51
|
Boye SE. Insights gained from gene therapy in animal models of retGC1 deficiency. Front Mol Neurosci 2014; 7:43. [PMID: 24860425 PMCID: PMC4030156 DOI: 10.3389/fnmol.2014.00043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/26/2014] [Indexed: 12/29/2022] Open
Abstract
Vertebrate species possess two retinal guanylate cyclases (retGC1 and retGC2) and at least two guanylate cyclase activating proteins (GCAPs), GCAP1 and GCAP2. GCAPs function as Ca2+ sensors that regulate the activity of guanylate cyclases. Together, these proteins regulate cGMP and Ca2+ levels within the outer segments of rod and cone photoreceptors. Mutations in GUCY2D, the gene that encodes retGC1, are a leading cause of the most severe form of early onset retinal dystrophy, Leber congenital amaurosis (LCA1). These mutations, which reduce or abolish the ability of retGC1 to replenish cGMP in photoreceptors, are thought to lead to the biochemical equivalent of chronic light exposure in these cells. In spite of this, the majority of LCA1 patients retain normal photoreceptor laminar architecture aside from foveal cone outer segment abnormalities, suggesting they may be good candidates for gene replacement therapy. Work began in the 1980s to characterize multiple animal models of retGC1 deficiency. 34 years later, all models have been used in proof of concept gene replacement studies toward the goal of developing a therapy to treat GUCY2D-LCA1. Here we use the results of these studies as well as those of recent clinical studies to address specific questions relating to clinical application of a gene therapy for treatment of LCA1.
Collapse
Affiliation(s)
- Shannon E Boye
- Department of Ophthalmology, University of Florida Gainesville, FL, USA
| |
Collapse
|
52
|
Downs LM, Wallin-Håkansson B, Bergström T, Mellersh CS. A novel mutation in TTC8 is associated with progressive retinal atrophy in the golden retriever. Canine Genet Epidemiol 2014; 1:4. [PMID: 26401321 PMCID: PMC4574394 DOI: 10.1186/2052-6687-1-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/14/2014] [Indexed: 01/19/2023] Open
Abstract
Background Generalized progressive retinal atrophy (PRA) is a group of inherited eye diseases characterised by progressive retinal degeneration that ultimately leads to blindness in dogs. To date, more than 20 different mutations causing canine-PRA have been described and several breeds including the Golden Retriever are affected by more than one form of PRA. Genetically distinct forms of PRA may have different clinical characteristics such as rate of progression and age of onset. However, in many instances the phenotype of different forms of PRA cannot be distinguished at the basic clinical level achieved during routine ophthalmoscopic examination. Mutations in two distinct genes have been reported to cause PRA in Golden Retrievers (prcd-PRA and GR_PRA1), but for approximately 39% of cases in this breed the causal mutation remains unknown. Results A genome-wide association study of 10 PRA cases and 16 controls identified an association on chromosome 8 not previously associated with PRA (praw = 1.30×10-6 and corrected with 100,000 permutations, pgenome = 0.148). Using haplotype analysis we defined a 737 kb critical region containing 6 genes. Two of the genes (TTC8 and SPATA7) have been associated with Retinitis Pigmentosa (RP) in humans. Using targeted next generation sequencing a single nucleotide deletion was identified in exon 8 of the TTC8 gene of affected Golden Retrievers. The frame shift mutation was predicted to cause a premature termination codon. In a larger cohort, this mutation, TTC8c.669delA, segregates correctly in 22 out of 29 cases tested (75.9%). Of the PRA controls none are homozygous for the mutation, only 3.5% carry the mutation and 96.5% are homozygous wildtype. Conclusions Our results show that PRA is genetically heterogeneous in one of the world’s numerically largest breeds, the Golden Retriever, and is caused by multiple, distinct mutations. Here we discuss the mutation that causes a form of PRA, that we have termed PRA2, that accounts for approximately 30% of PRA cases in the breed. The genetic explanation for approximately 9% of cases remains to be identified. PRA2 is a naturally occurring animal model for Retinitis Pigmentosa, and potentially Bardet-Biedl Syndrome. Electronic supplementary material The online version of this article (doi:10.1186/2052-6687-1-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Louise M Downs
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Newmarket, UK
| | - Berit Wallin-Håkansson
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Newmarket, UK ; The Swedish Kennel Club (SKK), Stockholm, Sweden
| | - Tomas Bergström
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Cathryn S Mellersh
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Newmarket, UK
| |
Collapse
|
53
|
Khan MI, Azam M, Ajmal M, Collin RWJ, den Hollander AI, Cremers FPM, Qamar R. The molecular basis of retinal dystrophies in pakistan. Genes (Basel) 2014; 5:176-95. [PMID: 24705292 PMCID: PMC3978518 DOI: 10.3390/genes5010176] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/14/2014] [Accepted: 02/14/2014] [Indexed: 12/23/2022] Open
Abstract
The customary consanguineous nuptials in Pakistan underlie the frequent occurrence of autosomal recessive inherited disorders, including retinal dystrophy (RD). In many studies, homozygosity mapping has been shown to be successful in mapping susceptibility loci for autosomal recessive inherited disease. RDs are the most frequent cause of inherited blindness worldwide. To date there is no comprehensive genetic overview of different RDs in Pakistan. In this review, genetic data of syndromic and non-syndromic RD families from Pakistan has been collected. Out of the 132 genes known to be involved in non-syndromic RD, 35 different genes have been reported to be mutated in families of Pakistani origin. In the Pakistani RD families 90% of the mutations causing non-syndromic RD and all mutations causing syndromic forms of the disease have not been reported in other populations. Based on the current inventory of all Pakistani RD-associated gene defects, a cost-efficient allele-specific analysis of 11 RD-associated variants is proposed, which may capture up to 35% of the genetic causes of retinal dystrophy in Pakistan.
Collapse
Affiliation(s)
- Muhammad Imran Khan
- Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad 45600, Pakistan.
| | - Maleeha Azam
- Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad 45600, Pakistan.
| | - Muhammad Ajmal
- Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad 45600, Pakistan.
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands.
| | - Anneke I den Hollander
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands.
| | - Frans P M Cremers
- Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad 45600, Pakistan.
| | - Raheel Qamar
- Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad 45600, Pakistan.
| |
Collapse
|
54
|
Shukla R, Kannabiran C, Jalali S. Genetics of Leber congenital amaurosis: an update. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.12.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
55
|
Mackay DS, Borman AD, Sui R, van den Born LI, Berson EL, Ocaka LA, Davidson AE, Heckenlively JR, Branham K, Ren H, Lopez I, Maria M, Azam M, Henkes A, Blokland E, Qamar R, Webster AR, Cremers FPM, Moore AT, Koenekoop RK, Andreasson S, de Baere E, Bennett J, Chader GJ, Berger W, Golovleva I, Greenberg J, den Hollander AI, Klaver CCW, Klevering BJ, Lorenz B, Preising MN, Ramsear R, Roberts L, Roepman R, Rohrschneider K, Wissinger B. Screening of a large cohort of leber congenital amaurosis and retinitis pigmentosa patients identifies novel LCA5 mutations and new genotype-phenotype correlations. Hum Mutat 2013; 34:1537-1546. [PMID: 23946133 DOI: 10.1002/humu.22398] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 08/05/2013] [Indexed: 11/11/2022]
Abstract
This study was undertaken to investigate the prevalence of sequence variants in LCA5 in patients with Leber congenital amaurosis (LCA), early-onset retinal dystrophy (EORD), and autosomal recessive retinitis pigmentosa (arRP); to delineate the ocular phenotypes; and to provide an overview of all published LCA5 variants in an online database. Patients underwent standard ophthalmic evaluations after providing informed consent. In selected patients, optical coherence tomography (OCT) and fundus autofluorescence imaging were possible. DNA samples from 797 unrelated patients with LCA and 211 with the various types of retinitis pigmentosa (RP) were screened by Sanger sequence analysis of all LCA5 exons and intron/exon junctions. Some LCA patients were prescreened by APEX technology or selected based on homozygosity mapping. In silico analyses were performed to assess the pathogenicity of the variants. Segregation analysis was performed where possible. Published and novel LCA5 variants were collected, amended for their correct nomenclature, and listed in a Leiden Open Variation Database (LOVD). Sequence analysis identified 18 new probands with 19 different LCA5 variants. Seventeen of the 19 LCA5 variants were novel. Except for two missense variants and one splice site variant, all variants were protein-truncating mutations. Most patients expressed a severe phenotype, typical of LCA. However, some LCA subjects had better vision and intact inner segment/outer segment (IS/OS) junctions on OCT imaging. In two families with LCA5 variants, the phenotype was more compatible with EORD with affected individuals displaying preserved islands of retinal pigment epithelium. One of the families with a milder phenotype harbored a homozygous splice site mutation; a second family was found to have a combination of a stop mutation and a missense mutation. This is the largest LCA5 study to date. We sequenced 1,008 patients (797 with LCA, 211 with arRP) and identified 18 probands with LCA5 mutations. Mutations in LCA5 are a rare cause of childhood retinal dystrophy accounting for ∼2% of disease in this cohort, and the majority of LCA5 mutations are likely null. The LCA5 protein truncating mutations are predominantly associated with LCA. However, in two families with the milder EORD, the LCA5 gene analysis revealed a homozygous splice site mutation in one and a stop mutation in combination with a missense mutation in a second family, suggesting that this milder phenotype is due to residual function of lebercilin and expanding the currently known phenotypic spectrum to include the milder early onset RP. Some patients have remaining foveal cone structures (intact IS/OS junctions on OCT imaging) and remaining visual acuities, which may bode well for upcoming treatment trials.
Collapse
Affiliation(s)
- Donna S Mackay
- Department of Human Genetics, Institute of Ophthalmology, UCL, London, UK
| | - Arundhati Dev Borman
- Department of Human Genetics, Institute of Ophthalmology, UCL, London, UK.,Moorfields Eye Hospital, London, UK
| | - Ruifang Sui
- Ophthalmology, Peking Union Med College Hosp, Beijing, China
| | | | - Eliot L Berson
- Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Louise A Ocaka
- Department of Human Genetics, Institute of Ophthalmology, UCL, London, UK
| | - Alice E Davidson
- Department of Human Genetics, Institute of Ophthalmology, UCL, London, UK
| | - John R Heckenlively
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan
| | - Kari Branham
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan
| | - Huanan Ren
- McGill Ocular Genetics Laboratory, Departments of Pediatric Surgery, Human Genetics and Ophthalmology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Irma Lopez
- McGill Ocular Genetics Laboratory, Departments of Pediatric Surgery, Human Genetics and Ophthalmology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Maleeha Maria
- Department of Human Genetics, Radboud University Medical Centre, and Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands.,Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Maleeha Azam
- Department of Human Genetics, Radboud University Medical Centre, and Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands.,Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Arjen Henkes
- Department of Human Genetics, Radboud University Medical Centre, and Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Ellen Blokland
- Department of Human Genetics, Radboud University Medical Centre, and Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Raheel Qamar
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan.,Al-Nafees Medical College & Hospital, Isra University, Islamabad, Pakistan
| | - Andrew R Webster
- Department of Human Genetics, Institute of Ophthalmology, UCL, London, UK.,Moorfields Eye Hospital, London, UK
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Centre, and Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Anthony T Moore
- Department of Human Genetics, Institute of Ophthalmology, UCL, London, UK.,Moorfields Eye Hospital, London, UK
| | - Robert K Koenekoop
- McGill Ocular Genetics Laboratory, Departments of Pediatric Surgery, Human Genetics and Ophthalmology, McGill University Health Centre, Montreal, Quebec, Canada
| | | | - Sten Andreasson
- Department of Human Genetics, Institute of Ophthalmology, UCL, London, UK
| | - Elfride de Baere
- Department of Human Genetics, Institute of Ophthalmology, UCL, London, UK
| | - Jean Bennett
- Department of Human Genetics, Institute of Ophthalmology, UCL, London, UK
| | - Gerald J Chader
- Department of Human Genetics, Institute of Ophthalmology, UCL, London, UK
| | - Wolfgang Berger
- Department of Human Genetics, Institute of Ophthalmology, UCL, London, UK
| | - Irina Golovleva
- Department of Human Genetics, Institute of Ophthalmology, UCL, London, UK
| | - Jacquie Greenberg
- Department of Human Genetics, Institute of Ophthalmology, UCL, London, UK
| | | | | | - B Jeroen Klevering
- Department of Human Genetics, Institute of Ophthalmology, UCL, London, UK
| | - Birgit Lorenz
- Department of Human Genetics, Institute of Ophthalmology, UCL, London, UK
| | - Markus N Preising
- Department of Human Genetics, Institute of Ophthalmology, UCL, London, UK
| | - Raj Ramsear
- Department of Human Genetics, Institute of Ophthalmology, UCL, London, UK
| | - Lisa Roberts
- Department of Human Genetics, Institute of Ophthalmology, UCL, London, UK
| | - Ronald Roepman
- Department of Human Genetics, Institute of Ophthalmology, UCL, London, UK
| | | | - Bernd Wissinger
- Department of Human Genetics, Institute of Ophthalmology, UCL, London, UK
| |
Collapse
|
56
|
Boye SL, Peshenko IV, Huang WC, Min SH, McDoom I, Kay CN, Liu X, Dyka FM, Foster TC, Umino Y, Karan S, Jacobson SG, Baehr W, Dizhoor A, Hauswirth WW, Boye SE. AAV-mediated gene therapy in the guanylate cyclase (RetGC1/RetGC2) double knockout mouse model of Leber congenital amaurosis. Hum Gene Ther 2013; 24:189-202. [PMID: 23210611 DOI: 10.1089/hum.2012.193] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mutations in GUCY2D are associated with recessive Leber congenital amaurosis-1 (LCA1). GUCY2D encodes photoreceptor-specific, retinal guanylate cyclase-1 (RetGC1). Reports of retinal degeneration in LCA1 are conflicting; some describe no obvious degeneration and others report loss of both rods and cones. Proof of concept studies in models representing the spectrum of phenotypes is warranted. We have previously demonstrated adeno-associated virus (AAV)-mediated RetGC1 is therapeutic in GC1ko mice, a model exhibiting loss of cones only. The purpose of this study was to characterize AAV-mediated gene therapy in the RetGC1/RetGC2 double knockout (GCdko) mouse, a model lacking rod and cone function and exhibiting progressive loss of both photoreceptor subclasses. Use of this model also allowed for the evaluation of the functional efficiency of transgenic RetGC1 isozyme. Subretinal delivery of AAV8(Y733F) vector containing the human rhodopsin kinase (hGRK1) promoter driving murine Gucy2e was performed in GCdko mice at various postnatal time points. Treatment resulted in restoration of rod and cone function at all treatment ages and preservation of retinal structure in GCdko mice treated as late as 7 weeks of age. Functional gains and structural preservation were stable for at least 1 year. Treatment also conferred cortical- and subcortical-based visually-guided behavior. Functional efficiency of transgenic RetGC1 was indistinguishable from that of endogenous isozyme in congenic wild-type (WT) mice. This study clearly demonstrates AAV-mediated RetGC1 expression restores function to and preserves structure of rod and cone photoreceptors in a degenerative model of retinal guanylate cyclase deficiency, further supporting development of an AAV-based vector for treatment of LCA1.
Collapse
Affiliation(s)
- Sanford L Boye
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Wang X, Wang H, Sun V, Tuan HF, Keser V, Wang K, Ren H, Lopez I, Zaneveld JE, Siddiqui S, Bowles S, Khan A, Salvo J, Jacobson SG, Iannaccone A, Wang F, Birch D, Heckenlively JR, Fishman GA, Traboulsi EI, Li Y, Wheaton D, Koenekoop RK, Chen R. Comprehensive molecular diagnosis of 179 Leber congenital amaurosis and juvenile retinitis pigmentosa patients by targeted next generation sequencing. J Med Genet 2013; 50:674-88. [PMID: 23847139 DOI: 10.1136/jmedgenet-2013-101558] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Leber congenital amaurosis (LCA) and juvenile retinitis pigmentosa (RP) are inherited retinal diseases that cause early onset severe visual impairment. An accurate molecular diagnosis can refine the clinical diagnosis and allow gene specific treatments. METHODS We developed a capture panel that enriches the exonic DNA of 163 known retinal disease genes. Using this panel, we performed targeted next generation sequencing (NGS) for a large cohort of 179 unrelated and prescreened patients with the clinical diagnosis of LCA or juvenile RP. Systematic NGS data analysis, Sanger sequencing validation, and segregation analysis were utilised to identify the pathogenic mutations. Patients were revisited to examine the potential phenotypic ambiguity at the time of initial diagnosis. RESULTS Pathogenic mutations for 72 patients (40%) were identified, including 45 novel mutations. Of these 72 patients, 58 carried mutations in known LCA or juvenile RP genes and exhibited corresponding phenotypes, while 14 carried mutations in retinal disease genes that were not consistent with their initial clinical diagnosis. We revisited patients in the latter case and found that homozygous mutations in PRPH2 can cause LCA/juvenile RP. Guided by the molecular diagnosis, we reclassified the clinical diagnosis in two patients. CONCLUSIONS We have identified a novel gene and a large number of novel mutations that are associated with LCA/juvenile RP. Our results highlight the importance of molecular diagnosis as an integral part of clinical diagnosis.
Collapse
Affiliation(s)
- Xia Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Lustremant C, Habeler W, Plancheron A, Goureau O, Grenot L, de la Grange P, Audo I, Nandrot EF, Monville C. Human induced pluripotent stem cells as a tool to model a form of Leber congenital amaurosis. Cell Reprogram 2013; 15:233-46. [PMID: 23663011 DOI: 10.1089/cell.2012.0076] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Our purpose was to investigate genes and molecular mechanisms involved in patients with Leber congenital amaurosis (LCA) and to model this type of LCA for drug screening. Fibroblasts from two unrelated clinically identified patients with a yet undetermined gene mutation were reprogrammed to pluripotency by retroviral transduction. These human induced pluripotent stem cells (hiPSCs) were differentiated into neural stem cells (NSCs) that mimicked the neural tube stage and retinal pigmented epithelial (RPE) cells that could be targeted by the disease. A genome-wide transcriptome analysis was performed with Affymetrix Exon Array GeneChip(®), comparing LCA-hiPSCs derivatives to controls. A genomic search for alteration in all genes known to be involved in LCA revealed a common polymorphism on the GUCY2D gene, referenced as the LCA type I (OMIM *600179 and #204000), but the causative gene remained unknown. The hiPSCs expressed the key pluripotency factors and formed embryoid bodies in vitro containing cells originating from all three germ layers. They were successfully differentiated into NSC and RPE cells. One gene, NNAT, was upregulated in LCA cell populations, and three genes were downregulated, GSTT1, TRIM61 and ZNF558, with potential correlates for molecular mechanisms of this type of LCA, in particular for protein degradation and oxidative stress. The two LCA patient-specific iPSC lines will contribute to modeling LCA phenotypes and screening candidate drugs.
Collapse
|
59
|
Jonsson F, Burstedt MS, Sandgren O, Norberg A, Golovleva I. Novel mutations in CRB1 and ABCA4 genes cause Leber congenital amaurosis and Stargardt disease in a Swedish family. Eur J Hum Genet 2013; 21:1266-71. [PMID: 23443024 DOI: 10.1038/ejhg.2013.23] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 11/09/2022] Open
Abstract
This study aimed to identify genetic mechanisms underlying severe retinal degeneration in one large family from northern Sweden, members of which presented with early-onset autosomal recessive retinitis pigmentosa and juvenile macular dystrophy. The clinical records of affected family members were analysed retrospectively and ophthalmological and electrophysiological examinations were performed in selected cases. Mutation screening was initially performed with microarrays, interrogating known mutations in the genes associated with recessive retinitis pigmentosa, Leber congenital amaurosis and Stargardt disease. Searching for homozygous regions with putative causative disease genes was done by high-density SNP-array genotyping, followed by segregation analysis of the family members. Two distinct phenotypes of retinal dystrophy, Leber congenital amaurosis and Stargardt disease were present in the family. In the family, four patients with Leber congenital amaurosis were homozygous for a novel c.2557C>T (p.Q853X) mutation in the CRB1 gene, while of two cases with Stargardt disease, one was homozygous for c.5461-10T>C in the ABCA4 gene and another was carrier of the same mutation and a novel ABCA4 mutation c.4773+3A>G. Sequence analysis of the entire ABCA4 gene in patients with Stargardt disease revealed complex alleles with additional sequence variants, which were evaluated by bioinformatics tools. In conclusion, presence of different genetic mechanisms resulting in variable phenotype within the family is not rare and can challenge molecular geneticists, ophthalmologists and genetic counsellors.
Collapse
Affiliation(s)
- Frida Jonsson
- Department of Medical Biosciences/Medical and Clinical Genetics, University of Umeå, Umeå, Sweden
| | | | | | | | | |
Collapse
|
60
|
Dawn of ocular gene therapy: implications for molecular diagnosis in retinal disease. SCIENCE CHINA-LIFE SCIENCES 2013; 56:125-33. [PMID: 23393028 DOI: 10.1007/s11427-013-4443-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/28/2012] [Indexed: 12/26/2022]
Abstract
Personalized medicine aims to utilize genomic information about patients to tailor treatment. Gene replacement therapy for rare genetic disorders is perhaps the most extreme form of personalized medicine, in that the patients' genome wholly determines their treatment regimen. Gene therapy for retinal disorders is poised to become a clinical reality. The eye is an optimal site for gene therapy due to the relative ease of precise vector delivery, immune system isolation, and availability for monitoring of any potential damage or side effects. Due to these advantages, clinical trials for gene therapy of retinal diseases are currently underway. A necessary precursor to such gene therapies is accurate molecular diagnosis of the mutation(s) underlying disease. In this review, we discuss the application of Next Generation Sequencing (NGS) to obtain such a diagnosis and identify disease causing genes, using retinal disorders as a case study. After reviewing ocular gene therapy, we discuss the application of NGS to the identification of novel Mendelian disease genes. We then compare current, array based mutation detection methods against next NGS-based methods in three retinal diseases: Leber's Congenital Amaurosis, Retinitis Pigmentosa, and Stargardt's disease. We conclude that next-generation sequencing based diagnosis offers several advantages over array based methods, including a higher rate of successful diagnosis and the ability to more deeply and efficiently assay a broad spectrum of mutations. However, the relative difficulty of interpreting sequence results and the development of standardized, reliable bioinformatic tools remain outstanding concerns. In this review, recent advances NGS based molecular diagnoses are discussed, as well as their implications for the development of personalized medicine.
Collapse
|
61
|
Perrault I, Estrada-Cuzcano A, Lopez I, Kohl S, Li S, Testa F, Zekveld-Vroon R, Wang X, Pomares E, Andorf J, Aboussair N, Banfi S, Delphin N, den Hollander AI, Edelson C, Florijn R, Jean-Pierre M, Leowski C, Megarbane A, Villanueva C, Flores B, Munnich A, Ren H, Zobor D, Bergen A, Chen R, Cremers FPM, Gonzalez-Duarte R, Koenekoop RK, Simonelli F, Stone E, Wissinger B, Zhang Q, Kaplan J, Rozet JM. Union makes strength: a worldwide collaborative genetic and clinical study to provide a comprehensive survey of RD3 mutations and delineate the associated phenotype. PLoS One 2013; 8:e51622. [PMID: 23308101 PMCID: PMC3538699 DOI: 10.1371/journal.pone.0051622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/02/2012] [Indexed: 12/02/2022] Open
Abstract
Leber congenital amaurosis (LCA) is the earliest and most severe retinal degeneration (RD), and the most common cause of incurable blindness diagnosed in children. It is occasionally the presenting symptom of multisystemic ciliopathies which diagnosis will require a specific care of patients. Nineteen LCA genes are currently identified and three of them account for both non-syndromic and syndromic forms of the disease. RD3 (LCA12) was implicated as a LCA gene based on the identification of homozygous truncating mutations in two LCA families despite the screening of large cohorts of patients. Here we provide a comprehensive survey of RD3 mutations and of their clinical expression through the screening of a cohort of 852 patients originating worldwide affected with LCA or early-onset and severe RD. We identified three RD3 mutations in seven unrelated consanguineous LCA families - i.e., a 2 bp deletion and two nonsense mutations – predicted to cause complete loss of function. Five families originating from the Southern Shores of the Mediterranean segregated a similar mutation (c.112C>T, p.R38*) suggesting that this change may have resulted from an ancient founder effect. Considering the low frequency of RD3 carriers, the recurrence risk for LCA in non-consanguineous unions is negligible for both heterozygote and homozygote RD3 individuals. The LCA12 phenotype in our patients is highly similar to those of patients with mutant photoreceptor-specific guanylate cyclase (GUCY2D/LCA1). This observation is consistent with the report of the role of RD3 in trafficking of GUCYs and gives further support to a common mechanism of photoreceptor degeneration in LCA12 and LCA1, i.e., inability to increase cytoplasmic cGMP concentration in outer segments and thus to recover the dark-state. Similar to LCA1, LCA12 patients have no extraocular symptoms despite complete inactivation of both RD3 alleles, supporting the view that extraocular investigations in LCA infants with RD3 mutations should be avoided.
Collapse
Affiliation(s)
- Isabelle Perrault
- Unité de Recherches Génétique et Epigénétique des Maladies Métaboliques, Neurosensorielles et du Développement (INSERM U781)- Université Paris Descartes- Fondation IMAGINE, Paris, France
| | | | - Irma Lopez
- McGill Ocular Genetics Laboratory, Montreal Children's Hospital, McGill University Health Centre, Montreal, Canada
| | - Susanne Kohl
- University Eye Hospital, Institute for Ophthalmic Research, Tübingen University, Tübingen, Germany
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yatsen University, Guangzhou, China
| | - Francesco Testa
- Department of Ophthalmology, Second University of Naples, Naples, Italy
| | - Renate Zekveld-Vroon
- The Netherlands Institute for Neuroscience (NIN-KNAW), Amsterdam, The Netherlands
| | - Xia Wang
- Department of Molecular and Human Genetics, Baylor College of Medecine, Houston, Texas, United States of America
| | - Esther Pomares
- Faculty of Biology, Department of Genetics, University of Barcelona, Barcelona, Spain
| | - Jean Andorf
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medecine, Iowa City, Iowa, United States of America
| | - Nisrine Aboussair
- Service de Génétique CHU Mohammed VI, Faculté de Médecine et de Pharmacie, Université Caddi Ayyed, Marrakech, Morocco
| | - Sandro Banfi
- Telethon Institute of Genetics and Medecine (TIGEM), Naples, Italy
- Medical Genetics, Department of General Pathology, Second University of Naples, Naples, Italy
| | - Nathalie Delphin
- Unité de Recherches Génétique et Epigénétique des Maladies Métaboliques, Neurosensorielles et du Développement (INSERM U781)- Université Paris Descartes- Fondation IMAGINE, Paris, France
| | - Anneke I. den Hollander
- Department of Human genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Department of Ophthalmology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | - Ralph Florijn
- The Netherlands Institute for Neuroscience (NIN-KNAW), Amsterdam, The Netherlands
| | | | | | - Andre Megarbane
- Service de Génétique Médicale, Université Saint Joseph, Beyrouth, Lebanon
| | - Cristina Villanueva
- Servicio de Génética, Asociacion Para Evitar La Ceguera en Mexico, Mexico City, Mexico
| | - Blanca Flores
- Servicio de Génética, Asociacion Para Evitar La Ceguera en Mexico, Mexico City, Mexico
| | - Arnold Munnich
- Unité de Recherches Génétique et Epigénétique des Maladies Métaboliques, Neurosensorielles et du Développement (INSERM U781)- Université Paris Descartes- Fondation IMAGINE, Paris, France
| | - Huanan Ren
- McGill Ocular Genetics Laboratory, Montreal Children's Hospital, McGill University Health Centre, Montreal, Canada
| | - Ditta Zobor
- University Eye Hospital, Institute for Ophthalmic Research, Tübingen University, Tübingen, Germany
| | - Arthur Bergen
- The Netherlands Institute for Neuroscience (NIN-KNAW), Amsterdam, The Netherlands
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medecine, Houston, Texas, United States of America
| | - Frans P. M. Cremers
- Department of Human genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Roser Gonzalez-Duarte
- Faculty of Biology, Department of Genetics, University of Barcelona, Barcelona, Spain
| | - Robert K. Koenekoop
- McGill Ocular Genetics Laboratory, Montreal Children's Hospital, McGill University Health Centre, Montreal, Canada
| | | | - Edwin Stone
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medecine, Iowa City, Iowa, United States of America
| | - Bernd Wissinger
- University Eye Hospital, Institute for Ophthalmic Research, Tübingen University, Tübingen, Germany
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yatsen University, Guangzhou, China
| | - Josseline Kaplan
- Unité de Recherches Génétique et Epigénétique des Maladies Métaboliques, Neurosensorielles et du Développement (INSERM U781)- Université Paris Descartes- Fondation IMAGINE, Paris, France
| | - Jean-Michel Rozet
- Unité de Recherches Génétique et Epigénétique des Maladies Métaboliques, Neurosensorielles et du Développement (INSERM U781)- Université Paris Descartes- Fondation IMAGINE, Paris, France
- * E-mail:
| |
Collapse
|
62
|
|
63
|
Kannabiran C, Palavalli L, Jalali S. Mutation of SPATA7 in a family with autosomal recessive early-onset retinitis pigmentosa. J Mol Genet Med 2012; 6:301-3. [PMID: 23300508 PMCID: PMC3538357 DOI: 10.4172/1747-0862.1000053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/11/2012] [Accepted: 12/11/2012] [Indexed: 11/12/2022] Open
Affiliation(s)
- Chitra Kannabiran
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L V Prasad Eye Institute, Kallam Anji Reddy Campus, Banjara Hills, Hyderabad 500034, India
| | | | | |
Collapse
|
64
|
Chang S, Vaccarella L, Olatunji S, Cebulla C, Christoforidis J. Diagnostic challenges in retinitis pigmentosa: genotypic multiplicity and phenotypic variability. Curr Genomics 2012; 12:267-75. [PMID: 22131872 PMCID: PMC3131734 DOI: 10.2174/138920211795860116] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 04/06/2011] [Accepted: 04/15/2011] [Indexed: 12/03/2022] Open
Abstract
Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal disorders. Diagnosis can be challenging as more than 40 genes are known to cause non-syndromic RP and phenotypic expression can differ significantly resulting in variations in disease severity, age of onset, rate of progression, and clinical findings. We describe the clinical manifestations of RP, the more commonly known causative gene mutations, and the genotypic-phenotypic correlation of RP.
Collapse
Affiliation(s)
- Susie Chang
- Retina Division, Havener Eye Institute, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | | | | | | | | |
Collapse
|
65
|
Mutations in NMNAT1 cause Leber congenital amaurosis and identify a new disease pathway for retinal degeneration. Nat Genet 2012; 44:1035-9. [PMID: 22842230 DOI: 10.1038/ng.2356] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 06/25/2012] [Indexed: 12/26/2022]
Abstract
Leber congenital amaurosis (LCA) is a blinding retinal disease that presents within the first year after birth. Using exome sequencing, we identified mutations in the nicotinamide adenine dinucleotide (NAD) synthase gene NMNAT1 encoding nicotinamide mononucleotide adenylyltransferase 1 in eight families with LCA, including the family in which LCA was originally linked to the LCA9 locus. Notably, all individuals with NMNAT1 mutations also have macular colobomas, which are severe degenerative entities of the central retina (fovea) devoid of tissue and photoreceptors. Functional assays of the proteins encoded by the mutant alleles identified in our study showed that the mutations reduce the enzymatic activity of NMNAT1 in NAD biosynthesis and affect protein folding. Of note, recent characterization of the slow Wallerian degeneration (Wld(s)) mouse model, in which prolonged axonal survival after injury is observed, identified NMNAT1 as a neuroprotective protein when ectopically expressed. Our findings identify a new disease mechanism underlying LCA and provide the first link between endogenous NMNAT1 dysfunction and a human nervous system disorder.
Collapse
|
66
|
Pang JJ, Lei L, Dai X, Shi W, Liu X, Dinculescu A, McDowell JH. AAV-mediated gene therapy in mouse models of recessive retinal degeneration. Curr Mol Med 2012; 12:316-30. [PMID: 22300136 DOI: 10.2174/156652412799218877] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 08/23/2011] [Accepted: 10/25/2011] [Indexed: 02/01/2023]
Abstract
In recent years, more and more mutant genes that cause retinal diseases have been detected. At the same time, many naturally occurring mouse models of retinal degeneration have also been found, which show similar changes to human retinal diseases. These, together with improved viral vector quality allow more and more traditionally incurable inherited retinal disorders to become potential candidates for gene therapy. Currently, the most common vehicle to deliver the therapeutic gene into target retinal cells is the adenoassociated viral vector (AAV). Following delivery to the immuno-privileged subretinal space, AAV-vectors can efficiently target both retinal pigment epithelium and photoreceptor cells, the origin of most retinal degenerations. This review focuses on the AAV-based gene therapy in mouse models of recessive retinal degenerations, especially those in which delivery of the correct copy of the wild-type gene has led to significant beneficial effects on visual function, as determined by morphological, biochemical, electroretinographic and behavioral analysis. The past studies in animal models and ongoing successful LCA2 clinical trials, predict a bright future for AAV gene replacement treatment for inherited recessive retinal diseases.
Collapse
Affiliation(s)
- J-J Pang
- Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical College, China.
| | | | | | | | | | | | | |
Collapse
|
67
|
Ajmal M, Khan MI, Micheal S, Ahmed W, Shah A, Venselaar H, Bokhari H, Azam A, Waheed NK, Collin RW, den Hollander AI, Qamar R, Cremers FPM. Identification of recurrent and novel mutations in TULP1 in Pakistani families with early-onset retinitis pigmentosa. Mol Vis 2012; 18:1226-37. [PMID: 22665969 PMCID: PMC3365133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 05/07/2012] [Indexed: 10/25/2022] Open
Abstract
PURPOSE To identify the genetic defects underlying retinitis pigmentosa (RP) in Pakistani families. METHODS Genome-wide high-density single-nucleotide-polymorphism microarray analysis was performed using the DNA of nine affected individuals from two large families with multiple consanguineous marriages. Data were analyzed to identify homozygous regions that are shared by affected sibs in each family. Sanger sequencing was performed for genes previously implicated in autosomal recessive RP and allied retinal dystrophies that resided in the identified homozygous regions. Probands from both families underwent fundus examination and electroretinogram measurements. RESULTS The tubby-like protein 1 gene (TULP1) was present in the largest homozygous region in both families. Sequence analysis identified a previously reported mutation (c.1138A>G; p.Thr380Ala) in one family and a novel pathogenic variant (c.1445G>A; p.Arg482Gln) in the other family. Both variants were found to be present in a homozygous state in all affected individuals, were heterozygous present in the unaffected parents, and heterozygous present or absent in normal individuals. Affected individuals of both families showed an early-onset form of RP. CONCLUSIONS Homozygosity mapping, combined with candidate-gene analysis, successfully identified genetic defects in TULP1 in two large Pakistani families with early-onset retinitis pigmentosa.
Collapse
Affiliation(s)
- Muhammad Ajmal
- Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad, Pakistan,Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands,Shifa College of Medicine, Islamabad, Pakistan
| | - Muhammad Imran Khan
- Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad, Pakistan,Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Shazia Micheal
- Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad, Pakistan,Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Waqas Ahmed
- Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Ashfa Shah
- Shifa College of Medicine, Islamabad, Pakistan
| | - Hanka Venselaar
- Centre for Molecular and Biomolecular Informatics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands,Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Habib Bokhari
- Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Aisha Azam
- Institute of Ophthalmology, Mayo Hospital, Lahore, Pakistan
| | - Nadia Khalida Waheed
- Shifa College of Medicine, Islamabad, Pakistan,Shifa International Hospital, Islamabad, Pakistan
| | - Rob W.J. Collin
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands,Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands,Department of Ophthalmology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Anneke I. den Hollander
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands,Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands,Department of Ophthalmology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Raheel Qamar
- Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad, Pakistan,Shifa College of Medicine, Islamabad, Pakistan
| | - Frans P. M. Cremers
- Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad, Pakistan,Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands,Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
68
|
La Salle S, Palmer K, O'Brien M, Schimenti JC, Eppig J, Handel MA. Spata22, a novel vertebrate-specific gene, is required for meiotic progress in mouse germ cells. Biol Reprod 2012; 86:45. [PMID: 22011390 DOI: 10.1095/biolreprod.111.095752] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The N-ethyl-N-nitrosourea-induced repro42 mutation, identified by a forward genetics strategy, causes both male and female infertility, with no other apparent phenotypes. Positional cloning led to the discovery of a nonsense mutation in Spata22, a hitherto uncharacterized gene conserved among bony vertebrates. Expression of both transcript and protein is restricted predominantly to germ cells of both sexes. Germ cells of repro42 mutant mice express Spata22 transcript, but not SPATA22 protein. Gametogenesis is profoundly affected by the mutation, and germ cells in repro42 mutant mice do not progress beyond early meiotic prophase, with subsequent germ cell loss in both males and females. The Spata22 gene is essential for one or more key events of early meiotic prophase, as homologous chromosomes of mutant germ cells do not achieve normal synapsis or repair meiotic DNA double-strand breaks. The repro42 mutation thus identifies a novel mammalian germ cell-specific gene required for meiotic progression.
Collapse
|
69
|
Ocular and extra-ocular features of patients with Leber congenital amaurosis and mutations in CEP290. Mol Vis 2012; 18:412-25. [PMID: 22355252 PMCID: PMC3283211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 02/07/2012] [Indexed: 10/27/2022] Open
Abstract
PURPOSE This study investigated the centrosomal protein, 290-KD (CEP290) associated genotype and ocular and extra-ocular phenotype in 18 patients with Leber congenital amaurosis (LCA). METHODS Eighteen patients with LCA from 14 families with mutations in the CEP290 gene were identified with sequencing or with heteroduplex analysis. Ophthalmic examinations were performed on all patients. Scans of the central nervous system were reassessed in three patients and obtained in two. Renal function was evaluated in all patients. Ultrasonography of the kidneys was performed in six patients. RESULTS Eight patients (from five families) carried the c.2991+1655A>G mutation homozygously. Nine solitary patients carried this variant combined with a nonsense, frameshift, or splice site mutation on the second allele. One new nonsense mutation was identified: c.1078C>T. Fourteen patients (from 12 families) had been completely blind from birth or had light perception. The best-recorded visual acuity was 20/200. Peripheral fundus changes appeared to be progressive with a relatively preserved posterior pole. Novel ophthalmic features for the CEP290 phenotype were Coats-like exudative vasculopathy in two patients, a small chorioretinal coloboma in one patient, and well defined, small, atrophic spots at the level of the retinal pigment epithelium causing a dot-like appearance in five patients. Some CEP290 patients exhibited systemic abnormalities. We found abnormal proprioception in two patients and mild mental retardation in one. One patient was infertile due to immobile spermatozoa. No renal abnormalities were detected. CONCLUSIONS CEP290-associated LCA has a severe, progressive, and clinically identifiable phenotype. Distinct extra-ocular findings were noted, which may be attributed to ciliary dysfunction.
Collapse
|
70
|
Audo I, Bujakowska KM, Léveillard T, Mohand-Saïd S, Lancelot ME, Germain A, Antonio A, Michiels C, Saraiva JP, Letexier M, Sahel JA, Bhattacharya SS, Zeitz C. Development and application of a next-generation-sequencing (NGS) approach to detect known and novel gene defects underlying retinal diseases. Orphanet J Rare Dis 2012; 7:8. [PMID: 22277662 PMCID: PMC3352121 DOI: 10.1186/1750-1172-7-8] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 01/25/2012] [Indexed: 12/25/2022] Open
Abstract
Background Inherited retinal disorders are clinically and genetically heterogeneous with more than 150 gene defects accounting for the diversity of disease phenotypes. So far, mutation detection was mainly performed by APEX technology and direct Sanger sequencing of known genes. However, these methods are time consuming, expensive and unable to provide a result if the patient carries a new gene mutation. In addition, multiplicity of phenotypes associated with the same gene defect may be overlooked. Methods To overcome these challenges, we designed an exon sequencing array to target 254 known and candidate genes using Agilent capture. Subsequently, 20 DNA samples from 17 different families, including four patients with known mutations were sequenced using Illumina Genome Analyzer IIx next-generation-sequencing (NGS) platform. Different filtering approaches were applied to identify the genetic defect. The most likely disease causing variants were analyzed by Sanger sequencing. Co-segregation and sequencing analysis of control samples validated the pathogenicity of the observed variants. Results The phenotype of the patients included retinitis pigmentosa, congenital stationary night blindness, Best disease, early-onset cone dystrophy and Stargardt disease. In three of four control samples with known genotypes NGS detected the expected mutations. Three known and five novel mutations were identified in NR2E3, PRPF3, EYS, PRPF8, CRB1, TRPM1 and CACNA1F. One of the control samples with a known genotype belongs to a family with two clinical phenotypes (Best and CSNB), where a novel mutation was identified for CSNB. In six families the disease associated mutations were not found, indicating that novel gene defects remain to be identified. Conclusions In summary, this unbiased and time-efficient NGS approach allowed mutation detection in 75% of control cases and in 57% of test cases. Furthermore, it has the possibility of associating known gene defects with novel phenotypes and mode of inheritance.
Collapse
|
71
|
Hollingsworth TJ, Gross AK. Defective trafficking of rhodopsin and its role in retinal degenerations. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 293:1-44. [PMID: 22251557 DOI: 10.1016/b978-0-12-394304-0.00006-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Retinitis pigmentosa is a retinal degeneration transmitted by varied modes of inheritance and affects approximately 1 in 4000 individuals. The photoreceptors of the outer retina, as well as the retinal pigmented epithelium which supports the outer retina metabolically and structurally, are the retinal regions most affected by the disorder. In several forms of retinitis pigmentosa, the mislocalization of the rod photoreceptor protein rhodopsin is thought to be a contributing factor underlying the pathophysiology seen in patients. The mutations causing this mislocalization often occur in genes coding proteins involved in ciliary formation, vesicular transport, rod outer segment disc formation, and stability, as well as the rhodopsin protein itself. Often, these mutations result in the most early-onset cases of both recessive and dominant retinitis pigmentosa, and the following presents a discussion of the proteins, their degenerative phenotypes, and possible treatments of the disease.
Collapse
Affiliation(s)
- T J Hollingsworth
- Department of Vision Sciences, University of Alabama, Birmingham, Alabama, USA
| | | |
Collapse
|
72
|
Wang H, Chen X, Dudinsky L, Patenia C, Chen Y, Li Y, Wei Y, Abboud EB, Al-Rajhi AA, Lewis RA, Lupski JR, Mardon G, Gibbs RA, Perkins BD, Chen R. Exome capture sequencing identifies a novel mutation in BBS4. Mol Vis 2011; 17:3529-40. [PMID: 22219648 PMCID: PMC3250376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 12/26/2011] [Indexed: 11/02/2022] Open
Abstract
PURPOSE Leber congenital amaurosis (LCA) is one of the most severe eye dystrophies characterized by severe vision loss at an early stage and accounts for approximately 5% of all retinal dystrophies. The purpose of this study was to identify a novel LCA disease allele or gene and to develop an approach combining genetic mapping with whole exome sequencing. METHODS Three patients from King Khaled Eye Specialist Hospital (KKESH205) underwent whole genome single nucleotide polymorphism genotyping, and a single candidate region was identified. Taking advantage of next-generation high-throughput DNA sequencing technologies, whole exome capture sequencing was performed on patient KKESH205#7. Sanger direct sequencing was used during the validation step. The zebrafish model was used to examine the function of the mutant allele. RESULTS A novel missense mutation in Bardet-Biedl syndrome 4 protein (BBS4) was identified in a consanguineous family from Saudi Arabia. This missense mutation in the fifth exon (c.253G>C;p.E85Q) of BBS4 is likely a disease-causing mutation as it segregates with the disease. The mutation is not found in the single nucleotide polymorphism (SNP) database, the 1000 Genomes Project, or matching normal controls. Functional analysis of this mutation in zebrafish indicates that the G253C allele is pathogenic. Coinjection of the G253C allele cannot rescue the mislocalization of rhodopsin in the retina when BBS4 is knocked down by morpholino injection. Immunofluorescence analysis in cell culture shows that this missense mutation in BBS4 does not cause obvious defects in protein expression or pericentriolar localization. CONCLUSIONS This mutation likely mainly reduces or abolishes BBS4 function in the retina. Further studies of this allele will provide important insights concerning the pleiotropic nature of BBS4 function.
Collapse
Affiliation(s)
- Hui Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Xianfeng Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Lynn Dudinsky
- Department of Biology, Texas A&M University, College Station, TX
| | - Claire Patenia
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Yiyun Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Yumei Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Yue Wei
- Leukemia Department, University of Texas, M. D. Anderson Cancer Center, Houston, TX
| | - Emad B. Abboud
- King Khaled Eye Specialist Hospital, Riyadh, Kingdom of Saudi Arabia
| | - Ali A. Al-Rajhi
- King Khaled Eye Specialist Hospital, Riyadh, Kingdom of Saudi Arabia
| | - Richard Alan Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital, Baylor College of Medicine, Houston, TX
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital, Baylor College of Medicine, Houston, TX
- Department of Neurology, Baylor College of Medicine, Houston, TX
| | - Graeme Mardon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Department of Neurology, Baylor College of Medicine, Houston, TX
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
- Department of Pathology, Baylor College of Medicine, Houston, TX
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Brian D. Perkins
- Department of Biology, Texas A&M University, College Station, TX
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
73
|
Lack of phenotypic effect of triallelic variation in SPATA7 in a family with Leber congenital amaurosis resulting from CRB1 mutations. Mol Vis 2011; 17:3326-32. [PMID: 22219627 PMCID: PMC3247167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 12/14/2011] [Indexed: 11/30/2022] Open
Abstract
PURPOSE To identify the causative gene for autosomal recessive Leber congenital amaurosis (LCA) in a Chinese family. METHODS One Chinese LCA family was identified and an ophthalmologic examination was performed. The genetic defects were analyzed simultaneously by a genome-wide linkage scan with 382 polymorphic microsatellite markers, as well as by comprehensive mutational screening of 15 genes known to associate with LCA on the genomic DNA of this family. RESULTS Suggestive linkages were found in 13 chromosomal regions, of which only one harbored a known causative gene, crumbs homolog 1 (CRB1), on chromosome 1. Sanger sequencing of CRB1 identified two novel heterozygous mutations, c.3221T>C (p.L1074S) and c.2677-2A>C. In addition, a novel missense heterozygous mutation, c.938C>A (p.A313D), in spermatogenesis associated 7 (SPATA7), was detected in the proband after screening of the other 14 LCA causative genes. All three affected individuals of the family had compound heterozygous CRB1 mutations, and one of the three (the proband) had an additional mutation in SPATA7. The unaffected mother had the heterozygous c.3221T>C mutation in CRB1 and the heterozygous c.938C>A mutation in SPATA7. The unaffected father could not be tested, but presumably had the heterozygous c.2677-2A>C mutation in CRB1. The proband, with triallelic mutations in CRB1 and SPATA7, had a phenotype similar to other two affected brothers, suggesting the additional mutant allele in SPATA7 might not contribute to the disease. Similarly, the mother, with digenic mutations in CRB1 and SPATA7, had normal vision and fundi, suggesting the digenic mutations in these two genes might not cause disease. CONCLUSIONS Digenic and triallelic mutations of CRB1 and SPATA7 were detected in a family with LCA. Our results imply that CRB1 and SPATA7 may not interact with each other directly. This emphasizes that care should be taken in invoking a mutation-disease association for digenic and triallelic mutations.
Collapse
|
74
|
Ávila-Fernández A, Cortón M, López-Molina MI, Martín-Garrido E, Cantalapiedra D, Fernández-Sánchez R, Blanco-Kelly F, Riveiro-Álvarez R, Tatu SD, Trujillo-Tiebas MJ, García-Sandoval B, Ayuso C, Cremers FP. Late Onset Retinitis Pigmentosa. Ophthalmology 2011; 118:2523-4. [DOI: 10.1016/j.ophtha.2011.07.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 07/19/2011] [Indexed: 01/23/2023] Open
|
75
|
Mackay DS, Dev Borman A, Moradi P, Henderson RH, Li Z, Wright GA, Waseem N, Gandra M, Thompson DA, Bhattacharya SS, Holder GE, Webster AR, Moore AT. RDH12 retinopathy: novel mutations and phenotypic description. Mol Vis 2011; 17:2706-16. [PMID: 22065924 PMCID: PMC3209419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 10/14/2011] [Indexed: 11/29/2022] Open
Abstract
PURPOSE To identify patients with autosomal recessive retinal dystrophy caused by mutations in the gene, retinal dehydrogenase 12 (RDH12), and to report the associated phenotype. METHODS After giving informed consent, all patients underwent full clinical evaluation. Patients were selected for mutation analysis based upon positive results from the Asper Ophthalmics Leber congenital amaurosis arrayed primer extansion (APEX) microarray screening, linkage analysis, or their clinical phenotype. All coding exons of RDH12 were screened by direct Sanger sequencing. Potential variants were checked for segregation in the respective families and screened in controls, and their pathogenicity analyzed using in silico prediction programs. RESULTS Screening of 389 probands by the APEX microarray and/or direct sequencing identified bi-allelic mutations in 29 families. Seventeen novel mutations were identified. The phenotype in these patients presented with a severe early-onset rod-cone dystrophy. Funduscopy showed severe generalized retinal pigment epithelial and retinal atrophy, which progressed to dense, widespread intraretinal pigment migration by adulthood. The macula showed severe atrophy, with pigmentation and yellowing, and corresponding loss of fundus autofluorescence. Optical coherence tomography revealed marked retinal thinning and excavation at the macula. CONCLUSIONS RDH12 mutations account for approximately 7% of disease in our cohort of patients diagnosed with Leber congenital amaurosis and early-onset retinal dystrophy. The clinical features of this disorder are highly characteristic and facilitate candidate gene screening. The term RDH12 retinopathy is proposed as a more accurate description.
Collapse
Affiliation(s)
- Donna S. Mackay
- Department of Genetics, Institute of Ophthalmology, London, UK
| | - Arundhati Dev Borman
- Department of Genetics, Institute of Ophthalmology, London, UK,Moorfields Eye Hospital, London, UK
| | | | | | - Zheng Li
- Department of Genetics, Institute of Ophthalmology, London, UK,Department of Ophthalmology, Tongji Hospital and Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Naushin Waseem
- Department of Genetics, Institute of Ophthalmology, London, UK
| | - Mamatha Gandra
- SNONGC Department of Genetics & Molecular Biology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Dorothy A. Thompson
- Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children, London, UK
| | | | | | - Andrew R. Webster
- Department of Genetics, Institute of Ophthalmology, London, UK,Moorfields Eye Hospital, London, UK
| | - Anthony T. Moore
- Department of Genetics, Institute of Ophthalmology, London, UK,Moorfields Eye Hospital, London, UK
| |
Collapse
|
76
|
Wang X, Wang H, Cao M, Li Z, Chen X, Patenia C, Gore A, Abboud EB, Al-Rajhi AA, Lewis RA, Lupski JR, Mardon G, Zhang K, Muzny D, Gibbs RA, Chen R. Whole-exome sequencing identifies ALMS1, IQCB1, CNGA3, and MYO7A mutations in patients with Leber congenital amaurosis. Hum Mutat 2011; 32:1450-9. [PMID: 21901789 DOI: 10.1002/humu.21587] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 07/28/2011] [Indexed: 12/21/2022]
Abstract
It has been well documented that mutations in the same retinal disease gene can result in different clinical phenotypes due to difference in the mutant allele and/or genetic background. To evaluate this, a set of consanguineous patient families with Leber congenital amaurosis (LCA) that do not carry mutations in known LCA disease genes was characterized through homozygosity mapping followed by targeted exon/whole-exome sequencing to identify genetic variations. Among these families, a total of five putative disease-causing mutations, including four novel alleles, were found for six families. These five mutations are located in four genes, ALMS1, IQCB1, CNGA3, and MYO7A. Therefore, in our LCA collection from Saudi Arabia, three of the 37 unassigned families carry mutations in retinal disease genes ALMS1, CNGA3, and MYO7A, which have not been previously associated with LCA, and 3 of the 37 carry novel mutations in IQCB1, which has been recently associated with LCA. Together with other reports, our results emphasize that the molecular heterogeneity underlying LCA, and likely other retinal diseases, may be highly complex. Thus, to obtain accurate diagnosis and gain a complete picture of the disease, it is essential to sequence a larger set of retinal disease genes and combine the clinical phenotype with molecular diagnosis.
Collapse
Affiliation(s)
- Xia Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Ahmad A, Daud S, Kakar N, Nürnberg G, Nürnberg P, Babar ME, Thoenes M, Kubisch C, Ahmad J, Bolz HJ. Identification of a novel LCA5 mutation in a Pakistani family with Leber congenital amaurosis and cataracts. Mol Vis 2011; 17:1940-5. [PMID: 21850168 PMCID: PMC3154126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 07/10/2011] [Indexed: 11/02/2022] Open
Abstract
PURPOSE To determine the cause of Leber congenital amaurosis (LCA) and developmental cataracts in a consanguineous Pakistani family. METHODS The diagnosis was established in all affected individuals of a Pakistani LCA family by medical history, funduscopy, and standard ERG. We performed genome-wide linkage analysis for mapping the disease locus in this family. RESULTS Congenitally severely reduced visual acuity and nystagmus were reported for all patients who, in the later phase of the disease, also developed cataracts. LCA in the family cosegregated with homozygosity for a single nucleotide polymorphism (SNP) haplotype on chromosome 6p14.1. The respective candidate region contained Leber congenital amaurosis 5 (LCA5), a gene previously reported to underlie LCA. We subsequently identified a novel truncating mutation in exon 4 of LCA5, c.642delC, in homozygous state in all affected persons of the family. CONCLUSIONS We report a novel LCA5 mutation causing LCA in a Pakistani family. Developmental cataracts were present in two of the four patients, raising the possibility that LCA5 mutations may predispose to this additional ocular pathology.
Collapse
Affiliation(s)
- Adeel Ahmad
- Department of Biotechnology and Informatics, BUITEMS, Quetta, Pakistan,Institute of Biochemistry and Biotechnology, UVAS, Lahore, Pakistan
| | - Shakeela Daud
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Naseebullah Kakar
- Department of Biotechnology and Informatics, BUITEMS, Quetta, Pakistan
| | - Gudrun Nürnberg
- Cologne Center for Genomics and Institute for Genetics, University of Cologne, Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics and Institute for Genetics, University of Cologne, Cologne, Germany,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | | | - Michaela Thoenes
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
| | - Christian Kubisch
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany,Institute of Human Genetics, University of Ulm, Germany
| | - Jamil Ahmad
- Department of Biotechnology and Informatics, BUITEMS, Quetta, Pakistan
| | - Hanno Jörn Bolz
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany,Center for Human Genetics, Bioscientia, Ingelheim, Germany
| |
Collapse
|
78
|
Abstract
Ciliopathies comprise a group of disorders associated with genetic mutations encoding defective proteins, which result in either abnormal formation or function of cilia. As cilia are a component of almost all vertebrate cells, cilia dysfunction can manifest as a constellation of features that include characteristically, retinal degeneration, renal disease and cerebral anomalies. Additional manifestations include congenital fibrocystic diseases of the liver, diabetes, obesity and skeletal dysplasias. Ciliopathic features have been associated with mutations in over 40 genes to date. However, with over 1,000 polypeptides currently identified within the ciliary proteome, several other disorders associated with this constellation of clinical features will likely be ascribed to mutations in other ciliary genes. The mechanisms underlying many of the disease phenotypes associated with ciliary dysfunction have yet to be fully elucidated. Several elegant studies have crucially demonstrated the dynamic ciliary localisation of components of the Hedgehog and Wnt signalling pathways during signal transduction. Given the critical role of the cilium in transducing "outside-in" signals, it is not surprising therefore, that the disease phenotypes consequent to ciliary dysfunction are a manifestation of aberrant signal transduction. Further investigation is now needed to explore the developmental and physiological roles of aberrant signal transduction in the manifestation of ciliopathy phenotypes. Utilisation of conditional and inducible murine models to delete or overexpress individual ciliary genes in a spatiotemporal and organ/cell-specific manner should help clarify some of the functional roles of ciliary proteins in the manifestation of phenotypic features.
Collapse
Affiliation(s)
- Aoife M Waters
- Department of Nephro-Urology, Great Ormond Street Hospital, London, WC1N 3JH, UK.
| | | |
Collapse
|
79
|
Audo I, Bujakowska K, Mohand-Saïd S, Tronche S, Lancelot ME, Antonio A, Germain A, Lonjou C, Carpentier W, Sahel JA, Bhattacharya S, Zeitz C. A novel DFNB31 mutation associated with Usher type 2 syndrome showing variable degrees of auditory loss in a consanguineous Portuguese family. Mol Vis 2011; 17:1598-606. [PMID: 21738389 PMCID: PMC3123164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 06/10/2011] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To identify the genetic defect of a consanguineous Portuguese family with rod-cone dystrophy and varying degrees of decreased audition. METHODS A detailed ophthalmic and auditory examination was performed on a Portuguese patient with severe autosomal recessive rod-cone dystrophy. Known genetic defects were excluded by performing autosomal recessive retinitis pigmentosa (arRP) genotyping microarray analysis and by Sanger sequencing of the coding exons and flanking intronic regions of eyes shut homolog-drosophila (EYS) and chromosome 2 open reading frame 71 (C2orf71). Subsequently, genome-wide homozygosity mapping was performed in DNA samples from available family members using a 700K single nucleotide polymorphism (SNP) microarray. Candidate genes present in the significantly large homozygous regions were screened for mutations using Sanger sequencing. RESULTS The largest homozygous region (~11 Mb) in the affected family members was mapped to chromosome 9, which harbors deafness, autosomal recessive 31 (DFNB31; a gene previously associated with Usher syndrome). Mutation analysis of DFNB31 in the index patient identified a novel one-base-pair deletion (c.737delC), which is predicted to lead to a truncated protein (p.Pro246HisfsX13) and co-segregated with the disease in the family. Ophthalmic examination of the index patient and the affected siblings showed severe rod-cone dystrophy. Pure tone audiometry revealed a moderate hearing loss in the index patient, whereas the affected siblings were reported with more profound and early onset hearing impairment. CONCLUSIONS We report a novel truncating mutation in DFNB31 associated with severe rod-cone dystrophy and varying degrees of hearing impairment in a consanguineous family of Portuguese origin. This is the second report of DFNB31 implication in Usher type 2.
Collapse
Affiliation(s)
- Isabelle Audo
- INSERM, U968, Paris, France,CNRS, UMR_7210, Paris, France,UPMC Univ Paris 06, UMR_S 968, Department of Genetics, Institut de la Vision, Paris, France,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 503,Paris, France,Department of Molecular Genetics, Institute of Ophthalmology, London, UK
| | - Kinga Bujakowska
- INSERM, U968, Paris, France,CNRS, UMR_7210, Paris, France,UPMC Univ Paris 06, UMR_S 968, Department of Genetics, Institut de la Vision, Paris, France
| | - Saddek Mohand-Saïd
- INSERM, U968, Paris, France,CNRS, UMR_7210, Paris, France,UPMC Univ Paris 06, UMR_S 968, Department of Genetics, Institut de la Vision, Paris, France,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 503,Paris, France
| | - Sophie Tronche
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 503,Paris, France,Commission Expertise et Evaluation de la SFORL, Paris, France
| | - Marie-Elise Lancelot
- INSERM, U968, Paris, France,CNRS, UMR_7210, Paris, France,UPMC Univ Paris 06, UMR_S 968, Department of Genetics, Institut de la Vision, Paris, France
| | - Aline Antonio
- INSERM, U968, Paris, France,CNRS, UMR_7210, Paris, France,UPMC Univ Paris 06, UMR_S 968, Department of Genetics, Institut de la Vision, Paris, France,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 503,Paris, France
| | - Aurore Germain
- INSERM, U968, Paris, France,CNRS, UMR_7210, Paris, France,UPMC Univ Paris 06, UMR_S 968, Department of Genetics, Institut de la Vision, Paris, France
| | - Christine Lonjou
- Plate-forme Post-Génomique P3S, Hôpital Pitié Salpêtrière UPMC, Faculté de Médecine, Paris, France
| | - Wassila Carpentier
- Plate-forme Post-Génomique P3S, Hôpital Pitié Salpêtrière UPMC, Faculté de Médecine, Paris, France
| | - José-Alain Sahel
- INSERM, U968, Paris, France,CNRS, UMR_7210, Paris, France,UPMC Univ Paris 06, UMR_S 968, Department of Genetics, Institut de la Vision, Paris, France,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 503,Paris, France,Department of Molecular Genetics, Institute of Ophthalmology, London, UK,Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
| | - Shomi Bhattacharya
- INSERM, U968, Paris, France,CNRS, UMR_7210, Paris, France,UPMC Univ Paris 06, UMR_S 968, Department of Genetics, Institut de la Vision, Paris, France,Department of Molecular Genetics, Institute of Ophthalmology, London, UK,Department of Cellular Therapy and Regenerative Medicine, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Seville, Spain
| | - Christina Zeitz
- INSERM, U968, Paris, France,CNRS, UMR_7210, Paris, France,UPMC Univ Paris 06, UMR_S 968, Department of Genetics, Institut de la Vision, Paris, France
| |
Collapse
|
80
|
Li L, Xiao X, Li S, Jia X, Wang P, Guo X, Jiao X, Zhang Q, Hejtmancik JF. Detection of variants in 15 genes in 87 unrelated Chinese patients with Leber congenital amaurosis. PLoS One 2011; 6:e19458. [PMID: 21602930 PMCID: PMC3094346 DOI: 10.1371/journal.pone.0019458] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 03/30/2011] [Indexed: 11/18/2022] Open
Abstract
Background Leber congenital amaurosis (LCA) is the earliest onset and most severe form of hereditary retinal dystrophy. So far, full spectrum of variations in the 15 genes known to cause LCA has not been systemically evaluated in East Asians. Therefore, we performed comprehensive detection of variants in these 15 genes in 87 unrelated Han Chinese patients with LCA. Methodology/Principal Findings The 51 most frequently mutated exons and introns in the 15 genes were selected for an initial scan using cycle sequencing. All the remaining exons in 11 of the 15 genes were subsequently sequenced. Fifty-three different variants were identified in 44 of the 87 patients (50.6%), involving 78 of the 88 alleles (11 homozygous and 56 heterozygous variants). Of the 53 variants, 35 (66%) were novel pathogenic mutations. In these Chinese patients, variants in GUCY2D are the most common cause of LCA (16.1% cases), followed by CRB1 (11.5%), RPGRIP1 (8%), RPE65 (5.7%), SPATA7 (4.6%), CEP290 (4.6%), CRX (3.4%), LCA5 (2.3%), MERTK (2.3%), AIPL1 (1.1%), and RDH12 (1.1%). This differs from the variation spectrum described in other populations. An initial scan of 55 of 215 PCR amplicons, including 214 exons and 1 intron, detected 83.3% (65/78) of the mutant alleles ultimately found in these 87 patients. In addition, sequencing only 9 exons would detect over 50% of the identified variants and require less than 5% of the labor and cost of comprehensive sequencing for all exons. Conclusions/Significance Our results suggest that specific difference in the variation spectrum found in LCA patients from the Han Chinese and other populations are related by ethnicity. Sequencing exons in order of decreasing risk is a cost-effective way to identify causative mutations responsible for LCA, especially in the context of genetic counseling for individual patients in a clinical setting.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaoyun Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiangming Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaodong Jiao
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
- * E-mail:
| | - J. Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
81
|
Qatarneh D, Mehta H, Lee V. Insight into Leber congenital amaurosis: potential for gene therapy. EXPERT REVIEW OF OPHTHALMOLOGY 2011. [DOI: 10.1586/eop.11.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
82
|
Zelinger L, Banin E, Obolensky A, Mizrahi-Meissonnier L, Beryozkin A, Bandah-Rozenfeld D, Frenkel S, Ben-Yosef T, Merin S, Schwartz SB, Cideciyan AV, Jacobson SG, Sharon D. A missense mutation in DHDDS, encoding dehydrodolichyl diphosphate synthase, is associated with autosomal-recessive retinitis pigmentosa in Ashkenazi Jews. Am J Hum Genet 2011; 88:207-15. [PMID: 21295282 DOI: 10.1016/j.ajhg.2011.01.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/29/2010] [Accepted: 01/10/2011] [Indexed: 11/30/2022] Open
Abstract
Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal degenerations caused by mutations in at least 50 genes. Using homozygosity mapping in Ashkenazi Jewish (AJ) patients with autosomal-recessive RP (arRP), we identified a shared 1.7 Mb homozygous region on chromosome 1p36.11. Sequence analysis revealed a founder homozygous missense mutation, c.124A>G (p.Lys42Glu), in the dehydrodolichyl diphosphate synthase gene (DHDDS) in 20 AJ patients with RP of 15 unrelated families. The mutation was not identified in an additional set of 109 AJ patients with RP, in 20 AJ patients with other inherited retinal diseases, or in 70 patients with retinal degeneration of other ethnic origins. The mutation was found heterozygously in 1 out of 322 ethnically matched normal control individuals. RT-PCR analysis in 21 human tissues revealed ubiquitous expression of DHDDS. Immunohistochemical analysis of the human retina with anti-DHDDS antibodies revealed intense labeling of the cone and rod photoreceptor inner segments. Clinical manifestations of patients who are homozygous for the c.124A>G mutation were within the spectrum associated with arRP. Most patients had symptoms of night and peripheral vision loss, nondetectable electroretinographic responses, constriction of visual fields, and funduscopic hallmarks of retinal degeneration. DHDDS is a key enzyme in the pathway of dolichol, which plays an important role in N-glycosylation of many glycoproteins, including rhodopsin. Our results support a pivotal role of DHDDS in retinal function and may allow for new therapeutic interventions for RP.
Collapse
Affiliation(s)
- Lina Zelinger
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Coppieters F, Casteels I, Meire F, De Jaegere S, Hooghe S, van Regemorter N, Van Esch H, Matuleviciene A, Nunes L, Meersschaut V, Walraedt S, Standaert L, Coucke P, Hoeben H, Kroes HY, Vande Walle J, de Ravel T, Leroy BP, De Baere E. Genetic screening of LCA in Belgium: predominance of CEP290 and identification of potential modifier alleles in AHI1 of CEP290-related phenotypes. Hum Mutat 2011; 31:E1709-66. [PMID: 20683928 PMCID: PMC3048164 DOI: 10.1002/humu.21336] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Leber Congenital Amaurosis (LCA), the most severe inherited retinal dystrophy, is genetically heterogeneous, with 14 genes accounting for 70% of patients. Here, 91 LCA probands underwent LCA chip analysis and subsequent sequencing of 6 genes (CEP290, CRB1, RPE65, GUCY2D, AIPL1and CRX), revealing mutations in 69% of the cohort, with major involvement of CEP290 (30%). In addition, 11 patients with early-onset retinal dystrophy (EORD) and 13 patients with Senior-Loken syndrome (SLS), LCA-Joubert syndrome (LCA-JS) or cerebello-oculo-renal syndrome (CORS) were included. Exhaustive re-inspection of the overall phenotypes in our LCA cohort revealed novel insights mainly regarding the CEP290-related phenotype. The AHI1 gene was screened as a candidate modifier gene in three patients with the same CEP290 genotype but different neurological involvement. Interestingly, a heterozygous novel AHI1 mutation, p.Asn811Lys, was found in the most severely affected patient. Moreover, AHI1 screening in five other patients with CEP290-related disease and neurological involvement revealed a second novel missense variant, p.His758Pro, in one LCA patient with mild mental retardation and autism. These two AHI1 mutations might thus represent neurological modifiers of CEP290-related disease. © 2010 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Frauke Coppieters
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Pawlyk BS, Bulgakov OV, Liu X, Xu X, Adamian M, Sun X, Khani SC, Berson EL, Sandberg MA, Li T. Replacement gene therapy with a human RPGRIP1 sequence slows photoreceptor degeneration in a murine model of Leber congenital amaurosis. Hum Gene Ther 2011; 21:993-1004. [PMID: 20384479 DOI: 10.1089/hum.2009.218] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RPGR-interacting protein-1 (RPGRIP1) is localized in the photoreceptor-connecting cilium, where it anchors the RPGR (retinitis pigmentosa GTPase regulator) protein, and its function is essential for photoreceptor maintenance. Genetic defect in RPGRIP1 is a known cause of Leber congenital amaurosis (LCA), a severe, early-onset form of retinal degeneration. We evaluated the efficacy of replacement gene therapy in a murine model of LCA carrying a targeted disruption of RPGRIP1. The replacement construct, packaged in an adeno-associated virus serotype 8 (AAV8) vector, used a rhodopsin kinase gene promoter to drive RPGRIP1 expression. Both promoter and transgene were of human origin. After subretinal delivery of the replacement gene in the mutant mice, human RPGRIP1 was expressed specifically in photoreceptors, localized correctly in the connecting cilia, and restored the normal localization of RPGR. Electroretinogram and histological examinations showed better preservation of rod and cone photoreceptor function and improved photoreceptor survival in the treated eyes. This study demonstrates the efficacy of human gene replacement therapy and validates a gene therapy design for future clinical trials in patients afflicted with this condition. Our results also have therapeutic implications for other forms of retinal degenerations attributable to a ciliary defect.
Collapse
Affiliation(s)
- Basil S Pawlyk
- Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, and Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Bandah-Rozenfeld D, Mizrahi-Meissonnier L, Farhy C, Obolensky A, Chowers I, Pe'er J, Merin S, Ben-Yosef T, Ashery-Padan R, Banin E, Sharon D. Homozygosity mapping reveals null mutations in FAM161A as a cause of autosomal-recessive retinitis pigmentosa. Am J Hum Genet 2010; 87:382-91. [PMID: 20705279 DOI: 10.1016/j.ajhg.2010.07.022] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 07/22/2010] [Accepted: 07/29/2010] [Indexed: 01/19/2023] Open
Abstract
Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal degenerations caused by mutations in at least 45 genes. Using homozygosity mapping, we identified a ∼4 Mb homozygous region on chromosome 2p15 in patients with autosomal-recessive RP (arRP). This region partially overlaps with RP28, a previously identified arRP locus. Sequence analysis of 12 candidate genes revealed three null mutations in FAM161A in 20 families. RT-PCR analysis in 21 human tissues revealed high levels of FAM161A expression in the retina and lower levels in the brain and testis. In the human retina, we identified two alternatively spliced transcripts with an intact open reading frame, the major one lacking a highly conserved exon. During mouse embryonic development, low levels of Fam161a transcripts were detected throughout the optic cup. After birth, Fam161a expression was elevated and confined to the photoreceptor layer. FAM161A encodes a protein of unknown function that is moderately conserved in mammals. Clinical manifestations of patients with FAM161A mutations varied but were largely within the spectrum associated with arRP. On funduscopy, pallor of the optic discs and attenuation of blood vessels were common, but bone-spicule-like pigmentation was often mild or lacking. Most patients had nonrecordable electroretinographic responses and constriction of visual fields upon diagnosis. Our data suggest a pivotal role for FAM161A in photoreceptors and reveal that FAM161A loss-of-function mutations are a major cause of arRP, accounting for ∼12% of arRP families in our cohort of patients from Israel and the Palestinian territories.
Collapse
Affiliation(s)
- Dikla Bandah-Rozenfeld
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
den Hollander AI, Black A, Bennett J, Cremers FPM. Lighting a candle in the dark: advances in genetics and gene therapy of recessive retinal dystrophies. J Clin Invest 2010; 120:3042-53. [PMID: 20811160 DOI: 10.1172/jci42258] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Nonsyndromic recessive retinal dystrophies cause severe visual impairment due to the death of photoreceptor and retinal pigment epithelium cells. These diseases until recently have been considered to be incurable. Molecular genetic studies in the last two decades have revealed the underlying molecular causes in approximately two-thirds of patients. The mammalian eye has been at the forefront of therapeutic trials based on gene augmentation in humans with an early-onset nonsyndromic recessive retinal dystrophy due to mutations in the retinal pigment epithelium-specific protein 65kDa (RPE65) gene. Tremendous challenges still lie ahead to extrapolate these studies to other retinal disease-causing genes, as human gene augmentation studies require testing in animal models for each individual gene and sufficiently large patient cohorts for clinical trials remain to be identified through cost-effective mutation screening protocols.
Collapse
Affiliation(s)
- Anneke I den Hollander
- Department of Ophthalmology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | | | | | | |
Collapse
|
87
|
Kirschman LT, Kolandaivelu S, Frederick JM, Dang L, Goldberg AFX, Baehr W, Ramamurthy V. The Leber congenital amaurosis protein, AIPL1, is needed for the viability and functioning of cone photoreceptor cells. Hum Mol Genet 2009; 19:1076-87. [PMID: 20042464 DOI: 10.1093/hmg/ddp571] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Leber congenital amaurosis (LCA) caused by mutations in Aryl hydrocarbon receptor interacting protein like-1 (Aipl1) is a severe form of childhood blindness. At 4 weeks of age, a mouse model of LCA lacking AIPL1 exhibits complete degeneration of both rod and cone photoreceptors. Rod cell death occurs due to rapid destabilization of rod phosphodiesterase, an enzyme essential for rod survival and function. However, little is understood regarding the role of AIPL1 in cone photoreceptors. Cone degeneration observed in the absence of AIPL1 could be due to an indirect 'bystander effect' caused by rod photoreceptor death or a direct role for AIPL1 in cones. To understand the importance of AIPL1 in cone photoreceptor cells, we transgenically expressed hAIPL1 exclusively in the rod photoreceptors of the Aipl1(-/-) mouse. Transgenic expression of hAIPL1 restored rod morphology and the rod-derived electroretinogram response, but cone photoreceptors were non-functional in the absence of AIPL1. In addition, the cone photoreceptors degenerate, but at a slower rate compared with Aipl1(-/-) mice. This degeneration is linked to the highly reduced levels of cone PDE6 observed in the hAIPL1 transgenic mice. Our studies demonstrate that AIPL1 is needed for the proper functioning and survival of cone photoreceptors. However, rod photoreceptors also provide support that partially preserves cone photoreceptors from rapid death in the absence of AIPL1.
Collapse
Affiliation(s)
- Lindsay T Kirschman
- Center for Neuroscience, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26505, USA
| | | | | | | | | | | | | |
Collapse
|
88
|
Gene therapy for Leber's congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol Ther 2009; 18:643-50. [PMID: 19953081 PMCID: PMC2839440 DOI: 10.1038/mt.2009.277] [Citation(s) in RCA: 417] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The safety and efficacy of gene therapy for inherited retinal diseases is being tested in humans affected with Leber's congenital amaurosis (LCA), an autosomal recessive blinding disease. Three independent studies have provided evidence that the subretinal administration of adeno-associated viral (AAV) vectors encoding RPE65 in patients affected with LCA2 due to mutations in the RPE65 gene, is safe and, in some cases, results in efficacy. We evaluated the long-term safety and efficacy (global effects on retinal/visual function) resulting from subretinal administration of AAV2-hRPE65v2. Both the safety and the efficacy noted at early timepoints persist through at least 1.5 years after injection in the three LCA2 patients enrolled in the low dose cohort of our trial. A transient rise in neutralizing antibodies to AAV capsid was observed but there was no humoral response to RPE65 protein. The persistence of functional amelioration suggests that AAV-mediated gene transfer to the human retina does not elicit immunological responses which cause significant loss of transduced cells. The persistence of physiologic effect supports the possibility that gene therapy may influence LCA2 disease progression. The safety of the intervention and the stability of the improvement in visual and retinal function in these subjects support the use of AAV-mediated gene augmentation therapy for treatment of inherited retinal diseases.
Collapse
|
89
|
Cyclops. Can J Ophthalmol 2009. [DOI: 10.3129/i09-138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|