51
|
Sui Y, Geng X, Wang Z, Zhang J, Yang Y, Meng Z. Targeting the regulation of iron homeostasis as a potential therapeutic strategy for nonalcoholic fatty liver disease. Metabolism 2024; 157:155953. [PMID: 38885833 DOI: 10.1016/j.metabol.2024.155953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/09/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
With aging and the increasing incidence of obesity, nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide. NAFLD mainly includes simple hepatic steatosis, nonalcoholic steatohepatitis (NASH), liver fibrosis and hepatocellular carcinoma (HCC). An imbalance in hepatic iron homeostasis is usually associated with the progression of NAFLD and induces iron overload, reactive oxygen species (ROS) production, and lipid peroxide accumulation, which leads to ferroptosis. Ferroptosis is a unique type of programmed cell death (PCD) that is characterized by iron dependence, ROS production and lipid peroxidation. The ferroptosis inhibition systems involved in NAFLD include the solute carrier family 7 member 11 (SLC7A11)/glutathione (GSH)/glutathione peroxidase 4 (GPX4) and ferroptosis suppressor protein 1 (FSP1)/coenzyme Q10 (CoQ10)/nicotinamide adenine dinucleotide phosphate (NADPH) regulatory axes. The main promotion system involved is the acyl-CoA synthetase long-chain family (ACSL4)/arachidonic lipoxygenase 15 (ALOX15) axis. In recent years, an increasing number of studies have focused on the multiple roles of iron homeostasis imbalance and ferroptosis in the progression of NAFLD. This review highlights the latest studies about iron homeostasis imbalance- and ferroptosis-associated NAFLD, mainly including the physiology and pathophysiology of hepatic iron metabolism, hepatic iron homeostasis imbalance during the development of NAFLD, and key regulatory molecules and roles of hepatic ferroptosis in NAFLD. This review aims to provide innovative therapeutic strategies for NAFLD.
Collapse
Affiliation(s)
- Yutong Sui
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China
| | - Xue Geng
- Department of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Ziwei Wang
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China
| | - Jing Zhang
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China
| | - Yanqun Yang
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China.
| | - Ziyu Meng
- NHC Key Laboratory of Hormones and Development, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China.
| |
Collapse
|
52
|
Duarte TL, Viveiros N, Godinho C, Duarte D. Heme (dys)homeostasis and liver disease. Front Physiol 2024; 15:1436897. [PMID: 39135705 PMCID: PMC11317413 DOI: 10.3389/fphys.2024.1436897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Heme is essential for a variety of proteins involved in vital physiological functions in the body, such as oxygen transport, drug metabolism, biosynthesis of steroids, signal transduction, antioxidant defense and mitochondrial respiration. However, free heme is potentially cytotoxic due to the capacity of heme iron to promote the oxidation of cellular molecules. The liver plays a central role in heme metabolism by significantly contributing to heme synthesis, heme detoxification, and recycling of heme iron. Conversely, enzymatic defects in the heme biosynthetic pathway originate multisystemic diseases (porphyrias) that are highly associated with liver damage. In addition, there is growing evidence that heme contributes to the outcomes of inflammatory, metabolic and malignant liver diseases. In this review, we summarize the contribution of the liver to heme metabolism and the association of heme dyshomeostasis with liver disease.
Collapse
Affiliation(s)
- Tiago L. Duarte
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Nicole Viveiros
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Catarina Godinho
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| | - Delfim Duarte
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Serviço de Hematologia e Transplantação da Medula Óssea, Instituto Português de Oncologia do Porto Francisco Gentil, E.P.E. (IPO Porto), Porto, Portugal
- Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| |
Collapse
|
53
|
Nishizawa H, Matsumoto M, Yamanaka M, Irikura R, Nakajima K, Tada K, Nakayama Y, Konishi M, Itoh N, Funayama R, Nakayama K, Igarashi K. BACH1 inhibits senescence, obesity, and short lifespan by ferroptotic FGF21 secretion. Cell Rep 2024; 43:114403. [PMID: 38943639 DOI: 10.1016/j.celrep.2024.114403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/14/2024] [Accepted: 06/11/2024] [Indexed: 07/01/2024] Open
Abstract
Ferroptosis is a type of regulated cell death characterized by iron-dependent lipid peroxidation. A model cell system is constructed to induce ferroptosis by re-expressing the transcription factor BACH1, a potent ferroptosis inducer, in immortalized mouse embryonic fibroblasts (iMEFs). The transfer of the culture supernatant from ferroptotic iMEFs activates the proliferation of hepatoma cells and other fibroblasts and suppresses cellular senescence-like features. The BACH1-dependent secretion of the longevity factor FGF21 is increased in ferroptotic iMEFs. The anti-senescent effects of the culture supernatant from these iMEFs are abrogated by Fgf21 knockout. BACH1 activates the transcription of Fgf21 by promoting ferroptotic stress and increases FGF21 protein expression by suppressing its autophagic degradation through transcriptional Sqstm1 and Lamp2 repression. The BACH1-induced ferroptotic FGF21 secretion suppresses obesity in high-fat diet-fed mice and the short lifespan of progeria mice. The inhibition of these aging-related phenotypes can be physiologically significant regarding ferroptosis.
Collapse
Affiliation(s)
- Hironari Nishizawa
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Mie Yamanaka
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Gladstone Institute of Neurological Disease, Gladstone Institute, San Francisco, CA 94158, USA
| | - Riko Irikura
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Kazuma Nakajima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Keisuke Tada
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Department of Pediatric Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Yoshiaki Nakayama
- Laboratory of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Morichika Konishi
- Laboratory of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Nobuyuki Itoh
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Ryo Funayama
- Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Department of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Keiko Nakayama
- Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Department of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.
| |
Collapse
|
54
|
Ren S, Wang J, Dong Z, Li J, Ma Y, Yang Y, Zhou T, Qiu T, Jiang L, Li Q, Sun X, Yao X. Perfluorooctane sulfonate induces ferroptosis-dependent non-alcoholic steatohepatitis via autophagy-MCU-caused mitochondrial calcium overload and MCU-ACSL4 interaction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116553. [PMID: 38850699 DOI: 10.1016/j.ecoenv.2024.116553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The incidence of nonalcoholic steatohepatitis (NASH) is related with perfluorooctane sulfonate (PFOS), yet the mechanism remains ill-defined. Mounting evidence suggests that ferroptosis plays a crucial role in the initiation of NASH. In this study, we used mice and human hepatocytes L-02 to investigate the role of ferroptosis in PFOS-induced NASH and the effect and molecular mechanism of PFOS on liver ferroptosis. We found here that PFOS caused NASH in mice, and lipid accumulation and inflammatory response in the L-02 cells. PFOS induced hepatic ferroptosis in vivo and in vitro, as evidenced by the decrease in glutathione peroxidase 4 (GPX4), and the increases in cytosolic iron, acyl-CoA synthetase long-chain family member 4 (ACSL4) and lipid peroxidation. In the PFOS-treated cells, the increases in the inflammatory factors and lipid contents were reversed by ferroptosis inhibitor. PFOS-induced ferroptosis was relieved by autophagy inhibitor. The expression of mitochondrial calcium uniporter (MCU) was accelerated by PFOS, leading to subsequent mitochondrial calcium accumulation, and inhibiting autophagy reversed the increase in MCU. Inhibiting mitochondrial calcium reversed the variations in GPX4 and cytosolic iron, without influencing the change in ACSL4, induced by PFOS. MCU interacted with ACSL4 and the siRNA against MCU reversed the changes in ACSL4,GPX4 and cytosolic iron systemically. This study put forward the involvement of hepatic ferroptosis in PFOS-induced NASH and identified MCU as the mediator of the autophagy-dependent ferroptosis.
Collapse
Affiliation(s)
- Siyu Ren
- Department of Environmental and Occupational Health, Dalian Medical University, 9 West Lvshun South Road, Dalian 116044, PR China
| | - Jianyu Wang
- Department of Environmental and Occupational Health, Dalian Medical University, 9 West Lvshun South Road, Dalian 116044, PR China
| | - Zhanchen Dong
- Department of Environmental and Occupational Health, Dalian Medical University, 9 West Lvshun South Road, Dalian 116044, PR China
| | - Jixun Li
- Department of Environmental and Occupational Health, Dalian Medical University, 9 West Lvshun South Road, Dalian 116044, PR China
| | - Yu Ma
- Department of Environmental and Occupational Health, Dalian Medical University, 9 West Lvshun South Road, Dalian 116044, PR China
| | - Ying Yang
- Department of Environmental and Occupational Health, Dalian Medical University, 9 West Lvshun South Road, Dalian 116044, PR China
| | - Tian Zhou
- School of Public Health, Dalian Medical University, 9 West Lvshun South Road, Dalian 116044, PR China
| | - Tianming Qiu
- Department of Environmental and Occupational Health, Dalian Medical University, 9 West Lvshun South Road, Dalian 116044, PR China
| | - Liping Jiang
- Department of Environmental and Occupational Health, Dalian Medical University, 9 West Lvshun South Road, Dalian 116044, PR China
| | - Qiujuan Li
- Department of Environmental and Occupational Health, Dalian Medical University, 9 West Lvshun South Road, Dalian 116044, PR China
| | - Xiance Sun
- Department of Environmental and Occupational Health, Dalian Medical University, 9 West Lvshun South Road, Dalian 116044, PR China
| | - Xiaofeng Yao
- Department of Environmental and Occupational Health, Dalian Medical University, 9 West Lvshun South Road, Dalian 116044, PR China.
| |
Collapse
|
55
|
Xiao JL, Liu HY, Sun CC, Tang CF. Regulation of Keap1-Nrf2 signaling in health and diseases. Mol Biol Rep 2024; 51:809. [PMID: 39001962 DOI: 10.1007/s11033-024-09771-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) functions as a central regulator in modulating the activities of diverse antioxidant enzymes, maintaining cellular redox balance, and responding to oxidative stress (OS). Kelch-like ECH-associated protein 1 (Keap1) serves as a principal negative modulator in controlling the expression of detoxification and antioxidant genes. It is widely accepted that OS plays a pivotal role in the pathogenesis of various diseases. When OS occurs, leading to inflammatory infiltration of neutrophils, increased secretion of proteases, and the generation of large quantities of reactive oxygen radicals (ROS). These ROS can oxidize or disrupt DNA, lipids, and proteins either directly or indirectly. They also cause gene mutations, lipid peroxidation, and protein denaturation, all of which can result in disease. The Keap1-Nrf2 signaling pathway regulates the balance between oxidants and antioxidants in vivo, maintains the stability of the intracellular environment, and promotes cell growth and repair. However, the antioxidant properties of the Keap1-Nrf2 signaling pathway are reduced in disease. This review overviews the mechanisms of OS generation, the biological properties of Keap1-Nrf2, and the regulatory role of its pathway in health and disease, to explore therapeutic strategies for the Keap1-Nrf2 signaling pathway in different diseases.
Collapse
Affiliation(s)
- Jiang-Ling Xiao
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan, 410012, China
| | - Heng-Yuan Liu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan, 410012, China
| | - Chen-Chen Sun
- Institute of Physical Education, Hunan First Normal University, Changsha, Hunan, 410205, China.
| | - Chang-Fa Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan, 410012, China.
| |
Collapse
|
56
|
Cheng Z, Chu H, Seki E, Lin R, Yang L. Hepatocyte programmed cell death: the trigger for inflammation and fibrosis in metabolic dysfunction-associated steatohepatitis. Front Cell Dev Biol 2024; 12:1431921. [PMID: 39071804 PMCID: PMC11272544 DOI: 10.3389/fcell.2024.1431921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
By replacing and removing defective or infected cells, programmed cell death (PCD) contributes to homeostasis maintenance and body development, which is ubiquitously present in mammals and can occur at any time. Besides apoptosis, more novel modalities of PCD have been described recently, such as necroptosis, pyroptosis, ferroptosis, and autophagy-dependent cell death. PCD not only regulates multiple physiological processes, but also participates in the pathogenesis of diverse disorders, including metabolic dysfunction-associated steatotic liver disease (MASLD). MASLD is mainly classified into metabolic dysfunction-associated steatotic liver (MASL) and metabolic dysfunction-associated steatohepatitis (MASH), and the latter putatively progresses to cirrhosis and hepatocellular carcinoma. Owing to increased incidence and obscure etiology of MASH, its management still remains a tremendous challenge. Recently, hepatocyte PCD has been attracted much attention as a potent driver of the pathological progression from MASL to MASH, and some pharmacological agents have been proved to exert their salutary effects on MASH partly via the regulation of the activity of hepatocyte PCD. The current review recapitulates the pathogenesis of different modalities of PCD, clarifies the mechanisms underlying how metabolic disorders in MASLD induce hepatocyte PCD and how hepatocyte PCD contributes to inflammatory and fibrotic progression of MASH, discusses several signaling pathways in hepatocytes governing the execution of PCD, and summarizes some potential pharmacological agents for MASH treatment which exert their therapeutic effects partly via the regulation of hepatocyte PCD. These findings indicate that hepatocyte PCD putatively represents a new therapeutic point of intervention for MASH.
Collapse
Affiliation(s)
- Zilu Cheng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ekihiro Seki
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Rong Lin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
57
|
Yu Q, Song L. Unveiling the role of ferroptosis in the progression from NAFLD to NASH: recent advances in mechanistic understanding. Front Endocrinol (Lausanne) 2024; 15:1431652. [PMID: 39036052 PMCID: PMC11260176 DOI: 10.3389/fendo.2024.1431652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent and significant global public health issue. Nonalcoholic steatohepatitis (NASH) represents an advanced stage of NAFLD in terms of pathology. However, the intricate mechanisms underlying the progression from NAFLD to NASH remain elusive. Ferroptosis, characterized by iron-dependent cell death and distinguished from other forms of cell death based on morphological, biochemical, and genetic criteria, has emerged as a potential participant with a pivotal role in driving NAFLD progression. Nevertheless, its precise mechanism remains poorly elucidated. In this review article, we comprehensively summarize the pathogenesis of NAFLD/NASH and ferroptosis while highlighting recent advances in understanding the mechanistic involvement of ferroptosis in NAFLD/NASH.
Collapse
Affiliation(s)
- Qian Yu
- Laboratory Medical Department, Zigong Fourth People’s Hospital, Zigong, China
| | | |
Collapse
|
58
|
He L, Zhang Y, Cao Q, Shan H, Zong J, Feng L, Jiang W, Wu P, Zhao J, Liu H, Jiang J. Hepatic Oxidative Stress and Cell Death Influenced by Dietary Lipid Levels in a Fresh Teleost. Antioxidants (Basel) 2024; 13:808. [PMID: 39061877 PMCID: PMC11273915 DOI: 10.3390/antiox13070808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Ferroptosis is a form of regulated cell death characterized by iron-dependent lipid peroxidation, affecting physiological and pathological processes. Fatty liver disease associated with metabolic dysfunction is a common pathological condition in aquaculture. However, the exact role and mechanism of ferroptosis in its pathogenesis and progression remains unclear. In this study, an experiment was conducted using different dietary lipid levels in the feeding of largemouth bass (Micropterus salmoides) for 11 weeks. The results revealed that the growth performance and whole-body protein content significantly increased with the elevation of dietary lipid levels up to 12%. The activities of antioxidant enzymes as well as the content of GSH (glutathione) in the liver initially increased but later declined as the lipid levels increased; the contents of MDA (malondialdehyde) and GSSG (oxidized glutathione) demonstrated an opposite trend. Moreover, elevating lipid levels in the diet significantly increased liver Fe2+ content, as well as the expressions of TF (Transferrin), TFR (Transferrin receptor), ACSL4 (acyl-CoA synthetase long-chain family member 4), LPCAT3 (lysophosphatidylcholine acyltransferase 3), and LOX12 (Lipoxygenase-12), while decreasing the expressions of GPX4 (glutathione peroxidase 4) and SLC7A11 (Solute carrier family 7 member 11). In conclusion, the optimal lipid level is 12.2%, determined by WG-based linear regression. Excess lipid-level diets can up-regulate the ACSL4/LPCAT3/LOX12 axis, induce hepatic oxidative stress and cell death through a ferroptotic-like program, and decrease growth performance.
Collapse
Affiliation(s)
- Lingjie He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Y.Z.); (Q.C.); (H.S.); (J.Z.)
| | - Yupeng Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Y.Z.); (Q.C.); (H.S.); (J.Z.)
| | - Quanquan Cao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Y.Z.); (Q.C.); (H.S.); (J.Z.)
| | - Hongying Shan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Y.Z.); (Q.C.); (H.S.); (J.Z.)
| | - Jiali Zong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Y.Z.); (Q.C.); (H.S.); (J.Z.)
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.F.); (W.J.); (P.W.); (J.Z.)
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya’an 625014, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.F.); (W.J.); (P.W.); (J.Z.)
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya’an 625014, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.F.); (W.J.); (P.W.); (J.Z.)
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya’an 625014, China
| | - Juan Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.F.); (W.J.); (P.W.); (J.Z.)
| | - Haifeng Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Y.Z.); (Q.C.); (H.S.); (J.Z.)
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Y.Z.); (Q.C.); (H.S.); (J.Z.)
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya’an 625014, China
| |
Collapse
|
59
|
Long Z, Luo Y, Yu M, Wang X, Zeng L, Yang K. Targeting ferroptosis: a new therapeutic opportunity for kidney diseases. Front Immunol 2024; 15:1435139. [PMID: 39021564 PMCID: PMC11251909 DOI: 10.3389/fimmu.2024.1435139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Ferroptosis is a form of non-apoptotic regulated cell death (RCD) that depends on iron and is characterized by the accumulation of lipid peroxides to lethal levels. Ferroptosis involves multiple pathways including redox balance, iron regulation, mitochondrial function, and amino acid, lipid, and glycometabolism. Furthermore, various disease-related signaling pathways also play a role in regulating the process of iron oxidation. In recent years, with the emergence of the concept of ferroptosis and the in-depth study of its mechanisms, ferroptosis is closely associated with various biological conditions related to kidney diseases, including kidney organ development, aging, immunity, and cancer. This article reviews the development of the concept of ferroptosis, the mechanisms of ferroptosis (including GSH-GPX4, FSP1-CoQ1, DHODH-CoQ10, GCH1-BH4, and MBOAT1/2 pathways), and the latest research progress on its involvement in kidney diseases. It summarizes research on ferroptosis in kidney diseases within the frameworks of metabolism, reactive oxygen biology, and iron biology. The article introduces key regulatory factors and mechanisms of ferroptosis in kidney diseases, as well as important concepts and major open questions in ferroptosis and related natural compounds. It is hoped that in future research, further breakthroughs can be made in understanding the regulation mechanism of ferroptosis and utilizing ferroptosis to promote treatments for kidney diseases, such as acute kidney injury(AKI), chronic kidney disease (CKD), diabetic nephropathy(DN), and renal cell carcinoma. This paves the way for a new approach to research, prevent, and treat clinical kidney diseases.
Collapse
Affiliation(s)
- Zhiyong Long
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanfang Luo
- Department of Nephrology, The Central Hospital of Shaoyang, Shaoyang, Hunan, China
| | - Min Yu
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyan Wang
- Department of Nephrology, The Central Hospital of Shaoyang, Shaoyang, Hunan, China
| | - Liuting Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
60
|
Maeda H, Miura K, Aizawa K, Bat-Erdene O, Sashikawa-Kimura M, Noguchi E, Watanabe M, Yamada N, Osaka H, Morimoto N, Yamamoto H. Apomorphine Suppresses the Progression of Steatohepatitis by Inhibiting Ferroptosis. Antioxidants (Basel) 2024; 13:805. [PMID: 39061874 PMCID: PMC11273851 DOI: 10.3390/antiox13070805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
The role of ferroptosis in steatohepatitis development is largely unknown. We investigated (1) whether hepatocyte ferroptosis occurs in a gene-modified steatohepatitis model without modifying dietary components, (2) whether ferroptosis occurs at an early stage of steatohepatitis, and (3) whether apomorphine, recently reported as a ferroptosis inhibitor, can ameliorate steatohepatitis. Hepatocyte-specific PTEN KO mice were used. Huh 7 and primary cultured hepatocytes isolated from the mice were used in this study. The number of dead cells increased in 10-week-old PTEN KO mice. This cell death was suppressed by the administration of ferroptosis inhibitor ferrostatin-1 for 2 weeks. Apomorphine also ameliorated the severity of steatohepatitis. Treatment with ferroptosis inhibitors, including apomorphine, decreases the level of lipid peroxidase. Apomorphine suppressed cell death induced by RSL-3 (a ferroptosis inducer), which was not suppressed by apoptosis or necroptosis inhibitors. Apomorphine showed a radical trapping capacity with much more potent activity than ferrostatin-1 and Trolox, a soluble form of vitamin E. In addition, apomorphine activated nrf2 and its downstream genes, including HO-1 and xCT. In conclusion, ferroptosis occurs in steatohepatitis from an early stage in PTEN KO mice. In addition, apomorphine ameliorates the severity of steatohepatitis by inhibiting ferroptosis.
Collapse
Affiliation(s)
- Hiroshi Maeda
- Department of Medicine, Division of Gastroenterology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke 329-0498, Tochigi, Japan (E.N.)
| | - Kouichi Miura
- Department of Medicine, Division of Gastroenterology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke 329-0498, Tochigi, Japan (E.N.)
| | - Kenichi Aizawa
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke 329-0498, Tochigi, Japan
| | - Oyunjargal Bat-Erdene
- Department of Medicine, Division of Gastroenterology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke 329-0498, Tochigi, Japan (E.N.)
| | - Miho Sashikawa-Kimura
- Department of Medicine, Division of Gastroenterology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke 329-0498, Tochigi, Japan (E.N.)
- Department of Dermatology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke 329-0498, Tochigi, Japan
| | - Eri Noguchi
- Department of Medicine, Division of Gastroenterology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke 329-0498, Tochigi, Japan (E.N.)
| | - Masako Watanabe
- Department of Medicine, Division of Gastroenterology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke 329-0498, Tochigi, Japan (E.N.)
| | - Naoya Yamada
- Division of Inflammation Research Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke 329-0498, Tochigi, Japan
| | - Hitoshi Osaka
- Division of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke 329-0498, Tochigi, Japan
| | - Naoki Morimoto
- Department of Medicine, Division of Gastroenterology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke 329-0498, Tochigi, Japan (E.N.)
| | - Hironori Yamamoto
- Department of Medicine, Division of Gastroenterology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke 329-0498, Tochigi, Japan (E.N.)
| |
Collapse
|
61
|
Qiao Y, Sun C, Kan S, He L, Wang Y, Gao H, Zhang Y, Cheng Y, Wang S, Zhao L, Niu W. SRS 16-86 promotes diabetic nephropathy recovery by regulating ferroptosis. Exp Physiol 2024; 109:1199-1210. [PMID: 38812118 PMCID: PMC11215488 DOI: 10.1113/ep091520] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 05/02/2024] [Indexed: 05/31/2024]
Abstract
Diabetic nephropathy (DN) is a common complication of diabetes mellitus (DM), and cell death plays an important role. Ferroptosis is a recently discovered type of iron-dependent cell death and one that is different from other kinds of cell death including apoptosis and necrosis. However, ferroptosis has not been described in the context of DN. This study explored the role of ferroptosis in DN pathophysiology and aimed to confirm the efficacy of the ferroptosis inhibitor SRS 16-86 on DN. Streptozotocin injection was used to establish the DM and DN animal models. To investigate the presence or occurrence of ferroptosis in DN, we assessed the concentrations of iron, reactive oxygen species and specific markers associated with ferroptosis in a rat model of DN. Additionally, we performed haematoxylin-eosin staining, blood biochemistry, urine biochemistry and kidney function analysis to evaluate the efficacy of the ferroptosis inhibitor SRS 16-86 in ameliorating DN. We found that SRS 16-86 could improve the recovery of renal function after DN by upregulating glutathione peroxidase 4, glutathione and system xc -light chain and by downregulating the lipid peroxidation markers and 4-hydroxynonenal. SRS 16-86 treatment could improve renal organization after DN. The inflammatory cytokines interleukin 1β and tumour necrosis factor α and intercellular adhesion molecule 1 were significantly decreased following SRS 16-86 treatment after DN. The results indicate that there is a strong connection between ferroptosis and the pathological mechanism of DN. The efficacy of the ferroptosis inhibitor SRS 16-86 in DN repair supports its use as a new therapeutic treatment for DN.
Collapse
Affiliation(s)
- Yingchun Qiao
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Department of Clinical LaboratoryChu Hsien‐I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical UniversityTianjinChina
| | - Chao Sun
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General HospitalTianjin Medical UniversityTianjinChina
| | - Shunli Kan
- Department of Spine SurgeryTianjin Union Medical CenterTianjinChina
| | - Lu He
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Department of Clinical LaboratoryChu Hsien‐I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical UniversityTianjinChina
| | - Yawen Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Department of Clinical LaboratoryChu Hsien‐I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical UniversityTianjinChina
| | - Huajun Gao
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Department of Clinical LaboratoryChu Hsien‐I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical UniversityTianjinChina
| | - Yingying Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Department of Clinical LaboratoryChu Hsien‐I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical UniversityTianjinChina
| | - You Cheng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Department of Clinical LaboratoryChu Hsien‐I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical UniversityTianjinChina
| | - Shuai Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Department of Clinical LaboratoryChu Hsien‐I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical UniversityTianjinChina
| | - Long Zhao
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General HospitalTianjin Medical UniversityTianjinChina
| | - Wenyan Niu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Department of Clinical LaboratoryChu Hsien‐I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical UniversityTianjinChina
| |
Collapse
|
62
|
Escuder-Rodríguez JJ, Liang D, Jiang X, Sinicrope FA. Ferroptosis: Biology and Role in Gastrointestinal Disease. Gastroenterology 2024; 167:231-249. [PMID: 38431204 PMCID: PMC11193643 DOI: 10.1053/j.gastro.2024.01.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Ferroptosis is a form of nonapoptotic cell death that involves iron-dependent phospholipid peroxidation induced by accumulation of reactive oxygen species, and results in plasma membrane damage and the release of damage-associated molecular patterns. Ferroptosis has been implicated in aging and immunity, as well as disease states including intestinal and liver conditions and cancer. To date, several ferroptosis-associated genes and pathways have been implicated in liver disease. Although ferroptotic cell death is associated with dysfunction of the intestinal epithelium, the underlying molecular basis is poorly understood. As the mechanisms regulating ferroptosis become further elucidated, there is clear potential to use ferroptosis to achieve therapeutic benefit.
Collapse
Affiliation(s)
- Juan-José Escuder-Rodríguez
- Department of Medicine, Gastrointestinal Research Unit, Mayo Clinic Alix School of Medicine, Rochester, Minnesota
| | - Deguang Liang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York.
| | - Frank A Sinicrope
- Department of Medicine, Gastrointestinal Research Unit, Mayo Clinic Alix School of Medicine, Rochester, Minnesota.
| |
Collapse
|
63
|
Liu Y, Ni F, Huang J, Hu Y, Wang J, Wang X, Du X, Jiang H. PPAR-α inhibits DHEA-induced ferroptosis in granulosa cells through upregulation of FADS2. Biochem Biophys Res Commun 2024; 715:150005. [PMID: 38678785 DOI: 10.1016/j.bbrc.2024.150005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS), a prevalent endocrine disorder among women of reproductive age, is characterized by disturbances in hormone levels and ovarian dysfunction. Ferroptosis, a unique form of regulated cell death characterized by iron-dependent lipid peroxidation. Emerging evidence indicates that ferroptosis may have a significant role in the pathogenesis of PCOS, highlighting the importance of studying this mechanism to better understand the disorder and potentially develop novel therapeutic interventions. METHODS To create an in vivo PCOS model, mice were injected with dehydroepiandrosterone (DHEA) and the success of the model was confirmed through further assessments. Ferroptosis levels were evaluated through detecting ferroptosis-related indicators. Ferroptosis-related genes were found through bioinformatic analysis and identified by experiments. An in vitro PCOS model was also established using DHEA treated KGN cells. The molecular binding relationship was confirmed using a chromatin immunoprecipitation (ChIP) assay. RESULTS In PCOS model, various ferroptosis-related indicators such as MDA, Fe2+, and lipid ROS showed an increase, while GSH, GPX4, and TFR1 exhibited a decrease. These findings indicate an elevated level of ferroptosis in the PCOS model. The ferroptosis-related gene FADS2 was identified and validated. FADS2 and PPAR-α were shown to be highly expressed in ovarian tissue and primary granulosa cells (GCs) of PCOS mice. Furthermore, the overexpression of both FADS2 and PPAR-α in KGN cells effectively suppressed the DHEA-induced increase in ferroptosis-related indicators (MDA, Fe2+, and lipid ROS) and the decrease in GSH, GPX4, and TFR1 levels. The ferroptosis agonist erastin reversed the suppressive effect, suggesting the involvement of ferroptosis in this process. Additionally, the FADS2 inhibitor SC26196 was found to inhibit the effect of PPAR-α on ferroptosis. Moreover, the binding of PPAR-α to the FADS2 promoter region was predicted and confirmed. This indicates the regulatory relationship between PPAR-α and FADS2 in the context of ferroptosis. CONCLUSIONS Our study indicates that PPAR-α may have an inhibitory effect on DHEA-induced ferroptosis in GCs by enhancing the expression of FADS2. This discovery provides valuable insights into the pathophysiology and potential therapeutic targets for PCOS.
Collapse
Affiliation(s)
- Ying Liu
- Reproductive Medicine Center, Clinical College of PLA, Anhui Medical University, Hefei, 230031, China; Reproductive Medicine Center, The 901th Hospital of PLA Joint Logistics Support Force, Hefei, 230031, China; Prenatal Diagnosis Center, The 901th Hospital of PLA Joint Logistics Support Force, Hefei, 230031, China
| | - Feng Ni
- Reproductive Medicine Center, The 901th Hospital of PLA Joint Logistics Support Force, Hefei, 230031, China; Prenatal Diagnosis Center, The 901th Hospital of PLA Joint Logistics Support Force, Hefei, 230031, China
| | - Jing Huang
- Reproductive Medicine Center, The 901th Hospital of PLA Joint Logistics Support Force, Hefei, 230031, China; Prenatal Diagnosis Center, The 901th Hospital of PLA Joint Logistics Support Force, Hefei, 230031, China
| | - Yuqin Hu
- Reproductive Medicine Center, Clinical College of PLA, Anhui Medical University, Hefei, 230031, China; Reproductive Medicine Center, The 901th Hospital of PLA Joint Logistics Support Force, Hefei, 230031, China; Prenatal Diagnosis Center, The 901th Hospital of PLA Joint Logistics Support Force, Hefei, 230031, China
| | - Jing Wang
- Reproductive Medicine Center, Clinical College of PLA, Anhui Medical University, Hefei, 230031, China; Reproductive Medicine Center, The 901th Hospital of PLA Joint Logistics Support Force, Hefei, 230031, China; Prenatal Diagnosis Center, The 901th Hospital of PLA Joint Logistics Support Force, Hefei, 230031, China
| | - Xuemei Wang
- Reproductive Medicine Center, Clinical College of PLA, Anhui Medical University, Hefei, 230031, China; Reproductive Medicine Center, The 901th Hospital of PLA Joint Logistics Support Force, Hefei, 230031, China; Prenatal Diagnosis Center, The 901th Hospital of PLA Joint Logistics Support Force, Hefei, 230031, China
| | - Xin Du
- Reproductive Medicine Center, The 901th Hospital of PLA Joint Logistics Support Force, Hefei, 230031, China; Prenatal Diagnosis Center, The 901th Hospital of PLA Joint Logistics Support Force, Hefei, 230031, China
| | - Hong Jiang
- Reproductive Medicine Center, Clinical College of PLA, Anhui Medical University, Hefei, 230031, China; Reproductive Medicine Center, The 901th Hospital of PLA Joint Logistics Support Force, Hefei, 230031, China.
| |
Collapse
|
64
|
Guo J, Le Y, Yuan A, Liu J, Chen H, Qiu J, Wang C, Dou X, Yuan X, Lu D. Astragaloside IV ameliorates cisplatin-induced liver injury by modulating ferroptosis-dependent pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118080. [PMID: 38521426 DOI: 10.1016/j.jep.2024.118080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The use of antineoplastic drugs, such as cisplatin, in clinical practice can cause adverse effects in patients, such as liver injury, which limits their long-term use. Therefore, there is an urgent need to develop alternative therapeutic strategies or drugs to minimize cisplatin-induced liver injury. Huangqi, the root of Astragalus membranaceus, is extensively used in traditional Chinese medicine (TCM) and has been employed in treating diverse liver injuries. Astragalus membranaceus contains several bioactive constituents, including triterpenoid saponins, one of which, astragaloside IV (ASIV), has been reported to have anti-inflammatory and antioxidant stress properties. However, its potential in ameliorating cisplatin-induced liver injury has not been explored. AIM OF THE STUDY The objective of this study was to examine the mechanism by which ASIV protects against cisplatin-induced liver injury. MATERIALS AND METHODS This study established a model of cisplatin-induced liver injury in mice, followed by treatment with various doses of astragaloside IV (40 mg/kg, 80 mg/kg). In addition, a model of hepatocyte ferroptosis in AML-12 cells was established using RSL3. The mechanism of action of astragaloside IV was investigated using a range of methods, including Western blot assay, qPCR, immunofluorescence, histochemistry, molecular docking, and high-content imaging system. RESULTS The findings suggested a significant improvement in hepatic injury, inflammation and oxidative stress phenotypes with the administration of ASIV. Furthermore, network pharmacological analyses provided evidence that a major pathway for ASIV to attenuate cisplatin-induced hepatic injury entailed the cell death cascade pathway. It was observed that ASIV effectively inhibited ferroptosis both in vivo and in vitro. Subsequent experimental outcomes provided further validation of ASIV's ability to hinder ferroptosis through the inhibition of PPARα/FSP1 signaling pathway. The current findings suggest that ASIV could function as a promising phytotherapy composition to alleviate cisplatin-induced liver injury. CONCLUSIONS The current findings suggest that astragaloside IV could function as a promising phytotherapy composition to alleviate cisplatin-induced liver injury.
Collapse
Affiliation(s)
- Jianan Guo
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Yifei Le
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Aini Yuan
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Jing Liu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Hang Chen
- Department of Medical Research Center, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, Zhejiang, China.
| | - Jiannan Qiu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Cui Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Xingyu Yuan
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Dezhao Lu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
65
|
Yu X, Wang S, Ji Z, Meng J, Mou Y, Wu X, Yang X, Xiong P, Li M, Guo Y. Ferroptosis: An important mechanism of disease mediated by the gut-liver-brain axis. Life Sci 2024; 347:122650. [PMID: 38631669 DOI: 10.1016/j.lfs.2024.122650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/27/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
AIMS As a unique iron-dependent non-apoptotic cell death, Ferroptosis is involved in the pathogenesis and development of many human diseases and has become a research hotspot in recent years. However, the regulatory role of ferroptosis in the gut-liver-brain axis has not been elucidated. This paper summarizes the regulatory role of ferroptosis and provides theoretical basis for related research. MATERIALS AND METHODS We searched PubMed, CNKI and Wed of Science databases on ferroptosis mediated gut-liver-brain axis diseases, summarized the regulatory role of ferroptosis on organ axis, and explained the adverse effects of related regulatory effects on various diseases. KEY FINDINGS According to our summary, the main way in which ferroptosis mediates the gut-liver-brain axis is oxidative stress, and the key cross-talk of ferroptosis affecting signaling pathway network is Nrf2/HO-1. However, there were no specific marker between different organ axes mediate by ferroptosis. SIGNIFICANCE Our study illustrates the main ways and key cross-talk of ferroptosis mediating the gut-liver-brain axis, providing a basis for future research.
Collapse
Affiliation(s)
- Xinxin Yu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Shihao Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Zhongjie Ji
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Jiaqi Meng
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Yunying Mou
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Xinyi Wu
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Xu Yang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Panyang Xiong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Mingxia Li
- Nursing School, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Yinghui Guo
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China.
| |
Collapse
|
66
|
Xue X, Wang L, Wu R, Li Y, Liu R, Ma Z, Jia K, Zhang Y, Li X. Si-Wu-Tang alleviates metabolic dysfunction-associated fatty liver disease by inhibiting ACSL4-mediated arachidonic acid metabolism and ferroptosis in MCD diet-fed mice. Chin Med 2024; 19:79. [PMID: 38844978 PMCID: PMC11157816 DOI: 10.1186/s13020-024-00953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) is a prevalent chronic liver disease worldwide. Si-Wu-Tang (SWT), a traditional Chinese medicine decoction has shown therapeutic effects on various liver diseases. However, the hepatoprotective effects and underlying mechanism of SWT on MAFLD remain unclear. METHODS First, a methionine-choline-deficient (MCD) diet-fed mice model was used and lipidomic analysis and transcriptomic analysis were performed. The contents of total iron ions, ferrous ions, and lipid peroxidation were detected and Prussian blue staining was performed to confirm the protective effects of SWT against ferroptosis. Finally, chemical characterization and network pharmacological analysis were employed to identify the potential active ingredients. RESULTS Serological and hepatic histopathological findings indicated SWT's discernible therapeutic impact on MCD diet-induced MAFLD. Lipidomic analysis revealed that SWT improved intrahepatic lipid accumulation by inhibiting TG synthesis and promoting TG transport. Transcriptomic analysis suggested that SWT ameliorated abnormal FA metabolism by inhibiting FA synthesis and promoting FA β-oxidation. Then, ferroptosis phenotype experiments revealed that SWT could effectively impede hepatocyte ferroptosis, which was induced by long-chain acyl-CoA synthetase 4 (ACSL4)-mediated esterification of arachidonic acid (AA). Finally, chemical characterization and network pharmacological analysis identified that paeoniflorin and other active ingredients might be responsible for the regulative effects against ferroptosis and MAFLD. CONCLUSION In conclusion, our study revealed the intricate mechanism through which SWT improved MCD diet-induced MAFLD by targeting FA metabolism and ferroptosis in hepatocytes, thus offering a novel therapeutic approach for the treatment of MAFLD and its complications.
Collapse
Affiliation(s)
- Xiaoyong Xue
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Le Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ruiyu Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Yufei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Zhi Ma
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Kexin Jia
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yinhao Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
67
|
Hao W, Sun N, Fan Y, Chen M, Liu Q, Yang M, Yang Y, Gao C. Targeted Ferroptosis-Immunotherapy Synergy: Enhanced Antiglioma Efficacy with Hybrid Nanovesicles Comprising NK Cell-Derived Exosomes and RSL3-Loaded Liposomes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28193-28208. [PMID: 38776411 PMCID: PMC11164066 DOI: 10.1021/acsami.4c04604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Ferroptosis therapy and immunotherapy have been widely used in cancer treatment. However, nonselective induction of ferroptosis in tumors is prone to immunosuppression, limiting the therapeutic effect of ferroptosis cancer treatment. To address this issue, this study reports a customized hybrid nanovesicle composed of NK cell-derived extracellular versicles and RSL3-loaded liposomes (hNRVs), aiming to establish a positive cycle between ferroptosis therapy and immunotherapy. Thanks to the enhanced permeability and retention effect and the tumor homing characteristics of NK exosomes, our data indicate that hNRVs can actively accumulate in tumors and enhance cellular uptake. FASL, IFN-γ, and RSL3 are released into the tumor microenvironment, where FASL derived from NK cells effectively lyses tumor cells. RSL3 downregulates the expression of GPX4 in the tumor, leading to the accumulation of LPO and ROS, and promotes ferroptosis in tumor cells. The accumulation of IFN-γ and TNF-α stimulates the maturation of dendritic cells and effectively induces the inactivation of GPX4, promoting lipid peroxidation, making them sensitive to ferroptosis and indirectly promoting the occurrence of ferroptosis. This study highlights the role of the customized hNRV platform in enhancing the effectiveness of synergistic treatment with selective delivery of ferroptosis inducers and immune activation against glioma without causing additional side effects on healthy organs.
Collapse
Affiliation(s)
- Wenyan Hao
- State Key Laboratory
of Toxicology
and Medical Countermeasures, Beijing Institute
of Pharmacology and Toxicology, Beijing 100850, China
| | - Nan Sun
- State Key Laboratory
of Toxicology
and Medical Countermeasures, Beijing Institute
of Pharmacology and Toxicology, Beijing 100850, China
| | - Yueyue Fan
- State Key Laboratory
of Toxicology
and Medical Countermeasures, Beijing Institute
of Pharmacology and Toxicology, Beijing 100850, China
| | - Mengyu Chen
- State Key Laboratory
of Toxicology
and Medical Countermeasures, Beijing Institute
of Pharmacology and Toxicology, Beijing 100850, China
| | - Qianqian Liu
- State Key Laboratory
of Toxicology
and Medical Countermeasures, Beijing Institute
of Pharmacology and Toxicology, Beijing 100850, China
| | - Meiyan Yang
- State Key Laboratory
of Toxicology
and Medical Countermeasures, Beijing Institute
of Pharmacology and Toxicology, Beijing 100850, China
| | - Yang Yang
- State Key Laboratory
of Toxicology
and Medical Countermeasures, Beijing Institute
of Pharmacology and Toxicology, Beijing 100850, China
| | - Chunsheng Gao
- State Key Laboratory
of Toxicology
and Medical Countermeasures, Beijing Institute
of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
68
|
Shen X, Yu Z, Wei C, Hu C, Chen J. Iron metabolism and ferroptosis in nonalcoholic fatty liver disease: what is our next step? Am J Physiol Endocrinol Metab 2024; 326:E767-E775. [PMID: 38506752 PMCID: PMC11376490 DOI: 10.1152/ajpendo.00260.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease with increasing prevalence worldwide. NAFLD could develop from simple hepatic steatosis to nonalcoholic steatohepatitis (NASH), NASH-related fibrosis, cirrhosis, and even hepatocellular carcinoma. However, the mechanism of NAFLD development has not yet been fully defined. Recently, emerging evidence shows that the dysregulated iron metabolism marked by elevated serum ferritin, and ferroptosis are involved in the NAFLD. Understanding iron metabolism and ferroptosis can shed light on the mechanisms of NAFLD development. Here, we summarized studies on iron metabolism and the ferroptosis process involved in NAFLD development to highlight potential medications and therapies for treating NAFLD.
Collapse
Affiliation(s)
- Xiang Shen
- Munich Medical Research School, Ludwig Maximilian University of Munich, Munich, Germany
| | - Ziqi Yu
- Munich Medical Research School, Ludwig Maximilian University of Munich, Munich, Germany
| | - Changli Wei
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, People's Republic of China
| | - Chong Hu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, People's Republic of China
| | - Jianyong Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, People's Republic of China
| |
Collapse
|
69
|
Kim JY, Yang AY, Kim K, Kwon HH, Leem J, Kim YA. Pharmacological inhibition of p300 ameliorates steatosis, inflammation, and fibrosis in mice with non-alcoholic steatohepatitis. Heliyon 2024; 10:e30908. [PMID: 38774067 PMCID: PMC11107220 DOI: 10.1016/j.heliyon.2024.e30908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024] Open
Abstract
The histone acetyltransferase p300 plays a pivotal role in regulating gene expression and cellular phenotype through epigenetic mechanisms. It significantly influences lipid metabolism, which is a key factor in the pathogenesis of non-alcoholic steatohepatitis (NASH), by modulating the transcription of genes involved in lipid synthesis and accumulation. This study aimed to investigate the protective potential of inhibiting p300 in NASH. Male C57BL/6J mice were subjected to a methionine- and choline-deficient (MCD) diet for 4 weeks to induce NASH, and during this period, the p300 inhibitor C646 (10 mg/kg) was administered three times a week. C646 treatment reduced the elevation of p300 expression and histone H3 acetylation, leading to a decrease in liver injury markers in the serum and an improvement in the histological abnormalities observed in MCD diet-fed mice. C646 also reduced lipid accumulation by modulating de novo lipogenesis and suppressed inflammation, including cytokine overproduction and macrophage infiltration. Furthermore, C646 mitigated liver fibrosis and myofibroblast accumulation. This protective effect was achieved through the inhibition of apoptosis by reducing p53 and Bax expression and the suppression of ferroptosis by decreasing lipid peroxidation while enhancing antioxidant defenses. Additionally, C646 alleviated endoplasmic reticulum stress, as evidenced by the downregulation of unfolded protein response signaling molecules. These results highlight the potential of p300 as a therapeutic target for NASH.
Collapse
Affiliation(s)
- Jung-Yeon Kim
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Ah Young Yang
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Kiryeong Kim
- Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Hyun Hee Kwon
- Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Jaechan Leem
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Yun-A Kim
- Department of Family Medicine, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| |
Collapse
|
70
|
Sidorova YS, Petrov NA, Markova YM, Kolobanov AI, Zorin SN. The Influence of a High-Cholesterol Diet and Forced Training on Lipid Metabolism and Intestinal Microbiota in Male Wistar Rats. Int J Mol Sci 2024; 25:5383. [PMID: 38791421 PMCID: PMC11121228 DOI: 10.3390/ijms25105383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Adequate experimental animal models play an important role in an objective assessment of the effectiveness of medicines and functional foods enriched with biologically active substances. The aim of our study was a comparative assessment of the effect of consumption of 1 or 2% cholesterol with and without regular (two times a week), moderate running exercise on the main biomarkers of lipid and cholesterol metabolism, as well as the intestinal microbiota of male Wistar rats. In experimental rats, a response of 39 indicators (body weight, food consumption, serum biomarkers, liver composition, and changes in intestinal microbiota) was revealed. Total serum cholesterol level increased 1.8 times in animals consuming cholesterol with a simultaneous increase in low-density lipoprotein cholesterol (2 times) and decrease in high-density lipoprotein cholesterol (1.3 times) levels compared to the control animals. These animals had 1.3 times increased liver weight, almost 5 times increased triglycerides level, and more than 6 times increased cholesterol content. There was a tendency towards a decrease in triglycerides levels against the background of running exercise. The consumption of cholesterol led to a predominance of the Bacteroides family, due to a decrease in F. prausnitzii (1.2 times) and bifidobacteria (1.3 times), as well as an increase in Escherichia family (1.2 times). The running exercise did not lead to the complete normalization of microbiota.
Collapse
Affiliation(s)
- Yuliya S. Sidorova
- Federal Research Centre of Nutrition and Biotechnology, 109240 Moscow, Russia; (N.A.P.); (Y.M.M.); (A.I.K.); (S.N.Z.)
| | | | | | | | | |
Collapse
|
71
|
Guo S, Li Z, Liu Y, Cheng Y, Jia D. Ferroptosis: a new target for hepatic ischemia-reperfusion injury? Free Radic Res 2024; 58:396-416. [PMID: 39068663 DOI: 10.1080/10715762.2024.2386075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
Ischemia-reperfusion injury (IRI) can seriously affect graft survival and prognosis and is an unavoidable event during liver transplantation. Ferroptosis is a novel iron-dependent form of cell death characterized by iron accumulation and overwhelming lipid peroxidation; it differs morphologically, genetically, and biochemically from other well-known cell death types (autophagy, necrosis, and apoptosis). Accumulating evidence has shown that ferroptosis is involved in the pathogenesis of hepatic IRI, and targeting ferroptosis may be a promising therapeutic approach. Here, we review the pathways and phenomena involved in ferroptosis, explore the associations and implications of ferroptosis and hepatic IRI, and discuss possible strategies for modulating ferroptosis to alleviate the hepatic IRI.
Collapse
Affiliation(s)
- Shanshan Guo
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zexin Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Yi Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Ying Cheng
- Department of Organ Transplantation, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Degong Jia
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
72
|
Fu J, Zhang P, Sun Z, Lu G, Cao Q, Chen Y, Wu W, Zhang J, Zhuang C, Sheng C, Xu J, Lu Y, Wang P. A combined nanotherapeutic approach targeting farnesoid X receptor, ferroptosis, and fibrosis for nonalcoholic steatohepatitis treatment. Acta Pharm Sin B 2024; 14:2228-2246. [PMID: 38799646 PMCID: PMC11121165 DOI: 10.1016/j.apsb.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/26/2023] [Accepted: 12/30/2023] [Indexed: 05/29/2024] Open
Abstract
Obeticholic acid (OCA), a farnesoid X receptor (FXR) agonist with favorable effects on fatty and glucose metabolism, has been considered the leading candidate drug for nonalcoholic steatohepatitis (NASH) treatment. However, its limited effectiveness in resolving liver fibrosis and lipotoxicity-induced cell death remains a major drawback. Ferroptosis, a newly recognized form of cell death characterized by uncontrolled lipid peroxidation, is involved in the progression of NASH. Nitric oxide (NO) is a versatile biological molecule that can degrade extracellular matrix. In this study, we developed a PEGylated thiolated hollow mesoporous silica nanoparticles (MSN) loaded with OCA, as well as a ferroptosis inhibitor liproxsatin-1 and a NO donor S-nitrosothiol (ONL@MSN). Biochemical analyses, histology, multiplexed flow cytometry, bulk-tissue RNA sequencing, and fecal 16S ribosomal RNA sequencing were utilized to evaluate the effects of the combined nanoparticle (ONL@MSN) in a mouse NASH model. Compared with the OCA-loaded nanoparticles (O@MSN), ONL@MSN not only protected against hepatic steatosis but also greatly ameliorated fibrosis and ferroptosis. ONL@MSN also displayed enhanced therapeutic actions on the maintenance of intrahepatic macrophages/monocytes homeostasis, inhibition of immune response/lipid peroxidation, and correction of microbiota dysbiosis. These findings present a promising synergistic nanotherapeutic strategy for the treatment of NASH by simultaneously targeting FXR, ferroptosis, and fibrosis.
Collapse
Affiliation(s)
- Jiangtao Fu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Pingping Zhang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Zhiguo Sun
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Guodong Lu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Qi Cao
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yiting Chen
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Wenbin Wu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Jiabao Zhang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai 200433, China
- National Demonstration Center for Experimental Pharmaceutical Education, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Chunlin Zhuang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai 200433, China
- National Demonstration Center for Experimental Pharmaceutical Education, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Chunquan Sheng
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai 200433, China
- National Demonstration Center for Experimental Pharmaceutical Education, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Jiajun Xu
- Department of Diving and Hyperbaric Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China
| | - Ying Lu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai 200433, China
- National Demonstration Center for Experimental Pharmaceutical Education, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Pei Wang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai 200433, China
- National Demonstration Center for Experimental Pharmaceutical Education, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
73
|
Cheng S, Wang Y, Zhao Y, Wang N, Yan J, Jiang L, Cai W. Targeting GPX4-mediated Ferroptosis Alleviates Liver Steatosis in a Rat Model of Total Parenteral Nutrition. J Pediatr Surg 2024; 59:981-991. [PMID: 37968154 DOI: 10.1016/j.jpedsurg.2023.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/23/2023] [Accepted: 10/07/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND Parenteral nutrition-associated liver disease (PNALD) is a common hepatobiliary complication resulting from long-term parenteral nutrition (PN) that is associated with significant morbidity and mortality. Ferroptosis plays a significant role in the pathogenesis of various liver diseases. This study aims to explore the role of ferroptosis in PNALD and to uncover its underlying mechanisms. METHODS Ferroptosis was evaluated in pediatric patients with PNALD and in rats administered with total parenteral nutrition (TPN) as an animal model of PNALD. In TPN-fed rats, we applied liproxstatin-1 (Lip-1) to inhibit ferroptosis for 7 days and assessed its impact on liver steatosis. We performed RNA-seq analysis to profile the alterations in miRNAs in livers from TPN-fed rats. The ferroptosis-promoting effects of miR-431 were evaluated in HepG2 cells and the direct targeting effects on glutathione peroxidase 4 (GPX4) were evaluated in HEK293T cells. RESULTS RNA-seq analysis and experimental validation suggested that ferroptosis was increased in the livers of pediatric patients and rats with PNALD. Inhibiting ferroptosis with Lip-1 attenuated liver steatosis by regulating PPARα expression. RNA-seq analysis uncovered miR-431 as the most upregulated miRNA in the livers of TPN-fed rats, showing a negative correlation with hepatic GPX4 expression. In vitro studies demonstrated that miR-431 promoted ferroptosis by directly binding to the 3'UTR of GPX4 mRNA, resulting in the suppression of its expression. CONCLUSIONS Our study demonstrates that TPN induces the upregulation of miR-431 in rats, leading to activation of ferroptosis through downregulation of GPX4. Inhibition of ferroptosis attenuates TPN-induced liver steatosis by regulating PPARα expression.
Collapse
Affiliation(s)
- Siyang Cheng
- Division of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai, China
| | - Ying Wang
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai, China
| | - Yuling Zhao
- Division of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai, China
| | - Nan Wang
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai, China
| | - Junkai Yan
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai, China
| | - Lu Jiang
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai, China.
| | - Wei Cai
- Division of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai, China.
| |
Collapse
|
74
|
Li Y, Yang P, Ye J, Xu Q, Wu J, Wang Y. Updated mechanisms of MASLD pathogenesis. Lipids Health Dis 2024; 23:117. [PMID: 38649999 PMCID: PMC11034170 DOI: 10.1186/s12944-024-02108-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has garnered considerable attention globally. Changing lifestyles, over-nutrition, and physical inactivity have promoted its development. MASLD is typically accompanied by obesity and is strongly linked to metabolic syndromes. Given that MASLD prevalence is on the rise, there is an urgent need to elucidate its pathogenesis. Hepatic lipid accumulation generally triggers lipotoxicity and induces MASLD or progress to metabolic dysfunction-associated steatohepatitis (MASH) by mediating endoplasmic reticulum stress, oxidative stress, organelle dysfunction, and ferroptosis. Recently, significant attention has been directed towards exploring the role of gut microbial dysbiosis in the development of MASLD, offering a novel therapeutic target for MASLD. Considering that there are no recognized pharmacological therapies due to the diversity of mechanisms involved in MASLD and the difficulty associated with undertaking clinical trials, potential targets in MASLD remain elusive. Thus, this article aimed to summarize and evaluate the prominent roles of lipotoxicity, ferroptosis, and gut microbes in the development of MASLD and the mechanisms underlying their effects. Furthermore, existing advances and challenges in the treatment of MASLD were outlined.
Collapse
Affiliation(s)
- Yuxuan Li
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Peipei Yang
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Jialu Ye
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Qiyuan Xu
- Wenzhou Medical University, Wenzhou, China
| | - Jiaqi Wu
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
- Department of Gastroenterology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
| | - Yidong Wang
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
75
|
Wu C, Li J, Jia H, Zhao J, Qin M, Shi H, Liu C, Lin J, Cai M, Gu Y, Liu B, Gao L. Indoleamine 2,3-dioxygenase 1-mediated iron metabolism in macrophages contributes to lipid deposition in nonalcoholic steatohepatitis. J Gastroenterol 2024; 59:342-356. [PMID: 38402297 DOI: 10.1007/s00535-024-02082-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/17/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) is a rapidly progressing chronic liver disease of global significance. However, the underlying mechanisms responsible for NASH remain unknown. Indoleamine 2,3-dioxygenase 1 (IDO1) has been recognized as essential factor in immune response and metabolic regulation. Here we aimed to investigate the functions and mechanisms of the IDO1 in macrophages on hepatic lipid deposition and iron metabolism in NASH. METHODS The effect of IDO1 in NASH was evaluated by WT and IDO1-/- mice model fed with methionine/choline-deficient (MCD) diet in vivo. Macrophages scavenger clodronate liposomes (CL) and overexpressing of IDO1 in macrophages by virus were employed as well. Lipid deposition was assessed through pathological examination and lipid droplet staining, while iron levels were measured using an iron assay kit and western blotting. Primary hepatocytes and bone marrow-derived macrophages were treated with oleic acid/palmitic acid (OA/PA) to assess IDO1 expression via Oil Red O staining and immunofluorescence staining in vitro. RESULTS Pathological images demonstrated that the increase of IDO1 exacerbated lipid accumulation in the livers of mice with MCD diet, while reduction of iron accumulation was observed in the liver and the serum of MCD-fed mice. Scavenging of macrophages effectively mitigated both lipid and iron accumulation. In addition, the deficiency of IDO1 in macrophages significantly mitigated lipid accumulation and iron overload in hepatic parenchymal cells. Finally, lentivirus-mediated overexpression of IDO1 in liver macrophages exacerbated hepatic steatosis and iron deposition in NASH. CONCLUSIONS Our results demonstrated that effective inhibition of IDO1 expression in macrophages in NASH alleviated hepatic parenchymal cell lipid accumulation and iron deposition, which provided new insights for the future treatment of NASH.
Collapse
Affiliation(s)
- Chaofeng Wu
- Emergency Department, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Junjie Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Hui Jia
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiamin Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Mengchen Qin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Hao Shi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiajie Lin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Min Cai
- Department of Hepatology, Hainan Provincial Hospital of Chinese Medicine, Haikou, China
| | - Yong Gu
- Clinical Research Center, Hainan Provincial Hospital of Chinese Medicine, Haikou, China
| | - Bin Liu
- Emergency Department, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Lei Gao
- Emergency Department, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
76
|
Li W, Lv Z, Wang P, Xie Y, Sun W, Guo H, Jin X, Liu Y, Jiang R, Fei Y, Tan G, Jiang H, Wang X, Liu Z, Wang Z, Xu N, Gong W, Wu R, Shi D. Near Infrared Responsive Gold Nanorods Attenuate Osteoarthritis Progression by Targeting TRPV1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307683. [PMID: 38358041 PMCID: PMC11040380 DOI: 10.1002/advs.202307683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/01/2023] [Indexed: 02/16/2024]
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease worldwide, with the main pathological manifestation of articular cartilage degeneration. It have been investigated that pharmacological activation of transient receptor potential vanilloid 1 (TRPV1) significantly alleviated cartilage degeneration by abolishing chondrocyte ferroptosis. In this work, in view of the thermal activated feature of TRPV1, Citrate-stabilized gold nanorods (Cit-AuNRs) is conjugated to TRPV1 monoclonal antibody (Cit-AuNRs@Anti-TRPV1) as a photothermal switch for TRPV1 activation in chondrocytes under near infrared (NIR) irradiation. The conjugation of TRPV1 monoclonal antibody barely affect the morphology and physicochemical properties of Cit-AuNRs. Under NIR irradiation, Cit-AuNRs@Anti-TRPV1 exhibited good biocompatibility and flexible photothermal responsiveness. Intra-articular injection of Cit-AuNRs@Anti-TRPV1 followed by NIR irradiation significantly activated TRPV1 and attenuated cartilage degradation by suppressing chondrocytes ferroptosis. The osteophyte formation and subchondral bone sclerosis are remarkably alleviated by NIR-inspired Cit-AuNRs@Anti-TRPV1. Furthermore, the activation of TRPV1 by Cit-AuNRs@Anti-TRPV1 evidently improved physical activities and alleviated pain of destabilization of the medial meniscus (DMM)-induced OA mice. The study reveals Cit-AuNRs@Anti-TRPV1 under NIR irradiation protects chondrocytes from ferroptosis and attenuates OA progression, providing a potential therapeutic strategy for the treatment of OA.
Collapse
Affiliation(s)
- Weitong Li
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine321 Zhongshan RoadNanjingJiangsu210008China
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Zhongyang Lv
- Department of OrthopedicsNanjing Jinling HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjing210002China
| | - Peng Wang
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Ya Xie
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine321 Zhongshan RoadNanjingJiangsu210008China
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Wei Sun
- Department of OrthopedicThe Jiangyin Clinical College of Xuzhou Medical UniversityJiangyin214400China
| | - Hu Guo
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Xiaoyu Jin
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine321 Zhongshan RoadNanjingJiangsu210008China
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Yuan Liu
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Ruiyang Jiang
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalClinical College of Xuzhou Medical UniversityXuzhou Medical UniversityNanjingJiangsu221004China
| | - Yuxiang Fei
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Guihua Tan
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Huiming Jiang
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Xucai Wang
- Co‐Innovation Center for Efficient Processing and Utilization of Forest ResourcesCollege of Chemical EngineeringNanjing Forestry UniversityNanjing210037China
| | - Zizheng Liu
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Zheng Wang
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Nuo Xu
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine321 Zhongshan RoadNanjingJiangsu210008China
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Wenli Gong
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine321 Zhongshan RoadNanjingJiangsu210008China
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Rui Wu
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Dongquan Shi
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine321 Zhongshan RoadNanjingJiangsu210008China
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalClinical College of Xuzhou Medical UniversityXuzhou Medical UniversityNanjingJiangsu221004China
| |
Collapse
|
77
|
Yao C, Lan D, Li X, Wang Y, Qi S. Porphyromonas gingivalis triggers inflammation in hepatocyte depend on ferroptosis via activating the NF-κB signaling pathway. Oral Dis 2024; 30:1680-1694. [PMID: 36939447 DOI: 10.1111/odi.14537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/19/2023] [Accepted: 02/14/2023] [Indexed: 03/21/2023]
Abstract
OBJECTIVE Non-alcoholic fatty liver disease (NAFLD) is a clinicopathological syndrome characterized by excessive fat deposition in hepatocytes caused by non-alcoholic liver injury. Porphyromonas gingivalis (P.g) is the main pathogen causing periodontitis, which can aggravate the progression of NAFLD in our previously study. The objective of this study was to further investigate the pathogenesis and moleculer michanisma of NAFLD aggravated by P.g. METHODS A mouse model of NAFLD was established, and the changes of inflammatory factors and NF-κB signaling pathway in liver tissue and L-02 cells were analyzed by transcriptome sequencing, Western blot, IHC and RT-PCR. In addition, the NF-κB signaling pathway inhibitor QNZ and ferroptosis inhibitor Fer-1 were used to analyze the relationship between NF-κB signaling pathway and ferroptosis in vitro. RESULTS In vivo and in vitro experiments, P.g can induce liver inflammation and activate NF-κB signaling pathway. At the same time, P.g promotes ferroptosis and inflammation in L-02 in vitro. QNZ alleviates ferroptosis and inflammatory activation in L-02. Fer-1 can relieve the L-02 inflammation caused by P.g products. CONCLUSION Porphyromonas gingivalis can induce ferroptosis and inflammation in hepatocytes and further worsen liver lesions. The mechanism of ferroptosis in hepatocytes depends on NF-κB signaling pathway, which provides a new strategy for clinical treatment and prevention of NAFLD.
Collapse
Affiliation(s)
- Chao Yao
- Medical College, Anhui University of Science and Technology, Huainan, China
- Department of Prothodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Dongmei Lan
- Medical College, Anhui University of Science and Technology, Huainan, China
- Department of Prothodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Xue Li
- Medical College, Anhui University of Science and Technology, Huainan, China
- Department of Prothodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Yan Wang
- Medical College, Anhui University of Science and Technology, Huainan, China
- Department of Prothodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Shengcai Qi
- Medical College, Anhui University of Science and Technology, Huainan, China
- Department of Prothodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| |
Collapse
|
78
|
Peleman C, Francque S, Berghe TV. Emerging role of ferroptosis in metabolic dysfunction-associated steatotic liver disease: revisiting hepatic lipid peroxidation. EBioMedicine 2024; 102:105088. [PMID: 38537604 PMCID: PMC11026979 DOI: 10.1016/j.ebiom.2024.105088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/22/2024] [Accepted: 03/12/2024] [Indexed: 04/14/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is characterised by cell death of parenchymal liver cells which interact with their microenvironment to drive disease activity and liver fibrosis. The identification of the major death type could pave the way towards pharmacotherapy for MASH. To date, increasing evidence suggest a type of regulated cell death, named ferroptosis, which occurs through iron-catalysed peroxidation of polyunsaturated fatty acids (PUFA) in membrane phospholipids. Lipid peroxidation enjoys renewed interest in the light of ferroptosis, as druggable target in MASH. This review recapitulates the molecular mechanisms of ferroptosis in liver physiology, evidence for ferroptosis in human MASH and critically appraises the results of ferroptosis targeting in preclinical MASH models. Rewiring of redox, iron and PUFA metabolism in MASH creates a proferroptotic environment involved in MASH-related hepatocellular carcinoma (HCC) development. Ferroptosis induction might be a promising novel approach to eradicate HCC, while its inhibition might ameliorate MASH disease progression.
Collapse
Affiliation(s)
- Cédric Peleman
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium; Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Sven Francque
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium; Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium.
| | - Tom Vanden Berghe
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
79
|
Wang N, Que H, Luo Q, Zheng W, Li H, Wang Q, Gu J. Mechanisms of ferroptosis in nonalcoholic fatty liver disease and therapeutic effects of traditional Chinese medicine: a review. Front Med (Lausanne) 2024; 11:1356225. [PMID: 38590315 PMCID: PMC10999571 DOI: 10.3389/fmed.2024.1356225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/22/2024] [Indexed: 04/10/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive accumulation of fat in hepatocytes (nonalcoholic fatty liver (NAFL)), and lobular inflammation and hepatocyte damage (which characterize nonalcoholic steatohepatitis (NASH) are found in most patients). A subset of patients will gradually develop liver fibrosis, cirrhosis, and eventually hepatocellular carcinoma, which is a deadly disease that threatens human life worldwide. Ferroptosis, a novel nonapoptotic form of programmed cell death (PCD) characterized by iron-dependent accumulation of reactive oxygen radicals and lipid peroxides, is closely related to NAFLD. Traditional Chinese medicine (TCM) has unique advantages in the prevention and treatment of NAFLD due to its multicomponent, multipathway and multitarget characteristics. In this review, we discuss the effect of TCM on NAFLD by regulating ferroptosis, in order to provide reference for the further development and application of therapeutic drugs to treat NAFLD.
Collapse
Affiliation(s)
- Nan Wang
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Hanyun Que
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Qiulin Luo
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Wenxin Zheng
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Hong Li
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Qin Wang
- College of Pharmacy, Southwest Minzu University, Chengdu, China
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| |
Collapse
|
80
|
Lv S, Fan L, Chen X, Su X, Dong L, Wang Q, Wang Y, Zhang H, Cui H, Zhang S, Wang L. Jian-Pi-Gu-Shen-Hua-Yu Decoction Alleviated Diabetic Nephropathy in Mice through Reducing Ferroptosis. J Diabetes Res 2024; 2024:9990304. [PMID: 38523631 PMCID: PMC10960652 DOI: 10.1155/2024/9990304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/06/2024] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND Diabetic nephropathy (DN), one of the most frequent complications of diabetes mellitus, is a leading cause of end-stage renal disease. However, the current treatment methods still cannot effectively halt the progression of DN. Jian-Pi-Gu-Shen-Hua-Yu (JPGS) decoction can be used for the treatment of chronic kidney diseases such as DN, but the specific mechanism of action has not been fully elucidated yet. PURPOSE The aim of this study is to clarify whether JPGS alleviates the progression of diabetic nephropathy by inhibiting ferroptosis. MATERIALS AND METHODS We established a DN mouse model to investigate the therapeutic effect of JPGS in a DN mouse model. Subsequently, we examined the effects of JPGS on ferroptosis- and glutathione peroxidase 4 (GPX4) pathway-related indices. Finally, we validated whether JPGS inhibited ferroptosis in DN mice via the GPX4 pathway using GPX4 inhibitor and ferroptosis inhibitors. RESULTS The results indicate that JPGS has a therapeutic effect on DN mice by improving kidney function and reducing inflammation. Additionally, JPGS treatment decreased iron overload and oxidative stress levels while upregulating the expression of GPX4 pathway-related proteins. Moreover, JPGS demonstrated a similar therapeutic effect as Fer-1 in the context of DN treatment, and RSL3 was able to counteract the therapeutic effect of JPGS and antiferroptotic effect. CONCLUSION JPGS has significant therapeutic and anti-inflammatory effects on DN mice, and its mechanism is mainly achieved by upregulating the expression of GPX4 pathway-related proteins, thereby alleviating iron overload and ultimately reducing ferroptosis.
Collapse
Affiliation(s)
- Shuquan Lv
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Cangzhou 061012, Hebei, China
| | - Lirong Fan
- Botou Hospital of Traditional Chinese Medicine, Botou 062154, Hebei, China
| | - Xiaoting Chen
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Cangzhou 061012, Hebei, China
| | - Xiuhai Su
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Cangzhou 061012, Hebei, China
| | - Li Dong
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Cangzhou 061012, Hebei, China
| | - Qinghai Wang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Cangzhou 061012, Hebei, China
| | - Yuansong Wang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Cangzhou 061012, Hebei, China
| | - Hui Zhang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Cangzhou 061012, Hebei, China
| | - Huantian Cui
- Yunnan University of Chinese Medicine, Kunming 650500, Yunnan, China
| | - Shufang Zhang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Cangzhou 061012, Hebei, China
| | - Lixin Wang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Cangzhou 061012, Hebei, China
| |
Collapse
|
81
|
Zhang T, Wang MY, Wang GD, Lv QY, Huang YQ, Zhang P, Wang W, Zhang Y, Bai YP, Guo LQ. Metformin improves nonalcoholic fatty liver disease in db/db mice by inhibiting ferroptosis. Eur J Pharmacol 2024; 966:176341. [PMID: 38244761 DOI: 10.1016/j.ejphar.2024.176341] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/28/2023] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the primary complication of type 2 diabetes (T2DM)-related liver disease, lacking effective treatment options. Metformin (Met), a widely prescribed anti-hyperglycemic medication, has been found to protect against NAFLD. Ferroptosis, a newly discovered form of cell death, is associated with the development of NAFLD. Despite this association, the extent of Met's protective effects on NAFLD through the modulation of ferroptosis has yet to be thoroughly investigated. In the present study, the administration of erastin or Ras-selective lethal 3 (RSL3), both known ferroptosis inducers, resulted in elevated cell mortality and reduced cell viability in AML12 hepatocytes. Notably, Met treatment demonstrated the capacity to mitigate these effects. Furthermore, we observed increased ferroptosis levels in both AML12 hepatocytes treated with palmitate and oleate (PA/OA) and in the liver tissue of db/db mice. Met treatment demonstrated significant reductions in iron accumulation and lipid-related reactive oxygen species production, simultaneously elevating the glutathione/glutathione disulfide ratio in both PA/OA-treated AML12 hepatocytes and the liver tissue of db/db mice. Interestingly, the anti-ferroptosis effects of Met were significantly reversed with the administration of RSL3, both in vitro and in vivo. Mechanistically, Met treatment regulated the glutathione peroxidase 4/solute carrier family 7 member 11/acyl-CoA synthetase long-chain family member 4 axis to alleviate ferroptosis in NAFLD hepatocytes. Overall, our findings highlight the crucial role of ferroptosis in the development of T2DM-related NAFLD and underscore the potential of Met in modulating key factors associated with ferroptosis in the context of NAFLD.
Collapse
Affiliation(s)
- Teng Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, 241001, China.
| | - Meng-Yan Wang
- School of Pharmacy, Anhui Innovative Center for Drug Basic Research of Metabolic Diseases, Wannan Medical College, Wuhu, 241002, China.
| | - Guo-Dong Wang
- School of Pharmacy, Anhui Innovative Center for Drug Basic Research of Metabolic Diseases, Wannan Medical College, Wuhu, 241002, China.
| | - Qiu-Yue Lv
- School of Pharmacy, Anhui Innovative Center for Drug Basic Research of Metabolic Diseases, Wannan Medical College, Wuhu, 241002, China.
| | - Yu-Qian Huang
- School of Pharmacy, Anhui Innovative Center for Drug Basic Research of Metabolic Diseases, Wannan Medical College, Wuhu, 241002, China.
| | - Peng Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, 241001, China.
| | - Wen Wang
- Department of Gastroenterology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, 241001, China.
| | - Yan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, 241001, China.
| | - Ya-Ping Bai
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
| | - Li-Qun Guo
- School of Pharmacy, Anhui Innovative Center for Drug Basic Research of Metabolic Diseases, Wannan Medical College, Wuhu, 241002, China.
| |
Collapse
|
82
|
Liu Q, Wang F, Chen Y, Cui H, Wu H. A regulatory module comprising G3BP1-FBXL5-IRP2 axis determines sodium arsenite-induced ferroptosis. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133038. [PMID: 38118197 DOI: 10.1016/j.jhazmat.2023.133038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/26/2023] [Accepted: 11/17/2023] [Indexed: 12/22/2023]
Abstract
Arsenic contamination is extremely threatening to the global public health. It was reported that sodium arsenite exposure induces serious kidney injury. However, the underlying mechanism is unclear. Ferroptosis is a newly characterized form of iron-dependent programmed cell death, which is implicated in the pathogenesis of various human diseases, including kidney injury. The lethal accumulation of iron-catalyzed lipid peroxidation is the fundamental biochemical characteristic of ferroptosis. Herein we report that sodium arsenite exposure initiates ferroptosis in mammalian HEK293, MEF and HT1080 cells, and induces ferroptosis-associated acute kidney injury in mice. RNA-binding protein G3BP1, the switch component of stress granules, is indispensable for sodium arsenite-induced ferroptosis in a stress granule-independent manner. Mechanistically, G3BP1 stabilizes IRP2, the master regulator of cellular iron homeostasis, through binding to and suppressing the translation of FBXL5 mRNA, which encodes the E3 ligase component to mediate IRP2 ubiquitination and proteasomal degradation. Sodium arsenite intoxication expedites this G3BP1-FBXL5-IRP2 axis and elevates cellular labile free iron, which is responsible for sodium arsenite exposure-induced lipid peroxidation and ferroptotic cell death. In summary, this study highlights a regulatory module comprising G3BP1-FBXL5-IRP2 axis in determining sodium arsenite-induced ferroptosis and ferroptosis-associated acute kidney injury in mice.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yingxian Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Hengkang Cui
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Hao Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| |
Collapse
|
83
|
Stoess C, Choi YK, Onyuru J, Friess H, Hoffman HM, Hartmann D, Feldstein AE. Cell Death in Liver Disease and Liver Surgery. Biomedicines 2024; 12:559. [PMID: 38540172 PMCID: PMC10968531 DOI: 10.3390/biomedicines12030559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 01/03/2025] Open
Abstract
Cell death is crucial for maintaining tissue balance and responding to diseases. However, under pathological conditions, the surge in dying cells results in an overwhelming presence of cell debris and the release of danger signals. In the liver, this gives rise to hepatic inflammation and hepatocellular cell death, which are key factors in various liver diseases caused by viruses, toxins, metabolic issues, or autoimmune factors. Both clinical and in vivo studies strongly affirm that hepatocyte death serves as a catalyst in the progression of liver disease. This advancement is characterized by successive stages of inflammation, fibrosis, and cirrhosis, culminating in a higher risk of tumor development. In this review, we explore pivotal forms of cell death, including apoptosis, pyroptosis, and necroptosis, examining their roles in both acute and chronic liver conditions, including liver cancer. Furthermore, we discuss the significance of cell death in liver surgery and ischemia-reperfusion injury. Our objective is to illuminate the molecular mechanisms governing cell death in liver diseases, as this understanding is crucial for identifying therapeutic opportunities aimed at modulating cell death pathways.
Collapse
Affiliation(s)
- Christian Stoess
- Department of Pediatric Gastroenterology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (C.S.)
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Yeon-Kyung Choi
- Department of Pediatric Gastroenterology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (C.S.)
- Department of Internal Medicine, School of Medicine, Kyungpook National University Chilgok Hospital, Kyungpook National University, Daegu 41404, Republic of Korea
| | - Janset Onyuru
- Department of Pediatric Allergy, Immunology and Rheumatology, University of California San Diego, La Jolla, CA 92093, USA
| | - Helmut Friess
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Hal M. Hoffman
- Department of Pediatric Allergy, Immunology and Rheumatology, University of California San Diego, La Jolla, CA 92093, USA
| | - Daniel Hartmann
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Ariel E. Feldstein
- Department of Pediatric Gastroenterology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (C.S.)
- Novo Nordisk, Global Drug Discovery, Ørestads Boulevard 108, 2300 Copenhagen, Denmark
| |
Collapse
|
84
|
Mann J, Reznik E, Santer M, Fongheiser MA, Smith N, Hirschhorn T, Zandkarimi F, Soni RK, Dafré AL, Miranda-Vizuete A, Farina M, Stockwell BR. Ferroptosis inhibition by oleic acid mitigates iron-overload-induced injury. Cell Chem Biol 2024; 31:249-264.e7. [PMID: 37944523 PMCID: PMC10922137 DOI: 10.1016/j.chembiol.2023.10.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 07/24/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
Iron overload, characterized by accumulation of iron in tissues, induces a multiorgan toxicity whose mechanisms are not fully understood. Using cultured cell lines, Caenorhabditis elegans, and mice, we found that ferroptosis occurs in the context of iron-overload-mediated damage. Exogenous oleic acid protected against iron-overload-toxicity in cell culture and Caenorhabditis elegans by suppressing ferroptosis. In mice, oleic acid protected against FAC-induced liver lipid peroxidation and damage. Oleic acid changed the cellular lipid composition, characterized by decreased levels of polyunsaturated fatty acyl phospholipids and decreased levels of ether-linked phospholipids. The protective effect of oleic acid in cells was attenuated by GW6471 (PPAR-α antagonist), as well as in Caenorhabditis elegans lacking the nuclear hormone receptor NHR-49 (a PPAR-α functional homologue). These results highlight ferroptosis as a driver of iron-overload-mediated damage, which is inhibited by oleic acid. This monounsaturated fatty acid represents a potential therapeutic approach to mitigating organ damage in iron overload individuals.
Collapse
Affiliation(s)
- Josiane Mann
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Eduard Reznik
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Melania Santer
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Mark A Fongheiser
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Nailah Smith
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Tal Hirschhorn
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | - Rajesh Kumar Soni
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Alcir Luiz Dafré
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain
| | - Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA; Department of Chemistry, Columbia University, New York, NY 10027, USA; Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York. NY 10032, USA.
| |
Collapse
|
85
|
Gensluckner S, Wernly B, Datz C, Aigner E. Iron, Oxidative Stress, and Metabolic Dysfunction-Associated Steatotic Liver Disease. Antioxidants (Basel) 2024; 13:208. [PMID: 38397806 PMCID: PMC10886327 DOI: 10.3390/antiox13020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Excess free iron is a substrate for the formation of reactive oxygen species (ROS), thereby augmenting oxidative stress. Oxidative stress is a well-established cause of organ damage in the liver, the main site of iron storage. Ferroptosis, an iron-dependent mechanism of regulated cell death, has recently been gaining attention in the development of organ damage and the progression of liver disease. We therefore summarize the main mechanisms of iron metabolism, its close connection to oxidative stress and ferroptosis, and its particular relevance to disease mechanisms in metabolic-dysfunction-associated fatty liver disease and potential targets for therapy from a clinical perspective.
Collapse
Affiliation(s)
- Sophie Gensluckner
- Department of Internal Medicine I, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Bernhard Wernly
- Department of Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University, 5110 Oberndorf, Austria; (B.W.); (C.D.)
| | - Christian Datz
- Department of Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University, 5110 Oberndorf, Austria; (B.W.); (C.D.)
| | - Elmar Aigner
- Department of Internal Medicine I, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
86
|
Deng W, Zhang W, He Q. Study on the mechanism of puerarin against osteoarthritis from ferroptosis based on network pharmacology and bioinformatics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:959-968. [PMID: 37548663 PMCID: PMC10791713 DOI: 10.1007/s00210-023-02653-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
Network pharmacology and bioinformatics were used to study puerarin's molecular mechanism in treating osteoarthritis from the perspective of ferroptosis, revealing a new treatment target. Ferroptosis-related targets were obtained from FerrDb. Puerarin action targets were retrieved from TCMSP, Pharmmappe, SwissTargetPrediction, and Targetnet databases, and supplemented with PubMed. The gene expression profiles of GSE12021, GSE55235, and GSE82107 were obtained using "Osteoarthritis" as the search term in the GEO database, and the differential expression gene screening analysis was performed for osteoarthritis. The intersection targets between puerarin, iron death, and osteoarthritis were obtained using Venn diagrams. GO and KEGG analyses were conducted with R software. Molecular docking and visualization of puerarin and core targets were performed using Autodock Vina and PyMol software. The effects of puerarin on the cell viability and the TNFα, IL6, and Ilβ levels of human inflammation articular chondrocytes were tested in vitro experiments. Puerarin, ferroptosis, and osteoarthritis share four targets: PLIN2, PTGS2, VEGFA, and IL6. GO enrichment analysis showed that puerarin maintained the blood-brain barrier, regulated peptide serine phosphorylation, and had anti-inflammatory effects. KEGG analysis showed that puerarin's anti-inflammatory effects were mainly through VEGF, IL-17, C-type lectin receptor, HIF-1, TNF, and other signaling pathways. Puerarin closely bound PLIN2, PTGS2, VEGFA, and IL6 targets in molecular docking. In vitro, puerarin prevented osteoarthritis. Network pharmacology and bioinformatics explained puerarin's multi-target and multi-pathway treatment of OA, which may be related to ferroptosis, and confirmed its anti-inflammatory effect.
Collapse
Affiliation(s)
- Wenxiang Deng
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Wenan Zhang
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Qinghu He
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
- Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| |
Collapse
|
87
|
Chen S, Gao JJ, Liu YJ, Mo ZW, Wu FY, Hu ZJ, Peng YM, Zhang XQ, Ma ZS, Liu ZL, Yan JY, Ou ZJ, Li Y, Ou JS. The oxidized phospholipid PGPC impairs endothelial function by promoting endothelial cell ferroptosis via FABP3. J Lipid Res 2024; 65:100499. [PMID: 38218337 PMCID: PMC10864338 DOI: 10.1016/j.jlr.2024.100499] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/15/2024] Open
Abstract
Ferroptosis is a novel cell death mechanism that is mediated by iron-dependent lipid peroxidation. It may be involved in atherosclerosis development. Products of phospholipid oxidation play a key role in atherosclerosis. 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) is a phospholipid oxidation product present in atherosclerotic lesions. It remains unclear whether PGPC causes atherosclerosis by inducing endothelial cell ferroptosis. In this study, human umbilical vein endothelial cells (HUVECs) were treated with PGPC. Intracellular levels of ferrous iron, lipid peroxidation, superoxide anions (O2•-), and glutathione were detected, and expression of fatty acid binding protein-3 (FABP3), glutathione peroxidase 4 (GPX4), and CD36 were measured. Additionally, the mitochondrial membrane potential (MMP) was determined. Aortas from C57BL6 mice were isolated for vasodilation testing. Results showed that PGPC increased ferrous iron levels, the production of lipid peroxidation and O2•-, and FABP3 expression. However, PGPC inhibited the expression of GPX4 and glutathione production and destroyed normal MMP. These effects were also blocked by ferrostatin-1, an inhibitor of ferroptosis. FABP3 silencing significantly reversed the effect of PGPC. Furthermore, PGPC stimulated CD36 expression. Conversely, CD36 silencing reversed the effects of PGPC, including PGPC-induced FABP3 expression. Importantly, E06, a direct inhibitor of the oxidized 1-palmitoyl-2-arachidonoyl-phosphatidylcholine IgM natural antibody, inhibited the effects of PGPC. Finally, PGPC impaired endothelium-dependent vasodilation, ferrostatin-1 or FABP3 inhibitors inhibited this impairment. Our data demonstrate that PGPC impairs endothelial function by inducing endothelial cell ferroptosis through the CD36 receptor to increase FABP3 expression. Our findings provide new insights into the mechanisms of atherosclerosis and a therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Si Chen
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Jian-Jun Gao
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yu-Jia Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Zhi-Wei Mo
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Fang-Yuan Wu
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; Division of Hypertension and Vascular Diseases, Department of Cardiology, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zuo-Jun Hu
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yue-Ming Peng
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Xiao-Qin Zhang
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; Division of Hypertension and Vascular Diseases, Department of Cardiology, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhen-Sheng Ma
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Ze-Long Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Jian-Yun Yan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
| | - Zhi-Jun Ou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; Division of Hypertension and Vascular Diseases, Department of Cardiology, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Yan Li
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
| | - Jing-Song Ou
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
88
|
Singh G, Kesharwani P, Kumar Singh G, Kumar S, Putta A, Modi G. Ferroptosis and its modulators: A raising target for cancer and Alzheimer's disease. Bioorg Med Chem 2024; 98:117564. [PMID: 38171251 DOI: 10.1016/j.bmc.2023.117564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
The process of ferroptosis, a recently identified form of regulated cell death (RCD) is associated with the overloading of iron species and lipid-derived ROS accumulation. Ferroptosis is induced by various mechanisms such as inhibiting system Xc, glutathione depletion, targeting excess iron, and directly inhibiting GPX4 enzyme. Also, ferroptosis inhibition is achieved by blocking excessive lipid peroxidation by targeting different pathways. These mechanisms are often related to the pathophysiology and pathogenesis of diseases like cancer and Alzheimer's. Fundamentally distinct from other forms of cell death, such as necrosis and apoptosis, ferroptosis differs in terms of biochemistry, functions, and morphology. The mechanism by which ferroptosis acts as a regulatory factor in many diseases remains elusive. Studying the activation and inhibition of ferroptosis as a means to mitigate the progression of various diseases is a highly intriguing and actively researched topic. It has emerged as a focal point in etiological research and treatment strategies. This review systematically summarizes the different mechanisms involved in the inhibition and induction of ferroptosis. We have extensively explored different agents that can induce or inhibit ferroptosis. This review offers current perspectives on recent developments in ferroptosis research, highlighting the disease's etiology and presenting references to enhance its understanding. It also explores new targets for the treatment of cancer and Alzheimer's disease.
Collapse
Affiliation(s)
- Gourav Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Gireesh Kumar Singh
- Department of Pharmacy, School of Health Science, Central University of South Bihar Gaya, 824236, India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Anjaneyulu Putta
- Department of Chemistry, University of South Dakota, Churchill Haines, Vermillion SD-57069, United States
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| |
Collapse
|
89
|
Zhao X, Li X, Xu Y. Ferroptosis: a dual-edged sword in tumour growth. Front Pharmacol 2024; 14:1330910. [PMID: 38273826 PMCID: PMC10808349 DOI: 10.3389/fphar.2023.1330910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Ferroptosis, a recently identified form of non-apoptotic cell death, is distinguished by its dependence on iron-triggered lipid peroxidation and accumulation of iron. It has been linked to various disorders, including the development of tumours. Interestingly, ferroptosis appears to exhibit a dual role in the context of tumour growth. This article provides a thorough exploration of the inherent ambivalence within ferroptosis, encompassing both its facilitation and inhibition of tumorous proliferation. It examines potential therapeutic targets associated with ferroptosis, the susceptibility of cancerous cells to ferroptosis, strategies to enhance the efficacy of existing cancer treatments, the interaction between ferroptosis and the immune response to tumours, and the fundamental mechanisms governing ferroptosis-induced tumour progression. A comprehensive understanding of how ferroptosis contributes to tumour biology and the strategic management of its dual nature are crucial for maximizing its therapeutic potential.
Collapse
Affiliation(s)
| | | | - Yinghui Xu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
90
|
Liu L, Ye Y, Lin R, Liu T, Wang S, Feng Z, Wang X, Cao H, Chen X, Miao J, Liu Y, Jiang K, Han Z, Li Z, Cao X. Ferroptosis: a promising candidate for exosome-mediated regulation in different diseases. Cell Commun Signal 2024; 22:6. [PMID: 38166927 PMCID: PMC11057189 DOI: 10.1186/s12964-023-01369-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/28/2023] [Indexed: 01/05/2024] Open
Abstract
Ferroptosis is a newly discovered form of cell death that is featured in a wide range of diseases. Exosome therapy is a promising therapeutic option that has attracted much attention due to its low immunogenicity, low toxicity, and ability to penetrate biological barriers. In addition, emerging evidence indicates that exosomes possess the ability to modulate the progression of diverse diseases by regulating ferroptosis in damaged cells. Hence, the mechanism by which cell-derived and noncellular-derived exosomes target ferroptosis in different diseases through the system Xc-/GSH/GPX4 axis, NAD(P)H/FSP1/CoQ10 axis, iron metabolism pathway and lipid metabolism pathway associated with ferroptosis, as well as its applications in liver disease, neurological diseases, lung injury, heart injury, cancer and other diseases, are summarized here. Additionally, the role of exosome-regulated ferroptosis as an emerging repair mechanism for damaged tissues and cells is also discussed, and this is expected to be a promising treatment direction for various diseases in the future. Video Abstract.
Collapse
Affiliation(s)
- Limin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Yulin Ye
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Rui Lin
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Zelin Feng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Xiaoli Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Junming Miao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Yifei Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Kui Jiang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300052, China.
| | - Zhibo Han
- National Engineering Research Center of Cell Products, AmCellGene Engineering Co., Ltd, Tianjin, 300457, China.
- Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, Tianjin, 300457, China.
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.
| | - Zongjin Li
- Nankai University School of Medicine, Tianjin, 300071, China.
| | - Xiaocang Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300052, China.
| |
Collapse
|
91
|
Bi Y, Liu S, Qin X, Abudureyimu M, Wang L, Zou R, Ajoolabady A, Zhang W, Peng H, Ren J, Zhang Y. FUNDC1 interacts with GPx4 to govern hepatic ferroptosis and fibrotic injury through a mitophagy-dependent manner. J Adv Res 2024; 55:45-60. [PMID: 36828120 PMCID: PMC10770120 DOI: 10.1016/j.jare.2023.02.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
INTRODUCTION Liver fibrosis is a life-threatening pathological anomaly which usually evolves into advanced liver cirrhosis and hepatocellular carcinoma although limited therapeutic option is readily available. FUN14 domain containing 1 (FUNDC1) is a mitophagy receptor with little information in liver fibrosis. OBJECTIVE This study was designed to examine the role for FUNDC1 in carbon tetrachloride (CCl4)-induced liver injury. METHODS GEO database analysis and subsequent validation of biological processes including western blot, immunofluorescence, and co-immunoprecipitation were applied to clarify the regulatory role of FUNDC1 on mitophagy and ferroptosis. RESULTS Our data revealed elevated FUNDC1 levels in liver tissues of patients with liver fibrotic injury and CCl4-challenged mice. FUNDC1 deletion protected against CCl4-induced hepatic anomalies in mice. Moreover, FUNDC1 deletion ameliorated CCl4-induced ferroptosis in vivo and in vitro. Mechanically, FUNDC1 interacted with glutathione peroxidase (GPx4), a selenoenzyme to neutralize lipid hydroperoxides and ferroptosis, via its 96-133 amino acid domain to facilitate GPx4 recruitment into mitochondria from cytoplasm. GPx4 entered mitochondria through mitochondrial protein import system-the translocase of outer membrane/translocase of inner membrane (TOM/TIM) complex, prior to degradation of GPx4 mainly through mitophagy along with ROS-induced damaged mitochondria, resulting in hepatocyte ferroptosis. CONCLUSION Taken together, our data favored that FUNDC1 promoted hepatocyte injury through GPx4 binding to facilitate its mitochondrial translocation through TOM/TIM complex, where GPx4 was degraded by mitophagy to trigger ferroptosis. Targeting FUNDC1 may be a promising therapeutic approach for liver fibrosis.
Collapse
Affiliation(s)
- Yaguang Bi
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Shuolin Liu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Xing Qin
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Miyesaier Abudureyimu
- Cardiovascular Department, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Lu Wang
- Institute of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an 710032, China; State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an 710032, China
| | - Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine,Guangzhou 510120, Guangdong, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Amir Ajoolabady
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Wenjing Zhang
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai 200072, China
| | - Hu Peng
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai 200072, China
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| | - Yingmei Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| |
Collapse
|
92
|
Liang Y, Qiu S, Zou Y, Luo L. Targeting ferroptosis with natural products in liver injury: new insights from molecular mechanisms to targeted therapies. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155134. [PMID: 37863001 DOI: 10.1016/j.phymed.2023.155134] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Ferroptosis is a brand-new type of controlled cell death that is distinguished by its reliance on iron and the production of lipid peroxidation. The role of ferroptosis in damaging liver disorders has attracted a lot of attention in recent years. One effective strategy to reduce liver damage is to target ferroptosis. PURPOSE The purpose of this review is to clarify the connection between ferroptosis and liver damage and to look into the potential contribution of natural products to the clinical management of liver damage and the discovery of novel medications. METHODS To study the methods by which natural products operate on ferroptosis to cure liver damage and their main signaling pathways, we searched databases from the time of initial publication to August 2023 in PubMed, EMBASE, Web of Science, Ovid, ScienceDirect, and China National Knowledge Infrastructure. The liver illness that each natural product treats is categorized and summarized. It's interesting to note that several natural compounds, such Artemether, Fucoidan sulfate, Curcumin, etc., have the benefit of having many targets and multiple pathways of action. RESULTS We saw that in human samples or animal models of liver injury, ferroptosis indicators were activated, lipid peroxidation levels were elevated, and iron inhibitors had the ability to reduce liver damage. Liver damage can be treated with natural products by regulating ferroptosis. This is mostly accomplished through the modulation of Nrf2-related pathways (e.g., Conclusions and Astaxanthin), biological enzymes like GPX4 and the SIRT family (e.g., Chrysophanol and Decursin), and transcription factors like P53 (e.g., Artemether and Zeaxanthin). CONCLUSIONS This review proposes a promising path for the therapeutic therapy of liver damage by providing a theoretical foundation for the management of ferroptosis utilizing natural ingredients.
Collapse
Affiliation(s)
- Yongyi Liang
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Shaojun Qiu
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Youwen Zou
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, Guangdong, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, Guangdong, China.
| |
Collapse
|
93
|
Qin J, Cao P, Ding X, Zeng Z, Deng L, Luo L. Machine learning identifies ferroptosis-related gene ANXA2 as potential diagnostic biomarkers for NAFLD. Front Endocrinol (Lausanne) 2023; 14:1303426. [PMID: 38192427 PMCID: PMC10773757 DOI: 10.3389/fendo.2023.1303426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/14/2023] [Indexed: 01/10/2024] Open
Abstract
Introduction Non-alcoholic fatty liver disease (NAFLD), a major cause of chronic liver disease, still lacks effective therapeutic targets today. Ferroptosis, a type of cell death characterized by lipid peroxidation, has been linked to NAFLD in certain preclinical trials, yet the exact molecular mechanism remains unclear. Thus, we analyzed the relationship between ferroptosis genes and NAFLD using high-throughput data. Method We utilized a total of 282 samples from five datasets, including two mouse ones, one human one, one single nucleus dataset and one single cell dataset from Gene Expression Omnibus (GEO), as the data basis of our study. To filter robust treatment targets, we employed four machine learning methods (LASSO, SVM, RF and Boruta). In addition, we used an unsupervised consensus clustering algorithm to establish a typing scheme for NAFLD based on the expression of ferroptosis related genes (FRGs). Our study is also the first to investigate the dynamics of FRGs throughout the disease process by time series analysis. Finally, we validated the relationship between core gene and ferroptosis by in vitro experiments on HepG2 cells. Results We discovered ANXA2 as a central focus in NAFLD and indicated its potential to boost ferroptosis in HepG2 cells. Additionally, based on the results obtained from time series analysis, ANXA2 was observed to significantly define the disease course of NAFLD. Our results demonstrate that implementing a ferroptosis-based staging method may hold promise for the diagnosis and treatment of NAFLD. Conclusion Our findings suggest that ANXA2 may be a useful biomarker for the diagnosis and characterization of NAFLD.
Collapse
Affiliation(s)
- Jingtong Qin
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Peng Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuexuan Ding
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Zeyao Zeng
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Liyan Deng
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| |
Collapse
|
94
|
Zhang H, Axinbai M, Zhao Y, Wei J, Qu T, Kong J, He Y, Zhang L. Bioinformatics analysis of ferroptosis-related genes and immune cell infiltration in non-alcoholic fatty liver disease. Eur J Med Res 2023; 28:605. [PMID: 38115130 PMCID: PMC10729346 DOI: 10.1186/s40001-023-01457-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/18/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND The morbidity and mortality rates of patients with non-alcoholic fatty liver disease (NAFLD) have been steadily increasing in recent years. Previous studies have confirmed the important role of ferroptosis in NAFLD development; however, the precise mechanism through which ferroptosis influences NAFLD occurrence remains unclear. The present study aimed to identify and validate ferroptosis-related genes involved in NAFLD pathogenesis and to investigate the underlying molecular mechanisms of NAFLD. METHODS We downloaded microarray datasets GSE72756 and GSE24807 to identify differentially expressed genes (DEGs) between samples from healthy individuals and patients with NAFLD. From these DEGs, we extracted ferroptosis-related DEGs. GSE89632, another microarray dataset, was used to validate the expression of ferroptosis-related genes. A protein-protein interaction (PPI) network of ferroptosis-related genes was then constructed. The target genes were also subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Finally, competing endogenous RNA networks were constructed. We used the CIBERSORT package to evaluate the infiltration of immune cells infiltration in NAFLD. RESULTS Five ferroptosis-related genes (SCP2, MUC1, DPP4, SLC1A4, and TF) were identified as promising diagnostic biomarkers for NAFLD. Enrichment analyses revealed that these genes are mainly involved in metabolic processes. NEAT1-miR-1224-5p-SCP2, NEAT1-miR-485-5p-MUC1, MALAT1-miR-485-5p-MUC1, and CNOT6-miR-145-5p-SLC1A4 are likely to be the potential RNA regulatory pathways that affect NAFLD development. Principal component analysis indicated significant differences in immune cell infiltration between the two groups. CONCLUSIONS This study identified five ferroptosis-related genes as potential biomarkers for diagnosing NAFLD. The correlations between the expression of ferroptosis-related genes and immune cell infiltration might shed light on the study of the molecular mechanism underlying NAFLD development.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Digestion, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Malina Axinbai
- Department of Digestion, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
- Xinjiang Medical University, Urumqi, China
| | - Yuqing Zhao
- Beijing University of Chinese Medicine, Beijing, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaoyang Wei
- Department of Digestion, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Tongshuo Qu
- Department of Digestion, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Jingmin Kong
- Department of Emergency, Beijing Chaoyang Integrative Medicine Rescue and First Aid Hospital, Beijing, China
| | - Yongqiang He
- Department of Digestion, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Liping Zhang
- Department of Digestion, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China.
- Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
95
|
Tao J, Zhang Y, Huang Y, Xu M. The role of iron and ferroptosis in the pathogenesis of acute pancreatitis. J Histotechnol 2023; 46:184-193. [PMID: 37823564 DOI: 10.1080/01478885.2023.2261093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
Acute pancreatitis (AP) is an inflammatory disease of the pancreas. Iron is an essential element for life and is involved in many metabolic processes. Ferroptosis is a type of regulated cell death that is triggered by iron and oxidative stress. A well-established mouse AP model was adopted to study the role of iron and ferroptosis in the pathogenesis of pancreatitis. Mice were injected with cerulein to induce AP, and pancreatic tissue samples were analyzed to determine the pathology, cell death, iron deposition, expression of iron transporters, and lipid peroxidation. The role of iron was studied by giving mice extra iron or iron chelator. In vitro studies with acinar cells with ferroptosis activator and inhibitor were also performed to assess the inflammatory response. Iron was found accumulated in the pancreatic tissue of mice who suffered cerulein-induced pancreatitis. Cell death and lipid peroxidation increased in these tissues and could be further modulated by iron dextran or iron chelator. Mice given Hemin through gavage had reduced levels of GSH in pancreatic tissue and increased inflammatory response. Studies with acinar cells showed increased levels of lipid peroxidation and ferroptosis-specific mitochondrial damage when treated with ferroptosis inducer and inflammatory cytokines.
Collapse
Affiliation(s)
- Jin Tao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyi Zhang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinshi Huang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Xu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
96
|
Wang Y, Shi C, Guo J, Zhang Y, Gong Z. Distinct Types of Cell Death and Implications in Liver Diseases: An Overview of Mechanisms and Application. J Clin Transl Hepatol 2023; 11:1413-1424. [PMID: 37719956 PMCID: PMC10500292 DOI: 10.14218/jcth.2023.00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/17/2023] [Accepted: 07/12/2023] [Indexed: 09/19/2023] Open
Abstract
Cell death is associated with a variety of liver diseases, and hepatocyte death is a core factor in the occurrence and progression of liver diseases. In recent years, new cell death modes have been identified, and certain biomarkers have been detected in the circulation during various cell death modes that mediate liver injury. In this review, cell death modes associated with liver diseases are summarized, including some cell death modes that have emerged in recent years. We described the mechanisms associated with liver diseases and summarized recent applications of targeting cell death in liver diseases. It provides new ideas for the diagnosis and treatment of liver diseases. In addition, multiple cell death modes can contribute to the same liver disease. Different cell death modes are not isolated, and they interact with each other in liver diseases. Future studies may focus on exploring the regulation between various cell death response pathways in liver diseases.
Collapse
Affiliation(s)
- Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanqiong Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
97
|
Zhu B, Wei Y, Zhang M, Yang S, Tong R, Li W, Long E. Metabolic dysfunction-associated steatotic liver disease: ferroptosis related mechanisms and potential drugs. Front Pharmacol 2023; 14:1286449. [PMID: 38027027 PMCID: PMC10665502 DOI: 10.3389/fphar.2023.1286449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is considered a "multisystem" disease that simultaneously suffers from metabolic diseases and hepatic steatosis. Some may develop into liver fibrosis, cirrhosis, and even hepatocellular carcinoma. Given the close connection between metabolic diseases and fatty liver, it is urgent to identify drugs that can control metabolic diseases and fatty liver as a whole and delay disease progression. Ferroptosis, characterized by iron overload and lipid peroxidation resulting from abnormal iron metabolism, is a programmed cell death mechanism. It is an important pathogenic mechanism in metabolic diseases or fatty liver, and may become a key direction for improving MASLD. In this article, we have summarized the physiological and pathological mechanisms of iron metabolism and ferroptosis, as well as the connections established between metabolic diseases and fatty liver through ferroptosis. We have also summarized MASLD therapeutic drugs and potential active substances targeting ferroptosis, in order to provide readers with new insights. At the same time, in future clinical trials involving subjects with MASLD (especially with the intervention of the therapeutic drugs), the detection of serum iron metabolism levels and ferroptosis markers in patients should be increased to further explore the efficacy of potential drugs on ferroptosis.
Collapse
Affiliation(s)
- Baoqiang Zhu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuankui Wei
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Mingming Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shiyu Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenyuan Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Enwu Long
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
98
|
Li S, Zhou X, Chen R, Zhang Q, Sun Y, Chen H. Effect of natural polysaccharides on alcoholic liver disease: A review. Int J Biol Macromol 2023; 251:126317. [PMID: 37595705 DOI: 10.1016/j.ijbiomac.2023.126317] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023]
Abstract
In this study, we systematically collected relevant literature in the past five years on the intervention of natural polysaccharides in alcoholic liver disease (ALD) and reviewed the pharmacological activities and potential mechanisms of action. Natural polysaccharides are effective in preventing liver tissue degeneration, inhibiting the alcohol-induced expression of inflammatory factors, inactivation of antioxidant enzymes, and abnormal hepatic lipid deposition. Natural polysaccharides regulate the expression of proteins, such as tight junction proteins, production of small molecule metabolites, and balance of intestinal flora in the intestinal tract to alleviate ALD. Natural polysaccharides also exert therapeutic effects by modulating inflammatory, oxidative, lipid metabolism, and other pathways in the liver. Natural polysaccharides also inhibit alcohol-induced intestinal abnormalities by regulating intestinal flora and feeding back into the liver via the gut-liver axis. However, existing research on natural polysaccharides has many shortcomings: for example, most of the natural polysaccharides for testing are total polysaccharides or crude polysaccharides, progress in research on in vivo metabolic processes and mechanisms is slow, and the degree of industrialisation is insufficient. Finally, we discuss the difficulties in studying natural polysaccharides and future directions to provide a theoretical basis for their development and application.
Collapse
Affiliation(s)
- Siyu Li
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control&Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Xin Zhou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control&Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Ruhai Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control&Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Qiurong Zhang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control&Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Yu Sun
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control&Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Huaguo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control&Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China.
| |
Collapse
|
99
|
Wang Y, Bo J, Zhao Z, Han Y, Zhang Q, Liu L. Depletion of Igfbp7 alleviates zebrafish NAFLD progression through inhibiting hepatic ferroptosis. Life Sci 2023; 332:122086. [PMID: 37714372 DOI: 10.1016/j.lfs.2023.122086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
AIMS The global increased expression of Insulin-like growth factor binding protein 7 (IGFBP7) has been detected in non-alcoholic fatty liver disease (NAFLD) patients, however, its roles in NAFLD and the mechanism remain largely unclear. The goal of this study is to investigate the effect and mechanism of Igfbp7 using a zebrafish NAFLD model. MAIN METHODS The igfbp7-/- null zebrafish mutant and the Igfbp7 liver overexpressed (LOE) transgenic zebrafish based on Gal4/UAS system were generated by CRISPR/Cas9 and Tol2 transgenic technique, respectively. The zebrafish NAFLD models in wildtypes, igfbp7-/- mutants and Igfbp7 LOE fishes have been established by high-fat diet feeding. The Igfbp7 dynamic expression and its effects on NAFLD progression have been detected and analyzed in both human NAFLD patients and zebrafish models. And the potential mechanism has been investigated through transcriptome analysis and subsequent detection and verification. KEY FINDINGS High Igfbp7 levels in NASH and fibrosis stages have been detected in liver tissues of both human NAFLD patients and zebrafish models. Depletion of Igfbp7 significantly alleviated liver steatosis, inflammation, and fibrosis, whereas liver specific Igfbp7 overexpression dramatically exacerbated liver fibrosis in zebrafish NAFLD model. The hepatic iron deposition, lipid peroxidation products, and ferroptosis-related index were also significantly reduced at the NASH stage in the absence of Igfbp7. Igfbp7 promotes NAFLD progression through regulating ferroptosis, and Ncoa4-mediated ferritinophagy may be the pathway of Igfbp7-regulated ferroptosis. SIGNIFICANCE Igfbp7 is confirmed as an important regulator in NAFLD progression. Depleting Igfbp7 effectively alleviates zebrafish NAFLD progression by inhibiting hepatic ferroptosis, suggesting a novel potential target for NAFLD treatment.
Collapse
Affiliation(s)
- Yanqin Wang
- Department of Gastroenterology and Hepatology, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Jiaqi Bo
- Department of Gastroenterology and Hepatology, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Zhonghua Zhao
- Institutes of Biomedical Sciences, 1331 Local Bio-Resources and Health Industry Collaborative Innovation Center of Shanxi Province, Shanxi University, Taiyuan 030006, China
| | - Yuhang Han
- Department of Gastroenterology and Hepatology, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Qianqian Zhang
- Department of Gastroenterology and Hepatology, The First Hospital of Shanxi Medical University, Taiyuan 030001, China; Experimental Center of Science and Research, The First Hospital of Shanxi Medical University, Taiyuan 030001, China; Key Laboratory of Prevention and Treatment of Liver Injury and Digestive System Neoplasms, Provincial Committee of the Medical and Health, Taiyuan 030001, China
| | - Lixin Liu
- Department of Gastroenterology and Hepatology, The First Hospital of Shanxi Medical University, Taiyuan 030001, China; Experimental Center of Science and Research, The First Hospital of Shanxi Medical University, Taiyuan 030001, China; Key Laboratory of Prevention and Treatment of Liver Injury and Digestive System Neoplasms, Provincial Committee of the Medical and Health, Taiyuan 030001, China.
| |
Collapse
|
100
|
Wang R, Chen Y, Chen J, Ma M, Xu M, Liu S. Integration of transcriptomics and metabolomics analysis for unveiling the toxicological profile in the liver of mice exposed to uranium in drinking water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122296. [PMID: 37536476 DOI: 10.1016/j.envpol.2023.122296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/17/2023] [Accepted: 07/29/2023] [Indexed: 08/05/2023]
Abstract
Uranium is a contaminate in the underground water in many regions of the world, which poses health risks to the local populations through drinking water. Although the health hazards of natural uranium have been concerned for decades, the controversies about its detrimental effects continue at present since it is still unclear how uranium interacts with molecular regulatory networks to generate toxicity. Here, we integrate transcriptomic and metabolomic methods to unveil the molecular mechanism of lipid metabolism disorder induced by uranium. Following exposure to uranium in drinking water for twenty-eight days, aberrant lipid metabolism and lipogenesis were found in the liver, accompanied with aggravated lipid peroxidation and an increase in dead cells. Multi-omics analysis reveals that uranium can promote the biosynthesis of unsaturated fatty acids through dysregulating the metabolism of arachidonic acid (AA), linoleic acid, and glycerophospholipid. Most notably, the disordered metabolism of polyunsaturated fatty acids (PUFAs) like AA may contribute to lipid peroxidation induced by uranium, which in turn triggers ferroptosis in hepatocytes. Our findings highlight disorder of lipid metabolism as an essential toxicological mechanism of uranium in the liver, offering insight into the health risks of uranium in drinking water.
Collapse
Affiliation(s)
- Ruixia Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongjiu Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Unit III & Ostomy Service, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jiahao Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghao Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|