51
|
Addi C, Murschel F, De Crescenzo G. Design and Use of Chimeric Proteins Containing a Collagen-Binding Domain for Wound Healing and Bone Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2016; 23:163-182. [PMID: 27824290 DOI: 10.1089/ten.teb.2016.0280] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Collagen-based biomaterials are widely used in the field of tissue engineering; they can be loaded with biomolecules such as growth factors (GFs) to modulate the biological response of the host and thus improve its potential for regeneration. Recombinant chimeric GFs fused to a collagen-binding domain (CBD) have been reported to improve their bioavailability and the host response, especially when combined with an appropriate collagen-based biomaterial. This review first provides an extensive description of the various CBDs that have been fused to proteins, with a focus on the need for accurate characterization of their interaction with collagen. The second part of the review highlights the benefits of various CBD/GF fusion proteins that have been designed for wound healing and bone regeneration.
Collapse
Affiliation(s)
- Cyril Addi
- Biomedical Science and Technology Research Group, Bio-P2 Research Unit , Department of Chemical Engineering, École Polytechnique de Montréal, Montréal, Canada
| | - Frederic Murschel
- Biomedical Science and Technology Research Group, Bio-P2 Research Unit , Department of Chemical Engineering, École Polytechnique de Montréal, Montréal, Canada
| | - Gregory De Crescenzo
- Biomedical Science and Technology Research Group, Bio-P2 Research Unit , Department of Chemical Engineering, École Polytechnique de Montréal, Montréal, Canada
| |
Collapse
|
52
|
Kim H, Lee SJ, Kim JS, Davies-Venn C, Cho HJ, Won SJ, Dejene E, Yao Z, Kim I, Paik CH, Bluemke DA. Pharmacokinetics and microbiodistribution of 64Cu-labeled collagen-binding peptides in chronic myocardial infarction. Nucl Med Commun 2016; 37:1306-1317. [PMID: 27623511 PMCID: PMC5077647 DOI: 10.1097/mnm.0000000000000590] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVES The aim of the study is to evaluate the pharmacokinetics and microbiodistribution of Cu-labeled collagen-binding peptides. METHODS The affinity constant (KD), association (ka), and dissociation rate constant (kd) for the peptide collagelin or its analog (named CRPA) binding to collagen were measured by biolayer interferometric analysis. Rats (n=4-5) with myocardial infarction or normal were injected intravenously with the Cu-labeled peptides or Cu-DOTA as a control. Dynamic PET imaging was performed for 60 min at 7-8 weeks after infarct. Fluorine-18 fluorodeoxyglucose PET imaging was performed to identify the viable myocardium. To validate the PET images, slices of heart samples from the base to the apex were analyzed using autoradiography and histology. RESULT The peptides bound to collagen with a KD of ∼0.9 µmol/l. The Cu-peptides and Cu-DOTA accumulated in the infarct area (confirmed by autoradiography and histology images) within 1 min of injection and were excreted rapidly through the renal system. The blood clearance curves were biphasic with elimination half-lives of 21.9±2.4, 26.2±4.6, and 21.2±2.1 min for Cu-CRPA, Cu-collagelin, and the control Cu-DOTA, respectively. The clearance half-lives from the focal fibrotic tissue (24.1±1.5, 25.6±8.0, and 21.4±1.3 min, respectively) and remote myocardium (20.8±0.7, 21.0±5.5, and 19.1±2.4 min, respectively) were not significantly different. The uptake ratios of infarct-to-remote myocardium (1.93±0.18, 2.15±0.38, and 1.88±0.08, respectively) for Cu-CRPA, Cu-collagelin, and Cu-DOTA remained stable for the time period between 10 and 60 min. CONCLUSION The distribution of the Cu-collagelin probes corresponds to the heterogeneous distribution of expanded extracellular space in the setting of myocardial infarction. The overall washout rate from the fibrous tissue was determined by the slow washout rate (t1/2≥20 min) of the peptides from the extracellular space to the vasculature, not by the dissociation rate (t1/2<2 min) of the Cu-peptides from collagen.
Collapse
Affiliation(s)
- Heejung Kim
- Radiopharmaceutical Laboratory, Nuclear Medicine Division, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, 20892, USA
| | - Sung-Jin Lee
- Radiopharmaceutical Laboratory, Nuclear Medicine Division, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, 20892, USA
| | - Jin Su Kim
- Radiopharmaceutical Laboratory, Nuclear Medicine Division, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, 20892, USA
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
| | - Cynthia Davies-Venn
- Radiopharmaceutical Laboratory, Nuclear Medicine Division, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, 20892, USA
| | - Hong-Jun Cho
- Radiopharmaceutical Laboratory, Nuclear Medicine Division, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, 20892, USA
| | - Samuel Jaeyoon Won
- Radiopharmaceutical Laboratory, Nuclear Medicine Division, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, 20892, USA
| | - Eden Dejene
- Radiopharmaceutical Laboratory, Nuclear Medicine Division, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, 20892, USA
| | - Zhengsheng Yao
- Radiopharmaceutical Laboratory, Nuclear Medicine Division, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, 20892, USA
| | - Insook Kim
- Applied and Developmental Research Directorate, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, MD, 21702, USA
| | - Chang H. Paik
- Radiopharmaceutical Laboratory, Nuclear Medicine Division, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, 20892, USA
| | - David A. Bluemke
- Radiopharmaceutical Laboratory, Nuclear Medicine Division, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
53
|
Baldivia S, Levy A, Hegde S, Aper SJA, Merkx M, Grytz R. A Novel Organ Culture Model to Quantify Collagen Remodeling in Tree Shrew Sclera. PLoS One 2016; 11:e0166644. [PMID: 27870875 PMCID: PMC5117658 DOI: 10.1371/journal.pone.0166644] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 11/01/2016] [Indexed: 11/19/2022] Open
Abstract
Increasing evidence suggests that unknown collagen remodeling mechanisms in the sclera underlie myopia development. We are proposing a novel organ culture system in combination with two-photon fluorescence imaging to quantify collagen remodeling at the tissue- and lamella-level. Tree shrew scleral shells were cultured up to 7 days in serum-free media and cellular viability was investigated under: (i) minimal tissue manipulations; (ii) removal of intraocular tissues; gluing the eye to a washer using (iii) 50 μL and (iv) 200 μL of cyanoacrylate adhesive; (v) supplementing media with Ham's F-12 Nutrient Mixture; and (vi) culturing eyes subjected to 15 mmHg intraocular pressure in our new bioreactor. Two scleral shells of normal juvenile tree shrews were fluorescently labeled using a collagen specific protein and cultured in our bioreactor. Using two-photon microscopy, grid patterns were photobleached into and across multiple scleral lamellae. These patterns were imaged daily for 3 days, and tissue-/lamella-level strains were calculated from the deformed patterns. No significant reduction in cell viability was observed under conditions (i) and (v). Compared to condition (i), cell viability was significantly reduced starting at day 0 (condition (ii)) and day 3 (conditions (iii, iv, vi)). Tissue-level strain and intralamellar shear angel increased significantly during the culture period. Some scleral lamellae elongated while others shortened. Findings suggest that tree shrew sclera can be cultured in serum-free media for 7 days with no significant reduction in cell viability. Scleral fibroblasts are sensitive to tissue manipulations and tissue gluing. However, Ham's F-12 Nutrient Mixture has a protective effect on cell viability and can offset the cytotoxic effect of cyanoacrylate adhesive. This is the first study to quantify collagen micro-deformations over a prolonged period in organ culture providing a new methodology to study scleral remodeling in myopia.
Collapse
Affiliation(s)
- Sarah Baldivia
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Alexander Levy
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Shylaja Hegde
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Stijn J. A. Aper
- Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Maarten Merkx
- Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Rafael Grytz
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
54
|
Mohammadkhah M, Simms CK, Murphy P. Visualisation of Collagen in fixed skeletal muscle tissue using fluorescently tagged Collagen binding protein CNA35. J Mech Behav Biomed Mater 2016; 66:37-44. [PMID: 27829194 DOI: 10.1016/j.jmbbm.2016.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/25/2016] [Accepted: 10/31/2016] [Indexed: 10/20/2022]
Abstract
Detection and visualisation of Collagen structure are important to understand the relationship between mechanical behaviour and microstructure in skeletal muscle since Collagen is the main structural protein in animal connective tissues, and is primarily responsible for their passive load-bearing properties. In the current study, the direct detection and visualization of Collagen using fluorescently tagged CNA35 binding protein (fused to EGFP or tdTomato) is reported for the first time on fixed skeletal muscle tissue. This Technical Note also establishes a working protocol by examining tissue preparation, dilution factor, exposure time etc. for sensitivity and specificity. Penetration of the binding protein into intact mature skeletal muscle was found to be very limited, but detection works well on tissue sections with higher sensitivity on wax embedded sections compared to frozen sections. CNA35 fused to tdTomato has a higher sensitivity than CNA35 fused to EGFP but both show specific detection. Best results were obtained with 15μm wax embedded sections, with blocking of non-specific binding in 1% BSA and antigen retrieval in Sodium Citrate. There was a play-off between dilution of the binding protein and time of incubation but both CNA35-tdTomato and CNA35-EGFP worked well with approximately 100μg/ml of purified protein with overnight incubation, while CNA35-tdTomato could be utilized at 5 fold less concentration. This approach can be applied to study the relationship between skeletal muscle micro-structure and to observe mechanical response to applied deformation. It can be used more broadly to detect Collagen in a variety of fixed tissues, useful for structure-functions studies, constitutive modelling, tissue engineering and assessment of muscle tissue pathologies.
Collapse
Affiliation(s)
- Melika Mohammadkhah
- Trinity Centre for Bioengineering, Department of Mechanical and Manufacturing Engineering, Parsons building, Trinity College Dublin, College Green, Dublin, Ireland.
| | - Ciaran K Simms
- Trinity Centre for Bioengineering, Department of Mechanical and Manufacturing Engineering, Parsons building, Trinity College Dublin, College Green, Dublin, Ireland.
| | - Paula Murphy
- Department of Zoology, School of Natural Science, Trinity College Dublin, College Green, Dublin, Ireland.
| |
Collapse
|
55
|
Wahyudi H, Reynolds AA, Li Y, Owen SC, Yu SM. Targeting collagen for diagnostic imaging and therapeutic delivery. J Control Release 2016; 240:323-331. [PMID: 26773768 PMCID: PMC4936964 DOI: 10.1016/j.jconrel.2016.01.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/05/2016] [Accepted: 01/05/2016] [Indexed: 12/22/2022]
Abstract
As the most abundant protein in mammals and a major structural component in extracellular matrix, collagen holds a pivotal role in tissue development and maintaining the homeostasis of our body. Persistent disruption to the balance between collagen production and degradation can cause a variety of diseases, some of which can be fatal. Collagen remodeling can lead to either an overproduction of collagen which can cause excessive collagen accumulation in organs, common to fibrosis, or uncontrolled degradation of collagen seen in degenerative diseases such as arthritis. Therefore, the ability to monitor the state of collagen is crucial for determining the presence and progression of numerous diseases. This review discusses the implications of collagen remodeling and its detection methods with specific focus on targeting native collagens as well as denatured collagens. It aims to help researchers understand the pathobiology of collagen-related diseases and create novel collagen targeting therapeutics and imaging modalities for biomedical applications.
Collapse
Affiliation(s)
- Hendra Wahyudi
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Amanda A Reynolds
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Yang Li
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Shawn C Owen
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - S Michael Yu
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
56
|
O'Rourke C, Shelton G, Hutcheson JD, Burke MF, Martyn T, Thayer TE, Shakartzi HR, Buswell MD, Tainsh RE, Yu B, Bagchi A, Rhee DK, Wu C, Derwall M, Buys ES, Yu PB, Bloch KD, Aikawa E, Bloch DB, Malhotra R. Calcification of Vascular Smooth Muscle Cells and Imaging of Aortic Calcification and Inflammation. J Vis Exp 2016. [PMID: 27284788 DOI: 10.3791/54017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality in the world. Atherosclerotic plaques, consisting of lipid-laden macrophages and calcification, develop in the coronary arteries, aortic valve, aorta, and peripheral conduit arteries and are the hallmark of cardiovascular disease. In humans, imaging with computed tomography allows for the quantification of vascular calcification; the presence of vascular calcification is a strong predictor of future cardiovascular events. Development of novel therapies in cardiovascular disease relies critically on improving our understanding of the underlying molecular mechanisms of atherosclerosis. Advancing our knowledge of atherosclerotic mechanisms relies on murine and cell-based models. Here, a method for imaging aortic calcification and macrophage infiltration using two spectrally distinct near-infrared fluorescent imaging probes is detailed. Near-infrared fluorescent imaging allows for the ex vivo quantification of calcification and macrophage accumulation in the entire aorta and can be used to further our understanding of the mechanistic relationship between inflammation and calcification in atherosclerosis. Additionally, a method for isolating and culturing animal aortic vascular smooth muscle cells and a protocol for inducing calcification in cultured smooth muscle cells from either murine aortas or from human coronary arteries is described. This in vitro method of modeling vascular calcification can be used to identify and characterize the signaling pathways likely important for the development of vascular disease, in the hopes of discovering novel targets for therapy.
Collapse
Affiliation(s)
- Caitlin O'Rourke
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital
| | - Georgia Shelton
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital; Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital
| | - Joshua D Hutcheson
- Cardiovascular Division, Brigham and Women's Hospital; Harvard Medical School
| | - Megan F Burke
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital
| | - Trejeeve Martyn
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital
| | - Timothy E Thayer
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital
| | - Hannah R Shakartzi
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital
| | - Mary D Buswell
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital
| | - Robert E Tainsh
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital
| | - Binglan Yu
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital; Harvard Medical School
| | - Aranya Bagchi
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital; Harvard Medical School
| | - David K Rhee
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital; Harvard Medical School
| | - Connie Wu
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital; Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital; Harvard Medical School
| | - Matthias Derwall
- Department of Anesthesiology, Uniklinik RWTH Aachen, RWTH Aachen University
| | - Emmanuel S Buys
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital; Harvard Medical School
| | - Paul B Yu
- Cardiovascular Division, Brigham and Women's Hospital; Harvard Medical School
| | - Kenneth D Bloch
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital; Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital; Harvard Medical School
| | - Elena Aikawa
- Cardiovascular Division, Brigham and Women's Hospital; Harvard Medical School
| | - Donald B Bloch
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital; Department of Anesthesiology, Uniklinik RWTH Aachen, RWTH Aachen University; Center for Immunology and Inflammatory Diseases and the Division of Rheumatology, Allergy, and Immunology of the Department of Medicine, Massachusetts General Hospital
| | - Rajeev Malhotra
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital; Harvard Medical School;
| |
Collapse
|
57
|
Dean KM, Roudot P, Welf ES, Danuser G, Fiolka R. Deconvolution-free Subcellular Imaging with Axially Swept Light Sheet Microscopy. Biophys J 2016; 108:2807-15. [PMID: 26083920 PMCID: PMC4472079 DOI: 10.1016/j.bpj.2015.05.013] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/08/2015] [Accepted: 05/12/2015] [Indexed: 11/30/2022] Open
Abstract
The use of propagation invariant Bessel beams has enabled high-resolution subcellular light sheet fluorescence microscopy. However, the energy within the concentric side lobe structure of Bessel beams increases significantly with propagation length, generating unwanted out-of-focus fluorescence that enforces practical limits on the imaging field of view size. Here, we present a light sheet fluorescence microscope that achieves 390 nm isotropic resolution and high optical sectioning strength (i.e., out-of-focus blur is strongly suppressed) over large field of views, without the need for structured illumination or deconvolution-based postprocessing. We demonstrate simultaneous dual-color, high-contrast, and high-dynamic-range time-lapse imaging of migrating cells in complex three-dimensional microenvironments, three-dimensional tracking of clathrin-coated pits, and long-term imaging spanning >10 h and encompassing >2600 time points.
Collapse
Affiliation(s)
- Kevin M Dean
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Philippe Roudot
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Erik S Welf
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Gaudenz Danuser
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Reto Fiolka
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
58
|
Maedeker JA, Stoka KV, Bhayani SA, Gardner WS, Bennett L, Procknow JD, Staiculescu MC, Walji TA, Craft CS, Wagenseil JE. Hypertension and decreased aortic compliance due to reduced elastin amounts do not increase atherosclerotic plaque accumulation in Ldlr-/- mice. Atherosclerosis 2016; 249:22-9. [PMID: 27062406 DOI: 10.1016/j.atherosclerosis.2016.03.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/17/2016] [Accepted: 03/16/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS High blood pressure and reduced aortic compliance are associated with increased atherosclerotic plaque accumulation in humans. Animal studies support these associations, but additional factors, such as fragmented elastic fibers, are present in most previous animal studies. Elastin heterozygous (Eln+/-) mice have high blood pressure and reduced aortic compliance, with no evidence of elastic fiber fragmentation and represent an appropriate model to directly investigate the effects of these factors on atherosclerosis. METHODS AND RESULTS Eln+/- and Eln+/+ mice were crossed with low density lipoprotein receptor knockout (Ldlr-/-) and wild-type (Ldlr+/+) mice and fed normal or Western diet (WD) for 16 weeks. We hypothesized that on WD, Eln+/-Ldlr-/- mice with high blood pressure and reduced aortic compliance would have increased atherosclerotic plaque accumulation compared to Eln+/+Ldlr-/- mice. We measured serum cholesterol and cytokine levels, blood pressure, aortic compliance, and plaque accumulation. Contrary to our hypothesis, we found that on WD, Eln+/-Ldlr-/- mice do not have increased plaque accumulation compared to Eln+/+Ldlr-/- mice. At the aortic root, there are no significant differences in plaque area between Eln+/-Ldlr-/- and Eln+/+Ldlr-/- mice on WD (p = 0.89), while in the ascending aorta, Eln+/-Ldlr-/- mice on WD have 29% less normalized plaque area than Eln+/+Ldlr-/- mice on WD (p = 0.009). CONCLUSION Using an atherogenic mouse model, we conclude that increased blood pressure and reduced aortic compliance are not direct causes of increased aortic plaque accumulation. We propose that additional insults, such as fragmentation of elastic fibers, are necessary to alter plaque accumulation.
Collapse
Affiliation(s)
- Justine A Maedeker
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA
| | - Kellie V Stoka
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA
| | - Siddharth A Bhayani
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO, USA
| | - William S Gardner
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO, USA
| | - Lisa Bennett
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO, USA
| | - Jesse D Procknow
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA
| | - Marius C Staiculescu
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA
| | - Tezin A Walji
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO, USA
| | - Clarissa S Craft
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO, USA
| | - Jessica E Wagenseil
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA.
| |
Collapse
|
59
|
Hutcheson JD, Goettsch C, Bertazzo S, Maldonado N, Ruiz JL, Goh W, Yabusaki K, Faits T, Bouten C, Franck G, Quillard T, Libby P, Aikawa M, Weinbaum S, Aikawa E. Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques. NATURE MATERIALS 2016; 15:335-43. [PMID: 26752654 PMCID: PMC4767675 DOI: 10.1038/nmat4519] [Citation(s) in RCA: 287] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 11/24/2015] [Indexed: 05/26/2023]
Abstract
Clinical evidence links arterial calcification and cardiovascular risk. Finite-element modelling of the stress distribution within atherosclerotic plaques has suggested that subcellular microcalcifications in the fibrous cap may promote material failure of the plaque, but that large calcifications can stabilize it. Yet the physicochemical mechanisms underlying such mineral formation and growth in atheromata remain unknown. Here, by using three-dimensional collagen hydrogels that mimic structural features of the atherosclerotic fibrous cap, and high-resolution microscopic and spectroscopic analyses of both the hydrogels and of calcified human plaques, we demonstrate that calcific mineral formation and maturation results from a series of events involving the aggregation of calcifying extracellular vesicles, and the formation of microcalcifications and ultimately large calcification areas. We also show that calcification morphology and the plaque's collagen content-two determinants of atherosclerotic plaque stability-are interlinked.
Collapse
Affiliation(s)
- Joshua D. Hutcheson
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Claudia Goettsch
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sergio Bertazzo
- Department of Medical Physics & Biomedical Engineering, University College London, London, UK
| | - Natalia Maldonado
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jessica L. Ruiz
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Wilson Goh
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Katsumi Yabusaki
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Tyler Faits
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlijn Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Gregory Franck
- Center for Excellence in Vascular Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Thibaut Quillard
- Center for Excellence in Vascular Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter Libby
- Center for Excellence in Vascular Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Excellence in Vascular Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sheldon Weinbaum
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Excellence in Vascular Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
60
|
Le VP, Cheng JK, Kim J, Staiculescu MC, Ficker SW, Sheth SC, Bhayani SA, Mecham RP, Yanagisawa H, Wagenseil JE. Mechanical factors direct mouse aortic remodelling during early maturation. J R Soc Interface 2015; 12:20141350. [PMID: 25652465 DOI: 10.1098/rsif.2014.1350] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Numerous diseases have been linked to genetic mutations that lead to reduced amounts or disorganization of arterial elastic fibres. Previous work has shown that mice with reduced amounts of elastin (Eln+/-) are able to live a normal lifespan through cardiovascular adaptations, including changes in haemodynamic stresses, arterial geometry and arterial wall mechanics. It is not known if the timeline and presence of these adaptations are consistent in other mouse models of elastic fibre disease, such as those caused by the absence of fibulin-5 expression (Fbln5-/-). Adult Fbln5-/- mice have disorganized elastic fibres, decreased arterial compliance and high blood pressure. We examined mechanical behaviour of the aorta in Fbln5-/- mice through early maturation when the elastic fibres are being assembled. We found that the physiologic circumferential stretch, stress and modulus of Fbln5-/- aorta are maintained near wild-type levels. Constitutive modelling suggests that elastin contributions to the total stress are decreased, whereas collagen contributions are increased. Understanding how collagen fibre structure and mechanics compensate for defective elastic fibres to meet the mechanical requirements of the maturing aorta may help to better understand arterial remodelling in human elastinopathies.
Collapse
Affiliation(s)
- Victoria P Le
- Department of Biomedical Engineering, Saint Louis University, St Louis, MO, USA
| | - Jeffrey K Cheng
- Department of Biomedical Engineering, Washington University, St Louis, MO, USA
| | - Jungsil Kim
- Department of Mechanical Engineering and Materials Science, Washington University, St Louis, MO, USA
| | - Marius C Staiculescu
- Department of Mechanical Engineering and Materials Science, Washington University, St Louis, MO, USA
| | - Shawn W Ficker
- Department of Biomedical Engineering, Saint Louis University, St Louis, MO, USA
| | - Saahil C Sheth
- Department of Biomedical Engineering, Saint Louis University, St Louis, MO, USA
| | - Siddharth A Bhayani
- Department of Biomedical Engineering, Saint Louis University, St Louis, MO, USA
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University Medical School, St Louis, MO, USA
| | - Hiromi Yanagisawa
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jessica E Wagenseil
- Department of Mechanical Engineering and Materials Science, Washington University, St Louis, MO, USA
| |
Collapse
|
61
|
Ghazanfari S, Driessen-Mol A, Sanders B, Dijkman PE, Hoerstrup SP, Baaijens FP, Bouten CV. In Vivo Collagen Remodeling in the Vascular Wall of Decellularized Stented Tissue-Engineered Heart Valves. Tissue Eng Part A 2015; 21:2206-15. [DOI: 10.1089/ten.tea.2014.0417] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Samaneh Ghazanfari
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Anita Driessen-Mol
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Bart Sanders
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Petra E. Dijkman
- Clinics for Cardiovascular Surgery and Swiss Centre for Regenerative Medicine, University and University Hospital Zürich, Zürich, Switzerland
| | - Simon P. Hoerstrup
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Clinics for Cardiovascular Surgery and Swiss Centre for Regenerative Medicine, University and University Hospital Zürich, Zürich, Switzerland
| | - Frank P.T. Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Carlijn V.C. Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
62
|
Sanders B, Loerakker S, Fioretta ES, Bax DJP, Driessen-Mol A, Hoerstrup SP, Baaijens FPT. Improved Geometry of Decellularized Tissue Engineered Heart Valves to Prevent Leaflet Retraction. Ann Biomed Eng 2015; 44:1061-71. [PMID: 26183964 PMCID: PMC4826662 DOI: 10.1007/s10439-015-1386-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 07/07/2015] [Indexed: 11/25/2022]
Abstract
Recent studies on decellularized tissue engineered heart valves (DTEHVs) showed rapid host cell repopulation and increased valvular insufficiency developing over time, associated with leaflet shortening. A possible explanation for this result was found using computational simulations, which revealed radial leaflet compression in the original valvular geometry when subjected to physiological pressure conditions. Therefore, an improved geometry was suggested to enable radial leaflet extension to counteract for host cell mediated retraction. In this study, we propose a solution to impose this new geometry by using a constraining bioreactor insert during culture. Human cell based DTEHVs (n = 5) were produced as such, resulting in an enlarged coaptation area and profound belly curvature. Extracellular matrix was homogeneously distributed, with circumferential collagen alignment in the coaptation region and global tissue anisotropy. Based on in vitro functionality experiments, these DTEHVs showed competent hydrodynamic functionality under physiological pulmonary conditions and were fatigue resistant, with stable functionality up to 16 weeks in vivo simulation. Based on implemented mechanical data, our computational models revealed a considerable decrease in radial tissue compression with the obtained geometrical adjustments. Therefore, these improved DTEHV are expected to be less prone to host cell mediated leaflet retraction and will remain competent after implantation.
Collapse
Affiliation(s)
- Bart Sanders
- Department of Biomedical Engineering, Eindhoven University of Technology, Postbus 513, 5600 MB, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Postbus 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Emanuela S Fioretta
- Department of Biomedical Engineering, Eindhoven University of Technology, Postbus 513, 5600 MB, Eindhoven, The Netherlands
| | - Dave J P Bax
- Equipment & Prototype Center, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Anita Driessen-Mol
- Department of Biomedical Engineering, Eindhoven University of Technology, Postbus 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Simon P Hoerstrup
- Department of Biomedical Engineering, Eindhoven University of Technology, Postbus 513, 5600 MB, Eindhoven, The Netherlands
- Swiss Center for Regenerative Medicine, University Hospital of Zürich, Zurich, Switzerland
| | - Frank P T Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Postbus 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
63
|
Le BQ, Fernandes H, Bouten CV, Karperien M, van Blitterswijk C, de Boer J. High-Throughput Screening Assay for the Identification of Compounds Enhancing Collagenous Extracellular Matrix Production by ATDC5 Cells. Tissue Eng Part C Methods 2015; 21:726-36. [DOI: 10.1089/ten.tec.2014.0088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Bach q. Le
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Hugo Fernandes
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Carlijn V.C. Bouten
- Laboratory for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Clemens van Blitterswijk
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Jan de Boer
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| |
Collapse
|
64
|
Ghazanfari S, Driessen-Mol A, Strijkers GJ, Baaijens FPT, Bouten CVC. The Evolution of Collagen Fiber Orientation in Engineered Cardiovascular Tissues Visualized by Diffusion Tensor Imaging. PLoS One 2015; 10:e0127847. [PMID: 26016649 PMCID: PMC4446330 DOI: 10.1371/journal.pone.0127847] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 04/20/2015] [Indexed: 12/02/2022] Open
Abstract
The collagen architecture is the major determinant of the function and mechanical behavior of cardiovascular tissues. In order to engineer a functional and load-bearing cardiovascular tissue with a structure that mimics the native tissue to meet in vivo mechanical demands, a complete understanding of the collagen orientation mechanism is required. Several methods have been used to visualize collagen architecture in tissue-engineered (TE) constructs, but they either have a limited imaging depth or have a complicated set up. In this study, Diffusion Tensor Imaging (DTI) is explored as a fast and reliable method to visualize collagen arrangement, and Confocal Laser Scanning Microscopy (CLSM) was used as a validation technique. Uniaxially constrained TE strips were cultured for 2 days, 10 days, 3 and 6 weeks to investigate the evolution of the collagen orientation with time. Moreover, a comparison of the collagen orientation in high and low aspect ratio (length/width) TE constructs was made with both methods. Both methods showed similar fiber orientation in TE constructs. Collagen fibers in the high aspect ratio samples were mostly aligned in the constrained direction, while the collagen fibers in low aspect ratio strips were mainly oriented in the oblique direction. The orientation changed to the oblique direction by extending culture time and could also be visualized. DTI captured the collagen orientation differences between low and high aspect ratio samples and with time. Therefore, it can be used as a fast, non-destructive and reliable tool to study the evolution of the collagen orientation in TE constructs.
Collapse
Affiliation(s)
- Samaneh Ghazanfari
- Soft Tissue Biomechanics and Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- * E-mail:
| | - Anita Driessen-Mol
- Soft Tissue Biomechanics and Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Gustav J. Strijkers
- Biomedical NMR, Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, the Netherlands
| | - Frank P. T. Baaijens
- Soft Tissue Biomechanics and Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Carlijn V. C. Bouten
- Soft Tissue Biomechanics and Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
65
|
Chai CK, Akyildiz AC, Speelman L, Gijsen FJH, Oomens CWJ, van Sambeek MRHM, van der Lugt A, Baaijens FPT. Local anisotropic mechanical properties of human carotid atherosclerotic plaques - characterisation by micro-indentation and inverse finite element analysis. J Mech Behav Biomed Mater 2014; 43:59-68. [PMID: 25553556 DOI: 10.1016/j.jmbbm.2014.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/01/2014] [Accepted: 12/04/2014] [Indexed: 12/16/2022]
Abstract
Biomechanical models have the potential to predict failure of atherosclerotic plaques and to improve the risk assessment of plaque rupture. The applicability of these models depends strongly on the used material models. Current biomechanical models employ isotropic material models, although it is generally accepted that plaque tissue behaves highly anisotropic. The aim of the present study is to determine the local anisotropic mechanical properties of human atherosclerotic plaque tissue by means of micro-indentation tests. The indentation was performed on top of an inverted confocal microscope allowing the visualisation and quantification of the collagen fibre deformations perpendicular to the indentation direction of the plaque. Based on this, the anisotropic properties of plaque tissue perpendicular to the indentation direction (middle of the fibrous cap, shoulder of the cap, remaining intima tissue) were derived. There were no significant differences between the different indentation locations for the fibre stiffness (total median 80.6kPa, 25th-75th percentile 17.7-157.0kPa), and fibre dispersion.
Collapse
Affiliation(s)
- Chen-Ket Chai
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, GEM-Z 4.11, 5600 MB Eindhoven, The Netherlands.
| | - Ali C Akyildiz
- Department of Biomedical Engineering, Thoraxcentre, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Lambert Speelman
- Department of Biomedical Engineering, Thoraxcentre, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Frank J H Gijsen
- Department of Biomedical Engineering, Thoraxcentre, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Cees W J Oomens
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, GEM-Z 4.11, 5600 MB Eindhoven, The Netherlands
| | | | - Aad van der Lugt
- Department of Radiology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Frank P T Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, GEM-Z 4.11, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
66
|
Aper SJA, van Spreeuwel ACC, van Turnhout MC, van der Linden AJ, Pieters PA, van der Zon NLL, de la Rambelje SL, Bouten CVC, Merkx M. Colorful protein-based fluorescent probes for collagen imaging. PLoS One 2014; 9:e114983. [PMID: 25490719 PMCID: PMC4260915 DOI: 10.1371/journal.pone.0114983] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 11/17/2014] [Indexed: 02/05/2023] Open
Abstract
Real-time visualization of collagen is important in studies on tissue formation and remodeling in the research fields of developmental biology and tissue engineering. Our group has previously reported on a fluorescent probe for the specific imaging of collagen in live tissue in situ, consisting of the native collagen binding protein CNA35 labeled with fluorescent dye Oregon Green 488 (CNA35-OG488). The CNA35-OG488 probe has become widely used for collagen imaging. To allow for the use of CNA35-based probes in a broader range of applications, we here present a toolbox of six genetically-encoded collagen probes which are fusions of CNA35 to fluorescent proteins that span the visible spectrum: mTurquoise2, EGFP, mAmetrine, LSSmOrange, tdTomato and mCherry. While CNA35-OG488 requires a chemical conjugation step for labeling with the fluorescent dye, these protein-based probes can be easily produced in high yields by expression in E. coli and purified in one step using Ni2+-affinity chromatography. The probes all bind specifically to collagen, both in vitro and in porcine pericardial tissue. Some first applications of the probes are shown in multicolor imaging of engineered tissue and two-photon imaging of collagen in human skin. The fully-genetic encoding of the new probes makes them easily accessible to all scientists interested in collagen formation and remodeling.
Collapse
Affiliation(s)
- Stijn J. A. Aper
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, MB Eindhoven, The Netherlands
| | - Ariane C. C. van Spreeuwel
- Soft Tissue Biomechanics and Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, MB Eindhoven, The Netherlands
| | - Mark C. van Turnhout
- Soft Tissue Biomechanics and Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, MB Eindhoven, The Netherlands
| | - Ardjan J. van der Linden
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, MB Eindhoven, The Netherlands
| | - Pascal A. Pieters
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, MB Eindhoven, The Netherlands
| | - Nick L. L. van der Zon
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, MB Eindhoven, The Netherlands
| | - Sander L. de la Rambelje
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, MB Eindhoven, The Netherlands
| | - Carlijn V. C. Bouten
- Soft Tissue Biomechanics and Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, MB Eindhoven, The Netherlands
| | - Maarten Merkx
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, MB Eindhoven, The Netherlands
- * E-mail:
| |
Collapse
|
67
|
Kim J, Wagenseil JE. Bio-Chemo-Mechanical Models of Vascular Mechanics. Ann Biomed Eng 2014; 43:1477-87. [PMID: 25465618 DOI: 10.1007/s10439-014-1201-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/19/2014] [Indexed: 01/08/2023]
Abstract
Models of vascular mechanics are necessary to predict the response of an artery under a variety of loads, for complex geometries, and in pathological adaptation. Classic constitutive models for arteries are phenomenological and the fitted parameters are not associated with physical components of the wall. Recently, microstructurally-linked models have been developed that associate structural information about the wall components with tissue-level mechanics. Microstructurally-linked models are useful for correlating changes in specific components with pathological outcomes, so that targeted treatments may be developed to prevent or reverse the physical changes. However, most treatments, and many causes, of vascular disease have chemical components. Chemical signaling within cells, between cells, and between cells and matrix constituents affects the biology and mechanics of the arterial wall in the short- and long-term. Hence, bio-chemo-mechanical models that include chemical signaling are critical for robust models of vascular mechanics. This review summarizes bio-mechanical and bio-chemo-mechanical models with a focus on large elastic arteries. We provide applications of these models and challenges for future work.
Collapse
Affiliation(s)
- Jungsil Kim
- Department of Mechanical Engineering and Materials Science, Washington University, One Brookings Dr., CB 1185, St. Louis, MO, 63130, USA
| | | |
Collapse
|
68
|
de Jong S, van Middendorp LB, Hermans RH, de Bakker JM, Bierhuizen MF, Prinzen FW, van Rijen HV, Losen M, Vos MA, van Zandvoort MA. Ex Vivo and in Vivo Administration of Fluorescent CNA35 Specifically Marks Cardiac Fibrosis. Mol Imaging 2014; 13. [DOI: 10.2310/7290.2014.00036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Sanne de Jong
- From the Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, the Netherlands; Departments of Physiology, Cardiothoracic Surgery, and Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, the Netherlands; and Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - Lars B. van Middendorp
- From the Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, the Netherlands; Departments of Physiology, Cardiothoracic Surgery, and Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, the Netherlands; and Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - Robin H.A. Hermans
- From the Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, the Netherlands; Departments of Physiology, Cardiothoracic Surgery, and Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, the Netherlands; and Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - Jacques M.T. de Bakker
- From the Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, the Netherlands; Departments of Physiology, Cardiothoracic Surgery, and Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, the Netherlands; and Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - Marti F.A. Bierhuizen
- From the Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, the Netherlands; Departments of Physiology, Cardiothoracic Surgery, and Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, the Netherlands; and Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - Frits W. Prinzen
- From the Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, the Netherlands; Departments of Physiology, Cardiothoracic Surgery, and Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, the Netherlands; and Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - Harold V.M. van Rijen
- From the Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, the Netherlands; Departments of Physiology, Cardiothoracic Surgery, and Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, the Netherlands; and Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - Mario Losen
- From the Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, the Netherlands; Departments of Physiology, Cardiothoracic Surgery, and Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, the Netherlands; and Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - Marc A. Vos
- From the Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, the Netherlands; Departments of Physiology, Cardiothoracic Surgery, and Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, the Netherlands; and Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - Marc A.M.J. van Zandvoort
- From the Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, the Netherlands; Departments of Physiology, Cardiothoracic Surgery, and Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, the Netherlands; and Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| |
Collapse
|
69
|
Modeling the impact of scaffold architecture and mechanical loading on collagen turnover in engineered cardiovascular tissues. Biomech Model Mechanobiol 2014; 14:603-13. [DOI: 10.1007/s10237-014-0625-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 10/03/2014] [Indexed: 02/04/2023]
|
70
|
Feliciano RP, Heintz JA, Krueger CG, Vestling MM, Reed JD. Fluorescent labeling of cranberry proanthocyanidins with 5-([4,6-dichlorotriazin-2-yl]amino)fluorescein (DTAF). Food Chem 2014; 166:337-345. [PMID: 25053065 DOI: 10.1016/j.foodchem.2014.06.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 10/25/2022]
Abstract
A novel methodology was developed to elucidate proanthocyanidins (PAC) interaction with extra-intestinal pathogenic Escherichia coli (ExPEC). PAC inhibit ExPEC invasion of epithelial cells and, therefore, may prevent transient gut colonization, conferring protection against subsequent extra-intestinal infections, such as urinary tract infections. Until now PAC have not been chemically labeled with fluorophores. In this work, cranberry PAC were labeled with 5-([4,6-dichlorotriazin-2-yl]amino) fluorescein (DTAF), detected by high-performance liquid chromatography with diode-array detection and characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). We report single and double fluorescent-labeled PAC with one or two chlorine atoms displaced from DTAF in alkaline pH via nucleophilic substitution. Fluorescent labeling was confirmed by fragmentation experiments using MALDI-TOF/TOF MS. Fluorescent labeled PAC were able to promote ExPEC agglutination when observed with fluorescence microscopy. DTAF tagged PAC may be used to trace the fate of PAC after they agglutinate ExPEC and follow PAC-ExPEC complexes in cell culture assays.
Collapse
Affiliation(s)
- Rodrigo P Feliciano
- University of Wisconsin-Madison, Dept. of Food Science, 1605 Linden Drive, Madison, WI 53706, USA; University of Wisconsin-Madison, Reed Research Group, Dept. Animal Sciences, 1675 Observatory Drive, Madison, WI 53706, USA
| | - Joseph A Heintz
- Biological & Biomaterials Preparation, Imaging & Characterization Facility, Dept. Animal Sciences, 1675 Observatory Drive, Madison, WI 53706, USA
| | - Christian G Krueger
- University of Wisconsin-Madison, Reed Research Group, Dept. Animal Sciences, 1675 Observatory Drive, Madison, WI 53706, USA; Complete Phytochemical Solutions, LLC, 317 South Street, Cambridge, WI 53523, USA
| | - Martha M Vestling
- University of Wisconsin-Madison, Dept. of Chemistry, 1101 University Ave., Madison, WI 53706, USA
| | - Jess D Reed
- University of Wisconsin-Madison, Reed Research Group, Dept. Animal Sciences, 1675 Observatory Drive, Madison, WI 53706, USA; Complete Phytochemical Solutions, LLC, 317 South Street, Cambridge, WI 53523, USA.
| |
Collapse
|
71
|
Szczesny SE, Edelstein RS, Elliott DM. DTAF dye concentrations commonly used to measure microscale deformations in biological tissues alter tissue mechanics. PLoS One 2014; 9:e99588. [PMID: 24915570 PMCID: PMC4051763 DOI: 10.1371/journal.pone.0099588] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/16/2014] [Indexed: 11/18/2022] Open
Abstract
Identification of the deformation mechanisms and specific components underlying the mechanical function of biological tissues requires mechanical testing at multiple levels within the tissue hierarchical structure. Dichlorotriazinylaminofluorescein (DTAF) is a fluorescent dye that is used to visualize microscale deformations of the extracellular matrix in soft collagenous tissues. However, the DTAF concentrations commonly employed in previous multiscale experiments (≥2000 µg/ml) may alter tissue mechanics. The objective of this study was to determine whether DTAF affects tendon fascicle mechanics and if a concentration threshold exists below which any observed effects are negligible. This information is valuable for guiding the continued use of this fluorescent dye in future experiments and for interpreting the results of previous work. Incremental strain testing demonstrated that high DTAF concentrations (≥100 µg/ml) increase the quasi-static modulus and yield strength of rat tail tendon fascicles while reducing their viscoelastic behavior. Subsequent multiscale testing and modeling suggests that these effects are due to a stiffening of the collagen fibrils and strengthening of the interfibrillar matrix. Despite these changes in tissue behavior, the fundamental deformation mechanisms underlying fascicle mechanics appear to remain intact, which suggests that conclusions from previous multiscale investigations of strain transfer are still valid. The effects of lower DTAF concentrations (≤10 µg/ml) on tendon mechanics were substantially smaller and potentially negligible; nevertheless, no concentration was found that did not at least slightly alter the tissue behavior. Therefore, future studies should either reduce DTAF concentrations as much as possible or use other dyes/techniques for measuring microscale deformations.
Collapse
Affiliation(s)
- Spencer E. Szczesny
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rachel S. Edelstein
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Dawn M. Elliott
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States of America
| |
Collapse
|
72
|
Chilakamarthi U, Kandhadi J, Gunda S, Thatipalli AR, Kumar Jerald M, Lingamallu G, Reddy RC, Chaudhuri A, Pande G. Synthesis and functional characterization of a fluorescent peptide probe for non invasive imaging of collagen in live tissues. Exp Cell Res 2014; 327:91-101. [PMID: 24907653 DOI: 10.1016/j.yexcr.2014.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 05/05/2014] [Accepted: 05/10/2014] [Indexed: 11/18/2022]
Abstract
Targeted molecular imaging to detect changes in the structural and functional organization of tissues, at the molecular level, is a promising approach for effective and early diagnosis of diseases. Quantitative and qualitative changes in type I collagen, which is a major component in the extra cellular matrix (ECM) of skin and other vital organs like lung, liver, heart and kidneys, are often associated with the pathophysiology of these organs. We have synthesized a fluorescent probe that comprises collagelin, a specific collagen binding peptide, coupled to fluorescent porphyrin that can effectively detect abnormal deposition of collagen in live tissues by emitting fluorescence in the near infra red (NIR) region. In this report we have presented the methodology for coupling of 5-(4-carboxy phenyl)-10, 15, 20-triphenyl porphyrin (C-TPP) to the N-terminal of collagelin or to another mutant peptide (used as a control). We have evaluated the efficacy of these fluorescent peptides to detect collagen deposition in live normal and abnormal tissues. Our results strongly suggest that porphyrin-tagged collagelin can be used as an effective probe for the non invasive in vivo detection of tissue fibrosis, especially in the liver.
Collapse
Affiliation(s)
| | - Jaipal Kandhadi
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
| | - Srinivas Gunda
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | | | - Mahesh Kumar Jerald
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Giribabu Lingamallu
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
| | - Rakesh C Reddy
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
| | - Arabinda Chaudhuri
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
| | - Gopal Pande
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India.
| |
Collapse
|
73
|
Compressive mechanical properties of atherosclerotic plaques—Indentation test to characterise the local anisotropic behaviour. J Biomech 2014; 47:784-92. [DOI: 10.1016/j.jbiomech.2014.01.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2014] [Indexed: 11/20/2022]
|
74
|
van Spreeuwel ACC, Bax NAM, Bastiaens AJ, Foolen J, Loerakker S, Borochin M, van der Schaft DWJ, Chen CS, Baaijens FPT, Bouten CVC. The influence of matrix (an)isotropy on cardiomyocyte contraction in engineered cardiac microtissues. Integr Biol (Camb) 2014; 6:422-9. [PMID: 24549279 DOI: 10.1039/c3ib40219c] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the cardiac microenvironment, cardiomyocytes (CMs) are embedded in an aligned and structured extracellular matrix (ECM) to maintain the coordinated contractile function of the heart. The cardiac fibroblast (cFB) is the main cell type responsible for producing and remodeling this matrix. In cardiac diseases, however, adverse remodeling and CM death may lead to deterioration of the aligned myocardial structure. Here, we present an in vitro cardiac model system with uniaxial and biaxial constraints to induce (an)isotropy in 3D microtissues, thereby mimicking 'healthy' aligned and 'diseased' disorganized cardiac matrices. A mixture of neonatal mouse CMs and cFBs was resuspended in a collagen-matrigel hydrogel and seeded to form microtissues to recapitulate the in vivo cellular composition. Matrix disarray led to a stellate cell shape and a disorganized sarcomere organization, while CMs in aligned matrices were more elongated and had aligned sarcomeres. Although matrix disarray has no detrimental effect on the force generated by the CMs, it did have a negative effect on the homogeneity of contraction force distribution. Furthermore, proliferation of the cFBs affected microtissue contraction as indicated by the negative correlation between the percentage of cFBs in the microtissues and their beating frequency. These results suggest that in regeneration of the diseased heart, reorganization of the disorganized matrix will contribute to recover the coordinated contraction but restoring the ratio in cellular composition (CMs and cFBs) is also a prerequisite to completely regain tissue function.
Collapse
Affiliation(s)
- A C C van Spreeuwel
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
de Jonge N, Foolen J, Brugmans MCP, Söntjens SHM, Baaijens FPT, Bouten CVC. Degree of scaffold degradation influences collagen (re)orientation in engineered tissues. Tissue Eng Part A 2014; 20:1747-57. [PMID: 24372199 DOI: 10.1089/ten.tea.2013.0517] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Tissue engineering provides a promising tool for creating load-bearing cardiovascular tissues. Ideally, the neotissue produced by cells possesses native strength and anisotropy. By providing contact-guiding cues with microfibers, scaffold directionality can guide tissue organization. However, scaffolds transiently degrade, which may induce undesired tissue remodeling in response to applied strain. We hypothesize that in newly formed tissues, the collagen matrix does not yet provide contact guidance to the cells, and collagen orientation is altered via strain-induced remodeling. To test this hypothesis, we studied the influence of lipase-induced scaffold degradation on collagen (re)orientation at static constraint. Myofibroblasts were cultured in electrospun PCL-U4U anisotropic microfiber scaffolds, which were statically constrained perpendicular to the scaffold fibers. During 2 weeks of culture, neotissue formation aligned in the direction of the scaffold fibers, after which scaffolds were degraded to different degrees (12%, 27%, and 79% reduction in scaffold weight) and collagen (re)orientation was studied after one additional week of culturing. High degrees of scaffold degradation (79%) were associated with remodeling of the collagen toward the constraint direction, while collagen organization was maintained at low degrees of scaffold degradation. These results highlight the importance of slow scaffold degradation when aiming at maintaining collagen orientation.
Collapse
Affiliation(s)
- Nicky de Jonge
- 1 Department of Biomedical Engineering, Eindhoven University of Technology , Eindhoven, The Netherlands
| | | | | | | | | | | |
Collapse
|
76
|
Rahimi N, Swennen G, Verbruggen S, Scibiorek M, Molin DG, Post MJ. Short stimulation of electro-responsive PAA/fibrin hydrogel induces collagen production. Tissue Eng Part C Methods 2014; 20:703-13. [PMID: 24341313 DOI: 10.1089/ten.tec.2013.0596] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Acrylic acid/fibrin hydrogel can mechanically stimulate cells when an external electrical field is applied, enabling them to migrate and align throughout the depth of the gel. The ability of electro-responsive polyacrylic acid (PAA)/fibrin hydrogel to promote collagen production and remodeling has been investigated by three-dimensional (3D) culturing and conditioning of smooth muscle cells (SMCs). SMCs-seeded hydrogels were subjected to an alternating electrical field (0.06 V/mm) for 2 h for one, two, or three times per week during 4 weeks of culturing. Fluorescent images of collagen structure and accumulation, assessed by CNA-35 probe, showed increased collagen content (>100-fold at 1× stimulation/week) in the center of the hydrogels after 4 weeks of culture. The increase in collagen production correlated with increasing extracellular matrix gene expression and resulted in significantly improved mechanical properties of the stimulated hydrogels. Matrix metalloproteinase (MMP)-2 activity was also significantly enhanced by stimulation, which probably has a role in the reorganization of the collagen. Short stimulation (2 h) induced a favorable response in the cells and enhanced tissue formation and integrity of the scaffold by inducing collagen production. The presented set up could be used for conditioning and improving the functionality of current tissue-engineered vascular grafts.
Collapse
Affiliation(s)
- Nastaran Rahimi
- 1 Department of Physiology, Maastricht University , Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
77
|
Lackey DE, Burk DH, Ali MR, Mostaedi R, Smith WH, Park J, Scherer PE, Seay SA, McCoin CS, Bonaldo P, Adams SH. Contributions of adipose tissue architectural and tensile properties toward defining healthy and unhealthy obesity. Am J Physiol Endocrinol Metab 2014; 306:E233-46. [PMID: 24302007 PMCID: PMC3920015 DOI: 10.1152/ajpendo.00476.2013] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The extracellular matrix (ECM) plays an important role in the maintenance of white adipose tissue (WAT) architecture and function, and proper ECM remodeling is critical to support WAT malleability to accommodate changes in energy storage needs. Obesity and adipocyte hypertrophy place a strain on the ECM remodeling machinery, which may promote disordered ECM and altered tissue integrity and could promote proinflammatory and cell stress signals. To explore these questions, new methods were developed to quantify omental and subcutaneous WAT tensile strength and WAT collagen content by three-dimensional confocal imaging, using collagen VI knockout mice as a methods validation tool. These methods, combined with comprehensive measurement of WAT ECM proteolytic enzymes, transcript, and blood analyte analyses, were used to identify unique pathophenotypes of metabolic syndrome and type 2 diabetes mellitus in obese women, using multivariate statistical modeling and univariate comparisons with weight-matched healthy obese individuals. In addition to the expected differences in inflammation and glycemic control, approximately 20 ECM-related factors, including omental tensile strength, collagen, and enzyme transcripts, helped discriminate metabolically compromised obesity. This is consistent with the hypothesis that WAT ECM physiology is intimately linked to metabolic health in obese humans, and the studies provide new tools to explore this relationship.
Collapse
Affiliation(s)
- Denise E Lackey
- Obesity and Metabolism Research Unit, US Department of Agriculture-Agricultural Research Service Western Human Nutrition Research Center, Davis, California
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
de Jonge N, Muylaert DEP, Fioretta ES, Baaijens FPT, Fledderus JO, Verhaar MC, Bouten CVC. Matrix production and organization by endothelial colony forming cells in mechanically strained engineered tissue constructs. PLoS One 2013; 8:e73161. [PMID: 24023827 PMCID: PMC3759389 DOI: 10.1371/journal.pone.0073161] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/18/2013] [Indexed: 01/22/2023] Open
Abstract
Aims Tissue engineering is an innovative method to restore cardiovascular tissue function by implanting either an in vitro cultured tissue or a degradable, mechanically functional scaffold that gradually transforms into a living neo-tissue by recruiting tissue forming cells at the site of implantation. Circulating endothelial colony forming cells (ECFCs) are capable of differentiating into endothelial cells as well as a mesenchymal ECM-producing phenotype, undergoing Endothelial-to-Mesenchymal-transition (EndoMT). We investigated the potential of ECFCs to produce and organize ECM under the influence of static and cyclic mechanical strain, as well as stimulation with transforming growth factor β1 (TGFβ1). Methods and Results A fibrin-based 3D tissue model was used to simulate neo-tissue formation. Extracellular matrix organization was monitored using confocal laser-scanning microscopy. ECFCs produced collagen and also elastin, but did not form an organized matrix, except when cultured with TGFβ1 under static strain. Here, collagen was aligned more parallel to the strain direction, similar to Human Vena Saphena Cell-seeded controls. Priming ECFC with TGFβ1 before exposing them to strain led to more homogenous matrix production. Conclusions Biochemical and mechanical cues can induce extracellular matrix formation by ECFCs in tissue models that mimic early tissue formation. Our findings suggest that priming with bioactives may be required to optimize neo-tissue development with ECFCs and has important consequences for the timing of stimuli applied to scaffold designs for both in vitro and in situ cardiovascular tissue engineering. The results obtained with ECFCs differ from those obtained with other cell sources, such as vena saphena-derived myofibroblasts, underlining the need for experimental models like ours to test novel cell sources for cardiovascular tissue engineering.
Collapse
Affiliation(s)
- Nicky de Jonge
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Dimitri E. P. Muylaert
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emanuela S. Fioretta
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Frank P. T. Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Joost O. Fledderus
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Carlijn V. C. Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- * E-mail:
| |
Collapse
|
79
|
Oungoulian SR, Chang S, Bortz O, Hehir KE, Zhu K, Willis CE, Hung CT, Ateshian GA. Articular cartilage wear characterization with a particle sizing and counting analyzer. J Biomech Eng 2013; 135:024501. [PMID: 23445072 DOI: 10.1115/1.4023456] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Quantitative measurements of cartilage wear have been challenging, with no method having yet emerged as a standard. This study tested the hypothesis that latest-generation particle analyzers are capable of detecting cartilage wear debris generated during in vitro loading experiments that last 24 h or less, by producing measurable content significantly above background noise levels otherwise undetectable through standard biochemical assays. Immature bovine cartilage disks (4 mm diameter, 1.3 mm thick) were tested against glass using reciprocal sliding under unconfined compression creep for 24 h. Control groups were used to assess various sources of contamination. Results demonstrated that cartilage samples subjected to frictional loading produced particulate volume significantly higher than background noise and contamination levels at all tested time points (1, 2, 6, and 24 h, p < 0.042). The particle counter was able to detect very small levels of wear (less than 0.02% of the tissue sample by volume), whereas no significant differences were observed in biochemical assays for collagen or glycosaminoglycans among any of the groups or time points. These findings confirm that latest-generation particle analyzers are capable of detecting very low wear levels in cartilage experiments conducted over a period no greater than 24 h.
Collapse
Affiliation(s)
- Sevan R Oungoulian
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA.
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Chai CK, Akyildiz AC, Speelman L, Gijsen FJ, Oomens CW, van Sambeek MR, van der Lugt A, Baaijens FP. Local axial compressive mechanical properties of human carotid atherosclerotic plaques—characterisation by indentation test and inverse finite element analysis. J Biomech 2013; 46:1759-66. [PMID: 23664315 DOI: 10.1016/j.jbiomech.2013.03.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 03/11/2013] [Accepted: 03/16/2013] [Indexed: 10/26/2022]
|
81
|
Danila D, Johnson E, Kee P. CT imaging of myocardial scars with collagen-targeting gold nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:1067-76. [PMID: 23563046 DOI: 10.1016/j.nano.2013.03.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/15/2013] [Accepted: 03/24/2013] [Indexed: 01/05/2023]
Abstract
UNLABELLED In the setting of myocardial ischemia, recovery of myocardial function by revascularization procedures depends on the extent of coronary disease and myocardial scar burden. Currently, computed tomographic (CT) imaging offers superior evaluation of coronary lesions but lacks the capability to measure the transmural extent of myocardial scar. Our work focuses on determining if collagen-targeting gold nanoparticles (AuNPs) can effectively target myocardial scar and provide adequate contrast for CT imaging. AuNPs were coated with a collagen-homing peptide, collagen adhesin (CNA35). Myocardial scar was created in mice by occlusion/reperfusion of the left anterior descending coronary artery. Thirty days later, un-gated CT imaging was performed. Over 6h, CNA35-AuNPs provided uniform and prolonged opacification of the vascular structures (100-130 HU). In mice with larger scar burden, focal contrast enhancement was detected in the myocardium, which was not apparent within that of control mice. Histological staining confirmed myocardial scar formation and accumulation of AuNPs. FROM THE CLINICAL EDITOR This team of investigators presents a collagen-targeting gold nanoparticle-based approach that enables the imaging of myocardial scars via CT scans in a rodent model. This information would enable clinicians to judge the recovery potential of myocardium more accurately than the current CT-scan based approaches.
Collapse
Affiliation(s)
- Delia Danila
- Department of Internal Medicine, Division of Cardiology, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | | | | |
Collapse
|
82
|
Biela E, Galas J, Lee B, Johnson GL, Darzynkiewicz Z, Dobrucki JW. Col-F, a fluorescent probe for ex vivo confocal imaging of collagen and elastin in animal tissues. Cytometry A 2013; 83:533-9. [PMID: 23404939 DOI: 10.1002/cyto.a.22264] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 01/12/2013] [Accepted: 01/15/2013] [Indexed: 11/06/2022]
Abstract
A new low-molecular-weight fluorescent probe, Col-F, that exhibits affinity to collagen and elastin, was used successfully in imaging of extracellular matrix in freshly excised animal tissues. Col-F readily penetrates between live cells into tissues and binds to fibers of collagen and elastin by a noncovalent mechanism. Fibers of collagen and elastin have been stained in a variety of tissues, including tendon, skeletal muscle, connective tissue, and arteries. Cells migrating in a Col-F-stained collagenous biomaterial were also imaged. No phototoxic effects were detected when live keratocytes were imaged in the in vitro culture in the presence of Col-F. In conclusion, Col-F provides a simple and convenient tool for fluorescence three-dimensional imaging of intricate collagenous and elastic structures in live and fixed animal tissues, as well as in collagen-containing biomaterials.
Collapse
Affiliation(s)
- Ewa Biela
- Division of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | | | | | | | | | | |
Collapse
|
83
|
Strain-induced Collagen Organization at the Micro-level in Fibrin-based Engineered Tissue Constructs. Ann Biomed Eng 2012. [DOI: 10.1007/s10439-012-0704-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
84
|
A method for the quantification of the pressure dependent 3D collagen configuration in the arterial adventitia. J Struct Biol 2012; 180:335-42. [DOI: 10.1016/j.jsb.2012.06.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 05/30/2012] [Accepted: 06/12/2012] [Indexed: 11/22/2022]
|
85
|
Direct Observation of Internalization and ROS Generation of Amyloid β-Peptide in Neuronal Cells at Subcellular Resolution. Chembiochem 2012; 13:2335-8. [DOI: 10.1002/cbic.201200465] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Indexed: 01/12/2023]
|
86
|
Abstract
The heart contains a collagen network that contributes to the contractility of the heart and provides cardiac strength. In cardiac diseases, an increase in collagen deposition is often observed. This fibrosis formation causes systolic and diastolic dysfunction, and plays a major role in the arrythmogenic substrate. Therefore, accurate detection of cardiac fibrosis and its progression is of clinical importance with regard to diagnostics and therapy for patients with cardiac disease. To evaluate cardiac collagen deposition, both invasive and non-invasive techniques are used. In this review the different techniques that are currently used in clinical and experimental setting are summarised, and the advantages and disadvantages of these techniques are discussed.
Collapse
|
87
|
Foolen J, Deshpande VS, Kanters FMW, Baaijens FPT. The influence of matrix integrity on stress-fiber remodeling in 3D. Biomaterials 2012; 33:7508-18. [PMID: 22818650 DOI: 10.1016/j.biomaterials.2012.06.103] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 06/30/2012] [Indexed: 12/15/2022]
Abstract
Matrix anisotropy is important for long term in vivo functionality. However, it is not fully understood how to guide matrix anisotropy in vitro. Experiments suggest actin-mediated cell traction contributes. Although F-actin in 2D displays a stretch-avoidance response, 3D data are lacking. We questioned how cyclic stretch influences F-actin and collagen orientation in 3D. Small-scale cell-populated fibrous tissues were statically constrained and/or cyclically stretched with or without biochemical agents. A rectangular array of silicone posts attached to flexible membranes constrained a mixture of cells, collagen I and matrigel. F-actin orientation was quantified using fiber-tracking software, fitted using a bi-model distribution function. F-actin was biaxially distributed with static constraint. Surprisingly, uniaxial cyclic stretch, only induced a strong stretch-avoidance response (alignment perpendicular to stretching) at tissue surfaces and not in the core. Surface alignment was absent when a ROCK-inhibitor was added, but also when tissues were only statically constrained. Stretch-avoidance was also observed in the tissue core upon MMP1-induced matrix perturbation. Further, a strong stretch-avoidance response was obtained for F-actin and collagen, for immediate cyclic stretching, i.e. stretching before polymerization of the collagen. Results suggest that F-actin stress-fibers avoid cyclic stretch in 3D, unless collagen contact guidance dictates otherwise.
Collapse
Affiliation(s)
- Jasper Foolen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | | | |
Collapse
|
88
|
Riem Vis PW, Sluijter JPG, Soekhradj-Soechit RS, van Herwerden LA, Kluin J, Bouten CVC. Sequential use of human-derived medium supplements favours cardiovascular tissue engineering. J Cell Mol Med 2012; 16:730-9. [PMID: 21645237 PMCID: PMC3822844 DOI: 10.1111/j.1582-4934.2011.01351.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/23/2011] [Indexed: 11/27/2022] Open
Abstract
For clinical application of tissue engineering strategies, the use of animal-derived serum in culture medium is not recommended, because it can evoke immune responses in patients. We previously observed that human platelet-lysate (PL) is favourable for cell expansion, but generates weaker tissue as compared to culture in foetal bovine serum (FBS). We investigated if human serum (HS) is a better human supplement to increase tissue strength. Cells were isolated from venous grafts of 10 patients and expanded in media supplemented with PL or HS, to determine proliferation rates and expression of genes related to collagen production and maturation. Zymography was used to assess protease expression. Collagen contraction assays were used as a two-dimensional (2D) model for matrix contraction. As a prove of principle, 3D tissue culture and tensile testing was performed for two patients, to determine tissue strength. Cell proliferation was lower in HS-supplemented medium than in PL medium. The HS cells produced less active matrix metallo-proteinase 2 (MMP2) and showed increased matrix contraction as indicated by gel contraction assays and 3D-tissue culture. Tensile testing showed increased strength for tissues cultured in HS when compared to PL. This effect was more pronounced if cells were sequentially cultured in PL, followed by tissue culture in HS. These data suggest that sequential use of PL and HS as substitutes for FBS in culture medium for cardiovascular tissue engineering results in improved cell proliferation and tissue mechanical properties, as compared to use of PL or HS apart.
Collapse
Affiliation(s)
- Paul W Riem Vis
- Department of Cardio-Thoracic Surgery, University Medical Center, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
89
|
van Bochove GS, Sanders HMHF, de Smet M, Keizer HM, Mulder WJM, Krams R, Strijkers GJ, Nicolay K. Molecular MR Imaging of Collagen in Mouse Atherosclerosis by Using Paramagnetic CNA35 Micelles. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201200010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
90
|
Mees G, Dierckx R, Mertens K, Vermeire S, Van Steenkiste M, Reutelingsperger C, D'Asseler Y, Peremans K, Van Damme N, Van de Wiele C. 99mTc-Labeled Tricarbonyl His-CNA35 as an Imaging Agent for the Detection of Tumor Vasculature. J Nucl Med 2012; 53:464-71. [DOI: 10.2967/jnumed.111.095794] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
91
|
Xia Z, Xing Y, Jeon J, Kim YP, Gall J, Dragulescu-Andrasi A, Gambhir SS, Rao J. Immobilizing reporters for molecular imaging of the extracellular microenvironment in living animals. ACS Chem Biol 2011; 6:1117-26. [PMID: 21830814 PMCID: PMC3199358 DOI: 10.1021/cb200135e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report here an immobilization strategy using a collagen binding protein to deliver and confine synthetic reporters to the extracellular microenvironment in vivo for noninvasively imaging the activity of targets in the microenvironment. We show that the immobilization of reporters on collagens in the local microenvironment is highly efficient and physiologically stable for repetitive, long-term imaging. By using this strategy we successfully developed an immobilized bioluminescent activatable reporter and a dual-modality reporter to map and quantitatively image the activity of extracellular matrix metalloproteinases (MMP) in tumor-bearing mice. The inhibition of MMP activity by chemical inhibitor was also demonstrated in living subjects. We further demonstrated the general applicability of this immobilization strategy by imaging MMP activity at the inflammation site in a mouse model. Our results show that the in vivo immobilization of reporters can be used as a general strategy for probing the local extracellular microenvironment.
Collapse
Affiliation(s)
- Zuyong Xia
- Molecular Imaging Program at Stanford, Department of Radiology & Bio-X Program, Stanford University, 1201 Welch Road, Stanford, CA 94035-5484, USA
| | - Yun Xing
- Molecular Imaging Program at Stanford, Department of Radiology & Bio-X Program, Stanford University, 1201 Welch Road, Stanford, CA 94035-5484, USA
| | - Jongho Jeon
- Molecular Imaging Program at Stanford, Department of Radiology & Bio-X Program, Stanford University, 1201 Welch Road, Stanford, CA 94035-5484, USA
| | - Young-Pil Kim
- Molecular Imaging Program at Stanford, Department of Radiology & Bio-X Program, Stanford University, 1201 Welch Road, Stanford, CA 94035-5484, USA
| | - Jessica Gall
- Molecular Imaging Program at Stanford, Department of Radiology & Bio-X Program, Stanford University, 1201 Welch Road, Stanford, CA 94035-5484, USA
| | - Anca Dragulescu-Andrasi
- Molecular Imaging Program at Stanford, Department of Radiology & Bio-X Program, Stanford University, 1201 Welch Road, Stanford, CA 94035-5484, USA
| | - Sanjiv S. Gambhir
- Molecular Imaging Program at Stanford, Department of Radiology & Bio-X Program, Stanford University, 1201 Welch Road, Stanford, CA 94035-5484, USA
- Department of Bioengineering, Stanford University, 1201 Welch Road, Stanford, CA 94035-5484, USA
- Department of Materials Science and Engineering, Stanford University, 1201 Welch Road, Stanford, CA 94035-5484, USA
| | - Jianghong Rao
- Molecular Imaging Program at Stanford, Department of Radiology & Bio-X Program, Stanford University, 1201 Welch Road, Stanford, CA 94035-5484, USA
- Department of Chemistry, Stanford University, 1201 Welch Road, Stanford, CA 94035-5484, USA
- Biophysics and Cancer Biology Programs, Stanford University, 1201 Welch Road, Stanford, CA 94035-5484, USA
| |
Collapse
|
92
|
Laganà M, Raimondi MT. A miniaturized, optically accessible bioreactor for systematic 3D tissue engineering research. Biomed Microdevices 2011; 14:225-34. [DOI: 10.1007/s10544-011-9600-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
93
|
Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomech Model Mechanobiol 2011; 11:461-73. [DOI: 10.1007/s10237-011-0325-z] [Citation(s) in RCA: 685] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 06/20/2011] [Indexed: 11/26/2022]
|
94
|
Piechocka IK, van Oosten ASG, Breuls RGM, Koenderink GH. Rheology of heterotypic collagen networks. Biomacromolecules 2011; 12:2797-805. [PMID: 21671664 DOI: 10.1021/bm200553x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Collagen fibrils are the main structural element of connective tissues. In many tissues, these fibrils contain two fibrillar collagens (types I and V) in a ratio that changes during tissue development, regeneration, and various diseases. Here we investigate the influence of collagen composition on the structure and rheology of networks of purified collagen I and V, combining fluorescence and atomic force microscopy, turbidimetry, and rheometry. We demonstrate that the network stiffness strongly decreases with increasing collagen V content, even though the network structure does not substantially change. We compare the rheological data with theoretical models for rigid polymers and find that the elasticity is dominated by nonaffine deformations. There is no analytical theory describing this regime, hampering a quantitative interpretation of the influence of collagen V. Our findings are relevant for understanding molecular origins of tissue biomechanics and for guiding rational design of collagenous biomaterials for biomedical applications.
Collapse
Affiliation(s)
- Izabela K Piechocka
- Biological Soft Matter Group, FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
95
|
Bouten C, Dankers P, Driessen-Mol A, Pedron S, Brizard A, Baaijens F. Substrates for cardiovascular tissue engineering. Adv Drug Deliv Rev 2011; 63:221-41. [PMID: 21277921 DOI: 10.1016/j.addr.2011.01.007] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 12/26/2010] [Accepted: 01/14/2011] [Indexed: 12/29/2022]
Abstract
Cardiovascular tissue engineering aims to find solutions for the suboptimal regeneration of heart valves, arteries and myocardium by creating 'living' tissue replacements outside (in vitro) or inside (in situ) the human body. A combination of cells, biomaterials and environmental cues of tissue development is employed to obtain tissues with targeted structure and functional properties that can survive and develop within the harsh hemodynamic environment of the cardiovascular system. This paper reviews the up-to-date status of cardiovascular tissue engineering with special emphasis on the development and use of biomaterial substrates. Key requirements and properties of these substrates, as well as methods and readout parameters to test their efficacy in the human body, are described in detail and discussed in the light of current trends toward designing biologically inspired microenviroments for in situ tissue engineering purposes.
Collapse
|
96
|
Chen J, Lee SK, Abd-Elgaliel WR, Liang L, Galende EY, Hajjar RJ, Tung CH. Assessment of cardiovascular fibrosis using novel fluorescent probes. PLoS One 2011; 6:e19097. [PMID: 21533060 PMCID: PMC3080412 DOI: 10.1371/journal.pone.0019097] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 03/16/2011] [Indexed: 11/19/2022] Open
Abstract
Cardiovascular fibrosis resulted from pressure overload or ischemia could alter myocardial stiffness and lead to ventricular dysfunction. Fluorescently labeled collagen-binding protein CNA 35, derived from the surface component of Staphylococcus aureus, and a novel synthetic biphenylalanine containing peptide are applied to stain fibrosis associated collagen and myocytes, respectively. Detailed pathological characteristics of cardiovascular fibrosis could be identified clearly in 2 hours. This staining pair requires only simple staining and brief washing, generating less than 10 ml of waste. The image information collected by this novel fluorescent staining pair is compatible with it collected by the traditional Masson's Trichrome and Picrosirius Red staining which are widely used to stain cardiovascular fibrosis and isolated cells.
Collapse
Affiliation(s)
- Jiqiu Chen
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Seung Koo Lee
- Department of Radiology, The Methodist Hospital Research Institute, Weill Medical College of Cornell University, Houston, Texas, United States of America
| | - Wael R. Abd-Elgaliel
- Department of Radiology, The Methodist Hospital Research Institute, Weill Medical College of Cornell University, Houston, Texas, United States of America
| | - Lifan Liang
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Elisa-Yaniz Galende
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Roger J. Hajjar
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail: (RJH); (CHT)
| | - Ching-Hsuan Tung
- Department of Radiology, The Methodist Hospital Research Institute, Weill Medical College of Cornell University, Houston, Texas, United States of America
- * E-mail: (RJH); (CHT)
| |
Collapse
|
97
|
3D non-affine finite strains measured in isolated bovine annulus fibrosus tissue samples. Biomech Model Mechanobiol 2011; 11:161-70. [PMID: 21451947 DOI: 10.1007/s10237-011-0300-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Accepted: 03/04/2011] [Indexed: 10/18/2022]
Abstract
Understanding of the mechanics of disc tissue calls for measurement of strains in physiological conditions. Because the intervertebral disc is gripped between two vertebrae, the swelling is constrained in vivo, resulting in a intradiscal pressure of 0.1-0.2 MPa in supine position. The excision of isolated disc tissue samples results often in non-physiological swelling. The purpose of the present study is to measure 3D finite strains in isolated bovine disc tissue specimens under physiological osmolarity and pressure, particularly around discontinuities of the collagen network. The collagen is stained by means of CNA35 probe, and the (dead) cells are stained by means of propidium iodide. The tissue is observed under confocal microscopy, under an externally applied pressure generated by a PEG solution. The 3D finite strains are obtained through correlation of the texture of the 3D images. The correlation technique yields principal strains in all areas except within collagen-free areas. The deformation is strongly non-affine. Especially around discontinuities, the strain field is non-homogeneous. Macroscopic strains as computed from finite element analysis of whole discs are insufficient to predict microstrains around clefts or cells. Because of the small number of specimens, the present results should be considered preliminary.
Collapse
|
98
|
Foolen J, van Donkelaar CC, Soekhradj-Soechit S, Ito K. European Society of Biomechanics S.M. Perren Award 2010: an adaptation mechanism for fibrous tissue to sustained shortening. J Biomech 2011; 43:3168-76. [PMID: 20817184 DOI: 10.1016/j.jbiomech.2010.07.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 07/24/2010] [Indexed: 11/17/2022]
Abstract
The mechanism by which fibrous tissues adapt upon alterations in their mechanical environment remains unresolved. Here, we determine that periosteum in chick embryos resides in an identical mechanical state, irrespective of the developmental stage. This state is characterized by a residual tissue strain that corresponds to the strain in between the pliant and stiffer region of the force-strain curve. We demonstrate that periosteum is able to regain that mechanical equilibrium state in vitro, within three days upon perturbation of that equilibrium state. This adaptation process is not dependent on protein synthesis, because the addition of cycloheximide did not affect the response. However, a functional actin filament network is required, as is illustrated by a lack of adaptation in the presence of cytochalasin D. This led us to hypothesize that cells actively reduce collagen fiber crimp after tissue shortening, i.e. that in time the number of recruited fibers is increased via cell contraction. Support for this mechanism is found by visualization of fiber crimp with multiphoton microscopy before the perturbation and at different time points during the adaptive response.
Collapse
Affiliation(s)
- Jasper Foolen
- Department of Biomedical Engineering, Eindhoven University of Technology, WH 4.118, 5600 MB Eindhoven, The Netherlands
| | | | | | | |
Collapse
|
99
|
Collagen targeting using multivalent protein-functionalized dendrimers. Bioorg Med Chem 2011; 19:1062-71. [DOI: 10.1016/j.bmc.2010.07.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 07/08/2010] [Accepted: 07/26/2010] [Indexed: 12/22/2022]
|
100
|
Hernández-Rocamora VM, Reulen SWA, de Waal B, Meijer EW, Sanz JM, Merkx M. Choline dendrimers as generic scaffolds for the non-covalent synthesis of multivalent protein assemblies. Chem Commun (Camb) 2011; 47:5997-9. [DOI: 10.1039/c0cc05605g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|