51
|
Target-specific IPSC kinetics promote temporal processing in auditory parallel pathways. J Neurosci 2013; 33:1598-614. [PMID: 23345233 DOI: 10.1523/jneurosci.2541-12.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The acoustic environment contains biologically relevant information on timescales from microseconds to tens of seconds. The auditory brainstem nuclei process this temporal information through parallel pathways that originate in the cochlear nucleus from different classes of cells. Although the roles of ion channels and excitatory synapses in temporal processing have been well studied, the contribution of inhibition is less well understood. Here, we show in CBA/CaJ mice that the two major projection neurons of the ventral cochlear nucleus, the bushy and T-stellate cells, receive glycinergic inhibition with different synaptic conductance time courses. Bushy cells, which provide precisely timed spike trains used in sound localization and pitch identification, receive slow inhibitory inputs. In contrast, T-stellate cells, which encode slower envelope information, receive inhibition that is eightfold faster. Both types of inhibition improved the precision of spike timing but engage different cellular mechanisms and operate on different timescales. Computer models reveal that slow IPSCs in bushy cells can improve spike timing on the scale of tens of microseconds. Although fast and slow IPSCs in T-stellate cells improve spike timing on the scale of milliseconds, only fast IPSCs can enhance the detection of narrowband acoustic signals in a complex background. Our results suggest that target-specific IPSC kinetics are critical for the segregated parallel processing of temporal information from the sensory environment.
Collapse
|
52
|
Distinct sensory requirements for unimodal and cross-modal homeostatic synaptic plasticity. J Neurosci 2012; 32:8469-74. [PMID: 22723686 DOI: 10.1523/jneurosci.1424-12.2012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Loss of a sensory modality elicits both unimodal changes in the deprived cortex and cross-modal alterations in the remaining sensory systems. Unimodal changes are proposed to recruit the deprived cortex for processing the remaining senses, while cross-modal changes are thought to refine processing of spared senses. Hence coordinated unimodal and cross-modal changes are likely beneficial. Despite this expectation, we report in mice that losing behaviorally relevant patterned vision is sufficient to trigger cross-modal synaptic changes in the primary somatosensory cortex barrel fields, but is insufficient to drive unimodal synaptic plasticity in visual cortex (V1), which requires a complete loss of visual activity. In addition, cross-modal changes depend on whisker inputs. Our results demonstrate that unimodal and cross-modal synaptic plasticity occur independently of each other and rely on distinct sensory requirements.
Collapse
|
53
|
Bats C, Soto D, Studniarczyk D, Farrant M, Cull-Candy SG. Channel properties reveal differential expression of TARPed and TARPless AMPARs in stargazer neurons. Nat Neurosci 2012; 15:853-61. [PMID: 22581185 PMCID: PMC3427011 DOI: 10.1038/nn.3107] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/10/2012] [Indexed: 12/14/2022]
Abstract
Dynamic regulation of calcium-permeable AMPA receptors (CP-AMPARs) is important for normal synaptic transmission, plasticity and pathological changes. Although the involvement of transmembrane AMPAR regulatory proteins (TARPs) in trafficking of calcium-impermeable AMPARs (CI-AMPARs) has been extensively studied, their role in the surface expression and function of CP-AMPARs remains unclear. We examined AMPAR-mediated currents in cerebellar stellate cells from stargazer mice, which lack the prototypical TARP stargazin (g-2). We found a marked increase in the contribution of CP-AMPARs to synaptic responses, indicating that, unlike CI-AMPARs, these can localize at synapses in the absence of g-2. In contrast with CP-AMPARs in extrasynaptic regions, synaptic CP-AMPARs displayed an unexpectedly low channel conductance and strong block by intracellular spermine, suggesting that they were ‘TARPless’. As a proof of principle that TARP association is not an absolute requirement for AMPAR clustering at synapses, miniature excitatory postsynaptic currents mediated by TARPless AMPARs were readily detected in stargazer granule cells following knockdown of their only other TARP, g-7.
Collapse
Affiliation(s)
- Cécile Bats
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | | - Dorota Studniarczyk
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Mark Farrant
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Stuart G. Cull-Candy
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
54
|
Powell AD, Gill KK, Saintot PP, Jiruska P, Chelly J, Billuart P, Jefferys JGR. Rapid reversal of impaired inhibitory and excitatory transmission but not spine dysgenesis in a mouse model of mental retardation. J Physiol 2011; 590:763-76. [PMID: 22124149 DOI: 10.1113/jphysiol.2011.219907] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Intellectual disability affects 2-3% of the population: those due to mutations of the X-chromosome are a major cause of moderate to severe cases (1.8/1000 males). Established theories ascribe the cellular aetiology of intellectual disability to malformations of dendritic spines. Recent work has identified changes in synaptic physiology in some experimental models. Here, we investigated the pathophysiology of a mouse model of intellectual disability using electrophysiological recordings combined with confocal imaging of dentate gyrus granule neurons. Lack of oligophrenin-1 resulted in reductions in dendritic tree complexity and mature dendritic spine density and in evoked and spontaneous EPSCs and IPSCs. In the case of inhibitory transmission, the physiological change was associated with a reduction in the readily releasable pool and vesicle recycling which impaired the efficiency of inhibitory synaptic transmission. Acute inhibition of the downstream signalling pathway of oligophrenin-1 fully reversed the functional changes in synaptic transmission but not the dendritic abnormalities. The impaired inhibitory (as well as excitatory) synaptic transmission at frequencies associated with cognitive function suggests a cellular mechanism for the intellectual disability, because cortical oscillations associated with cognition normally depend on inhibitory neurons firing on every cycle.
Collapse
Affiliation(s)
- Andrew D Powell
- School of Clinical and Experimental Medicine (Neuronal Networks Group), College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | | | | | |
Collapse
|
55
|
Abstract
The time course of excitatory synaptic currents, the major means of fast communication between neurons of the central nervous system, is encoded in the dynamic behaviour of post-synaptic glutamate-activated channels. First-pass attempts to explain the glutamate-elicited currents with mathematical models produced reaction mechanisms that included only the most basic functionally defined states: resting vs. liganded, closed vs. open, responsive vs. desensitized. In contrast, single-molecule observations afforded by the patch-clamp technique revealed an unanticipated kinetic multiplicity of transitions: from microseconds-lasting flickers to minutes-long modes. How these kinetically defined events impact the shape of the synaptic response, how they relate to rearrangements in receptor structure, and whether and how they are physiologically controlled represent currently active research directions. Modal gating, which refers to the slowest, least frequently observed ion-channel transitions, has been demonstrated for representatives of all ion channel families. However, reaction schemes have been largely confined to the short- and medium-range time scales. For glutamate receptors as well, modal gating has only recently come under rigorous scrutiny. This article reviews the evidence for modal gating of glutamate receptors and the still developing hypotheses about the mechanism(s) by which modal shifts occur and the ways in which they may impact the time course of synaptic transmission.
Collapse
Affiliation(s)
- Gabriela K Popescu
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY 14214, USA.
| |
Collapse
|
56
|
Feldwisch-Drentrup H, Barrett AB, Smith MT, van Rossum MCW. Fluctuations in the open time of synaptic channels: an application to noise analysis based on charge. J Neurosci Methods 2011; 210:15-21. [PMID: 22119227 DOI: 10.1016/j.jneumeth.2011.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 10/29/2011] [Accepted: 11/02/2011] [Indexed: 11/25/2022]
Abstract
Synaptic channels are stochastic devices. Even recording from large ensembles of channels, the fluctuations, described by Markov transition matrices, can be used to extract single channel properties. Here we study fluctuations in the open time of channels, which is proportional to the charge flowing through the channel. We use the results to implement a novel type of noise analysis that uses the charge rather than the current to extract fundamental channel parameters. We show in simulations that this charge based noise analysis is more robust if the synapse is located on the dendrites and thus subject to cable filtering. However, we also demonstrate that when multiple synapses are distributed on the dendrites, noise analysis breaks down. We finally discuss applications of our results to other biological processes.
Collapse
Affiliation(s)
- Hinnerk Feldwisch-Drentrup
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK
| | | | | | | |
Collapse
|
57
|
Abstract
The properties of synaptic AMPA receptors (AMPARs) depend on their subunit composition and association with transmembrane AMPAR regulatory proteins (TARPs). Although both GluA2 incorporation and TARP association have been shown to influence AMPAR channel conductance, the manner in which different TARPs modulate the mean channel conductance of GluA2-containing AMPARs is unknown. Using ultrafast agonist application and nonstationary fluctuation analysis, we found that TARP subtypes differentially increase the mean channel conductance, but not the peak open probability, of recombinant GluA2-containing AMPARs. TARP γ-8, in particular, enhances mean channel conductance to a greater degree than γ-2, γ-3, or γ-4. We then examined the action of a use-dependent antagonist of GluA2-containing AMPARs, philanthotoxin-74 (PhTx-74), on recombinant AMPARs and on GluA2-containing AMPARs in cerebellar granule neurons from stargazer mice transfected with TARPs. We found that the rate and extent of channel block varies with TARP subtype, in a manner that correlates linearly with mean channel conductance. Furthermore, block of GluA2-containing AMPARs by polyamine toxins varied depending on whether channels were activated by the full agonist glutamate or the partial agonist kainate, consistent with conductance state-dependent block. Block of GluA2-lacking AMPARs by PhTx-433 is also modulated by TARP association and is a function of agonist efficacy. Our data indicate that channel block by polyamine toxins is sensitive to the mean channel conductance of AMPARs, which varies with TARP subtype and agonist efficacy. Furthermore, our results illustrate the utility of polyamine toxins as sensitive probes of AMPAR channel conductance and suggest the possibility that TARPs may influence their channel properties by selectively stabilizing specific channel conformations, rather than altering the pore structure.
Collapse
|
58
|
Baxter AW, Choi SJ, Sim JA, North RA. Role of P2X4 receptors in synaptic strengthening in mouse CA1 hippocampal neurons. Eur J Neurosci 2011; 34:213-20. [PMID: 21749490 PMCID: PMC3763203 DOI: 10.1111/j.1460-9568.2011.07763.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
P2X4 receptors are calcium-permeable cation channels gated by extracellular ATP. They are found close to subsynaptic sites on hippocampal CA1 neurons. We compared features of synaptic strengthening between wild-type and P2X4 knockout mice (21–26 days old). Potentiation evoked by a tetanic presynaptic stimulus (100 Hz, 1 s) paired with postsynaptic depolarization was less in P2X4−/− mice than in wild-type mice (230 vs. 50% potentiation). Paired-pulse ratios and the amplitude and frequency of spontaneous excitatory postsynaptic currents (EPSCs) were not different between wild-type and knockout mice. Prior hyperpolarization (ten 3 s pulses to −120 mV at 0.17 Hz) potentiated the amplitude of spontaneous EPSCs in wild-type mice, but not in P2X4−/− mice; this potentiation was not affected by nifedipine, but was abolished by 10 mm 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetra-acetic acid (BAPTA) in the recording pipette. The amplitude of N-methyl-d-aspartate EPSCs (in 6-cyano-7-nitroquinoxaline-2,3-dione, 10 or 30 μm, at −100 mV) facilitated during 20 min recording in magnesium-free solution. In wild-type mice, this facilitation of the N-methyl-d-aspartate EPSC was reduced by about 50% by intracellular BAPTA (10 mm), ifenprodil (3 μm) or 4-(4-fluorophenyl)-2-(4-methylsulphinylphenyl)-5-(4-pyridyl)1H-imidazole (5 μm). In P2X4−/− mice, the facilitation was much less, and was unaffected by intracellular BAPTA, ifenprodil (3 μm) or mitogen-activated protein (MAP) kinase inhibitor 4-(4-fluorophenyl)-2-(4-methylsulphinylphenyl)-5-(4-pyridyl)1H-imidazole (5 μm). This suggests that the absence of P2X4 receptors limits the incorporation of NR2B subunits into synaptic N-methyl-d-aspartate receptors.
Collapse
Affiliation(s)
- Andrew W Baxter
- Faculty of Medical and Human Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | | | |
Collapse
|
59
|
Shinohara Y. Quantification of postsynaptic density proteins: glutamate receptor subunits and scaffolding proteins. Hippocampus 2011; 22:942-53. [PMID: 21594948 DOI: 10.1002/hipo.20950] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2011] [Indexed: 11/11/2022]
Abstract
The postsynaptic density (PSD) protein complex has long been a major target of proteomics in neuroscience. As the number of glutamate receptors on a synapse is one of the main determinants of synaptic efficacy, determining the absolute numbers of receptors in the PSD is necessary for estimating the amplitude of the excitatory postsynaptic current (EPSC) in individual synapses. Moreover, as the receptor molecules are embedded in a macromolecular complex within the PSD, stoichiometry between the receptors and other PSD proteins could help explain the functional and regional specialization of the synapses and their possible roles in synaptic plasticity. Here, I review various studies concerned with the quantification of PSD proteins.
Collapse
Affiliation(s)
- Yoshiaki Shinohara
- RIKEN Brain Science Institute, Hinase Research Unit, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
60
|
Deshpande LS, Blair RE, DeLorenzo RJ. Prolonged cannabinoid exposure alters GABA(A) receptor mediated synaptic function in cultured hippocampal neurons. Exp Neurol 2011; 229:264-73. [PMID: 21324315 DOI: 10.1016/j.expneurol.2011.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 01/26/2011] [Accepted: 02/09/2011] [Indexed: 11/30/2022]
Abstract
Developing cannabinoid-based medication along with marijuana's recreational use makes it important to investigate molecular adaptations the endocannabinoid system undergoes following prolonged use and withdrawal. Repeated cannabinoid administration results in development of tolerance and produces withdrawal symptoms that may include seizures. Here we employed electrophysiological and immunochemical techniques to investigate the effects of prolonged CB1 receptor agonist exposure on cultured hippocampal neurons. Approximately 60% of CB1 receptors colocalize to GABAergic terminals in hippocampal cultures. Prolonged treatment with the cannabinamimetic WIN 55,212-2 (+WIN, 1 μM, 24 h) caused profound CB1 receptor downregulation accompanied by neuronal hyperexcitability. Furthermore, prolonged +WIN treatment resulted in increased GABA release as indicated by increased mIPSC frequency, a diminished GABAergic inhibition as indicated by reduction in mIPSC amplitude and a reduction in GABA(A) channel number. Additionally, surface staining for the GABA(A) β(2/3) receptor subunits was decreased, while no changes in staining for the presynaptic vesicular GABA transporter were observed, indicating that GABAergic terminals remained intact. These findings demonstrate that agonist-induced downregulation of the CB1 receptor in hippocampal cultures results in neuronal hyperexcitability that may be attributed, in part, to alterations in both presynaptic GABA release mechanisms and postsynaptic GABA(A) receptor function demonstrating a novel role for cannabinoid-dependent presynaptic control of neuronal transmission.
Collapse
|
61
|
Katagiri H, Pallotto M, Nissant A, Murray K, Sassoè-Pognetto M, Lledo PM. Dynamic development of the first synapse impinging on adult-born neurons in the olfactory bulb circuit. NEURAL SYSTEMS & CIRCUITS 2011; 1:6. [PMID: 22330198 PMCID: PMC3278389 DOI: 10.1186/2042-1001-1-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/01/2010] [Indexed: 01/10/2023]
Abstract
The olfactory bulb (OB) receives and integrates newborn interneurons throughout life. This process is important for the proper functioning of the OB circuit and consequently, for the sense of smell. Although we know how these new interneurons are produced, the way in which they integrate into the pre-existing ongoing circuits remains poorly documented. Bearing in mind that glutamatergic inputs onto local OB interneurons are crucial for adjusting the level of bulbar inhibition, it is important to characterize when and how these inputs from excitatory synapses develop on newborn OB interneurons. We studied early synaptic events that lead to the formation and maturation of the first glutamatergic synapses on adult-born granule cells (GCs), the most abundant subtype of OB interneuron. Patch-clamp recordings and electron microscopy (EM) analysis were performed on adult-born interneurons shortly after their arrival in the adult OB circuits. We found that both the ratio of N-methyl-D-aspartate receptor (NMDAR) to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), and the number of functional release sites at proximal inputs reached a maximum during the critical period for the sensory-dependent survival of newborn cells, well before the completion of dendritic arborization. EM analysis showed an accompanying change in postsynaptic density shape during the same period of time. Interestingly, the latter morphological changes disappeared in more mature newly-formed neurons, when the NMDAR to AMPAR ratio had decreased and functional presynaptic terminals expressed only single release sites. Together, these findings show that the first glutamatergic inputs to adult-generated OB interneurons undergo a unique sequence of maturation stages.
Collapse
Affiliation(s)
- Hiroyuki Katagiri
- Laboratory for Perception and Memory, Institut Pasteur, Paris, France.
| | | | | | | | | | | |
Collapse
|
62
|
Li XY, Ko HG, Chen T, Descalzi G, Koga K, Wang H, Kim SS, Shang Y, Kwak C, Park SW, Shim J, Lee K, Collingridge GL, Kaang BK, Zhuo M. Alleviating neuropathic pain hypersensitivity by inhibiting PKMzeta in the anterior cingulate cortex. Science 2010; 330:1400-4. [PMID: 21127255 DOI: 10.1126/science.1191792] [Citation(s) in RCA: 324] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Synaptic plasticity is a key mechanism for chronic pain. It occurs at different levels of the central nervous system, including spinal cord and cortex. Studies have mainly focused on signaling proteins that trigger these plastic changes, whereas few have addressed the maintenance of plastic changes related to chronic pain. We found that protein kinase M zeta (PKMζ) maintains pain-induced persistent changes in the mouse anterior cingulate cortex (ACC). Peripheral nerve injury caused activation of PKMζ in the ACC, and inhibiting PKMζ by a selective inhibitor, ζ-pseudosubstrate inhibitory peptide (ZIP), erased synaptic potentiation. Microinjection of ZIP into the ACC blocked behavioral sensitization. These results suggest that PKMζ in the ACC acts to maintain neuropathic pain. PKMζ could thus be a new therapeutic target for treating chronic pain.
Collapse
Affiliation(s)
- Xiang-Yao Li
- Department of Physiology, Faculty of Medicine, Center for the Study of Pain, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Kim G, Kandler K. Synaptic changes underlying the strengthening of GABA/glycinergic connections in the developing lateral superior olive. Neuroscience 2010; 171:924-33. [PMID: 20888399 DOI: 10.1016/j.neuroscience.2010.09.054] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 09/22/2010] [Accepted: 09/24/2010] [Indexed: 10/19/2022]
Abstract
Before hearing onset, the topographic organization of the auditory GABA/glycinergic pathway from the medial nucleus of the trapezoid body (MNTB) to the lateral superior olive (LSO) is refined by synaptic silencing and strengthening. The synaptic mechanisms underlying the developmental strengthening of maintained MNTB-LSO connections are unknown. Here we address this question using whole-cell recordings from LSO neurons in slices prepared from prehearing mice. Minimal and maximal stimulation techniques demonstrated that during the first two postnatal weeks, individual LSO neurons lose about 55% of their initial presynaptic MNTB partners while maintained single-fiber connections become about 14-fold stronger. Analysis of MNTB-evoked miniature events indicates that this strengthening is accompanied by a 2-fold increase in quantal amplitude. Strengthening is not caused by an increase in the probability of release because paired pulse ratios (PPRs) increased from 0.7 in newborn animals to 0.9 around hearing onset, indicating a developmental decrease rather than increase in release probability. In addition, a possible soma-dendritic relocation of MNTB input seems unlikely to underlie their strengthening as indicated by analysis of the rise times of synaptic currents. Taken together, we conclude that the developmental strengthening of MNTB-LSO connections is achieved by a 2-fold increase in quantal size and an 8-fold increase in quantal content.
Collapse
Affiliation(s)
- G Kim
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
64
|
Stubblefield EA, Benke TA. Distinct AMPA-type glutamatergic synapses in developing rat CA1 hippocampus. J Neurophysiol 2010; 104:1899-912. [PMID: 20685930 DOI: 10.1152/jn.00099.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We assessed synaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor (AMPAR) properties during synaptogenesis to describe the development of individual glutamatergic synapses on rat hippocampal CA1 principal neurons. Pharmacologically isolated AMPAR-mediated glutamatergic synaptic currents [evoked by stimulation of the Schaffer Collateral pathway, excitatory postsynaptic currents (EPSCs)], had significantly greater inward-rectification at ages P5-7 compared with P8-18. These inward rectifying EPSCs demonstrated paired-pulse dependent unblocking at positive holding potentials, consistent with voltage-dependent internal polyamine block. Measurements of paired-pulse facilitation did not support altered presynaptic properties associated with inward rectification. Using asynchronous EPSCs (aEPSCs) to analyze populations of individual synapses, we found that quantal amplitudes (Q) increased across early postnatal development (P5-P18) and were directly modulated by increases in the number of activated receptors. Quantal AMPAR decay kinetics (aEPSC τ(decay)s) exhibited the highest coefficient of variation (CV) from P5 to 7 and became markedly less variable at P8-18. At P5-7, faster quantal kinetics coexisted with much slower kinetics; only slower quantal kinetics were found at P8-18. This supports diverse quantal synaptic properties limited to P5-7. Multivariate cluster analysis of Q, CV(τ decay), and median τ(decay) supported a segregation of neurons into two distinct age groups of P5-7 and P8-18, similar to the age-related segregation suggested by inward rectification. Taken together, these findings support synaptic, calcium permeable AMPARs at a subset of synapses onto CA1 pyramidal neurons exclusively at P5-7. These distinct synapses coexist with those sharing the properties of more mature synapses. These synapses disappear after P7 as activated receptor numbers increase with age.
Collapse
|
65
|
|
66
|
Anderson WB, Graham BA, Beveridge NJ, Tooney PA, Brichta AM, Callister RJ. Different forms of glycine- and GABA(A)-receptor mediated inhibitory synaptic transmission in mouse superficial and deep dorsal horn neurons. Mol Pain 2009; 5:65. [PMID: 19919721 PMCID: PMC2784755 DOI: 10.1186/1744-8069-5-65] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Accepted: 11/18/2009] [Indexed: 01/01/2023] Open
Abstract
Background Neurons in superficial (SDH) and deep (DDH) laminae of the spinal cord dorsal horn receive sensory information from skin, muscle, joints and viscera. In both regions, glycine- (GlyR) and GABAA-receptors (GABAARs) contribute to fast synaptic inhibition. For rat, several types of GABAAR coexist in the two regions and each receptor type provides different contributions to inhibitory tone. Recent work in mouse has discovered an additional type of GlyR, (containing alpha 3 subunits) in the SDH. The contribution of differing forms of the GlyR to sensory processing in SDH and DDH is not understood. Methods and Results Here we compare fast inhibitory synaptic transmission in mouse (P17-37) SDH and DDH using patch-clamp electrophysiology in transverse spinal cord slices (L3-L5 segments, 23°C). GlyR-mediated mIPSCs were detected in 74% (25/34) and 94% (25/27) of SDH and DDH neurons, respectively. In contrast, GABAAR-mediated mIPSCs were detected in virtually all neurons in both regions (93%, 14/15 and 100%, 18/18). Several Gly- and GABAAR properties also differed in SDH vs. DDH. GlyR-mediated mIPSC amplitude was smaller (37.1 ± 3.9 vs. 64.7 ± 5.0 pA; n = 25 each), decay time was slower (8.5 ± 0.8 vs. 5.5 ± 0.3 ms), and frequency was lower (0.15 ± 0.03 vs. 0.72 ± 0.13 Hz) in SDH vs. DDH neurons. In contrast, GABAAR-mediated mIPSCs had similar amplitudes (25.6 ± 2.4, n = 14 vs. 25. ± 2.0 pA, n = 18) and frequencies (0.21 ± 0.08 vs. 0.18 ± 0.04 Hz) in both regions; however, decay times were slower (23.0 ± 3.2 vs. 18.9 ± 1.8 ms) in SDH neurons. Mean single channel conductance underlying mIPSCs was identical for GlyRs (54.3 ± 1.6 pS, n = 11 vs. 55.7 ± 1.8, n = 8) and GABAARs (22.7 ± 1.7 pS, n = 10 vs. 22.4 ± 2.0 pS, n = 11) in both regions. We also tested whether the synthetic endocanabinoid, methandamide (methAEA), had direct effects on Gly- and GABAARs in each spinal cord region. MethAEA (5 μM) reduced GlyR-mediated mIPSC frequency in SDH and DDH, but did not affect other properties. Similar results were observed for GABAAR mediated mIPSCs, however, rise time was slowed by methAEA in SDH neurons. Conclusion Together these data show that Gly- and GABAARs with clearly differing physiological properties and cannabinoid-sensitivity contribute to fast synaptic inhibition in mouse SDH and DDH.
Collapse
Affiliation(s)
- Wayne B Anderson
- School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute, University Drive, Callaghan, NSW 2308, Australia.
| | | | | | | | | | | |
Collapse
|
67
|
GABA(B) receptor activation triggers BDNF release and promotes the maturation of GABAergic synapses. J Neurosci 2009; 29:11650-61. [PMID: 19759312 DOI: 10.1523/jneurosci.3587-09.2009] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
GABA, the main inhibitory neurotransmitter in the adult brain, has recently emerged as an important signal in network development. Most of the trophic functions of GABA have been attributed to depolarization of the embryonic and neonatal neurons via the activation of ionotropic GABA(A) receptors. Here we demonstrate a novel mechanism by which endogenous GABA selectively regulates the development of GABAergic synapses in the developing brain. Using whole-cell patch-clamp recordings on newborn mouse hippocampi lacking functional GABA(B) receptors (GABA(B)-Rs) and time-lapse fluorescence imaging on cultured hippocampal neurons expressing GFP-tagged brain-derived neurotrophic factor (BDNF), we found that activation of metabotropic GABA(B) receptors (GABA(B)-Rs) triggers secretion of BDNF and promotes the development of perisomatic GABAergic synapses in the newborn mouse hippocampus. Because activation of GABA(B)-Rs occurs during the characteristic ongoing physiological network-driven synaptic activity present in the developing hippocampus, our results reveal a new mechanism by which synaptic activity can modulate the development of local GABAergic synaptic connections in the developing brain.
Collapse
|
68
|
Zhou C, Jensen FE, Sucher NJ. Altered development of glutamatergic synapses in layer V pyramidal neurons in NR3A knockout mice. Mol Cell Neurosci 2009; 42:419-26. [PMID: 19782137 DOI: 10.1016/j.mcn.2009.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 09/11/2009] [Accepted: 09/15/2009] [Indexed: 11/25/2022] Open
Abstract
Expression of the NMDA receptor (NMDAR) subunit NR3A reaches its highest level in layer V of the developing rodent cortex during the second postnatal week, a peak period of synaptogenesis. Incorporation of NR3A leads to the formation of non-canonical, Mg2+-insensitive NMDARs, but it is not known whether they participate in synaptic transmission and maturation. Here we show that in the second postnatal week, layer V pyramidal neurons in the somatosensory cortex of wild type (WT) mice exhibited evoked excitatory postsynaptic currents (eEPSCs) with 3- to 6-fold lower Mg2+ sensitivity than NR3A knockout (KO) mice and their reversal potential was approximately 2 mV more negative compared to KO mice consistent with decreased P(Ca) of NMDARs. Surprisingly, ablation of NR3A also led to a 20-fold reduction of the ratio of AMPAR- to NMDAR-mediated eEPSC amplitudes in KO mice. Insertion of AMPARs at the synapses of layer V pyramidal neurons appears to be facilitated by the expression of Mg2+-insensitive NMDARs. The data indicate that NR3A plays a significant role in the development of excitatory synapses in layer V of the developing neocortex.
Collapse
Affiliation(s)
- Chengwen Zhou
- Department of Neurology, Division of Neuroscience, Children's Hospital, Boston, MA 02115, USA
| | | | | |
Collapse
|
69
|
Intracellular chloride ions regulate the time course of GABA-mediated inhibitory synaptic transmission. J Neurosci 2009; 29:10416-23. [PMID: 19692617 DOI: 10.1523/jneurosci.1670-09.2009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The time-dependent integration of excitatory and inhibitory synaptic currents is an important process for shaping the input-output profiles of individual excitable cells, and therefore the activity of neuronal networks. Here, we show that the decay time course of GABAergic inhibitory synaptic currents is considerably faster when recorded with physiological internal Cl(-) concentrations than with symmetrical Cl(-) solutions. This effect of intracellular Cl(-) is due to a direct modulation of the GABA(A) receptor that is independent of the net direction of current flow through the ion channel. As a consequence, the time window during which GABAergic inhibition can counteract coincident excitatory inputs is much shorter, under physiological conditions, than that previously measured using high internal Cl(-). This is expected to have implications for neuronal network excitability and neurodevelopment, and for our understanding of pathological conditions, such as epilepsy and chronic pain, where intracellular Cl(-) concentrations can be altered.
Collapse
|
70
|
Papke RL. Tricks of perspective: insights and limitations to the study of macroscopic currents for the analysis of nAChR activation and desensitization. J Mol Neurosci 2009; 40:77-86. [PMID: 19672724 DOI: 10.1007/s12031-009-9261-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 07/20/2009] [Indexed: 10/20/2022]
Abstract
Activation, inactivation, and desensitization are key features of ion channel behavior. We endeavor to understand these processes at the level of the single molecules and extrapolate from such microscopic models the behavior of ion channels in contexts of cellular physiology and therapeutics. In the case of ligand-gated ion channels, such as nicotinic acetylcholine receptors (nAChRs), it is also important to consider the nature of the dynamic changes in the chemical stimulus required for activation. The amplitude and time course of the agonist pulse provided to nAChR at a fast synapse will be vastly different from those of the ACh stimulus presented to presynaptic receptors in the brain and neither of these physiological processes will resemble the stimuli presented by nicotine self-administration or with systemic delivery of a therapeutic agent. Likewise, specific experimental protocols will provide unique stimulus profiles, which will impact the relationship between the macroscopic data and the underlying molecular processes. In this work, ion channel simulations intended to model heteromeric neuronal nAChR are conducted under varying conditions of agonist presentation, and the impact of a key microscopic process, desensitization, is studied on the macroscopic responses. With instantaneous jumps in agonist concentrations, the microscopic desensitization rate impacts essentially all aspects of the macroscopic responses, rise rates, decay rates, and both peak and steady-state currents. In contrast, with an agonist pulse like that used in Xenopus oocyte experiments, microscopic desensitization rates have a profound impact on peak current amplitude and very little effect on the kinetics of the macroscopic responses.
Collapse
Affiliation(s)
- Roger L Papke
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610-0267, USA.
| |
Collapse
|
71
|
Mørkve SH, Hartveit E. Properties of glycine receptors underlying synaptic currents in presynaptic axon terminals of rod bipolar cells in the rat retina. J Physiol 2009; 587:3813-30. [PMID: 19528247 DOI: 10.1113/jphysiol.2009.173583] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The excitability of presynaptic terminals can be controlled by synaptic input that directly targets the terminals. Retinal rod bipolar axon terminals receive presynaptic input from different types of amacrine cells, some of which are glycinergic. Here, we have performed patch-clamp recordings from rod bipolar axon terminals in rat retinal slices. We used whole-cell recordings to study glycinergic inhibitory postsynaptic currents (IPSCs) under conditions of adequate local voltage clamp and outside-out patch recordings to study biophysical and pharmacological properties of the glycine receptors with ultrafast application. Glycinergic IPSCs, recorded in both intact cells and isolated terminals, were strychnine sensitive and displayed fast kinetics with a double-exponential decay. Ultrafast application of brief (approximately 1 ms) pulses of glycine (3 mM) to patches evoked responses with fast, double-exponential deactivation kinetics, no evidence of desensitization in double-pulse experiments, relatively low apparent affinity (EC(50) approximately 100 microM), and high maximum open probability (0.9). Longer pulses evoked slow, double-exponential desensitization and double-pulse experiments indicated slow, double-exponential recovery from desensitization. Non-stationary noise analysis of IPSCs and patch responses yielded single-channel conductances of approximately 41 pS and approximately 64 pS, respectively. Directly observed single-channel gating occurred at approximately 40-50 pS and approximately 80-90 pS in both types of responses, suggesting a mixture of heteromeric and homomeric receptors. Synaptic release of glycine leads to transient receptor activation, with about eight receptors available to bind transmitter after release of a single vesicle. With a low intracellular chloride concentration, this leads to either hyperpolarizing or shunting inhibition that will counteract passive and regenerative depolarization and depolarization-evoked transmitter release.
Collapse
Affiliation(s)
- Svein Harald Mørkve
- University of Bergen, Department of Biomedicine, Jonas Lies vei 91, N-5009 Bergen, Norway.
| | | |
Collapse
|
72
|
Recruitment of calcium-permeable AMPA receptors during synaptic potentiation is regulated by CaM-kinase I. J Neurosci 2008; 28:6000-9. [PMID: 18524905 DOI: 10.1523/jneurosci.0384-08.2008] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Ca(2+)-permeable AMPA receptors (CP-AMPARs) at central glutamatergic synapses are of special interest because of their unique biophysical and signaling properties that contribute to synaptic plasticity and their roles in multiple neuropathologies. However, intracellular signaling pathways that recruit synaptic CP-AMPARs are unknown, and involvement of CP-AMPARs in hippocampal region CA1 synaptic plasticity is controversial. Here, we report that intracellular infusion of active CaM-kinase I (CaMKI) into cultured hippocampal neurons enhances miniature EPSC amplitude because of recruitment of CP-AMPARs, likely from an extrasynaptic pool. The ability of CaMKI, which regulates the actin cytoskeleton, to recruit synaptic CP-AMPARs was blocked by inhibiting actin polymerization with latrunculin A. CaMK regulation of CP-AMPARs was also confirmed in hippocampal slices. CA1 long-term potentiation (LTP) after theta bursts, but not high-frequency tetani, produced a rapid, transient expression of synaptic CP-AMPARs that facilitated LTP. This component of TBS LTP was blocked by inhibition of CaM-kinase kinase (CaMKK), the upstream activator of CaMKI. Our calculations show that adding CP-AMPARs numbering <5% of existing synaptic AMPARs is sufficient to account for the potentiation observed in LTP. Thus, synaptic expression of CP-AMPARs is a very efficient mechanism for rapid enhancement of synaptic strength that depends on CaMKK/CaMKI signaling, actin dynamics, and the pattern of synaptic activity used to induce CA1 LTP.
Collapse
|
73
|
Homosynaptic long-term synaptic potentiation of the "winner" climbing fiber synapse in developing Purkinje cells. J Neurosci 2008; 28:798-807. [PMID: 18216188 DOI: 10.1523/jneurosci.4074-07.2008] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
During the developmental formation of neuronal circuits, redundant synapses are eliminated and persisting synapses strengthened. In the immature cerebellum, climbing fiber-Purkinje cell synapses undergo a pronounced synaptic rewiring, from a multiple innervation around birth to a mono-innervation in adults. An early stage of this process consists in the differentiation of initially equally strong synapses into one "large" and several "small" synaptic inputs. By performing whole-cell recordings in Purkinje cells of rat cerebellar slices, we found that the coincident activation of a Purkinje cell and one of its afferent climbing fibers induces homosynaptic long-term synaptic potentiation (LTP). This LTP requires postsynaptic Ca2+ signaling and involves an increase in the single channel conductance of the postsynaptic AMPA receptors. Interestingly, LTP occurs exclusively at large synaptic inputs. It is not observed at small inputs that are eventually eliminated. Thus, we identified a new form of LTP that is expressed uniquely and just for a restricted period of early development in the large climbing fiber inputs. Our results suggest that this LTP mediates the activity-dependent maturation of the "winner" climbing fiber.
Collapse
|
74
|
Sonner PM, Filosa JA, Stern JE. Diminished A-type potassium current and altered firing properties in presympathetic PVN neurones in renovascular hypertensive rats. J Physiol 2008; 586:1605-22. [PMID: 18238809 DOI: 10.1113/jphysiol.2007.147413] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Accumulating evidence supports a contribution of the hypothalamic paraventricular nucleus (PVN) to sympathoexcitation and elevated blood pressure in renovascular hypertension. However, the underlying mechanisms resulting in altered neuronal function in hypertensive rats remain largely unknown. Here, we aimed to address whether the transient outward potassium current (I(A)) in identified rostral ventrolateral medulla (RVLM)-projecting PVN neurones is altered in hypertensive rats, and whether such changes affected single and repetitive action potential properties and associated changes in intracellular Ca(2+) levels. Patch-clamp recordings obtained from PVN-RVLM neurons showed a reduction in I(A) current magnitude and single channel conductance, and an enhanced steady-state current inactivation in hypertensive rats. Morphometric reconstructions of intracellularly labelled PVN-RVLM neurons showed a diminished dendritic surface area in hypertensive rats. Consistent with a diminished I(A) availability, action potentials in PVN-RVLM neurons in hypertensive rats were broader, decayed more slowly, and were less sensitive to the K(+) channel blocker 4-aminopyridine. Simultaneous patch clamp recordings and confocal Ca(2+) imaging demonstrated enhanced action potential-evoked intracellular Ca(2+) transients in hypertensive rats. Finally, spike broadening during repetitive firing discharge was enhanced in PVN-RVLM neurons from hypertensive rats. Altogether, our results indicate that diminished I(A) availability constitutes a contributing mechanism underlying aberrant central neuronal function in renovascular hypertension.
Collapse
Affiliation(s)
- Patrick M Sonner
- Department of Psychiatry, University of Cincinnati, Genome Research Institute, 2170 E. Galbraith Rd, Cincinnati, OH 45237, USA
| | | | | |
Collapse
|
75
|
Sacktor TC. Chapter 2 PKMζ, LTP maintenance, and the dynamic molecular biology of memory storage. PROGRESS IN BRAIN RESEARCH 2008; 169:27-40. [DOI: 10.1016/s0079-6123(07)00002-7] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
76
|
|
77
|
Cho CH, St-Gelais F, Zhang W, Tomita S, Howe JR. Two families of TARP isoforms that have distinct effects on the kinetic properties of AMPA receptors and synaptic currents. Neuron 2007; 55:890-904. [PMID: 17880893 DOI: 10.1016/j.neuron.2007.08.024] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 08/06/2007] [Accepted: 08/31/2007] [Indexed: 10/22/2022]
Abstract
Transmembrane AMPA receptor regulatory proteins (TARPs) are auxiliary AMPA receptor subunits that regulate both the trafficking and gating properties of AMPA receptors, and different TARP isoforms display distinct expression patterns in brain. Here, we compared the effects of four TARP isoforms on the kinetics of AMPA receptor currents. Each isoform slowed the deactivation of GluR1 currents, but the slowing was greatest with gamma-4 and gamma-8. Isoform-specific differences in desensitization were also observed that correlated with effects on deactivation. TARP isoforms also differentially modulated responses to trains of glutamate applications designed to mimic high-frequency presynaptic firing. Importantly, whereas both stargazin and gamma-4 rescued excitatory synaptic transmission in cerebellar granule cells from stargazer mice, the decay of miniature EPSCs was 2-fold slower in neurons expressing gamma-4. The results show that heterogeneity in the composition of AMPA receptor/TARP complexes contributes to synapse-specific differences in EPSC decays and frequency-dependent modulation of neurotransmission.
Collapse
Affiliation(s)
- Chang-Hoon Cho
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8066, USA
| | | | | | | | | |
Collapse
|
78
|
Kirmse K, Dvorzhak A, Henneberger C, Grantyn R, Kirischuk S. Cajal Retzius cells in the mouse neocortex receive two types of pre- and postsynaptically distinct GABAergic inputs. J Physiol 2007; 585:881-95. [PMID: 17962325 DOI: 10.1113/jphysiol.2007.145003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cajal-Retzius (CR) cells are principal cells of layer I in the developing neocortex. They are able to generate action potentials, make synaptic contacts in layer I and receive excitatory GABAergic inputs before birth. Although CR cells participate in neuronal network activity in layer I, the properties of their synaptic inputs are not yet characterized. We recorded miniature (mIPSCs) and evoked (eIPSCs) postsynaptic currents using the whole-cell patch-clamp technique. Most of CR cells displayed two types of mIPSCs, namely those with fast (mIPSC(F)) and slow (mIPSC(S)) rise kinetics. The mIPSC(F) mean amplitude was significantly larger than that of mIPSC(S), while their decay rates were not different. Peak-scaled non-stationary noise analysis revealed that mIPSC(S) and mIPSC(F) differed in their weighted single-channel conductance. In addition, zolpidem (100 nm), a modulator of alpha(1) subunit-containing GABA(A) receptors, selectively affected mIPSC(S) suggesting that different postsynaptic GABA(A) receptors mediate mIPSC(F) and mIPSC(S). eIPSCs also split into two populations with different rise kinetics. Fast eIPSCs (eIPSC(F)) displayed higher paired-pulse ratio (PPR) and lower GABA release probability than slowly rising eIPSCs (eIPSC(S)). As CGP55845, a GABA(B) receptor antagonist, eliminated the observed difference in PPR, the lower release probability at IPSC(F) connections probably reflects a stronger tonic GABA(B) receptor-mediated inhibition of IPSC(F) synapses. At low (0.1 Hz) stimulation frequency both inputs can effectively convert presynaptic action potentials into postsynaptic ones; however, only IPSC(F) connections reliably transfer the presynaptic activity patterns at higher stimulation rates. Thus, CR cells receive two GABAergic inputs, which differ in the quantal amplitude, the probability of GABA release and the frequency dependence of signal transfer.
Collapse
Affiliation(s)
- Knut Kirmse
- Institute of Neurophysiology, Johannes-Mueller-Center of Physiology, Charité-University-Medicine Berlin, Tucholskystrasse 2, 10117 Berlin, Germany
| | | | | | | | | |
Collapse
|
79
|
Balakrishnan V, Trussell LO. Synaptic inputs to granule cells of the dorsal cochlear nucleus. J Neurophysiol 2007; 99:208-19. [PMID: 17959739 DOI: 10.1152/jn.00971.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mammalian dorsal cochlear nucleus (DCN) integrates auditory nerve input with nonauditory signals via a cerebellar-like granule cell circuit. Although granule cells carry nonauditory information to the DCN, almost nothing is known about their physiology. Here we describe electrophysiological features of synaptic inputs to granule cells in the DCN by in vitro patch-clamp recordings from P12 to P22 rats. Granule cells ranged from 6 to 8 microm in cell body diameter and had high-input resistance. Excitatory postsynaptic currents consisted of both AMPA receptor-mediated and N-methyl-D-aspartate receptor-mediated currents. Synaptically evoked excitatory postsynaptic currents ranged from -25 to -140 pA with fast decay time constants. Synaptic stimulation evoked both short- and long-latency synaptic responses that summated to spike threshold, indicating the presence of a polysynaptic excitatory pathway in the granule cell circuit. Synaptically evoked inhibitory postsynaptic currents in Cl(-)-loaded cells ranged from -30 to -1,021 pA and were mediated by glycine and, to a lesser extent, GABA(A) receptors. Unlike cerebellar granule cells, DCN granule cells lacked tonic inhibition by GABA. The glycinergic synaptic conductance was mediated by heteromeric glycine receptors and was far stronger than the glutamatergic conductance, suggesting that glycinergic neurons may act to gate nonauditory signals in the DCN.
Collapse
Affiliation(s)
- Veeramuthu Balakrishnan
- Oregon Hearing Research Center and Vollum Institute, L335A, 3181 S. W. Sam Jackson Park Rd., Portland, OR 97239, USA
| | | |
Collapse
|
80
|
Soto D, Coombs ID, Kelly L, Farrant M, Cull-Candy SG. Stargazin attenuates intracellular polyamine block of calcium-permeable AMPA receptors. Nat Neurosci 2007; 10:1260-7. [PMID: 17873873 PMCID: PMC2430330 DOI: 10.1038/nn1966] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 07/20/2007] [Indexed: 11/09/2022]
Abstract
Endogenous polyamines profoundly affect the activity of various ion channels, including that of calcium-permeable AMPA-type glutamate receptors (CP-AMPARs). Here we show that stargazin, a transmembrane AMPAR regulatory protein (TARP) known to influence transport, gating and desensitization of AMPARs, greatly reduces block of CP-AMPARs by intracellular polyamines. By decreasing CP-AMPAR affinity for cytoplasmic polyamines, stargazin enhances the charge transfer following single glutamate applications and eliminates the frequency-dependent facilitation seen with repeated applications. In cerebellar stellate cells, which express both synaptic CP-AMPARs and stargazin, we found that the rectification and unitary conductance of channels underlying excitatory postsynaptic currents were matched by those of recombinant AMPARs only when the latter were associated with stargazin. Taken together, our observations establish modulatory actions of stargazin that are specific to CP-AMPARs, and suggest that during synaptic transmission the activity of such receptors, and thus calcium influx, is fundamentally changed by TARPs.
Collapse
Affiliation(s)
- David Soto
- Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
81
|
Ing T, Poulter MO. Diversity of GABA(A) receptor synaptic currents on individual pyramidal cortical neurons. Eur J Neurosci 2007; 25:723-34. [PMID: 17313570 DOI: 10.1111/j.1460-9568.2007.05331.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Miniature GABA(A) receptor-mediated inhibitory postsynaptic currents (mIPSCs) in cortical pyramidal neurons have previously been categorized into two types: small amplitude mIPSCs with a mono-exponential deactivation (mono-mIPSCs) and relatively larger mIPSCs with bi-exponential deactivation (bi-mIPSCs). The aim of this study was to determine if the GABA(A) channels that underlie these mIPSCSs are molecularly distinct. We found, using non-stationary noise analysis, that the difference in their amplitude could be not accounted for by their single channel conductance (both were 40 pS). Next, using alpha subunit selective GABA(A) receptor modulators, we examined the identity of the alpha subunits that may be expressed in the synapses that give rise to these mIPSCs. Zolpidem (100 and 500 nM, alpha1 selective) affected the deactivation of a subset of the mono-mIPSCs, indicating that alpha1 subunits are not highly expressed in these synapses. However, zolpidem (100 nM) prolonged the deactivation of all bi-mIPSCs, indicating a high abundance of alpha1 subunits in these synapses. SB-205384 (alpha3 selective) had no effect on the mono-mIPSCs but the bi-mIPSCs were prolonged. Furosemide (alpha4 selective) reduced the amplitude of only the mono-mIPSCs. L655,708 (alpha5 selective) reduced the amplitude of both populations and shortened the duration of the mono-mIPSCs. Finally, we found that the neuroactive steroid pregesterone sulphate reduced the amplitude of both mIPSC types. These results provide pharmacological evidence that synapses on cortical pyramidal neurons are molecularly distinct. The purpose of these different types of synapses may be to provide different inhibitory timing patterns on these cells.
Collapse
Affiliation(s)
- Timothy Ing
- Neuroscience Research Institute, Department of Psychology, Carleton University, Ottawa, Ontario, Canada
| | | |
Collapse
|
82
|
Patten SA, Ali DW. AMPA receptors associated with zebrafish Mauthner cells switch subunits during development. J Physiol 2007; 581:1043-56. [PMID: 17412769 PMCID: PMC2170824 DOI: 10.1113/jphysiol.2007.129999] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Glutamate AMPA receptors (AMPARs) are major excitatory receptors in the vertebrate CNS. In many biological systems there is a developmental speeding in AMPAR kinetics, which occurs either because of a switch in AMPAR subunits or a change in synaptic morphology. We studied the development of AMPAR-mediated miniature excitatory postsynaptic currents (AMPAR-mEPSCs) in zebrafish Mauthner cells (M-cells) to determine the reasons underlying the speeding of AMPA mEPSCs in this preparation. We recorded AMPAR-mEPSCs in zebrafish ranging in age from 33 h postfertilization (hpf) to 72 hpf. We found that the glutamate waveform in the synaptic cleft did not change during development, suggesting that synaptic morphology played little role in shaping the mEPSC. The current-voltage (I-V) relationship was linear at 33 hpf and outwardly rectified in older animals, while AMPAR decay kinetics were slower at positive potentials, compared with negative potentials. The relative change in tau with depolarization was found to be greater at 48 hpf than at 33 hpf. AMPARs in 33 hpf fish had a conductance of approximately 9 pS, and in older fish approximately 15 pS. Finally, the desensitization blocker, cyclothiazide, increased tau by approximately 4-fold in 48 hpf preparations, but only 1.5-fold in 33 hpf fish. These results are consistent with the hypothesis that the major mechanism underlying the developmental speeding in AMPAR kinetics in zebrafish CNS is a switch in receptor subunits. To our knowledge this is the first study to suggest that AMPARs change subunits during development in fish.
Collapse
Affiliation(s)
| | - Declan W Ali
- Department of Biological Sciences, University of AlbertaEdmonton, Alberta, Canada, T6G 2E9
- Centre for Neuroscience, Biological Sciences Building, University of AlbertaEdmonton, Alberta, Canada, T6G 2E9
| |
Collapse
|
83
|
Hartveit E, Veruki ML. Studying properties of neurotransmitter receptors by non-stationary noise analysis of spontaneous postsynaptic currents and agonist-evoked responses in outside-out patches. Nat Protoc 2007; 2:434-48. [PMID: 17406605 DOI: 10.1038/nprot.2007.47] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chemical synaptic transmission depends on neurotransmitter-gated ion channels concentrated in the postsynaptic membrane of specialized synaptic contacts. The functional characteristics of these neurotransmitter receptor channels are important for determining the properties of synaptic transmission. Whole-cell recording of postsynaptic currents (PSCs) and outside-out patch recording of transmitter-evoked currents are important tools for estimating the single-channel conductance and the number of receptors contributing to the PSC activated by a single transmitter quantum. When single-channel activity cannot be directly resolved, non-stationary noise analysis is a valuable tool for determining these parameters. Peak-scaled non-stationary noise analysis can be used to compensate for quantal variability in synaptic currents. Here, we present detailed protocols for conventional and peak-scaled non-stationary noise analysis of spontaneous PSCs and responses in outside-out patches. In addition, we include examples of computer code for individual functions used in the different stages of non-stationary noise analysis. These analysis procedures require 3-8 h.
Collapse
Affiliation(s)
- Espen Hartveit
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway.
| | | |
Collapse
|
84
|
Veruki ML, Gill SB, Hartveit E. Spontaneous IPSCs and glycine receptors with slow kinetics in wide-field amacrine cells in the mature rat retina. J Physiol 2007; 581:203-19. [PMID: 17331993 PMCID: PMC2075214 DOI: 10.1113/jphysiol.2006.127316] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The functional properties of glycine receptors were analysed in different types of wide-field amacrine cells, narrowly stratifying cells considered to play a role in larger-scale integration across the retina. The patch-clamp technique was used to record spontaneous IPSCs (spIPSCs) and glycine-evoked patch responses from mature rat retinal slices (4-7 weeks postnatal). Glycinergic spIPSCs were blocked reversibly by strychnine (300 nM). Compared to previously described spIPSCs in AII amacrine cells, the spIPSCs in wide-field amacrine cells displayed a very slow decay time course (tau(fast) approximately 15 ms; tau(slow) approximately 57 ms). The kinetic properties of spIPSCs in whole-cell recordings were paralleled by even slower deactivation kinetics of responses evoked by brief pulses of glycine (3 mm) to outside-out patches from wide-field amacrine cells (tau(fast) approximately 45 ms; tau(slow) approximately 350 ms). Non-stationary noise analysis of patch responses and spIPSCs yielded similar average single-channel conductances (approximately 31 and approximately 34 pS, respectively). Similar, as well as both lower- and higher-conductance levels could be identified from directly observed single-channel gating during the decay phase of spIPSCs and patch responses. These results suggest that the slow glycinergic spIPSCs in wide-field amacrine cells involve alpha2beta heteromeric receptors. Taken together with previous work, the kinetic properties of glycine receptors in different types of amacrine cells display a considerable range that is probably a direct consequence of differential expression of receptor subunits. Unique kinetic properties are likely to differentially shape the glycinergic input to different types of amacrine cells and thereby contribute to distinct integrative properties among these cells.
Collapse
Affiliation(s)
- Margaret Lin Veruki
- University of Bergen, Department of Biomedicine, Jonas Lies vei 91, N-5009 Bergen, Norway
| | | | | |
Collapse
|
85
|
Katagiri H, Fagiolini M, Hensch TK. Optimization of Somatic Inhibition at Critical Period Onset in Mouse Visual Cortex. Neuron 2007; 53:805-12. [PMID: 17359916 DOI: 10.1016/j.neuron.2007.02.026] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 01/01/2007] [Accepted: 02/27/2007] [Indexed: 11/21/2022]
Abstract
Local GABAergic circuits trigger visual cortical plasticity in early postnatal life. How these diverse connections contribute to critical period onset was investigated by nonstationary fluctuation analysis following laser photo-uncaging of GABA onto discrete sites upon individual pyramidal cells in slices of mouse visual cortex. The GABA(A) receptor number decreased on the soma-proximal dendrite (SPD), but not at the axon initial segment, with age and sensory deprivation. Benzodiazepine sensitivity was also higher on the immature SPD. Too many or too few SPD receptors in immature or dark-reared mice, respectively, were adjusted to critical period levels by benzodiazepine treatment in vivo, which engages ocular dominance plasticity in these animal models. Combining GAD65 deletion with dark rearing from birth confirmed that an intermediate number of SPD receptors enable plasticity. Site-specific optimization of perisomatic GABA response may thus trigger experience-dependent development in visual cortex.
Collapse
Affiliation(s)
- Hiroyuki Katagiri
- Laboratory for Neuronal Circuit Development, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | | | | |
Collapse
|
86
|
Qiu S, Zhao LF, Korwek KM, Weeber EJ. Differential reelin-induced enhancement of NMDA and AMPA receptor activity in the adult hippocampus. J Neurosci 2007; 26:12943-55. [PMID: 17167084 PMCID: PMC6674964 DOI: 10.1523/jneurosci.2561-06.2006] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The developmental lamination of the hippocampus and other cortical structures requires a signaling cascade initiated by reelin and its receptors, apoER2 (apolipoprotein E receptor 2) and VLDLR (very-low-density lipoprotein receptor). However, the functional significance of continued reelin expression in the postnatal brain remains poorly understood. Here, we show that reelin application to adult mice hippocampal slices leads to enhanced glutamatergic transmission mediated by NMDA receptors (NMDARs) and AMPA receptors (AMPARs) through distinct mechanisms. Application of recombinant reelin enhanced NMDAR-mediated currents through postsynaptic mechanisms, as revealed by the variance-mean analysis of synaptic NMDAR currents, assessment of spontaneous miniature events, and the levels of NMDAR subunits at synaptic surface. In comparison, nonstationary fluctuation analysis of miniature AMPAR currents and quantification of synaptic surface proteins revealed that reelin-induced enhancement of AMPAR responses was mediated by increased AMPAR numbers. Reelin enhancement of synaptic NMDAR currents was abolished when receptor-associated protein (RAP) or the Src inhibitor 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]-pyrimidine (PP1) was bath applied and was abrogated by including PP1 in the recording electrodes. In comparison, including RAP or an inactive PP1 analog PP3 in the recording electrode was without effect. Interestingly, the increased AMPAR response after reelin application was not blocked by PP1 but was blocked by the phosphoinositide-3' kinase (PI3K) inhibitors wortmannin and LY294002 [2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride]. Furthermore, reelin-induced, PI3K-dependent AMPAR surface insertion was also observed in cultured hippocampal neurons. Together, these results reveal a differential functional coupling of reelin signaling with NMDAR and AMPAR function and define a novel mechanism for controlling synaptic strength and plasticity in the adult hippocampus.
Collapse
MESH Headings
- Animals
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Adhesion Molecules, Neuronal/physiology
- Cell Line
- Cells, Cultured
- Excitatory Postsynaptic Potentials/physiology
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/physiology
- Female
- Hippocampus/metabolism
- Hippocampus/physiology
- Humans
- Male
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Receptors, AMPA/agonists
- Receptors, AMPA/metabolism
- Receptors, AMPA/physiology
- Receptors, N-Methyl-D-Aspartate/agonists
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, N-Methyl-D-Aspartate/physiology
- Reelin Protein
- Serine Endopeptidases/genetics
- Serine Endopeptidases/physiology
- Signal Transduction/genetics
- src-Family Kinases/physiology
Collapse
Affiliation(s)
- Shenfeng Qiu
- Departments of Molecular Physiology and Biophysics and
| | - Lisa F. Zhao
- Departments of Molecular Physiology and Biophysics and
| | | | - Edwin J. Weeber
- Departments of Molecular Physiology and Biophysics and
- Pharmacology
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0615
| |
Collapse
|
87
|
Palmer MJ. Functional segregation of synaptic GABAA and GABAC receptors in goldfish bipolar cell terminals. J Physiol 2006; 577:45-53. [PMID: 17008372 PMCID: PMC2000669 DOI: 10.1113/jphysiol.2006.119560] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The transmission of light responses to retinal ganglion cells is regulated by inhibitory input from amacrine cells to bipolar cell (BC) synaptic terminals. GABA(A) and GABA(C) receptors in BC terminals mediate currents with different kinetics and are likely to have distinct functions in limiting BC output; however, the synaptic properties and localization of the receptors are currently poorly understood. By recording endogenous GABA receptor currents directly from BC terminals in goldfish retinal slices, I show that spontaneous GABA release activates rapid GABA(A) receptor miniature inhibitory postsynaptic currents (mIPSCs) (predominant decay time constant (tau(decay)), 1.0 ms) in addition to a tonic GABA(C) receptor current. The GABA(C) receptor antagonist (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) has no effect on the amplitude or kinetics of the rapid GABA(A) mIPSCs. In addition, inhibition of the GAT-1 GABA transporter, which strongly regulates GABA(C) receptor currents in BC terminals, fails to reveal a GABA(C) component in the mIPSCs. These data suggest that GABA(A) and GABA(C) receptors are highly unlikely to be synaptically colocalized. Using non-stationary noise analysis of the mIPSCs, I estimate that GABA(A) receptors in BC terminals have a single-channel conductance (gamma) of 17 pS and that an average of just seven receptors mediates a quantal event. From noise analysis of the tonic current, GABA(C) receptor gamma is estimated to be 4 pS. Identified GABA(C) receptor mIPSCs exhibit a slow decay (tau(decay), 54 ms) and are mediated by approximately 42 receptors. The distinct properties and localization of synaptic GABA(A) and GABA(C) receptors in BC terminals are likely to facilitate their specific roles in regulating the transmission of light responses in the retina.
Collapse
Affiliation(s)
- Mary J Palmer
- Neuroscience Group, Institute for Science and Technology in Medicine, Keele University, Keele, ST5 5BG, UK.
| |
Collapse
|
88
|
Yang L, Benardo LS, Valsamis H, Ling DSF. Acute injury to superficial cortex leads to a decrease in synaptic inhibition and increase in excitation in neocortical layer V pyramidal cells. J Neurophysiol 2006; 97:178-87. [PMID: 16987927 DOI: 10.1152/jn.01374.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Injury to the superficial layers of cerebral cortex produces alterations in the synaptic responses of local circuits that promote the development of seizures. To further delineate the specific changes in synaptic strength that are induced by this type of cortical injury, whole cell voltage-clamp recordings were used to examine evoked and spontaneous synaptic events from layer V pyramidal cells in coronal slices prepared from surgically traumatized rat neocortices in which the superficial third of the cortex (layers I, II, and part of III) was removed. Slices from intact neocortices were used as controls. Examinations of fast inhibitory postsynaptic currents (IPSCs) indicated that traumatized slices were disinhibited, exhibiting evoked IPSCs (eIPSCs) with lower peak amplitudes. Measurements of spontaneous IPSCs (sIPSCs) revealed no difference in the mean amplitudes of sIPSCs recorded in traumatized versus control slices. However, the mean sIPSC frequency was lower in traumatized slices, indicative of a decrease in GABA release at these inhibitory synapses. Traumatized slices also displayed an increase in synaptic excitation, exhibiting spontaneous EPSCs (sESPCs) with larger peak amplitudes and higher frequencies. Peak-scaled nonstationary fluctuation analysis of sEPSCs and sIPSCs was used to obtain estimates of the unit conductance and number of functional receptor channels. EPSC and IPSC channel numbers and IPSC unit conductance did not differ between traumatized and intact slices. However, the mean unit conductance of EPSCs was higher (+25%) in traumatized slices. These findings suggest that acute injury to the superficial neocortical layers results in a disinhibition of cortical circuits that stems from a decline in GABA release likely due to the loss of superficial inhibitory interneurons and an enhancement of synaptic excitation consequent to an increase in the AMPA receptor unit conductance.
Collapse
Affiliation(s)
- Lie Yang
- Dept. of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave. Box 29, Brooklyn, NY 11203, USA.
| | | | | | | |
Collapse
|
89
|
Ito M. Cerebellar circuitry as a neuronal machine. Prog Neurobiol 2006; 78:272-303. [PMID: 16759785 DOI: 10.1016/j.pneurobio.2006.02.006] [Citation(s) in RCA: 557] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 02/21/2006] [Indexed: 11/17/2022]
Abstract
Shortly after John Eccles completed his studies of synaptic inhibition in the spinal cord, for which he was awarded the 1963 Nobel Prize in physiology/medicine, he opened another chapter of neuroscience with his work on the cerebellum. From 1963 to 1967, Eccles and his colleagues in Canberra successfully dissected the complex neuronal circuitry in the cerebellar cortex. In the 1967 monograph, "The Cerebellum as a Neuronal Machine", he, in collaboration with Masao Ito and Janos Szentágothai, presented blue-print-like wiring diagrams of the cerebellar neuronal circuitry. These stimulated worldwide discussions and experimentation on the potential operational mechanisms of the circuitry and spurred theoreticians to develop relevant network models of the machinelike function of the cerebellum. In following decades, the neuronal machine concept of the cerebellum was strengthened by additional knowledge of the modular organization of its structure and memory mechanism, the latter in the form of synaptic plasticity, in particular, long-term depression. Moreover, several types of motor control were established as model systems representing learning mechanisms of the cerebellum. More recently, both the quantitative preciseness of cerebellar analyses and overall knowledge about the cerebellum have advanced considerably at the cellular and molecular levels of analysis. Cerebellar circuitry now includes Lugaro cells and unipolar brush cells as additional unique elements. Other new revelations include the operation of the complex glomerulus structure, intricate signal transduction for synaptic plasticity, silent synapses, irregularity of spike discharges, temporal fidelity of synaptic activation, rhythm generators, a Golgi cell clock circuit, and sensory or motor representation by mossy fibers and climbing fibers. Furthermore, it has become evident that the cerebellum has cognitive functions, and probably also emotion, as well as better-known motor and autonomic functions. Further cerebellar research is required for full understanding of the cerebellum as a broad learning machine for neural control of these functions.
Collapse
Affiliation(s)
- Masao Ito
- RIKEN Brain Science Institute, Wako, Saitama, Japan.
| |
Collapse
|
90
|
Gill SB, Veruki ML, Hartveit E. Functional properties of spontaneous IPSCs and glycine receptors in rod amacrine (AII) cells in the rat retina. J Physiol 2006; 575:739-59. [PMID: 16825305 PMCID: PMC1995674 DOI: 10.1113/jphysiol.2006.112839] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
AII amacrine cells play a crucial role in retinal signal transmission under scotopic conditions. We have used rat retinal slices to investigate the functional properties of inhibitory glycine receptors on AII cells by recording spontaneous IPSCs (spIPSCs) in whole cells and glycine-evoked responses in outside-out patches. Glycinergic spIPSCs displayed fast kinetics with an average 10-90% rise time of approximately 500 mus, and a decay phase best fitted by a double-exponential function with tau(fast) approximately 4.8 ms (97.5% amplitude contribution) and tau(slow) approximately 33 ms. Decay kinetics were voltage dependent. Ultrafast application of brief ( approximately 2-5 ms) pulses of glycine (3 mm) to patches, evoked responses with fast deactivation kinetics best fitted with a double-exponential function with tau(fast) approximately 4.6 ms (85% amplitude contribution) and tau(slow) approximately 17 ms. Double-pulse experiments indicated recovery from desensitization after a 100-ms pulse of glycine with a double-exponential time course (tau(fast) approximately 71 ms and tau(slow) approximately 1713 ms). Non-stationary noise analysis of spIPSCs and patch responses, and directly observed channel gating yielded similar single-channel conductances ( approximately 41 to approximately 47 pS). In addition, single-channel gating occurred at approximately 83 pS. These results suggest that the fast glycinergic spIPSCs in AII cells are probably mediated by alpha1beta heteromeric receptors with a contribution from alpha1 homomeric receptors. We hypothesize that glycinergic synaptic input may target the arboreal dendrites of AII cells, and could serve to shunt excitatory input from rod bipolar cells and transiently uncouple the transcellular current through electrical synapses between AII cells and between AII cells and ON-cone bipolar cells.
Collapse
Affiliation(s)
- Silje Bakken Gill
- University of Bergen, Department of Biomedicine, Jonas Lies vei 91, N-5009 Bergen, Norway
| | | | | |
Collapse
|
91
|
Ling DSF, Benardo LS, Sacktor TC. Protein kinase Mzeta enhances excitatory synaptic transmission by increasing the number of active postsynaptic AMPA receptors. Hippocampus 2006; 16:443-52. [PMID: 16463388 DOI: 10.1002/hipo.20171] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Protein kinase Mzeta (PKMzeta), a constitutively active, atypical PKC isoform, enhances synaptic strength during the maintenance of long-term potentiation (LTP). Here we examine the mechanism by which PKMzeta increases synaptic transmission. Postsynaptic perfusion of PKMzeta during whole-cell recordings of CA1 pyramidal cells strongly potentiated the amplitude of AMPA receptor (AMPAR)-mediated miniature EPSCs (mEPSCs). Nonstationary fluctuation analysis of events recorded before and after PKMzeta enhancement showed that the kinase doubled the number of functional postsynaptic AMPAR channels. After sustained potentiation, application of a PKMzeta inhibitor reversed the increase in functional channel number to basal levels, suggesting that persistent increase of PKMzeta is required to maintain the postsynaptic localization of a mobile subpopulation of receptors. The kinase did not affect other sites of LTP expression, including presynaptic transmitter release, silent synapse conversion, or AMPAR unit conductance. Thus PKMzeta functions specifically to establish and maintain long-term increases in active postsynaptic AMPAR number.
Collapse
Affiliation(s)
- Douglas S F Ling
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York, 11203, USA.
| | | | | |
Collapse
|
92
|
Ghavanini AA, Isbasescu IM, Mathers DA, Puil E. Optimizing fluctuation analysis of GABAAergic IPSCs for accurate unitary currents. J Neurosci Methods 2006; 158:150-6. [PMID: 16780956 DOI: 10.1016/j.jneumeth.2006.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 04/28/2006] [Accepted: 05/11/2006] [Indexed: 11/20/2022]
Abstract
Nonstationary fluctuation analysis of synaptic currents requires division of currents into bins of time, with little agreement on how to select an optimal bin width. We used simulated inhibitory postsynaptic currents (simIPSCs) in an empirical approach to establish the optimal bin width needed for estimation of the unitary current, ie. We found acceptable accuracy (< or = 5%) at bin widths shorter than the length of the stationary segment of simIPSCs that persisted when Gaussian noise was added to the simulated currents. We also studied evoked and spontaneous IPSCs mediated by receptors for gamma-aminobutyrate (GABA) in thalamic neurons. Similar to simIPSCs, analysis of the IPSCs yielded saturating relationships between bin width and accuracy of unitary current estimate. Whereas standard error decreased, the accuracy of ie estimates increased with decreasing bin width, forming a plateau at bins below 2-3 ms in duration. Using this approach, one can reliably determine the optimal bin width for nonstationary noise analysis.
Collapse
Affiliation(s)
- Amer A Ghavanini
- Department of Anesthesiology, Pharmacology and Therapeutics, 2176 Health Sciences Mall, The University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | | | |
Collapse
|
93
|
Graham BA, Schofield PR, Sah P, Margrie TW, Callister RJ. Distinct physiological mechanisms underlie altered glycinergic synaptic transmission in the murine mutants spastic, spasmodic, and oscillator. J Neurosci 2006; 26:4880-90. [PMID: 16672662 PMCID: PMC6674148 DOI: 10.1523/jneurosci.3991-05.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spastic (spa), spasmodic (spd), and oscillator (ot) mice have naturally occurring glycine receptor (GlyR) mutations, which manifest as motor deficits and an exaggerated "startle response." Using whole-cell recording in hypoglossal motoneurons, we compared the physiological mechanisms by which each mutation alters GlyR function. Mean glycinergic miniature IPSC (mIPSC) amplitude and frequency were dramatically reduced (>50%) compared with controls for each mutant. mIPSC decay times were unchanged in spa/spa (4.5 +/- 0.3 vs 4.7 +/- 0.2 ms), reduced in spd/spd (2.7 +/- 0.2 vs 4.7 +/- 0.2 ms), and increased in ot/ot (12.3 +/- 1.2 vs 4.8 +/- 0.2 ms). Thus, in spastic, GlyRs are functionally normal but reduced in number, whereas in spasmodic, GlyR kinetics is faster. The oscillator mutation results in complete absence of alpha1-containing GlyRs; however, some non-alpha1-containing GlyRs persist at synapses. Fluctuation analysis of membrane current, induced by glycine application to outside-out patches, showed that mean single-channel conductance was increased in spa/spa (64.2 +/- 4.9 vs 36.1 +/- 1.4 pS), but unchanged in spd/spd (32.4 +/- 2.1 vs 35.3 +/- 2.1 pS). GlyR-mediated whole-cell currents in spa/spa exhibited increased picrotoxin sensitivity (27 vs 71% block for 100 microM), indicating alpha1 homomeric GlyR expression. The picrotoxin sensitivity of evoked glycinergic IPSCs and conductance of synaptic GlyRs, as determined by nonstationary variance analysis, were identical for spa/spa and controls. Together, these findings show the three mutations disrupt GlyR-mediated inhibition via different physiological mechanisms, and the spastic mutation results in "compensatory" alpha1 homomeric GlyRs at extrasynaptic loci.
Collapse
|
94
|
Hartveit E, Veruki ML. Studying properties of neurotransmitter receptors by non-stationary noise analysis of spontaneous synaptic currents. J Physiol 2006; 574:751-85. [PMID: 16728447 PMCID: PMC1817749 DOI: 10.1113/jphysiol.2006.111856] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The properties of neurotransmitter receptor channels are important for determining synaptic transmission in the nervous system. The presence of quantal variability complicates the use of conventional non-stationary noise analysis for determining the unitary conductance and number of channels involved in synaptic currents. Peak-scaled non-stationary noise analysis has been used to compensate for quantal variability, but there is evidence that the resulting variance versus mean relationships can be transformed from parabolic to skewed. We have used computer modelling based on experimentally derived kinetic schemes to investigate such relationships and demonstrate that their shape is a consequence of the temporal structure of the fluctuations during synaptic responses. Covariance analysis showed that peak-scaling generates a skewed relationship when the covariance function decays rapidly (compared to the average response waveform), corresponding to a low correlation between fluctuations at the peak and in neighbouring regions of the decay phase. A parabolic relationship is obtained when the covariance function decays more slowly, corresponding to a higher correlation. Irrespective of a skewed or parabolic relationship, we demonstrate that the unitary current can be reliably estimated, with a coefficient of variation (CV) as low as 0.05 and bias as low as +/-2% under ideal conditions. While the shape of the variance versus mean curve after peak-scaled non-stationary noise analysis is ultimately a consequence of the kinetic properties of the channels, inadequate alignment of individual waveforms can transform the relationship from parabolic to skewed, and low-pass filtering can transform the relationship from skewed to parabolic. These findings have important implications for analysis of experimental data.
Collapse
Affiliation(s)
- Espen Hartveit
- University of Bergen, Department of Biomedicine, Jonas Lies vei 91, N-5009 Bergen, Norway.
| | | |
Collapse
|
95
|
Balland B, Lachamp P, Strube C, Kessler JP, Tell F. Glutamatergic synapses in the rat nucleus tractus solitarii develop by direct insertion of calcium-impermeable AMPA receptors and without activation of NMDA receptors. J Physiol 2006; 574:245-61. [PMID: 16690712 PMCID: PMC1817785 DOI: 10.1113/jphysiol.2006.108738] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Calcium influxes through ionotropic glutamate receptors (AMPA and NMDA receptors, AMPARs and NMDARs) are considered to be critical for the shaping and refinement of neural circuits during synaptogenesis. Using a combined morphological and electrophysiological approach, we evaluated this hypothesis at the level of the nucleus tractus solitarii (NTS), a brainstem structure that is a gateway for many visceral sensory afferent fibres. We confirmed that in the NTS, the first excitatory synapses appeared at embryonic day 18. We next characterized the biophysical properties of NTS AMPARs. Throughout perinatal development, both evoked and miniature EPSCs recorded in the presence of an NMDAR blocker were insensitive to polyamines and had linear current-voltage relationships. This demonstrated that AMPARs at NTS excitatory synapses were calcium-impermeable receptors composed of a majority of GluR2 subunits. We then investigated the influence of calcium influxes through NMDARs on the development of NTS synaptic transmission. We found that NMDAR expression at synaptic sites did not precede AMPAR expression. Moreover, NMDAR blockade in utero did not prevent the development of AMPAR synaptic currents and the synaptic clustering of GluR2 subunits. Thus, our data support an alternative model of synaptogenesis that does not depend on calcium influxes through either AMPARs or NMDARs. This model may be particularly relevant to the formation of neural networks devoted to basic behaviours required at birth for survival.
Collapse
Affiliation(s)
- Bénédicte Balland
- Laboratoire de Neurophysiologie Cellulaire, CNRS UMR 6150, IFR Jean-Roche, Faculté de Médecine, Bd Pierre Dramard, 13916 Marseille cedex 20, France
| | | | | | | | | |
Collapse
|
96
|
Baldelli P, Hernandez-Guijo JM, Carabelli V, Carbone E. Brain-derived neurotrophic factor enhances GABA release probability and nonuniform distribution of N- and P/Q-type channels on release sites of hippocampal inhibitory synapses. J Neurosci 2006; 25:3358-68. [PMID: 15800191 PMCID: PMC6724891 DOI: 10.1523/jneurosci.4227-04.2005] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Long-lasting exposures to brain-derived neurotrophic factor (BDNF) accelerate the functional maturation of GABAergic transmission in embryonic hippocampal neurons, but the molecular bases of this phenomenon are still debated. Evidence in favor of a postsynaptic site of action has been accumulated, but most of the data support a presynaptic site effect. A crucial issue is whether the enhancement of evoked IPSCs (eIPSCs) induced by BDNF is attributable to an increase in any of the elementary parameters controlling neurosecretion, namely the probability of release, the number of release sites, the readily releasable pool (RRP), and the quantal size. Here, using peak-scaled variance analysis of miniature IPSCs, multiple probability fluctuation analysis, and cumulative amplitude analysis of action potential-evoked postsynaptic currents, we show that BDNF increases release probability and vesicle replenishment with little or no effect on the quantal size, the number of release sites, the RRP, and the Ca2+ dependence of eIPSCs. BDNF treatment changes markedly the distribution of Ca2+ channels controlling neurotransmitter release. It enhances markedly the contribution of N- and P/Q-type channels, which summed to >100% ("supra-additivity"), and deletes the contribution of R-type channels. BDNF accelerates the switch of presynaptic Ca2+ channel distribution from "segregated" to "nonuniform" distribution. This maturation effect was accompanied by an uncovered increased control of N-type channels on paired-pulse depression, otherwise dominated by P/Q-type channels in untreated neurons. Nevertheless, BDNF preserved the fast recovery from depression associated with N-type channels. These novel presynaptic BDNF actions derive mostly from an enhanced overlapping and better colocalization of N- and P/Q-type channels to vesicle release sites.
Collapse
Affiliation(s)
- Pietro Baldelli
- Istituto Nazionale di Fisica della Materia Research Unit, Nanostructured Interfaces and Surfaces Center, I-10125 Turin, Italy.
| | | | | | | |
Collapse
|
97
|
Boileau AJ, Pearce RA, Czajkowski C. Tandem subunits effectively constrain GABAA receptor stoichiometry and recapitulate receptor kinetics but are insensitive to GABAA receptor-associated protein. J Neurosci 2006; 25:11219-30. [PMID: 16339017 PMCID: PMC2577015 DOI: 10.1523/jneurosci.3751-05.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
GABAergic synapses likely contain multiple GABAA receptor subtypes, making postsynaptic currents difficult to dissect. However, even in heterologous expression systems, analysis of receptors composed of alpha, beta, and gamma subunits can be confounded by receptors expressed from alpha and beta subunits alone. To produce recombinant GABAA receptors containing fixed subunit stoichiometry, we coexpressed individual subunits with a "tandem" alpha1 subunit linked to a beta2 subunit. Cotransfection of the gamma2 subunit with alphabeta-tandem subunits in human embryonic kidney 293 cells produced currents that were similar in their macroscopic kinetics, single-channel amplitudes, and pharmacology to overexpression of the gamma subunit with nonlinked alpha1 and beta2 subunits. Similarly, expression of alpha subunits together with alphabeta-tandem subunits produced receptors having physiological and pharmacological characteristics that closely matched cotransfection of alpha with beta subunits. In this first description of tandem GABAA subunits measured with patch-clamp and rapid agonist application techniques, we conclude that incorporation of alphabeta-tandem subunits can be used to fix stoichiometry and to establish the intrinsic kinetic properties of alpha1beta2 and alpha1beta2gamma2 receptors. We used this method to test whether the accessory protein GABAA receptor-associated protein (GABARAP) alters GABAA receptor properties directly or influences subunit composition. In recombinant receptors with fixed stoichiometry, coexpression of GABARAP-enhanced green fluorescent protein (EGFP) fusion protein had no effect on desensitization, deactivation, or diazepam potentiation of GABA-mediated currents. However, in alpha1beta2gamma2S transfections in which stoichiometry was not fixed, GABARAP-EGFP altered desensitization, deactivation, and diazepam potentiation of GABA-mediated currents. The data suggest that GABARAP does not alter receptor kinetics directly but by facilitating surface expression of alphabetagamma receptors.
Collapse
Affiliation(s)
- Andrew J Boileau
- Department of Physiology, University of Wisconsin-Madison, Madison, Wisconsin 53711, USA.
| | | | | |
Collapse
|
98
|
Ghavanini AA, Mathers DA, Kim HS, Puil E. Distinctive glycinergic currents with fast and slow kinetics in thalamus. J Neurophysiol 2006; 95:3438-48. [PMID: 16554506 DOI: 10.1152/jn.01218.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined functional properties of inhibitory postsynaptic currents (IPSCs) evoked by medial lemniscal stimulation, spontaneous IPSCs (sIPSCs), and single-channel, extrasynaptic currents evoked by glycine receptor agonists or gamma-aminobutyric acid (GABA) in rat ventrobasal thalamus. We identified synaptic currents by reversal at E(Cl) and sensitivity to elimination by strychnine, GABA(A) antagonists, or combined application. Glycinergic IPSCs featured short (about 12 ms) and long (about 80 ms) decay time constants. These fast and slow IPSCs occurred separately with monoexponential decays, or together with biexponential decay kinetics. Glycinergic sIPSCs decayed monoexponentially with time constants, matching fast and slow IPSCs. These findings were consistent with synaptic responses generated by two populations of glycine receptors, localized under different nerve terminals. Glycine, taurine, or beta-alanine applied to excised membrane patches evoked short- and long-duration current bursts. Extrasynaptic burst durations resembled fast and slow IPSC time constants. The single, intermediate time constant (about 22 ms) of GABA(A)ergic IPSCs cotransmitted with glycinergic IPSCs approximated the burst duration of extrasynaptic GABA(A) channels. We noted differences between synaptic and extrasynaptic receptors. Endogenously activated glycine and GABA(A) receptor channels had higher Cl- permeability than that of their extrasynaptic counterparts. The beta-amino acids activated long-duration bursts at extrasynaptic glycine receptors, consistent with a role in detection of ambient taurine or beta-alanine. Heterogeneous kinetics and permeabilities implicate molecular and functional diversity in thalamic glycine receptors. Fast, intermediate, and slow inhibitory postsynaptic potential decays, mostly attributed to cotransmission by glycinergic and GABAergic pathways, allow for discriminative modulation and integration with voltage-dependent currents in ventrobasal neurons.
Collapse
Affiliation(s)
- Amer A Ghavanini
- Department of Anesthesiology, Pharmacology, and Therapeutics, The University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
99
|
Gebhardt C, Cull-Candy SG. Influence of agonist concentration on AMPA and kainate channels in CA1 pyramidal cells in rat hippocampal slices. J Physiol 2006; 573:371-94. [PMID: 16527860 PMCID: PMC1779714 DOI: 10.1113/jphysiol.2005.102723] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have determined the functional properties of single AMPA receptor (AMPAR) and kainate receptor channels present in CA1 cells in hippocampal slices, to shed light on the relationship between single-channel behaviour and synaptic currents in these cells. To derive basic properties of AMPA and kainate channels activated by their excitatory transmitter, we examined outside-out patches exposed to glutamate. The kainate agonist SYM 2081, was used to confirm the presence of kainate receptors. Channels activated by glutamate or SYM 2081 exhibited conductance levels of 2-20 pS. Properties of single channels depended on the glutamate or AMPA concentration used. We observed a marked increase in mean channel conductance (gamma) from gamma = 6.9, to 11.2 pS, when glutamate was increased from 10 mum to 10 mm. The kinetic behaviour of AMPAR channels was also influenced by agonist concentration, with an increase in 'bursty' events at higher concentrations. In contrast, kainate channels were characterized by brief openings without bursts. Consistent with the view that 'bursty' events arose from AMPARs, these openings decreased in the presence of the AMPAR blocker GYKI 53655. Furthermore, our experiments revealed a concentration-dependent increase in the number of conductance states during an individual AMPAR opening; AMPAR channels displayed up to four distinct levels. Our results are consistent with the view that the AMPAR channel conductance depends on the number of transmitter molecules bound in CA1 cells. We consider the implications of these findings for the change in EPSC properties during long-term potentiation (LTP).
Collapse
Affiliation(s)
- Christine Gebhardt
- Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
100
|
Sargent PB, Saviane C, Nielsen TA, DiGregorio DA, Silver RA. Rapid vesicular release, quantal variability, and spillover contribute to the precision and reliability of transmission at a glomerular synapse. J Neurosci 2006; 25:8173-87. [PMID: 16148225 PMCID: PMC6725539 DOI: 10.1523/jneurosci.2051-05.2005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The amplitude and shape of EPSC waveforms are thought to be important determinants of information processing and storage in the brain, yet relatively little is known about the origins of EPSC variability or how it affects synaptic signaling. We investigated the stochastic determinants of AMPA receptor-mediated EPSC variability at cerebellar mossy fiber-granule cell (MF-GC) connections by combining multiple-probability fluctuation analysis (MPFA) and deconvolution methods. The properties of MF connections with a single release site and the effects of the rapidly equilibrating competitive antagonist kynurenic acid on EPSCs suggest that receptors are not saturated by glutamate during a quantal event and that quanta sum linearly over a wide range of release probabilities. MPFA revealed an average of five vesicular release sites per MF-GC connection. Our results show that the time course of vesicular release is rapid (decay, tau = 75 micros) and independent of release probability, introducing little jitter in the shape or timing of the quantal component of the EPSC at physiological temperature. Moreover, the peak vesicular release rate per release site after an action potential (AP) (approximately 3 ms(-1)) is substantially higher than previously reported for central synapses. Interaction of amplitude fluctuations arising from quantal release and quantal size with the slower, low variability spillover-mediated current produce substantial variability in EPSC shape. Our simulations of MF-GC transmission suggest that quantal variability and transmitter spillover extend the voltage from which AP threshold can be crossed, improving reliability, and that fast vesicular release allows precise signaling across MF connections with heterogeneous weights.
Collapse
Affiliation(s)
- Peter B Sargent
- Department of Physiology, University College London, London WC1E 6BT, United Kingdom
| | | | | | | | | |
Collapse
|