51
|
Thompson JR, Worthington KS, Green BJ, Mullin NK, Jiao C, Kaalberg EE, Wiley LA, Han IC, Russell SR, Sohn EH, Guymon CA, Mullins RF, Stone EM, Tucker BA. Two-photon polymerized poly(caprolactone) retinal cell delivery scaffolds and their systemic and retinal biocompatibility. Acta Biomater 2019; 94:204-218. [PMID: 31055121 DOI: 10.1016/j.actbio.2019.04.057] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 01/01/2023]
Abstract
Cell replacement therapies are often enhanced by utilizing polymer scaffolds to improve retention or direct cell orientation and migration. Obstacles to refinement of such polymer scaffolds often include challenges in controlling the microstructure of biocompatible molecules in three dimensions at cellular scales. Two-photon polymerization of acrylated poly(caprolactone) (PCL) could offer a means of achieving precise microstructural control of a material in a biocompatible platform. In this work, we studied the effect of various formulation and two-photon polymerization parameters on minimum laser power needed to achieve polymerization, resolution, and fidelity to a target 3D model designed to be used for retinal cell replacement. Overall, we found that increasing the concentration of crosslink-able groups decreased polymerization threshold and the size of resolvable features while increasing fidelity of the scaffold to the 3D model. In general, this improvement was achieved by increasing the number of acrylate groups per prepolymer molecule, increasing the acrylated PCL concentration, or decreasing its molecular weight. Resulting two-photon polymerized PCL scaffolds successfully supported human iPSC derived retinal progenitor cells in vitro. Sub-retinal implantation of cell free scaffolds in a porcine model of retinitis pigmentosa did not cause inflammation, infection or local or systemic toxicity after one month. In addition, comprehensive ISO 10993 testing of photopolymerized scaffolds revealed a favorable biocompatibility profile. These results represent an important step towards understanding how two-photon polymerization can be applied to a wide range of biologically compatible chemistries for various biomedical applications. STATEMENT OF SIGNIFICANCE: Inherited retinal degenerative blindness results from the death of light sensing photoreceptor cells. To restore high-acuity vision a photoreceptor cell replacement strategy will likely be necessary. Unfortunately, single cell injection typically results in poor cell survival and integration post-transplantation. Polymeric biomaterial cell delivery scaffolds can be used to promote donor cell viability, control cellular polarity and increase packing density. A challenge faced in this endeavor has been developing methods suitable for generating scaffolds that can be used to deliver stem cell derived photoreceptors in an ordered columnar orientation (i.e., similar to that of the native retina). In this study we combined the biomaterial poly(caprolactone) with two-photon lithography to generate a biocompatible, clinically relevant scaffold suitable for retina cell delivery.
Collapse
Affiliation(s)
- Jessica R Thompson
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA; Roy J. Carver Department of Biomedical Engineering, The University of Iowa, 5601 Seamans Center, Iowa City, IA 52242, USA
| | - Kristan S Worthington
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA; Roy J. Carver Department of Biomedical Engineering, The University of Iowa, 5601 Seamans Center, Iowa City, IA 52242, USA
| | - Brian J Green
- Department of Chemical and Biochemical Engineering, The University of Iowa, 4133 Seamans Center, Iowa City, IA 52242, USA
| | - Nathaniel K Mullin
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Chunhua Jiao
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Emily E Kaalberg
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Luke A Wiley
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Ian C Han
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Stephen R Russell
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Elliott H Sohn
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - C Allan Guymon
- Department of Chemical and Biochemical Engineering, The University of Iowa, 4133 Seamans Center, Iowa City, IA 52242, USA
| | - Robert F Mullins
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Edwin M Stone
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Budd A Tucker
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA.
| |
Collapse
|
52
|
Henn I, Atkins A, Markus A, Shpun G, Barad H, Farah N, Mandel Y. SEM/FIB Imaging for Studying Neural Interfaces. Dev Neurobiol 2019; 80:305-315. [DOI: 10.1002/dneu.22707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/11/2019] [Accepted: 06/15/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Itai Henn
- Mina and Everard Goodman Faculty of Life Sciences Bar‐Ilan University Ramat Gan Israel
- Bar‐Ilan Institute for Nanotechnology and Advanced Materials (BINA) Bar‐Ilan University Ramat Gan Israel
| | - Ayelet Atkins
- Mina and Everard Goodman Faculty of Life Sciences Bar‐Ilan University Ramat Gan Israel
- Bar‐Ilan Institute for Nanotechnology and Advanced Materials (BINA) Bar‐Ilan University Ramat Gan Israel
| | - Amos Markus
- Mina and Everard Goodman Faculty of Life Sciences Bar‐Ilan University Ramat Gan Israel
| | - Gal Shpun
- Mina and Everard Goodman Faculty of Life Sciences Bar‐Ilan University Ramat Gan Israel
- Bar‐Ilan Institute for Nanotechnology and Advanced Materials (BINA) Bar‐Ilan University Ramat Gan Israel
| | - Hannah‐Noa Barad
- Bar‐Ilan Institute for Nanotechnology and Advanced Materials (BINA) Bar‐Ilan University Ramat Gan Israel
- Department of Chemistry, Bar‐Ilan Institute for Nanotechnology and Advanced Materials (BINA) Bar‐Ilan University Ramat Gan Israel
| | - Nairouz Farah
- Mina and Everard Goodman Faculty of Life Sciences Bar‐Ilan University Ramat Gan Israel
- Faculty of Life Science, School of Optometry and Vision Science Bar‐Ilan University Ramat Gan Israel
| | - Yossi Mandel
- Mina and Everard Goodman Faculty of Life Sciences Bar‐Ilan University Ramat Gan Israel
- Bar‐Ilan Institute for Nanotechnology and Advanced Materials (BINA) Bar‐Ilan University Ramat Gan Israel
- Faculty of Life Science, School of Optometry and Vision Science Bar‐Ilan University Ramat Gan Israel
| |
Collapse
|
53
|
Photoreceptor cell replacement in macular degeneration and retinitis pigmentosa: A pluripotent stem cell-based approach. Prog Retin Eye Res 2019; 71:1-25. [DOI: 10.1016/j.preteyeres.2019.03.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/01/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
|
54
|
Kidwell DA, Lee WK, Perkins K, Gilpin KM, O'Shaughnessy TJ, Robinson JT, Sheehan PE, Mulvaney SP. Chemistries for Making Additive Nanolithography in OrmoComp Permissive for Cell Adhesion and Growth. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19793-19798. [PMID: 31045352 DOI: 10.1021/acsami.9b04096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Two-photon lithography allows writing of arbitrary nanoarchitectures in photopolymers. This design flexibility opens almost limitless possibilities for biological studies, but the acrylate-based polymers frequently used do not allow for adhesion and growth of some types of cells. Indeed, we found that lithographically defined structures made from OrmoComp do not support E18 murine cortical neurons. We reacted OrmoComp structures with several diamines, thereby rendering the surfaces directly permissive for neuron attachment and growth by presenting a surface coating similar to the traditional cell biology coating achieved with poly-d-lysine (PDL) and laminin. However, in contrast to PDL-laminin coatings that cover the entire surface, the amine-terminated OrmoComp structures are orthogonally modified in deference to the surrounding glass or plastic substrate, adding yet another design element for advanced biological studies.
Collapse
Affiliation(s)
| | | | | | - Kathleen M Gilpin
- American Society for Engineering Education (ASEE) Post-Doctoral Fellow at US Naval Research Laboratory , Washington, DC 20375 , United States
| | | | | | | | | |
Collapse
|
55
|
Chakka JL, Salem AK. 3D printing in drug delivery systems. JOURNAL OF 3D PRINTING IN MEDICINE 2019; 3:59-62. [PMID: 31258935 PMCID: PMC6587107 DOI: 10.2217/3dp-2019-0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Jaidev L Chakka
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
56
|
Hippler M, Lemma ED, Bertels S, Blasco E, Barner-Kowollik C, Wegener M, Bastmeyer M. 3D Scaffolds to Study Basic Cell Biology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1808110. [PMID: 30793374 DOI: 10.1002/adma.201808110] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/17/2019] [Indexed: 05/21/2023]
Abstract
Mimicking the properties of the extracellular matrix is crucial for developing in vitro models of the physiological microenvironment of living cells. Among other techniques, 3D direct laser writing (DLW) has emerged as a promising technology for realizing tailored 3D scaffolds for cell biology studies. Here, results based on DLW addressing basic biological issues, e.g., cell-force measurements and selective 3D cell spreading on functionalized structures are reviewed. Continuous future progress in DLW materials engineering and innovative approaches for scaffold fabrication will enable further applications of DLW in applied biomedical research and tissue engineering.
Collapse
Affiliation(s)
- Marc Hippler
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131, Karlsruhe, Germany
| | - Enrico Domenico Lemma
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Sarah Bertels
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Eva Blasco
- Macromolecular Architectures, Institute for Technical Chemistry and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128, Karlsruhe, Germany
| | - Christopher Barner-Kowollik
- Macromolecular Architectures, Institute for Technical Chemistry and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128, Karlsruhe, Germany
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Martin Wegener
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131, Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Martin Bastmeyer
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
57
|
Chen L, Dong Y, Tang CY, Zhong L, Law WC, Tsui GCP, Yang Y, Xie X. Development of Direct-Laser-Printable Light-Powered Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19541-19553. [PMID: 31059220 DOI: 10.1021/acsami.9b05871] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Four-dimensional (4D) printable light-powered materials have emerged as a new generation of materials for the development of functional devices. The design of these types of materials is mostly based on the trans-cis transformation of azobenzene moieties in a liquid crystalline elastomer (LCE) matrix, in which the motion is triggered by ultraviolet (UV) irradiation. In this paper, we first report on a direct laser printable photoresist for producing light-powered 4D structures with enhanced mechanical properties and near-infrared (NIR) responsive mechanical deformation. The reported nanocomposite design is based on the photothermal effects of gold nanorods (AuNRs), which can induce the nematic-to-isotropic transition of LCE upon exposure to NIR irradiation. The miscibility between AuNRs and LCE is enhanced by thiol functionalization. Appropriate printing parameters are determined, and nanocomposites containing 0-3 wt % of AuNR loading are fabricated via femtosecond two-photon direct laser writing. The effects of the AuNR loading fraction and laser power on the light-powered actuating performance are evaluated. It is found that the nanocomposite with AuNR loading of 3 wt % demonstrates the maximum percentage (20%) of elongation under an NIR laser power of 2 W. An increase in laser power can lead to faster deformation but slower restoration. The nanocomposites demonstrate relatively good stability. Even after 300 actuation cycles, 80% of the elongation magnitude can be retained. In addition, an improvement of 80% in the complex modulus of the nanocomposites, due to the inclusion of AuNRs, is observed.
Collapse
Affiliation(s)
| | | | | | - Lei Zhong
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications , Guangxi University for Nationalities , Nanning , Guangxi 530006 , China
| | | | | | - Yingkui Yang
- School of Chemistry and Materials Science , South-Central University for Nationalities , Wuhan , Hubei 430074 , China
| | - Xiaolin Xie
- School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China
| |
Collapse
|
58
|
Liu Z, Liu F, Gao Y, Qing W, Huang Y, Li S, Jin D. AIEgen Nanoparticles of Arylamino Fumaronitrile Derivative with High Near-Infrared Emission for Two-Photon Imaging and in Vivo Cell Tracking. ACS APPLIED BIO MATERIALS 2018; 2:430-436. [DOI: 10.1021/acsabm.8b00643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | | | | | - Shengliang Li
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | | |
Collapse
|
59
|
Do AV, Worthington K, Tucker B, Salem AK. Controlled drug delivery from 3D printed two-photon polymerized poly(ethylene glycol) dimethacrylate devices. Int J Pharm 2018; 552:217-224. [PMID: 30268853 PMCID: PMC6204107 DOI: 10.1016/j.ijpharm.2018.09.065] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023]
Abstract
Controlled drug delivery systems have been utilized to enhance the therapeutic effects of many drugs by delivering drugs in a time-dependent and sustained manner. Here, with the aid of 3D printing technology, drug delivery devices were fabricated and tested using a model drug (fluorophore: rhodamine B). Poly(ethylene glycol) dimethacrylate (PEGDMA) devices were fabricated using a two-photon polymerization (TPP) system and rhodamine B was homogenously entrapped inside the polymer matrix during photopolymerization. These devices were printed with varying porosity and morphology using varying printing parameters such as slicing and hatching distance. The effects of these variables on drug release kinetics were determined by evaluating device fluorescence over the course of one week. These PEGDMA-based structures were then investigated for toxicity and biocompatibility in vitro, where MTS assays were performed using a range of cell types including induced pluripotent stem cells (iPSCs). Overall, tuning the hatching distance, slicing distance, and pore size of the fabricated devices modulated the rhodamine B release profile, in each case presumably due to resulting changes in the motility of the small molecule and its access to structure edges. In general, increased spacing provided higher drug release while smaller spacing resulted in some occlusion, preventing media infiltration and thus resulting in reduced fluorophore release. The devices had no cytotoxic effects on human embryonic kidney cells (HEK293), bone marrow stromal stem cells (BMSCs) or iPSCs. Thus, we have demonstrated the utility of two-photon polymerization to create biocompatible, complex miniature devices with fine details and tunable release of a model drug.
Collapse
Affiliation(s)
- Anh-Vu Do
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa,Department of Chemical and Biochemical Engineering, College of Engineering, The University of Iowa
| | - Kristan Worthington
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, College of Medicine, The University of Iowa,Department of Biomedical Engineering, College of Engineering, The University of Iowa
| | - Budd Tucker
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, College of Medicine, The University of Iowa
| | - Aliasger K. Salem
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa,Department of Chemical and Biochemical Engineering, College of Engineering, The University of Iowa,Department of Biomedical Engineering, College of Engineering, The University of Iowa,
| |
Collapse
|
60
|
Lemma ED, Spagnolo B, De Vittorio M, Pisanello F. Studying Cell Mechanobiology in 3D: The Two-Photon Lithography Approach. Trends Biotechnol 2018; 37:358-372. [PMID: 30343948 DOI: 10.1016/j.tibtech.2018.09.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 12/12/2022]
Abstract
Two-photon lithography is a laser writing technique that can produce 3D microstructures with resolutions below the diffraction limit. This review focuses on its applications to study mechanical properties of cells, an emerging field known as mechanobiology. We review 3D structural designs and materials in the context of new experimental designs, including estimating forces exerted by single cells, studying selective adhesion on substrates, and creating 3D networks of cells. We then focus on emerging applications, including structures for assessing cancer cell invasiveness, whose migration properties depend on the cell mechanical response to the environment, and 3D architectures and materials to study stem cell differentiation, as 3D structure shape and patterning play a key role in defining cell fates.
Collapse
Affiliation(s)
- Enrico Domenico Lemma
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Via Barsanti snc, 73010 Arnesano, Italy; Università del Salento, Dipartimento di Ingegneria dell'Innovazione, via per Monteroni snc, 73100 Lecce, Italy; Current address: Karlsruher Institut für Technologie, Zoologisches Institut, Zell- und Neurobiologie, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany.
| | - Barbara Spagnolo
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Via Barsanti snc, 73010 Arnesano, Italy
| | - Massimo De Vittorio
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Via Barsanti snc, 73010 Arnesano, Italy; Università del Salento, Dipartimento di Ingegneria dell'Innovazione, via per Monteroni snc, 73100 Lecce, Italy; These authors equally contributed to this work
| | - Ferruccio Pisanello
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Via Barsanti snc, 73010 Arnesano, Italy; These authors equally contributed to this work.
| |
Collapse
|
61
|
Green BJ, Worthington KS, Thompson JR, Bunn SJ, Rethwisch M, Kaalberg EE, Jiao C, Wiley LA, Mullins RF, Stone EM, Sohn EH, Tucker BA, Guymon CA. Effect of Molecular Weight and Functionality on Acrylated Poly(caprolactone) for Stereolithography and Biomedical Applications. Biomacromolecules 2018; 19:3682-3692. [PMID: 30044915 DOI: 10.1021/acs.biomac.8b00784] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Degradable polymers are integral components in many biomedical polymer applications. The ability of these materials to decompose in situ has become a critical component for tissue engineering, allowing scaffolds to guide cell and tissue growth while facilitating gradual regeneration of native tissue. The objective of this work is to understand the role of prepolymer molecular weight and functionality of photocurable poly(caprolactone) (PCL) in determining reaction kinetics, mechanical properties, polymer degradation, biocompatibility, and suitability for stereolithography. PCL, a degradable polymer used in a number of biomedical applications, was functionalized with acrylate groups to enable photopolymerization and three-dimensional printing via stereolithography. PCL prepolymers with different molecular weights and functionalities were studied to understand the role of molecular structure in reaction kinetics, mechanical properties, and degradation rates. The mechanical properties of photocured PCL were dependent on cross-link density and directly related to the molecular weight and functionality of the prepolymers. High-molecular weight, low-functionality PCLDA prepolymers exhibited a lower modulus and a higher strain at break, while low-molecular weight, high-functionality PCLTA prepolymers exhibited a lower strain at break and a higher modulus. Additionally, degradation profiles of cross-linked PCL followed a similar trend, with low cross-link density leading to degradation times up to 2.5 times shorter than those of more highly cross-linked polymers. Furthermore, photopolymerized PCL showed biocompatibility both in vitro and in vivo, causing no observed detrimental effects on seeded murine-induced pluripotent stem cells or when implanted into pig retinas. Finally, the ability to create three-dimensional PCL structures is shown by fabrication of simple structures using digital light projection stereolithography. Low-molecular weight, high-functionality PCLTA prepolymers printed objects with feature sizes near the hardware resolution limit of 50 μm. This work lays the foundation for future work in fabricating microscale PCL structures for a wide range of tissue regeneration applications.
Collapse
Affiliation(s)
- Brian J Green
- Department of Chemical and Biochemical Engineering , The University of Iowa , 4133 Seamans Center , Iowa City , Iowa 52242 , United States
| | - Kristan S Worthington
- Institute of Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine , The University of Iowa , 4111 Medical Education and Research Facility , Iowa City , Iowa 52242 , United States.,Department of Biomedical Engineering , The University of Iowa , 5602 Seamans Center , Iowa City , Iowa 52242 , United States
| | - Jessica R Thompson
- Institute of Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine , The University of Iowa , 4111 Medical Education and Research Facility , Iowa City , Iowa 52242 , United States.,Department of Biomedical Engineering , The University of Iowa , 5602 Seamans Center , Iowa City , Iowa 52242 , United States
| | - Spencer J Bunn
- Department of Chemical and Biochemical Engineering , The University of Iowa , 4133 Seamans Center , Iowa City , Iowa 52242 , United States
| | - Mary Rethwisch
- Department of Chemical and Biochemical Engineering , The University of Iowa , 4133 Seamans Center , Iowa City , Iowa 52242 , United States
| | - Emily E Kaalberg
- Institute of Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine , The University of Iowa , 4111 Medical Education and Research Facility , Iowa City , Iowa 52242 , United States
| | - Chunhua Jiao
- Institute of Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine , The University of Iowa , 4111 Medical Education and Research Facility , Iowa City , Iowa 52242 , United States
| | - Luke A Wiley
- Institute of Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine , The University of Iowa , 4111 Medical Education and Research Facility , Iowa City , Iowa 52242 , United States
| | - Robert F Mullins
- Institute of Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine , The University of Iowa , 4111 Medical Education and Research Facility , Iowa City , Iowa 52242 , United States
| | - Edwin M Stone
- Institute of Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine , The University of Iowa , 4111 Medical Education and Research Facility , Iowa City , Iowa 52242 , United States
| | - Elliott H Sohn
- Institute of Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine , The University of Iowa , 4111 Medical Education and Research Facility , Iowa City , Iowa 52242 , United States
| | - Budd A Tucker
- Institute of Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine , The University of Iowa , 4111 Medical Education and Research Facility , Iowa City , Iowa 52242 , United States
| | - C Allan Guymon
- Department of Chemical and Biochemical Engineering , The University of Iowa , 4133 Seamans Center , Iowa City , Iowa 52242 , United States
| |
Collapse
|
62
|
Burnight ER, Giacalone JC, Cooke JA, Thompson JR, Bohrer LR, Chirco KR, Drack AV, Fingert JH, Worthington KS, Wiley LA, Mullins RF, Stone EM, Tucker BA. CRISPR-Cas9 genome engineering: Treating inherited retinal degeneration. Prog Retin Eye Res 2018; 65:28-49. [PMID: 29578069 PMCID: PMC8210531 DOI: 10.1016/j.preteyeres.2018.03.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 03/15/2018] [Accepted: 03/18/2018] [Indexed: 12/18/2022]
Abstract
Gene correction is a valuable strategy for treating inherited retinal degenerative diseases, a major cause of irreversible blindness worldwide. Single gene defects cause the majority of these retinal dystrophies. Gene augmentation holds great promise if delivered early in the course of the disease, however, many patients carry mutations in genes too large to be packaged into adeno-associated viral vectors and some, when overexpressed via heterologous promoters, induce retinal toxicity. In addition to the aforementioned challenges, some patients have sustained significant photoreceptor cell loss at the time of diagnosis, rendering gene replacement therapy insufficient to treat the disease. These patients will require cell replacement to restore useful vision. Fortunately, the advent of induced pluripotent stem cell and CRISPR-Cas9 gene editing technologies affords researchers and clinicians a powerful means by which to develop strategies to treat patients with inherited retinal dystrophies. In this review we will discuss the current developments in CRISPR-Cas9 gene editing in vivo in animal models and in vitro in patient-derived cells to study and treat inherited retinal degenerative diseases.
Collapse
Affiliation(s)
- Erin R Burnight
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| | - Joseph C Giacalone
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| | - Jessica A Cooke
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| | - Jessica R Thompson
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| | - Laura R Bohrer
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| | - Kathleen R Chirco
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| | - Arlene V Drack
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| | - John H Fingert
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| | - Kristan S Worthington
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States; Department of Biochemical Engineering, University of Iowa, Iowa City, IA, United States
| | - Luke A Wiley
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| | - Robert F Mullins
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| | - Edwin M Stone
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| | - Budd A Tucker
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
63
|
Singh D, Wang SB, Xia T, Tainsh L, Ghiassi-Nejad M, Xu T, Peng S, Adelman RA, Rizzolo LJ. A biodegradable scaffold enhances differentiation of embryonic stem cells into a thick sheet of retinal cells. Biomaterials 2018; 154:158-168. [DOI: 10.1016/j.biomaterials.2017.10.052] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/23/2017] [Accepted: 10/30/2017] [Indexed: 12/25/2022]
|
64
|
Son AI, Opfermann JD, McCue C, Ziobro J, Abrahams JH, Jones K, Morton PD, Ishii S, Oluigbo C, Krieger A, Liu JS, Hashimoto-Torii K, Torii M. An Implantable Micro-Caged Device for Direct Local Delivery of Agents. Sci Rep 2017; 7:17624. [PMID: 29247175 PMCID: PMC5732160 DOI: 10.1038/s41598-017-17912-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 12/04/2017] [Indexed: 11/08/2022] Open
Abstract
Local and controlled delivery of therapeutic agents directly into focally afflicted tissues is the ideal for the treatment of diseases that require direct interventions. However, current options are obtrusive, difficult to implement, and limited in their scope of utilization; the optimal solution requires a method that may be optimized for available therapies and is designed for exact delivery. To address these needs, we propose the Biocage, a customizable implantable local drug delivery platform. The device is a needle-sized porous container capable of encasing therapeutic molecules and matrices of interest to be eluted into the region of interest over time. The Biocage was fabricated using the Nanoscribe Photonic Professional GT 3D laser lithography system, a two-photon polymerization (2PP) 3D printer capable of micron-level precision on a millimeter scale. We demonstrate the build consistency and features of the fabricated device; its ability to release molecules; and a method for its accurate, stable delivery in mouse brain tissue. The Biocage provides a powerful tool for customizable and precise delivery of therapeutic agents into target tissues.
Collapse
Affiliation(s)
- Alexander I Son
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, 20010, USA
| | - Justin D Opfermann
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, DC, 20010, USA
| | - Caroline McCue
- Terrapin Works, School of Engineering, University of Maryland, College Park, MD, 20740, USA
| | - Julie Ziobro
- Department of Neurology, Children's National Medical Center, Washington, DC, 20010, USA
| | - John H Abrahams
- Nanocenter FabLab, University of Maryland, College Park, MD, 20742, USA
| | - Katherine Jones
- Terrapin Works, School of Engineering, University of Maryland, College Park, MD, 20740, USA
| | - Paul D Morton
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Seiji Ishii
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, 20010, USA
| | - Chima Oluigbo
- Department of Neurosurgery, Children's National Medical Center, Washington, DC, 20010, USA
| | - Axel Krieger
- Department of Mechanical Engineering, A. James Clark School of Engineering, University of Maryland, College Mark, MD, 20742, USA
| | - Judy S Liu
- Department of Neurology, Warren Alpert Medical School, Brown University, Providence, RI, 02912, USA
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, 20010, USA
- Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20052, USA
- Department of Neurobiology and Kavli Institute for Neuroscience, School of Medicine, Yale University, New Haven, CT, 06510, USA
| | - Masaaki Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, 20010, USA.
- Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20052, USA.
- Department of Neurobiology and Kavli Institute for Neuroscience, School of Medicine, Yale University, New Haven, CT, 06510, USA.
| |
Collapse
|
65
|
Elongation of Axon Extension for Human iPSC-Derived Retinal Ganglion Cells by a Nano-Imprinted Scaffold. Int J Mol Sci 2017; 18:ijms18092013. [PMID: 28930148 PMCID: PMC5618661 DOI: 10.3390/ijms18092013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/08/2017] [Accepted: 09/15/2017] [Indexed: 12/11/2022] Open
Abstract
Optic neuropathies, such as glaucoma and Leber's hereditary optic neuropathy (LHON) lead to retinal ganglion cell (RGC) loss and therefore motivate the application of transplantation technique into disease therapy. However, it is a challenge to direct the transplanted optic nerve axons to the correct location of the retina. The use of appropriate scaffold can promote the proper axon growth. Recently, biocompatible materials have been integrated into the medical field, such as tissue engineering and reconstruction of damaged tissues or organs. We, herein, utilized nano-imprinting to create a scaffold mimicking the in vitro tissue microarchitecture, and guiding the axonal growth and orientation of the RGCs. We observed that the robust, long, and organized axons of human induced pluripotent stem cell (iPSC)-derived RGCs projected axially along the scaffold grooves. The RGCs grown on the scaffold expressed the specific neuronal biomarkers indicating their proper functionality. Thus, based on our in vitro culture system, this device can be useful for the neurophysiological analysis and transplantation for ophthalmic neuropathy treatment.
Collapse
|
66
|
Burnight ER, Gupta M, Wiley LA, Anfinson KR, Tran A, Triboulet R, Hoffmann JM, Klaahsen DL, Andorf JL, Jiao C, Sohn EH, Adur MK, Ross JW, Mullins RF, Daley GQ, Schlaeger TM, Stone EM, Tucker BA. Using CRISPR-Cas9 to Generate Gene-Corrected Autologous iPSCs for the Treatment of Inherited Retinal Degeneration. Mol Ther 2017; 25:1999-2013. [PMID: 28619647 PMCID: PMC5589061 DOI: 10.1016/j.ymthe.2017.05.015] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 01/20/2023] Open
Abstract
Patient-derived induced pluripotent stem cells (iPSCs) hold great promise for autologous cell replacement. However, for many inherited diseases, treatment will likely require genetic repair pre-transplantation. Genome editing technologies are useful for this application. The purpose of this study was to develop CRISPR-Cas9-mediated genome editing strategies to target and correct the three most common types of disease-causing variants in patient-derived iPSCs: (1) exonic, (2) deep intronic, and (3) dominant gain of function. We developed a homology-directed repair strategy targeting a homozygous Alu insertion in exon 9 of male germ cell-associated kinase (MAK) and demonstrated restoration of the retinal transcript and protein in patient cells. We generated a CRISPR-Cas9-mediated non-homologous end joining (NHEJ) approach to excise a major contributor to Leber congenital amaurosis, the IVS26 cryptic-splice mutation in CEP290, and demonstrated correction of the transcript and protein in patient iPSCs. Lastly, we designed allele-specific CRISPR guides that selectively target the mutant Pro23His rhodopsin (RHO) allele, which, following delivery to both patient iPSCs in vitro and pig retina in vivo, created a frameshift and premature stop that would prevent transcription of the disease-causing variant. The strategies developed in this study will prove useful for correcting a wide range of genetic variants in genes that cause inherited retinal degeneration.
Collapse
Affiliation(s)
- Erin R Burnight
- Stephen A. Wynn Institute for Vision Research and Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52241, USA
| | - Manav Gupta
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 01451, USA
| | - Luke A Wiley
- Stephen A. Wynn Institute for Vision Research and Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52241, USA
| | - Kristin R Anfinson
- Stephen A. Wynn Institute for Vision Research and Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52241, USA
| | - Audrey Tran
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 01451, USA
| | - Robinson Triboulet
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 01451, USA
| | - Jeremy M Hoffmann
- Stephen A. Wynn Institute for Vision Research and Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52241, USA
| | - Darcey L Klaahsen
- Stephen A. Wynn Institute for Vision Research and Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52241, USA
| | - Jeaneen L Andorf
- Stephen A. Wynn Institute for Vision Research and Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52241, USA
| | - Chunhua Jiao
- Stephen A. Wynn Institute for Vision Research and Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52241, USA
| | - Elliott H Sohn
- Stephen A. Wynn Institute for Vision Research and Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52241, USA
| | - Malavika K Adur
- Department of Animal Sciences, Iowa State University, Ames, IA 50011, USA
| | - Jason W Ross
- Department of Animal Sciences, Iowa State University, Ames, IA 50011, USA
| | - Robert F Mullins
- Stephen A. Wynn Institute for Vision Research and Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52241, USA
| | - George Q Daley
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 01451, USA
| | - Thorsten M Schlaeger
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 01451, USA
| | - Edwin M Stone
- Stephen A. Wynn Institute for Vision Research and Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52241, USA
| | - Budd A Tucker
- Stephen A. Wynn Institute for Vision Research and Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52241, USA.
| |
Collapse
|