Goutières syndrome-like encephalitis in mutant mice with constitutively active MDA5. Int Immunol 2020; 33:225-240. [PMID: 33165593 DOI: 10.1093/intimm/dxaa073] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/31/2020] [Indexed: 12/25/2022] Open
Abstract
MDA5 is a cytoplasmic sensor of viral RNA, triggering type I interferon (IFN-I) production. Constitutively active MDA5 has been linked to autoimmune diseases such as systemic lupus erythematosus, Singleton-Merten syndrome (SMS) and Aicardi-Goutières syndrome (AGS), a genetically determined inflammatory encephalopathy. However, AGS research is challenging due to the lack of animal models. We previously reported lupus-like nephritis and SMS-like bone abnormalities in adult mice with constitutively active MDA5 (Ifih1G821S/+), and herein demonstrate that these mice also exhibit high lethality and spontaneous encephalitis with high IFN-I production during the early postnatal period. Increases in the number of microglia were observed in MDA5/MAVS signaling- and IFN-I-dependent manners. Furthermore, microglia showed an activated state with an increased phagocytic capability and reduced expression of neurotrophic factors. Although multiple auto-antibodies including lupus-related ones were detected in the sera of the mice as well as AGS patients, Ifih1G821S/+Rag2-/- mice also exhibited up-regulation of IFN-I, astrogliosis and microgliosis, indicating that auto-antibodies or lymphocytes are not required for the development of the encephalitis. The IFN-I signature without lymphocytic infiltration observed in Ifih1G821S/+ mice is a typical feature of AGS. Collectively, our results suggest that the Ifih1G821S/+ mice are a model recapitulating AGS and that microglia are a potential target for AGS therapy.
Collapse
Affiliation(s)
- Hideo Onizawa
- Laboratory of Regulatory Information, Institute for Frontier Life and Medical Science.,Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroki Kato
- Laboratory of Regulatory Information, Institute for Frontier Life and Medical Science.,Institue of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Hiroyuki Kimura
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Tomoo Kudo
- Department of Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Nobumasa Soda
- Laboratory of Regulatory Information, Institute for Frontier Life and Medical Science
| | - Shota Shimizu
- Laboratory of Regulatory Information, Institute for Frontier Life and Medical Science
| | - Masahide Funabiki
- Laboratory of Regulatory Information, Institute for Frontier Life and Medical Science.,Department of Clinical Immunology and Rheumatology, Kitano Hospital, The Tazuke Kofukai Medical Research Institute, Osaka, Japan
| | - Yusuke Yagi
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Josef Priller
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité - Universitätsmedizin Berlin, Berlin, Germany.,University of Edinburgh and UK DRI, Edinburgh, UK
| | - Ryuta Nishikomori
- Department of Pediatrics and Child Health, Kurume University School of Science, Kurume, Japan
| | - Toshio Heike
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tohru Tsujimura
- Department of Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tsuneyo Mimori
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Ijinkai Takeda General Hospital, Kyoto, Japan
| | - Takashi Fujita
- Laboratory of Regulatory Information, Institute for Frontier Life and Medical Science
| |
Collapse
|
70
|
Pan SD, Grandgirard D, Leib SL. Adjuvant Cannabinoid Receptor Type 2 Agonist Modulates the Polarization of Microglia Towards a Non-Inflammatory Phenotype in Experimental Pneumococcal Meningitis. Front Cell Infect Microbiol 2020; 10:588195. [PMID: 33251159 PMCID: PMC7674855 DOI: 10.3389/fcimb.2020.588195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022] Open
Abstract
Background Microglia initiates and sustains the inflammatory reaction that drives the pathogenesis of pneumococcal meningitis. The expression of the G-protein cannabinoid receptor type 2 (CB2) in the brain is low, but is upregulated in glial cells during infection. Its activation down-regulates pro-inflammatory processes, driving microglia towards an anti-inflammatory phenotype. CB2 agonists are therefore therapeutic candidates in inflammatory conditions like pneumococcal meningitis. We evaluated the effects of JWH-133, a specific CB2 agonist on microglial cells, inflammation, and damage driven by S. pneumoniae in vitro and in experimental pneumococcal meningitis. Materials/methods Primary mixed glial cultures were stimulated with live or heat-inactivated S. pneumoniae, or lipopolysaccharide and treated with JWH-133 or vehicle. Nitric oxide and cytokines levels were measured in the supernatant. In vivo, pneumococcal meningitis was induced by intracisternal injection of live S. pneumoniae in 11 days old Wistar rats. Animals were treated with antibiotics (Ceftriaxone, 100 mg/kg, s.c. bid) and JWH-133 (1 mg/kg, i.p. daily) or vehicle (10% Ethanol in saline, 100 µl/25g body weight) at 18 h after infection. Brains were harvested at 24 and 42 h post infection (hpi) for histological assessment of hippocampal apoptosis and cortical damage and determination of cyto/chemokines in tissue homogenates. Microglia were characterized using Iba-1 immunostaining. Inflammation in brain homogenates was determined using membrane-based antibody arrays. Results In vitro, nitric oxide and cytokines levels were significantly lowered by JWH-133 treatment. In vivo, clinical parameters were not affected by the treatment. JWH-133 significantly lowered microglia activation assessed by quantification of cell process length and endpoints per microglia. Animals treated with JWH-133 demonstrated significantly lower parenchymal levels of chemokines (CINC-1, CINC-2α/β, and MIP-3α), TIMP-1, and IL-6 at 24 hpi, and CINC-1, MIP-1α, and IL-1α at 42 hpi. Quantitative analysis of brain damage did not reveal an effect of JWH-133. Conclusions JWH-133 attenuates microglial activation and downregulates the concentrations of pro-inflammatory mediators in pneumococcal infection in vitro and in vivo. However, we didn't observe a reduction in cortical or hippocampal injury. This data provides evidence that inhibition of microglia by adjuvant CB2 agonists therapy effectively downmodulates neuroinflammation but does not reduce brain damage in experimental pneumococcal meningitis.
Collapse
Affiliation(s)
- Steven D Pan
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Denis Grandgirard
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Stephen L Leib
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
71
|
Pro-Inflammatory Role of AQP4 in Mice Subjected to Intrastriatal Injections of the Parkinsonogenic Toxin MPP. Cells 2020; 9:cells9112418. [PMID: 33167342 PMCID: PMC7694382 DOI: 10.3390/cells9112418] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/28/2022] Open
Abstract
Aquaporin-4 (AQP4) is critically involved in brain water and volume homeostasis and has been implicated in a wide range of pathological conditions. Notably, evidence has been accrued to suggest that AQP4 plays a proinflammatory role by promoting release of astrocytic cytokines that activate microglia and other astrocytes. Neuroinflammation is a hallmark of Parkinson’s disease (PD), and we have previously shown that astrocytes in substantia nigra (SN) are enriched in AQP4 relative to cortical astrocytes, and that their complement of AQP4 is further increased following treatment with the parkinsonogenic toxin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). Here, we investigated the effect of Aqp4 deletion on microglial activation in mice subjected to unilateral intrastriatal injection of 1-methyl-4-phenylpyridinium (MPP+, the toxic metabolite of MPTP). Our results show that MPP+ injections lead to a pronounced increase in the expression level of microglial activating genes in the ventral mesencephalon of wild type (WT) mice, but not Aqp4−/− mice. We also show, in WT mice, that MPP+ injections cause an upregulation of nigral AQP4 and swelling of astrocytic endfeet. These findings are consistent with the idea that AQP4 plays a pro-inflammatory role in Parkinson’s disease, secondary to the dysregulation of astrocytic volume homeostasis.
Collapse
|
72
|
Gene expression in the epileptic (EL) mouse hippocampus. Neurobiol Dis 2020; 147:105152. [PMID: 33153970 DOI: 10.1016/j.nbd.2020.105152] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/07/2020] [Accepted: 10/23/2020] [Indexed: 11/24/2022] Open
Abstract
The neuropathology of hippocampal seizure foci in human temporal lobe epilepsy (TLE) and several animal models of epilepsy reveal extensive neuronal loss along with astrocyte and microglial activation. Studies of these models have advanced hypotheses that propose both pathological changes are essential for seizure generation. However, some seizure foci in human TLE show an extreme loss of neurons in all hippocampal fields, giving weight to hypotheses that favor neuroglia as major players. The epileptic (EL) mouse is a seizure model in which there is no observable neuron loss but associated proliferation of microglia and astrocytes and provides a good model to study the role of activated neuroglia in the presence of an apparently normal population of neurons. While many studies have been carried out on the EL mouse, there is a paucity of studies on the molecular changes in the EL mouse hippocampus, which may provide insight on the role of neuroglia in epileptogenesis. In this paper we have applied high throughput gene expression analysis to identify the molecular changes in the hippocampus that may explain the pathological processes. We have observed several classes of genes whose expression levels are changed. It is hypothesized that the upregulation of heat shock proteins (HSP70, HSP72, FOSL2 (HSP40), and their molecular chaperones BAG3 and DNAJB5 along with the down regulated gene MALAT1 may contribute to the neuroprotection observed. The increased expression of BDNF along with immediate early gene expression (FosB, JunB, ERG4, NR4A1, NR4A2, FBXO3) and the down regulation of GABRD, DBP and MALAT1 it is hypothesized may contribute to the hyperexcitability of the hippocampal neurons in this model. Activated astrocytes and microglia may also contribute to excitability pathomechanisms. Activated astrocytes in the ELS mouse are deficient in glutamine synthetase and thus reduce the clearance of extracellular glutamate. Activated microglia which may be associated with C1Q and MHC class I molecules we propose may mediate a process of selective removal of defective GABAergic synapses through a process akin to trogocytosis that may reduce neuronal inhibition and favor hyperexcitability.
Collapse
|
73
|
Vaes JEG, van Kammen CM, Trayford C, van der Toorn A, Ruhwedel T, Benders MJNL, Dijkhuizen RM, Möbius W, van Rijt SH, Nijboer CH. Intranasal mesenchymal stem cell therapy to boost myelination after encephalopathy of prematurity. Glia 2020; 69:655-680. [PMID: 33045105 PMCID: PMC7821154 DOI: 10.1002/glia.23919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022]
Abstract
Encephalopathy of prematurity (EoP) is a common cause of long-term neurodevelopmental morbidity in extreme preterm infants. Diffuse white matter injury (dWMI) is currently the most commonly observed form of EoP. Impaired maturation of oligodendrocytes (OLs) is the main underlying pathophysiological mechanism. No therapies are currently available to combat dWMI. Intranasal application of mesenchymal stem cells (MSCs) is a promising therapeutic option to boost neuroregeneration after injury. Here, we developed a double-hit dWMI mouse model and investigated the therapeutic potential of intranasal MSC therapy. Postnatal systemic inflammation and hypoxia-ischemia led to transient deficits in cortical myelination and OL maturation, functional deficits and neuroinflammation. Intranasal MSCs migrated dispersedly into the injured brain and potently improved myelination and functional outcome, dampened cerebral inflammationand rescued OL maturation after dWMI. Cocultures of MSCs with primary microglia or OLs show that MSCs secrete factors that directly promote OL maturation and dampen neuroinflammation. We show that MSCs adapt their secretome after ex vivo exposure to dWMI milieu and identified several factors including IGF1, EGF, LIF, and IL11 that potently boost OL maturation. Additionally, we showed that MSC-treated dWMI brains express different levels of these beneficial secreted factors. In conclusion, the combination of postnatal systemic inflammation and hypoxia-ischemia leads to a pattern of developmental brain abnormalities that mimics the clinical situation. Intranasal delivery of MSCs, that secrete several beneficial factors in situ, is a promising strategy to restore myelination after dWMI and subsequently improve the neurodevelopmental outcome of extreme preterm infants in the future.
Collapse
Affiliation(s)
- Josine E G Vaes
- Department for Developmental Origins of Disease, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Caren M van Kammen
- Department for Developmental Origins of Disease, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Chloe Trayford
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Annette van der Toorn
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Torben Ruhwedel
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Manon J N L Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Wiebke Möbius
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Sabine H van Rijt
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Cora H Nijboer
- Department for Developmental Origins of Disease, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
74
|
Lehotzky D, Sipahi R, Zupanc GKH. Cellular automata modeling suggests symmetric stem-cell division, cell death, and cell drift as key mechanisms driving adult spinal cord growth in teleost fish. J Theor Biol 2020; 509:110474. [PMID: 32918922 DOI: 10.1016/j.jtbi.2020.110474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/10/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022]
Abstract
Adult neurogenesis - the generation of neurons during adulthood - is intensively studied, yet little is known about its consequences at the tissue level. In the teleost fish Apteronotus leptorhynchus, morphometric analysis has revealed that the total number of cells in the spinal cord increases continuously throughout adulthood, driven by the activity of neurogenic stem/progenitor cells in both the ependymal layer at the central canal and in the radially located parenchyma. This net increase in cell numbers demonstrates cellular addition, as opposed to cellular turnover which appears to be the common outcome of adult neurogenesis in mammals. Grounded on a comprehensive set of quantitative data generated through high-resolution mapping of stem cells and their progeny, we constructed a cellular automata model of the stem-cell-driven growth of the spinal cord. Simulations based on this model suggest that three cellular mechanisms play a critical role for promoting sustained tissue growth and acquisition of correct form of the spinal cord, including the development of the ependymal layer and the parenchyma: the number of symmetric stem-cell divisions versus asymmetric divisions; the probability of the progeny of progenitor cells to undergo cell death; and the radial drifting of cells.
Collapse
Affiliation(s)
- Dávid Lehotzky
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, United States.
| | - Rifat Sipahi
- Complex Dynamic Systems and Control Laboratory, Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, United States.
| | - Günther K H Zupanc
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, United States.
| |
Collapse
|
75
|
Losurdo M, Pedrazzoli M, D'Agostino C, Elia CA, Massenzio F, Lonati E, Mauri M, Rizzi L, Molteni L, Bresciani E, Dander E, D'Amico G, Bulbarelli A, Torsello A, Matteoli M, Buffelli M, Coco S. Intranasal delivery of mesenchymal stem cell-derived extracellular vesicles exerts immunomodulatory and neuroprotective effects in a 3xTg model of Alzheimer's disease. Stem Cells Transl Med 2020; 9:1068-1084. [PMID: 32496649 PMCID: PMC7445021 DOI: 10.1002/sctm.19-0327] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 03/18/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
The critical role of neuroinflammation in favoring and accelerating the pathogenic process in Alzheimer's disease (AD) increased the need to target the cerebral innate immune cells as a potential therapeutic strategy to slow down the disease progression. In this scenario, mesenchymal stem cells (MSCs) have risen considerable interest thanks to their immunomodulatory properties, which have been largely ascribed to the release of extracellular vesicles (EVs), namely exosomes and microvesicles. Indeed, the beneficial effects of MSC-EVs in regulating the inflammatory response have been reported in different AD mouse models, upon chronic intravenous or intracerebroventricular administration. In this study, we use the triple-transgenic 3xTg mice showing for the first time that the intranasal route of administration of EVs, derived from cytokine-preconditioned MSCs, was able to induce immunomodulatory and neuroprotective effects in AD. MSC-EVs reached the brain, where they dampened the activation of microglia cells and increased dendritic spine density. MSC-EVs polarized in vitro murine primary microglia toward an anti-inflammatory phenotype suggesting that the neuroprotective effects observed in transgenic mice could result from a positive modulation of the inflammatory status. The possibility to administer MSC-EVs through a noninvasive route and the demonstration of their anti-inflammatory efficacy might accelerate the chance of a translational exploitation of MSC-EVs in AD.
Collapse
Affiliation(s)
- Morris Losurdo
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | - Matteo Pedrazzoli
- Department of Neurosciences, Biomedicine and Movement SciencesUniversity of VeronaVeronaItaly
| | | | - Chiara A. Elia
- Laboratory of Pharmacology and Brain Pathology, Neuro CenterHumanitas Clinical and Research Center—IRCCSRozzano (MI)Italy
- CNR, Institute of NeuroscienceMilanoItaly
| | - Francesca Massenzio
- Department of Neurosciences, Biomedicine and Movement SciencesUniversity of VeronaVeronaItaly
| | - Elena Lonati
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | - Mario Mauri
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | - Laura Rizzi
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | - Laura Molteni
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | - Elena Bresciani
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | - Erica Dander
- Centro Ricerca Tettamanti, Pediatric DepartmentUniversity of Milano‐Bicocca, Fondazione MBBMMonzaItaly
| | - Giovanna D'Amico
- Centro Ricerca Tettamanti, Pediatric DepartmentUniversity of Milano‐Bicocca, Fondazione MBBMMonzaItaly
| | - Alessandra Bulbarelli
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
- NeuroMI‐Milan Center for NeuroscienceUniversity of Milano‐BicoccaMilano (MI)Italy
| | - Antonio Torsello
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | - Michela Matteoli
- Laboratory of Pharmacology and Brain Pathology, Neuro CenterHumanitas Clinical and Research Center—IRCCSRozzano (MI)Italy
- Department of Biomedical SciencesHumanitas UniversityPieve Emanuele (MI)Italy
| | - Mario Buffelli
- Department of Neurosciences, Biomedicine and Movement SciencesUniversity of VeronaVeronaItaly
| | - Silvia Coco
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
- NeuroMI‐Milan Center for NeuroscienceUniversity of Milano‐BicoccaMilano (MI)Italy
| |
Collapse
|
76
|
Pascal A, Li N, Lechtenberg KJ, Rosenberg J, Airan RD, James ML, Bouley DM, Pauly KB. Histologic evaluation of activation of acute inflammatory response in a mouse model following ultrasound-mediated blood-brain barrier using different acoustic pressures and microbubble doses. Nanotheranostics 2020; 4:210-223. [PMID: 32802731 PMCID: PMC7425053 DOI: 10.7150/ntno.49898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/06/2020] [Indexed: 11/05/2022] Open
Abstract
Rationale: Localized blood-brain barrier (BBB) opening can be achieved with minimal to no tissue damage by applying pulsed focused ultrasound alongside a low microbubble (MB) dose. However, relatively little is known regarding how varying treatment parameters affect the degree of neuroinflammation following BBB opening. The goal of this study was to evaluate the activation of an inflammatory response following BBB opening as a function of applied acoustic pressure using two different microbubble doses. Methods: Mice were treated with 650 kHz ultrasound using varying acoustic peak negative pressures (PNPs) using two different MB doses, and activation of an inflammatory response, in terms of microglial and astrocyte activation, was assessed one hour following BBB opening using immunohistochemical staining. Harmonic and subharmonic acoustic emissions (AEs) were monitored for all treatments with a passive cavitation detector, and contrast-enhanced magnetic resonance imaging (CE-MRI) was performed following BBB opening to quantify the degree of opening. Hematoxylin and eosin-stained slides were assessed for the presence of microhemorrhage and edema. Results: For each MB dose, BBB opening was achieved with minimal activation of microglia and astrocytes using a PNP of 0.15 MPa. Higher PNPs were associated with increased activation, with greater increases associated with the use of the higher MB dose. Additionally, glial activation was still observed in the absence of histopathological findings. We found that CE-MRI was most strongly correlated with the degree of activation. While acoustic emissions were not predictive of microglial or astrocyte activation, subharmonic AEs were strongly associated with marked and severe histopathological findings. Conclusions: Our study demonstrated that there were mild histologic changes and activation of the acute inflammatory response using PNPs ranging from 0.15 MPa to 0.20 MPa, independent of MB dose. However, when higher PNPs of 0.25 MPa or above were applied, the same applied PNP resulted in more severe and widespread histological findings and activation of the acute inflammatory response when using the higher MB dose. The potential activation of the inflammatory response following ultrasound-mediated BBB opening should be considered when treating patients to maximize therapeutic benefit.
Collapse
Affiliation(s)
- Aurea Pascal
- Department of Radiology, Stanford University, Stanford, California 94305, USA
| | - Ningrui Li
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
| | - Kendra J Lechtenberg
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, USA
| | - Jarrett Rosenberg
- Department of Radiology, Stanford University, Stanford, California 94305, USA
| | - Raag D Airan
- Department of Radiology, Stanford University, Stanford, California 94305, USA
| | - Michelle L James
- Department of Radiology, Stanford University, Stanford, California 94305, USA.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, USA
| | - Donna M Bouley
- Department of Comparative Medicine, Stanford University, Stanford, California 94305, USA
| | - Kim Butts Pauly
- Department of Radiology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
77
|
Hristovska I, Verdonk F, Comte JC, Tsai ES, Desestret V, Honnorat J, Chrétien F, Pascual O. Ketamine/xylazine and barbiturates modulate microglial morphology and motility differently in a mouse model. PLoS One 2020; 15:e0236594. [PMID: 32760073 PMCID: PMC7410236 DOI: 10.1371/journal.pone.0236594] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/08/2020] [Indexed: 12/30/2022] Open
Abstract
Microglia, the resident immune cells of the brain, are highly ramified and motile and their morphology is strongly linked to their function. Microglia constantly monitor the brain parenchyma and are crucial for maintaining brain homeostasis and fine-tuning neuronal networks. Besides affecting neurons, anesthetics may have wide-ranging effects mediated by non-neuronal cells and in particular microglia. We thus examined the effect of two commonly used anesthetic agents, ketamine/xylazine and barbiturates, on microglial motility and morphology. A combination of two-photon in vivo imaging and electroencephalography (EEG) recordings in unanesthetized and anesthetized mice as well as automated analysis of ex vivo sections were used to assess morphology and dynamics of microglia. We found that administration of ketamine/xylazine and pentobarbital anesthesia resulted in quite distinct EEG profiles. Both anesthetics reduced microglial motility, but only ketamine/xylazine administration led to reduction of microglial complexity in vivo. The change of cellular dynamics in vivo was associated with a region-dependent reduction of several features of microglial cells ex vivo, such as the complexity index and the ramification length, whereas thiopental altered the size of the cytoplasm. Our results show that anesthetics have considerable effects on neuronal activity and microglial morphodynamics and that barbiturates may be a preferred anesthetic agent for the study of microglial morphology. These findings will undoubtedly raise compelling questions about the functional relevance of anesthetics on microglial cells in neuronal physiology and anesthesia-induced neurotoxicity.
Collapse
Affiliation(s)
- Ines Hristovska
- Equipe Synaptopathies et Autoanticorps (SynatAc), Institut NeuroMyoGène, INSERM U1217/UMR CNRS 5310, Lyon, France
- Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Franck Verdonk
- Unité Neuropathologie Expérimentale, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
- Department d’anesthésiologie et de Soins Intensifs, Hôpital Saint Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
- Sorbonne Université, Paris, France
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jean-Christophe Comte
- Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Equipe Processus d’oubli et Dynamique Corticale, Centre de Recherche en Neuroscience de Lyon (CRNL), INSERM U1028, CNRS UMR5292, Lyon, France
| | - Eileen S. Tsai
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Virginie Desestret
- Equipe Synaptopathies et Autoanticorps (SynatAc), Institut NeuroMyoGène, INSERM U1217/UMR CNRS 5310, Lyon, France
- Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Centre maladies rares sur les syndromes neurologiques paranéoplasiques, Hospices Civils de Lyon, Lyon, France
| | - Jérôme Honnorat
- Equipe Synaptopathies et Autoanticorps (SynatAc), Institut NeuroMyoGène, INSERM U1217/UMR CNRS 5310, Lyon, France
- Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Centre maladies rares sur les syndromes neurologiques paranéoplasiques, Hospices Civils de Lyon, Lyon, France
| | - Fabrice Chrétien
- Unité Neuropathologie Expérimentale, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Laboratoire Hospitalo-Universitaire de Neuropathologie, Centre Hospitalier Sainte Anne, Paris, France
- * E-mail: (FC); (OP)
| | - Olivier Pascual
- Equipe Synaptopathies et Autoanticorps (SynatAc), Institut NeuroMyoGène, INSERM U1217/UMR CNRS 5310, Lyon, France
- Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- * E-mail: (FC); (OP)
| |
Collapse
|
78
|
Corraliza-Gómez M, Gallardo AB, Díaz-Marrero AR, de la Rosa JM, D’Croz L, Darias J, Arranz E, Cózar-Castellano I, Ganfornina MD, Cueto M. Modulation of Glial Responses by Furanocembranolides: Leptolide Diminishes Microglial Inflammation in Vitro and Ameliorates Gliosis In Vivo in a Mouse Model of Obesity and Insulin Resistance. Mar Drugs 2020; 18:E378. [PMID: 32708004 PMCID: PMC7459604 DOI: 10.3390/md18080378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are age-related disorders caused by progressive neuronal death in different regions of the nervous system. Neuroinflammation, modulated by glial cells, is a crucial event during the neurodegenerative process; consequently, there is an urgency to find new therapeutic products with anti-glioinflammatory properties. Five new furanocembranolides (1-5), along with leptolide, were isolated from two different extracts of Leptogorgia sp., and compound 6 was obtained from chemical transformation of leptolide. Their structures were determined based on spectroscopic evidence. These seven furanocembranolides were screened in vitro by measuring their ability to modulate interleukin-1β (IL-1β) production by microglial BV2 cells after LPS (lipopolysaccharide) stimulation. Leptolide and compounds 3, 4 and 6 exhibited clear anti-inflammatory effects on microglial cells, while compound 2 presented a pro-inflammatory outcome. The in vitro results prompted us to assess anti-glioinflammatory effects of leptolide in vivo in a high-fat diet-induced obese mouse model. Interestingly, leptolide treatment ameliorated both microgliosis and astrogliosis in this animal model. Taken together, our results reveal a promising direct biological effect of furanocembranolides on microglial cells as bioactive anti-inflammatory molecules. Among them, leptolide provides us a feasible therapeutic approach to treat neuroinflammation concomitant with metabolic impairment.
Collapse
Affiliation(s)
- Miriam Corraliza-Gómez
- Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, 47003 Valladolid, Spain; (M.C.-G.); (E.A.); (I.C.-C.)
| | - Amalia B. Gallardo
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avenida Astrofísico F. Sánchez, 3, 38206 La Laguna, Tenerife, Spain; (A.B.G.); (A.R.D.-M.); (J.M.d.l.R.); (J.D.)
- Departamento de Ciencias y Recursos Naturales, Facultad de Ciencias, Universidad de Magallanes, Avenida Bulnes 01855, Punta Arenas, Chile
| | - Ana R. Díaz-Marrero
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avenida Astrofísico F. Sánchez, 3, 38206 La Laguna, Tenerife, Spain; (A.B.G.); (A.R.D.-M.); (J.M.d.l.R.); (J.D.)
| | - José M. de la Rosa
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avenida Astrofísico F. Sánchez, 3, 38206 La Laguna, Tenerife, Spain; (A.B.G.); (A.R.D.-M.); (J.M.d.l.R.); (J.D.)
| | - Luis D’Croz
- Departamento de Biología Marina y Limnología, Universidad de Panamá, Panama 3366, Panama;
- Smithsonian Tropical Research Institute, STRI, Box 0843-03092 Balboa, Panama
| | - José Darias
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avenida Astrofísico F. Sánchez, 3, 38206 La Laguna, Tenerife, Spain; (A.B.G.); (A.R.D.-M.); (J.M.d.l.R.); (J.D.)
| | - Eduardo Arranz
- Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, 47003 Valladolid, Spain; (M.C.-G.); (E.A.); (I.C.-C.)
| | - Irene Cózar-Castellano
- Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, 47003 Valladolid, Spain; (M.C.-G.); (E.A.); (I.C.-C.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - María D. Ganfornina
- Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, 47003 Valladolid, Spain; (M.C.-G.); (E.A.); (I.C.-C.)
| | - Mercedes Cueto
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avenida Astrofísico F. Sánchez, 3, 38206 La Laguna, Tenerife, Spain; (A.B.G.); (A.R.D.-M.); (J.M.d.l.R.); (J.D.)
| |
Collapse
|
79
|
Kumar M, Arora P, Sandhir R. Hydrogen Sulfide Reverses LPS-Induced Behavioral Deficits by Suppressing Microglial Activation and Promoting M2 Polarization. J Neuroimmune Pharmacol 2020; 16:483-499. [DOI: 10.1007/s11481-020-09920-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/21/2020] [Indexed: 01/01/2023]
|
80
|
To XV, Benetatos J, Soni N, Liu D, Mehari Abraha H, Yan W, Panagiotopoulou O, Nasrallah FA. Ultra-High-Field Diffusion Tensor Imaging Identifies Discrete Patterns of Concussive Injury in the Rodent Brain. J Neurotrauma 2020; 38:967-982. [PMID: 32394788 DOI: 10.1089/neu.2019.6944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although concussions can result in persistent neurological post-concussion symptoms, they are typically invisible on routine magnetic resonance imaging (MRI) scans. Our study aimed to investigate the use of ultra-high-field diffusion tensor imaging (UHF-DTI) in discerning severity-dependent microstructural changes in the mouse brain following a concussion. Twenty-three C57BL/6 mice were randomly allocated into three groups: the low concussive (LC, n = 9) injury group, the high concussive (HC, n = 6) injury group, and the sham control (SC, n = 7) group. Mice were perfused on day 2 post-injury, and the brains were scanned on a 16.4T MRI scanner with UHF-DTI and neurite orientation dispersion imaging (NODDI). Finite element analysis (FEA) was performed to determine the pattern and extent of the physical impact on the brain tissue. MRI findings were correlated with histopathological analysis in a subset of mice. In the LC group, increased fractional anisotropy (FA) and decreased orientation dispersion index (ODI) but limited neurite density index (NDI) changes were found in the gray matter, and minimal changes to white matter (WM) were observed. The HC group presented increased mean diffusivity (MD), decreased NDI, and decreased ODI in the WM and gray matter (GM); decreased FA was also found in a small area of the WM. WM changes were associated with WM degeneration and neuroinflammation. FEA showed varying region-dependent degrees of stress, in line with the different imaging findings. This study provides evidence that UHF-DTI combined with NODDI can detect concussions of variable intensities. This has significant implications for the diagnosis of concussion in humans.
Collapse
Affiliation(s)
- Xuan Vinh To
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Joseph Benetatos
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Neha Soni
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Dedao Liu
- Department of Mechanical and Aerospace Engineering, Faculty of Engineering, Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Hyab Mehari Abraha
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Wenyi Yan
- Department of Mechanical and Aerospace Engineering, Faculty of Engineering, Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Olga Panagiotopoulou
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Fatima A Nasrallah
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.,The Center for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
81
|
Microglial and Astrocytic Function in Physiological and Pathological Conditions: Estrogenic Modulation. Int J Mol Sci 2020; 21:ijms21093219. [PMID: 32370112 PMCID: PMC7247358 DOI: 10.3390/ijms21093219] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022] Open
Abstract
There are sexual differences in the onset, prevalence, and outcome of numerous neurological diseases. Thus, in Alzheimer’s disease, multiple sclerosis, and major depression disorder, the incidence in women is higher than in men. In contrast, men are more likely to present other pathologies, such as amyotrophic lateral sclerosis, Parkinson’s disease, and autism spectrum. Although the neurological contribution to these diseases has classically always been studied, the truth is that neurons are not the only cells to be affected, and there are other cells, such as glial cells, that are also involved and could be key to understanding the development of these pathologies. Sexual differences exist not only in pathology but also in physiological processes, which shows how cells are differentially regulated in males and females. One of the reasons these sexual differences may occur could be due to the different action of sex hormones. Many studies have shown an increase in aromatase levels in the brain, which could indicate the main role of estrogens in modulating proinflammatory processes. This review will highlight data about sex differences in glial physiology and how estrogenic compounds, such as estradiol and tibolone, could be used as treatment in neurological diseases due to their anti-inflammatory effects and the ability to modulate glial cell functions.
Collapse
|
82
|
Shaerzadeh F, Phan L, Miller D, Dacquel M, Hachmeister W, Hansen C, Bechtle A, Tu D, Martcheva M, Foster TC, Kumar A, Streit WJ, Khoshbouei H. Microglia senescence occurs in both substantia nigra and ventral tegmental area. Glia 2020; 68:2228-2245. [PMID: 32275335 DOI: 10.1002/glia.23834] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
Abstract
During aging humans lose midbrain dopamine neurons, but not all dopamine regions exhibit vulnerability to neurodegeneration. Microglia maintain tissue homeostasis and neuronal support, but microglia become senescent and likely lose some of their functional abilities. Since aging is the greatest risk factor for Parkinson's disease, we hypothesized that aging-related changes in microglia and neurons occur in the vulnerable substantia nigra pars compacta (SNc) but not the ventral tegmental area (VTA). We conducted stereological analyses to enumerate microglia and dopaminergic neurons in the SNc and VTA of 1-, 6-, 9-, 18-, and 24-month-old C57BL/J6 mice using sections double-stained with tyrosine hydroxylase (TH) and Iba1. Both brain regions show an increase in microglia with aging, whereas numbers of TH+ cells show no significant change after 9 months of age in SNc and 6 months in VTA. Morphometric analyses reveal reduced microglial complexity and projection area while cell body size increases with aging. Contact sites between microglia and dopaminergic neurons in both regions increase with aging, suggesting increased microglial support/surveillance of dopamine neurons. To assess neurotrophin expression in dopaminergic neurons, BDNF and TH mRNA were quantified. Results show that the ratio of BDNF to TH decreases in the SNc, but not the VTA. Gait analysis indicates subtle, aging-dependent changes in gait indices. In conclusion, increases in microglial cell number, ratio of microglia to dopamine neurons, and contact sites suggest that innate biological mechanisms compensate for the aging-dependent decline in microglia morphological complexity (senescence) to ensure continued neuronal support in the SNc and VTA.
Collapse
Affiliation(s)
- Fatemeh Shaerzadeh
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Leah Phan
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Douglas Miller
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Maxwell Dacquel
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - William Hachmeister
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Carissa Hansen
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Alexandra Bechtle
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Duan Tu
- Department of Mathematics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Maia Martcheva
- Department of Mathematics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Thomas C Foster
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Ashok Kumar
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Wolfgang J Streit
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
83
|
Gumusoglu SB, Chilukuri ASS, Santillan DA, Santillan MK, Stevens HE. Neurodevelopmental Outcomes of Prenatal Preeclampsia Exposure. Trends Neurosci 2020; 43:253-268. [PMID: 32209456 DOI: 10.1016/j.tins.2020.02.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/21/2020] [Accepted: 02/05/2020] [Indexed: 01/06/2023]
Abstract
Preeclampsia is a dangerous hypertensive disorder of pregnancy with known links to negative child health outcomes. Here, we review epidemiological and basic neuroscience work from the past several decades linking prenatal preeclampsia to altered neurodevelopment. This work demonstrates increased rates of neuropsychiatric disorders [e.g., increased autism spectrum disorder, attention deficit hyperactivity disorder (ADHD)] in children of preeclamptic pregnancies, as well as increased rates of cognitive impairments [e.g., decreased intelligence quotient (IQ), academic performance] and neurological disease (e.g., stroke and epilepsy). We also review findings from multiple animal models of preeclampsia. Manipulation of key clinical preeclampsia processes in these models (e.g., placental hypoxia, immune dysfunction, angiogenesis, oxidative stress) causes various disruptions in offspring, including ones in white matter/glia, glucocorticoid receptors, neuroimmune outcomes, cerebrovascular structure, and cognition/behavior. This animal work implicates potentially high-yield targets that may be leveraged in the future for clinical application.
Collapse
Affiliation(s)
- Serena B Gumusoglu
- Department of Psychiatry, University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA, USA
| | - Akanksha S S Chilukuri
- Department of Psychiatry, University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA, USA
| | - Donna A Santillan
- University of Iowa Carver College of Medicine, Department of Obstetrics and Gynecology, Iowa City, IA, USA
| | - Mark K Santillan
- University of Iowa Carver College of Medicine, Department of Obstetrics and Gynecology, Iowa City, IA, USA
| | - Hanna E Stevens
- Department of Psychiatry, University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA, USA.
| |
Collapse
|
84
|
Doll JR, Hoebe K, Thompson RL, Sawtell NM. Resolution of herpes simplex virus reactivation in vivo results in neuronal destruction. PLoS Pathog 2020; 16:e1008296. [PMID: 32134994 PMCID: PMC7058292 DOI: 10.1371/journal.ppat.1008296] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/26/2019] [Indexed: 12/11/2022] Open
Abstract
A fundamental question in herpes simplex virus (HSV) pathogenesis is the consequence of viral reactivation to the neuron. Evidence supporting both post-reactivation survival and demise is published. The exceedingly rare nature of this event at the neuronal level in the sensory ganglion has limited direct examination of this important question. In this study, an in-depth in vivo analysis of the resolution of reactivation was undertaken. Latently infected C57BL/6 mice were induced to reactivate in vivo by hyperthermic stress. Infectious virus was detected in a high percentage (60-80%) of the trigeminal ganglia from these mice at 20 hours post-reactivation stimulus, but declined by 48 hours post-stimulus (0-13%). With increasing time post-reactivation stimulus, the percentage of reactivating neurons surrounded by a cellular cuff increased, which correlated with a decrease in detectable infectious virus and number of viral protein positive neurons. Importantly, in addition to intact viral protein positive neurons, fragmented viral protein positive neurons morphologically consistent with apoptotic bodies and containing cleaved caspase-3 were detected. The frequency of this phenotype increased through time post-reactivation. These fragmented neurons were surrounded by Iba1+ cells, consistent with phagocytic removal of dead neurons. Evidence of neuronal destruction post-reactivation prompted re-examination of the previously reported non-cytolytic role of T cells in controlling reactivation. Latently infected mice were treated with anti-CD4/CD8 antibodies prior to induced reactivation. Neither infectious virus titers nor neuronal fragmentation were altered. In contrast, when viral DNA replication was blocked during reactivation, fragmentation was not observed even though viral proteins were expressed. Our data demonstrate that at least a portion of reactivating neurons are destroyed. Although no evidence for direct T cell mediated antigen recognition in this process was apparent, inhibition of viral DNA replication blocked neuronal fragmentation. These unexpected findings raise new questions about the resolution of HSV reactivation in the host nervous system.
Collapse
Affiliation(s)
- Jessica R. Doll
- Department of Molecular Genetics, Biochemistry, and Microbiology,University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Kasper Hoebe
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Richard L. Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology,University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Nancy M. Sawtell
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| |
Collapse
|
85
|
Ullah F, Asgarov R, Venigalla M, Liang H, Niedermayer G, Münch G, Gyengesi E. Effects of a solid lipid curcumin particle formulation on chronic activation of microglia and astroglia in the GFAP-IL6 mouse model. Sci Rep 2020; 10:2365. [PMID: 32047191 PMCID: PMC7012877 DOI: 10.1038/s41598-020-58838-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/17/2020] [Indexed: 02/08/2023] Open
Abstract
Chronic glial activation is characterized by increased numbers of activated glial cells, secreting free radicals and cytotoxic cytokines, subsequently causing neuronal damage. In order to investigate the anti-inflammatory activity of Longvida® Optimised Curcumin (LC), we fed 500 ppm of LC to 2-month-old wild type and GFAP-IL6 mice for 6 months. LC feeding led to a significant reduction in the number of Iba-1+ microglia by 26% in the hippocampus and by 48% in the cerebellum, GFAP+ astrocytes by 30%, and TSPO+ cells by 24% in the hippocampus and by 31% in the cerebellum of the GFAP-IL6 mice. The morphology of the cells was assessed and LC significantly decreased the dendritic length of microglia and the convex area, convex perimeter, dendritic length, nodes and number of processes of astrocytes in the hippocampus while decreasing the soma area and perimeter in the cerebellum, in LC-fed GFAP-IL6 mice. In addition, LC feeding increased pre- and postsynaptic protein levels and improved balance measured by Rotarod. Together, these data suggest that LC is able to attenuate the inflammatory pathology and ameliorate neurodegeneration and motor deficits in GFAP-IL6 mice. For patients with neuro-inflammatory disorders, LC might potentially reverse the detrimental effects of chronic glial activation.
Collapse
Affiliation(s)
- Faheem Ullah
- Department of Pharmacology, School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| | - Rustam Asgarov
- Department of Pharmacology, School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| | - Madhuri Venigalla
- Department of Pharmacology, School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| | - Huazheng Liang
- Department of Pharmacology, School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia.,Department of Neurology, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Garry Niedermayer
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| | - Gerald Münch
- Department of Pharmacology, School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia.,NICM Health Research Institute, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| | - Erika Gyengesi
- Department of Pharmacology, School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia. .,NICM Health Research Institute, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia.
| |
Collapse
|
86
|
Distinct P2Y Receptors Mediate Extension and Retraction of Microglial Processes in Epileptic and Peritumoral Human Tissue. J Neurosci 2020; 40:1373-1388. [PMID: 31896671 DOI: 10.1523/jneurosci.0218-19.2019] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022] Open
Abstract
Microglia exhibit multiple, phenotype-dependent motility patterns often triggered by purinergic stimuli. However, little data exist on motility of human microglia in pathological situations. Here we examine motility of microglia stained with a fluorescent lectin in tissue slices from female and male epileptic patients diagnosed with mesial temporal lobe epilepsy or cortical glioma (peritumoral cortex). Microglial shape varied from ramified to amoeboid cells predominantly in regions of high neuronal loss or closer to a tumor. Live imaging revealed unstimulated or purine-induced microglial motilities, including surveillance movements, membrane ruffling, and process extension or retraction. At different concentrations, ADP triggered opposing motilities. Low doses triggered process extension. It was suppressed by P2Y12 receptor antagonists, which also reduced process length and surveillance movements. Higher purine doses caused process retraction and membrane ruffling, which were blocked by joint application of P2Y1 and P2Y13 receptor antagonists. Purinergic effects on motility were similar for all microglia tested. Both amoeboid and ramified cells from mesial temporal lobe epilepsy or peritumoral cortex tissue expressed P2Y12 receptors. A minority of microglia expressed the adenosine A2A receptor, which has been linked with process withdrawal of rodent cells. Laser-mediated tissue damage let us test the functional significance of these effects. Moderate damage induced microglial process extension, which was blocked by P2Y12 receptor antagonists. Overall, the purine-induced motility of human microglia in epileptic tissue is similar to that of rodent microglia in that the P2Y12 receptor initiates process extension. It differs in that retraction is triggered by joint activation of P2Y1/P2Y13 receptors.SIGNIFICANCE STATEMENT Microglial cells are brain-resident immune cells with multiple functions in healthy or diseased brains. These diverse functions are associated with distinct phenotypes, including different microglial shapes. In the rodent, purinergic signaling is associated with changes in cell shape, such as process extension toward tissue damage. However, there are little data on living human microglia, especially in diseased states. We developed a reliable technique to stain microglia from epileptic and glioma patients to examine responses to purines. Low-intensity purinergic stimuli induced process extension, as in rodents. In contrast, high-intensity stimuli triggered a process withdrawal mediated by both P2Y1 and P2Y13 receptors. P2Y1/P2Y13 receptor activation has not previously been linked to microglial morphological changes.
Collapse
|
87
|
Abstract
Microglia are increasingly shown to be key players in neuron development and synapse connectivity. However, the underlying mechanisms by which microglia regulate neuron function remain poorly understood in part because such analysis is challenging in the brain where neurons and synapses are intermingled and connectivity is only beginning to be mapped. Here, we discuss the features and function of microglia in the ordered mammalian retina where the laminar organization of neurons and synapses facilitates such molecular studies. We discuss microglia origins and consider the evidence for molecularly distinct microglia subpopulations and their potential for differential roles with a particular focus on the early stages of retina development. We then review the models and methods used for the study of these cells and discuss emerging data that link retina microglia to the genesis and survival of particular retina cell subtypes. We also highlight potential roles for microglia in shaping the development and organization of the vasculature and discuss cellular and molecular mechanisms involved in this process. Such insights may help resolve the mechanisms by which retinal microglia impact visual function and help guide studies of related features in brain development and disease.
Collapse
Affiliation(s)
- Fenge Li
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Danye Jiang
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Melanie A Samuel
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
88
|
Glucagon-like peptide-1 suppresses neuroinflammation and improves neural structure. Pharmacol Res 2019; 152:104615. [PMID: 31881271 DOI: 10.1016/j.phrs.2019.104615] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/22/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is a hormone mainly secreted from enteroendocrine L cells. GLP-1 and its receptor are also expressed in the brain. GLP-1 signaling has pivotal roles in regulating neuroinflammation and memory function, but it is unclear how GLP-1 improves memory function by regulating neuroinflammation. Here, we demonstrated that GLP-1 enhances neural structure by inhibiting lipopolysaccharide (LPS)-induced inflammation in microglia with the effects of GLP-1 itself on neurons. Inflammatory secretions of BV-2 microglia by LPS aggravated mitochondrial function and cell survival, as well as neural structure in Neuro-2a neurons. In inflammatory condition, GLP-1 suppressed the secretion of tumor necrosis factor-alpha (TNF-α)-associated cytokines and chemokines in BV-2 microglia and ultimately enhanced neurite complexity (neurite length, number of neurites from soma, and secondary branches) in Neuro-2a neurons. We confirmed that GLP-1 improves neurite complexity, dendritic spine morphogenesis, and spine development in TNF-α-treated primary cortical neurons based on altered expression levels of the factors related to neurite growth and spine morphology. Given that our data that GLP-1 itself enhances neurite complexity and spine morphology in neurons, we suggest that GLP-1 has a therapeutic potential in central nervous system diseases.
Collapse
|
89
|
Frye MD, Ryan AF, Kurabi A. Inflammation associated with noise-induced hearing loss. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:4020. [PMID: 31795714 PMCID: PMC7480080 DOI: 10.1121/1.5132545] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 05/22/2023]
Abstract
Inflammation is a complex biological response to harmful stimuli including infection, tissue damage, and toxins. Thus, it is not surprising that cochlear damage by noise includes an inflammatory component. One mechanism by which inflammation is generated by tissue damage is the activation of damage-associated molecular patterns (DAMPs). Many of the cellular receptors for DAMPS, including Toll-like receptors, NOD-like receptors, and DNA receptors, are also receptors for pathogens, and function in the innate immune system. DAMP receptors are known to be expressed by cochlear cells, and binding of molecules released by damaged cells to these receptors result in the activation of cell stress pathways. This leads to the generation of pro-inflammatory cytokines and chemokines that recruit pro-inflammatory leukocytes. Extensive evidence indicates pro-inflammatory cytokines including TNF alpha and interleukin 1 beta, and chemokines including CCL2, are induced in the cochlea after noise exposure. The recruitment of macrophages into the cochlea has also been demonstrated. These provide substrates for noise damage to be enhanced by inflammation. Evidence is provided by the effectiveness of anti-inflammatory drugs in ameliorating noise-induced hearing loss. Involvement of inflammation provides a wide variety of additional anti-inflammatory and pro-resolution agents as potential pharmacological interventions in noise-induced hearing loss.
Collapse
Affiliation(s)
- Mitchell D Frye
- Callier Center for Communication Disorders, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas 75080, USA
| | - Allen F Ryan
- Department of Surgery/Otolaryngology, University of California San Diego, School of Medicine, and Veterans Administration Medical Center, La Jolla, California 92093, USA
| | - Arwa Kurabi
- Department of Surgery/Otolaryngology, University of California San Diego, School of Medicine, and Veterans Administration Medical Center, La Jolla, California 92093, USA
| |
Collapse
|
90
|
Fernández-Arjona MDM, Grondona JM, Fernández-Llebrez P, López-Ávalos MD. Microglial Morphometric Parameters Correlate With the Expression Level of IL-1β, and Allow Identifying Different Activated Morphotypes. Front Cell Neurosci 2019; 13:472. [PMID: 31708746 PMCID: PMC6824358 DOI: 10.3389/fncel.2019.00472] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/02/2019] [Indexed: 12/22/2022] Open
Abstract
Microglia are the resident macrophages in the brain. Traditionally, two forms of microglia have been described: one considered as a resting/surveillant state in which cells have a highly branched morphology, and another considered as an activated state in which they acquire a de-ramified or amoeboid form. However, many studies describe intermediate microglial morphologies which emerge during pathological processes. Since microglial form and function are closely related, it is of interest to correlate microglial morphology with the extent of its activation. To address this issue, we used a rat model of neuroinflammation consisting in a single injection of the enzyme neuraminidase (NA) within the lateral ventricle. Sections from NA-injected animals were co-immunolabeled with the microglial marker IBA1 and the cytokine IL-1β, which highlight features of the cell’s shape and inflammatory activation, respectively. Activated (IL-1β positive) microglial cells were sampled from the dorsal hypothalamus nearby the third ventricle. Images of single microglial cells were processed in two different ways to obtain (1) an accurate measure of the level of expression of IL-1β (indicating the degree of activation), and (2) a set of 15 morphological parameters to quantitatively and objectively describe the cell’s shape. A simple regression analysis revealed a dependence of most of the morphometric parameters on IL-1β expression, demonstrating that the morphology of microglial cells changes progressively with the degree of activation. Moreover, a hierarchical cluster analysis pointed out four different morphotypes of activated microglia, which are characterized not only by morphological parameters values, but also by specific IL-1β expression levels. Thus, these results demonstrate in an objective manner that the activation of microglial cells is a gradual process, and correlates with their morphological change. Even so, it is still possible to categorize activated cells according to their morphometric parameters, each category presenting a different activation degree. The physiological relevance of those activated morphotypes is an issue worth to be assessed in the future.
Collapse
Affiliation(s)
| | - Jesús M Grondona
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - Pedro Fernández-Llebrez
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - María D López-Ávalos
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| |
Collapse
|
91
|
Noble KV, Liu T, Matthews LJ, Schulte BA, Lang H. Age-Related Changes in Immune Cells of the Human Cochlea. Front Neurol 2019; 10:895. [PMID: 31474935 PMCID: PMC6707808 DOI: 10.3389/fneur.2019.00895] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
Abstract
Age-related hearing loss is a chronic degenerative disorder affecting one in two individuals above the age of 75. Current population projections predict a steady climb in the number of older individuals making the search for interventions to prevent or reverse this disorder even more critical. There is growing acceptance that aberrant activity of resident or infiltrating immune cells, such as macrophages, is a major factor contributing to the onset and progression of age-related degenerative diseases. However, how macrophage populations and their functionally-driven morphological characteristics change with age in the human cochlea remains largely unknown. In this study, we employed immunohistochemical approaches along with confocal and super-resolution imaging, three-dimensional reconstructions, and quantitative analysis to determine age-related changes in macrophage numbers and morphology as well as interactions with other cell-types and structures of the auditory nerve and lateral wall in the human cochlea. In the cochlea of human ears from young and middle aged adults those macrophages in the auditory nerve assumed a worm-like structure in contrast to those in the spiral ligament or associated with the dense microvascular network in the stria vascularis which exhibited a highly ramified morphology. Macrophages in both the auditory nerve and cochlear lateral wall showed morphological alterations with age. The population of activated macrophages in the auditory nerve increased in cochleas obtained from older donors. Dual-immunohistochemical staining with macrophage, myelin, and neuronal markers revealed increased interactions of macrophages with the glial and neuronal components of the aged auditory nerve. These findings implicate the involvement of abnormal macrophage-glia interactions in age-related physiological and pathological alterations in the human cochlea. There is clearly a need to further investigate the contribution of macrophage-associated inflammatory dysregulation in human presbyacusis.
Collapse
Affiliation(s)
- Kenyaria V. Noble
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Ting Liu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Lois J. Matthews
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Bradley A. Schulte
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
92
|
Shtaya A, Bridges LR, Esiri MM, Lam‐Wong J, Nicoll JAR, Boche D, Hainsworth AH. Rapid neuroinflammatory changes in human acute intracerebral hemorrhage. Ann Clin Transl Neurol 2019; 6:1465-1479. [PMID: 31402627 PMCID: PMC6689697 DOI: 10.1002/acn3.50842] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Spontaneous intracerebral hemorrhage (ICH) is the commonest form of hemorrhagic stroke and is associated with a poor prognosis. Neurosurgical removal of intracerebral hematoma has limited benefit and no pharmacotherapies are available. In acute ICH, primary tissue damage is followed by secondary pathology, where the cellular and neuroinflammatory changes are poorly understood. METHODS We studied histological changes in postmortem tissue from a cohort of spontaneous supra-tentorial primary ICH cases (n = 27) with survival of 1-12 days, compared to a matched control group (n = 16) examined in corresponding regions. Hematoxylin-eosin and microglial (Iba1) immunolabelled sections were assessed at 0-2, 3-5, and 7-12 days post-ICH. RESULTS Peri-hematoma, the observed ICH-related changes include edema, tissue neutrophils and macrophages from day 1. Ischemic neurons and swollen endothelial cells were common at day 1 and universal after day 5, as were intramural erythrocytes within small vessel walls. Activated microglia were evident at day 1 post-ICH. There was a significant increase in Iba1 positive area fraction at 0-2 (threefold), 3-5 (fourfold), and 7-12 days post ICH (ninefold) relative to controls. Giant microglia were detected peri-hematoma from day 5 and consistently 7-12 days post-ICH. INTERPRETATION Our data indicate that neuroinflammatory processes commence from day 1 post-ICH with changing microglial size and morphology following ICH and up to day 12. From day 5 some microglia exhibit a novel multiply nucleated morphology, which may be related to changing phagocytic function. Understanding the time course of neuroinflammatory changes, post-ICH may reveal novel targets for therapy and brain restoration.
Collapse
Affiliation(s)
- Anan Shtaya
- Neuroscience Research Centre, Molecular and Clinical Sciences Research InstituteSt. George’s, University of LondonLondonUK
| | - Leslie R. Bridges
- Department of Cellular PathologySt George's University Hospitals NHS Foundation TrustLondonUK
| | - Margaret M. Esiri
- Nuffield Department of Clinical NeurosciencesOxford UniversityOxfordUK
| | - Joanne Lam‐Wong
- Department of Cellular PathologySt George's University Hospitals NHS Foundation TrustLondonUK
| | - James A. R. Nicoll
- Clinical Neurosciences, Clinical & Experimental SciencesUniversity of SouthamptonSouthamptonUK
| | - Delphine Boche
- Clinical Neurosciences, Clinical & Experimental SciencesUniversity of SouthamptonSouthamptonUK
| | - Atticus H. Hainsworth
- Neuroscience Research Centre, Molecular and Clinical Sciences Research InstituteSt. George’s, University of LondonLondonUK
| |
Collapse
|
93
|
Espinosa-Fernández V, Mañas-Ojeda A, Pacheco-Herrero M, Castro-Salazar E, Ros-Bernal F, Sánchez-Pérez AM. Early intervention with ABA prevents neuroinflammation and memory impairment in a triple transgenic mice model of Alzheimer´s disease. Behav Brain Res 2019; 374:112106. [PMID: 31356828 DOI: 10.1016/j.bbr.2019.112106] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/10/2019] [Accepted: 07/18/2019] [Indexed: 11/16/2022]
Abstract
Neuroinflammation and insulin resistance in the brain are intimately linked to neurodegenerative disorders, including Alzheimer's disease. Even though traditionally Alzheimer´s disease has been associated to Aβ deposits and hyperphosphorylated Tau intracellular tangles, several studies show that neuroinflammation may be the initial cause that triggers degeneration. Accordingly, a number of natural supplements that improves brain insulin sensitivity and reduce neuroinflammation have been proposed as good choices in the therapeutic prevention of cognitive decline. Further supporting this evidence, we show that phytohormone Abscisic Acid, can prevent memory impairment and neuroinflammation markers in a triple transgenic mouse model, where no peripheral inflammatory changes have occurred. Moreover, our data strongly suggests that early intervention is critical for good prognosis, and that cognitive improvement requires longer treatment than recovering neuroinflammation markers.
Collapse
Affiliation(s)
| | - Aroa Mañas-Ojeda
- Department of Medicine, University of Jaume I, Castellón de la Plana, Spain
| | - Mar Pacheco-Herrero
- Department of Medicine, Pontificia Universidad Católica Madre y Maestra, Dominican Republic
| | - Ernestina Castro-Salazar
- Department of Medicine, University of Jaume I, Castellón de la Plana, Spain; Department of Medicine, Pontificia Universidad Católica Madre y Maestra, Dominican Republic
| | | | | |
Collapse
|
94
|
Cebulla CM, Kim B, George V, Heisler-Taylor T, Hamadmad S, Reese AY, Kothari SS, Kusibati R, Wilson H, Abdel-Rahman MH. Oral Selumetinib Does Not Negatively Impact Photoreceptor Survival in Murine Experimental Retinal Detachment. Invest Ophthalmol Vis Sci 2019; 60:349-357. [PMID: 30682205 PMCID: PMC6348998 DOI: 10.1167/iovs.18-25405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Purpose Mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling is neuroprotective in some retinal damage models but its role in neuronal survival during retinal detachment (RD) is unclear. In addition, serous RDs are a prevalent side effect of MEK inhibitors (MEKi), blocking MAPK/ERK signaling for treatment of certain cancers. We tested the hypothesis that MEKi treatment in experimental RD would increase photoreceptor death. Methods The MEKi selumetinib was delivered daily to C57BL/6 mice at a clinically relevant dose (10 mg/mL) starting 1 day prior to creating RD with subretinal hyaluronic acid injection. Photoreceptor TUNEL and outer nuclear layer (ONL) thickness were analyzed. Phospho-ERK1/2 (pERK) distribution, glial fibrillary acidic protein (GFAP) accumulation, and Iba-1 (microglia/macrophages) were evaluated with immunofluorescence. Results pERK accumulated in the Müller glia in detached retinas, but this was effectively blocked by selumetinib. Selumetinib did not induce serous RDs at day 1 and did not increase TUNEL positive photoreceptors or further decrease ONL thickness compared to controls. Retinal gliosis was not altered, but selumetinib did block the increase in intraretinal microglia/macrophage Iba-1 fluorescence intensity and acquisition of amoeboid morphology. Conclusions MAPK/ERK is neuroprotective in some retinal damage models; in RD, selumetinib blocked Müller pERK accumulation and changed the retinal microglia/macrophage phenotype but did not alter photoreceptor survival. This is consistent with the relatively good visual acuity seen in patients developing transient retinal detachments on MEK inhibitor therapy. Compensation by other neuroprotective pathways in the retina during retinal detachment may occur in the presence of MEK inhibition.
Collapse
Affiliation(s)
- Colleen M Cebulla
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Bongsu Kim
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Valerie George
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Tyler Heisler-Taylor
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States.,Department of Biomedical Engineering, The Ohio State University College of Engineering, Columbus, Ohio, United States
| | - Sumaya Hamadmad
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Alana Y Reese
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Shaili S Kothari
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Rania Kusibati
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Hailey Wilson
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Mohamed H Abdel-Rahman
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States.,Division of Human Genetics, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| |
Collapse
|
95
|
Parada E, Casas AI, Palomino-Antolin A, Gómez-Rangel V, Rubio-Navarro A, Farré-Alins V, Narros-Fernandez P, Guerrero-Hue M, Moreno JA, Rosa JM, Roda JM, Hernández-García BJ, Egea J. Early toll-like receptor 4 blockade reduces ROS and inflammation triggered by microglial pro-inflammatory phenotype in rodent and human brain ischaemia models. Br J Pharmacol 2019; 176:2764-2779. [PMID: 31074003 DOI: 10.1111/bph.14703] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 04/09/2019] [Accepted: 04/12/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Ischaemic stroke is a leading cause of death, disability, and a high unmet medical need. Post-reperfusion inflammation and an up-regulation of toll-like receptor 4 (TLR4), an upstream sensor of innate immunity, are associated with poor outcome in stroke patients. Here, we identified the therapeutic effect of targeting the LPS/TLR4 signal transduction pathway. EXPERIMENTAL APPROACH We tested the effect of the TLR4 inhibitor, eritoran (E5564) in different in vitro ischaemia-related models: human organotypic cortex culture, rat organotypic hippocampal cultures, and primary mixed glia cultures. We explored the therapeutic window of E5564 in the transient middle cerebral artery occlusion model of cerebral ischaemia in mice. KEY RESULTS In vivo, administration of E5564 1 and 4 hr post-ischaemia reduced the expression of different pro-inflammatory chemokines and cytokines, infarct volume, blood-brain barrier breakdown, and improved neuromotor function, an important clinically relevant outcome. In the human organotypic cortex culture, E5564 reduced the activation of microglia and ROS production evoked by LPS. CONCLUSION AND IMPLICATIONS TLR4 signalling has a causal role in the inflammation associated with a poor post-stroke outcome. Importantly, its inhibition by eritoran (E5564) provides neuroprotection both in vitro and in vivo, including in human tissue, suggesting a promising new therapeutic approach for ischaemic stroke.
Collapse
Affiliation(s)
- Esther Parada
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, Madrid, Spain.,Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, Madrid, Spain
| | - Ana I Casas
- Department of Pharmacology and Personalised Medicine, CARIM, Maastricht University, Maastricht, The Netherlands
| | - Alejandra Palomino-Antolin
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, Madrid, Spain.,Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, Madrid, Spain
| | - Vanessa Gómez-Rangel
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, Madrid, Spain.,Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, Madrid, Spain
| | - Alfonso Rubio-Navarro
- Renal, Vascular and Diabetes Research Lab, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Victor Farré-Alins
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, Madrid, Spain.,Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, Madrid, Spain
| | - Paloma Narros-Fernandez
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, Madrid, Spain.,Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, Madrid, Spain
| | - Melania Guerrero-Hue
- Renal, Vascular and Diabetes Research Lab, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Antonio Moreno
- Renal, Vascular and Diabetes Research Lab, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Juliana M Rosa
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, Madrid, Spain.,Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, Madrid, Spain
| | - José M Roda
- Servicio de Neurocirugía, Hospital Universitario La Paz, Madrid, Spain
| | | | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, Madrid, Spain.,Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, Madrid, Spain
| |
Collapse
|
96
|
The Spinal Transcriptome after Cortical Stroke: In Search of Molecular Factors Regulating Spontaneous Recovery in the Spinal Cord. J Neurosci 2019; 39:4714-4726. [PMID: 30962276 PMCID: PMC6561692 DOI: 10.1523/jneurosci.2571-18.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/22/2019] [Accepted: 03/28/2019] [Indexed: 11/21/2022] Open
Abstract
In response to cortical stroke and unilateral corticospinal tract degeneration, compensatory sprouting of spared corticospinal fibers is associated with recovery of skilled movement in rodents. To date, little is known about the molecular mechanisms orchestrating this spontaneous rewiring. In this study, we provide insights into the molecular changes in the spinal cord tissue after large ischemic cortical injury in adult female mice, with a focus on factors that might influence the reinnervation process by contralesional corticospinal neurons. We mapped the area of cervical gray matter reinnervation by sprouting contralesional corticospinal axons after unilateral photothrombotic stroke of the motor cortex in mice using anterograde tracing. The mRNA profile of this reinnervation area was analyzed using whole-genome sequencing to identify differentially expressed genes at selected time points during the recovery process. Bioinformatic analysis revealed two phases of processes: early after stroke (4–7 d post-injury), the spinal transcriptome is characterized by inflammatory processes, including phagocytic processes as well as complement cascade activation. Microglia are specifically activated in the denervated corticospinal projection fields in this early phase. In a later phase (28–42 d post-injury), biological processes include tissue repair pathways with upregulated genes related to neurite outgrowth. Thus, the stroke-denervated spinal gray matter, in particular its intermediate laminae, represents a growth-promoting environment for sprouting corticospinal fibers originating from the contralesional motor cortex. This dataset provides a solid starting point for future studies addressing key elements of the post-stroke recovery process, with the goal to improve neuroregenerative treatment options for stroke patients. SIGNIFICANCE STATEMENT We show that the molecular changes in the spinal cord target tissue of the stroke-affected corticospinal tract are mainly defined by two phases: an early inflammatory phase during which microglia are specifically activated in the target area of reinnervating corticospinal motor neurons; and a late phase during which growth-promoting factors are upregulated which can influence the sprouting response, arborization, and synapse formation. By defining for the first time the endogenous molecular machinery in the stroke-denervated cervical spinal gray matter with a focus on promotors of axon growth through the growth-inhibitory adult CNS, this study will serve as a basis to address novel neuroregenerative treatment options for chronic stroke patients.
Collapse
|
97
|
Delayed Astrogliosis Associated with Reduced M1 Microglia Activation in Matrix Metalloproteinase 12 Knockout Mice during Theiler's Murine Encephalomyelitis. Int J Mol Sci 2019; 20:ijms20071702. [PMID: 30959793 PMCID: PMC6480673 DOI: 10.3390/ijms20071702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/20/2019] [Accepted: 04/02/2019] [Indexed: 12/30/2022] Open
Abstract
Theiler’s murine encephalomyelitis (TME) represents a versatile animal model for studying the pathogenesis of demyelinating diseases such as multiple sclerosis. Hallmarks of TME are demyelination, astrogliosis, as well as inflammation. Previous studies showed that matrix metalloproteinase 12 knockout (Mmp12−/−) mice display an ameliorated clinical course associated with reduced demyelination. The present study aims to elucidate the impact of MMP12 deficiency in TME with special emphasis on astrogliosis, macrophages infiltrating the central nervous system (CNS), and the phenotype of microglia/macrophages (M1 or M2). SJL wild-type and Mmp12−/− mice were infected with TME virus (TMEV) or vehicle (mock) and euthanized at 28 and 98 days post infection (dpi). Immunohistochemistry or immunofluorescence of cervical and thoracic spinal cord for detecting glial fibrillary acidic protein (GFAP), ionized calcium-binding adaptor molecule 1 (Iba1), chemokine receptor 2 (CCR2), CD107b, CD16/32, and arginase I was performed and quantitatively evaluated. Statistical analyses included the Kruskal–Wallis test followed by Mann–Whitney U post hoc tests. TMEV-infected Mmp12−/− mice showed transiently reduced astrogliosis in association with a strong trend (p = 0.051) for a reduced density of activated/reactive microglia/macrophages compared with wild-type mice at 28 dpi. As astrocytes are an important source of cytokine production, including proinflammatory cytokines triggering or activating phagocytes, the origin of intralesional microglia/macrophages as well as their phenotype were determined. Only few phagocytes in wild-type and Mmp12−/− mice expressed CCR2, indicating that the majority of phagocytes are represented by microglia. In parallel to the reduced density of activated/reactive microglia at 98 dpi, TMEV-infected Mmp12−/− showed a trend (p = 0.073) for a reduced density of M1 (CD16/32- and CD107b-positive) microglia, while no difference regarding the density of M2 (arginase I- and CD107b-positive) cells was observed. However, a dominance of M1 cells was detected in the spinal cord of TMEV-infected mice at all time points. Reduced astrogliosis in Mmp12−/− mice was associated with a reduced density of activated/reactive microglia and a trend for a reduced density of M1 cells. This indicates that MMP12 plays an important role in microglia activation, polarization, and migration as well as astrogliosis and microglia/astrocyte interaction.
Collapse
|
98
|
Wang Q, Wang J, Yang Z, Sui R, Miao Q, Li Y, Yu J, Liu C, Zhang G, Xiao B, Ma C. Therapeutic effect of oligomeric proanthocyanidin in cuprizone-induced demyelination. Exp Physiol 2019; 104:876-886. [PMID: 30811744 DOI: 10.1113/ep087480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/12/2019] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Oligomeric proanthocyanidin has the capacity to alleviate abnormalities in neurological functioning. However, whether oligomeric proanthocyanidin can reduce the progression of demyelination or promote remyelination in demyelinating diseases remains unknown. What is the main finding and its importance? Oligomeric proanthocyanidin can improve cuprizone-induced demyelination by inhibiting immune cell infiltration, reversing overactivated microglia, decreasing the inflammatory cytokines secreted by inflammatory cells and decreasing the production of myelin oligodendrocyte glycoprotein35-55 -specific antibody in the brain. ABSTRACT Demyelinating diseases of the CNS, including multiple sclerosis, neuromyelitis optica and acute disseminated encephalomylitis, are characterized by recurrent primary demyelination-remyelination and progressive neurodegeneration. In the present study, we investigated the therapeutic effect of oligomeric proanthocyanidin (OPC), the most effective component of grape seed extract, in cuprizone-fed C57BL/6 mice, a classic demyelination-remyelination model. Our results showed that OPC attenuated abnormal behaviour, reduced demyelination and increased expression of myelin basic protein and expression of O4+ oligodendrocytes in the corpus callosum. Oligomeric proanthocyanidin also reduced the numbers of B and T cells, activated microglia in the corpus callosum and inhibited secretion of inflammatory factors. Furthermore, concentrations of myelin oligodendrocyte glycoprotein-specific antibodies were significantly reduced in serum and brain homogenates after OPC treatment. Together, these results demonstrate a potent therapeutic effect for OPC in cuprizone-mediated demyelination and clearly highlight multiple effects of this natural product in attenuating myelin-specific autoantibodies and the inflammatory microenvironment in the brain.
Collapse
Affiliation(s)
- Qing Wang
- The Key Research Laboratory Study of Beneficial Qi as a Blood Circulation Stimulator in the Treatment of Multiple Sclerosis, State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Jing Wang
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Zhichao Yang
- The Key Research Laboratory Study of Beneficial Qi as a Blood Circulation Stimulator in the Treatment of Multiple Sclerosis, State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Ruoxuan Sui
- The Key Research Laboratory Study of Beneficial Qi as a Blood Circulation Stimulator in the Treatment of Multiple Sclerosis, State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Qiang Miao
- The Key Research Laboratory Study of Beneficial Qi as a Blood Circulation Stimulator in the Treatment of Multiple Sclerosis, State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Yanhua Li
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University,, Datong, 037009, China
| | - Jiezhong Yu
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University,, Datong, 037009, China
| | - Chunyun Liu
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University,, Datong, 037009, China
| | - Guangxian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Baoguo Xiao
- Insitute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University,, Shanghai, 200040, China
| | - Cungen Ma
- The Key Research Laboratory Study of Beneficial Qi as a Blood Circulation Stimulator in the Treatment of Multiple Sclerosis, State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China.,Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China.,Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University,, Datong, 037009, China
| |
Collapse
|
99
|
Swenson BL, Meyer CF, Bussian TJ, Baker DJ. Senescence in aging and disorders of the central nervous system. TRANSLATIONAL MEDICINE OF AGING 2019. [DOI: 10.1016/j.tma.2019.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
100
|
Klein C, Jonas W, Wiedmer P, Schreyer S, Akyüz L, Spranger J, Hellweg R, Steiner B. High-fat Diet and Physical Exercise Differentially Modulate Adult Neurogenesis in the Mouse Hypothalamus. Neuroscience 2018; 400:146-156. [PMID: 30599265 DOI: 10.1016/j.neuroscience.2018.12.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023]
Abstract
The hypothalamus has emerged as a novel neurogenic niche in the adult brain during the past decade. However, little is known about its regulation and the role hypothalamic neurogenesis might play in body weight and appetite control. High-fat diet (HFD) has been demonstrated to induce an inflammatory response and to alter neurogenesis in the hypothalamus and functional outcome measures, e.g. body weight. Such modulation poses similarities to what is known from adult hippocampal neurogenesis, which is highly responsive to lifestyle factors, such as nutrition or physical exercise. With the rising question of a principle of neurogenic stimulation by lifestyle in the adult brain as a physiological regulatory mechanism of central and peripheral functions, exercise is interventionally applied in obesity and metabolic syndrome conditions, promoting weight loss and improving glucose tolerance and insulin sensitivity. To investigate the potential pro-neurogenic cellular processes underlying such beneficial peripheral outcomes, we exposed adult female mice to HFD together with physical exercise and evaluated neurogenesis and inflammatory markers in the arcuate nucleus (ArcN) of the hypothalamus. We found that HFD increased neurogenesis, whereas physical exercise stimulated cell proliferation. HFD also increased the amount of microglia, which was counteracted by physical exercise. Physiologically, exercise increased food and fat intake but reduced HFD-induced body weight gain. These findings support the hypothesis that hypothalamic neurogenesis may represent a counter-regulatory mechanism in response to environmental or physiological insults to maintain energy balance.
Collapse
Affiliation(s)
- C Klein
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Germany
| | - W Jonas
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam-Rehbrücke, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - P Wiedmer
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam-Rehbrücke, Germany
| | - S Schreyer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Germany
| | - L Akyüz
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, und Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Germany
| | - J Spranger
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, und Berlin Institute of Health, Department of Endocrinology, Diabetes and Nutritional Medicine, Berlin, Germany
| | - R Hellweg
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, und Berlin Institute of Health, Department of Psychiatry, Berlin, Germany
| | - B Steiner
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Germany.
| |
Collapse
|