51
|
Medoro A, Bartollino S, Mignogna D, Marziliano N, Porcile C, Nizzari M, Florio T, Pagano A, Raimo G, Intrieri M, Russo C. Proteases Upregulation in Sporadic Alzheimer's Disease Brain. J Alzheimers Dis 2020; 68:931-938. [PMID: 30814362 DOI: 10.3233/jad-181284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Certain proteases are involved in Alzheimer's disease (AD) and their erroneous control may contribute to the pathology onset and progression. In this study we evaluated the cerebral expression of eight proteases, involved in both AβPP processing and extracellular matrix remodeling. Among these proteases, ADAM10, ADAMTS1, Cathepsin D, and Meprin β show a significantly higher mRNAs expression in sporadic AD subjects versus controls, while ADAMTS1, Cathepsin D, and Meprin β show an increment also at the protein level. These data indicate that transcriptional events affecting brain proteases are activated in AD patients, suggesting a link between proteolysis and AD.
Collapse
Affiliation(s)
- Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Silvia Bartollino
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Donatella Mignogna
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Nicola Marziliano
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy.,Clinical Pathology Laboratory, ASL Taranto, Italy
| | - Carola Porcile
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Mario Nizzari
- Department of Internal Medicine and Centre of Excellence for Biomedical Research, University of Genova, Genova, Italy
| | - Tullio Florio
- Department of Internal Medicine and Centre of Excellence for Biomedical Research, University of Genova, Genova, Italy.,IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Aldo Pagano
- Department of Experimental Medicine, University of Genova, Genova, Italy.,IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Gennaro Raimo
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Claudio Russo
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
52
|
Ahmadi S, Zobeiri M, Bradburn S. Molecular mechanisms underlying actions of certain long noncoding RNAs in Alzheimer's disease. Metab Brain Dis 2020; 35:681-693. [PMID: 32185592 DOI: 10.1007/s11011-020-00564-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/05/2020] [Indexed: 01/08/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a group of non-protein coding RNAs that have more than 200 nucleotides. LncRNAs play an important role in the regulation of protein-coding genes at the transcriptional and post-transcriptional levels. They are found in most organs, with a high prevalence in the central nervous system. Accumulating data suggests that lncRNAs are involved in various neurodegenerative disorders, including the onset and progression of Alzheimer's disease (AD). Recent insights suggest lncRNAs, such as BACE1-AS, 51A, 17A, NDM29 and AS-UCHL1, are dysregulated in AD tissues. Furthermore, there are ongoing efforts to explore the clinical usability of lncRNAs as biomarkers in the disease. In this review, we explore the mechanisms by which aberrant expressions of the most studied lncRNAs contribute to the neuropathologies associated with AD, including amyloid β plaques and neurofibrillary tangles. Understanding the molecular mechanisms of lncRNAs in patients with AD will reveal novel diagnosis strategies and more effective therapeutic targets.
Collapse
Affiliation(s)
- Shamseddin Ahmadi
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran.
| | - Mohammad Zobeiri
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Steven Bradburn
- Bioscience Research Centre, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
53
|
Bagyinszky E, Giau VV, An SA. Transcriptomics in Alzheimer's Disease: Aspects and Challenges. Int J Mol Sci 2020; 21:E3517. [PMID: 32429229 PMCID: PMC7278930 DOI: 10.3390/ijms21103517] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. Although the heritability of AD is high, the knowledge of the disease-associated genes, their expression, and their disease-related pathways remain limited. Hence, finding the association between gene dysfunctions and pathological mechanisms, such as neuronal transports, APP processing, calcium homeostasis, and impairment in mitochondria, should be crucial. Emerging studies have revealed that changes in gene expression and gene regulation may have a strong impact on neurodegeneration. The mRNA-transcription factor interactions, non-coding RNAs, alternative splicing, or copy number variants could also play a role in disease onset. These facts suggest that understanding the impact of transcriptomes in AD may improve the disease diagnosis and also the therapies. In this review, we highlight recent transcriptome investigations in multifactorial AD, with emphasis on the insights emerging at their interface.
Collapse
Affiliation(s)
- Eva Bagyinszky
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, Seongnam 13120, Korea;
- Department of Bionano Technology, Gachon University, Seongnam 13120, Korea
| | - Vo Van Giau
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, Seongnam 13120, Korea;
- Department of Bionano Technology, Gachon University, Seongnam 13120, Korea
| | - SeongSoo A. An
- Department of Bionano Technology, Gachon University, Seongnam 13120, Korea
| |
Collapse
|
54
|
Wang L, Zeng L, Jiang H, Li Z, Liu R. Microarray Profile of Long Noncoding RNA and Messenger RNA Expression in a Model of Alzheimer's Disease. Life (Basel) 2020; 10:E64. [PMID: 32423012 PMCID: PMC7281340 DOI: 10.3390/life10050064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by a deficiency in cognitive skills. Although long noncoding RNAs (lncRNAs) have been proposed as associated with AD, the aberrant lncRNAs expression and the co-expression of lncRNAs-mRNAs network in AD remains unclear. Therefore, in this study, lncRNA microarray was performed on the brain of APP/PS1 mice at different age, widely used as an AD mouse model, and on age-matched wide-type controls. Our results identified a total of 3306 lncRNAs and 2458 mRNAs as aberrantly expressed among AD mice at different age and their age-matched control. Gene Ontology and pathway analysis of the AD-related lncRNAs and mRNAs indicated that neuroinflammation-related and synaptic transmission signaling pathways represented the main enriched pathways. An lncRNA-mRNA-miRNA network between the differentially expressed transcripts was constructed. Moreover, an mRNA-miRNA network between both significantly dysregulated and highly conserved genes was also constructed, and among this network, the IGF1, P2RX7, TSPO, SERPINE1, EGFR, HMOX1, and NFE212 genes were predicted to play a role in the development of AD. In conclusion, this study illustrated the prognostic value of lncRNAs and mRNAs associated to AD pathology by microarray analysis and might provide potential novel biomarkers in the diagnosis and treatment of AD.
Collapse
Affiliation(s)
| | | | | | - Zhuorong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.W.); (L.Z.); (H.J.)
| | - Rui Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.W.); (L.Z.); (H.J.)
| |
Collapse
|
55
|
Liu Q, Zhu L, Liu X, Zheng J, Liu Y, Ruan X, Cao S, Cai H, Li Z, Xue Y. TRA2A-induced upregulation of LINC00662 regulates blood-brain barrier permeability by affecting ELK4 mRNA stability in Alzheimer's microenvironment. RNA Biol 2020; 17:1293-1308. [PMID: 32372707 DOI: 10.1080/15476286.2020.1756055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The blood-brain barrier (BBB) plays a pivotal role in the maintenance and regulation of the neural microenvironment. The BBB breakdown is a pathological change in early Alzheimer's disease (AD). RNA-binding proteins (RBPs) and long non-coding RNAs (lncRNAs) are involved in the regulation of BBB permeability. Our study demonstrates the role of TRA2A/LINC00662/ELK4 axis in regulating BBB permeability in AD microenvironment. In Aβ1-42-incubated microvascular endothelial cells (ECs) of the BBB model in vitro, TRA2A and LINC00662 were enriched. TRA2A increased the stability of LINC00662 by binding with it. The knockdown of either TRA2A or LINC00662 decreased BBB permeability due to increased expression of tight junction-related proteins. ELK4 was less expressed in the BBB model in AD microenvironment in vitro. LINC00662 mediated the degradation of ELK4 mRNA by SMD pathway. Downregulation of ELK4 increased BBB permeability by increasing the tight junction-related protein expression.TRA2A/LINC00662/ELK4 axis plays a crucial role in the regulation of BBB permeability in AD microenvironment, which may provide a novel target for the therapy of AD.
Collapse
Affiliation(s)
- Qianshuo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, People's Republic of China
| | - Lu Zhu
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, People's Republic of China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, People's Republic of China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, People's Republic of China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, People's Republic of China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, People's Republic of China
| | - Shuo Cao
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, People's Republic of China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, People's Republic of China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, People's Republic of China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, People's Republic of China
| |
Collapse
|
56
|
Connerty P, Lock RB, de Bock CE. Long Non-coding RNAs: Major Regulators of Cell Stress in Cancer. Front Oncol 2020; 10:285. [PMID: 32266130 PMCID: PMC7099402 DOI: 10.3389/fonc.2020.00285] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/18/2020] [Indexed: 01/04/2023] Open
Abstract
Cellular stress can occur in many forms; oxidative stress caused by reactive oxygen species (ROS), metabolic stress from increased metabolic programs and genotoxic stress in the form of DNA damage and disrepair. In most instances, these different types of cell stress initiate programmed cell death. However, in cancer, cells are able to resist cellular stress and by-pass growth limiting checkpoints. Recent findings have now revealed that the large and heterogenous RNA species known as long non-coding RNAs (lncRNAs) are major players in regulating and overcoming cancer cell stress. lncRNAs constitute a significant fraction of the genes differentially expressed in response to cell stress and contribute to the management of downstream cellular processes, including the regulation of key stress responses such as metabolic stress, oxidative stress and genotoxic stress. This review highlights the complex regulatory role of lncRNAs in the cell stress response of cancer by providing an overview of key examples from recent literature.
Collapse
Affiliation(s)
- Patrick Connerty
- Children's Cancer Institute, School of Women's and Children's Health, Lowy Cancer Centre, University of New South Wales (UNSW), Sydney, NSW, Australia
| | | | - Charles E. de Bock
- Children's Cancer Institute, School of Women's and Children's Health, Lowy Cancer Centre, University of New South Wales (UNSW), Sydney, NSW, Australia
| |
Collapse
|
57
|
Hong H, Mo Y, Li D, Xu Z, Liao Y, Yin P, Liu X, Xia Y, Fang J, Wang Q, Fang S. Aberrant Expression Profiles of lncRNAs and Their Associated Nearby Coding Genes in the Hippocampus of the SAMP8 Mouse Model with AD. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:140-154. [PMID: 32169802 PMCID: PMC7066064 DOI: 10.1016/j.omtn.2020.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 12/04/2019] [Accepted: 02/11/2020] [Indexed: 12/25/2022]
Abstract
The senescence-accelerated mouse prone 8 (SAMP8) mouse model is a useful model for investigating the fundamental mechanisms involved in the age-related learning and memory deficits of Alzheimer’s disease (AD), while the SAM/resistant 1 (SAMR1) mouse model shows normal features. Recent evidence has shown that long non-coding RNAs (lncRNAs) may play an important role in AD pathogenesis. However, a comprehensive and systematic understanding of the function of AD-related lncRNAs and their associated nearby coding genes in AD is still lacking. In this study, we collected the hippocampus, the main area of AD pathological processes, of SAMP8 and SAMR1 animals and performed microarray analysis to identify aberrantly expressed lncRNAs and their associated nearby coding genes, which may contribute to AD pathogenesis. We identified 3,112 differentially expressed lncRNAs and 3,191 differentially expressed mRNAs in SAMP8 mice compared to SAMR1 mice. More than 70% of the deregulated lncRNAs were intergenic and exon sense-overlapping lncRNAs. Gene Ontology (GO) and pathway analyses of the AD-related transcripts were also performed and are described in detail, which imply that metabolic process reprograming was likely related to AD. Furthermore, six lncRNAs and six mRNAs were selected for further validation of the microarray results using quantitative PCR, and the results were consistent with the findings from the microarray. Moreover, we analyzed 780 lincRNAs (also called long “intergenic” non-coding RNAs) and their associated nearby coding genes. Among these lincRNAs, AK158400 had the most genes nearby (n = 13), all of which belonged to the histone cluster 1 family, suggesting regulation of the nucleosome structure of the chromosomal fiber by affecting nearby genes during AD progression. In addition, we also identified 97 aberrant antisense lncRNAs and their associated coding genes. It is likely that these dysregulated lncRNAs and their associated nearby coding genes play a role in the development and/or progression of AD.
Collapse
Affiliation(s)
- Honghai Hong
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, Guangdong Province, China; Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yousheng Mo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Dongli Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Zhiheng Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Yanfang Liao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Ping Yin
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, Guangdong Province, China
| | - Xinning Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Yong Xia
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, Guangdong Province, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China; DME Center, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China; DME Center, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China.
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China; DME Center, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China; Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
58
|
Duran RCD, Wei H, Kim DH, Wu JQ. Invited Review: Long non-coding RNAs: important regulators in the development, function and disorders of the central nervous system. Neuropathol Appl Neurobiol 2019; 45:538-556. [PMID: 30636336 PMCID: PMC6626588 DOI: 10.1111/nan.12541] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023]
Abstract
Genome-wide transcriptional studies have demonstrated that tens of thousands of long non-coding RNAs (lncRNA) genes are expressed in the central nervous system (CNS) and that they exhibit tissue- and cell-type specificity. Their regulated and dynamic expression and their co-expression with protein-coding gene neighbours have led to the study of the functions of lncRNAs in CNS development and disorders. In this review, we describe the general characteristics, localization and classification of lncRNAs. We also elucidate the examples of the molecular mechanisms of nuclear and cytoplasmic lncRNA actions in the CNS and discuss common experimental approaches used to identify and unveil the functions of lncRNAs. Additionally, we provide examples of lncRNA studies of cell differentiation and CNS disorders including CNS injuries and neurodegenerative diseases. Finally, we review novel lncRNA-based therapies. Overall, this review highlights the important biological roles of lncRNAs in CNS functions and disorders.
Collapse
Affiliation(s)
- Raquel Cuevas-Diaz Duran
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey, N.L., 64710, Mexico
| | - Haichao Wei
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Dong H. Kim
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jia Qian Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| |
Collapse
|
59
|
Grinman E, Espadas I, Puthanveettil SV. Emerging roles for long noncoding RNAs in learning, memory and associated disorders. Neurobiol Learn Mem 2019; 163:107034. [DOI: 10.1016/j.nlm.2019.107034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/03/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022]
|
60
|
Cortini F, Roma F, Villa C. Emerging roles of long non-coding RNAs in the pathogenesis of Alzheimer's disease. Ageing Res Rev 2019; 50:19-26. [PMID: 30610928 DOI: 10.1016/j.arr.2019.01.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/31/2018] [Accepted: 01/01/2019] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease (AD) is a heterogeneous neurodegenerative disorder and represents the most common form of senile dementia. The pathogenesis of AD is not yet completely understood and no curative treatment is currently available. With the recent advancement in transcriptome-wide profiling approach, several non-coding RNAs (ncRNAs) have been identified. Among them, long non-coding RNAs (lncRNAs), which are long transcripts without apparent protein-coding capacity, have received increasing interest for their involvement in a wide range of biological processes as regulatory molecules. Recent studies have suggested that lncRNAs play a role in AD pathogenesis, although their specific influences in the disorder remain to be largely unknown. Herein, we will summarize the biology and mechanisms of action of the best characterized dysregulated lncRNAs in AD, focusing the attention on their potential role in the disease pathogenesis. A deeper understanding of the molecular mechanisms and the complex network of interactions in which they are implicated should open the doors to new research considering lncRNAs as novel therapeutic targets and prognostic/diagnostic biomarkers.
Collapse
Affiliation(s)
- Francesca Cortini
- Department of Clinical Sciences and Community Health, University of Milan, IRCCS Ca' Granda Foundation, Milan, Italy; UOC Occupational Medicine, Department of Medicine Preventive Services, IRCCS Ca Granda Foundation Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Roma
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
61
|
Expression Profiles of Long Noncoding RNAs in Intranasal LPS-Mediated Alzheimer's Disease Model in Mice. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9642589. [PMID: 30809552 PMCID: PMC6369469 DOI: 10.1155/2019/9642589] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/23/2018] [Accepted: 12/30/2018] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD), characterized by memory loss, cognitive decline, and dementia, is a progressive neurodegenerative disease. Although the long noncoding RNAs (lncRNAs) have recently been identified to play a role in the pathogenesis of AD, the specific effects of lncRNAs in AD remain unclear. In present study, we have investigated the expression profiles of lncRNAs in hippocampal of intranasal LPS-mediated Alzheimer's disease models in mice by microarray method. A total of 395 lncRNAs and 123 mRNAs was detected to express differently in AD models and controls (>2.0 folds, p<0.05). The microarray expression was validated by Quantitative Real-Time-PCR (qRT-PCR). The pathway analysis showed the mRNAs that correlated with lncRNAs were involved in inflammation, apoptosis, and nervous system related pathways. The lncRNA-TFs network analysis suggested the lncRNAs were mostly regulated by HMGA2, ONECUT2, FOXO1, and CDC5L. Additionally, lncRNA-target-TFs network analysis indicated the FOXL1, CDC5L, ONECUT2, and CDX1 to be the TFs most likely to regulate the production of these lncRNAs. This is the first study to investigate lncRNAs expression pattern in intranasal LPS-mediated Alzheimer's disease model in mice. And these results may facilitate the understanding of the pathogenesis of AD targeting lncRNAs.
Collapse
|
62
|
Veneziano D, Marceca GP, Di Bella S, Nigita G, Distefano R, Croce CM. Investigating miRNA-lncRNA Interactions: Computational Tools and Resources. Methods Mol Biol 2019; 1970:251-277. [PMID: 30963497 DOI: 10.1007/978-1-4939-9207-2_14] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the last two decades noncoding RNAs have been the recipients of increasing scientific interest. In particular, miRNAs, short (~22 nts) noncoding transcripts, have been thoroughly investigated since their essential role in posttranscriptional gene expression regulation had been established in the early 2000s. With the advent and the advancements of high-throughput sequencing technologies in recent years, long noncoding RNAs have also started to emerge as important actors in cellular functions and processes. Such transcripts, on average longer than 200 nt, whose functions have yet to be fully characterized, have recently been identified as regulatory elements of the RNAi pathway, harboring several miRNA response elements, uncovering the phenomena of competing endogenous RNAs (ceRNAs), or "sponge RNAs." The present chapter aims to provide a brief update on the actual biomedical relevance of ceRNAs, together with a summary of resources, tools, and practical examples of their application to aid researchers in the discovery and further elucidation of lncRNA-miRNA interactions.
Collapse
Affiliation(s)
- Dario Veneziano
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| | - Gioacchino P Marceca
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Giovanni Nigita
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Rosario Distefano
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
63
|
Liu X, Jiao B, Shen L. The Epigenetics of Alzheimer's Disease: Factors and Therapeutic Implications. Front Genet 2018; 9:579. [PMID: 30555513 PMCID: PMC6283895 DOI: 10.3389/fgene.2018.00579] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/08/2018] [Indexed: 02/05/2023] Open
Abstract
Alzheimer’s disease (AD) is a well-known neurodegenerative disorder that imposes a great burden on the world. The mechanisms of AD are not yet fully understood. Current insight into the role of epigenetics in the mechanism of AD focuses on DNA methylation, remodeling of chromatin, histone modifications and non-coding RNA regulation. This review summarizes the current state of knowledge regarding the role of epigenetics in AD and the possibilities for epigenetically based therapeutics. The general conclusion is that epigenetic mechanisms play a variety of crucial roles in the development of AD, and there are a number of viable possibilities for treatments based on modulating these effects, but significant advances in knowledge and technology will be needed to move these treatments from the bench to the bedside.
Collapse
Affiliation(s)
- Xiaolei Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
64
|
The Role of Long Noncoding RNAs in Diabetic Alzheimer's Disease. J Clin Med 2018; 7:jcm7110461. [PMID: 30469430 PMCID: PMC6262561 DOI: 10.3390/jcm7110461] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/17/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are involved in diverse physiological and pathological processes by modulating gene expression. They have been found to be dysregulated in the brain and cerebrospinal fluid of patients with neurodegenerative diseases, and are considered promising therapeutic targets for treatment. Among the various neurodegenerative diseases, diabetic Alzheimer's disease (AD) has been recently emerging as an important issue due to several unexpected reports suggesting that metabolic issues in the brain, such as insulin resistance and glucose dysregulation, could be important risk factors for AD. To facilitate understanding of the role of lncRNAs in this field, here we review recent studies on lncRNAs in AD and diabetes, and summarize them with different categories associated with the pathogenesis of the diseases including neurogenesis, synaptic dysfunction, amyloid beta accumulation, neuroinflammation, insulin resistance, and glucose dysregulation. It is essential to understand the role of lncRNAs in the pathogenesis of diabetic AD from various perspectives for therapeutic utilization of lncRNAs in the near future.
Collapse
|
65
|
Relationship between long non-coding RNAs and Alzheimer's disease: a systematic review. Pathol Res Pract 2018; 215:12-20. [PMID: 30470438 DOI: 10.1016/j.prp.2018.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/05/2018] [Accepted: 11/11/2018] [Indexed: 01/30/2023]
Abstract
Alzheimer disease (AD), is a typical progressive and destructive neurodegenerative disease. It is the leading cause of senile dementia that is mainly represented as neurocognitive symptoms, including progressive memory impairment, cognitive disorder, personality change and language barrier, etc. The pathogeny and nosogenesis of AD have not been clearly explained. AD is characterized by extracellular senile plaques (SP) formed by beta amyloid (Aβ) deposition and neurofibrillary tangles in neuronal cells formed by hyperphosphorylation of tau, as well as the deficiency of neuronal with gliosis. However, the complete spectrum of regulating factors in molecular level that affect the pathogenesis of AD is unclear. Long non-coding RNAs (lncRNAs) are involved in numerous neurodegenerative diseases, such as Parkinson's disease (PD) and AD. It is increasingly recognized that lncRNAs is tightly related to the pathogenesis and prevention and cure of AD. In the review, we highlighted the roles of lncRNAs in AD pathways and discussed increasing interest in targeting and regulating lncRNAs for the therapeutics of AD.
Collapse
|
66
|
Abstract
Only a small fraction of the human genome corresponds to protein-coding genes. Historically, the vast majority of genomic sequence was dismissed as transcriptionally silent, but recent large-scale investigations have instead revealed a rich array of functionally significant elements, including non-protein-coding transcripts, within the noncoding regions of the human genome. Long noncoding RNAs (lncRNAs), a class of noncoding transcripts with lengths >200 nucleotides, are pervasively transcribed in the genome, and have been shown to bind DNA, RNA, and protein. LncRNAs exert effects through a variety of mechanisms that include guiding chromatin-modifying complexes to specific genomic loci, providing molecular scaffolds, modulating transcriptional programs, and regulating miRNA expression. An increasing number of experimental studies are providing evidence that lncRNAs mediate disease pathogenesis, thereby challenging the concept that protein-coding genes are the sole contributors to the development of human disease. This chapter highlights recent findings linking lncRNAs with human diseases of complex etiology, including hepatocellular carcinoma, Alzheimer's disease, and diabetes.
Collapse
|
67
|
Wei CW, Luo T, Zou SS, Wu AS. The Role of Long Noncoding RNAs in Central Nervous System and Neurodegenerative Diseases. Front Behav Neurosci 2018; 12:175. [PMID: 30323747 PMCID: PMC6172704 DOI: 10.3389/fnbeh.2018.00175] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/27/2018] [Indexed: 11/13/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) refer to a group of noncoding RNAs (ncRNAs) that has a transcript of more than 200 nucleotides in length in eukaryotic cells. The lncRNAs regulate gene expression at epigenetic, transcriptional, and post-transcriptional levels by multiple action modes. In this review, we describe the diverse roles reported for lncRNAs, and discuss how they could mechanistically be involved in the development of central nervous system (CNS) and neurodegenerative diseases. Further studies on the function of lncRNAs and their mechanism will help deepen our understanding of the development, function, and diseases of the CNS, and provide new ideas for the design and development of some therapeutic drugs.
Collapse
Affiliation(s)
- Chang-Wei Wei
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ting Luo
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shan-Shan Zou
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - An-Shi Wu
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
68
|
Medoro A, Bartollino S, Mignogna D, Passarella D, Porcile C, Pagano A, Florio T, Nizzari M, Guerra G, Di Marco R, Intrieri M, Raimo G, Russo C. Complexity and Selectivity of γ-Secretase Cleavage on Multiple Substrates: Consequences in Alzheimer's Disease and Cancer. J Alzheimers Dis 2018; 61:1-15. [PMID: 29103038 DOI: 10.3233/jad-170628] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The processing of the amyloid-β protein precursor (AβPP) by β- and γ-secretases is a pivotal event in the genesis of Alzheimer's disease (AD). Besides familial mutations on the AβPP gene, or upon its overexpression, familial forms of AD are often caused by mutations or deletions in presenilin 1 (PSEN1) and 2 (PSEN2) genes: the catalytic components of the proteolytic enzyme γ-secretase (GS). The "amyloid hypothesis", modified over time, states that the aberrant processing of AβPP by GS induces the formation of specific neurotoxic soluble amyloid-β (Aβ) peptides which, in turn, cause neurodegeneration. This theory, however, has recently evidenced significant limitations and, in particular, the following issues are debated: 1) the concept and significance of presenilin's "gain of function" versus "loss of function"; and 2) the presence of several and various GS substrates, which interact with AβPP and may influence Aβ formation. The latter consideration is suggestive: despite the increasing number of GS substrates so far identified, their reciprocal interaction with AβPP itself, even in the AD field, is significantly unexplored. On the other hand, GS is also an important pharmacological target in the cancer field; inhibitors or GS activity are investigated in clinical trials for treating different tumors. Furthermore, the function of AβPP and PSENs in brain development and in neuronal migration is well known. In this review, we focused on a specific subset of GS substrates that directly interact with AβPP and are involved in its proteolysis and signaling, by evaluating their role in neurodegeneration and in cell motility or proliferation, as a possible connection between AD and cancer.
Collapse
Affiliation(s)
- Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Silvia Bartollino
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Donatella Mignogna
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Daniela Passarella
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Carola Porcile
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Aldo Pagano
- Department of Experimental Medicine, University of Genoa and Ospedale Policlinico San Martino, IRCCS per l'Oncologia, Genoa, Italy
| | - Tullio Florio
- Department of Internal Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Mario Nizzari
- Department of Internal Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Gennaro Raimo
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Claudio Russo
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
69
|
Zhang W, Zhao H, Wu Q, Xu W, Xia M. Knockdown of BACE1-AS by siRNA improves memory and learning behaviors in Alzheimer's disease animal model. Exp Ther Med 2018; 16:2080-2086. [PMID: 30186443 DOI: 10.3892/etm.2018.6359] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/26/2018] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease that causes progressive damage to neurons. Emerging evidence has demonstrated that long non-coding RNAs (lncRNAs) serve an important role in many neurological diseases, such as AD. β-secretase 1 (BACE1)-antisense transcript (BACE1-AS) was identified as a conserved non-coding antisense BACE1. Previous reports stated that BACE1-AS positively regulated BACE1 mRNA and subsequently BACE1 protein expression in vitro and in vivo. However, whether BACE1-AS is able to regulate memory and learning behaviors remains to be elucidated. In the present study, the role of lncRNA BACE1-AS on memory and learning was investigated. It was demonstrated that lncRNA BACE1-AS expression was highly expressed in blood samples from AD patients, and also upregulated in peripheral blood samples and hippocampi from an AD animal model. Knockdown of BACE1-AS by short interfering RNA increased the primary hippocampal neurons proliferation in vitro. Knockdown of BACE1-AS mediated by lentivirus in vivo improved the memory and learning behaviors of SAMP8 mice, inhibited BACE1 and amyloid precursor protein production, and phosphorylation of tau protein in hippocampi. Therefore, the present findings suggested that BACE1-AS may be a potential target for management of memory loss related diseases, such as AD.
Collapse
Affiliation(s)
- Wenting Zhang
- Department of Neurology, Hefei Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Hao Zhao
- Department of Neurology, Hefei Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Qian Wu
- Department of Neurology, Hefei Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Wenan Xu
- Department of Neurology, Hefei Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Minwu Xia
- Department of Neurology, Hefei Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China
| |
Collapse
|
70
|
Stoccoro A, Coppedè F. Role of epigenetics in Alzheimer's disease pathogenesis. Neurodegener Dis Manag 2018; 8:181-193. [PMID: 29888987 DOI: 10.2217/nmt-2018-0004] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Advances in molecular biology technologies have allowed uncovering the role of epigenetic regulation in several complex diseases, such as cancer and neurodegenerative disorders. Although the role of epigenetic mechanisms in Alzheimer's disease is still little understood, recent findings clearly show that such mechanisms are dysregulated during disease progression, already in its early stages. However, it is not clear if the observed epigenetic changes represent a cause or a consequence of the disease. Promising results are emerging from studies performed in peripheral blood DNA that could provide early biomarkers of the pathology. Moreover, given the dynamic nature of the epigenetic marks, intense research is carried out to investigate the therapeutic efficacy of compounds exerting epigenetic properties.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Department of Translational Research & New Technologies in Medicine & Surgery, Section of Medical Genetics, University of Pisa, Via Roma 55, 56126 Pisa, Italy.,Department of Medical Biotechnologies, Doctoral School in Genetics, Oncology & Clinical Medicine, University of Siena, Siena, Italy
| | - Fabio Coppedè
- Department of Translational Research & New Technologies in Medicine & Surgery, Section of Medical Genetics, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| |
Collapse
|
71
|
Lardenoije R, Pishva E, Lunnon K, van den Hove DL. Neuroepigenetics of Aging and Age-Related Neurodegenerative Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 158:49-82. [PMID: 30072060 DOI: 10.1016/bs.pmbts.2018.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neurodegenerative diseases are complex, progressive disorders and affect millions of people worldwide, contributing significantly to the global burden of disease. In recent years, research has begun to investigate epigenetic mechanisms for a potential role in disease etiology. In this chapter, we describe the current state of play for epigenetic research into neurodegenerative disorders including Alzheimer's disease, Parkinson's disease and Huntington's disease. We focus on the recent evidence for a potential role of DNA modifications, histone modifications and non-coding RNA in the etiology of these disorders. Finally, we discuss how new technological and bioinformatics advances in the field of epigenetics could further progress our understanding about the underlying mechanisms of neurodegenerative diseases.
Collapse
Affiliation(s)
- Roy Lardenoije
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ehsan Pishva
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, The Netherlands; University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Katie Lunnon
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Daniel L van den Hove
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, The Netherlands.
| |
Collapse
|
72
|
Zhou M, Zhao H, Wang X, Sun J, Su J. Analysis of long noncoding RNAs highlights region-specific altered expression patterns and diagnostic roles in Alzheimer’s disease. Brief Bioinform 2018; 20:598-608. [PMID: 29672663 DOI: 10.1093/bib/bby021] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/19/2018] [Indexed: 12/18/2022] Open
Affiliation(s)
- Meng Zhou
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, P. R. China and College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, P. R. China
| | - Hengqiang Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, P. R. China
| | - Xinyu Wang
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Jie Sun
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, P. R. China and College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, P. R. China
| | - Jianzhong Su
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, P. R. China
| |
Collapse
|
73
|
Hu G, Niu F, Humburg BA, Liao K, Bendi S, Callen S, Fox HS, Buch S. Molecular mechanisms of long noncoding RNAs and their role in disease pathogenesis. Oncotarget 2018; 9:18648-18663. [PMID: 29719633 PMCID: PMC5915100 DOI: 10.18632/oncotarget.24307] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/13/2018] [Indexed: 12/13/2022] Open
Abstract
LncRNAs are long non-coding regulatory RNAs that are longer than 200 nucleotides. One of the major functions of lncRNAs is the regulation of specific gene expression at multiple steps including, recruitment and expression of basal transcription machinery, post-transcriptional modifications and epigenetics [1]. Emerging evidence suggests that lncRNAs also play a critical role in maintaining tissue homeostasis during physiological and pathological conditions, lipid homeostasis, as well as epithelial and smooth muscle cell homeostasis, a topic that has been elegantly reviewed [2-5]. While aberrant expression of lncRNAs has been implicated in several disease conditions, there is paucity of information about their contribution to the etiology of diseases [6]. Several studies have compared the expression of lncRNAs under normal and cancerous conditions and found differential expression of several lncRNAs, suggesting thereby an involvement of lncRNAs in disease processes [7, 8]. Furthermore, the ability of lncRNAs to influence epigenetic changes also underlies their role in disease pathogenesis since epigenetic regulation is known to play a critical role in many human diseases [1]. LncRNAs thus are not only involved in homeostatic functioning but also play a vital role in the progression of many diseases, thereby underscoring their potential as novel therapeutic targets for the alleviation of a variety of human disease conditions.
Collapse
Affiliation(s)
- Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bree A. Humburg
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sunil Bendi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shannon Callen
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard S. Fox
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
74
|
The role of Alu-derived RNAs in Alzheimer's and other neurodegenerative conditions. Med Hypotheses 2018; 115:29-34. [PMID: 29685192 DOI: 10.1016/j.mehy.2018.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 12/14/2022]
Abstract
Non-coding RNAs have emerged as essential contributors to neuroinflammation. The Alu element is the most abundant potential source of non-coding RNA in the human genome represented by over 1.1 million copies totaling ∼10% of the genome's mass. Accumulation of "Alu RNA" was observed in the brains of individuals with dementia and Creutzfeldt-Jakob disease - a degenerative brain disorder. "Alu RNAs" activate inflammatory pathways and apoptosis in the non-neural cells. In particular, the "Alu RNA" cytotoxicity is suggested as a mechanism in retinal pigment epithelium (RPE), a compartment damaged in the process of age-related macular degeneration. In RPE cells, the deficiency of Dicer is reported to lead to an accumulation of P3Alu transcripts, subsequent activation of the ERK1/2 signaling pathway, and the formation of NLRP3 inflammasome. In turn, these events result in RPE cell death by apoptosis. Importantly, RPE cells are of neuroectodermal origin, these cells display more similarity to neurons than to other epithelial cells. Thus, it is plausible that the mechanisms of "Alu RNA" cytotoxicity in brain neurons are similar to that in RPE. We hypothesize that accumulation of polymerase III-transcribed noncoding RNA of Alu (P3Alu) may contribute to both neuroinflammation and neurodegeneration associated with Alzheimer's disease (AD) and other degenerative brain disorders. This hypothesis points toward a novel molecular pathway not previously considered for the treatment of AD.
Collapse
|
75
|
Lo Piccolo L. Drosophila as a Model to Gain Insight into the Role of lncRNAs in Neurological Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:119-146. [PMID: 29951818 DOI: 10.1007/978-981-13-0529-0_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It is now clear that the majority of transcription in humans results in the production of long non-protein-coding RNAs (lncRNAs) with a variable length spanning from 200 bp up to several kilobases. To date, we have a limited understanding of the lncRNA function, but a huge number of evidences have suggested that lncRNAs represent an outstanding asset for cells. In particular, temporal and spatial expression of lncRNAs appears to be important for proper neurological functioning. Stunningly, abnormal lncRNA function has been found as being critical for the onset of neurological disorders. This chapter focus on the lncRNAs with a role in diseases affecting the central nervous system with particular regard for the lncRNAs causing those neurodegenerative diseases that exhibit dementia and/or motor dysfunctions. A specific section will be dedicated to the human neuronal lncRNAs that have been modelled in Drosophila. Finally, even if only few examples have been reported so far, an overview of the Drosophila lncRNAs with neurological functions will be also included in this chapter.
Collapse
Affiliation(s)
- Luca Lo Piccolo
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine 2-2 Yamadaoka, Suita Osaka, 565-0871, Japan.
| |
Collapse
|
76
|
Long Non-coding RNAs, Novel Culprits, or Bodyguards in Neurodegenerative Diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 10:269-276. [PMID: 29499939 PMCID: PMC5787881 DOI: 10.1016/j.omtn.2017.12.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022]
Abstract
Long non-coding RNA (lncRNA) is a kind of non-coding RNA (ncRNA), with a length of 200 nt to 100 kb, that lacks a significant open reading frame (ORF) encoding a protein. lncRNAs are widely implicated in various physiological and pathological processes, such as epigenetic regulation, cell cycle regulation, cell differentiation regulation, cancer, and neurodegenerative diseases, through their interactions with chromatin, protein, and other RNAs. Numerous studies have suggested that lncRNAs are closely linked with the occurrence and development of a variety of diseases, especially neurodegenerative diseases, of which the etiologies are complicated and the underlying mechanisms remain elusive. Determining the roles of lncRNA in the pathogenesis of neurodegenerative diseases will not only deepen understanding of the physiological and pathological processes that occur in those diseases but also provide new ideas and solutions for their diagnosis and prevention. This review aims to highlight the progress of lncRNA research in the pathological and behavioral changes of neurodegenerative diseases. Specifically, we focus on how lncRNA dysfunctions are involved in the pathogenesis of Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis.
Collapse
|
77
|
Kim C, Kang D, Lee EK, Lee JS. Long Noncoding RNAs and RNA-Binding Proteins in Oxidative Stress, Cellular Senescence, and Age-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2062384. [PMID: 28811863 PMCID: PMC5547732 DOI: 10.1155/2017/2062384] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/27/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022]
Abstract
Cellular senescence is a complex biological process that leads to irreversible cell-cycle arrest. Various extrinsic and intrinsic insults are associated with the onset of cellular senescence and frequently accompany genomic or epigenomic alterations. Cellular senescence is believed to contribute to tumor suppression, immune response, and tissue repair as well as aging and age-related diseases. Long noncoding RNAs (lncRNAs) are >200 nucleotides long, poorly conserved, and transcribed in a manner similar to that of mRNAs. They are tightly regulated during various cellular and physiological processes. Although many lncRNAs and their functional roles are still undescribed, the importance of lncRNAs in a variety of biological processes is widely recognized. RNA-binding proteins (RBPs) have a pivotal role in posttranscriptional regulation as well as in mRNA transport, storage, turnover, and translation. RBPs interact with mRNAs, other RBPs, and noncoding RNAs (ncRNAs) including lncRNAs, and they are involved in the regulation of a broad spectrum of cellular processes. Like other cell fate regulators, lncRNAs and RBPs, separately or cooperatively, are implicated in initiation and maintenance of cellular senescence, aging, and age-related diseases. Here, we review the current understanding of both lncRNAs and RBPs and their association with oxidative stress, senescence, and age-related diseases.
Collapse
Affiliation(s)
- Chongtae Kim
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul 06591, Republic of Korea
| | - Donghee Kang
- Department of Molecular Medicine and Hypoxia-Related Disease Research Center, Inha University College of Medicine, Incheon 22212, Republic of Korea
| | - Eun Kyung Lee
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul 06591, Republic of Korea
| | - Jae-Seon Lee
- Department of Molecular Medicine and Hypoxia-Related Disease Research Center, Inha University College of Medicine, Incheon 22212, Republic of Korea
| |
Collapse
|
78
|
Shi C, Zhang L, Qin C. Long non-coding RNAs in brain development, synaptic biology, and Alzheimer's disease. Brain Res Bull 2017; 132:160-169. [PMID: 28347717 DOI: 10.1016/j.brainresbull.2017.03.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/22/2017] [Indexed: 12/28/2022]
Abstract
Long non-coding RNAs (lncRNAs), which are long transcripts without apparent protein-coding roles, interfere with gene expression and signaling events at various stages. Increasing evidence has suggested that lncRNAs function in the regulation of tissue homeostasis and under pathophysiologic conditions. In the nervous system, the expression of lncRNAs has been detected and characterized under normal physiologic conditions and in disease states. Some lncRNAs regulate brain development and synaptic plasticity. In Alzheimer's disease (AD), several lncRNAs have been demonstrated to regulate β-amyloid production/generation, synaptic impairment, neurotrophin depletion, inflammation, mitochondrial dysfunction, and stress responses. This review summarizes data on lncRNA expression and focuses on neural lncRNAs that may function in AD. Although our understanding of lncRNAs remains in its infancy, this review provides insight into the contribution of lncRNAs to AD.
Collapse
Affiliation(s)
- Changhua Shi
- Comparative Medical Center, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS), Beijing, China
| | - Ling Zhang
- Comparative Medical Center, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS), Beijing, China
| | - Chuan Qin
- Comparative Medical Center, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS), Beijing, China.
| |
Collapse
|
79
|
Millan MJ. Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer's disease: An integrative review. Prog Neurobiol 2017; 156:1-68. [PMID: 28322921 DOI: 10.1016/j.pneurobio.2017.03.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 02/06/2023]
Abstract
The human genome encodes a vast repertoire of protein non-coding RNAs (ncRNA), some specific to the brain. MicroRNAs, which interfere with the translation of target mRNAs, are of particular interest since their deregulation has been implicated in neurodegenerative disorders like Alzheimer's disease (AD). However, it remains challenging to link the complex body of observations on miRNAs and AD into a coherent framework. Using extensive graphical support, this article discusses how a diverse panoply of miRNAs convergently and divergently impact (and are impacted by) core pathophysiological processes underlying AD: neuroinflammation and oxidative stress; aberrant generation of β-amyloid-42 (Aβ42); anomalies in the production, cleavage and post-translational marking of Tau; impaired clearance of Aβ42 and Tau; perturbation of axonal organisation; disruption of synaptic plasticity; endoplasmic reticulum stress and the unfolded protein response; mitochondrial dysfunction; aberrant induction of cell cycle re-entry; and apoptotic loss of neurons. Intriguingly, some classes of miRNA provoke these cellular anomalies, whereas others act in a counter-regulatory, protective mode. Moreover, changes in levels of certain species of miRNA are a consequence of the above-mentioned anomalies. In addition to miRNAs, circular RNAs, piRNAs, long non-coding RNAs and other types of ncRNA are being increasingly implicated in AD. Overall, a complex mesh of deregulated and multi-tasking ncRNAs reciprocally interacts with core pathophysiological mechanisms underlying AD. Alterations in ncRNAs can be detected in CSF and the circulation as well as the brain and are showing promise as biomarkers, with the ultimate goal clinical exploitation as targets for novel modes of symptomatic and course-altering therapy.
Collapse
Affiliation(s)
- Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, institut de recherche Servier, 125 chemin de ronde, 78290 Croissy sur Seine, France.
| |
Collapse
|
80
|
Penna I, Gigoni A, Costa D, Vella S, Russo D, Poggi A, Villa F, Brizzolara A, Canale C, Mescola A, Daga A, Russo C, Nizzari M, Florio T, Menichini P, Pagano A. The inhibition of 45A ncRNA expression reduces tumor formation, affecting tumor nodules compactness and metastatic potential in neuroblastoma cells. Oncotarget 2017; 8:8189-8205. [PMID: 28029658 PMCID: PMC5352393 DOI: 10.18632/oncotarget.14138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 11/23/2016] [Indexed: 11/25/2022] Open
Abstract
We recently reported the in vitro over-expression of 45A, a RNA polymerase III-transcribed non-coding (nc)RNA, that perturbs the intracellular content of FE65L1 affecting cell proliferation rate, short-term response to genotoxic stress, substrate adhesion capacity and, ultimately, increasing the tumorigenic potential of human neuroblastoma cells. In this work, to deeply explore the mechanism by which 45A ncRNA contributes to cancer development, we targeted in vitro and in vivo 45A levels by the stable overexpression of antisense 45A RNA.45A downregulation leads to deep modifications of cytoskeleton organization, adhesion and migration of neuroblastoma cells. These effects are correlated with alterations in the expression of several genes including GTSE1 (G2 and S phase-expressed-1), a crucial regulator of tumor cell migration and metastatic potential. Interestingly, the downregulation of 45A ncRNA strongly affects the in vivo tumorigenic potential of SKNBE2 neuroblastoma cells, increasing tumor nodule compactness and reducing GTSE1 protein expression in a subcutaneous neuroblastoma mouse model. Moreover, intracardiac injection of neuroblastoma cells showed that downregulation of 45A ncRNA also influences tumor metastatic ability. In conclusion, our data highlight a key role of 45A ncRNA in cancer development and suggest that its modulation might represent a possible novel anticancer therapeutic approach.
Collapse
Affiliation(s)
- Ilaria Penna
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
- IRCCS-AOU San Martino-IST, Genova, Italy
| | - Arianna Gigoni
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
- IRCCS-AOU San Martino-IST, Genova, Italy
| | - Delfina Costa
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
- IRCCS-AOU San Martino-IST, Genova, Italy
| | - Serena Vella
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | | | | | - Federico Villa
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
- IRCCS-AOU San Martino-IST, Genova, Italy
| | - Antonella Brizzolara
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
- IRCCS-AOU San Martino-IST, Genova, Italy
| | - Claudio Canale
- Nanophysics Unit, Italian Institute of Technology, Morego, Genova, Italy
| | - Andrea Mescola
- Nanophysics Unit, Italian Institute of Technology, Morego, Genova, Italy
| | | | - Claudio Russo
- Department of Health Sciences, University of Molise, Campobasso, Italy
| | - Mario Nizzari
- Department of Internal Medicine (DIMI), University of Genova, Genova, Italy
| | - Tullio Florio
- Department of Internal Medicine (DIMI), University of Genova, Genova, Italy
- Center of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| | | | - Aldo Pagano
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
- IRCCS-AOU San Martino-IST, Genova, Italy
| |
Collapse
|
81
|
Jarroux J, Morillon A, Pinskaya M. History, Discovery, and Classification of lncRNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1008:1-46. [PMID: 28815535 DOI: 10.1007/978-981-10-5203-3_1] [Citation(s) in RCA: 599] [Impact Index Per Article: 74.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The RNA World Hypothesis suggests that prebiotic life revolved around RNA instead of DNA and proteins. Although modern cells have changed significantly in 4 billion years, RNA has maintained its central role in cell biology. Since the discovery of DNA at the end of the nineteenth century, RNA has been extensively studied. Many discoveries such as housekeeping RNAs (rRNA, tRNA, etc.) supported the messenger RNA model that is the pillar of the central dogma of molecular biology, which was first devised in the late 1950s. Thirty years later, the first regulatory non-coding RNAs (ncRNAs) were initially identified in bacteria and then in most eukaryotic organisms. A few long ncRNAs (lncRNAs) such as H19 and Xist were characterized in the pre-genomic era but remained exceptions until the early 2000s. Indeed, when the sequence of the human genome was published in 2001, studies showed that only about 1.2% encodes proteins, the rest being deemed "non-coding." It was later shown that the genome is pervasively transcribed into many ncRNAs, but their functionality remained controversial. Since then, regulatory lncRNAs have been characterized in many species and were shown to be involved in processes such as development and pathologies, revealing a new layer of regulation in eukaryotic cells. This newly found focus on lncRNAs, together with the advent of high-throughput sequencing, was accompanied by the rapid discovery of many novel transcripts which were further characterized and classified according to specific transcript traits.In this review, we will discuss the many discoveries that led to the study of lncRNAs, from Friedrich Miescher's "nuclein" in 1869 to the elucidation of the human genome and transcriptome in the early 2000s. We will then focus on the biological relevance during lncRNA evolution and describe their basic features as genes and transcripts. Finally, we will present a non-exhaustive catalogue of lncRNA classes, thus illustrating the vast complexity of eukaryotic transcriptomes.
Collapse
Affiliation(s)
- Julien Jarroux
- ncRNA, epigenetic and genome fluidity, Institut Curie, Centre de Recherche, CNRS UMR 3244, PSL Research University and Université Pierre et Marie Curie, Paris, France
| | - Antonin Morillon
- ncRNA, epigenetic and genome fluidity, Institut Curie, Centre de Recherche, CNRS UMR 3244, PSL Research University and Université Pierre et Marie Curie, Paris, France.
| | - Marina Pinskaya
- ncRNA, epigenetic and genome fluidity, Institut Curie, Centre de Recherche, CNRS UMR 3244, PSL Research University and Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
82
|
PPAR Gamma in Neuroblastoma: The Translational Perspectives of Hypoglycemic Drugs. PPAR Res 2016; 2016:3038164. [PMID: 27799938 PMCID: PMC5069360 DOI: 10.1155/2016/3038164] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/14/2016] [Indexed: 12/15/2022] Open
Abstract
Neuroblastoma (NB) is the most common and aggressive pediatric cancer, characterized by a remarkable phenotypic diversity and high malignancy. The heterogeneous clinical behavior, ranging from spontaneous remission to fatal metastatic disease, is attributable to NB biology and genetics. Despite major advances in therapies, NB is still associated with a high morbidity and mortality. Thus, novel diagnostic, prognostic, and therapeutic approaches are required, mainly to improve treatment outcomes of high-risk NB patients. Among neuroepithelial cancers, NB is the most studied tumor as far as PPAR ligands are concerned. PPAR ligands are endowed with antitumoral effects, mainly acting on cancer stem cells, and constitute a possible add-on therapy to antiblastic drugs, in particular for NB with unfavourable prognosis. While discussing clinical background, this review will provide a synopsis of the major studies about PPAR expression in NB, focusing on the potential beneficial effects of hypoglycemic drugs, thiazolidinediones and metformin, to reduce the occurrence of relapses as well as tumor regrowth in NB patients.
Collapse
|
83
|
Gigoni A, Costa D, Gaetani M, Tasso R, Villa F, Florio T, Pagano A. Down-regulation of 21A Alu RNA as a tool to boost proliferation maintaining the tissue regeneration potential of progenitor cells. Cell Cycle 2016; 15:2420-30. [PMID: 27494068 DOI: 10.1080/15384101.2016.1181242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
21A is an Alu non-coding (nc) RNA transcribed by RNA polymerase (pol) III. While investigating the biological role of 21A ncRNA we documented an inverse correlation between its expression level and the rate of cell proliferation. The downregulation of this ncRNA not only caused a boost in cell proliferation, but was also associated to a transient cell dedifferentiation, suggesting a possible involvement of this RNA in cell dedifferentiation/reprogramming. In this study, we explored the possibility to enhance proliferation and dedifferentiation of cells of interest, by 21A down-regulation, using a mixture of chemically modified Anti-21A RNAs. Our results confirmed the validity of this approach that allows the amplification of specific cell populations, in a controlled manner and without inducing permanent effects. In addition to induce cell proliferation, the procedure did not decrease the tissue regeneration potential of progenitor cells in two different cell systems.
Collapse
Affiliation(s)
- Arianna Gigoni
- a Dept. of Experimental Medicine (DIMES) , University of Genova , Genova , Italy
| | | | - Massimiliano Gaetani
- c ISMETT, Mediterranean Institute for Transplantation and Advanced Specialized Therapies , Palermo , Italy.,d Ri.MED Foundation , Palermo , Italy
| | - Roberta Tasso
- a Dept. of Experimental Medicine (DIMES) , University of Genova , Genova , Italy.,b IRCCS-AOU San Martino-IST , Genova , Italy
| | - Federico Villa
- a Dept. of Experimental Medicine (DIMES) , University of Genova , Genova , Italy
| | - Tullio Florio
- e Sect. of Pharmacology, Dept. of Internal Medicine (DiMI) and Center of Excellence for Biomedical Research (CEBR), University of Genova , Genova , Italy
| | - Aldo Pagano
- a Dept. of Experimental Medicine (DIMES) , University of Genova , Genova , Italy.,b IRCCS-AOU San Martino-IST , Genova , Italy
| |
Collapse
|
84
|
Magistri M, Velmeshev D, Makhmutova M, Faghihi MA. Transcriptomics Profiling of Alzheimer's Disease Reveal Neurovascular Defects, Altered Amyloid-β Homeostasis, and Deregulated Expression of Long Noncoding RNAs. J Alzheimers Dis 2016; 48:647-65. [PMID: 26402107 PMCID: PMC4698155 DOI: 10.3233/jad-150398] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The underlying genetic variations of late-onset Alzheimer's disease (LOAD) cases remain largely unknown. A combination of genetic variations with variable penetrance and lifetime epigenetic factors may converge on transcriptomic alterations that drive LOAD pathological process. Transcriptome profiling using deep sequencing technology offers insight into common altered pathways regardless of underpinning genetic or epigenetic factors and thus represents an ideal tool to investigate molecular mechanisms related to the pathophysiology of LOAD. We performed directional RNA sequencing on high quality RNA samples extracted from hippocampi of LOAD and age-matched controls. We further validated our data using qRT-PCR on a larger set of postmortem brain tissues, confirming downregulation of the gene encoding substance P (TAC1) and upregulation of the gene encoding the plasminogen activator inhibitor-1 (SERPINE1). Pathway analysis indicates dysregulation in neural communication, cerebral vasculature, and amyloid-β clearance. Beside protein coding genes, we identified several annotated and non-annotated long noncoding RNAs that are differentially expressed in LOAD brain tissues, three of them are activity-dependent regulated and one is induced by Aβ(1-42) exposure of human neural cells. Our data provide a comprehensive list of transcriptomics alterations in LOAD hippocampi and warrant holistic approach including both coding and non-coding RNAs in functional studies aimed to understand the pathophysiology of LOAD.
Collapse
Affiliation(s)
| | | | | | - Mohammad Ali Faghihi
- Correspondence to: Dr. Mohammad A. Faghihi, Center for Therapeutic Innovation & Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Ave, BRB 508, Miami, FL 33136, USA.
| |
Collapse
|
85
|
Shi ZM, Han YW, Han XH, Zhang K, Chang YN, Hu ZM, Qi HX, Ting C, Zhen Z, Hong W. Upstream regulators and downstream effectors of NF-κB in Alzheimer's disease. J Neurol Sci 2016; 366:127-134. [DOI: 10.1016/j.jns.2016.05.022] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/11/2016] [Accepted: 05/11/2016] [Indexed: 12/09/2022]
|
86
|
Abstract
Long noncoding RNAs (lncRNAs) are typically defined as transcripts longer than 200 nucleotides. lncRNAs can regulate gene expression at epigenetic, transcriptional, and posttranscriptional levels. Recent studies have shown that lncRNAs are involved in many neurological diseases such as epilepsy, neurodegenerative conditions, and genetic disorders. Alzheimer's disease is a neurodegenerative disease, which accounts for >80% of dementia in elderly subjects. In this review, we will highlight recent studies investigating the role of lncRNAs in Alzheimer's disease and focus on some specific lncRNAs that may underlie Alzheimer's disease pathophysiology and therefore could be potential therapeutic targets.
Collapse
Affiliation(s)
- Qiong Luo
- Department of Neurology, Jinshan Hospital
- Department of Neurology, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Yinghui Chen
- Department of Neurology, Jinshan Hospital
- Department of Neurology, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
87
|
Cacabelos R, Torrellas C. Epigenetics of Aging and Alzheimer's Disease: Implications for Pharmacogenomics and Drug Response. Int J Mol Sci 2015; 16:30483-543. [PMID: 26703582 PMCID: PMC4691177 DOI: 10.3390/ijms161226236] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/16/2015] [Accepted: 12/08/2015] [Indexed: 02/07/2023] Open
Abstract
Epigenetic variability (DNA methylation/demethylation, histone modifications, microRNA regulation) is common in physiological and pathological conditions. Epigenetic alterations are present in different tissues along the aging process and in neurodegenerative disorders, such as Alzheimer’s disease (AD). Epigenetics affect life span and longevity. AD-related genes exhibit epigenetic changes, indicating that epigenetics might exert a pathogenic role in dementia. Epigenetic modifications are reversible and can potentially be targeted by pharmacological intervention. Epigenetic drugs may be useful for the treatment of major problems of health (e.g., cancer, cardiovascular disorders, brain disorders). The efficacy and safety of these and other medications depend upon the efficiency of the pharmacogenetic process in which different clusters of genes (pathogenic, mechanistic, metabolic, transporter, pleiotropic) are involved. Most of these genes are also under the influence of the epigenetic machinery. The information available on the pharmacoepigenomics of most drugs is very limited; however, growing evidence indicates that epigenetic changes are determinant in the pathogenesis of many medical conditions and in drug response and drug resistance. Consequently, pharmacoepigenetic studies should be incorporated in drug development and personalized treatments.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165-Bergondo, Corunna, Spain.
- Chair of Genomic Medicine, Camilo José Cela University, 28692-Madrid, Spain.
| | - Clara Torrellas
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165-Bergondo, Corunna, Spain.
- Chair of Genomic Medicine, Camilo José Cela University, 28692-Madrid, Spain.
| |
Collapse
|
88
|
Perhexiline maleate enhances antitumor efficacy of cisplatin in neuroblastoma by inducing over-expression of NDM29 ncRNA. Sci Rep 2015; 5:18144. [PMID: 26674674 PMCID: PMC4682181 DOI: 10.1038/srep18144] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/11/2015] [Indexed: 01/02/2023] Open
Abstract
High Risk Neuroblastoma (HR-NB) is a pediatric cancer characterized by high malignancy and remarkable cell heterogeneity within the tumour nodules. In a recent study, we demonstrated that in vitro and in vivo over-expression of the non-coding RNA NDM29 (neuroblastoma differentiation marker 29) induces NB cell differentiation, dramatically reducing their malignancy. Among gene expression changes, differentiated phenotype induced by NDM29 is characterized by decrease of the expression of ABC transporters responsible for anticancer drug resistance. Thus, the pharmacological induction of NDM29, in principle, might represent a possible novel strategy to increase cytotoxic drug responses. In this work, we identify a small molecule able to induce the expression of NDM29 in NB cells, conferring to malignant cells increased susceptibility to cisplatin cytotoxic effects. We demonstrate that the pharmacological induction of NDM29 expression in vivo enhances the antitumoral effects of chemotherapy specifically on tumour initiating/cancer stem cells sub-population, usually refractory to therapies and responsible for tumour relapse. In summary, we suggest a novel therapeutical approach possibly useful to treat very aggressive NB cases with poor prognosis. This novel pharmacological strategy aims to promote differentiation of “stem-like” cells to render them more susceptible to the killing action of cytotoxic anticancer drugs.
Collapse
|
89
|
Lardenoije R, Iatrou A, Kenis G, Kompotis K, Steinbusch HWM, Mastroeni D, Coleman P, Lemere CA, Hof PR, van den Hove DLA, Rutten BPF. The epigenetics of aging and neurodegeneration. Prog Neurobiol 2015; 131:21-64. [PMID: 26072273 PMCID: PMC6477921 DOI: 10.1016/j.pneurobio.2015.05.002] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 12/14/2022]
Abstract
Epigenetics is a quickly growing field encompassing mechanisms regulating gene expression that do not involve changes in the genotype. Epigenetics is of increasing relevance to neuroscience, with epigenetic mechanisms being implicated in brain development and neuronal differentiation, as well as in more dynamic processes related to cognition. Epigenetic regulation covers multiple levels of gene expression; from direct modifications of the DNA and histone tails, regulating the level of transcription, to interactions with messenger RNAs, regulating the level of translation. Importantly, epigenetic dysregulation currently garners much attention as a pivotal player in aging and age-related neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, where it may mediate interactions between genetic and environmental risk factors, or directly interact with disease-specific pathological factors. We review current knowledge about the major epigenetic mechanisms, including DNA methylation and DNA demethylation, chromatin remodeling and non-coding RNAs, as well as the involvement of these mechanisms in normal aging and in the pathophysiology of the most common neurodegenerative diseases. Additionally, we examine the current state of epigenetics-based therapeutic strategies for these diseases, which either aim to restore the epigenetic homeostasis or skew it to a favorable direction to counter disease pathology. Finally, methodological challenges of epigenetic investigations and future perspectives are discussed.
Collapse
Affiliation(s)
- Roy Lardenoije
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Artemis Iatrou
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Gunter Kenis
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Konstantinos Kompotis
- Center for Integrative Genomics, University of Lausanne, Genopode Building, 1015 Lausanne-Dorigny, Switzerland
| | - Harry W M Steinbusch
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Diego Mastroeni
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; L.J. Roberts Alzheimer's Disease Center, Banner Sun Health Research Institute, 10515 W. Santa Fe Drive, Sun City, AZ 85351, USA
| | - Paul Coleman
- L.J. Roberts Alzheimer's Disease Center, Banner Sun Health Research Institute, 10515 W. Santa Fe Drive, Sun City, AZ 85351, USA
| | - Cynthia A Lemere
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Daniel L A van den Hove
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Fuechsleinstrasse 15, 97080 Wuerzburg, Germany
| | - Bart P F Rutten
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
90
|
Smalheiser NR. The RNA-centred view of the synapse: non-coding RNAs and synaptic plasticity. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0504. [PMID: 25135965 PMCID: PMC4142025 DOI: 10.1098/rstb.2013.0504] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
If mRNAs were the only RNAs made by a neuron, there would be a simple mapping of mRNAs to proteins. However, microRNAs and other non-coding RNAs (ncRNAs; endo-siRNAs, piRNAs, BC1, BC200, antisense and long ncRNAs, repeat-related transcripts, etc.) regulate mRNAs via effects on protein translation as well as transcriptional and epigenetic mechanisms. Not only are genes ON or OFF, but their ability to be translated can be turned ON or OFF at the level of synapses, supporting an enormous increase in information capacity. Here, I review evidence that ncRNAs are expressed pervasively within dendrites in mammalian brain; that some are activity-dependent and highly enriched near synapses; and that synaptic ncRNAs participate in plasticity responses including learning and memory. Ultimately, ncRNAs can be viewed as the post-it notes of the neuron. They have no literal meaning of their own, but derive their functions from where (and to what) they are stuck. This may explain, in part, why ncRNAs differ so dramatically from protein-coding genes, both in terms of the usual indicators of functionality and in terms of evolutionary constraints. ncRNAs do not appear to be direct mediators of synaptic transmission in the manner of neurotransmitters or receptors, yet they orchestrate synaptic plasticity—and may drive species-specific changes in cognition.
Collapse
Affiliation(s)
- Neil R Smalheiser
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
91
|
Abstract
INTRODUCTION It is assumed that epigenetic modifications are reversible and could potentially be targeted by pharmacological and dietary interventions. Epigenetic drugs are gaining particular interest as potential candidates for the treatment of Alzheimer's disease (AD). AREAS COVERED This article covers relevant information from over 50 different epigenetic drugs including: DNA methyltransferase inhibitors; histone deacetylase inhibitors; histone acetyltransferase modulators; histone methyltransferase inhibitors; histone demethylase inhibitors; non-coding RNAs (microRNAs) and dietary regimes. The authors also review the pharmacoepigenomics and the pharmacogenomics of epigenetic drugs. The readers will gain insight into i) the classification of epigenetic drugs; ii) the mechanisms by which these drugs might be useful in AD; iii) the pharmacological properties of selected epigenetic drugs; iv) pharmacoepigenomics and the influence of epigenetic drugs on genes encoding CYP enzymes, transporters and nuclear receptors; and v) the genes associated with the pharmacogenomics of anti-dementia drugs. EXPERT OPINION Epigenetic drugs reverse epigenetic changes in gene expression and might open future avenues in AD therapeutics. Unfortunately, clinical trials with this category of drugs are lacking in AD. The authors highlight the need for pharmacogenetic and pharmacoepigenetic studies to properly evaluate any efficacy and safety issues.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Professor,Camilo José Cela University, Chair of Genomic Medicine , Madrid , Spain
| | | |
Collapse
|
92
|
Costa D, Gigoni A, Würth R, Cancedda R, Florio T, Pagano A. Metformin inhibition of neuroblastoma cell proliferation is differently modulated by cell differentiation induced by retinoic acid or overexpression of NDM29 non-coding RNA. Cancer Cell Int 2014; 14:59. [PMID: 25120382 PMCID: PMC4128937 DOI: 10.1186/1475-2867-14-59] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/04/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Metformin is a widely used oral hypoglycemizing agent recently proposed as potential anti-cancer drug. In this study we report the antiproliferative effect of metformin treatment in a high risk neuroblastoma cell model, focusing on possible effects associated to different levels of differentiation and/or tumor initiating potential. METHODS Antiproliferative and cytotoxic effects of metformin were tested in human SKNBE2 and SH-SY5Y neuroblastoma cell lines and in SKNBE2 cells in which differentiation is induced by retinoic acid treatment or stable overexpression of NDM29 non-coding RNA, both conditions characterized by a neuron-like differentiated phenotype. RESULTS We found that metformin significantly inhibits the proliferation of NB cells, an effect that correlates with the inhibition of Akt, while AMPK activity resulted unchanged. Notably, metformin effects were modulated in a different ways by differentiating stimuli, being abolished after retinoic acid treatment but potentiated by overexpression of NDM29. CONCLUSION These data suggest the efficacy of metformin as neuroblastoma anticancer agent, and support the requirement of further studies on the possible role of the differentiation status on the antiproliferative effects of this drug.
Collapse
Affiliation(s)
- Delfina Costa
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy ; IRCCS-AOU San Martino-IST, Genova, Italy
| | - Arianna Gigoni
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy ; IRCCS-AOU San Martino-IST, Genova, Italy
| | - Roberto Würth
- Internal Medicine (DIMI), University of Genova, Genova, Italy
| | - Ranieri Cancedda
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy ; IRCCS-AOU San Martino-IST, Genova, Italy
| | - Tullio Florio
- Internal Medicine (DIMI), University of Genova, Genova, Italy ; Center of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| | - Aldo Pagano
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy ; IRCCS-AOU San Martino-IST, Genova, Italy
| |
Collapse
|
93
|
|
94
|
Guffanti A, Simchovitz A, Soreq H. Emerging bioinformatics approaches for analysis of NGS-derived coding and non-coding RNAs in neurodegenerative diseases. Front Cell Neurosci 2014; 8:89. [PMID: 24723850 PMCID: PMC3973899 DOI: 10.3389/fncel.2014.00089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/10/2014] [Indexed: 02/01/2023] Open
Abstract
Neurodegenerative diseases in general and specifically late-onset Alzheimer’s disease (LOAD) involve a genetically complex and largely obscure ensemble of causative and risk factors accompanied by complex feedback responses. The advent of “high-throughput” transcriptome investigation technologies such as microarray and deep sequencing is increasingly being combined with sophisticated statistical and bioinformatics analysis methods complemented by knowledge-based approaches such as Bayesian Networks or network and graph analyses. Together, such “integrative” studies are beginning to identify co-regulated gene networks linked with biological pathways and potentially modulating disease predisposition, outcome, and progression. Specifically, bioinformatics analyses of integrated microarray and genotyping data in cases and controls reveal changes in gene expression of both protein-coding and small and long regulatory RNAs; highlight relevant quantitative transcriptional differences between LOAD and non-demented control brains and demonstrate reconfiguration of functionally meaningful molecular interaction structures in LOAD. These may be measured as changes in connectivity in “hub nodes” of relevant gene networks (Zhang etal., 2013). We illustrate here the open analytical questions in the transcriptome investigation of neurodegenerative disease studies, proposing “ad hoc” strategies for the evaluation of differential gene expression and hints for a simple analysis of the non-coding RNA (ncRNA) part of such datasets. We then survey the emerging role of long ncRNAs (lncRNAs) in the healthy and diseased brain transcriptome and describe the main current methods for computational modeling of gene networks. We propose accessible modular and pathway-oriented methods and guidelines for bioinformatics investigations of whole transcriptome next generation sequencing datasets. We finally present methods and databases for functional interpretations of lncRNAs and propose a simple heuristic approach to visualize and represent physical and functional interactions of the coding and non-coding components of the transcriptome. Integrating in a functional and integrated vision coding and ncRNA analyses is of utmost importance for current and future analyses of neurodegenerative transcriptomes.
Collapse
Affiliation(s)
- Alessandro Guffanti
- Laboratory of Molecular Neuroscience, Department of Biological Chemistry, The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem Jerusalem, Israel ; Bioinformatics, Genomnia srl Milano, Italy
| | - Alon Simchovitz
- Laboratory of Molecular Neuroscience, Department of Biological Chemistry, The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem Jerusalem, Israel
| | - Hermona Soreq
- Laboratory of Molecular Neuroscience, Department of Biological Chemistry, The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem Jerusalem, Israel
| |
Collapse
|
95
|
Bhan A, Mandal SS. Long noncoding RNAs: emerging stars in gene regulation, epigenetics and human disease. ChemMedChem 2014; 9:1932-56. [PMID: 24677606 DOI: 10.1002/cmdc.201300534] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Indexed: 12/19/2022]
Abstract
Noncoding RNAs (ncRNAs) are classes of transcripts that are encoded by the genome and transcribed but never get translated into proteins. Though not translated into proteins, ncRNAs play pivotal roles in a variety of cellular functions. Here, we review the functions of long noncoding RNAs (lncRNAs) and their implications in various human diseases. Increasing numbers of studies demonstrate that lncRNAs play critical roles in regulation of protein-coding genes, maintenance of genomic integrity, dosage compensation, genomic imprinting, mRNA processing, cell differentiation, and development. Misregulation of lncRNAs is associated with a variety of human diseases, including cancer, immune and neurological disorders. Different classes of lncRNAs, their functions, mechanisms of action, and associations with different human diseases are summarized in detail, highlighting their as yet untapped potential in therapy.
Collapse
Affiliation(s)
- Arunoday Bhan
- Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019 (USA)
| | | |
Collapse
|
96
|
Gavazzo P, Vassalli M, Costa D, Pagano A. Novel ncRNAs transcribed by Pol III and elucidation of their functional relevance by biophysical approaches. Front Cell Neurosci 2013; 7:203. [PMID: 24223537 PMCID: PMC3819595 DOI: 10.3389/fncel.2013.00203] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 11/17/2013] [Indexed: 11/25/2022] Open
Abstract
In the last decade the role of non coding (nc) RNAs in neurogenesis and in the onset of neurological diseases has been assessed by a multitude of studies. In this scenario, approximately 30 small RNA polymerase (pol) III-dependent ncRNAs were recently identified by computational tools and proposed as regulatory elements. The function of several of these transcripts was elucidated in vitro and in vivo confirming their involvement in cancer and in metabolic and neurodegenerative disorders. Emerging biophysical technologies together with the introduction of a physical perspective have been advantageous in regulatory RNA investigation providing original results on: (a) the differentiation of neuroblastoma (NB) cells towards a neuron-like phenotype triggered by Neuroblastoma Differentiation Marker 29 (NDM29) ncRNA; (b) the modulation of A-type K(+) current in neurons induced by the small ncRNA 38A and (c) the synthesis driven by 17A ncRNA of a GABAB2 receptor isoform unable to trigger intracellular signaling. Moreover, the application of Single Cell Force Spectroscopy (SCFS) to these studies suggests a correlation between the malignancy stage of NB and the micro-adhesive properties of the cells, allowing to investigate the molecular basis of such a correlation.
Collapse
Affiliation(s)
- Paola Gavazzo
- Institute of Biophysics, National Research Council (CNR)Genoa, Italy
| | - Massimo Vassalli
- Institute of Biophysics, National Research Council (CNR)Genoa, Italy
| | - Delfina Costa
- Department of Experimental Medicine, University of GenoaGenoa, Italy
| | - Aldo Pagano
- Department of Experimental Medicine, University of GenoaGenoa, Italy
- IRCCS Azienda Ospedaliera Universitaria San Martino-ISTGenoa, Italy
| |
Collapse
|
97
|
Wang J, Yu JT, Tan MS, Jiang T, Tan L. Epigenetic mechanisms in Alzheimer's disease: implications for pathogenesis and therapy. Ageing Res Rev 2013; 12:1024-41. [PMID: 23688931 DOI: 10.1016/j.arr.2013.05.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/08/2013] [Indexed: 12/14/2022]
Abstract
The vast majority of Alzheimer's disease (AD) are late-onset forms (LOAD) likely due to the interplay of environmental influences and individual genetic susceptibility. Epigenetic mechanisms, including DNA methylation, histone modifications and non-coding RNAs, constitute dynamic intracellular processes for translating environmental stimuli into modifications in gene expression. Over the past decade it has become increasingly clear that epigenetic mechanisms play a pivotal role in aging the pathogenesis of AD. Here, we provide a review of the major mechanisms for epigenetic modification and how they are reportedly altered in aging and AD. Moreover, we also consider how aberrant epigenetic modifications may lead to AD pathogenesis, and we review the therapeutic potential of epigenetic treatments for AD.
Collapse
Affiliation(s)
- Jun Wang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, China
| | | | | | | | | |
Collapse
|
98
|
Penna I, Vassallo I, Nizzari M, Russo D, Costa D, Menichini P, Poggi A, Russo C, Dieci G, Florio T, Cancedda R, Pagano A. A novel snRNA-like transcript affects amyloidogenesis and cell cycle progression through perturbation of Fe65L1 (APBB2) alternative splicing. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1833:1511-1526. [PMID: 23485396 DOI: 10.1016/j.bbamcr.2013.02.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 01/17/2013] [Accepted: 02/18/2013] [Indexed: 11/24/2022]
Abstract
FE65 proteins constitute a family of adaptors which modulates the processing of amyloid precursor protein and the consequent amyloid β production. Thus, they have been involved in the complex and partially unknown cascade of reactions at the base of Alzheimer's disease etiology. However, FE65 and FE65-like proteins may be linked to neurodegeneration through the regulation of cell cycle in post-mitotic neurons. In this work we disclose novel molecular mechanisms by which APBB2 can modulate APP processing. We show that APBB2 mRNA splicing, driven by the over-expression of a novel non-coding RNA named 45A, allow the generation of alternative protein forms endowed with differential effects on Aβ production, cell cycle control, and DNA damage response. 45A overexpression also favors cell transformation and tumorigenesis leading to a marked increase of malignancy of neuroblastoma cells. Therefore, our results highlight a novel regulatory pathway of considerable interest linking APP processing with cell cycle regulation and DNA-surveillance systems, that may represent a molecular mechanism to induce neurodegeneration in post-mitotic neurons.
Collapse
Affiliation(s)
- Ilaria Penna
- Dept. of Experimental Medicine, University of Genova, Genova, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Noncoding RNAs in Neurodegenerative Diseases. ISRN NEUROLOGY 2013; 2013:375852. [PMID: 23738143 PMCID: PMC3657400 DOI: 10.1155/2013/375852] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/10/2013] [Indexed: 01/29/2023]
Abstract
Noncoding RNAs are widely known for their various essential roles in the development of central nervous system. It involves neurogenesis, neural stem cells generation, maintenance and maturation, neurotransmission, neural network plasticity, formation of synapses, and even brain aging and DNA damage responses. In this review, we will discuss the biogenesis of microRNA, various functions of noncoding RNA's specifically microRNAs (miRNAs) that act as the chief regulators of gene expression, and focus in particular on misregulation of miRNAs which leads to several neurodegenerative diseases as well as its therapeutic outcome. Recent evidences has shown that miRNAs expression levels are changed in patients with neurodegenerative diseases; hence, miRNA can be used as a potential diagnostic biomarker and serve as an effective therapeutic tool in overcoming various neurodegenerative disease processes.
Collapse
|
100
|
Appolloni I, Curreli S, Caviglia S, Barilari M, Gambini E, Pagano A, Malatesta P. Role of Btg2 in the progression of a PDGF-induced oligodendroglioma model. Int J Mol Sci 2012. [PMID: 23203087 PMCID: PMC3509603 DOI: 10.3390/ijms131114667] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tumor progression is a key aspect in oncology. Not even the overexpression of a powerful oncogenic stimulus such as platelet derived growth factor-B (PDGF-B) is sufficient per se to confer full malignancy to cells. In previous studies we showed that neural progenitors overexpressing PDGF-B need to undergo progression to acquire the capability to give rise to secondary tumor following transplant. By comparing the expression profile of PDGF-expressing cells before and after progression, we found that progressed tumors consistently downregulate the expression of the antiproliferative gene Btg2. We therefore tested whether the downregulation of Btg2 is sufficient and necessary for glioma progression with loss and gain of function experiments. Our results show that downregulation of Btg2 is not sufficient but is necessary for tumor progression since the re-introduction of Btg2 in fully progressed tumors dramatically impairs their gliomagenic potential. These results suggest an important role of Btg2 in glioma progression. Accordingly with this view, the analysis of public datasets of human gliomas showed that reduced level of Btg2 expression correlates with a significantly worse prognosis.
Collapse
Affiliation(s)
- Irene Appolloni
- IRCCS-AOU San Martino-IST, Largo Rosanna Benzi 10, 16132 Genoa, Italy; E-Mails: (I.A.); (M.B.); (A.P.)
| | - Sebastiano Curreli
- Department of Experimental Medicine (DiMES), University of Genoa, 16132 Genoa, Italy; E-Mails: (S.C.); (S.C.); (E.G.)
| | - Sara Caviglia
- Department of Experimental Medicine (DiMES), University of Genoa, 16132 Genoa, Italy; E-Mails: (S.C.); (S.C.); (E.G.)
| | - Manuela Barilari
- IRCCS-AOU San Martino-IST, Largo Rosanna Benzi 10, 16132 Genoa, Italy; E-Mails: (I.A.); (M.B.); (A.P.)
| | - Eleonora Gambini
- Department of Experimental Medicine (DiMES), University of Genoa, 16132 Genoa, Italy; E-Mails: (S.C.); (S.C.); (E.G.)
| | - Aldo Pagano
- IRCCS-AOU San Martino-IST, Largo Rosanna Benzi 10, 16132 Genoa, Italy; E-Mails: (I.A.); (M.B.); (A.P.)
- Department of Experimental Medicine (DiMES), University of Genoa, 16132 Genoa, Italy; E-Mails: (S.C.); (S.C.); (E.G.)
| | - Paolo Malatesta
- IRCCS-AOU San Martino-IST, Largo Rosanna Benzi 10, 16132 Genoa, Italy; E-Mails: (I.A.); (M.B.); (A.P.)
- Department of Experimental Medicine (DiMES), University of Genoa, 16132 Genoa, Italy; E-Mails: (S.C.); (S.C.); (E.G.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-010-5737403; Fax: +39-010-5737405
| |
Collapse
|