51
|
Ma M, Li Y, He Y, Li D, Niu H, Sun M, Miao X, Su Y, Zhang H, Hua M, Wang J. The Combination of Bacillus natto JLCC513 and Ginseng Soluble Dietary Fiber Attenuates Ulcerative Colitis by Modulating the LPS/TLR4/NF-κB Pathway and Gut Microbiota. J Microbiol Biotechnol 2024; 34:1287-1298. [PMID: 38783703 PMCID: PMC11239422 DOI: 10.4014/jmb.2402.02027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) that is currently difficult to treat effectively. Both Bacillus natto (BN) and ginseng-soluble dietary fiber (GSDF) are anti-inflammatory and helps sustain the intestinal barrier. In this study, the protective effects and mechanism of the combination of B. natto JLCC513 and ginseng-soluble dietary fiber (BG) in DSS-induced UC mice were investigated. Intervention with BG worked better than taking BN or GSDF separately, as evidenced by improved disease activity index, colon length, and colon injury and significantly reduced the levels of oxidative and inflammatory factors (LPS, ILs, and TNF-α) in UC mice. Further mechanistic study revealed that BG protected the intestinal barrier integrity by maintaining the tight junction proteins (Occludin and Claudin1) and inhibited the LPS/TLR4/NF-κB pathway in UC mice. In addition, BG increased the abundance of beneficial bacteria such as Bacteroides and Turicibacter and reduced the abundance of harmful bacteria such as Allobaculum in the gut microbiota of UC mice. BG also significantly upregulated genes related to linoleic acid metabolism in the gut microbiota. These BG-induced changes in the gut microbiota of mice with UC were significantly correlated with changes in pathological indices. In conclusion, this study demonstrated that BG exerts protective effect against UC by regulating the LPS/TLR4/NF-κB pathway and the structure and metabolic function of gut microbiota. Thus, BG can be potentially used in intestinal health foods to treat UC.
Collapse
Affiliation(s)
- Mingyue Ma
- Agronomy of Food Science and Technology, Yanbian University, Yanji 133002, Jilin, P.R. China
- Institute of Agro-product Process, Jilin Academy of Agricultural Science (Northeast Agricultural Research Center of China), Changchun 130033, Jilin, P.R. China
| | - Yueqiao Li
- Institute of Agro-product Process, Jilin Academy of Agricultural Science (Northeast Agricultural Research Center of China), Changchun 130033, Jilin, P.R. China
| | - Yuguang He
- Institute of Agro-product Process, Jilin Academy of Agricultural Science (Northeast Agricultural Research Center of China), Changchun 130033, Jilin, P.R. China
| | - Da Li
- Institute of Agro-product Process, Jilin Academy of Agricultural Science (Northeast Agricultural Research Center of China), Changchun 130033, Jilin, P.R. China
| | - Honghong Niu
- Institute of Agro-product Process, Jilin Academy of Agricultural Science (Northeast Agricultural Research Center of China), Changchun 130033, Jilin, P.R. China
| | - Mubai Sun
- Institute of Agro-product Process, Jilin Academy of Agricultural Science (Northeast Agricultural Research Center of China), Changchun 130033, Jilin, P.R. China
| | - Xinyu Miao
- Institute of Agro-product Process, Jilin Academy of Agricultural Science (Northeast Agricultural Research Center of China), Changchun 130033, Jilin, P.R. China
| | - Ying Su
- Institute of Agro-product Process, Jilin Academy of Agricultural Science (Northeast Agricultural Research Center of China), Changchun 130033, Jilin, P.R. China
| | - Hua Zhang
- Agronomy of Food Science and Technology, Yanbian University, Yanji 133002, Jilin, P.R. China
| | - Mei Hua
- Institute of Agro-product Process, Jilin Academy of Agricultural Science (Northeast Agricultural Research Center of China), Changchun 130033, Jilin, P.R. China
| | - Jinghui Wang
- Institute of Agro-product Process, Jilin Academy of Agricultural Science (Northeast Agricultural Research Center of China), Changchun 130033, Jilin, P.R. China
| |
Collapse
|
52
|
Santhosh S, Zanoletti L, Stamp LA, Hao MM, Matteoli G. From diversity to disease: unravelling the role of enteric glial cells. Front Immunol 2024; 15:1408744. [PMID: 38957473 PMCID: PMC11217337 DOI: 10.3389/fimmu.2024.1408744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
Enteric glial cells (EGCs) are an essential component of the enteric nervous system (ENS) and play key roles in gastrointestinal development, homeostasis, and disease. Derived from neural crest cells, EGCs undergo complex differentiation processes regulated by various signalling pathways. Being among the most dynamic cells of the digestive system, EGCs react to cues in their surrounding microenvironment and communicate with various cell types and systems within the gut. Morphological studies and recent single cell RNA sequencing studies have unveiled heterogeneity among EGC populations with implications for regional functions and roles in diseases. In gastrointestinal disorders, including inflammatory bowel disease (IBD), infections and cancer, EGCs modulate neuroplasticity, immune responses and tumorigenesis. Recent evidence suggests that EGCs respond plastically to the microenvironmental cues, adapting their phenotype and functions in disease states and taking on a crucial role. They exhibit molecular abnormalities and alter communication with other intestinal cell types, underscoring their therapeutic potential as targets. This review delves into the multifaceted roles of EGCs, particularly emphasizing their interactions with various cell types in the gut and their significant contributions to gastrointestinal disorders. Understanding the complex roles of EGCs in gastrointestinal physiology and pathology will be crucial for the development of novel therapeutic strategies for gastrointestinal disorders.
Collapse
Affiliation(s)
- Sneha Santhosh
- Department of Chronic Diseases, Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Lisa Zanoletti
- Department of Chronic Diseases, Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Lincon A. Stamp
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Marlene M. Hao
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Gianluca Matteoli
- Department of Chronic Diseases, Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Leuven Institute for Single-cell Omics (LISCO), KU Leuven, Leuven, Belgium
| |
Collapse
|
53
|
Li Z, Zhao Z, Chen S, Wang X, Wang D, Nie X, Yao Y. Ge-Gen-Qin-Lian decoction alleviates the symptoms of type 2 diabetes mellitus with inflammatory bowel disease via regulating the AGE-RAGE pathway. BMC Complement Med Ther 2024; 24:225. [PMID: 38858747 PMCID: PMC11163797 DOI: 10.1186/s12906-024-04526-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND This study aimed to explore the mechanism of Ge-Gen-Qin-Lian decoction (GGQLD) in the alleviation of symptoms of type 2 diabetes mellitus (T2DM) with inflammatory bowel disease (IBD) by network pharmacology and experimental validation. METHODS The active components and targets of GGQLD were identified from the TCMSP database. The potential therapeutic targets of T2DM and IBD were identified from the GEO database and 4 online disease target databases. The PPI network and KEGG/GO analyses were performed with the common targets among GGQLD, T2DM and IBD. Molecular docking was carried out between the core compounds and hub targets. To verify the above results, UHPLC-MS technology was used to identify the chemical compounds in GGQLD, and a T2DM with IBD rat model was used to explore the mechanism by which GGQLD treats T2DM with IBD. RESULTS Totally, 70 potential therapeutic targets were identified among GGQLD, T2DM and IBD. Ten hub genes were selected from the PPI network. KEGG analysis revealed that GGQLD is tightly involved in the AGE-RAGE signaling pathway. Berberine, baicalein, wogonin, and quercitrin are the main active compounds of GGQLD. Animal experiments showed that GGQLD could decrease blood glucose and alleviate intestinal inflammation. Notably, the concentrations of AGEs, the expression of RAGE, c-JUN and NF-κB and the expression of inflammatory cytokines were decreased by GGQLD. CONCLUSIONS Our study initially demonstrated that GGQLD has favorable anti-hyperglycemic and anti-intestinal inflammation effects in a T2DM with IBD rat model, and the AGE-RAGE pathway plays a vital role in this process.
Collapse
Affiliation(s)
- Zhipeng Li
- Department of Nephrology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, No. 13, Shi Liu Gang Road, Haizhu District, Guangzhou, Guangdong Province, 510315, China
| | - Ziwei Zhao
- Department of Nephrology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, No. 13, Shi Liu Gang Road, Haizhu District, Guangzhou, Guangdong Province, 510315, China
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Shujuan Chen
- Department of Nephrology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, No. 13, Shi Liu Gang Road, Haizhu District, Guangzhou, Guangdong Province, 510315, China
| | - Xiaojuan Wang
- Department of Nephrology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, No. 13, Shi Liu Gang Road, Haizhu District, Guangzhou, Guangdong Province, 510315, China
| | - Dongsheng Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xiaoli Nie
- Department of Nephrology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, No. 13, Shi Liu Gang Road, Haizhu District, Guangzhou, Guangdong Province, 510315, China.
| | - Ye Yao
- Department of Nephrology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, No. 13, Shi Liu Gang Road, Haizhu District, Guangzhou, Guangdong Province, 510315, China.
| |
Collapse
|
54
|
Yin N, Xu B, Huang Z, Fu Y, Huang H, Fan J, Huang C, Mei Q, Zeng Y. Inhibition of Pck1 in intestinal epithelial cells alleviates acute pancreatitis via modulating intestinal homeostasis. FASEB J 2024; 38:e23618. [PMID: 38651689 DOI: 10.1096/fj.202400039r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
Intestinal barrier dysfunction usually occurred in acute pancreatitis (AP) but the mechanism remains unclear. In this study, RNA sequencing of ileum in L-arginine-induced AP mice demonstrated that phosphoenolpyruvate kinase 1 (Pck1) was significantly up-regulated. Increased Pck1 expression in intestinal epithelial cells (IECs) was further validated in ileum of AP mice and duodenum of AP patients. In AP mice, level of Pck1 was positively correlated with pancreatic and ileal histopathological scores, serum amylase activity, and intestinal permeability (serum diamine oxidase (DAO), D-lactate, and endotoxin). In AP patients, level of Pck1 had a positive correlation with Ranson scores, white blood cell count and C-reactive protein. Inhibition of Pck1 by 3-Mercaptopicolinic acid hydrochloride (3-MPA) alleviated pancreatic and ileal injuries in AP mice. AP + 3-MPA mice showed improved intestinal permeability, including less epithelial apoptosis, increased tight junction proteins (TJPs) expression, decreased serum DAO, D-lactate, endotoxin, and FITC-Dextran levels, and reduced bacteria translocation. Lysozyme secreted by Paneth cells and mucin2 (MUC2) secretion in goblet cells were also partly restored in AP + 3-MPA mice. Meanwhile, inhibition of Pck1 improved intestinal immune response during AP, including elevation of M2/M1 macrophages ratio and secretory immunoglobulin A (sIgA) and reduction in neutrophils infiltration. In vitro, administration of 3-MPA dramatically ameliorated inflammation and injuries of epithelial cells in enteroids treated by LPS. In conclusion, inhibition of Pck1 in IECs might alleviate AP via modulating intestinal homeostasis.
Collapse
Affiliation(s)
- Nuoming Yin
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Binqiang Xu
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zehua Huang
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yang Fu
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Huizheng Huang
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Junjie Fan
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Chunlan Huang
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Qixiang Mei
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yue Zeng
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
55
|
Dilixiati S, Yan J, Qingzhuoga D, Song G, Tu L. Exploring Electrical Neuromodulation as an Alternative Therapeutic Approach in Inflammatory Bowel Diseases. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:729. [PMID: 38792911 PMCID: PMC11123282 DOI: 10.3390/medicina60050729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
Background and Objectives: This review systematically evaluates the potential of electrical neuromodulation techniques-vagus nerve stimulation (VNS), sacral nerve stimulation (SNS), and tibial nerve stimulation (TNS)-as alternative treatments for inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's Disease (CD). It aims to synthesize current evidence on the efficacy and safety of these modalities, addressing the significant burden of IBD on patient quality of life and the limitations of existing pharmacological therapies. Materials and Methods: We conducted a comprehensive analysis of studies from PubMed, focusing on research published between 1978 and 2024. The review included animal models and clinical trials investigating the mechanisms, effectiveness, and safety of VNS, SNS, and TNS in IBD management. Special attention was given to the modulation of inflammatory responses and its impact on gastrointestinal motility and functional gastrointestinal disorders associated with IBD. Results: Preliminary findings suggest that VNS, SNS, and TNS can significantly reduce inflammatory markers and improve symptoms in IBD patients. These techniques also show potential in treating related gastrointestinal disorders during IBD remission phases. However, the specific mechanisms underlying these benefits remain to be fully elucidated, and there is considerable variability in treatment parameters. Conclusions: Electrical neuromodulation holds promise as a novel therapeutic avenue for IBD, offering an alternative to patients who do not respond to traditional treatments or experience adverse effects. The review highlights the need for further rigorous studies to optimize stimulation parameters, understand long-term outcomes, and integrate neuromodulation effectively into IBD treatment protocols.
Collapse
Affiliation(s)
- Suofeiya Dilixiati
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.D.); (D.Q.)
| | - Jiaxi Yan
- Division of Gastroenterology and Hepatology, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH 44109, USA;
| | - De Qingzhuoga
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.D.); (D.Q.)
| | - Gengqing Song
- Division of Gastroenterology and Hepatology, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH 44109, USA;
| | - Lei Tu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.D.); (D.Q.)
| |
Collapse
|
56
|
Zeng J, Lu QQ, Du XL, Yuan L, Yang XJ. Toll-like receptor 3 signaling drives enteric glial cells against dextran sulfate sodium-induced colitis in mice. J Mol Histol 2024; 55:201-210. [PMID: 38376631 DOI: 10.1007/s10735-024-10184-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/11/2024] [Indexed: 02/21/2024]
Abstract
The activation of toll-like receptor 3 (TLR3) has been reported to attenuate astrocytes injury in central nervous system, but its effect on enteric glial cells (EGCs) remains unknown. Here, we confirmed that the residence of EGCs was regulated by TLR3 agonist (polyinosinic-polycytidylic acid, PIC) or TLR3/dsRNA complex inhibitor in dextran sulfate sodium (DSS)-induced mice. In vitro, TLR3 signaling prevented apoptosis in EGCs and drove the secretion of EGCs-derived glial cell line-derived neurotrophic factor, 15-hydroxyeicosatetraenoic acid and S-nitrosoglutathione. PIC preconditioning enhanced the protective effects of EGCs against the dysfunction of intestinal epithelial barrier and the development of colitis in DSS-induced mice. Interestingly, PIC stimulation also promoted the effects of EGCs on converting macrophages to an M2-like phenotype and regulating the levels of inflammatory cytokines, including IL-1β, TNF-α and IL-10, in DSS-induced mice. These findings imply that TLR3 signaling in EGCs may provide a potential target for the prevention and treatment of colitis.
Collapse
Affiliation(s)
- Jian Zeng
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China.
| | - Qiong-Qiong Lu
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Xiao-Long Du
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Ling Yuan
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Xiao-Jun Yang
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
57
|
Wu J, Deng X, Sun Y, Li J, Dai H, Qi S, Huang Y, Sun W. Aged oolong tea alleviates dextran sulfate sodium-induced colitis in mice by modulating the gut microbiota and its metabolites. Food Chem X 2024; 21:101102. [PMID: 38268839 PMCID: PMC10805651 DOI: 10.1016/j.fochx.2023.101102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/26/2024] Open
Abstract
In this study, the mechanism of aged oolong tea (AOT) to alleviate colitis was investigated in terms of microbiome, metabolome, and fecal microbiota transplantation (FMT). AOT storage period could alleviate colitis in mice and there were some differences in AOT between storage periods, especially AOT-10. AOT improves UC by modulating oxidative stress and inflammatory factors and upregulating intestinal tight junction protein expression (Occludin, Claudin-1, ZO-1 and MUC2), which is associated with the recovery of gut microbiota. FMT and targeted metabolomics further demonstrate that the anti-inflammatory effects of AOT can reshape the gut microbiota through faecal bacterial transfer. Anti-inflammatory effects are exerted through the stimulation of metabolic pathways associated with amino acid, fatty acid and bile acid metabolites. Importantly, the study identified key bacteria (e.g., Sutterella, Clostridiaceae_Clostridium, Mucispirillum, Oscillospira and Ruminococcus) for the development and remission of inflammation. Conclusively, AOT may have great potential in the future adjuvant treatment of colitis.
Collapse
Affiliation(s)
- Jun Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuming Deng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yue Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haomin Dai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siyu Qi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yan Huang
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
58
|
Li Y, Wang M, Su J, Zhong R, Yin S, Zhao Z, Sun Z. Hypersampsonone H attenuates ulcerative colitis via inhibition of PDE4 and regulation of cAMP/PKA/CREB signaling pathway. Int Immunopharmacol 2024; 128:111490. [PMID: 38218008 DOI: 10.1016/j.intimp.2024.111490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024]
Abstract
BACKGROUND AND OBJECTIVES Ulcerative colitis (UC) is a recurrent intestinal inflammatory disease which poses a serious threat to the life of patients. However, there are no specific drugs for UC yet. Hypericum sampsonii Hance (HS) is a Chinese herbal medicine traditionally used to treat enteritis and dysentery. Our previous studies have demonstrated that HS holds potential anti-UC effects, and a novel compound named Hypersampsonone H (HS-1) isolated from HS possesses significant anti-inflammatory activity. However, the beneficial effects of HS-1 on UC remain unclear. This study aimed to investigate the therapeutic effects of HS-1 on UC and its potential mechanisms, both in vitro and in vivo. METHODS The in vitro model was employed using LPS-induced RAW264.7 cells to investigate the anti-inflammatory effects of HS-1 and its possible mechanisms. Furthermore, the therapeutic efficacy and potential mechanisms of HS-1 against dextran sulfate sodium (DSS)-induced acute colitis were assessed through histopathological examination, biochemical analysis, and molecular docking. RESULTS In vitro, HS-1 significantly reduced LPS-induced inflammatory responses, as indicated by inhibiting NO production, down-regulating the overexpression of COX-2 and iNOS, as well as regulating the imbalanced levels of IL-6, TNF-α, and IL-10. Moreover, HS-1 also inhibited the expression of PDE4, elevated the intracellular cAMP level, and promoted the phosphorylation of CREB, thereby activating the PKA/CREB pathway in RAW264.7 cells. In vivo, HS-1 demonstrated therapeutic capacity against DSS-induced colitis by alleviating the symptoms of colitis mice, regulating the abnormal expression of inflammatory mediators, protecting the integrity of intestinal epithelial barrier, and reducing tissue fibrosis. Consistently, HS-1 was found to decrease the expression of PDE4 isoforms, subsequently activating the cAMP/PKA/CREB signaling pathway. Furthermore, the molecular docking results indicated that HS-1 exhibited a high affinity for PDE4, particularly PDE4D. Further mechanistic validation in vitro demonstrated that HS-1 possessed a synergistic effect on forskolin and an antagonistic effect on H-89 dihydrochloride, thereby exerting anti-inflammatory effects through the cAMP/PKA/CREB signaling pathway. CONCLUSION We disclose that HS-1 serves as a promising candidate drug for the treatment of UC by virtue of its ability to reduce DSS-induced colitis via the inhibition of PDE4 and the activation of cAMP/PKA/CREB signaling pathway.
Collapse
Affiliation(s)
- Yanzhen Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Mingqiang Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jianhui Su
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhongxiang Zhao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Zhanghua Sun
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China.
| |
Collapse
|
59
|
Wang H, Chen S, Tang Y, Nie K, Gao Y, Wang Z, Su H, Wu F, Gong J, Fang K, Dong H, Hu M. Berberine promotes lacteal junction zippering and ameliorates diet-induced obesity through the RhoA/ROCK signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155268. [PMID: 38176265 DOI: 10.1016/j.phymed.2023.155268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/21/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Obesity has emerged as a global epidemic. Recent research has indicated that diet-induced obesity can be prevented by promoting lacteal junction zippering. Berberine, which is derived from natural plants, is found to be promising in weight reduction, but the underlying mechanism remains unspecified. PURPOSE To determine whether berberine protects against obesity by regulating the lacteal junction and to explore potential molecular mechanisms. METHODS Following the induction of the diet-induced obese (DIO) model, mice were administered low and high doses of berberine for 4 weeks. Indicators associated with insulin resistance and lipid metabolism were examined. Various methods, such as Oil Red O staining, transmission electron microscopy imaging, confocal imaging and others were used to observe the effects of berberine on lipid absorption and the lacteal junction. In vitro, human dermal lymphatic endothelial cells (HDLECs) were used to investigate the effect of berberine on LEC junctions. Western Blot and immunostaining were applied to determine the expression levels of relevant molecules. RESULTS Both low and high doses of berberine reduced body weight in DIO mice without appetite suppression and ameliorated glucolipid metabolism disorders. We also found that the weight loss effect of berberine might contribute to the inhibition of small intestinal lipid absorption. The possible mechanism was related to the promotion of lacteal junction zippering via suppressing the ras homolog gene family member A (RhoA)/Rho-associated kinase (ROCK) signaling pathway. In vitro, berberine also promoted the formation of stable mature junctions in HDLECs, involving the same signaling pathway. CONCLUSION Berberine could promote lacteal junction zippering and ameliorate diet-induced obesity through the RhoA/ROCK signaling pathway.
Collapse
Affiliation(s)
- Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shen Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yueheng Tang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Su
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Wu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Gong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Fang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Meilin Hu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
60
|
He YX, Li YY, Wu YQ, Ren LZ, Wang Y, Wang YM, Yu Y. Huanglian Ganjiang decoction alleviates ulcerative colitis by restoring gut barrier via APOC1-JNK/P38 MAPK signal pathway based on proteomic analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116994. [PMID: 37541400 DOI: 10.1016/j.jep.2023.116994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is a kind of chronic intestinal inflammation accompanied with abdominal pain, diarrhea and hematochezia. Huanglian Ganjiang decoction (HGD) derived from "Beiji Qianjin Yao Fang" was used for UC patients clinically. However, the specific mechanism of HGD in treating UC remain unclear. AIM OF STUDY Our study devoted to demonstrating the therapeutic effect of HGD for colitis and clarifying the underlying mechanism. MATERIALS AND METHODS UPLC-MS was carried out to identify the ingredients of HGD. UC mice were induced by giving 3% dextran sulfate sodium (DSS) solution for one week and treated by HGD for another week. Body weight fluctuation, disease activity index (DAI), colon length and pathological change of colon tissues were observed to evaluate therapeutical effect of HGD. ELISA and qPCR were carried out to estimate the inflammatory state. Western blot, qPCR and immunofluorescence were used to access the expression of tight junction proteins. Tandem mass tag (TMT)-Based proteomics and network pharmacology was launched to screen and predict the potential targets and pathway regulated by HGD. RESULTS Based on the UPLC-MS/MS analysis, 100 components were identified in HGD. After 7-day treatment, HGD significantly alleviated colitis-associated symptoms including body weight loss, shorted colon, increase of DAI score, histopathologic lesions. HGD also reduced inflammatory cytokines IL-6 and IL-1β levels, increased the number of goblet cells and restored tight junction proteins Occludin, Claudin-1 in colon. Network pharmacology study predicted that tight junction and MAPK pathway might be affected by HGD in colitis mice. APOC1 was screened out as key target in HGD-treated mice using TMT-based proteomics study. Further Western blot results showed that HGD reduced expressions of APOC1, p-P38 and p-JNK. CONCLUSION HGD improves general symptoms of colitis mice at medium and high doses, which may be associated with restoring tight junction and intestinal barrier integrity and function through suppression of APOC1-JNK/P38 MAPK signal pathway.
Collapse
Affiliation(s)
- Yue-Xian He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, China
| | - Yan-Yang Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, China
| | - Ye-Qun Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, China
| | - Ling-Zhi Ren
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, China
| | - Yi Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, China
| | - Yu-Mei Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, China.
| | - Yang Yu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, China.
| |
Collapse
|
61
|
Wang X, Liang F, Dai Z, Feng X, Qiu F. Combination of Coptis chinensis polysaccharides and berberine ameliorates ulcerative colitis by regulating gut microbiota and activating AhR/IL-22 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117050. [PMID: 37595814 DOI: 10.1016/j.jep.2023.117050] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Coptis chinensis Franch. polysaccharide (CCP) and berberine (BBR) are the primary active components of Coptis chinensis Franch. BBR is clinically used for the treatment of intestinal infections and gastroenteritis. CCP was also reported to be effective for the treatment of ulcerative colitis (UC). However, whether CCP combined with BBR shows a synergistic effect on the treatment of UC has not been elucidated yet. AIM OF THE STUDY This study aspired to investigate the therapeutic effect and the possible mechanisms of the combination of CCP with BBR on chronic UC. MATERIALS AND METHODS By periodic administration of dextran sulfate sodium (DSS) to C57BL/6J mice, chronic UC model mice were induced. CCP (15 mg/kg), BBR (50 mg/kg), and CCP.BBR (a combination of 15 mg/kg CCP and 50 mg/kg BBR) were orally administered to the model mice for 10 days. Changes of body weight, disease activity index, colon length, organ index, histopathological damage, expression of cytokines, and intestinal tight junction proteins were determined to evaluate the therapeutic effects. 16S rDNA sequencing, targeted short-chain fatty acid metabolomics, qPCR, and western blotting were performed to elucidate the potential mechanism. RESULTS Both CCP and BBR alleviated UC via improving colon pathological damage, inhibiting the inflammatory response, and regulating the expression of intestinal tight junction proteins. The combination of CCP with BBR showed a more substantial therapeutic effect via increasing the relative abundance of short-chain fatty acids (SCFAs) producing bacteria, thereby increasing the contents of SCFAs in vivo and activating AhR/IL-22 pathway. CONCLUSION The combination of CCP and BBR showed a synergistic effect on the therapy of chronic UC and the mechanism was associated with regulating gut microbiota and activating AhR/IL-22 pathway.
Collapse
Affiliation(s)
- Xuemei Wang
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Fengni Liang
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Zhaoyuan Dai
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Xinchi Feng
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
62
|
Zhao L, Liao W, Lin G, Yang J, Shi X, Zheng Y. Rubropunctatin-silver composite nanoliposomes for eradicating Helicobacter pylori in vitro and in vivo. Int J Pharm 2024; 649:123655. [PMID: 38043750 DOI: 10.1016/j.ijpharm.2023.123655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Helicobacter pylori (H. pylori) is a major factor in peptic ulcer disease and gastric cancer, and its infection rate is rising globally. The efficacy of traditional antibiotic treatment is less effective, mainly due to bacterial biofilms and the formation of antibiotic resistance. In addition, H. pylori colonizes the gastrointestinal epithelium covered by mucus layers, the drug must penetrate the double barrier of mucus layer and biofilm to reach the infection site and kill H. pylori. The ethanol injection method was used to synthesize nanoliposomes (EPI/R-AgNPs@RHL/PC) with a mixed lipid layer containing rhamnolipids (RHL) and phosphatidylcholine (PC) as a carrier, loaded with the urease inhibitor epiberberine (EPI) and the antimicrobial agent rubropunctatin silver nanoparticles (R-AgNPs). EPI/R-AgNPs@RHL/PC had the appropriate size, negative charge, and acid sensitivity to penetrate mucin-rich mucus layers and achieve acid-responsive drug release. In vitro experiments demonstrated that EPI/R-AgNPs@RHL/PC exhibited good antibacterial activity, effectively inhibited urease activity, removed the mature H. pylori biofilm, and inhibited biofilm regeneration. In vivo antibacterial tests showed that EPI/R-AgNPs@RHL/PC exhibited excellent activity in eradicating H. pylori and protecting the mucosa compared to the traditional clinical triple therapy, providing a new idea for the treatment of H. pylori infection.
Collapse
Affiliation(s)
- Li Zhao
- College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, China; International Joint Laboratory of Intelligent Health Care, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, China
| | - Wenqiang Liao
- College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, China; International Joint Laboratory of Intelligent Health Care, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, China
| | - Guibin Lin
- College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, China; International Joint Laboratory of Intelligent Health Care, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, China
| | - Jianmin Yang
- College of Biological Science and Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, China; International Joint Laboratory of Intelligent Health Care, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, China
| | - Xianai Shi
- College of Biological Science and Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, China; International Joint Laboratory of Intelligent Health Care, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, China
| | - Yunquan Zheng
- College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, China; International Joint Laboratory of Intelligent Health Care, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, China.
| |
Collapse
|
63
|
Zhuo Z, Guo K, Luo Y, Yang Q, Wu H, Zeng R, Jiang R, Li J, Wei R, Lian Q, Sha W, Feng Y, Chen H. Targeted modulation of intestinal epithelial regeneration and immune response in ulcerative colitis using dual-targeting bilirubin nanoparticles. Theranostics 2024; 14:528-546. [PMID: 38169633 PMCID: PMC10758062 DOI: 10.7150/thno.87739] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
Rationale: The therapeutic benefits of bilirubin in the treatment of ulcerative colitis (UC) are considerable, whereas the underlying mechanism of bilirubin on UC remains unclear remains unexplored. In addition, the weak hydrophilicity and toxicity have limited its translational applications. Methods: We have developed a colon dual-targeting nanoparticle, for orally delivering bilirubin through hydrogel encapsulation of hyaluronic acid (HA)-modified poly (lactic-co-glycolic acid) (PLGA) nanoparticles (HA-PLGABilirubin). Confocal microscopy and in vivo imaging were used to evaluate the uptake and the targeted property of HA-PLGABilirubin in UC. Immunohistochemistry, immunofluorescence, and transcriptomic analyses were applied to examine the therapeutic effect and potential mechanism of HA-PLGABilirubin in UC. Results: Our results indicated that HA-PLGAbilirubin can significantly enhance the release of bilirubin at simulated intestinal pH and demonstrate higher cellular uptake in inflammatory macrophages. Moreover, in vivo biodistribution studies revealed high uptake and retention of HA-PLGAbilirubin in inflamed colon tissue of UC mouse model, resulting in effective recovery of intestinal morphology and barrier function. Importantly, HA-PLGAbilirubin exerted potent therapeutic efficacy against ulcerative colitis through modulating the intestinal epithelial/stem cells regeneration, and the improvement of angiogenesis and inflammation. Furthermore, genome-wide RNA-seq analysis revealed transcriptional reprogramming of immune response genes in colon tissue upon HA-PLGAbilirubin treatment in UC mouse model. Conclusion: Overall, our work provides an efficient colon targeted drug delivery system to potentiate the treatment of ulcerative colitis via modulating intestinal epithelium regeneration and immune response in ulcerative colitis.
Collapse
Affiliation(s)
- Zewei Zhuo
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Kehang Guo
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Department of Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Yujun Luo
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Qi Yang
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Huihuan Wu
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Ruijie Zeng
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Shantou University Medical College, Shantou 515041, China
| | - Rui Jiang
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Jingwei Li
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Rui Wei
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Qizhou Lian
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, SAR, China
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- Shantou University Medical College, Shantou 515041, China
| | - Yuliang Feng
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford Old Road, B4495, Headington, Oxford OX3 7LD, UK
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
64
|
Dhal A, Nayim S, Pattanayek S, Khatun M, Barman S, Paria S, Shit B, Kundu S, Jha PK, Hossain M. Evaluation of calf thymus DNA binding of newly synthesize five 9 O Imidazolyl alkyl berberine derivative: A comparative multi-spectroscopic and calorimetric study. Int J Biol Macromol 2023; 253:126958. [PMID: 37739293 DOI: 10.1016/j.ijbiomac.2023.126958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023]
Abstract
DNA binding with small molecule plays an important role in the designing of various anticancer drugs with greater efficacy. The five 9-O-imidazolyl alkyl berberine derivatives (BI) of different chain length has been synthesized and fully characterized. The binding study of calf thymus DNA with these newly synthesized berberine derivative was performed using various biophysical techniques. The binding affinity of BI to calf thymus DNA increased with increasing the chain length. The binding constant value obtained from UV-Vis spectral analysis was 1.84x105for BI1, 2.01x105for BI2, 1.51 × 106 for BI3, 3.66 × 106 for BI4, 6.68 × 106. Partial intercalative binding with strong stabilization of the DNA helix was revealed from circular dichroism spectral study and viscosity measurement. From the ITC experiment it was revealed that the bindings of BI1, BI2, BI3, BI4 and BI5 to calf thymus DNA were favoured by a large positive favourable entropy and negative enthalpy change and the highest spontaneity found for BI5. With the increase in chain length the binding was driven by a stronger entropy term with a higher binding constant indicates involvement of hydrophobic force for all these interaction. High binding affinities of calf thymus DNA with berberine-imidazole derivatives might be helpful for new drug design.
Collapse
Affiliation(s)
- Asima Dhal
- Department of Chemistry, Vidyasagar University, Midnapore - 721102, West Bengal, India
| | - Sk Nayim
- Department of Chemistry, Vidyasagar University, Midnapore - 721102, West Bengal, India
| | - Swadesh Pattanayek
- Department of Chemistry, Vidyasagar University, Midnapore - 721102, West Bengal, India
| | - Munira Khatun
- Department of Chemistry, Vidyasagar University, Midnapore - 721102, West Bengal, India
| | - Subhajit Barman
- Department of Chemistry, Vidyasagar University, Midnapore - 721102, West Bengal, India
| | - Samaresh Paria
- Department of Chemistry, Vidyasagar University, Midnapore - 721102, West Bengal, India
| | - Basudev Shit
- Department of Chemistry, Vidyasagar University, Midnapore - 721102, West Bengal, India
| | - Somenath Kundu
- Department of Chemistry, Vidyasagar University, Midnapore - 721102, West Bengal, India
| | - Pradeep K Jha
- Research and Development, Ghaziabad, ACE Green Recycling Inc, Singapore
| | - Maidul Hossain
- Department of Chemistry, Vidyasagar University, Midnapore - 721102, West Bengal, India.
| |
Collapse
|
65
|
Zong Y, Meng J, Mao T, Han Q, Zhang P, Shi L. Repairing the intestinal mucosal barrier of traditional Chinese medicine for ulcerative colitis: a review. Front Pharmacol 2023; 14:1273407. [PMID: 37942490 PMCID: PMC10628444 DOI: 10.3389/fphar.2023.1273407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023] Open
Abstract
Damage to the intestinal mucosal barrier play an important role in the pathogenesis of ulcerative colitis (UC). Discovering the key regulators and repairing the disturbed barrier are crucial for preventing and treating UC. Traditional Chinese medicine (TCM) has been proved to be effective on treating UC and has exhibited its role in repairing the intestinal mucosal barrier. We summarized the evidence of TCM against UC by protecting and repairing the physical barrier, chemical barrier, immune barrier, and biological barrier. Mechanisms of increasing intestinal epithelial cells, tight junction proteins, and mucins, promoting intestinal stem cell proliferation, restoring the abundance of the intestinal microbiota, and modulating the innate and adaptive immunity in gut, were all involved in. Some upstream proteins and signaling pathways have been elucidated. Based on the existing problems, we suggested future studies paying attention to patients' samples and animal models of UC and TCM syndromes, conducting rescue experiments, exploring more upstream regulators, and adopting new technical methods. We hope this review can provide a theoretical basis and novel ideas for clarifying the mechanisms of TCM against UC via repairing the intestinal mucosal barrier.
Collapse
Affiliation(s)
- Yichen Zong
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Meng
- Department of Gastroenterology and Hepatology, Beijing University of Chinese Medicine Affiliated Dongfang Hospital, Beijing, China
| | - Tangyou Mao
- Department of Gastroenterology and Hepatology, Beijing University of Chinese Medicine Affiliated Dongfang Hospital, Beijing, China
| | - Qiang Han
- Department of Traditional Chinese Medicine, Health Service Center of Beiyuan Community, Beijing, China
| | - Peng Zhang
- Department of Gastroenterology and Hepatology, Beijing University of Chinese Medicine Affiliated Dongfang Hospital, Beijing, China
| | - Lei Shi
- Department of Gastroenterology and Hepatology, Beijing University of Chinese Medicine Affiliated Dongfang Hospital, Beijing, China
| |
Collapse
|
66
|
Li P, Zheng Z, Qi J, Gao Y, Yang L, Li L, Gao C. HDAC3 improves intestinal function of mice by regulating cGAS-Sting pathway of intestinal glial cells. Mol Immunol 2023; 162:95-101. [PMID: 37666082 DOI: 10.1016/j.molimm.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023]
Abstract
It is found that HDAC3 may be a potential therapeutic target for intestinal related diseases. At present, the role and mechanism of HDAC3 in the pathogenesis of severe acute pancreatitis (SAP) have not been reported, which needs to be further explored. The SAP mouse model was established and the expression of HDAC3 was detected by immunohistochemistry. H&E staining showed the intestinal pathological state of SAP mice. The expression of HDAC3 was measured by real-time quantitative PCR (RT qPCR) and Western blot. Apoptosis kit was used to determine cell apoptosis rate. The level of inflammatory factors was detected by ELISA kits. The expressions of HDAC3, cGAS and Sting were significantly increased in SAP patients and SAP mice. Silencing HDAC3 promoted the proliferation and adhesion of intestinal glial cells and inhibited the inflammation and apoptosis of intestinal epithelial cells. In addition, silencing HDAC3 inhibited oxidative stress in intestinal epithelial cells. Furthermore, silencing HDAC3 inhibited the activation of cGAS-Sting pathway in intestinal glial cells. More importantly, silencing HDAC3 alleviates intestinal barrier function in SAP mice. HDAC3 inhibition improves acute pancreatitis in mice by regulating cGAS-Sting pathway of intestinal glial cells.
Collapse
Affiliation(s)
- Pu Li
- Department of Critical Care Medicine, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, Shaanxi, China
| | - Zhaohui Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, Shaanxi, China
| | - Jing Qi
- Department of Experiential Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, Shaanxi, China
| | - Yanyao Gao
- Department of Exocrine Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, Shaanxi, China
| | - Liu Yang
- Department of Cardiovascular Medicine, Baoji High-tech Hospital, Baoji 721013, Shaanxi, China
| | - Lu Li
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, Shaanxi, China
| | - Changjun Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, Shaanxi, China.
| |
Collapse
|
67
|
Yang Y, Xiao G, Cheng P, Zeng J, Liu Y. Protective Application of Chinese Herbal Compounds and Formulae in Intestinal Inflammation in Humans and Animals. Molecules 2023; 28:6811. [PMID: 37836654 PMCID: PMC10574200 DOI: 10.3390/molecules28196811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Intestinal inflammation is a chronic gastrointestinal disorder with uncertain pathophysiology and causation that has significantly impacted both the physical and mental health of both people and animals. An increasing body of research has demonstrated the critical role of cellular signaling pathways in initiating and managing intestinal inflammation. This review focuses on the interactions of three cellular signaling pathways (TLR4/NF-κB, PI3K-AKT, MAPKs) with immunity and gut microbiota to explain the possible pathogenesis of intestinal inflammation. Traditional medicinal drugs frequently have drawbacks and negative side effects. This paper also summarizes the pharmacological mechanism and application of Chinese herbal compounds (Berberine, Sanguinarine, Astragalus polysaccharide, Curcumin, and Cannabinoids) and formulae (Wumei Wan, Gegen-Qinlian decoction, Banxia xiexin decoction) against intestinal inflammation. We show that the herbal compounds and formulae may influence the interactions among cell signaling pathways, immune function, and gut microbiota in humans and animals, exerting their immunomodulatory capacity and anti-inflammatory and antimicrobial effects. This demonstrates their strong potential to improve gut inflammation. We aim to promote herbal medicine and apply it to multispecies animals to achieve better health.
Collapse
Affiliation(s)
- Yang Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| | - Gang Xiao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
| | - Pi Cheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| | - Jianguo Zeng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| | - Yisong Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| |
Collapse
|
68
|
Deng Z, Li D, Yan X, Lan J, Han D, Fan K, Chang J, Ma Y. Activation of GABA receptor attenuates intestinal inflammation by modulating enteric glial cells function through inhibiting NF-κB pathway. Life Sci 2023; 329:121984. [PMID: 37527767 DOI: 10.1016/j.lfs.2023.121984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
AIMS Emerging research indicates that γ-aminobutyric acid (GABA) provides substantial benefits during enteritis. Nevertheless, GABA signaling roles on enteric glial cells (EGCs) remain unknown. The study's objective was to evaluate the underlying mechanisms of GABA signaling on EGCs in vitro and in vivo. MAIN METHODS We established LPS-induced mouse models and stimulated EGCs with LPS to mimic intestinal inflammation, and combined GABA, GABAA receptor (GABAAR) or GABAB receptor (GABABR) agonists to explore the exact mechanisms of GABA signaling. KEY FINDINGS EGCs were immunopositive for GAD65, GAD67, GAT1, GABAARα1, GABAARα3, and GABABR1, indicating GABAergic and GABAceptive properties. GABA receptor activation significantly inhibited the high secretions of proinflammatory factors in EGCs upon LPS stimulation. Interestingly, we found that EGCs express immune-related molecules such as CD16, CD32, CD80, CD86, MHC II, iNOS, Arg1, and CD206, thus establishing their characterization of E1 and E2 phenotype. EGCs exposed to LPS mainly acted as E1 phenotype, whereas GABABR activation strongly promoted EGCs polarization into E2 phenotype. Transcriptome analysis of EGCs indicated that GABA, GABAAR or GABABR agonists treatment participated in various biological processes, however all of these treatments exhibit inhibitory effects on NF-κB pathway. Notably, in LPS-induced mice, activation of GABABR mitigated intestinal damage through modulating inflammatory factors expressions, strengthening sIgA and IgG levels, inhibiting NF-κB pathway and facilitating EGCs to transform into E2 phenotype. SIGNIFICANCE These data demonstrate that the anti-inflammatory actions of GABA signaling system offer in enteritis via regulating EGCs-polarized function through impeding NF-κB pathway, thus providing potential targets for intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Ziteng Deng
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dan Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xue Yan
- New Hope Liuhe Co., Ltd., Key Laboratory of Feed and Livestock and Poultry Products Quality & Safety Control, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Jing Lan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Deping Han
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China; Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong, China
| | - Kai Fan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jianyu Chang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yunfei Ma
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
69
|
Zheng T, Chen H, Wu C, Wang J, Cui M, Ye H, Feng Y, Li Y, Dong Z. Fabrication of Co-Assembly from Berberine and Tannic Acid for Multidrug-Resistant Bacteria Infection Treatment. Pharmaceutics 2023; 15:1782. [PMID: 37513970 PMCID: PMC10383063 DOI: 10.3390/pharmaceutics15071782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
Long-term antibiotic use induces drug resistance in bacteria. This has given rise to the challenge of refractory infections, which have become a global health threat. Berberine (BBR) and tannic acid (TA) from plants exhibit promising antibacterial activities and may overcome antibiotic resistance. However, poor solubility and/or low penetration capability have limited their application. Carrier-free co-assembled nanocomposites composed entirely of BBR and TA exhibit improved or new properties and produce improved efficacy. Herein, we demonstrated that an ordered nanostructure could be spontaneously co-assembled by the solvent evaporation method using the two natural products. These co-assembled berberine-tannic acid nanoparticles (BBR-TA NPs) exhibited the best antibacterial effect compared with the corresponding physical mixture, pristine BBR, and some first-line antibiotics (benzylpenicillin potassium-BP and ciprofloxacin-Cip) against Staphylococcus aureus (S. aureus) and multidrug-resistant Staphylococcus aureus (MRSA). Even if the concentration of BBR-TA NPs was as low as 15.63 μg/mL, the antibacterial rate against S. aureus and MRSA was more than 80%. In addition to the synergistic effect of the two compounds, the antibacterial mechanism underlying the nanostructures was that they strongly adhered to the surface of the bacterial cell wall, thereby inducing cell membrane damage and intracellular ATP leakage. Furthermore, the in vivo wound healing effect of BBR-TA NPs was verified using an MRSA wound infection mouse model. The BBR-TA NPs achieved the best efficacy compared with BP and Cip. Moreover, cytotoxic and histopathological evaluations of mice revealed that the nanodrug had good biological safety. This facile and green co-assembly strategy for preparing nanoparticles provides a feasible reference for the clinical treatment of bacterial infection.
Collapse
Affiliation(s)
- Tingting Zheng
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (T.Z.); (H.C.); (C.W.); (J.W.); (M.C.); (H.Y.); (Y.F.)
| | - Huan Chen
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (T.Z.); (H.C.); (C.W.); (J.W.); (M.C.); (H.Y.); (Y.F.)
| | - Chenyang Wu
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (T.Z.); (H.C.); (C.W.); (J.W.); (M.C.); (H.Y.); (Y.F.)
| | - Jinrui Wang
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (T.Z.); (H.C.); (C.W.); (J.W.); (M.C.); (H.Y.); (Y.F.)
| | - Mengyao Cui
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (T.Z.); (H.C.); (C.W.); (J.W.); (M.C.); (H.Y.); (Y.F.)
| | - Hanyi Ye
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (T.Z.); (H.C.); (C.W.); (J.W.); (M.C.); (H.Y.); (Y.F.)
| | - Yifan Feng
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (T.Z.); (H.C.); (C.W.); (J.W.); (M.C.); (H.Y.); (Y.F.)
| | - Ying Li
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (T.Z.); (H.C.); (C.W.); (J.W.); (M.C.); (H.Y.); (Y.F.)
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100700, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100700, China
| | - Zhengqi Dong
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (T.Z.); (H.C.); (C.W.); (J.W.); (M.C.); (H.Y.); (Y.F.)
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100700, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100700, China
| |
Collapse
|
70
|
Zhang S, Xu P, Zhu Z, Zhou L, Li J, Zhou R, Kan Y, Li Y, Yu X, Zhao J, Jin Y, Yan J, Fang P, Shang W. Acetylation of p65 Lys310 by p300 in macrophages mediates anti-inflammatory property of berberine. Redox Biol 2023; 62:102704. [PMID: 37086629 PMCID: PMC10172918 DOI: 10.1016/j.redox.2023.102704] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/20/2023] [Accepted: 04/16/2023] [Indexed: 04/24/2023] Open
Abstract
Nuclear factor (NF)-κB plays a pivotal role in the regulation of inflammatory response in macrophages. Berberine (BBR), which is an active constituent isolated from Coptis rhizome, possesses a prominent anti-inflammatory activity. Here we show that BBR changes the global acetylation landscape in LPS-induced protein acetylation of macrophages and reduces the acetylation of NF-κB subunit p65 at site Lys310(p65Lys310), leading to the inhibition of NF-κB translocation and transcriptional activity to suppress the expressions of inflammatory factors. BBR resists the inflammatory response in acute LPS-stimulated mice through downregulation of p65Lys310 acetylation in peritoneal macrophages. In obese mice, BBR alleviates the metabolic disorder and inflammation with the reduced acetylation of p65Lys310 in white adipose tissue. Furthermore, we demonstrate that BBR acts as a regulator of p65Lys310 by inhibiting the expression of p300 in macrophages. Our findings elucidate a new molecular mechanism for the anti-inflammatory effect of BBR via the p300/p65Lys310 axis.
Collapse
Affiliation(s)
- Shuchen Zhang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Pingyuan Xu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ziwei Zhu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lingyan Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiao Li
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Ruonan Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yue Kan
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yaru Li
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xizhong Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Juan Zhao
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu Jin
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jing Yan
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Wenbin Shang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
71
|
Chen Y, Wang Y, Fu Y, Yin Y, Xu K. Modulating AHR function offers exciting therapeutic potential in gut immunity and inflammation. Cell Biosci 2023; 13:85. [PMID: 37179416 PMCID: PMC10182712 DOI: 10.1186/s13578-023-01046-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a classical exogenous synthetic ligand of AHR that has significant immunotoxic effects. Activation of AHR has beneficial effects on intestinal immune responses, but inactivation or overactivation of AHR can lead to intestinal immune dysregulation and even intestinal diseases. Sustained potent activation of AHR by TCDD results in impairment of the intestinal epithelial barrier. However, currently, AHR research has been more focused on elucidating physiologic AHR function than on dioxin toxicity. The appropriate level of AHR activation plays a role in maintaining gut health and protecting against intestinal inflammation. Therefore, AHR offers a crucial target to modulate intestinal immunity and inflammation. Herein, we summarize our current understanding of the relationship between AHR and intestinal immunity, the ways in which AHR affects intestinal immunity and inflammation, the effects of AHR activity on intestinal immunity and inflammation, and the effect of dietary habits on intestinal health through AHR. Finally, we discuss the therapeutic role of AHR in maintaining gut homeostasis and relieving inflammation.
Collapse
Affiliation(s)
- Yue Chen
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450000, China
| | - Yadong Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Yawei Fu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450000, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450000, China
| | - Kang Xu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| |
Collapse
|
72
|
Cui Y, Xie J, Cai L, Zhang D, Sun J, Zhou X. Berberine regulates bone metabolism in apical periodontitis by remodelling the extracellular matrix. Oral Dis 2023; 29:1184-1196. [PMID: 34874590 DOI: 10.1111/odi.14094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/06/2021] [Accepted: 11/19/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVES The objectives of this study were to explore the role and related mechanism of berberine in repairing bone destruction in apical periodontics (AP). MATERIALS AND METHODS AP was established in 14 of 21 male Wistar rats (four weeks of age; 70-80 g) for 3 weeks. The canals were cleaned and administered berberine (2 mg/ml; n = 7) or calcium hydroxide (100 mg/ml; control; n = 7), followed by glass ionomer cement sealing. After 3 weeks, specimen collection followed by micro-computed tomography (μ-CT) and histological staining was performed, including haematoxylin and eosin staining, Masson's trichrome staining, tartrate-resistant acid phosphatase staining, immunohistochemistry and immunofluorescence histochemistry. RESULTS μ-CT showed that AP lesion volume reduced in the berberine group. Histopathology showed that berberine decreased the activity and number of osteoclasts but increased the expression of proteins related to osteoblast differentiation, including alkaline phosphatase and osterix. The immune cell, T cell, dendritic cell and macrophage counts were significantly decreased in the berberine group. In the berberine group, the expression of extracellular matrix-degraded proteases, metalloproteinases, was decreased; however, that of extracellular matrix-stable proteases, lysyl oxidases, was increased. CONCLUSIONS Berberine controlled the inflammatory response and regulated bone metabolism in AP by reducing metalloproteinase expression and increasing lysyl oxidases expression.
Collapse
Affiliation(s)
- Yujia Cui
- State Key Laboratory of Oral Diseases & National Clinical Center for Oral Diseases &, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linyi Cai
- State Key Laboratory of Oral Diseases & National Clinical Center for Oral Diseases &, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianxun Sun
- State Key Laboratory of Oral Diseases & National Clinical Center for Oral Diseases &, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Center for Oral Diseases &, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
73
|
Gut microbiota-SCFAs-brain axis associated with the antidepressant activity of berberine in CUMS rats. J Affect Disord 2023; 325:141-150. [PMID: 36610597 DOI: 10.1016/j.jad.2022.12.166] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND The anti-depressant effect of berberine (BBR) has been widely reported. However, the underlying mechanism remains unclear. The microbiota-gut-brain (MGB) axis plays a key role in the pathogenesis of depression. Therefore, we aimed to explore the anti-depressant mechanisms of BBR involving the association of the gut microbiota, neurotransmitters, BDNF, and SCFAs in chronic unpredictable mild stress (CUMS)-induced depressive rats. METHODS The antidepressant effects of BBR were detected by open-field test, 1 % sucrose preference test and body weight test in CUMS-induced depressive rats. 16S rDNA sequencing was performed to identify the change of gut microbiota. The concentrations of fecal SCFAs were analyzed by GC-MS targeted metabolomics. At the same time, neurotransmitters and BDNF expression were measured by enzyme linked immunosorbent assay (ELISA). RESULTS BBR improved depression-like behaviors in CUMS rats by increasing the expression of serotonin (5-HT), norepinephrine (NE), dopamine (DA), and BDNF in the hippocampus. BBR regulates Firmicutes, Bacteroidetes, and Lachnospiraceae in depressive rats, resulting in the alteration of the synthesis and metabolism of SCFAs, including acetic, propanoic, and isovaleric acids. LIMITATIONS Direct evidence that BBR improves depressive behaviors via gut microbiota-SCFAs-brain axis is lacking, and only male rats were investigated in the present study. CONCLUSION The anti-depressant mechanism of BBR is related to the regulation of the MGB axis via modulating the gut microbiota-SCFAs-monoamine neurotransmitters/BDNF.
Collapse
|
74
|
Investigation into the anti-inflammatory mechanism of coffee leaf extract in LPS-induced Caco-2/U937 co-culture model through cytokines and NMR-based untargeted metabolomics analyses. Food Chem 2023; 404:134592. [DOI: 10.1016/j.foodchem.2022.134592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/15/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
|
75
|
Li YY, He YX, Wu YQ, Liu C, Ren LZ, Lu XY, Wang YM, Yu Y. Compatibility between cold-natured medicine CP and hot-natured medicine AZ synergistically mitigates colitis mice through attenuating inflammation and restoring gut barrier. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115902. [PMID: 36395977 DOI: 10.1016/j.jep.2022.115902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is a nonspecific intestinal inflammation with complex pathogenesis. Traditional Chinese Medicine (TCM) formula consists of several TCM herbs following the principle of herbal property and compatibility. Our previous studies found that Huanglian Ganjiang decoction (HGD) exhibited anti-colitis capacity and the compatibility between hot-natured medicine and cold-natured medicine was main compatibility. However, the association between compatibility mechanism of HGD and its anti-colitis effect has not been fully illustrated yet. AIM OF STUDY Here, we would explore whether cold-natured medicine Coptis chinensis Franch. plus Phellodendron chinense C.K.Schneid. (CP) and hot-natured medicine Angelica sinensis (Oliv.) Diels plus Zingiber officinale Roscoe (AZ) in HGD respectively produce different impacts on UC, and exert synergistic effect on UC together. MATERIALS AND METHODS UPLC/MS-MS was used to qualitatively analyze chemical profiles of CP, AZ and CPAZ extracts. CPAZ-UC target network was constructed using network pharmacology. Colitis mice was induced by 3% DSS for 7 days and treated with CP, AZ and CPAZ for another 7 days. The levels of multiple cytokines and proportions of innate and adaptive immune cells were determined to assess inflammatory profiles. The leakage of FITC-dextran, expressions of tight junction proteins were detected for evaluation of gut barrier function. RESULTS CP, AZ and CPAZ could improve symptoms of colitis mice. CP showed superiority in reducing proportions of pro-inflammatory immune cells M1 cells, neutrophils, Th1 and Th17 cells, and levels of pro-inflammatory cytokines IFN-γ, IL-6, IL-10, TNF-α. In the contrast, AZ had advantage of elevating ratios of anti-inflammatory immune cells M2 and Treg cells as well as the production of anti-inflammatory cytokines IL-10 and TGF-β. In addition, CP and AZ synergistically regulated M1/M2 macrophage polarization and the following IL-6, IL-10, TNF-α, IFN-γ production, thereby restoring intestinal mucosal barrier. CONCLUSION Taken together, our study first demonstrated that cold-natured medicine CP and hot-natured medicine AZ took on different functions in treatment of colitis mice. Meanwhile, they exhibited synergistic effect on the alleviation of intestinal inflammation and reinforcement of gut barrier function and integrity.
Collapse
Affiliation(s)
- Yan-Yang Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yue-Xian He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ye-Qun Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chang Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ling-Zhi Ren
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiang-Yi Lu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yu-Mei Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yang Yu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
76
|
Zhou Y, Wang D, Yan W. Treatment Effects of Natural Products on Inflammatory Bowel Disease In Vivo and Their Mechanisms: Based on Animal Experiments. Nutrients 2023; 15:nu15041031. [PMID: 36839389 PMCID: PMC9967064 DOI: 10.3390/nu15041031] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, non-specific inflammatory disease of the intestine that can be classified as ulcerative colitis (UC) and Crohn's disease (CD). Currently, the incidence of IBD is still increasing in developing countries. However, current treatments for IBD have limitations and do not fully meet the needs of patients. There is a growing demand for new, safe, and highly effective alternative drugs for IBD patients. Natural products (NPs) are used in drug development and disease treatment because of their broad biological activity, low toxicity, and low side effects. Numerous studies have shown that some NPs have strong therapeutic effects on IBD. In this paper, we first reviewed the pathogenesis of IBD as well as current therapeutic approaches and drugs. Further, we summarized the therapeutic effects of 170 different sources of NPs on IBD and generalized their modes of action and therapeutic effects. Finally, we analyzed the potential mechanisms of NPs for the treatment of IBD. The aim of our review is to provide a systematic and credible summary, thus supporting the research on NPs for the treatment of IBD and providing a theoretical basis for the development and application of NPs in drugs and functional foods.
Collapse
Affiliation(s)
- Yaxi Zhou
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Diandian Wang
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
- Correspondence: ; Tel.: +86-010-6238-8926
| |
Collapse
|
77
|
Tang W, Zhang Y, Li P, Li B. Evaluation of Intestinal Drug Absorption and Interaction Using Quadruple Single-Pass Intestinal Perfusion Coupled with Mass Spectrometry Imaging. Anal Chem 2023; 95:3218-3227. [PMID: 36725694 DOI: 10.1021/acs.analchem.2c03767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Visualization and characterization of the intestinal membrane transporter-mediated drug absorption and interaction are challenging due to the complex physical and chemical environment. In this work, an integrated strategy was developed for in situ visualization and assessment of the drug absorption and interaction in rat intestines using quadruple single-pass intestinal perfusion (Q-SPIP) technique coupled with matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI). Compared with the traditional SPIP only available for perfusion of one single intestinal segment, the Q-SPIP model can simultaneously perfuse four individual segments of each rat intestine (duodenum, jejunum, ileum, and colon), enabling to obtain rich data from one rat. Subsequently, the drug distribution and absorption in rat intestinal tissue were accurately visualized by using an optimized MALDI MSI approach. The utility and versatility of this strategy were demonstrated via the examination of P-glycoprotein (P-gp)-mediated intestinal absorption of berberine (BBR) and its combination with natural products possessing inhibitory potency against P-gp. The change in the spatial distribution of BBR was resolved, and MALDI results showed that the signal intensity of BBR in defined regions was enhanced following coperfusion with P-gp inhibitors. However, enhanced absorption of BBR after coperfusion with the P-gp inhibitor was not observed in the ulcerative colitis rat model, which may be due to the damage to the intestinal barrier. This study exemplifies the availability and utility of Q-SPIP coupled with MALDI MSI in the examination of transporter-mediated intestinal drug absorption and interaction for fundamental inquiries into the preclinical prediction of oral absorption and drug interaction potential.
Collapse
Affiliation(s)
- Weiwei Tang
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuejie Zhang
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Bin Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
78
|
Liu D, Tian Q, Liu K, Ren F, Liu G, Zhou J, Yuan L, Fang Z, Zou B, Wang S. Ginsenoside Rg3 Ameliorates DSS-Induced Colitis by Inhibiting NLRP3 Inflammasome Activation and Regulating Microbial Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3472-3483. [PMID: 36752740 DOI: 10.1021/acs.jafc.2c07766] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ulcerative colitis (UC) is a recurrent inflammatory disease without a specific cure or treatment for improvement. Here, we investigated the potential therapeutic effect and mechanism of ginsenoside Rg3 (Gin Rg3) on UC. We constructed an in vitro cellular inflammatory model and a dextran sulfate sodium (DSS)-induced UC mouse model. We also used Gin Rg3, MCC950 (NLRP3 inhibitor), MSU (NLRP3 activator), and fecal transplantation (FMT) to intervene the model. The results showed that Gin Rg3 inhibited NLRP3 inflammasome activation, pyroptosis, and apoptosis in vitro and in vivo. DSS-induced changes in the abundance of gut microbiota at the phylum or genus level were partially restored by Gin Rg3. Furthermore, gin Rg3 affected intestinal metabolism in mice by inhibiting the activation of NLRP3 inflammasome. The gut microbiota treated with Gin Rg3 was sufficient to alleviate DSS-induced UC. In summary, Gin Rg3 alleviated DSS-induced UC by inhibiting NLRP3 inflammasome activation and regulating gut microbiota homeostasis.
Collapse
Affiliation(s)
- Dongcai Liu
- General Surgery Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Qingquan Tian
- General Surgery Department FIVE, People's Hospital of Xiangxi Tujia and Miao Autonomous Prefecture, Jishou, Hunan 416000, China
| | - Kuijie Liu
- General Surgery Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Feng Ren
- General Surgery Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Ganglei Liu
- General Surgery Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jingyu Zhou
- General Surgery Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Lianwen Yuan
- General Surgery Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zhixue Fang
- Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410000, China
| | - Bing Zou
- General Surgery Department, Changsha Central Hospital, Nanhua University, Changsha, Hunan 410000, China
| | - Shalong Wang
- General Surgery Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
79
|
Anti-Inflammatory Effects of Allocryptopine via the Target on the CX3CL1-CX3CR1 axis/GNB5/AKT/NF-κB/Apoptosis in Dextran Sulfate-Induced Mice. Biomedicines 2023; 11:biomedicines11020464. [PMID: 36831001 PMCID: PMC9952939 DOI: 10.3390/biomedicines11020464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Allocryptopine (ALL) is an isoquinoline alkaloid extracted from Macleaya cordata(Willd). R. Br., which has been claimed to have anti-inflammatory and neuroprotection properties. However, the mechanism by which ALL ameliorates inflammatory bowel disease (IBD) remains unclear. Here, we used network pharmacology and quantitative proteomic approaches to investigate the effect of ALL on IBD pathogenesis. Network pharmacology predicted potential targets and signaling pathways of ALL's anti-IBD effects. As predicted by network pharmacology, gene ontology (GO) analysis, in terms of the proteomic results, showed that the immune response in mucosa and antimicrobial humoral response were enriched. Further study revealed that the ALL-related pathways were the chemokine signaling pathway and apoptosis in the Kyoto Encyclopedia of Genes and Genomes (KEGG). In addition, we identified AKT1 as a hub for the critical pathways through protein-protein interaction (PPI) network analysis. Similar to mesalazine (MES), Western blot verified that ALL downregulated upstream chemokine CX3CL1 and GNB5 content to reduce phosphorylation of AKT and NF-κB, as well as the degree of apoptosis, to improve inflammatory response in the colon. Our research may shed light on the mechanism by which ALL inhibits the CX3CL1/GNB5/AKT2/NF-κB/apoptosis pathway and improves the intestinal barrier to reduce colitis response and act on the CX3CL1-CX3CR1 axis to achieve neuroprotection.
Collapse
|
80
|
He T, Hu M, Zhu S, Shen M, Kou X, Liang X, Li L, Li X, Zhang M, Wu Q, Gong C. A tactical nanomissile mobilizing antitumor immunity enables neoadjuvant chemo-immunotherapy to minimize postsurgical tumor metastasis and recurrence. Acta Pharm Sin B 2023; 13:804-818. [PMID: 36873172 PMCID: PMC9979264 DOI: 10.1016/j.apsb.2022.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/07/2022] [Accepted: 06/19/2022] [Indexed: 11/27/2022] Open
Abstract
Neoadjuvant chemotherapy has become an indispensable weapon against high-risk resectable cancers, which benefits from tumor downstaging. However, the utility of chemotherapeutics alone as a neoadjuvant agent is incapable of generating durable therapeutic benefits to prevent postsurgical tumor metastasis and recurrence. Herein, a tactical nanomissile (TALE), equipped with a guidance system (PD-L1 monoclonal antibody), ammunition (mitoxantrone, Mit), and projectile bodies (tertiary amines modified azobenzene derivatives), is designed as a neoadjuvant chemo-immunotherapy setting, which aims at targeting tumor cells, and fast-releasing Mit owing to the intracellular azoreductase, thereby inducing immunogenic tumor cells death, and forming an in situ tumor vaccine containing damage-associated molecular patterns and multiple tumor antigen epitopes to mobilize the immune system. The formed in situ tumor vaccine can recruit and activate antigen-presenting cells, and ultimately increase the infiltration of CD8+ T cells while reversing the immunosuppression microenvironment. Moreover, this approach provokes a robust systemic immune response and immunological memory, as evidenced by preventing 83.3% of mice from postsurgical metastasis or recurrence in the B16-F10 tumor mouse model. Collectively, our results highlight the potential of TALE as a neoadjuvant chemo-immunotherapy paradigm that can not only debulk tumors but generate a long-term immunosurveillance to maximize the durable benefits of neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Tao He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mingxing Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shunyao Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meiling Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaorong Kou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiuqi Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lu Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinchao Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Miaomiao Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qinjie Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
81
|
Pu Y, Fan X, Zhang Z, Guo Z, Pan Q, Gao W, Luo K, He B. Harnessing polymer-derived drug delivery systems for combating inflammatory bowel disease. J Control Release 2023; 354:1-18. [PMID: 36566845 DOI: 10.1016/j.jconrel.2022.12.044] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
The inflammatory bowel disease (IBD) is incurable, chronic, recrudescent disorders in the inflamed intestines. Current clinic treatments are challenged by systemic exposure-induced severe side effects, inefficiency after long-term treatment, and increased risks of infection and malignancy due to immunosuppression. Fortunately, naturally bioactive small molecules, reactive oxygen species scavengers (or antioxidants), and gut microbiota modulators have emerged as promising candidates for the IBD treatment. Polymeric systems have been engineered as a delivery vehicle to improve the bioavailability and efficacy of these therapeutic agents through targeting the mucosa and enhancing intestinal adhesion and retention, and reduce their systemic toxicity. Herein we survey polymer-derived drug delivery systems for combating the IBD. Advanced delivery technologies, therapeutic intervention strategies, and the principles for the construction of hierarchical, mucosa-targeting, and bioresponsive systems are elaborated, providing insights into design and development of from-bench-to-bedside drug delivery polymeric systems for the IBD treatment.
Collapse
Affiliation(s)
- Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xi Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zhuangzhuang Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zhaoyuan Guo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
82
|
Zhang Y, Zhu X, Yu X, Novák P, Gui Q, Yin K. Enhancing intestinal barrier efficiency: A novel metabolic diseases therapy. Front Nutr 2023; 10:1120168. [PMID: 36937361 PMCID: PMC10018175 DOI: 10.3389/fnut.2023.1120168] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Physiologically, the intestinal barrier plays a crucial role in homeostasis and nutrient absorption and prevents pathogenic entry, harmful metabolites, and endotoxin absorption. Recent advances have highlighted the association between severely damaged intestinal barriers and diabetes, obesity, fatty liver, and cardiovascular diseases. Evidence indicates that an abated intestinal barrier leads to endotoxemia associated with systemic inflammation, insulin resistance, diabetes, and lipid accumulation, accelerating obesity and fatty liver diseases. Nonetheless, the specific mechanism of intestinal barrier damage and the effective improvement of the intestinal barrier remain to be explored. Here, we discuss the crosstalk between changes in the intestinal barrier and metabolic disease. This paper also highlights how to improve the gut barrier from the perspective of natural medicine, gut microbiota remodeling, lifestyle interventions, and bariatric surgery. Finally, potential challenges and prospects for the regulation of the gut barrier-metabolic disease axis are discussed, which may provide theoretical guidance for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Yaoyuan Zhang
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiao Zhu
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Xinyuan Yu
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Petr Novák
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Qingjun Gui
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- *Correspondence: Qingjun Gui, ; Kai Yin,
| | - Kai Yin
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- *Correspondence: Qingjun Gui, ; Kai Yin,
| |
Collapse
|
83
|
Liu C, He YX, Zhang JN, Yang F, Wang SY, Hu JL, Yu Y. Angelica oil restores the intestinal barrier function by suppressing S100A8/A9 signalling in mice with ulcerative colitis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154490. [PMID: 36332386 DOI: 10.1016/j.phymed.2022.154490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) progression is driven by the activation of immune cells that release pro-inflammatory mediators to disrupt intestinal epithelial barrier integrity. This study aimed to investigate the potential protective effects of Angelica oil (AO) on the intestinal epithelial barrier in mice with UC and the underlying mechanisms. METHODS Improvement of the disease state and protective effect of AO on the intestinal epithelial barrier were observed in mice with dextran sulphate sodium salt (DSS)-induced UC. Protein microarrays were used to screen AO-affected cytokine pools and their recruited immune cells for accumulation in the tissues. Furthermore, quantitative proteomics was applied to search for AO-acting molecules and to verify in vitro the functions of key molecules between inflammation and the intestinal mucosal barrier. RESULTS AO significantly alleviated intestinal inflammation, reduced intestinal permeability, and retained barrier function in mice with UC. Furthermore, cytokines inhibited by AO mainly promoted monocyte and neutrophil activation or chemotaxis. Moreover, proteomic screening revealed that S100A8/A9 was a key molecule significantly regulated by AO, and its mediated TLR4/NF-κB pathway was also inhibited. Finally, we verified that AO inhibited the activation of the S100A8/A9/TLR4 signalling pathway and enhanced the expression of tight junctions (TJs) proteins using a cellular model of intestinal barrier damage induced by S100A8/A9 or macrophage-derived medium. And the enhancement of TJs in intestinal epithelial cells and the inhibition of inflammatory signalling by AO were significantly attenuated due to the application of S100A8/A9 monoclonal antibody. CONCLUSION These results demonstrated that AO improves intestinal mucosal barrier damage in the inflammatory environment of mice with UC by inhibiting the expression of S100A8/A9 and the activation of its downstream TLR4/NF-κB signalling pathway.
Collapse
Affiliation(s)
- Chang Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Yue-Xian He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Jia-Ning Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Fang Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Shu-Yuan Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Ji-Liang Hu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China.
| | - Yang Yu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China.
| |
Collapse
|
84
|
Enteric-Coated Cologrit Tablet Exhibit Robust Anti-Inflammatory Response in Ulcerative Colitis-like In-Vitro Models by Attuning NFκB-Centric Signaling Axis. Pharmaceuticals (Basel) 2022; 16:ph16010063. [PMID: 36678560 PMCID: PMC9862254 DOI: 10.3390/ph16010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease that affects the patients' colorectal area culminating in an inflamed 'leaky gut.' The majority of UC treatments only provide temporary respite leading to its relapse. Therefore, this study investigated the efficacy of the enteric-coated 'Cologrit' (EC) tablet in alleviating UC-like inflammation. Cologrit is formulated using polyherbal extracts that have anti-inflammatory qualities according to ancient Ayurveda scriptures. Phytochemical profiling revealed the presence of gallic acid, rutin, ellagic acid, and imperatorin in Cologrit formulation. Cologrit treatment decreased inflammation in LPS-induced transformed THP-1 macrophages, and TNF-α-stimulated human colorectal (HT-29) cells through the modulation of NFκB activity, IL-6 production, and NFκB, IL-1β, IL-8, and CXCL5 mRNA expression levels. Cologrit also lessened human monocytic (U937) cell adhesion to HT29 cells. Methacrylic acid-ethylacrylate copolymer-coating of the enteric Cologrit tablets (EC) supported their dissolution, and the release of phytochemicals in the small intestine pH 7.0 environment in a simulated gastrointestinal digestion model. Small intestine EC digestae effectively abridged dextran sodium sulfate (2.5% w/v)-induced cell viability loss and oxidative stress in human colon epithelial Caco-2 cells. In conclusion, the enteric-coated Cologrit tablets demonstrated good small intestine-specific phytochemical delivery capability, and decreased UC-like inflammation, and oxidative stress through the regulation of TNF-α/NFκB/IL6 signaling axis.
Collapse
|
85
|
Zhu C, Li K, Peng XX, Yao TJ, Wang ZY, Hu P, Cai D, Liu HY. Berberine a traditional Chinese drug repurposing: Its actions in inflammation-associated ulcerative colitis and cancer therapy. Front Immunol 2022; 13:1083788. [PMID: 36561763 PMCID: PMC9763584 DOI: 10.3389/fimmu.2022.1083788] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Berberine (BBR), an isoquinoline alkaloid extracted from Coptidis Rhizoma, has a long history of treating dysentery in the clinic. Over the past two decades, the polytrophic, pharmacological, and biochemical properties of BBR have been intensively studied. The key functions of BBR, including anti-inflammation, antibacterial, antioxidant, anti-obesity, and even antitumor, have been discovered. However, the underlying mechanisms of BBR-mediated regulation still need to be explored. Given that BBR is also a natural nutrition supplement, the modulatory effects of BBR on nutritional immune responses have attracted more attention from investigators. In this mini-review, we summarized the latest achievements of BBR on inflammation, gut microbes, macrophage polarization, and immune responses associated with their possible tools in the pathogenesis and therapy of ulcerative colitis and cancer in recent 5 years. We also discuss the therapeutic efficacy and anti-inflammatory actions of BBR to benefit future clinical applications.
Collapse
Affiliation(s)
- Cuipeng Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kaiqi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiao-Xu Peng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tong-Jia Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zi-Yu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China,*Correspondence: Hao-Yu Liu, ; Demin Cai,
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China,Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China,*Correspondence: Hao-Yu Liu, ; Demin Cai,
| |
Collapse
|
86
|
Bai J, Xiong T, Wang X, Cheng Y, Luo R, Yang X, Fu C. Potential mechanisms of Lian-Zhi-Fan solution for TNBS-induced ulcerative colitis in rats via a metabolomics approach. Front Pharmacol 2022; 13:1014117. [PMID: 36532763 PMCID: PMC9755326 DOI: 10.3389/fphar.2022.1014117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/16/2022] [Indexed: 12/01/2024] Open
Abstract
Lian-Zhi-Fan (LZF) decoction is a hospital-prescribed traditional Chinese medicine botanical drug prepared by the fermentation of decocted Coptidis Rhizome (Huanglian), Gardeniae Fructus (Zhizi), and alum (Baifan). It has been used clinically in China for the treatment of anal fistula, perianal abscess, ulcerative colitis (UC), and other anorectal diseases for hundreds of years. However, due to the complexity of traditional Chinese medicine, the potential mechanisms of LZF in the treatment of UC have remained unknown. This study primarily investigated the remarkable pharmacological effects of LZF on TNBS-induced UC rats. To explore the complex targets and regulatory mechanisms of metabolic networks under LZF intervention, a metabolomics approach mediated by HPLC/Q-TOF-MS analysis was used to screen the different metabolites and their metabolic pathways in the serum in order to characterize the possible anti-UC mechanisms of LZF. After rectal administration of LZF for seven consecutive days, significant amelioration effects on body weight loss, DAI score, and colon inflammation were found in UC rats. Based on this, further metabolomics identified 14 potential biomarkers in the treatment of UC with LZF, of which five possessed diagnostic significance: L-alanine, taurocholic acid, niacinamide, cholic acid, and L-valine. These metabolites are mainly involved in 12 metabolic pathways, including nicotate and nicotinamide metabolism, glycospholipid metabolism, arginine and proline metabolism, primary bile acid biosynthesis, and pantothenate and CoA biosynthesis. These metabolic pathways suggest that LZF ameliorates UC by regulating amino acid metabolism, fat metabolism, and energy production. This study provides a useful approach for exploring the potential mechanisms of herbal prescription in UC treatment mediated by metabolomics.
Collapse
Affiliation(s)
- Junyi Bai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu Anorectal Hospital, Chengdu, China
| | - Tingting Xiong
- Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, China
| | - Xiao Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanfen Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruifeng Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | | | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
87
|
Diwan B, Sharma R. Green tea EGCG effectively alleviates experimental colitis in middle-aged male mice by attenuating multiple aspects of oxi-inflammatory stress and cell cycle deregulation. Biogerontology 2022; 23:789-807. [PMID: 35779147 DOI: 10.1007/s10522-022-09976-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/20/2022] [Indexed: 12/13/2022]
Abstract
Age-dependent increased risk of inflammatory bowel diseases such as ulcerative colitis is being increasingly realized, and yet therapies targeting this disorder within the purview of aging are limited. The present study attempted to assess the efficacy of green tea epigallocatechin gallate (EGCG) consumption in preventing the severity and progression of dextran sulphate sodium (DSS)-induced ulcerative colitis in 18 months old middle-aged male mice. Acute colitis was induced in animals using DSS and protective effects of EGCG consumption were examined. Different parameters related to disease progression and molecular markers related to oxi-inflammatory stress, localized and systemic cytokine response, epithelial barrier integrity, and cell cycle progression profile were evaluated. DSS treatment induced rapid and severe symptoms of colitis such as consistently increased DAI score, shortened and inflamed colon accompanied by increased levels of inflammatory proteins (TNFα/IL-6/IL-1β) in both the colon tissue and cultured splenocytes indicating exaggerated Th1 immune response. Markers of oxidative stress increased while antioxidant defences and the expression of tight junction genes in the colonic cells were attenuated. Dysregulation in the expression of cell cycle inhibitory genes (p53/p21WAF1/p16Ink4a) indicated possible induction of colitis-induced dysplasia. On the other hand, EGCG consumption strongly attenuated all the measured ostensible as well as molecular markers of the disease progression as evidenced by improved DAI score, cellular antioxidant capacity, attenuated Th1 cytokine response both in the colon and cultured splenocytes, enhanced expression of tight junction genes, and cell cycle inhibitors thereby suggesting systemic effects of EGCG. Together, these observations suggest that drinking EGCG-rich green tea can be a significant way of managing the severity of colitis during aging.
Collapse
Affiliation(s)
- Bhawna Diwan
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Rohit Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India.
| |
Collapse
|
88
|
Xia S, Chen L, Li Z, Li Y, Zhou Y, Sun S, Su Y, Xu X, Shao J, Zhang Z, Kong D, Zhang F, Zheng S. Qingchang Wenzhong Decoction reduce ulcerative colitis in mice by inhibiting Th17 lymphocyte differentiation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154460. [PMID: 36182798 DOI: 10.1016/j.phymed.2022.154460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Qingchang Wenzhong Decoction (QCWZD), a chinese herbal prescription, is widely used for ulcerative colitis (UC). Nevertheless, the active ingredients and mechanism of QCWZD in UC have not yet been explained clearly. PURPOSE This research focuses on the identification of the effective ingredients of QCWZD and the prediction and verification of their potential targets. METHODS The UC mice were established by adding 3.0% dextran sulfate sodium (DSS) to sterile water for one week. Concurrently, mice in the treatment group were gavage QCWZD or mesalazine. LC-MS analyzed the main components absorbed after QCWZD treatment, and network pharmacology predicted their possible targets. ELISA, qPCR, immunohistochemistry and immunofluorescence experiments were used to evaluate the colonic inflammation level and the intestinal barrier completeness. The percentage of Th17 and Treg lymphocytes was detected by flow cytometry. RESULTS After QCWZD treatment, twenty-seven compounds were identified from the serum. In addition, QCWZD treatment significantly reduced the increased myeloperoxidase (MPO) and inflammatory cell infiltration caused by DSS in the colonic. In addition, QCWZD can reduce the secretion of inflammatory factors in serum and promote the expression of mRNAs and proteins of occludin and ZO-1. Network pharmacology analysis indicated that inhibiting IL-6-STAT3 pathway may be necessary for QCWZD to treat UC. Flow cytometry analysis showed that QCWZD can restore the normal proportion of Th17 lymphocytes in UC mice. Mechanistically, QCWZD inhibited the phosphorylation of JAK2-STAT3 pathway, reducing the transcriptional activation of RORγT and IL-17A. CONCLUSIONS Overall, for the first time, our work revealed the components of QCWZD absorbed into blood, indicated that the effective ingredients of QCWZD may inhibit IL-6-STAT3 pathway and inhibit the differentiation of Th17 lymphocytes to reduce colon inflammation.
Collapse
Affiliation(s)
- Siwei Xia
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 210022, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Li Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Zhanghao Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Yang Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Yuanyuan Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Sumin Sun
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Ying Su
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Xuefen Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Desong Kong
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 210022, China.
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China.
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
89
|
Wu Y, Yang Z, Cheng K, Bi H, Chen J. Small molecule-based immunomodulators for cancer therapy. Acta Pharm Sin B 2022; 12:4287-4308. [PMID: 36562003 PMCID: PMC9764074 DOI: 10.1016/j.apsb.2022.11.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy has led to a paradigm shift in the treatment of cancer. Current cancer immunotherapies are mostly antibody-based, thus possessing advantages in regard to pharmacodynamics (e.g., specificity and efficacy). However, they have limitations in terms of pharmacokinetics including long half-lives, poor tissue/tumor penetration, and little/no oral bioavailability. In addition, therapeutic antibodies are immunogenic, thus may cause unwanted adverse effects. Therefore, researchers have shifted their efforts towards the development of small molecule-based cancer immunotherapy, as small molecules may overcome the above disadvantages associated with antibodies. Further, small molecule-based immunomodulators and therapeutic antibodies are complementary modalities for cancer treatment, and may be combined to elicit synergistic effects. Recent years have witnessed the rapid development of small molecule-based cancer immunotherapy. In this review, we describe the current progress in small molecule-based immunomodulators (inhibitors/agonists/degraders) for cancer therapy, including those targeting PD-1/PD-L1, chemokine receptors, stimulator of interferon genes (STING), Toll-like receptor (TLR), etc. The tumorigenesis mechanism of various targets and their respective modulators that have entered clinical trials are also summarized.
Collapse
Affiliation(s)
| | | | - Kui Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huichang Bi
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
90
|
Berberine ameliorates chronic kidney disease through inhibiting the production of gut-derived uremic toxins in the gut microbiota. Acta Pharm Sin B 2022; 13:1537-1553. [PMID: 37139409 PMCID: PMC10149897 DOI: 10.1016/j.apsb.2022.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
Abstract
At present, clinical interventions for chronic kidney disease are very limited, and most patients rely on dialysis to sustain their lives for a long time. However, studies on the gut-kidney axis have shown that the gut microbiota is a potentially effective target for correcting or controlling chronic kidney disease. This study showed that berberine, a natural drug with low oral availability, significantly ameliorated chronic kidney disease by altering the composition of the gut microbiota and inhibiting the production of gut-derived uremic toxins, including p-cresol. Furthermore, berberine reduced the content of p-cresol sulfate in plasma mainly by lowering the abundance of g_Clostridium_sensu_stricto_1 and inhibiting the tyrosine-p-cresol pathway of the intestinal flora. Meanwhile, berberine increased the butyric acid producing bacteria and the butyric acid content in feces, while decreased the renal toxic trimethylamine N-oxide. These findings suggest that berberine may be a therapeutic drug with significant potential to ameliorate chronic kidney disease through the gut-kidney axis.
Collapse
|
91
|
Wen Y, Zhang W, Yang R, Jiang L, Zhang X, Wang B, Hua Y, Ji P, Yuan Z, Wei Y, Yao W. Regulation of Yujin Powder alcoholic extracts on ILC3s-TD IgA-colonic mucosal flora axis of DSS-induced ulcerative colitis. Front Microbiol 2022; 13:1039884. [PMID: 36338041 PMCID: PMC9633017 DOI: 10.3389/fmicb.2022.1039884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/07/2022] [Indexed: 11/29/2022] Open
Abstract
The intestinal flora maintained by the immune system plays an important role in healthy colon. However, the role of ILC3s-TD IgA-colonic mucosal flora axis in ulcerative colitis (UC) and whether it could become an innovative pathway for the treatment of UC is unknown. Yujin Powder is a classic prescription for treatment of dampness-heat type intestine disease in traditional Chinese medicine and has therapeutic effects on UC. Hence, the present study aimed to investigate the regulatory mechanism of Yujin Powder alcoholic extracts (YJP-A) on UC via ILC3s-TD IgA-colonic mucosal flora axis. The UC mouse model was induced by drinking 3.5% dextran sodium sulfate (DSS), meanwhile, YJP-A was given orally for prevention. During the experiment, the clinical symptoms of mice were recorded. Then the intestinal injury and inflammatory response of mice about UC were detected after the experiment. In addition, the relevant indicators of ILC3s-TD IgA-colonic mucosal flora axis were detected. The results showed that YJP-A had good therapy effects on DSS-induced mice UC: improved the symptoms, increased body weight and the length of colon, decreased the disease activity index score, ameliorated the intestinal injury, and reduced the inflammation etc. Also, YJP-A significantly increased the ILC3s proportion and the expression level of MHC II; significantly decreased the proportion of Tfh cells and B cells and the expression levels of Bcl6, IL-4, Aicda in mesenteric lymph nodes of colon in UC mice and IgA in colon. In addition, by 16S rDNA sequencing, YJP-A could restore TD IgA targets colonic mucus flora in UC mice by decreasing the relative abundance of Mucispirillum, Lachnospiraceae and increasing the relative abundance of Allprevotella, Alistipes, and Ruminococcaceae etc. In conclusion, our results demonstrated that the ILC3s-TD IgA-colonic mucosal flora axis was disordered in UC mice. YJP-A could significantly promote the proliferation of ILC3s to inhibit Tfh responses and B cells class switching through MHC II, further to limit TD IgA responses toward colonic mucosal flora. Our findings suggested that this axis may be a novel and promising strategy to prevent UC.
Collapse
Affiliation(s)
- Yanqiao Wen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Wangdong Zhang
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Rong Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Lidong Jiang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xiaosong Zhang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Baoshan Wang
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yongli Hua
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Peng Ji
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Ziwen Yuan
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yanming Wei
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Yanming Wei; Wanling Yao,
| | - Wanling Yao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Yanming Wei; Wanling Yao,
| |
Collapse
|
92
|
Wang S, Ding Y, Jiang W. CSE/H2S ameliorates colitis in mice via protection of enteric glial cells and inhibition of the RhoA/ROCK pathway. Front Immunol 2022; 13:966881. [PMID: 36189321 PMCID: PMC9520914 DOI: 10.3389/fimmu.2022.966881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/26/2022] [Indexed: 11/19/2022] Open
Abstract
The enteric glial cells (EGCs) participate in the homeostasis of the gastrointestinal tract, and RhoA/ROCK signaling pathway plays a vital role in colonic tight junctions. Hydrogen sulfide (H2S) has been reported to alleviate colitis. However, the effect and mechanism of endogenous H2S on colitis remain unclear. This study established a Cystathionine-γ-lyase (CSE) knockout mouse model, a significant source of H2S production in the gut. The role of CSE-produced H2S on EGCs and the RhoA/ROCK signaling pathway was investigated in experimental colitis using CSE knockout (KO) and wild-type (WT) mice. CSE gene knockout animals presented with disease progression, more deteriorated clinical scores, colon shortening, and histological damage. EGCs dysfunction, characterized by decreased expression of the glial fibrillary acidic protein (GFAP), C3, and S100A10, was observed in the colon of WT and KO mice, especially in KO mice. RhoA/ROCK pathway was significantly upregulated in colon of colitis mice, which was more evident in KO mice. Pretreatment with NaHS, an exogenous H2S donor, significantly ameliorated mucosal injury and inhibited the expression of proinflammatory factors. Furthermore, we found that NaHS promoted the transformation of EGCs from “A1” to “A2” type, with decreased expression of C3 and increased expression of S100A10. These findings suggest that CSE/H2S protects mice from colon inflammation, which may be associated with preserving EGCs function by promoting EGCs transformation and inhibiting the RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Song Wang
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yanyu Ding
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Wenjun Jiang
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Wenjun Jiang,
| |
Collapse
|
93
|
Hu S, Wei P, Li W, Liu Q, Chen S, Hu C, Guo X, Ma X, Zeng J, Zhang Y. Pharmacological effects of berberine on models of ulcerative colitis: A meta-analysis and systematic review of animal studies. Front Pharmacol 2022; 13:937029. [PMID: 36147325 PMCID: PMC9486070 DOI: 10.3389/fphar.2022.937029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/08/2022] [Indexed: 12/09/2022] Open
Abstract
Berberine (BBR) is the main active constituent of the Rhizoma coptidis (Huanglian) and has multiple biological activities. Although current evidence suggests that the BBR has a multi-target effect in ulcerative colitis (UC), its action and mechanism are unclear. The purpose of this meta-analysis was to assess the pharmacological effects and potential mechanisms of BBR in UC models. Studies were searched from four databases (PubMed, Embase, Web of Science, and Cochrane Library) until March 2022. Standardized mean difference (SMD) and 95% confidence intervals (CI) were used for the adjudication of outcomes. Stata 15.0 software was used for statistical analysis. Twenty-eight publications and 29 studies involving 508 animals were included in the meta-analysis. The results showed that BBR reduced disease activity index (DAI) scores, alleviated UC-induced colon length (CL) loss, prevented weight loss, and reduced histological colitis score (HCS). Mechanistically, BBR was found to reduce myeloperoxidase (MPO) activity and malondialdehyde (MDA) levels, reduce levels of pro-inflammatory factors interleukin-1β (IL-1β), interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), interferon-γ (IFN-γ) and mRNA expression of interleukin 17, increase levels of anti-inflammatory factor interleukin 10 (IL-10), and to increase levels of tight junction protein zonula occludens-1 (ZO-1) and occludin, which may involve antioxidant, anti-apoptotic, neuromodulation, anti-fibrotic, anti-inflammatory, barrier protection, and flora regulation aspects. However, additional attention should be paid to these outcomes due to the heterogeneity and methodological quality of the studies.
Collapse
Affiliation(s)
- Shuangyuan Hu
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pengfei Wei
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Li
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingsong Liu
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuanglan Chen
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caiyu Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaochuan Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Jinhao Zeng, ; Yi Zhang,
| | - Jinhao Zeng
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Jinhao Zeng, ; Yi Zhang,
| | - Yi Zhang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Jinhao Zeng, ; Yi Zhang,
| |
Collapse
|
94
|
Yang Z, Lin S, Feng W, Liu Y, Song Z, Pan G, Zhang Y, Dai X, Ding X, Chen L, Wang Y. A potential therapeutic target in traditional Chinese medicine for ulcerative colitis: Macrophage polarization. Front Pharmacol 2022; 13:999179. [PMID: 36147340 PMCID: PMC9486102 DOI: 10.3389/fphar.2022.999179] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Intestinal macrophages are the main participants of intestinal immune homeostasis and intestinal inflammation. Under different environmental stimuli, intestinal macrophages can be polarized into classical activated pro-inflammatory phenotype (M1) and alternative activated anti-inflammatory phenotype (M2). Its different polarization state is the “guide” to promoting the development and regression of inflammation. Under normal circumstances, intestinal macrophages can protect the intestine from inflammatory damage. However, under the influence of some genetic and environmental factors, the polarization imbalance of intestinal M1/M2 macrophages will lead to the imbalance in the regulation of intestinal inflammation and transform the physiological inflammatory response into pathological intestinal injury. In UC patients, the disorder of intestinal inflammation is closely related to the imbalance of intestinal M1/M2 macrophage polarization. Therefore, restoring the balance of M1/M2 macrophage polarization may be a potentially valuable therapeutic strategy for UC. Evidence has shown that traditional Chinese medicine (TCM) has positive therapeutic effects on UC by restoring the balance of M1/M2 macrophage polarization. This review summarizes the clinical evidence of TCM for UC, the vital role of macrophage polarization in the pathophysiology of UC, and the potential mechanism of TCM regulating macrophage polarization in the treatment of UC. We hope this review may provide some new enlightenment for the clinical treatment, fundamental research, and research and development of new Chinese medicine of UC.
Collapse
Affiliation(s)
- Zhihua Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shanshan Lin
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wanying Feng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yangxi Liu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihui Song
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guiyun Pan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhang Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiangdong Dai
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinya Ding
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Chen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Lu Chen, ; Yi Wang,
| | - Yi Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Lu Chen, ; Yi Wang,
| |
Collapse
|
95
|
Fu L, Mou J, Deng Y, Ren X. Structural modifications of berberine and their binding effects towards polymorphic deoxyribonucleic acid structures: A review. Front Pharmacol 2022; 13:940282. [PMID: 36016553 PMCID: PMC9395745 DOI: 10.3389/fphar.2022.940282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/14/2022] [Indexed: 11/19/2022] Open
Abstract
Berberine (BBR) is a plant derived quaternary benzylisoquinoline alkaloid, which has been widely used in traditional medicines for a long term. It possesses broad pharmacological effects and is widely applied in clinical. In recent years, the anti-tumor effects of BBR have attracted more and more attention of the researchers. The canonical right-handed double-stranded helical deoxyribonucleic acid (B-DNA) and its polymorphs occur under various environmental conditions and are involved in a plethora of genetic instability-related diseases especially tumor. BBR showed differential binding effects towards various polymorphic DNA structures. But its poor lipophilicity and fast metabolism limited its clinical utility. Structural modification of BBR is an effective approach to improve its DNA binding activity and bioavailability in vivo. A large number of studies dedicated to improving the binding affinities of BBR towards different DNA structures have been carried out and achieved tremendous advancements. In this article, the main achievements of BBR derivatives in polymorphic DNA structures binding researches in recent 20 years were reviewed. The structural modification strategy of BBR, the DNA binding effects of its derivatives, and the structure activity relationship (SAR) analysis have also been discussed.
Collapse
Affiliation(s)
| | - Jiajia Mou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | | | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
96
|
Li YR, Li Y, Jin Y, Xu M, Fan HW, Zhang Q, Tan GH, Chen J, Li YQ. Involvement of nitrergic neurons in colonic motility in a rat model of ulcerative colitis. World J Gastroenterol 2022; 28:3854-3868. [PMID: 36157548 PMCID: PMC9367233 DOI: 10.3748/wjg.v28.i29.3854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/27/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The mechanisms underlying gastrointestinal (GI) dysmotility with ulcerative colitis (UC) have not been fully elucidated. The enteric nervous system (ENS) plays an essential role in the GI motility. As a vital neurotransmitter in the ENS, the gas neurotransmitter nitric oxide (NO) may impact the colonic motility. In this study, dextran sulfate sodium (DSS)-induced UC rat model was used for investigating the effects of NO by examining the effects of rate-limiting enzyme nitric oxide synthase (NOS) changes on the colonic motility as well as the role of the ENS in the colonic motility during UC. AIM To reveal the relationship between the effects of NOS expression changes in NOS-containing nitrergic neurons and the colonic motility in a rat UC model. METHODS Male rats (n = 8/each group) were randomly divided into a control (CG), a UC group (EG1), a UC + thrombin derived polypeptide 508 trifluoroacetic acid (TP508TFA; an NOS agonist) group (EG2), and a UC + NG-monomethyl-L-arginine monoacetate (L-NMMA; an NOS inhibitor) group (EG3). UC was induced by administering 5.5% DSS in drinking water without any other treatment (EG1), while the EG2 and EG3 were gavaged with TP508 TFA and L-NMMA, respectively. The disease activity index (DAI) and histological assessment were recorded for each group, whereas the changes in the proportion of colonic nitrergic neurons were counted using immunofluorescence histochemical staining, Western blot, and enzyme linked immunosorbent assay, respectively. In addition, the contractile tension changes in the circular and longitudinal muscles of the rat colon were investigated in vitro using an organ bath system. RESULTS The proportion of NOS-positive neurons within the colonic myenteric plexus (MP), the relative expression of NOS, and the NOS concentration in serum and colonic tissues were significantly elevated in EG1, EG2, and EG3 compared with CG rats. In UC rats, stimulation with agonists and inhibitors led to variable degrees of increase or decrease for each indicator in the EG2 and EG3. When the rats in EGs developed UC, the mean contraction tension of the colonic smooth muscle detected in vitro was higher in the EG1, EG2, and EG3 than in the CG group. Compared with the EG1, the contraction amplitude and mean contraction tension of the circular and longitudinal muscles of the colon in the EG2 and EG3 were enhanced and attenuated, respectively. Thus, during UC, regulation of the expression of NOS within the MP improved the intestinal motility, thereby favoring the recovery of intestinal functions. CONCLUSION In UC rats, an increased number of nitrergic neurons in the colonic MP leads to the attenuation of colonic motor function. To intervene NOS activity might modulate the function of nitrergic neurons in the colonic MP and prevent colonic motor dysfunction. These results might provide clues for a novel approach to alleviate diarrhea symptoms of UC patients.
Collapse
Affiliation(s)
- Yan-Rong Li
- Department of Human Anatomy, Basic Medical College, Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, Liaoning Province, China
| | - Yan Li
- Department of Human Anatomy, Basic Medical College, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
| | - Yuan Jin
- Department of Human Anatomy, Basic Medical College, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
| | - Mang Xu
- Department of Anatomy, Basic Medical College, Dali University, Dali 671000, Yunnan Province, China
| | - Hong-Wei Fan
- Department of Anatomy, Histology and Embryology, Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Qian Zhang
- Department of Human Anatomy, Basic Medical College, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
| | - Guo-He Tan
- Key Lab of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
- School of Basic Medical Sciences and Center for Translational Medicine, Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Jing Chen
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yun-Qing Li
- Department of Human Anatomy, Basic Medical College, Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
- Department of Human Anatomy, Basic Medical College, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
- Department of Human Anatomy, College of Preclinical Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571199, Hainan Province, China
| |
Collapse
|
97
|
The potential therapeutic effects of hydroxypropyl cellulose on acute murine colitis induced by DSS. Carbohydr Polym 2022; 289:119430. [DOI: 10.1016/j.carbpol.2022.119430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 01/08/2023]
|
98
|
Berberine Ameliorates Dextran Sulfate Sodium-Induced Ulcerative Colitis and Inhibits the Secretion of Gut Lysozyme via Promoting Autophagy. Metabolites 2022; 12:metabo12080676. [PMID: 35893243 PMCID: PMC9394306 DOI: 10.3390/metabo12080676] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Ulcerative colitis (UC) is one of the primary types of inflammatory bowel disease, the occurrence of which has been increasing worldwide. Research in recent years has found that the level of lysozyme in the feces and blood of UC patients is abnormally elevated, and the bacterial product after the action of lysozyme can be used as an agonist to recognize different cell pattern receptors, thus regulating the process of intestinal inflammation. Berberine (BBR), as a clinical anti-diarrhea and anti-inflammatory drug, has been used in China for hundreds of years. In this study, results showed that BBR can significantly inhibit the expression and secretion of lysozyme in mice. Therefore, we try to investigate the mechanism behind it and elucidate the new anti-inflammatory mechanism of BBR. In vitro, lipopolysaccharide (LPS) was used to establish an inflammatory cell model, and transcriptomic was used to analyze the differentially expressed genes (DEGs) between the LPS group and the LPS + BBR treatment group. In vivo, dextran sulfate sodium salt (DSS) was used to establish a UC mice model, and histologic section and immunofluorescence trails were used to estimate the effect of BBR on UC mice and the expression of lysozyme in Paneth cells. Research results showed that BBR can inhibit the expression and secretion of lysozyme by promoting autophagy via the AMPK/MTOR/ULK1 pathway, and BBR promotes the maturation and expression of lysosomes. Accordingly, we conclude that inhibiting the expression and secretion of intestinal lysozyme is a new anti-inflammatory mechanism of BBR.
Collapse
|
99
|
Cao J, Chen M, Xu R, Guo M. Therapeutic Mechanisms of Berberine to Improve the Intestinal Barrier Function via Modulating Gut Microbiota, TLR4/NF-κ B/MTORC Pathway and Autophagy in Cats. Front Microbiol 2022; 13:961885. [PMID: 35935245 PMCID: PMC9354406 DOI: 10.3389/fmicb.2022.961885] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 06/16/2022] [Indexed: 01/18/2023] Open
Abstract
Background Inflammatory bowel disease (IBD), a disease that seriously harms human and animal health, has attracted many researchers’ attention because of its complexity and difficulty in treatment. Most research has involved rats and dogs, and very little was cats. We should know that gut microbiota varies significantly from animal to animal. Traditional Chinese Medicine and its monomer component have many advantages compared with antibiotics used in pet clinics. Numerous studies have shown berberine (berberine hydrochloride) therapeutic value for IBD. However, the specific mechanism remains to consider. Results We assessed gut pathology and analyzed fecal bacterial composition using Histological staining and 16S rRNA sequence. Dioctyl sodium sulfosuccinate (DSS) administration destroyed intestinal mucosal structure and changed the diversity of intestinal flora relative to control. RT-PCR and western blot confirmed specific molecular mechanisms that trigger acute inflammation and intestinal mucosal barrier function disruption after DSS treatment. And autophagy inhibition is typical pathogenesis of IBD. Interestingly, berberine ameliorates inflammation during the development of the intestinal by modulating the toll-like receptors 4 (TLR4)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway and activating autophagy. Berberine significantly reduces tumor necrosis factor α (TNF-α), interleukin (IL)-6, and IL-1β expression in cats’ serum. Enhancing the antioxidant effect of IBD cats is one of the protective mechanisms of berberine. We demonstrated that berberine repairs intestinal barrier function by activating the mammalian target of rapamycin (mTOR) complex (MTORC), which inhibits autophagy. Conclusion Berberine can restore intestinal microbiota homeostasis and regulate the TLR4/NF-κB pathway, thereby controlling inflammatory responses. We propose a novel mechanism of berberine therapy for IBD, namely, berberine therapy can simultaneously activate MTORC and autophagy to restore intestinal mucosal barrier function in cats, which should be further studied to shed light on berberine to IBD.
Collapse
Affiliation(s)
- JingWen Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - MiaoYu Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ran Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - MengYao Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- *Correspondence: MengYao Guo,
| |
Collapse
|
100
|
Zhang K, Lu Z, Wang Q, Liu F, Wang M, Lin C, Zhu C. Pharmacokinetic Study of Four Major Bioactive Components of Liandan Xiaoyan Formula in Ulcerative Colitis and Control Rats Using UPLC-MS/MS. Front Pharmacol 2022; 13:936846. [PMID: 35860031 PMCID: PMC9289130 DOI: 10.3389/fphar.2022.936846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/17/2022] [Indexed: 11/23/2022] Open
Abstract
Liandan Xiaoyan Formula (LXF), a classic Traditional Chinese medicine (TCM) formula, is composed of two Chinese herbal medicines for treating bowel disease under the TCM theory. This study aimed to develop a rapid, stable, sensitive, and reliable method based on ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to simultaneously determine four major bioactive components of LXF (andrographolide, dehydroandrographolide, 1-methoxicabony-β-carboline, 4-methoxy-5-hydroxy-canthin-6-one) in rat serum and evaluate the pharmacokinetic characteristics of LXF in ulcerative colitis (UC) and control rats. After pretreating by protein precipitation with methanol, separation was performed on a UPLC C18 column using gradient elution with a mobile phase consisting of acetonitrile and 0.1% formic acid at a flowing rate of 0.4 ml/min. Detection was performed on Triple-TOF™ 5600 mass spectrometry set at the positive ionization and multiple reaction monitoring (MRM) mode. The validated method showed good linearity (R2 ≥ 0.9970), the intra- and inter-day accuracy were within ±11.58%, whereas the intra- and inter-day precision were less than 13.79%. This method was validated and applied to compare the pharmacokinetic profiles of the analytes in serum of UC induced by dextran sulphate sodium (DSS) and control rats after oral administration of LXF. The results showed that four major bioactive components of LXF were quickly absorbed after oral administration in both groups, with higher exposure levels in the UC group. This relationship between the active ingredients’ pharmacokinetic properties provided essential scientific information for applying LXF in clinical.
Collapse
Affiliation(s)
- Kaihui Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zenghui Lu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qian Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fangle Liu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meiqi Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Meiqi Wang, ; Chaozhan Lin, ; Chenchen Zhu,
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Meiqi Wang, ; Chaozhan Lin, ; Chenchen Zhu,
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Meiqi Wang, ; Chaozhan Lin, ; Chenchen Zhu,
| |
Collapse
|