51
|
Zielonka J, Hardy M, Michalski R, Sikora A, Zielonka M, Cheng G, Ouari O, Podsiadły R, Kalyanaraman B. Recent Developments in the Probes and Assays for Measurement of the Activity of NADPH Oxidases. Cell Biochem Biophys 2017; 75:335-349. [PMID: 28660426 PMCID: PMC5693611 DOI: 10.1007/s12013-017-0813-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/15/2017] [Indexed: 01/18/2023]
Abstract
NADPH oxidases are a family of enzymes capable of transferring electrons from NADPH to molecular oxygen. A major function of NADPH oxidases is the activation of molecular oxygen into reactive oxygen species. Increased activity of NADPH oxidases has been implicated in various pathologies, including cardiovascular disease, neurological dysfunction, and cancer. Thus, NADPH oxidases have been identified as a viable target for the development of novel therapeutics exhibiting inhibitory effects on NADPH oxidases. Here, we describe the development of new assays for measuring the activity of NADPH oxidases enabling the high-throughput screening for NADPH oxidase inhibitors.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, 13013, Marseille, France
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Monika Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Gang Cheng
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, ICR, 13013, Marseille, France
| | - Radosław Podsiadły
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924, Lodz, Poland
| | - Balaraman Kalyanaraman
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| |
Collapse
|
52
|
Egea J, Fabregat I, Frapart YM, Ghezzi P, Görlach A, Kietzmann T, Kubaichuk K, Knaus UG, Lopez MG, Olaso-Gonzalez G, Petry A, Schulz R, Vina J, Winyard P, Abbas K, Ademowo OS, Afonso CB, Andreadou I, Antelmann H, Antunes F, Aslan M, Bachschmid MM, Barbosa RM, Belousov V, Berndt C, Bernlohr D, Bertrán E, Bindoli A, Bottari SP, Brito PM, Carrara G, Casas AI, Chatzi A, Chondrogianni N, Conrad M, Cooke MS, Costa JG, Cuadrado A, My-Chan Dang P, De Smet B, Debelec-Butuner B, Dias IHK, Dunn JD, Edson AJ, El Assar M, El-Benna J, Ferdinandy P, Fernandes AS, Fladmark KE, Förstermann U, Giniatullin R, Giricz Z, Görbe A, Griffiths H, Hampl V, Hanf A, Herget J, Hernansanz-Agustín P, Hillion M, Huang J, Ilikay S, Jansen-Dürr P, Jaquet V, Joles JA, Kalyanaraman B, Kaminskyy D, Karbaschi M, Kleanthous M, Klotz LO, Korac B, Korkmaz KS, Koziel R, Kračun D, Krause KH, Křen V, Krieg T, Laranjinha J, Lazou A, Li H, Martínez-Ruiz A, Matsui R, McBean GJ, Meredith SP, Messens J, Miguel V, Mikhed Y, Milisav I, Milković L, Miranda-Vizuete A, Mojović M, Monsalve M, Mouthuy PA, Mulvey J, Münzel T, Muzykantov V, Nguyen ITN, Oelze M, Oliveira NG, Palmeira CM, Papaevgeniou N, et alEgea J, Fabregat I, Frapart YM, Ghezzi P, Görlach A, Kietzmann T, Kubaichuk K, Knaus UG, Lopez MG, Olaso-Gonzalez G, Petry A, Schulz R, Vina J, Winyard P, Abbas K, Ademowo OS, Afonso CB, Andreadou I, Antelmann H, Antunes F, Aslan M, Bachschmid MM, Barbosa RM, Belousov V, Berndt C, Bernlohr D, Bertrán E, Bindoli A, Bottari SP, Brito PM, Carrara G, Casas AI, Chatzi A, Chondrogianni N, Conrad M, Cooke MS, Costa JG, Cuadrado A, My-Chan Dang P, De Smet B, Debelec-Butuner B, Dias IHK, Dunn JD, Edson AJ, El Assar M, El-Benna J, Ferdinandy P, Fernandes AS, Fladmark KE, Förstermann U, Giniatullin R, Giricz Z, Görbe A, Griffiths H, Hampl V, Hanf A, Herget J, Hernansanz-Agustín P, Hillion M, Huang J, Ilikay S, Jansen-Dürr P, Jaquet V, Joles JA, Kalyanaraman B, Kaminskyy D, Karbaschi M, Kleanthous M, Klotz LO, Korac B, Korkmaz KS, Koziel R, Kračun D, Krause KH, Křen V, Krieg T, Laranjinha J, Lazou A, Li H, Martínez-Ruiz A, Matsui R, McBean GJ, Meredith SP, Messens J, Miguel V, Mikhed Y, Milisav I, Milković L, Miranda-Vizuete A, Mojović M, Monsalve M, Mouthuy PA, Mulvey J, Münzel T, Muzykantov V, Nguyen ITN, Oelze M, Oliveira NG, Palmeira CM, Papaevgeniou N, Pavićević A, Pedre B, Peyrot F, Phylactides M, Pircalabioru GG, Pitt AR, Poulsen HE, Prieto I, Rigobello MP, Robledinos-Antón N, Rodríguez-Mañas L, Rolo AP, Rousset F, Ruskovska T, Saraiva N, Sasson S, Schröder K, Semen K, Seredenina T, Shakirzyanova A, Smith GL, Soldati T, Sousa BC, Spickett CM, Stancic A, Stasia MJ, Steinbrenner H, Stepanić V, Steven S, Tokatlidis K, Tuncay E, Turan B, Ursini F, Vacek J, Vajnerova O, Valentová K, Van Breusegem F, Varisli L, Veal EA, Yalçın AS, Yelisyeyeva O, Žarković N, Zatloukalová M, Zielonka J, Touyz RM, Papapetropoulos A, Grune T, Lamas S, Schmidt HHHW, Di Lisa F, Daiber A. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol 2017; 13:94-162. [PMID: 28577489 PMCID: PMC5458069 DOI: 10.1016/j.redox.2017.05.007] [Show More Authors] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/12/2022] Open
Abstract
The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed.
Collapse
Affiliation(s)
- Javier Egea
- Institute Teofilo Hernando, Department of Pharmacology, School of Medicine. Univerisdad Autonoma de Madrid, Spain
| | - Isabel Fabregat
- Bellvitge Biomedical Research Institute (IDIBELL) and University of Barcelona (UB), L'Hospitalet, Barcelona, Spain
| | - Yves M Frapart
- LCBPT, UMR 8601 CNRS - Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | | | - Agnes Görlach
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Kateryna Kubaichuk
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Manuela G Lopez
- Institute Teofilo Hernando, Department of Pharmacology, School of Medicine. Univerisdad Autonoma de Madrid, Spain
| | | | - Andreas Petry
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | - Rainer Schulz
- Institute of Physiology, JLU Giessen, Giessen, Germany
| | - Jose Vina
- Department of Physiology, University of Valencia, Spain
| | - Paul Winyard
- University of Exeter Medical School, St Luke's Campus, Exeter EX1 2LU, UK
| | - Kahina Abbas
- LCBPT, UMR 8601 CNRS - Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Opeyemi S Ademowo
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Catarina B Afonso
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Haike Antelmann
- Institute for Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Fernando Antunes
- Departamento de Química e Bioquímica and Centro de Química e Bioquímica, Faculdade de Ciências, Portugal
| | - Mutay Aslan
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Markus M Bachschmid
- Vascular Biology Section & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Rui M Barbosa
- Center for Neurosciences and Cell Biology, University of Coimbra and Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Vsevolod Belousov
- Molecular technologies laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - David Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota - Twin Cities, USA
| | - Esther Bertrán
- Bellvitge Biomedical Research Institute (IDIBELL) and University of Barcelona (UB), L'Hospitalet, Barcelona, Spain
| | | | - Serge P Bottari
- GETI, Institute for Advanced Biosciences, INSERM U1029, CNRS UMR 5309, Grenoble-Alpes University and Radio-analysis Laboratory, CHU de Grenoble, Grenoble, France
| | - Paula M Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal; Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Guia Carrara
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ana I Casas
- Department of Pharmacology & Personalized Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Afroditi Chatzi
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK
| | - Niki Chondrogianni
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Marcus Conrad
- Helmholtz Center Munich, Institute of Developmental Genetics, Neuherberg, Germany
| | - Marcus S Cooke
- Oxidative Stress Group, Dept. Environmental & Occupational Health, Florida International University, Miami, FL 33199, USA
| | - João G Costa
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal; CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Pham My-Chan Dang
- Université Paris Diderot, Sorbonne Paris Cité, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France
| | - Barbara De Smet
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Padova, Italy; Pharmahungary Group, Szeged, Hungary
| | - Bilge Debelec-Butuner
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Bornova, Izmir 35100, Turkey
| | - Irundika H K Dias
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Joe Dan Dunn
- Department of Biochemistry, Science II, University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva-4, Switzerland
| | - Amanda J Edson
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Mariam El Assar
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain
| | - Jamel El-Benna
- Université Paris Diderot, Sorbonne Paris Cité, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Medical Faculty, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Ana S Fernandes
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Kari E Fladmark
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Ulrich Förstermann
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Medical Faculty, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Medical Faculty, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Helen Griffiths
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK; Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Vaclav Hampl
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alina Hanf
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Jan Herget
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pablo Hernansanz-Agustín
- Servicio de Immunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
| | - Melanie Hillion
- Institute for Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Jingjing Huang
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Serap Ilikay
- Harran University, Arts and Science Faculty, Department of Biology, Cancer Biology Lab, Osmanbey Campus, Sanliurfa, Turkey
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Vincent Jaquet
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Jaap A Joles
- Department of Nephrology & Hypertension, University Medical Center Utrecht, The Netherlands
| | | | | | - Mahsa Karbaschi
- Oxidative Stress Group, Dept. Environmental & Occupational Health, Florida International University, Miami, FL 33199, USA
| | - Marina Kleanthous
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Lars-Oliver Klotz
- Institute of Nutrition, Department of Nutrigenomics, Friedrich Schiller University, Jena, Germany
| | - Bato Korac
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic" and Faculty of Biology, Belgrade, Serbia
| | - Kemal Sami Korkmaz
- Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Turkey
| | - Rafal Koziel
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Damir Kračun
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | - Karl-Heinz Krause
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Vladimír Křen
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Videnska 1083, CZ-142 20 Prague, Czech Republic
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, UK
| | - João Laranjinha
- Center for Neurosciences and Cell Biology, University of Coimbra and Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Antonio Martínez-Ruiz
- Servicio de Immunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Reiko Matsui
- Vascular Biology Section & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Gethin J McBean
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Stuart P Meredith
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Joris Messens
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Verónica Miguel
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Yuliya Mikhed
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Irina Milisav
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology and Faculty of Health Sciences, Ljubljana, Slovenia
| | - Lidija Milković
- Ruđer Bošković Institute, Division of Molecular Medicine, Zagreb, Croatia
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Miloš Mojović
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - María Monsalve
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Pierre-Alexis Mouthuy
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - John Mulvey
- Department of Medicine, University of Cambridge, UK
| | - Thomas Münzel
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Vladimir Muzykantov
- Department of Pharmacology, Center for Targeted Therapeutics & Translational Nanomedicine, ITMAT/CTSA Translational Research Center University of Pennsylvania The Perelman School of Medicine, Philadelphia, PA, USA
| | - Isabel T N Nguyen
- Department of Nephrology & Hypertension, University Medical Center Utrecht, The Netherlands
| | - Matthias Oelze
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Nuno G Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Carlos M Palmeira
- Center for Neurosciences & Cell Biology of the University of Coimbra, Coimbra, Portugal; Department of Life Sciences of the Faculty of Sciences & Technology of the University of Coimbra, Coimbra, Portugal
| | - Nikoletta Papaevgeniou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Aleksandra Pavićević
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Brandán Pedre
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Fabienne Peyrot
- LCBPT, UMR 8601 CNRS - Paris Descartes University, Sorbonne Paris Cité, Paris, France; ESPE of Paris, Paris Sorbonne University, Paris, France
| | - Marios Phylactides
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | - Andrew R Pitt
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Henrik E Poulsen
- Laboratory of Clinical Pharmacology, Rigshospitalet, University Hospital Copenhagen, Denmark; Department of Clinical Pharmacology, Bispebjerg Frederiksberg Hospital, University Hospital Copenhagen, Denmark; Department Q7642, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Ignacio Prieto
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Maria Pia Rigobello
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Natalia Robledinos-Antón
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain; Servicio de Geriatría, Hospital Universitario de Getafe, Getafe, Spain
| | - Anabela P Rolo
- Center for Neurosciences & Cell Biology of the University of Coimbra, Coimbra, Portugal; Department of Life Sciences of the Faculty of Sciences & Technology of the University of Coimbra, Coimbra, Portugal
| | - Francis Rousset
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, Stip, Republic of Macedonia
| | - Nuno Saraiva
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Shlomo Sasson
- Institute for Drug Research, Section of Pharmacology, Diabetes Research Unit, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany; DZHK (German Centre for Cardiovascular Research), partner site Rhine-Main, Mainz, Germany
| | - Khrystyna Semen
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Tamara Seredenina
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Anastasia Shakirzyanova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Thierry Soldati
- Department of Biochemistry, Science II, University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva-4, Switzerland
| | - Bebiana C Sousa
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Corinne M Spickett
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Ana Stancic
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic" and Faculty of Biology, Belgrade, Serbia
| | - Marie José Stasia
- Université Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG, F38000 Grenoble, France; CDiReC, Pôle Biologie, CHU de Grenoble, Grenoble, F-38043, France
| | - Holger Steinbrenner
- Institute of Nutrition, Department of Nutrigenomics, Friedrich Schiller University, Jena, Germany
| | - Višnja Stepanić
- Ruđer Bošković Institute, Division of Molecular Medicine, Zagreb, Croatia
| | - Sebastian Steven
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK
| | - Erkan Tuncay
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
| | - Belma Turan
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
| | - Fulvio Ursini
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hnevotinska 3, Olomouc 77515, Czech Republic
| | - Olga Vajnerova
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Videnska 1083, CZ-142 20 Prague, Czech Republic
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Lokman Varisli
- Harran University, Arts and Science Faculty, Department of Biology, Cancer Biology Lab, Osmanbey Campus, Sanliurfa, Turkey
| | - Elizabeth A Veal
- Institute for Cell and Molecular Biosciences, and Institute for Ageing, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| | - A Suha Yalçın
- Department of Biochemistry, School of Medicine, Marmara University, İstanbul, Turkey
| | | | - Neven Žarković
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Martina Zatloukalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hnevotinska 3, Olomouc 77515, Czech Republic
| | | | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Andreas Papapetropoulos
- Laboratoty of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Tilman Grune
- German Institute of Human Nutrition, Department of Toxicology, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Santiago Lamas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Harald H H W Schmidt
- Department of Pharmacology & Personalized Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Fabio Di Lisa
- Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Padova, Italy.
| | - Andreas Daiber
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany; DZHK (German Centre for Cardiovascular Research), partner site Rhine-Main, Mainz, Germany.
| |
Collapse
|
53
|
Shchepinova MM, Cairns AG, Prime TA, Logan A, James AM, Hall AR, Vidoni S, Arndt S, Caldwell ST, Prag HA, Pell VR, Krieg T, Mulvey JF, Yadav P, Cobley JN, Bright TP, Senn HM, Anderson RF, Murphy MP, Hartley RC. MitoNeoD: A Mitochondria-Targeted Superoxide Probe. Cell Chem Biol 2017; 24:1285-1298.e12. [PMID: 28890317 PMCID: PMC6278870 DOI: 10.1016/j.chembiol.2017.08.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/06/2017] [Accepted: 08/01/2017] [Indexed: 12/29/2022]
Abstract
Mitochondrial superoxide (O2⋅-) underlies much oxidative damage and redox signaling. Fluorescent probes can detect O2⋅-, but are of limited applicability in vivo, while in cells their usefulness is constrained by side reactions and DNA intercalation. To overcome these limitations, we developed a dual-purpose mitochondrial O2⋅- probe, MitoNeoD, which can assess O2⋅- changes in vivo by mass spectrometry and in vitro by fluorescence. MitoNeoD comprises a O2⋅--sensitive reduced phenanthridinium moiety modified to prevent DNA intercalation, as well as a carbon-deuterium bond to enhance its selectivity for O2⋅- over non-specific oxidation, and a triphenylphosphonium lipophilic cation moiety leading to the rapid accumulation within mitochondria. We demonstrated that MitoNeoD was a versatile and robust probe to assess changes in mitochondrial O2⋅- from isolated mitochondria to animal models, thus offering a way to examine the many roles of mitochondrial O2⋅- production in health and disease.
Collapse
Affiliation(s)
| | - Andrew G Cairns
- WestCHEM School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - Tracy A Prime
- MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Angela Logan
- MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Andrew M James
- MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Andrew R Hall
- MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Sara Vidoni
- MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Sabine Arndt
- MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Stuart T Caldwell
- WestCHEM School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - Hiran A Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Victoria R Pell
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - John F Mulvey
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Pooja Yadav
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - James N Cobley
- Division of Sport and Exercise Sciences, Abertay University, Dundee DD1 1HG, UK
| | - Thomas P Bright
- MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Hans M Senn
- WestCHEM School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - Robert F Anderson
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK.
| | - Richard C Hartley
- WestCHEM School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
54
|
Andina D, Leroux JC, Luciani P. Ratiometric Fluorescent Probes for the Detection of Reactive Oxygen Species. Chemistry 2017; 23:13549-13573. [DOI: 10.1002/chem.201702458] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Diana Andina
- Department of Chemistry and Applied Biosciences; Swiss Federal Institute of Technology (ETHZ); Vladimir-Prelog-Weg 1-5/10 8093 Zürich Switzerland
| | - Jean-Christophe Leroux
- Department of Chemistry and Applied Biosciences; Swiss Federal Institute of Technology (ETHZ); Vladimir-Prelog-Weg 1-5/10 8093 Zürich Switzerland
| | - Paola Luciani
- Biologisch-Pharmazeutisch Fakultät, Institut für Pharmazie; Friedrich-Schiller-Universität Jena; 07743 Jena Germany
| |
Collapse
|
55
|
Zielonka J, Sikora A, Hardy M, Ouari O, Vasquez-Vivar J, Cheng G, Lopez M, Kalyanaraman B. Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications. Chem Rev 2017; 117:10043-10120. [PMID: 28654243 PMCID: PMC5611849 DOI: 10.1021/acs.chemrev.7b00042] [Citation(s) in RCA: 1041] [Impact Index Per Article: 130.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria are recognized as one of the most important targets for new drug design in cancer, cardiovascular, and neurological diseases. Currently, the most effective way to deliver drugs specifically to mitochondria is by covalent linking a lipophilic cation such as an alkyltriphenylphosphonium moiety to a pharmacophore of interest. Other delocalized lipophilic cations, such as rhodamine, natural and synthetic mitochondria-targeting peptides, and nanoparticle vehicles, have also been used for mitochondrial delivery of small molecules. Depending on the approach used, and the cell and mitochondrial membrane potentials, more than 1000-fold higher mitochondrial concentration can be achieved. Mitochondrial targeting has been developed to study mitochondrial physiology and dysfunction and the interaction between mitochondria and other subcellular organelles and for treatment of a variety of diseases such as neurodegeneration and cancer. In this Review, we discuss efforts to target small-molecule compounds to mitochondria for probing mitochondria function, as diagnostic tools and potential therapeutics. We describe the physicochemical basis for mitochondrial accumulation of lipophilic cations, synthetic chemistry strategies to target compounds to mitochondria, mitochondrial probes, and sensors, and examples of mitochondrial targeting of bioactive compounds. Finally, we review published attempts to apply mitochondria-targeted agents for the treatment of cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, ul. Wroblewskiego 15, 93-590 Lodz, Poland
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Jeannette Vasquez-Vivar
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Marcos Lopez
- Translational Biomedical Research Group, Biotechnology Laboratories, Cardiovascular Foundation of Colombia, Carrera 5a No. 6-33, Floridablanca, Santander, Colombia, 681003
- Graduate Program of Biomedical Sciences, Faculty of Health, Universidad del Valle, Calle 4B No. 36-00, Cali, Colombia, 760032
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| |
Collapse
|
56
|
Upregulation of UCP2 in beta-cells confers partial protection against both oxidative stress and glucotoxicity. Redox Biol 2017; 13:541-549. [PMID: 28755631 PMCID: PMC5537434 DOI: 10.1016/j.redox.2017.07.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 01/09/2023] Open
Abstract
Deterioration of pancreatic beta-cells plays a critical role in the development of type 2 diabetes. Among the various stressors contributing to these deleterious effects, glucotoxicity and superoxides have been proposed as major players. In this context, the mitochondrial uncoupling protein UCP2 is regularly associated with the stress response. In the present study, we tested the effects of UCP2 upregulation in mouse islets with beta-cell specific overexpression of UCP2 (RIP-UCP2). Islets were subjected to both chronic glucotoxicity (7 days at 30 mM glucose) and acute oxidative stress (200 µM H2O2 for 10 min). Increased UCP2 expression did not alter mitochondrial potential and ATP generation but protected against glucotoxic effects. Glucose-stimulated insulin secretion was altered by both glucotoxicity and oxidative stress, in particular through higher basal insulin release at non-stimulatory glucose concentrations. The secretory response to glucose stimulation was partially preserved in beta-cells overexpressing UCP2. The higher rate of cell death induced by chronic high glucose exposure was lower in RIP-UCP2 islets. Finally, superoxide production was reduced by high glucose, both under acute and chronic conditions, and not modified by UCP2 overexpression. In conclusion, upregulation of UCP2 conferred protective effects to the stressed beta-cell through mechanisms not directly associated with superoxide production. UCP2 upregulation protects pancreatic ß-cells against glucotoxicity. High glucose reduces superoxide production in pancreatic islets. UCP2 upregulation does not change superoxide production. UCP2 upregulation protects ß-cells against oxidative stress.
Collapse
|
57
|
Shi L, Ito F, Wang Y, Okazaki Y, Tanaka H, Mizuno M, Hori M, Hirayama T, Nagasawa H, Richardson DR, Toyokuni S. Non-thermal plasma induces a stress response in mesothelioma cells resulting in increased endocytosis, lysosome biogenesis and autophagy. Free Radic Biol Med 2017; 108:904-917. [PMID: 28465262 DOI: 10.1016/j.freeradbiomed.2017.04.368] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/19/2017] [Accepted: 04/28/2017] [Indexed: 12/31/2022]
Abstract
Non-thermal plasma (NTP) is a potential new therapeutic modality for cancer. However, its mechanism of action remains unclear. Herein, we studied the effect of NTP on mesothelioma cells and fibroblasts to understand its anti-proliferative efficacy. Interestingly, NTP demonstrated greater selective anti-proliferative activity against mesothelioma cells relative to fibroblasts than cisplatin, which is used for mesothelioma treatment. The anti-proliferative effect of NTP was enhanced by pre-incubation with the cellular iron donor, ferric ammonium citrate (FAC), and inhibited by iron chelation using desferrioxamine (DFO). Three oxidative stress probes (CM-H2DCFDA, MitoSOX and C11-BODIPY) demonstrated reactive oxygen species (ROS) generation by NTP, which was inhibited by DFO. Moreover, NTP decreased transferrin receptor-1 and increased ferritin-H and -L chain expression that was correlated with decreased iron-regulatory protein expression and RNA-binding activity. This regulation was potentially due to increased intracellular iron in lysosomes, which was demonstrated via the Fe(II)-selective probe, HMRhoNox-M, and was consistent with autophagic-induction. Immunofluorescence using LysoTracker and Pepstatin A probes demonstrated increased cellular lysosome content, which was confirmed by elevated LAMP1 expression. The enhanced lysosomal biogenesis after NTP could be due to the observed increase in fluid-phase endocytosis and early endosome formation. These results suggest NTP acts as a stressor, which results in increased endocytosis, lysosome content and autophagy. In fact, NTP rapidly increased autophagosome formation, as judged by increased LC3B-II expression, which co-localized with LAMP1, indicating autophagolysosome formation. Autophagic-induction by NTP was confirmed using electron microscopy. In summary, NTP acts as a cellular stressor to rapidly induce fluid-phase endocytosis, lysosome biogenesis and autophagy.
Collapse
Affiliation(s)
- Lei Shi
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Fumiya Ito
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yue Wang
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yasumasa Okazaki
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiromasa Tanaka
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya 466-8550, Japan
| | - Masaaki Mizuno
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya 466-8550, Japan
| | - Masaru Hori
- Plasma Nanotechnology Research Center, Nagoya University, Nagoya 464-8603, Japan
| | - Tasuku Hirayama
- The Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideko Nagasawa
- The Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
58
|
Mishra A. Commentary: Superoxide Generation and Its Involvement in the Growth of Mycobacterium smegmatis. Front Microbiol 2017; 8:1114. [PMID: 28659909 PMCID: PMC5468414 DOI: 10.3389/fmicb.2017.01114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/31/2017] [Indexed: 11/16/2022] Open
|
59
|
Mishra S, Shukla P, Bhaskar A, Anand K, Baloni P, Jha RK, Mohan A, Rajmani RS, Nagaraja V, Chandra N, Singh A. Efficacy of β-lactam/β-lactamase inhibitor combination is linked to WhiB4-mediated changes in redox physiology of Mycobacterium tuberculosis. eLife 2017; 6:e25624. [PMID: 28548640 PMCID: PMC5473688 DOI: 10.7554/elife.25624] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/24/2017] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) expresses a broad-spectrum β-lactamase (BlaC) that mediates resistance to one of the highly effective antibacterials, β-lactams. Nonetheless, β-lactams showed mycobactericidal activity in combination with β-lactamase inhibitor, clavulanate (Clav). However, the mechanistic aspects of how Mtb responds to β-lactams such as Amoxicillin in combination with Clav (referred as Augmentin [AG]) are not clear. Here, we identified cytoplasmic redox potential and intracellular redox sensor, WhiB4, as key determinants of mycobacterial resistance against AG. Using computer-based, biochemical, redox-biosensor, and genetic strategies, we uncovered a functional linkage between specific determinants of β-lactam resistance (e.g. β-lactamase) and redox potential in Mtb. We also describe the role of WhiB4 in coordinating the activity of β-lactamase in a redox-dependent manner to tolerate AG. Disruption of WhiB4 enhances AG tolerance, whereas overexpression potentiates AG activity against drug-resistant Mtb. Our findings suggest that AG can be exploited to diminish drug-resistance in Mtb through redox-based interventions.
Collapse
Affiliation(s)
- Saurabh Mishra
- Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Prashant Shukla
- Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | - Kushi Anand
- Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Priyanka Baloni
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Rajiv Kumar Jha
- Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Abhilash Mohan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Raju S Rajmani
- Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Valakunja Nagaraja
- Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Amit Singh
- Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| |
Collapse
|
60
|
Kalyanaraman B, Cheng G, Hardy M, Ouari O, Sikora A, Zielonka J, Dwinell M. Mitochondria-targeted metformins: anti-tumour and redox signalling mechanisms. Interface Focus 2017; 7:20160109. [PMID: 28382202 DOI: 10.1098/rsfs.2016.0109] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Reports suggest that metformin exerts anti-cancer effects in diabetic individuals with pancreatic cancer. Thus, metformin is currently being repurposed as a potential drug in cancer treatment. Studies indicate that potent metformin analogues are required in cancer treatment because of the low bioavailability of metformin in humans at conventional antidiabetic doses. We proposed that improved mitochondrial targeting of metformin by attaching a positively charged lipophilic triphenylphosphonium group will result in a new class of mitochondria-targeted metformin analogues with significantly enhanced anti-tumour potential. Using this approach, we synthesized various mitochondria-targeted metformin analogues with different alkyl chain lengths. Results indicate that the antiproliferative effects increased with increasing alkyl chain lengths (100-fold to 1000-fold). The lead compound, mito-metformin10, potently inhibited mitochondrial respiration through inhibition of complex I, stimulation of superoxide and hydrogen peroxide formation and activation of AMPK. When used in combination with ionizing radiation, mito-metformin10 acted as a radiosensitizer of pancreatic cancer cells. Because of the 1000-fold-higher potency of mitochondria-targeted metformin10, therapeutically effective plasma concentrations likely can be achieved in cancer patients.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics and Free Radical Research , Medical College of Wisconsin , Milwaukee, WI , USA
| | - Gang Cheng
- Department of Biophysics and Free Radical Research , Medical College of Wisconsin , Milwaukee, WI , USA
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, UMR 7273 , 13013 Marseille , France
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, ICR, UMR 7273 , 13013 Marseille , France
| | - Adam Sikora
- Institute of Applied Radiation Chemistry , Lodz University of Technology , Zeromskiego 116, 90-924 Lodz , Poland
| | - Jacek Zielonka
- Department of Biophysics and Free Radical Research , Medical College of Wisconsin , Milwaukee, WI , USA
| | - Michael Dwinell
- Department of Microbiology and Molecular Genetics and Cancer Center , Medical College of Wisconsin , Milwaukee, WI , USA
| |
Collapse
|
61
|
Kalyanaraman B, Hardy M, Podsiadly R, Cheng G, Zielonka J. Recent developments in detection of superoxide radical anion and hydrogen peroxide: Opportunities, challenges, and implications in redox signaling. Arch Biochem Biophys 2017; 617:38-47. [PMID: 27590268 PMCID: PMC5318280 DOI: 10.1016/j.abb.2016.08.021] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 12/19/2022]
Abstract
In this review, some of the recent developments in probes and assay techniques specific for superoxide (O2-) and hydrogen peroxide (H2O2) are discussed. Over the last decade, significant progress has been made in O2- and H2O2 detection due to syntheses of new redox probes, better understanding of their chemistry, and development of specific and sensitive assays. For superoxide detection, hydroethidine (HE) is the most suitable probe, as the product, 2-hydroxyethidium, is specific for O2-. In addition, HE-derived dimeric products are specific for one-electron oxidants. As red-fluorescent ethidium is always formed from HE intracellularly, chromatographic techniques are required for detecting 2-hydroxyethidium. HE analogs, Mito-SOX and hydropropidine, exhibit the same reaction chemistry with O2- and one-electron oxidants. Thus, mitochondrial superoxide can be unequivocally detected using HPLC-based methods and not by fluorescence microscopy. Aromatic boronate-based probes react quantitatively with H2O2, forming a phenolic product. However, peroxynitrite and hypochlorite react more rapidly with boronates, forming the same product. Using ROS-specific probes and HPLC assays, it is possible to screen chemical libraries to discover specific inhibitors of NADPH oxidases. We hope that rigorous detection of O2- and H2O2 in different cellular compartments will improve our understanding of their role in redox signaling.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | - Micael Hardy
- Aix-Marseille Université, CNRS, ICR UMR 7273, 13397 Marseille, France
| | - Radoslaw Podsiadly
- Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland
| | - Gang Cheng
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
62
|
Savchenko AA, Kudryavtsev IV, Borisov AG. METHODS OF ESTIMATION AND THE ROLE OF RESPIRATORY BURST IN THE PATHOGENESIS OF INFECTIOUS AND INFLAMMATORY DISEASES. ACTA ACUST UNITED AC 2017. [DOI: 10.15789/2220-7619-2017-4-327-340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
63
|
Folbergrová J, Ješina P, Kubová H, Druga R, Otáhal J. Status Epilepticus in Immature Rats Is Associated with Oxidative Stress and Mitochondrial Dysfunction. Front Cell Neurosci 2016; 10:136. [PMID: 27303267 PMCID: PMC4881382 DOI: 10.3389/fncel.2016.00136] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/10/2016] [Indexed: 01/01/2023] Open
Abstract
Epilepsy is a neurologic disorder, particularly frequent in infants and children where it can lead to serious consequences later in life. Oxidative stress and mitochondrial dysfunction are implicated in the pathogenesis of many neurological disorders including epilepsy in adults. However, their role in immature epileptic brain is unclear since there have been two contrary opinions: oxidative stress is age-dependent and does not occur in immature brain during status epilepticus (SE) and, on the other hand, evidence of oxidative stress in immature brain during a specific model of SE. To solve this dilemma, we have decided to investigate oxidative stress following SE induced in immature 12-day-old rats by three substances with a different mechanism of action, namely 4-aminopyridine, LiCl-pilocarpine or kainic acid. Fluoro-Jade-B staining revealed mild brain damage especially in hippocampus and thalamus in each of the tested models. Decrease of glucose and glycogen with parallel rises of lactate clearly indicate high rate of glycolysis, which was apparently not sufficient in 4-AP and Li-Pilo status, as evident from the decreases of PCr levels. Hydroethidium method revealed significantly higher levels of superoxide anion (by ∼60%) in the hippocampus, cerebral cortex and thalamus of immature rats during status. SE lead to mitochondrial dysfunction with a specific pronounced decrease of complex I activity that persisted for a long period of survival. Complexes II and IV activities remained in the control range. Antioxidant treatment with SOD mimetic MnTMPYP or peroxynitrite scavenger FeTPPS significantly attenuated oxidative stress and inhibition of complex I activity. These findings bring evidence that oxidative stress and mitochondrial dysfunction are age and model independent, and may thus be considered a general phenomenon. They can have a clinical relevance for a novel approach to the treatment of epilepsy, allowing to target the mechanisms which play a crucial or additive role in the pathogenesis of epilepsies in infants and children.
Collapse
|
64
|
Wages PA, Cheng WY, Gibbs-Flournoy E, Samet JM. Live-cell imaging approaches for the investigation of xenobiotic-induced oxidant stress. Biochim Biophys Acta Gen Subj 2016; 1860:2802-15. [PMID: 27208426 DOI: 10.1016/j.bbagen.2016.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Oxidant stress is arguably a universal feature in toxicology. Research studies on the role of oxidant stress induced by xenobiotic exposures have typically relied on the identification of damaged biomolecules using a variety of conventional biochemical and molecular techniques. However, there is increasing evidence that low-level exposure to a variety of toxicants dysregulates cellular physiology by interfering with redox-dependent processes. SCOPE OF REVIEW The study of events involved in redox toxicology requires methodology capable of detecting transient modifications at relatively low signal strength. This article reviews the advantages of live-cell imaging for redox toxicology studies. MAJOR CONCLUSIONS Toxicological studies with xenobiotics of supra-physiological reactivity require careful consideration when using fluorogenic sensors in order to avoid potential artifacts and false negatives. Fortunately, experiments conducted for the purpose of validating the use of these sensors in toxicological applications often yield unexpected insights into the mechanisms through which xenobiotic exposure induces oxidant stress. GENERAL SIGNIFICANCE Live-cell imaging using a new generation of small molecule and genetically encoded fluorophores with excellent sensitivity and specificity affords unprecedented spatiotemporal resolution that is optimal for redox toxicology studies. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu.
Collapse
Affiliation(s)
- Phillip A Wages
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, NC, USA
| | - Wan-Yun Cheng
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA; Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| | - Eugene Gibbs-Flournoy
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA; Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| | - James M Samet
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA.
| |
Collapse
|
65
|
Kalyanaraman B, Hardy M, Zielonka J. A Critical Review of Methodologies to Detect Reactive Oxygen and Nitrogen Species Stimulated by NADPH Oxidase Enzymes: Implications in Pesticide Toxicity. ACTA ACUST UNITED AC 2016; 2:193-201. [PMID: 27774407 DOI: 10.1007/s40495-016-0063-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In this review, potential fluorescent probe applications for detecting reactive oxygen and nitrogen species (ROS/RNS) generated from NADPH oxidases (e.g., Nox2) and nitric oxide synthase enzymes are discussed in the context of pesticide toxicology. Identification of the specific marker products derived from the interaction between ROS/RNS and the fluorescent probes (e.g., hydroethidine and coumarin boronate) is critical. Due to the complex nature of reactions between the probes and ROS/RNS, we suggest avoiding the use of fluorescence microscopy for detecting oxidizing/nitrating species. We also critically examined the viability of using radiolabeling or positron emission tomography (PET) for ROS/RNS detection. Although these techniques differ in sensitivity and detection modalities, the chemical mechanism governing the reaction between these probes and ROS/RNS should remain the same. To unequivocally detect superoxide with these probes (i.e., radiolabeled and PET-labeled hydroethidine analogs), the products should be isolated and characterized by LC-MS/MS or HPLC using an appropriate standard.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Micael Hardy
- Aix Marseille Université, CNRS, ICR UMR 7273, 13397 Marseille, France
| | - Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| |
Collapse
|
66
|
Sun W, Bao J, Lin W, Gao H, Zhao W, Zhang Q, Leung CH, Ma DL, Lu J, Chen X. 2-Methoxy-6-acetyl-7-methyljuglone (MAM), a natural naphthoquinone, induces NO-dependent apoptosis and necroptosis by H2O2-dependent JNK activation in cancer cells. Free Radic Biol Med 2016; 92:61-77. [PMID: 26802903 DOI: 10.1016/j.freeradbiomed.2016.01.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 01/01/2016] [Accepted: 01/19/2016] [Indexed: 12/12/2022]
Abstract
Redox signaling plays a fundamental role in maintaining cell physiological activities. A deregulation of this balance through oxidative stress or nitrosative stress has been implicated in cancer. Here, we reported that 2-methoxy-6-acetyl-7-methyl juglone (MAM), a natural naphthoquinone isolated from Polygonum cuspidatum Sieb. et Zucc, caused hydrogen peroxide (H2O2) dependent activation of JNK and induced the expression of inducible nitric oxide synthase (iNOS), thereby leading to nitric oxide (NO) generation in multiple cancer cells. Nitrosative stress induced necroptosis in A549 lung cancer cells, but resulted in caspase-dependent intrinsic apoptosis in B16-F10 melanoma and MCF7 breast cancer cells. In addition, a decrease in GSH/GSSG levels accompanied with increased ROS production was observed. Reversal of ROS generation and cell death in GSH pretreated cells indicated the involvement of GSH depletion in MAM mediated cytotoxicity. In summary, a natural product MAM induced NO-dependent multiple forms of cell death in cancer cells mediated by H2O2-dependent JNK activation in cancer cells. GSH depletion might play an initial role in MAM-induced cytotoxicity.
Collapse
Affiliation(s)
- Wen Sun
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jiaolin Bao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wei Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hongwei Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wenwen Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Qingwen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Jinjian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
67
|
Apocynin and Diphenyleneiodonium Induce Oxidative Stress and Modulate PI3K/Akt and MAPK/Erk Activity in Mouse Embryonic Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:7409196. [PMID: 26788250 PMCID: PMC4691611 DOI: 10.1155/2016/7409196] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/13/2015] [Indexed: 01/06/2023]
Abstract
Reactive oxygen species (ROS) are important regulators of cellular functions. In embryonic stem cells, ROS are suggested to influence differentiation status. Regulated ROS formation is catalyzed primarily by NADPH-dependent oxidases (NOXs). Apocynin and diphenyleneiodonium are frequently used inhibitors of NOXs; however, both exhibit uncharacterized effects not related to NOXs inhibition. Interestingly, in our model of mouse embryonic stem cells we demonstrate low expression of NOXs. Therefore we aimed to clarify potential side effects of these drugs. Both apocynin and diphenyleneiodonium impaired proliferation of cells. Surprisingly, we observed prooxidant activity of these drugs determined by hydroethidine. Further, we revealed that apocynin inhibits PI3K/Akt pathway with its downstream transcriptional factor Nanog. Opposite to this, apocynin augmented activity of canonical Wnt signaling. On the contrary, diphenyleneiodonium activated both PI3K/Akt and Erk signaling pathways without affecting Wnt. Our data indicates limits and possible unexpected interactions of NOXs inhibitors with intracellular signaling pathways.
Collapse
|
68
|
Forkink M, Basit F, Teixeira J, Swarts HG, Koopman WJH, Willems PHGM. Complex I and complex III inhibition specifically increase cytosolic hydrogen peroxide levels without inducing oxidative stress in HEK293 cells. Redox Biol 2015; 6:607-616. [PMID: 26516986 PMCID: PMC4635408 DOI: 10.1016/j.redox.2015.09.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/01/2015] [Accepted: 09/07/2015] [Indexed: 12/17/2022] Open
Abstract
Inhibitor studies with isolated mitochondria demonstrated that complex I (CI) and III (CIII) of the electron transport chain (ETC) can act as relevant sources of mitochondrial reactive oxygen species (ROS). Here we studied ROS generation and oxidative stress induction during chronic (24h) inhibition of CI and CIII using rotenone (ROT) and antimycin A (AA), respectively, in intact HEK293 cells. Both inhibitors stimulated oxidation of the ROS sensor hydroethidine (HEt) and increased mitochondrial NAD(P)H levels without major effects on cell viability. Integrated analysis of cells stably expressing cytosolic- or mitochondria-targeted variants of the reporter molecules HyPer (H2O2-sensitive and pH-sensitive) and SypHer (H2O2-insensitive and pH-sensitive), revealed that CI- and CIII inhibition increased cytosolic but not mitochondrial H2O2 levels. Total and mitochondria-specific lipid peroxidation was not increased in the inhibited cells as reported by the C11-BODIPY(581/591) and MitoPerOx biosensors. Also expression of the superoxide-detoxifying enzymes CuZnSOD (cytosolic) and MnSOD (mitochondrial) was not affected. Oxyblot analysis revealed that protein carbonylation was not stimulated by CI and CIII inhibition. Our findings suggest that chronic inhibition of CI and CIII: (i) increases the levels of HEt-oxidizing ROS and (ii) specifically elevates cytosolic but not mitochondrial H2O2 levels, (iii) does not induce oxidative stress or substantial cell death. We conclude that the increased ROS levels are below the stress-inducing level and might play a role in redox signaling.
Collapse
Affiliation(s)
- Marleen Forkink
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Farhan Basit
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - José Teixeira
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands; CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Portugal
| | - Herman G Swarts
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Werner J H Koopman
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - Peter H G M Willems
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
69
|
Santhanam AVR, d’Uscio LV, He T, Das P, Younkin SG, Katusic ZS. Uncoupling of endothelial nitric oxide synthase in cerebral vasculature of Tg2576 mice. J Neurochem 2015; 134:1129-38. [PMID: 26111938 PMCID: PMC5627976 DOI: 10.1111/jnc.13205] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/08/2015] [Accepted: 06/19/2015] [Indexed: 11/28/2022]
Abstract
In this study, we tested the hypothesis that reduced bioavailability of tetrahydrobiopterin (BH4) is a major mechanism responsible for pathogenesis of endothelial dysfunction in cerebral microvessels of transgenic mice expressing the Swedish double mutation of human amyloid precursor protein (APP) (Tg2576 mice). Endothelial nitric oxide synthase (eNOS) protein expression was significantly increased in cerebral vasculature of Tg2576 mice. In contrast, bioavailability of BH4 was significantly reduced (p < 0.05). Moreover, superoxide anion production was increased in cerebral microvessels of Tg2576 mice (p < 0.05). Incubation with NOS inhibitor, Nω-nitro-L-arginine methyl ester, decreased superoxide anion indicating that uncoupled eNOS is most likely the source of superoxide anion. Increasing BH4 bioavailability either exogenously by BH4 supplementation or endogenously by treatment with the selective peroxisome proliferator-activated receptor--delta activator GW501516 (2 mg/kg/day, 14 days) attenuated eNOS uncoupling and decreased superoxide anion production in cerebral microvessels of Tg2576 mice (p < 0.05). Treatment with GW501516 restored the biological activity of endothelial nitric oxide in cerebral microvessels of Tg2576 mice, as indicated by the increased nitrite/nitrate content and 3,5-cyclic guanosine monophosphate levels (p < 0.05). Our studies indicate that sub-optimal BH4 bioavailability in cerebral vasculature is an important contributor to oxidant stress and endothelial dysfunction in Tg2576 mouse model of Alzheimer's disease. Existing evidence suggests that Aβ peptides-induced up-regulation of expression and activity of NADPH oxidase causes increased production of superoxide anion (.O2(-)). .O2(-) can also be converted to hydrogen peroxide (H2O2) by enzymatic activity of superoxide dismutase (SOD) or spontaneous dismutation. Elevation of .O2(-) and H2O2 might cause oxidation of tetrahydrobiopterin (BH4) to dihydrobiopterin (BH2) and subsequent uncoupling of endothelial nitric oxide synthase (eNOS) (a) thus reducing levels of nitric oxide (NO) and 3',5'-cyclic guanosine monophosphate (cGMP). Supplementation of BH4 or activation of PPARδ prevents detrimental effects of eNOS uncoupling by restoring bioavailability of BH4 and scavenging of .O2(-), respectively (b). Activation of PPARδ also increases expression of catalase thereby inactivating H2O2. Generation of H2O2 by uncoupled eNOS in cerebral microvessels of Tg2576 mice is hypothetical.
Collapse
Affiliation(s)
- Anantha Vijay R. Santhanam
- Departments of Anesthesiology, and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN
| | - Livius V. d’Uscio
- Departments of Anesthesiology, and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN
| | - Tongrong He
- Departments of Anesthesiology, and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN
| | - Pritam Das
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
| | | | - Zvonimir S. Katusic
- Departments of Anesthesiology, and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN
| |
Collapse
|
70
|
de Campos RPS, Siegel JM, Fresta CG, Caruso G, da Silva JAF, Lunte SM. Indirect detection of superoxide in RAW 264.7 macrophage cells using microchip electrophoresis coupled to laser-induced fluorescence. Anal Bioanal Chem 2015; 407:7003-12. [PMID: 26159570 DOI: 10.1007/s00216-015-8865-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 12/22/2022]
Abstract
Superoxide, a naturally produced reactive oxygen species (ROS) in the human body, is involved in many pathological and physiological signaling processes. However, if superoxide formation is left unregulated, overproduction can lead to oxidative damage to important biomolecules, such as DNA, lipids, and proteins. Superoxide can also lead to the formation of peroxynitrite, an extremely hazardous substance, through its reaction with endogenously produced nitric oxide. Despite its importance, quantitative information regarding superoxide production is difficult to obtain due to its high reactivity and low concentrations in vivo. MitoHE, a fluorescent probe that specifically reacts with superoxide, was used in conjunction with microchip electrophoresis (ME) and laser-induced fluorescence (LIF) detection to investigate changes in superoxide production by RAW 264.7 macrophage cells following stimulation with phorbol 12-myristate 13-acetate (PMA). Stimulation was performed in the presence and absence of the superoxide dismutase (SOD) inhibitors, diethyldithiocarbamate (DDC) and 2-metoxyestradiol (2-ME). The addition of these inhibitors resulted in an increase in the amount of superoxide specific product (2-OH-MitoE(+)) from 0.08 ± 0.01 fmol (0.17 ± 0.03 mM) in native cells to 1.26 ± 0.06 fmol (2.5 ± 0.1 mM) after PMA treatment. This corresponds to an approximately 15-fold increase in intracellular concentration per cell. Furthermore, the addition of 3-morpholino-sydnonimine (SIN-1) to the cells during incubation resulted in the production of 0.061 ± 0.006 fmol (0.12 ± 0.01 mM) of 2-OH-MitoE(+) per cell on average. These results demonstrate that indirect superoxide detection coupled with the use of SOD inhibitors and a separation method is a viable method to discriminate the 2-OH-MitoE(+) signal from possible interferences.
Collapse
Affiliation(s)
- Richard P S de Campos
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Dr., Lawrence, KS, 66047-1620, USA
| | | | | | | | | | | |
Collapse
|
71
|
Ge H, Zhao M, Lee S, Xu Z. Mitochondrial Src tyrosine kinase plays a role in the cardioprotective effect of ischemic preconditioning by modulating complex I activity and mitochondrial ROS generation. Free Radic Res 2015; 49:1210-7. [DOI: 10.3109/10715762.2015.1050013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
72
|
Tyagi P, Dharmaraja AT, Bhaskar A, Chakrapani H, Singh A. Mycobacterium tuberculosis has diminished capacity to counteract redox stress induced by elevated levels of endogenous superoxide. Free Radic Biol Med 2015; 84:344-354. [PMID: 25819161 PMCID: PMC4459714 DOI: 10.1016/j.freeradbiomed.2015.03.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 12/20/2022]
Abstract
Mycobacterium tuberculosis (Mtb) has evolved protective and detoxification mechanisms to maintain cytoplasmic redox balance in response to exogenous oxidative stress encountered inside host phagocytes. In contrast, little is known about the dynamic response of this pathogen to endogenous oxidative stress generated within Mtb. Using a noninvasive and specific biosensor of cytoplasmic redox state of Mtb, we for first time discovered a surprisingly high sensitivity of this pathogen to perturbation in redox homeostasis induced by elevated endogenous reactive oxygen species (ROS). We synthesized a series of hydroquinone-based small molecule ROS generators and found that ATD-3169 permeated mycobacteria to reliably enhance endogenous ROS including superoxide radicals. When Mtb strains including multidrug-resistant (MDR) and extensively drug-resistant (XDR) patient isolates were exposed to this compound, a dose-dependent, long-lasting, and irreversible oxidative shift in intramycobacterial redox potential was detected. Dynamic redox potential measurements revealed that Mtb had diminished capacity to restore cytoplasmic redox balance in comparison with Mycobacterium smegmatis (Msm), a fast growing nonpathogenic mycobacterial species. Accordingly, Mtb strains were extremely susceptible to inhibition by ATD-3169 but not Msm, suggesting a functional linkage between dynamic redox changes and survival. Microarray analysis showed major realignment of pathways involved in redox homeostasis, central metabolism, DNA repair, and cell wall lipid biosynthesis in response to ATD-3169, all consistent with enhanced endogenous ROS contributing to lethality induced by this compound. This work provides empirical evidence that the cytoplasmic redox poise of Mtb is uniquely sensitive to manipulation in steady-state endogenous ROS levels, thus revealing the importance of targeting intramycobacterial redox metabolism for controlling TB infection.
Collapse
Affiliation(s)
- Priyanka Tyagi
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research (CIDR), Indian Institute of Science, Bangalore-12, India; International Centre for Genetic Engineering and Biotechnology, New Delhi 67, India
| | - Allimuthu T Dharmaraja
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 08, India
| | - Ashima Bhaskar
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research (CIDR), Indian Institute of Science, Bangalore-12, India
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 08, India.
| | - Amit Singh
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research (CIDR), Indian Institute of Science, Bangalore-12, India.
| |
Collapse
|
73
|
Liu H, Gooneratne R, Huang X, Lai R, Wei J, Wang W. A rapid in vivo zebrafish model to elucidate oxidative stress-mediated PCB126-induced apoptosis and developmental toxicity. Free Radic Biol Med 2015; 84:91-102. [PMID: 25770664 DOI: 10.1016/j.freeradbiomed.2015.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 01/10/2015] [Accepted: 03/02/2015] [Indexed: 01/16/2023]
Abstract
Dioxin-like 3,3',4,4',5-pentachlorobiphenyl (PCB126) is one of the most potent and widespread environmental pollutants. Although PCB126-induced toxicity is related to the aryl hydrocarbon receptor pathway, there is still no study that has constructed an in vivo visual model to clarify the role of the Nrf2/ARE signaling pathway in the oxidative stress mechanism of PCB126-induced toxicity. In the present study, an in vivo zebrafish model of nrf2a fused to enhanced green fluorescent protein (nrf2a-eGFP) was constructed. The zebrafish embryos microinjected with nrf2a-eGFP (72h postfertilization) were exposed to various concentrations of PCB126 (0, 25, 50, 100, 200μg/L) or 30mMN-acetylcysteine (NAC)+200μg/L PCB126. After 72h exposure, PCB126 significantly increased the malformation rates and induced eGFP expression in a dose-dependent manner in several zebrafish tissue types. The distribution of eGFP fluorescence coincided with developmental deformity sites. NAC pretreatment effectively counteracted PCB126-induced developmental toxicity including heart rate, pericardial edema, and body length. The highest PCB126 dose, 200μg/L, produced marked apoptosis in the eye, gill, and trunk detected by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay. At 48 and 72h exposure, 200μg/L PCB126 affected glutathione metabolism as evidenced by decreased glutathione and increased glutathione disulfide concentrations, indicative of oxidative stress. These effects were also counteracted by NAC pretreatment. Furthermore, the Nrf2-regulated genes gclc, gpx, gstp1, and hmox1 were significantly induced at 24, 48, and 72h at the highest PCB126 exposures but not in the NAC-pretreated group. In addition, a significant increase in ROS generation was detected in zebrafish larvae at 72h PCB126 exposure, which might offer a link for future mechanistic studies. Collectively, these data suggest that PCB126-induced developmental toxicity and apoptosis in the nrf2a-eGFP-injected zebrafish model are due to oxidative stress mediated by disruption to glutathione metabolism and changes in Nrf2-regulated gene expression.
Collapse
Affiliation(s)
- Han Liu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, People׳s Republic of China
| | - Ravi Gooneratne
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Xin Huang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, People׳s Republic of China
| | - Ruifang Lai
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, People׳s Republic of China
| | - Jin Wei
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, People׳s Republic of China
| | - Weimin Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, People׳s Republic of China.
| |
Collapse
|
74
|
Thakur A, Alam MJ, Ajayakumar MR, Ghaskadbi S, Sharma M, Goswami SK. Norepinephrine-induced apoptotic and hypertrophic responses in H9c2 cardiac myoblasts are characterized by different repertoire of reactive oxygen species generation. Redox Biol 2015; 5:243-252. [PMID: 26070033 PMCID: PMC4477046 DOI: 10.1016/j.redox.2015.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 01/04/2023] Open
Abstract
Despite recent advances, the role of ROS in mediating hypertrophic and apoptotic responses in cardiac myocytes elicited by norepinephrine (NE) is rather poorly understood. We demonstrate through our experiments that H9c2 cardiac myoblasts treated with 2 µM NE (hypertrophic dose) generate DCFH-DA positive ROS only for 2 h; while those treated with 100 µM NE (apoptotic dose) sustains generation for 48 h, followed by apoptosis. Though the levels of DCFH fluorescence were comparable at early time points in the two treatment sets, its quenching by DPI, catalase and MnTmPyP suggested the existence of a different repertoire of ROS. Both doses of NE also induced moderate levels of H2O2 but with different kinetics. Sustained but intermittent generation of highly reactive species detectable by HPF was seen in both treatment sets but no peroxynitrite was generated in either conditions. Sustained generation of hydroxyl radicals with no appreciable differences were noticed in both treatment sets. Nevertheless, despite similar profile of ROS generation between the two conditions, extensive DNA damage as evident from the increase in 8-OH-dG content, formation of γ-H2AX and PARP cleavage was seen only in cells treated with the higher dose of NE. We therefore conclude that hypertrophic and apoptotic doses of NE generate distinct but comparable repertoire of ROS/RNS leading to two very distinct downstream responses. H9c2 myoblasts upon treatment with 2 and 100 µM NE induces hypertrophy and apoptosis. Both treatments show comparable levels of DCFH fluorescence with different kinetics. Both treatments show comparable levels of HPF fluorescence in an oscillating manner. More hydroxyl radical was generated in 100 µM NE treated set. DNA damage and apoptosis occurs only in 100 µM NE treated sets.
Collapse
Affiliation(s)
- Anita Thakur
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Md Jahangir Alam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - M R Ajayakumar
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Manish Sharma
- Defence Institute of Physiology & Allied Sciences, New Delhi 110054, India
| | - Shyamal K Goswami
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
75
|
Debowska K, Debski D, Hardy M, Jakubowska M, Kalyanaraman B, Marcinek A, Michalski R, Michalowski B, Ouari O, Sikora A, Smulik R, Zielonka J. Toward selective detection of reactive oxygen and nitrogen species with the use of fluorogenic probes--Limitations, progress, and perspectives. Pharmacol Rep 2015; 67:756-64. [PMID: 26321278 DOI: 10.1016/j.pharep.2015.03.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/27/2015] [Accepted: 03/27/2015] [Indexed: 12/13/2022]
Abstract
Over the last 40 years, there has been tremendous progress in understanding the biological reactions of reactive oxygen species (ROS) and reactive nitrogen species (RNS). It is widely accepted that the generation of ROS and RNS is involved in physiological and pathophysiological processes. To understand the role of ROS and RNS in a variety of pathologies, the specific detection of ROS and RNS is fundamental. Unfortunately, the intracellular detection and quantitation of ROS and RNS remains a challenge. In this short review, we have focused on the mechanistic and quantitative aspects of their detection with the use of selected fluorogenic probes. The challenges, limitations and perspectives of these methods are discussed.
Collapse
Affiliation(s)
- Karolina Debowska
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Łódź, Poland
| | - Dawid Debski
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Łódź, Poland
| | - Micael Hardy
- Aix-Marseille Université, CNRS, ICR UMR 7273, SREP, Centre de Saint Jérôme, Marseille Cedex 20, France
| | - Malgorzata Jakubowska
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Łódź, Poland
| | - Balaraman Kalyanaraman
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, USA
| | - Andrzej Marcinek
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Łódź, Poland
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Łódź, Poland
| | - Bartosz Michalowski
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Łódź, Poland
| | - Olivier Ouari
- Aix-Marseille Université, CNRS, ICR UMR 7273, SREP, Centre de Saint Jérôme, Marseille Cedex 20, France
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Łódź, Poland.
| | - Renata Smulik
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Łódź, Poland
| | - Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, USA
| |
Collapse
|
76
|
Zuo L, Best TM, Roberts WJ, Diaz PT, Wagner PD. Characterization of reactive oxygen species in diaphragm. Acta Physiol (Oxf) 2015; 213:700-10. [PMID: 25330121 DOI: 10.1111/apha.12410] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/19/2014] [Accepted: 10/16/2014] [Indexed: 12/17/2022]
Abstract
Reactive oxygen species (ROS) exist as natural mediators of metabolism to maintain cellular homeostasis. However, ROS production may significantly increase in response to environmental stressors, resulting in extensive cellular damage. Although several potential sources of increased ROS have been proposed, exact mechanisms of their generation have not been completely elucidated. This is particularly true for diaphragmatic skeletal muscle, the key muscle used for respiration. Several experimental models have focused on detection of ROS generation in rodent diaphragm tissue under stressful conditions, including hypoxia, exercise, and heat, as well as ROS formation in single myofibres. Identification methods include direct detection of ROS with confocal or fluorescent microscopy and indirect detection of ROS through end product analysis. This article explores implications of ROS generation and oxidative stress, and also evaluates potential mechanisms of cellular ROS formation in diaphragmatic skeletal muscle.
Collapse
Affiliation(s)
- L. Zuo
- Radiologic Sciences and Respiratory Therapy Division; School of Health and Rehabilitation Sciences; The Ohio State University College of Medicine; The Ohio State University Wexner Medical Center; Columbus OH USA
| | - T. M. Best
- Division of Sports Medicine; Department of Family Medicine Sports Health and Performance Institute; The Ohio State University; Columbus OH USA
| | - W. J. Roberts
- Radiologic Sciences and Respiratory Therapy Division; School of Health and Rehabilitation Sciences; The Ohio State University College of Medicine; The Ohio State University Wexner Medical Center; Columbus OH USA
| | - P. T. Diaz
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine; The Ohio State University Wexner Medical Center; Columbus OH USA
| | - P. D. Wagner
- Department of Medicine; University of California, San Diego; La Jolla CA USA
| |
Collapse
|
77
|
Abstract
The concept that excess superoxide production from mitochondria is the driving, initial cellular response underlying diabetes complications has been held for the past decade. However, results of antioxidant-based trials have been largely negative. In the present review, the data supporting mitochondrial superoxide as a driving force for diabetic kidney, nerve, heart, and retinal complications are reexamined, and a new concept for diabetes complications--mitochondrial hormesis--is presented. In this view, production of mitochondrial superoxide can be an indicator of healthy mitochondria and physiologic oxidative phosphorylation. Recent data suggest that in response to excess glucose exposure or nutrient stress, there is a reduction of mitochondrial superoxide, oxidative phosphorylation, and mitochondrial ATP generation in several target tissues of diabetes complications. Persistent reduction of mitochondrial oxidative phosphorylation complex activity is associated with the release of oxidants from nonmitochondrial sources and release of proinflammatory and profibrotic cytokines, and a manifestation of organ dysfunction. Restoration of mitochondrial function and superoxide production via activation of AMPK has now been associated with improvement in markers of renal, cardiovascular, and neuronal dysfunction with diabetes. With this Perspective, approaches that stimulate AMPK and PGC1α via exercise, caloric restriction, and medications result in stimulation of mitochondrial oxidative phosphorylation activity, restore physiologic mitochondrial superoxide production, and promote organ healing.
Collapse
Affiliation(s)
- Kumar Sharma
- Center for Renal Translational Medicine, Division of Nephrology-Hypertension, Department of Medicine, University of California, San Diego, San Diego, CA, and Division of Nephrology-Hypertension, Veterans Affairs San Diego Healthcare System, Veterans Medical Research Foundation, San Diego, CA
| |
Collapse
|
78
|
Mangum LC, Borazjani A, Stokes JV, Matthews AT, Lee JH, Chambers JE, Ross MK. Organochlorine insecticides induce NADPH oxidase-dependent reactive oxygen species in human monocytic cells via phospholipase A2/arachidonic acid. Chem Res Toxicol 2015; 28:570-84. [PMID: 25633958 DOI: 10.1021/tx500323h] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioaccumulative organohalogen chemicals, such as organochlorine (OC) insecticides, have been increasingly associated with disease etiology; however, the mechanistic link between chemical exposure and diseases, such as atherosclerosis, cancer, and diabetes, is complex and poorly defined. Systemic oxidative stress stemming from OC exposure might play a vital role in the development of these pathologies. Monocytes are important surveillance cells of the innate immune system that respond to extracellular signals possessing danger-associated molecular patterns by synthesizing oxyradicals, such as superoxide, for the purpose of combating infectious pathogens. We hypothesized that OC chemicals can be toxic to monocytes because of an inappropriate elevation in superoxide-derived reactive oxygen species (ROS) capable of causing cellular oxidative damage. Reactive oxyradicals are generated in monocytes in large part by NADPH oxidase (Nox). The present study was conducted to examine the ability of two chlorinated cyclodiene compounds, trans-nonachlor and dieldrin, as well as p,p'-DDE, a chlorinated alicyclic metabolite of DDT, to stimulate Nox activity in a human monocytic cell line and to elucidate the mechanisms for this activation. Human THP-1 monocytes treated with either trans-nonachlor or dieldrin (0.1-10 μM in the culture medium) exhibited elevated levels of intracellular ROS, as evidenced by complementary methods, including flow cytometry analysis using the probe DCFH-DA and hydroethidine-based fluorometric and UPLC-MS assays. In addition, the induced reactive oxygen flux caused by trans-nonachlor was also observed in two other cell lines, murine J774 macrophages and human HL-60 cells. The central role of Nox in OC-mediated oxidative stress was demonstrated by the attenuated superoxide production in OC-exposed monocytes treated with the Nox inhibitors diphenyleneiodonium and VAS-2870. Moreover, monocytes challenged with OCs exhibited increased phospho-p47(phox) levels and enhanced p47(phox) membrane localization compared to that in vehicle-treated cells. p47(phox) is a cytosolic regulatory subunit of Nox, and its phosphorylation and translocation to the NOX2 catalytic subunit in membranes is a requisite step for Nox assembly and activation. Dieldrin and trans-nonachlor treatments of monocytes also resulted in marked increases in arachidonic acid (AA) and eicosanoid production, which could be abrogated by the phospholipase A2 (PLA2) inhibitor arachidonoyltrifluoromethyl ketone (ATK) but not by calcium-independent PLA2 inhibitor bromoenol lactone. This suggested that cytosolic PLA2 plays a crucial role in the induction of Nox activity by increasing the intracellular pool of AA that activates protein kinase C, which phosphorylates p47(phox). In addition, ATK also blocked OC-induced p47(phox) serine phosphorylation and attenuated ROS levels, which further supports the notion that the AA pool liberated by cytosolic PLA2 is responsible for Nox activation. Together, the results suggest that trans-nonachlor and dieldrin are capable of increasing intracellular superoxide levels via a Nox-dependent mechanism that relies on elevated intracellular AA levels. These findings are significant because chronic activation of monocytes by environmental toxicants might contribute to pathogenic oxidative stress and inflammation.
Collapse
Affiliation(s)
- Lee C Mangum
- Department of Basic Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, Mississippi 39762, United States
| | - Abdolsamad Borazjani
- Department of Basic Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, Mississippi 39762, United States
| | - John V Stokes
- Department of Basic Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, Mississippi 39762, United States
| | - Anberitha T Matthews
- Department of Basic Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, Mississippi 39762, United States
| | - Jung Hwa Lee
- Department of Basic Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, Mississippi 39762, United States
| | - Janice E Chambers
- Department of Basic Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, Mississippi 39762, United States
| | - Matthew K Ross
- Department of Basic Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
79
|
Targeting mitochondria with small molecules: the preparation of MitoB and MitoP as exomarkers of mitochondrial hydrogen peroxide. Methods Mol Biol 2015; 1265:25-50. [PMID: 25634265 DOI: 10.1007/978-1-4939-2288-8_3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Small molecules can be physicochemically targeted to mitochondria using the lipophilic alkyltriphenylphosphonium (TPP) group. Once in the mitochondria the TPP-conjugate can detect or influence processes within the mitochondrial matrix directly. Alternatively, the conjugate can behave as a prodrug, which is activated by release from the TPP group either using an internal or external instruction. Small molecules can be designed that can be used in any cell line, tissue or whole organism, allow temporal control, and be applied in a reversible dose-dependent fashion. An example is the detection and quantification of hydrogen peroxide in mitochondria of whole living organisms by MitoB. Hydrogen peroxide produced within the mitochondrial matrix is involved in signalling and implicated in the oxidative damage associated with aging and a wide range of age-associated conditions including cardiovascular disease, neurodegeneration, and cancer. MitoB accumulates in mitochondria and is converted into the exomarker, MitoP, by hydrogen peroxide in the mitochondrial matrix. The hydrogen peroxide concentration is determined from the ratio of MitoP to MitoB after a period of incubation, and this ratio is determined by mass spectrometry using d15-MitoP and d15-MitoB as standard. Here we describe the synthesis of MitoB and MitoP and the deuterated standards necessary for this method of quantification.
Collapse
|
80
|
Ozden O, Park SH, Wagner BA, Song HY, Zhu Y, Vassilopoulos A, Jung B, Buettner GR, Gius D. SIRT3 deacetylates and increases pyruvate dehydrogenase activity in cancer cells. Free Radic Biol Med 2014; 76:163-172. [PMID: 25152236 PMCID: PMC4364304 DOI: 10.1016/j.freeradbiomed.2014.08.001] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 07/10/2014] [Accepted: 08/05/2014] [Indexed: 12/15/2022]
Abstract
Pyruvate dehydrogenase E1α (PDHA1) is the first component enzyme of the pyruvate dehydrogenase (PDH) complex that transforms pyruvate, via pyruvate decarboxylation, into acetyl-CoA that is subsequently used by both the citric acid cycle and oxidative phosphorylation to generate ATP. As such, PDH links glycolysis and oxidative phosphorylation in normal as well as cancer cells. Herein we report that SIRT3 interacts with PDHA1 and directs its enzymatic activity via changes in protein acetylation. SIRT3 deacetylates PDHA1 lysine 321 (K321), and a PDHA1 mutant mimicking a deacetylated lysine (PDHA1(K321R)) increases PDH activity, compared to the K321 acetylation mimic (PDHA1(K321Q)) or wild-type PDHA1. Finally, PDHA1(K321Q) exhibited a more transformed in vitro cellular phenotype compared to PDHA1(K321R). These results suggest that the acetylation of PDHA1 provides another layer of enzymatic regulation, in addition to phosphorylation, involving a reversible acetyllysine, suggesting that the acetylome, as well as the kinome, links glycolysis to respiration.
Collapse
Affiliation(s)
- Ozkan Ozden
- Department of Radiation Oncology, Robert Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Seong-Hoon Park
- Department of Radiation Oncology, Robert Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Brett A. Wagner
- Department of Radiation Oncology, Free Radical and Radiation Biology, The University of Iowa, Iowa City, IA 52242
| | - Ha Yong Song
- Department of Radiation Oncology, Robert Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Yueming Zhu
- Department of Radiation Oncology, Robert Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Athanassios Vassilopoulos
- Department of Radiation Oncology, Robert Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Barbara Jung
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60612
| | - Garry R. Buettner
- Department of Radiation Oncology, Free Radical and Radiation Biology, The University of Iowa, Iowa City, IA 52242
| | - David Gius
- Department of Radiation Oncology, Robert Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Corresponding Author: David Gius, M.D., Ph.D. Professor Department of Radiation Oncology Robert Lurie Cancer Center Northwestern University 303 East Superior, Rm 3-119 Chicago, IL 60611
| |
Collapse
|
81
|
Kanazashi M, Tanaka M, Murakami S, Kondo H, Nagatomo F, Ishihara A, Roy RR, Fujino H. Amelioration of capillary regression and atrophy of the soleus muscle in hindlimb-unloaded rats by astaxanthin supplementation and intermittent loading. Exp Physiol 2014; 99:1065-77. [DOI: 10.1113/expphysiol.2014.079988] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Miho Kanazashi
- Department of Rehabilitation Science; Kobe University Graduate School of Health Sciences; Kobe Japan
| | - Masayuki Tanaka
- Department of Rehabilitation Science; Kobe University Graduate School of Health Sciences; Kobe Japan
| | | | - Hiroyo Kondo
- Department of Food Science and Nutrition; Nagoya Women's University; Nagoya Japan
| | - Fumiko Nagatomo
- Laboratory of Cell Biology and Life Science; Graduate School of Human and Environmental Studies; Kyoto University; Kyoto Japan
| | - Akihiko Ishihara
- Laboratory of Cell Biology and Life Science; Graduate School of Human and Environmental Studies; Kyoto University; Kyoto Japan
| | - Roland R. Roy
- Brain Research Institute and Department of Integrative Biology and Physiology; University of California; Los Angeles CA USA
| | - Hidemi Fujino
- Department of Rehabilitation Science; Kobe University Graduate School of Health Sciences; Kobe Japan
| |
Collapse
|
82
|
Redox signal regulation via nNOS phosphorylation at Ser847 in PC12 cells and rat cerebellar granule neurons. Biochem J 2014; 459:251-63. [PMID: 24499461 DOI: 10.1042/bj20131262] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phosphorylation is considered a main mechanism modulating nNOS (neuronal nitric oxide synthase) function to reduce NO production. In the present study, the effects of nNOS phosphorylation on redox signalling, including that of NO, ROS (reactive oxygen species), and 8-nitro-cGMP (8-nitroguanosine 3',5'-cyclic monophosphate), a downstream messenger of redox signalling, were investigated. In vitro experiments revealed that a phosphorylation-mimic mutant of nNOS (Ser847 replaced with aspartic acid, 847D) increased uncoupling to produce a superoxide. In addition, nicotine, which triggers an influx of Ca2+, induced more ROS and 8-nitro-cGMP production in 847D-expressing PC12 cells than WT (wild-type)-expressing cells. Additionally, nicotine-induced phosphorylation of nNOS at Ser847 and increased ROS and 8-nitro-cGMP production in rat CGNs (cerebellar granule neurons). In CGNs, the NOS (nitric oxide synthase) inhibitor L-NAME (NG-nitro-L-arginine methyl ester) and superoxide dismutase completely inhibited ROS and 8-nitro-cGMP production, whereas the CaMK (Ca2+/calmodulin-dependent protein kinase) inhibitor KN93 mildly reduced this effect. Nicotine induced HO-1 (haem oxygenase 1) expression in CGNs and showed cytoprotective effects against apoptosis. Moreover, 8-nitro-cGMP treatment showed identical effects that were attenuated by KN93 pre-treatment. The present paper provides the first substantial corroboration for the biological effects of nNOS phosphorylation at Ser847 on redox signalling, including ROS and intracellular 8-nitro-cGMP generation in neurons, which possibly play roles in neuroprotection.
Collapse
|
83
|
Zielonka J, Cheng G, Zielonka M, Ganesh T, Sun A, Joseph J, Michalski R, O'Brien WJ, Lambeth JD, Kalyanaraman B. High-throughput assays for superoxide and hydrogen peroxide: design of a screening workflow to identify inhibitors of NADPH oxidases. J Biol Chem 2014; 289:16176-89. [PMID: 24764302 DOI: 10.1074/jbc.m114.548693] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent progress characterizing the reaction mechanism(s) of fluorescent probes with reactive oxygen species has made it possible to rigorously analyze these reactive species in biological systems. We have developed rapid high throughput-compatible assays for monitoring cellular production of superoxide radical anion and hydrogen peroxide using hydropropidine and coumarin boronic acid probes, respectively. Coupling plate reader-based fluorescence measurements with HPLC-based simultaneous monitoring of superoxide radical anion and hydrogen peroxide provides the basis for the screening protocol for NADPH oxidase (Nox) inhibitors. Using this newly developed approach along with the medium-throughput plate reader-based oximetry and EPR spin trapping as confirmatory assays, it is now eminently feasible to rapidly and reliably identify Nox enzyme inhibitors with a markedly lower rate of false positives. These methodological advances provide an opportunity to discover selective inhibitors of Nox isozymes, through enhanced conceptual understanding of their basic mechanisms of action.
Collapse
Affiliation(s)
- Jacek Zielonka
- From the Department of Biophysics and Free Radical Research Center and
| | - Gang Cheng
- From the Department of Biophysics and Free Radical Research Center and
| | - Monika Zielonka
- From the Department of Biophysics and Free Radical Research Center and
| | | | - Aiming Sun
- the Emory Institute for Drug Development, Yerkes National Primate Research Center, Atlanta, Georgia 30322
| | - Joy Joseph
- From the Department of Biophysics and Free Radical Research Center and
| | | | - William J O'Brien
- the Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - J David Lambeth
- Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322, and
| | | |
Collapse
|
84
|
Fan LM, Li JM. Evaluation of methods of detecting cell reactive oxygen species production for drug screening and cell cycle studies. J Pharmacol Toxicol Methods 2014; 70:40-7. [PMID: 24721421 DOI: 10.1016/j.vascn.2014.03.173] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 01/22/2023]
Abstract
Intracellular reactive oxygen species (ROS) production is essential to normal cell function. However, excessive ROS production causes oxidative damage and cell death. Many pharmacological compounds exert their effects on cell cycle progression by changing intracellular redox state and in many cases cause oxidative damage leading to drug cytotoxicity. Appropriate measurement of intracellular ROS levels during cell cycle progression is therefore crucial in understanding redox-regulation of cell function and drug toxicity and for the development of new drugs. However, due to the extremely short half-life of ROS, measuring the changes in intracellular ROS levels during a particular phase of cell cycle for drug intervention can be challenging. In this article, we have provided updated information on the rationale, the applications, the advantages and limitations of common methods for screening drug effects on intracellular ROS production linked to cell cycle study. Our aim is to facilitate biomedical scientists and researchers in the pharmaceutical industry in choosing or developing specific experimental regimens to suit their research needs.
Collapse
Affiliation(s)
- Lampson M Fan
- John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Jian-Mei Li
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
| |
Collapse
|
85
|
Bonini MG, Consolaro MEL, Hart PC, Mao M, de Abreu ALP, Master AM. Redox control of enzymatic functions: The electronics of life's circuitry. IUBMB Life 2014; 66:167-181. [PMID: 24668617 DOI: 10.1002/iub.1258] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 03/06/2014] [Indexed: 12/22/2022]
Abstract
The field of redox biology has changed tremendously over the past 20 years. Formerly regarded as bi-products of the aerobic metabolism exclusively involved in tissue damage, reactive oxygen species (ROS) are now recognized as active participants of cell signaling events in health and in disease. In this sense, ROS and the more recently defined reactive nitrogen species (RNS) are, just like hormones and second messengers, acting as fundamental orchestrators of cell signaling pathways. The chemical modification of enzymes by ROS and RNS (that result in functional enzymatic alterations) accounts for a considerable fraction of the transient and persistent perturbations imposed by variations in oxidant levels. Upregulation of ROS and RNS in response to stress is a common cellular response that foments adaptation to a variety of physiologic alterations (hypoxia, hyperoxia, starvation, and cytokine production). Frequently, these are beneficial and increase the organisms' resistance against subsequent acute stress (preconditioning). Differently, the sustained ROS/RNS-dependent rerouting of signaling produces irreversible alterations in cellular functioning, often leading to pathogenic events. Thus, the duration and reversibility of protein oxidations define whether complex organisms remain "electronically" healthy. Among the 20 essential amino acids, four are particularly susceptible to oxidation: cysteine, methionine, tyrosine, and tryptophan. Here, we will critically review the mechanisms, implications, and repair systems involved in the redox modifications of these residues in proteins while analyzing well-characterized prototypic examples. Occasionally, we will discuss potential consequences of amino acid oxidation and speculate on the biologic necessity for such events in the context of adaptative redox signaling. © 2014 IUBMB Life, 66(3):167-181, 2014.
Collapse
Affiliation(s)
- Marcelo G Bonini
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Programa de Biociencias Aplicadas a Farmacia (PBF), Universidade Estadual de Maringa, Maringa, Parana, Brazil
| | - Marcia E L Consolaro
- Programa de Biociencias Aplicadas a Farmacia (PBF), Universidade Estadual de Maringa, Maringa, Parana, Brazil
| | - Peter C Hart
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mao Mao
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Andre Luelsdorf Pimenta de Abreu
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Programa de Biociencias Aplicadas a Farmacia (PBF), Universidade Estadual de Maringa, Maringa, Parana, Brazil
| | - Alyssa M Master
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
86
|
Jia W, Chu X, Ling Y, Huang J, Lin Y, Chang J. Simultaneous determination of dyes in wines byHPLCcoupled to quadrupole orbitrap mass spectrometry. J Sep Sci 2014; 37:782-91. [DOI: 10.1002/jssc.201301374] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 01/16/2014] [Accepted: 01/21/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Wei Jia
- College of chemistry and chemical EngineeringShaanxi University of Science and Technology Xi'an China
- Institute of Food SafetyChinese Academy of Inspection and Quarantine Beijing China
| | - Xiaogang Chu
- College of chemistry and chemical EngineeringShaanxi University of Science and Technology Xi'an China
- Institute of Food SafetyChinese Academy of Inspection and Quarantine Beijing China
| | - Yun Ling
- Institute of Food SafetyChinese Academy of Inspection and Quarantine Beijing China
| | - Junrong Huang
- College of chemistry and chemical EngineeringShaanxi University of Science and Technology Xi'an China
| | - Yuanhui Lin
- Beijing Entry‐Exit Inspection and Quarantine Bureau Beijing China
| | | |
Collapse
|
87
|
Afolayan AJ, Teng RJ, Eis A, Rana U, Broniowska KA, Corbett JA, Pritchard K, Konduri GG. Inducible HSP70 regulates superoxide dismutase-2 and mitochondrial oxidative stress in the endothelial cells from developing lungs. Am J Physiol Lung Cell Mol Physiol 2014; 306:L351-L360. [PMID: 24375796 PMCID: PMC3920226 DOI: 10.1152/ajplung.00264.2013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/13/2013] [Indexed: 12/17/2022] Open
Abstract
Superoxide dismutase 2 (SOD-2) is synthesized in the cytosol and imported into the mitochondrial matrix, where it is activated and functions as the primary antioxidant for cellular respiration. The specific mechanisms that target SOD-2 to the mitochondria remain unclear. We hypothesize that inducible heat shock protein 70 (iHSP70) targets SOD-2 to the mitochondria via a mechanism facilitated by ATP, and this process is impaired in persistent pulmonary hypertension of the newborn (PPHN). We observed that iHSP70 interacts with SOD-2 and targets SOD-2 to the mitochondria. Interruption of iHSP70-SOD-2 interaction with 2-phenylethylenesulfonamide-μ (PFT-μ, a specific inhibitor of substrate binding to iHSP70 COOH terminus) and siRNA-mediated knockdown of iHSP70 expression disrupted SOD-2 transport to mitochondria. Increasing intracellular ATP levels by stimulation of respiration with CaCl2 facilitated the mitochondrial import of SOD-2, increased SOD-2 activity, and decreased the mitochondrial superoxide (O2(·-)) levels in PPHN pulmonary artery endothelial cells (PAEC) by promoting iHSP70-SOD-2 dissociation at the outer mitochondrial membrane. In contrast, oligomycin, an inhibitor of mitochondrial ATPase, decreased SOD-2 expression and activity and increased O2(·-) levels in the mitochondria of control PAEC. The basal ATP levels and degree of iHSP70-SOD-2 dissociation were lower in PPHN PAEC and lead to increased SOD-2 degradation in cytosol. In normal pulmonary arteries (PA), PFT-μ impaired the relaxation response of PA rings in response to nitric oxide (NO) donor, S-nitroso-N-acetyl-penicillamine. Pretreatment with Mito-Q, a mitochondrial targeted O2(·-) scavenger, restored the relaxation response in PA rings pretreated with PFT-μ. Our observations suggest that iHSP70 chaperones SOD-2 to the mitochondria. Impaired SOD-2-iHSP70 dissociation decreases SOD-2 import and contributes to mitochondrial oxidative stress in PPHN.
Collapse
Affiliation(s)
- Adeleye J Afolayan
- Div. of Neonatology, Dept. of Pediatrics, Suite C460, Children's Corporate Ctr., 999 N. 92nd St., Wauwatosa, WI.
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Li J, O W, Li W, Jiang ZG, Ghanbari HA. Oxidative stress and neurodegenerative disorders. Int J Mol Sci 2013; 14:24438-75. [PMID: 24351827 PMCID: PMC3876121 DOI: 10.3390/ijms141224438] [Citation(s) in RCA: 300] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/27/2013] [Accepted: 12/06/2013] [Indexed: 12/14/2022] Open
Abstract
Living cells continually generate reactive oxygen species (ROS) through the respiratory chain during energetic metabolism. ROS at low or moderate concentration can play important physiological roles. However, an excessive amount of ROS under oxidative stress would be extremely deleterious. The central nervous system (CNS) is particularly vulnerable to oxidative stress due to its high oxygen consumption, weakly antioxidative systems and the terminal-differentiation characteristic of neurons. Thus, oxidative stress elicits various neurodegenerative diseases. In addition, chemotherapy could result in severe side effects on the CNS and peripheral nervous system (PNS) of cancer patients, and a growing body of evidence demonstrates the involvement of ROS in drug-induced neurotoxicities as well. Therefore, development of antioxidants as neuroprotective drugs is a potentially beneficial strategy for clinical therapy. In this review, we summarize the source, balance maintenance and physiologic functions of ROS, oxidative stress and its toxic mechanisms underlying a number of neurodegenerative diseases, and the possible involvement of ROS in chemotherapy-induced toxicity to the CNS and PNS. We ultimately assess the value for antioxidants as neuroprotective drugs and provide our comments on the unmet needs.
Collapse
Affiliation(s)
- Jie Li
- Department of Geratology, First Hospital of Jilin University, Changchun, Jilin 130021, China; E-Mail:
| | - Wuliji O
- College of Pharmacology, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia 028000, China; E-Mail:
| | - Wei Li
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130021, China; E-Mail:
| | - Zhi-Gang Jiang
- Panacea Pharmaceuticals, Inc., Gaithersburg, MD 20877, USA; E-Mail:
| | | |
Collapse
|
89
|
Balce DR, Yates RM. Redox-sensitive probes for the measurement of redox chemistries within phagosomes of macrophages and dendritic cells. Redox Biol 2013; 1:467-74. [PMID: 24191242 PMCID: PMC3814946 DOI: 10.1016/j.redox.2013.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/04/2013] [Accepted: 09/09/2013] [Indexed: 01/26/2023] Open
Abstract
There is currently much interest in factors that affect redox chemistries within phagosomes of macrophages and dendritic cells. In addition to the antimicrobial role of reactive oxygen species generation within phagosomes, accumulating evidence suggests that phagosomal redox chemistries influence other phagosomal functions such as macromolecular degradation and antigen processing. Whilst the redox chemistries within many sub-cellular compartments are being heavily scrutinized with the increasing use of fluorescent probe technologies, there is a paucity of tools to assess redox conditions within phagosomes. Hence the systems that control redox homeostasis in these unique environments remain poorly defined. This review highlights current redox-sensitive probes that can measure oxidative or reductive activity in phagosomes and discusses their suitability and limitations of use. Probes that are easily targeted to the phagosome by using established approaches are emphasized. A review of redox probes and their use in macrophage and dendritic cell phagosomes. Techniques that allow for phagosomal-specific redox measurements are highlighted. Advantages and caveats of the most commonly used redox probes are included.
Collapse
Affiliation(s)
- Dale R Balce
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Calgary, AB, Canada T2N 4N1 ; Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | | |
Collapse
|
90
|
Zielonka J, Joseph J, Sikora A, Kalyanaraman B. Real-time monitoring of reactive oxygen and nitrogen species in a multiwell plate using the diagnostic marker products of specific probes. Methods Enzymol 2013; 526:145-57. [PMID: 23791099 DOI: 10.1016/b978-0-12-405883-5.00009-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Developing rigorous assays for cellular detection of reactive oxygen and nitrogen species (O2(·-), H2O2, (·)NO, and ONOO(-)) is an active area of research in our laboratory. Published reports suggest that diagnostic marker products are formed as a result of interaction of these species with small molecular weight fluorescent and nonfluorescent probes. In this chapter, we describe an HPLC-based methodology to detect formation of these species in biological and cellular systems. By monitoring the diagnostic marker products formed from reaction between specific chemical probes and the oxidant species, it is possible to simultaneously assay these species using a multiwell plate (e.g., 384-well plate).
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | |
Collapse
|