51
|
Yu Z, Zhou X, Wang X. Metabolic Reprogramming in Hematologic Malignancies: Advances and Clinical Perspectives. Cancer Res 2022; 82:2955-2963. [PMID: 35771627 PMCID: PMC9437558 DOI: 10.1158/0008-5472.can-22-0917] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/14/2022] [Accepted: 06/27/2022] [Indexed: 01/07/2023]
Abstract
Metabolic reprogramming is a hallmark of cancer progression. Metabolic activity supports tumorigenesis and tumor progression, allowing cells to uptake essential nutrients from the environment and use the nutrients to maintain viability and support proliferation. The metabolic pathways of malignant cells are altered to accommodate increased demand for energy, reducing equivalents, and biosynthetic precursors. Activated oncogenes coordinate with altered metabolism to control cell-autonomous pathways, which can lead to tumorigenesis when abnormalities accumulate. Clinical and preclinical studies have shown that targeting metabolic features of hematologic malignancies is an appealing therapeutic approach. This review provides a comprehensive overview of the mechanisms of metabolic reprogramming in hematologic malignancies and potential therapeutic strategies to target cancer metabolism.
Collapse
Affiliation(s)
- Zhuoya Yu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, China.,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, China.,Corresponding Authors: Xin Wang, Department of Hematology, Shandong Provincial Hospital, Shandong University, No. 324, Jingwu Road, Jinan, Shandong 250021, China. Phone: 8653-1687-76358; Fax: 8653-1870-61197; E-mail: ; Xiangxiang Zhou, Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, Shandong 250021, China. Phone: 8653-1687-76358; E-mail:
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, China.,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, China.,Corresponding Authors: Xin Wang, Department of Hematology, Shandong Provincial Hospital, Shandong University, No. 324, Jingwu Road, Jinan, Shandong 250021, China. Phone: 8653-1687-76358; Fax: 8653-1870-61197; E-mail: ; Xiangxiang Zhou, Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, Shandong 250021, China. Phone: 8653-1687-76358; E-mail:
| |
Collapse
|
52
|
Zou Y, Zhang H, Bi F, Tang Q, Xu H. Targeting the key cholesterol biosynthesis enzyme squalene monooxygenasefor cancer therapy. Front Oncol 2022; 12:938502. [PMID: 36091156 PMCID: PMC9449579 DOI: 10.3389/fonc.2022.938502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022] Open
Abstract
Cholesterol metabolism is often dysregulated in cancer. Squalene monooxygenase (SQLE) is the second rate-limiting enzyme involved in cholesterol synthesis. Since the discovery of SQLE dysregulation in cancer, compelling evidence has indicated that SQLE plays a vital role in cancer initiation and progression and is a promising therapeutic target for cancer treatment. In this review, we provide an overview of the role and regulation of SQLE in cancer and summarize the updates of antitumor therapy targeting SQLE.
Collapse
Affiliation(s)
- Yuheng Zou
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Zhang
- Laboratory of Oncogene, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Bi
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiulin Tang
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Qiulin Tang, ; Huanji Xu,
| | - Huanji Xu
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Qiulin Tang, ; Huanji Xu,
| |
Collapse
|
53
|
Pan K, Hu B, Wang L, Yuan J, Xu W. STUB1-SMYD2 Axis Regulates Drug Resistance in Glioma cells. J Mol Neurosci 2022; 72:2030-2044. [PMID: 35939202 DOI: 10.1007/s12031-022-02051-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022]
Abstract
SET and MYND domain-containing protein 2 (SMYD2) is an important epigenetic regulator that methylates histone and non-histone proteins. The study aimed to investigate the oncogenic role of SMYD2 in gliomas and explore its degradation mechanism induced by cisplatin. Tumor tissue microarray of 441 patients with glioma was collected for SMYD2 immunohistochemical staining. Kaplan-Meier survival curves were constructed using the overall survival values. mRNA-sequencing analysis was performed for understanding the downstream mechanisms mediated by SMYD2. The half-inhibitory concentrations (IC50) of temozolomide and cisplatin in AZ505-treated and control cells were calculated. The potential E3 ubiquitin ligase of SMYD2 was predicted in UbiBrowser and confirmed by a knockdown test. The effect of SMYD2 and its E3 ligase on apoptosis and migration of glioma cells was determined via cell-function assays. High SMYD2 expression correlated with a high WHO stage (P = 0.004) and a low survival probability (P = 0.012). The inhibition of SMYD2 suppressed the process of epithelial to mesenchymal transition (EMT) by downregulating the expression of Collagen 1A1 (COL1A1). AZ505 treatment significantly increased the drug sensitivity of glioma cells. SMYD2 expression was markedly reduced by cisplatin treatment via STIP1 Homology And U-Box Containing Protein 1 (STUB1)-mediated degradation. The knockdown of STUB1 could partly reverse the cell function impairment induced by cisplatin. Our findings suggested that SMYD2 could be a potential drug target for the treatment of gliomas, and STUB1-mediated degradation of SMYD2 plays an important role in reversing chemotherapy resistance in patients with gliomas.
Collapse
Affiliation(s)
- Kailing Pan
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Zhejiang Province, Jinhua, 321000, China
| | - Bin Hu
- Department of Pathology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Zhejiang Province, Jinhua, 321000, China
| | - Lude Wang
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Zhejiang Province, Jinhua, 321000, China
| | - Jianlie Yuan
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Zhejiang Province, Jinhua, 321000, China.
| | - Wenxia Xu
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Zhejiang Province, Jinhua, 321000, China.
| |
Collapse
|
54
|
Lipid metabolism in tumor microenvironment: novel therapeutic targets. Cancer Cell Int 2022; 22:224. [PMID: 35790992 PMCID: PMC9254539 DOI: 10.1186/s12935-022-02645-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/25/2022] [Indexed: 11/28/2022] Open
Abstract
Bioactive lipid molecules have been proposed to play important roles linking obesity/metabolic syndrome and cancers. Studies reveal that aberrant lipid metabolic signaling can reprogram cancer cells and non-cancer cells in the tumor microenvironment, contributing to cancer initiation, progression, metastasis, recurrence, and poor therapeutic response. Existing evidence indicates that controlling lipid metabolism can be a potential strategy for cancer prevention and therapy. By reviewing the current literature on the lipid metabolism in various cancers, we summarized major lipid molecules including fatty acids and cholesterol as well as lipid droplets and discussed their critical roles in cancer cells and non-cancer in terms of either promoting- or anti-tumorigenesis. This review provides an overview of the lipid molecules in cellular entities and their tumor microenvironment, adding to the existing knowledge with lipid metabolic reprogramming in immune cells and cancer associated cells. Comprehensive understanding of the regulatory role of lipid metabolism in cellular entities and their tumor microenvironment will provide a new direction for further studies, in a shift away from conventional cancer research. Exploring the lipid-related signaling targets that drive or block cancer development may lead to development of novel anti-cancer strategies distinct from traditional approaches for cancer prevention and treatment.
Collapse
|
55
|
Cui MY, Yi X, Zhu DX, Wu J. The Role of Lipid Metabolism in Gastric Cancer. Front Oncol 2022; 12:916661. [PMID: 35785165 PMCID: PMC9240397 DOI: 10.3389/fonc.2022.916661] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
Abstract
Gastric cancer has been one of the most common cancers worldwide with extensive metastasis and high mortality. Chemotherapy has been found as a main treatment for metastatic gastric cancer, whereas drug resistance limits the effectiveness of chemotherapy and leads to treatment failure. Chemotherapy resistance in gastric cancer has a complex and multifactorial mechanism, among which lipid metabolism plays a vital role. Increased synthesis of new lipids or uptake of exogenous lipids can facilitate the rapid growth of cancer cells and tumor formation. Lipids form the structural basis of biofilms while serving as signal molecules and energy sources. It is noteworthy that lipid metabolism is capable of inducing drug resistance in gastric cancer cells by reshaping the tumor micro-environment. In this study, new mechanisms of lipid metabolism in gastric cancer and the metabolic pathways correlated with chemotherapy resistance are reviewed. In particular, we discuss the effects of lipid metabolism on autophagy, biomarkers treatment and drug resistance in gastric cancer from the perspective of lipid metabolism. In brief, new insights can be gained into the development of promising therapies through an in-depth investigation of the mechanism of lipid metabolism reprogramming and resensitization to chemotherapy in gastric cancer cells, and scientific treatment can be provided by applying lipid-key enzyme inhibitors as cancer chemical sensitizers in clinical settings.
Collapse
Affiliation(s)
| | | | | | - Jun Wu
- *Correspondence: Jun Wu, ; Dan-Xia Zhu,
| |
Collapse
|
56
|
Agostini M, Melino G, Habeb B, Calandria JM, Bazan NG. Targeting lipid metabolism in cancer: neuroblastoma. Cancer Metastasis Rev 2022; 41:255-260. [PMID: 35687185 PMCID: PMC9363363 DOI: 10.1007/s10555-022-10040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Bola Habeb
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA
| | - Jorgelina M Calandria
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA.
| |
Collapse
|
57
|
You W, Ke J, Chen Y, Cai Z, Huang ZP, Hu P, Wu X. SQLE, A Key Enzyme in Cholesterol Metabolism, Correlates With Tumor Immune Infiltration and Immunotherapy Outcome of Pancreatic Adenocarcinoma. Front Immunol 2022; 13:864244. [PMID: 35720314 PMCID: PMC9204319 DOI: 10.3389/fimmu.2022.864244] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/26/2022] [Indexed: 12/26/2022] Open
Abstract
Background Pancreatic adenocarcinoma (PAAD) is a treatment-refractory cancer with poor prognosis. Accumulating evidence suggests that squalene epoxidase (SQLE) plays a pivotal role in the development and progression of several cancer types in humans. However, the function and underlying mechanism of SQLE in PAAD remain unclear. Methods SQLE expression data were downloaded from The Cancer Genome Atlas and the Genotype-Tissue Expression database. SQLE alterations were demonstrated based on the cBioPortal database. The upstream miRNAs regulating SQLE expression were predicted using starBase. The function of miRNA was validated by Western blotting and cell proliferation assay. The relationship between SQLE expression and biomarkers of the tumor immune microenvironment (TME) was analyzed using the TIMER and TISIDB databases. The correlation between SQLE and immunotherapy outcomes was assessed using Tumor Immune Dysfunction and Exclusion. The log-rank test was performed to compare prognosis between the high and low SQLE groups. Results We demonstrated a potential oncogenic role of SQLE. SQLE expression was upregulated in PAAD, and it predicted poor disease-free survival (DFS) and overall survival (OS) in patients with PAAD. "Amplification" was the dominant type of SQLE alteration. In addition, this alteration was closely associated with the OS, disease-specific survival, DFS, and progression-free survival of patients with PAAD. Subsequently, hsa-miR-363-3p was recognized as a critical microRNA regulating SQLE expression and thereby influencing PAAD patient outcome. In vitro experiments suggested that miR-363-3p could knock down the expression of SQLE and inhibit the proliferation of PANC-1. SQLE was significantly associated with tumor immune cell infiltration, immune checkpoints (including PD-1 and CTLA-4), and biomarkers of the TME. KEGG and GO analyses indicated that cholesterol metabolism-associated RNA functions are implicated in the mechanisms of SQLE. SQLE was inversely associated with cytotoxic lymphocytes and predicted immunotherapy outcomes. Conclusions Collectively, our results indicate that cholesterol metabolism-related overexpression of SQLE is strongly correlated with tumor immune infiltration and immunotherapy outcomes in patients with PAAD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaojian Wu
- Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
58
|
Zhen Y, Chen Y, Ge L, Wei W, Wang Y, Hu L, Loor JJ, Wang M, Yin J. The Short-Day Cycle Induces Intestinal Epithelial Purine Metabolism Imbalance and Hepatic Disfunctions in Antibiotic-Mediated Gut Microbiota Perturbation Mice. Int J Mol Sci 2022; 23:ijms23116008. [PMID: 35682688 PMCID: PMC9181120 DOI: 10.3390/ijms23116008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/14/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022] Open
Abstract
Intestinal microbiota dysbiosis is related to many metabolic diseases in human health. Meanwhile, as an irregular environmental light–dark (LD) cycle, short day (SD) may induce host circadian rhythm disturbances and worsen the risks of gut dysbiosis. Herein, we investigated how LD cycles regulate intestinal metabolism upon the destruction of gut microbes with antibiotic treatments. The growth indices, serum parameters, concentrations of short-chain fatty acids (SCFAs), and relative abundance of intestinal microbes were measured after euthanasia; intestinal contents, epithelial metabolomics, and hepatic transcriptome sequencing were also assessed. Compared with a normal LD cycle (NLD), SD increased the body weight, spleen weight, and serum concentration of aspartate aminotransferase, while it decreased high-density lipoprotein. Meanwhile, SD increased the relative abundance of the Bacteroidetes phylum while it decreased the Firmicutes phylum in the gut of ABX mice, thus leading to a disorder of SCFA metabolism. Metabolomics data revealed that SD exposure altered gut microbial metabolism in ABX mice, which also displayed more serious alterations in the gut epithelium. In addition, most differentially expressed metabolites were decreased, especially the purine metabolism pathway in epithelial tissue. This response was mainly due to the down-regulation of adenine, inosine, deoxyguanosine, adenylsuccinic acid, hypoxanthine, GDP, IMP, GMP, and AMP. Finally, the transcriptome data also indicated that SD has some negative effects on hepatic metabolism and endocrine, digestive, and disease processes. Overall, SD induced an epithelial and hepatic purine metabolism pathway imbalance in ABX mice, as well as the gut microbes and their metabolites, all of which could contribute to host metabolism and digestion, endocrine system disorders, and may even cause diseases in the host.
Collapse
Affiliation(s)
- Yongkang Zhen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Y.C.); (L.G.); (W.W.); (Y.W.); (L.H.)
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China
| | - Yifei Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Y.C.); (L.G.); (W.W.); (Y.W.); (L.H.)
| | - Ling Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Y.C.); (L.G.); (W.W.); (Y.W.); (L.H.)
| | - Wenjun Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Y.C.); (L.G.); (W.W.); (Y.W.); (L.H.)
| | - Yusu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Y.C.); (L.G.); (W.W.); (Y.W.); (L.H.)
| | - Liangyu Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Y.C.); (L.G.); (W.W.); (Y.W.); (L.H.)
- Human and Animal Physiology, Wageningen University & Research, 6708 WD Wageningen, The Netherlands
| | - Juan J. Loor
- Mammalian Nutrition Physiology Genomics, Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Y.C.); (L.G.); (W.W.); (Y.W.); (L.H.)
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China
- Correspondence: (M.W.); (J.Y.)
| | - Junliang Yin
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China
- Correspondence: (M.W.); (J.Y.)
| |
Collapse
|
59
|
Sun JX, Liu CQ, Zhong XY, Xu JZ, An Y, Xu MY, Hu J, Zhang ZB, Xia QD, Wang SG. Statin Use and the Risk of Prostate Cancer Biochemical Recurrence Following Definitive Therapy: A Systematic Review and Meta-Analysis of Cohort Studies. Front Oncol 2022; 12:887854. [PMID: 35615153 PMCID: PMC9124863 DOI: 10.3389/fonc.2022.887854] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background Numerous studies have reported the role of statins on biochemical recurrence (BCR) among patients with prostate cancer (PCa) after definite treatment. However, the conclusions of these studies are contradictory. We aimed to determine the effect of statins on BCR of PCa using a systematic review and meta-analysis. Methods We searched PubMed (Medline) and other databases for cohort studies evaluating the effect of statins on the BCR of patients with PCa between January 1, 2000, and December 31, 2021. The random effects (RE) model and quality effects (QE) model were used to calculate the pooled hazard ratio (pHR) and pooled risk ratio (pRR) and their 95% confidence interval (95% CI). Results A total of 33 cohort studies were finally selected and included in this systematic review and meta-analysis. Statin use was significantly associated with a 14% reduction in the HR of BCR (pHR: 0.86, 95% CI: 0.78 to 0.95, I2 = 64%, random effects model, 31 studies) and a 26% reduction in the RR of BCR (pRR: 0.74, 95% CI: 0.57 to 0.94, 24,591 patients, I2 = 88%, random effects model, 15 studies) among patients with PCa. The subgroup analyses showed that statins could result in 22% reduction in the HR of BCR (pHR: 0.78, 95% CI: 0.61 to 0.98, I2 = 57%, random effects model) among patients accepting radiotherapy (RT). Conclusions Our study suggests that statins have a unique role in the reduction of BCR in patients with PCa after definite treatment, especially RT. In the future, more clinical trials and in vitro and animal experiments are needed to further verify the effects of statins in PCa and the potential mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zong-Biao Zhang
- *Correspondence: Zong-Biao Zhang, ; Qi-Dong Xia, ; Shao-Gang Wang,
| | - Qi-Dong Xia
- *Correspondence: Zong-Biao Zhang, ; Qi-Dong Xia, ; Shao-Gang Wang,
| | - Shao-Gang Wang
- *Correspondence: Zong-Biao Zhang, ; Qi-Dong Xia, ; Shao-Gang Wang,
| |
Collapse
|
60
|
Romo-Perez A, Dominguez-Gomez G, Chavez-Blanco A, Taja-Chayeb L, Gonzalez-Fierro A, Diaz-Romero C, Lopez-Basave HN, Duenas-Gonzalez A. Progress in Metabolic Studies of Gastric Cancer and Therapeutic Implications. Curr Cancer Drug Targets 2022; 22:703-716. [DOI: 10.2174/1568009622666220413083534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/10/2021] [Accepted: 02/03/2022] [Indexed: 12/09/2022]
Abstract
Background:
Worldwide, gastric cancer is ranked the fifth malignancy in incidence and the third malignancy in mortality. Gastric cancer causes an altered metabolism that can be therapeutically exploited.
Objective:
To provide an overview of the significant metabolic alterations caused by gastric cancer and propose a blockade.
Methods:
A comprehensive and up-to-date review of descriptive and experimental publications on the metabolic alterations caused by gastric cancer and their blockade. This is not a systematic review.
Results:
Gastric cancer causes high rates of glycolysis and glutaminolysis. There are increased rates of de novo fatty acid synthesis and cholesterol synthesis. Moreover, gastric cancer causes high rates of lipid turnover via fatty acid -oxidation. Preclinical data indicate that the individual blockade of these pathways via enzyme targeting leads to
antitumor effects in vitro and in vivo. Nevertheless, there is no data on the simultaneous blockade of these five pathways, which is critical, as tumors show metabolic flexibility in response to the availability of nutrients. This means tumors may activate alternate routes when one or more are inhibited. We hypothesize there is a need to simultaneously blockade them to avoid or decrease the metabolic flexibility that may lead to treatment resistance.
Conclusions:
There is a need to explore the preclinical efficacy and feasibility of combined metabolic therapy targeting the pathways of glucose, glutamine, fatty acid synthesis, cholesterol synthesis, and fatty acid oxidation. This may have therapeutical implications because we have clinically available drugs that target these pathways in gastric cancer.
Collapse
Affiliation(s)
- Adriana Romo-Perez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Alma Chavez-Blanco
- Division of Basic Research, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Lucia Taja-Chayeb
- Division of Basic Research, Instituto Nacional de Cancerología, Mexico City, Mexico
| | | | | | | | - Alfonso Duenas-Gonzalez
- Instituto Nacional de Cancerología, Mexico City, Mexico
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
61
|
Laka K, Makgoo L, Mbita Z. Cholesterol-Lowering Phytochemicals: Targeting the Mevalonate Pathway for Anticancer Interventions. Front Genet 2022; 13:841639. [PMID: 35391801 PMCID: PMC8981032 DOI: 10.3389/fgene.2022.841639] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/07/2022] [Indexed: 11/15/2022] Open
Abstract
There are a plethora of cancer causes and the road to fully understanding the carcinogenesis process remains a dream that keeps changing. However, a list of role players that are implicated in the carcinogens process is getting lengthier. Cholesterol is known as bad sterol that is heavily linked with cardiovascular diseases; however, it is also comprehensively associated with carcinogenesis. There is an extensive list of strategies that have been used to lower cholesterol; nevertheless, the need to find better and effective strategies remains vastly important. The role played by cholesterol in the induction of the carcinogenesis process has attracted huge interest in recent years. Phytochemicals can be dubbed as magic tramp cards that humans could exploit for lowering cancer-causing cholesterol. Additionally, the mechanisms that are regulated by phytochemicals can be targeted for anticancer drug development. One of the key role players in cancer development and suppression, Tumour Protein 53 (TP53), is crucial in regulating the biogenesis of cholesterol and is targeted by several phytochemicals. This minireview covers the role of p53 in the mevalonate pathway and how bioactive phytochemicals target the mevalonate pathway and promote p53-dependent anticancer activities.
Collapse
Affiliation(s)
| | | | - Zukile Mbita
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Sovenga, South Africa
| |
Collapse
|
62
|
Heravi G, Yazdanpanah O, Podgorski I, Matherly LH, Liu W. Lipid metabolism reprogramming in renal cell carcinoma. Cancer Metastasis Rev 2022; 41:17-31. [PMID: 34741716 PMCID: PMC10045462 DOI: 10.1007/s10555-021-09996-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022]
Abstract
Metabolic reprogramming is recognized as a hallmark of cancer. Lipids are the essential biomolecules required for membrane biosynthesis, energy storage, and cell signaling. Altered lipid metabolism allows tumor cells to survive in the nutrient-deprived environment. However, lipid metabolism remodeling in renal cell carcinoma (RCC) has not received the same attention as in other cancers. RCC, the most common type of kidney cancer, is associated with almost 15,000 death in the USA annually. Being refractory to conventional chemotherapy agents and limited available targeted therapy options has made the treatment of metastatic RCC very challenging. In this article, we review recent findings that support the importance of synthesis and metabolism of cholesterol, free fatty acids (FFAs), and polyunsaturated fatty acids (PUFAs) in the carcinogenesis and biology of RCC. Delineating the detailed mechanisms underlying lipid reprogramming can help to better understand the pathophysiology of RCC and to design novel therapeutic strategies targeting this malignancy.
Collapse
Affiliation(s)
- Gioia Heravi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Omid Yazdanpanah
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Izabela Podgorski
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Karmanos Cancer Institute, Detroit, MI, USA
| | - Larry H Matherly
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Karmanos Cancer Institute, Detroit, MI, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA. .,Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA. .,Karmanos Cancer Institute, Detroit, MI, USA.
| |
Collapse
|
63
|
Wang SY, Hu QC, Wu T, Xia J, Tao XA, Cheng B. Abnormal lipid synthesis as a therapeutic target for cancer stem cells. World J Stem Cells 2022; 14:146-162. [PMID: 35432735 PMCID: PMC8963380 DOI: 10.4252/wjsc.v14.i2.146] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/19/2021] [Accepted: 02/20/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) comprise a subpopulation of cancer cells with stem cell properties, which exhibit the characteristics of high tumorigenicity, self-renewal, and tumor initiation and are associated with the occurrence, metastasis, therapy resistance, and relapse of cancer. Compared with differentiated cells, CSCs have unique metabolic characteristics, and metabolic reprogramming contributes to the self-renewal and maintenance of stem cells. It has been reported that CSCs are highly dependent on lipid metabolism to maintain stemness and satisfy the requirements of biosynthesis and energy metabolism. In this review, we demonstrate that lipid anabolism alterations promote the survival of CSCs, including de novo lipogenesis, lipid desaturation, and cholesterol synthesis. In addition, we also emphasize the molecular mechanism underlying the relationship between lipid synthesis and stem cell survival, the signal trans-duction pathways involved, and the application prospect of lipid synthesis reprogramming in CSC therapy. It is demonstrated that the dependence on lipid synthesis makes targeting of lipid synthesis metabolism a promising therapeutic strategy for eliminating CSCs. Targeting key molecules in lipid synthesis will play an important role in anti-CSC therapy.
Collapse
Affiliation(s)
- Si-Yu Wang
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Qin-Chao Hu
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Tong Wu
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Juan Xia
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Xiao-An Tao
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Bin Cheng
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| |
Collapse
|
64
|
Patel KK, Kashfi K. Lipoproteins and cancer: The role of HDL-C, LDL-C, and cholesterol-lowering drugs. Biochem Pharmacol 2022; 196:114654. [PMID: 34129857 PMCID: PMC8665945 DOI: 10.1016/j.bcp.2021.114654] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 02/03/2023]
Abstract
Cholesterol is an amphipathic sterol molecule that is vital for maintaining normal physiological homeostasis. It is a relatively complicated molecule with 27 carbons whose synthesis starts with 2-carbon units. This in itself signifies the importance of this molecule. Cholesterol serves as a precursor for vitamin D, bile acids, and hormones, including estrogens, androgens, progestogens, and corticosteroids. Although essential, high cholesterol levels are associated with cardiovascular and kidney diseases and cancer initiation, progression, and metastasis. Although there are some contrary reports, current literature suggests a positive association between serum cholesterol levels and the risk and extent of cancer development. In this review, we first present a brief overview of cholesterol biosynthesis and its transport, then elucidate the role of cholesterol in the progression of some cancers. Suggested mechanisms for cholesterol-mediated cancer progression are plentiful and include the activation of oncogenic signaling pathways and the induction of oxidative stress, among others. The specific roles of the lipoprotein molecules, high-density lipoprotein (HDL) and low-density lipoprotein (LDL), in this pathogenesis, are also reviewed. Finally, we hone on the potential role of some cholesterol-lowering medications in cancer.
Collapse
Affiliation(s)
- Kush K Patel
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA; Graduate Program in Biology, City University of New York Graduate Center, NY, USA.
| |
Collapse
|
65
|
Huang J, Wang J, He H, Huang Z, Wu S, Chen C, Liu W, Xie L, Tao Y, Cong L, Jiang Y. Close interactions between lncRNAs, lipid metabolism and ferroptosis in cancer. Int J Biol Sci 2021; 17:4493-4513. [PMID: 34803512 PMCID: PMC8579446 DOI: 10.7150/ijbs.66181] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/01/2021] [Indexed: 12/19/2022] Open
Abstract
Abnormal lipid metabolism including synthesis, uptake, modification, degradation and transport has been considered a hallmark of malignant tumors and contributes to the supply of substances and energy for rapid cell growth. Meanwhile, abnormal lipid metabolism is also associated with lipid peroxidation, which plays an important role in a newly discovered type of regulated cell death termed ferroptosis. Long noncoding RNAs (lncRNAs) have been proven to be associated with the occurrence and progression of cancer. Growing evidence indicates that lncRNAs are key regulators of abnormal lipid metabolism and ferroptosis in cancer. In this review, we mainly summarized the mechanism by which lncRNAs regulate aberrant lipid metabolism in cancer, illustrated that lipid metabolism can also influence the expression of lncRNAs, and discussed the mechanism by which lncRNAs affect ferroptosis. A comprehensive understanding of the interactions between lncRNAs, lipid metabolism and ferroptosis could help us to develop novel strategies for precise cancer treatment in the future.
Collapse
Affiliation(s)
- Jingjing Huang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Jin Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210013 Jiangsu, China
| | - Hua He
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Zichen Huang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210013 Jiangsu, China
| | - Sufang Wu
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Chao Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210013 Jiangsu, China
| | - Wenbing Liu
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, P.R. China
| | - Li Xie
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, P.R. China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, 410078 Hunan, China
| | - Li Cong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| |
Collapse
|
66
|
Fu Y, Zou T, Shen X, Nelson PJ, Li J, Wu C, Yang J, Zheng Y, Bruns C, Zhao Y, Qin L, Dong Q. Lipid metabolism in cancer progression and therapeutic strategies. MedComm (Beijing) 2021; 2:27-59. [PMID: 34766135 PMCID: PMC8491217 DOI: 10.1002/mco2.27] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022] Open
Abstract
Dysregulated lipid metabolism represents an important metabolic alteration in cancer. Fatty acids, cholesterol, and phospholipid are the three most prevalent lipids that act as energy producers, signaling molecules, and source material for the biogenesis of cell membranes. The enhanced synthesis, storage, and uptake of lipids contribute to cancer progression. The rewiring of lipid metabolism in cancer has been linked to the activation of oncogenic signaling pathways and cross talk with the tumor microenvironment. The resulting activity favors the survival and proliferation of tumor cells in the harsh conditions within the tumor. Lipid metabolism also plays a vital role in tumor immunogenicity via effects on the function of the noncancer cells within the tumor microenvironment, especially immune‐associated cells. Targeting altered lipid metabolism pathways has shown potential as a promising anticancer therapy. Here, we review recent evidence implicating the contribution of lipid metabolic reprogramming in cancer to cancer progression, and discuss the molecular mechanisms underlying lipid metabolism rewiring in cancer, and potential therapeutic strategies directed toward lipid metabolism in cancer. This review sheds new light to fully understanding of the role of lipid metabolic reprogramming in the context of cancer and provides valuable clues on therapeutic strategies targeting lipid metabolism in cancer.
Collapse
Affiliation(s)
- Yan Fu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences Fudan University Shanghai China
| | - Tiantian Zou
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences Fudan University Shanghai China
| | - Xiaotian Shen
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences Fudan University Shanghai China
| | - Peter J Nelson
- Medical Clinic and Policlinic IV Ludwig-Maximilian-University (LMU) Munich Germany
| | - Jiahui Li
- General, Visceral and Cancer Surgery University Hospital of Cologne Cologne Germany
| | - Chao Wu
- Department of General Surgery, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Jimeng Yang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences Fudan University Shanghai China
| | - Yan Zheng
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences Fudan University Shanghai China
| | - Christiane Bruns
- General, Visceral and Cancer Surgery University Hospital of Cologne Cologne Germany
| | - Yue Zhao
- General, Visceral and Cancer Surgery University Hospital of Cologne Cologne Germany
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences Fudan University Shanghai China
| | - Qiongzhu Dong
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences Fudan University Shanghai China
| |
Collapse
|
67
|
Ishikawa T, Osaki T, Sugiura A, Tashiro J, Warita T, Hosaka YZ, Warita K. Atorvastatin preferentially inhibits the growth of high ZEB-expressing canine cancer cells. Vet Comp Oncol 2021; 20:313-323. [PMID: 34657361 DOI: 10.1111/vco.12778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/03/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022]
Abstract
The epithelial-to-mesenchymal transition (EMT) is fundamental in cancer progression and contributes to the acquisition of malignant properties. The statin class of cholesterol-lowering drugs exhibits pleiotropic anticancer effects in vitro and in vivo, and many epidemiologic studies have reported a correlation between statin use and reduced cancer mortality. We have shown previously that sensitivity to the anti-proliferative effect of statins varies among human cancer cells and statins are more effective against mesenchymal-like cells than epithelial-like ones in human cancers. There have only been few reports on the application of statins to cancer therapy in veterinary medicine, and differences in statin sensitivity among canine cancer cells have not been examined. In this study, we aimed to clarify the correlation between sensitivity to atorvastatin and epithelial/mesenchymal states in 11 canine cancer cell lines derived from mammary gland, squamous cell carcinoma, lung, and melanoma. Sensitivity to atorvastatin varied among canine cancer cells, with IC50 values ranging from 5.92 to 71.5 μM at 48 h, which were higher than the plasma concentrations clinically achieved with statin therapy. Atorvastatin preferentially attenuated the proliferation of mesenchymal-like cells. In particular, highly statin-sensitive cells were characterized by aberrant expression of the ZEB family of EMT-inducing transcription factors. However, ZEB2 silencing in highly sensitive cells did not induce resistance to atorvastatin. Taken together, these results suggest that high expression of ZEB is a characteristic of highly statin-sensitive cells and could be a molecular marker for predicting whether cancers are sensitive to statins, though ZEB itself does not confer statin sensitivity.
Collapse
Affiliation(s)
- Takuro Ishikawa
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Department of Veterinary Anatomy, School of Veterinary Medicine, Tottori University, Tottori, Japan
| | - Tomohiro Osaki
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Tottori University, Tottori, Japan
| | - Akihiro Sugiura
- Department of Veterinary Anatomy, School of Veterinary Medicine, Tottori University, Tottori, Japan
| | - Jiro Tashiro
- Department of Veterinary Anatomy, School of Veterinary Medicine, Tottori University, Tottori, Japan
| | - Tomoko Warita
- Department of Biomedical Sciences, School of Biological and Environmental Science, Kwansei Gakuin University, Hyogo, Japan
| | - Yoshinao Z Hosaka
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Department of Veterinary Anatomy, School of Veterinary Medicine, Tottori University, Tottori, Japan
| | - Katsuhiko Warita
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Department of Veterinary Anatomy, School of Veterinary Medicine, Tottori University, Tottori, Japan
| |
Collapse
|
68
|
Glenny EM, Coleman MF, Giles ED, Wellberg EA, Hursting SD. Designing Relevant Preclinical Rodent Models for Studying Links Between Nutrition, Obesity, Metabolism, and Cancer. Annu Rev Nutr 2021; 41:253-282. [PMID: 34357792 PMCID: PMC8900211 DOI: 10.1146/annurev-nutr-120420-032437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diet and nutrition are intricately related to cancer prevention, growth, and treatment response. Preclinical rodent models are a cornerstone to biomedical research and remain instrumental in our understanding of the relationship between cancer and diet and in the development of effective therapeutics. However, the success rate of translating promising findings from the bench to the bedside is suboptimal. Well-designed rodent models will be crucial to improving the impact basic science has on clinical treatment options. This review discusses essential experimental factors to consider when designing a preclinical cancer model with an emphasis on incorporatingthese models into studies interrogating diet, nutrition, and metabolism. The aims of this review are to (a) provide insight into relevant considerations when designing cancer models for obesity, nutrition, and metabolism research; (b) identify common pitfalls when selecting a rodent model; and (c) discuss strengths and limitations of available preclinical models.
Collapse
Affiliation(s)
- Elaine M Glenny
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Michael F Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Erin D Giles
- Department of Nutrition, Texas A&M University, College Station, Texas 77843, USA
| | - Elizabeth A Wellberg
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
| | - Stephen D Hursting
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina 28081, USA
| |
Collapse
|
69
|
Romo-Perez A, Dominguez-Gomez G, Chavez-Blanco A, Taja-Chayeb L, Gonzalez-Fierro A, Martinez EG, Correa-Basurto J, Duenas-Gonzalez A. BAPST. A Combo of Common use drugs as metabolic therapy of cancer-a theoretical proposal. Curr Mol Pharmacol 2021; 15:815-831. [PMID: 34620071 DOI: 10.2174/1874467214666211006123728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 12/24/2022]
Abstract
Advances in cancer therapy have yet to impact worldwide cancer mortality. Poor cancer drug affordability is one of the factors limiting mortality burden strikes. Up to now, cancer drug repurposing had no meet expectations concerning drug affordability. The three FDA-approved cancer drugs developed under repurposing -all-trans-retinoic acid, arsenic trioxide, and thalidomide- do not differ in price from other drugs developed under the classical model. Though additional factors affect the whole process from inception to commercialization, the repurposing of widely used, commercially available, and cheap drugs may help. This work reviews the concept of the malignant metabolic phenotype and its exploitation by simultaneously blocking key metabolic processes altered in cancer. We elaborate on a combination called BAPST, which stands for the following drugs and pathways they inhibit: Benserazide (glycolysis), Apomorphine (glutaminolysis), Pantoprazole (Fatty-acid synthesis), Simvastatin (mevalonate pathway), and Trimetazidine (Fatty-acid oxidation). Their respective primary indications are: • Parkinson's disease (benserazide and apomorphine). • Peptic ulcer disease (pantoprazole). • Hypercholesterolemia (simvastatin). • Ischemic heart disease (trimetazidine). When used for their primary indication, the literature review on each of these drugs shows they have a good safety profile and lack predicted pharmacokinetic interaction among them. Most importantly, the inhibitory enzymatic concentrations required for inhibiting their cancer targets enzymes are below the plasma concentrations observed when these drugs are used for their primary indication. Based on that, we propose that the regimen BAPTS merits preclinical testing.
Collapse
Affiliation(s)
- Adriana Romo-Perez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City. Mexico
| | | | - Alma Chavez-Blanco
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City. Mexico
| | - Lucia Taja-Chayeb
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City. Mexico
| | - Aurora Gonzalez-Fierro
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City. Mexico
| | | | - Jose Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City. Mexico
| | - Alfonso Duenas-Gonzalez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City. Mexico
| |
Collapse
|
70
|
Rachner TD, Coleman R, Hadji P, Hofbauer LC. Individualized Bone-Protective Management in Long-Term Cancer Survivors With Bone Metastases. J Bone Miner Res 2021; 36:1906-1913. [PMID: 34131949 DOI: 10.1002/jbmr.4391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/15/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022]
Abstract
Antiresorptive therapy is an important component of a multimodal approach to treating patients with advanced malignancies and metastatic bone disease. Over the past decade, overall survival of affected patients has improved in most cancer entities, and long-term disease control is a realistic goal in many cases. There are emerging clinical studies showing the benefits of an initial antiresorptive therapy using bisphosphonates or denosumab. However, some adverse events of these therapies, such as osteonecrosis of the jaw, correlate with the cumulative doses given, and there is an increasing clinical need for new antiresorptive concepts to treat long-term survivors. This review summarizes the clinical evidence of antiresorptive therapies across different cancers with bone involvement and presents concepts of dose-reduction protocols for long-term survivors with established metastatic bone disease. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Tilman D Rachner
- Division of Endocrinology, Diabetes and Bone Diseases & Center for Healthy Ageing, Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Robert Coleman
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Peyman Hadji
- Frankfurt Center of Bone Health, Frankfurt, Germany.,Philips-University of Marburg, Marburg, Germany
| | - Lorenz C Hofbauer
- Division of Endocrinology, Diabetes and Bone Diseases & Center for Healthy Ageing, Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
71
|
Laudanski K. Persistence of Lipoproteins and Cholesterol Alterations after Sepsis: Implication for Atherosclerosis Progression. Int J Mol Sci 2021; 22:ijms221910517. [PMID: 34638860 PMCID: PMC8508791 DOI: 10.3390/ijms221910517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Sepsis is one of the most common critical care illnesses with increasing survivorship. The quality of life in sepsis survivors is adversely affected by several co-morbidities, including increased incidence of dementia, stroke, cardiac disease and at least temporary deterioration in cognitive dysfunction. One of the potential explanations for their progression is the persistence of lipid profile abnormalities induced during acute sepsis into recovery, resulting in acceleration of atherosclerosis. (2) Methods: This is a targeted review of the abnormalities in the long-term lipid profile abnormalities after sepsis; (3) Results: There is a well-established body of evidence demonstrating acute alteration in lipid profile (HDL-c ↓↓, LDL-C -c ↓↓). In contrast, a limited number of studies demonstrated depression of HDL-c levels with a concomitant increase in LDL-C -c in the wake of sepsis. VLDL-C -c and Lp(a) remained unaltered in few studies as well. Apolipoprotein A1 was altered in survivors suggesting abnormalities in lipoprotein metabolism concomitant to overall lipoprotein abnormalities. However, most of the studies were limited to a four-month follow-up and patient groups were relatively small. Only one study looked at the atherosclerosis progression in sepsis survivors using clinical correlates, demonstrating an acceleration of plaque formation in the aorta, and a large metanalysis suggested an increase in the risk of stroke or acute coronary event between 3% to 9% in sepsis survivors. (4) Conclusions: The limited evidence suggests an emergence and persistence of the proatherogenic lipid profile in sepsis survivors that potentially contributes, along with other factors, to the clinical sequel of atherosclerosis.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA; ; Tel.: +1-215-662-8200
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Leonard Davis Institute of Healthcare Economics, Philadelphia, PA 19104, USA
| |
Collapse
|
72
|
Afshari AR, Mollazadeh H, Henney NC, Jamialahmad T, Sahebkar A. Effects of statins on brain tumors: a review. Semin Cancer Biol 2021; 73:116-133. [DOI: 10.1016/j.semcancer.2020.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 02/06/2023]
|
73
|
Jiang W, Hu JW, He XR, Jin WL, He XY. Statins: a repurposed drug to fight cancer. J Exp Clin Cancer Res 2021; 40:241. [PMID: 34303383 PMCID: PMC8306262 DOI: 10.1186/s13046-021-02041-2] [Citation(s) in RCA: 222] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
As competitive HMG-CoA reductase (HMGCR) inhibitors, statins not only reduce cholesterol and improve cardiovascular risk, but also exhibit pleiotropic effects that are independent of their lipid-lowering effects. Among them, the anti-cancer properties of statins have attracted much attention and indicated the potential of statins as repurposed drugs for the treatment of cancer. A large number of clinical and epidemiological studies have described the anticancer properties of statins, but the evidence for anticancer effectiveness of statins is inconsistent. It may be that certain molecular subtypes of cancer are more vulnerable to statin therapy than others. Whether statins have clinical anticancer effects is still an active area of research. Statins appear to enhance the efficacy and address the shortcomings associated with conventional cancer treatments, suggesting that statins should be considered in the context of combined therapies for cancer. Here, we present a comprehensive review of the potential of statins in anti-cancer treatments. We discuss the current understanding of the mechanisms underlying the anti-cancer properties of statins and their effects on different malignancies. We also provide recommendations for the design of future well-designed clinical trials of the anti-cancer efficacy of statins.
Collapse
Affiliation(s)
- Wen Jiang
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, P. R. China
| | - Jin-Wei Hu
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, P. R. China
| | - Xu-Ran He
- Department of Finance, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, 230001, P. R. China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Xin-Yang He
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, 230001, P. R. China.
| |
Collapse
|
74
|
Abstract
KRAS is one of the most commonly mutated oncogene and a negative predictive factor for a number of targeted therapies. Therefore, the development of targeting strategies against mutant KRAS is urgently needed. One potential strategy involves disruption of K-Ras membrane localization, which is necessary for its proper function. In this review, we summarize the current data about the importance of membrane-anchorage of K-Ras and provide a critical evaluation of this targeting paradigm focusing mainly on prenylation inhibition. Additionally, we performed a RAS mutation-specific analysis of prenylation-related drug sensitivity data from a publicly available database (https://depmap.org/repurposing/) of three classes of prenylation inhibitors: statins, N-bisphosphonates, and farnesyl-transferase inhibitors. We observed significant differences in sensitivity to N-bisphosphonates and farnesyl-transferase inhibitors depending on KRAS mutational status and tissue of origin. These observations emphasize the importance of factors affecting efficacy of prenylation inhibition, like distinct features of different KRAS mutations, tissue-specific mutational patterns, K-Ras turnover, and changes in regulation of prenylation process. Finally, we enlist the factors that might be responsible for the large discrepancy between the outcomes in preclinical and clinical studies including methodological pitfalls, the incomplete understanding of K-Ras protein turnover, and the variation of KRAS dependency in KRAS mutant tumors.
Collapse
|
75
|
Paudel R, Fusi L, Schmidt M. The MEK5/ERK5 Pathway in Health and Disease. Int J Mol Sci 2021; 22:ijms22147594. [PMID: 34299213 PMCID: PMC8303459 DOI: 10.3390/ijms22147594] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
The MEK5/ERK5 mitogen-activated protein kinases (MAPK) cascade is a unique signaling module activated by both mitogens and stress stimuli, including cytokines, fluid shear stress, high osmolarity, and oxidative stress. Physiologically, it is mainly known as a mechanoreceptive pathway in the endothelium, where it transduces the various vasoprotective effects of laminar blood flow. However, it also maintains integrity in other tissues exposed to mechanical stress, including bone, cartilage, and muscle, where it exerts a key function as a survival and differentiation pathway. Beyond its diverse physiological roles, the MEK5/ERK5 pathway has also been implicated in various diseases, including cancer, where it has recently emerged as a major escape route, sustaining tumor cell survival and proliferation under drug stress. In addition, MEK5/ERK5 dysfunction may foster cardiovascular diseases such as atherosclerosis. Here, we highlight the importance of the MEK5/ERK5 pathway in health and disease, focusing on its role as a protective cascade in mechanical stress-exposed healthy tissues and its function as a therapy resistance pathway in cancers. We discuss the perspective of targeting this cascade for cancer treatment and weigh its chances and potential risks when considering its emerging role as a protective stress response pathway.
Collapse
|
76
|
Metabolic Changes in Early-Stage Non-Small Cell Lung Cancer Patients after Surgical Resection. Cancers (Basel) 2021; 13:cancers13123012. [PMID: 34208545 PMCID: PMC8234274 DOI: 10.3390/cancers13123012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Considerable progress in the treatment of non–small cell lung cancer (NSCLC) has been made possible by large-scale technologies that scan the gene expression in tumor cells. While gene expression is informative, it is the changes to cellular metabolism that directly affect the initiation and the progression of the disease. Altered metabolic processes in cancer include how the tumor cells handle fat, proteins, and sugar, produce energy, divide (grow), or migrate. We have used nuclear magnetic resonance and mass spectrometry to survey and document the metabolic changes in blood and urine samples collected from NSCLC patients before and after their lung tumors were surgically removed. We found several molecular compounds that changed in abundance in the blood or urine after surgery, many of which are related to cancer cell metabolism. Further documentation of these changes in large patient populations will lead to non-invasive ways to screen, diagnose, or monitor disease progression in lung cancer patients. Abstract Metabolic alterations in malignant cells play a vital role in tumor initiation, proliferation, and metastasis. Biofluids from patients with non–small cell lung cancer (NSCLC) harbor metabolic biomarkers with potential clinical applications. In this study, we assessed the changes in the metabolic profile of patients with early-stage NSCLC using mass spectrometry and nuclear magnetic resonance spectroscopy before and after surgical resection. A single cohort of 35 patients provided a total of 29 and 32 pairs of urine and serum samples, respectively, pre-and post-surgery. We identified a profile of 48 metabolites that were significantly different pre- and post-surgery: 17 in urine and 31 in serum. A higher proportion of metabolites were upregulated than downregulated post-surgery (p < 0.01); however, the median fold change (FC) was higher for downregulated than upregulated metabolites (p < 0.05). Purines/pyrimidines and proteins had a larger dysregulation than other classes of metabolites (p < 0.05 for each class). Several of the dysregulated metabolites have been previously associated with cancer, including leucyl proline, asymmetric dimethylarginine, isopentenyladenine, fumaric acid (all downregulated post-surgery), as well as N6-methyladenosine and several deoxycholic acid moieties, which were upregulated post-surgery. This study establishes metabolomic analysis of biofluids as a path to non-invasive diagnostics, screening, and monitoring in NSCLC.
Collapse
|
77
|
Ortiz N, Delgado-Carazo JC, Díaz C. Importance of Mevalonate Pathway Lipids on the Growth and Survival of Primary and Metastatic Gastric Carcinoma Cells. Clin Exp Gastroenterol 2021; 14:217-228. [PMID: 34103960 PMCID: PMC8180305 DOI: 10.2147/ceg.s310235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022] Open
Abstract
Purpose This preclinical study aims to determine the effect of drugs that alter isoprenoids and cholesterol metabolism in the homeostasis of gastric carcinoma cell lines in the search for new therapeutic targets for stomach cancer. Materials and Methods Primary (AGS) and metastatic (NCI-N87) gastric cancer cell lines were treated with simvastatin and terbinafine, two inhibitors of the mevalonate pathway, and avasimibe, an inhibitor of cholesterol esterification. Cell viability and growth were measured as well as cholesterol levels and the expression of the hydroxy methyl-glutaryl CoA reductase (HMGCR) and the LDL receptor (LDLR). Results Primary and metastatic gastric carcinoma cells show different sensitivity to drugs that affect isoprenoid synthesis and the metabolism and uptake of cholesterol. Isoprenoids are involved in the growth and viability of both types of cells, but the role of free and esterified cholesterol for metastatic gastric cell survival is not as evident as for primary gastric cancer cells. Differential expression of LDLR due to mevalonate pathway inhibition suggests variations in the regulation of cholesterol uptake between primary and metastatic cancer cells. Conclusion These results indicate that at least for primary gastric cancer, statins and avasimibe are promising candidates as potential novel antitumor drugs that target the metabolism of isoprenoids and cholesterol of gastric tumors.
Collapse
Affiliation(s)
- Natalia Ortiz
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica
| | | | - Cecilia Díaz
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica.,Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
78
|
Lasunción MA, Martínez-Botas J, Martín-Sánchez C, Busto R, Gómez-Coronado D. Cell cycle dependence on the mevalonate pathway: Role of cholesterol and non-sterol isoprenoids. Biochem Pharmacol 2021; 196:114623. [PMID: 34052188 DOI: 10.1016/j.bcp.2021.114623] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022]
Abstract
The mevalonate pathway is responsible for the synthesis of isoprenoids, including sterols and other metabolites that are essential for diverse biological functions. Cholesterol, the main sterol in mammals, and non-sterol isoprenoids are in high demand by rapidly dividing cells. As evidence of its importance, many cell signaling pathways converge on the mevalonate pathway and these include those involved in proliferation, tumor-promotion, and tumor-suppression. As well as being a fundamental building block of cell membranes, cholesterol plays a key role in maintaining their lipid organization and biophysical properties, and it is crucial for the function of proteins located in the plasma membrane. Importantly, cholesterol and other mevalonate derivatives are essential for cell cycle progression, and their deficiency blocks different steps in the cycle. Furthermore, the accumulation of non-isoprenoid mevalonate derivatives can cause DNA replication stress. Identification of the mechanisms underlying the effects of cholesterol and other mevalonate derivatives on cell cycle progression may be useful in the search for new inhibitors, or the repurposing of preexisting cholesterol biosynthesis inhibitors to target cancer cell division. In this review, we discuss the dependence of cell division on an active mevalonate pathway and the role of different mevalonate derivatives in cell cycle progression.
Collapse
Affiliation(s)
- Miguel A Lasunción
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain.
| | - Javier Martínez-Botas
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain
| | - Covadonga Martín-Sánchez
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain
| | - Rebeca Busto
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain
| | - Diego Gómez-Coronado
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain.
| |
Collapse
|
79
|
Tilija Pun N, Jeong CH. Statin as a Potential Chemotherapeutic Agent: Current Updates as a Monotherapy, Combination Therapy, and Treatment for Anti-Cancer Drug Resistance. Pharmaceuticals (Basel) 2021; 14:ph14050470. [PMID: 34065757 PMCID: PMC8156779 DOI: 10.3390/ph14050470] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/31/2022] Open
Abstract
Cancer is incurable because progressive phenotypic and genotypic changes in cancer cells lead to resistance and recurrence. This indicates the need for the development of new drugs or alternative therapeutic strategies. The impediments associated with new drug discovery have necessitated drug repurposing (i.e., the use of old drugs for new therapeutic indications), which is an economical, safe, and efficacious approach as it is emerged from clinical drug development or may even be marketed with a well-established safety profile and optimal dosing. Statins are inhibitors of HMG-CoA reductase in cholesterol biosynthesis and are used in the treatment of hypercholesterolemia, atherosclerosis, and obesity. As cholesterol is linked to the initiation and progression of cancer, statins have been extensively used in cancer therapy with a concept of drug repurposing. Many studies including in vitro and in vivo have shown that statin has been used as monotherapy to inhibit cancer cell proliferation and induce apoptosis. Moreover, it has been used as a combination therapy to mediate synergistic action to overcome anti-cancer drug resistance as well. In this review, the recent explorations are done in vitro, in vivo, and clinical trials to address the action of statin either single or in combination with anti-cancer drugs to improve the chemotherapy of the cancers were discussed. Here, we discussed the emergence of statin as a lipid-lowering drug; its use to inhibit cancer cell proliferation and induction of apoptosis as a monotherapy; and its use in combination with anti-cancer drugs for its synergistic action to overcome anti-cancer drug resistance. Furthermore, we discuss the clinical trials of statins and the current possibilities and limitations of preclinical and clinical investigations.
Collapse
|
80
|
Alcázar-Fabra M, Rodríguez-Sánchez F, Trevisson E, Brea-Calvo G. Primary Coenzyme Q deficiencies: A literature review and online platform of clinical features to uncover genotype-phenotype correlations. Free Radic Biol Med 2021; 167:141-180. [PMID: 33677064 DOI: 10.1016/j.freeradbiomed.2021.02.046] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/13/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022]
Abstract
Primary Coenzyme Q (CoQ) deficiencies are clinically heterogeneous conditions and lack clear genotype-phenotype correlations, complicating diagnosis and prognostic assessment. Here we present a compilation of all the symptoms and patients with primary CoQ deficiency described in the literature so far and analyse the most common clinical manifestations associated with pathogenic variants identified in the different COQ genes. In addition, we identified new associations between the age of onset of symptoms and different pathogenic variants, which could help to a better diagnosis and guided treatment. To make these results useable for clinicians, we created an online platform (https://coenzymeQbiology.github.io/clinic-CoQ-deficiency) about clinical manifestations of primary CoQ deficiency that will be periodically updated to incorporate new information published in the literature. Since CoQ primary deficiency is a rare disease, the available data are still limited, but as new patients are added over time, this tool could become a key resource for a more efficient diagnosis of this pathology.
Collapse
Affiliation(s)
- María Alcázar-Fabra
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA and CIBERER, Instituto de Salud Carlos III, Seville, 41013, Spain
| | | | - Eva Trevisson
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova, 35128, Italy; Istituto di Ricerca Pediatrica, Fondazione Città della Speranza, Padova, 35128, Italy.
| | - Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA and CIBERER, Instituto de Salud Carlos III, Seville, 41013, Spain.
| |
Collapse
|
81
|
Schiliro C, Firestein BL. Mechanisms of Metabolic Reprogramming in Cancer Cells Supporting Enhanced Growth and Proliferation. Cells 2021; 10:cells10051056. [PMID: 33946927 PMCID: PMC8146072 DOI: 10.3390/cells10051056] [Citation(s) in RCA: 270] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer cells alter metabolic processes to sustain their characteristic uncontrolled growth and proliferation. These metabolic alterations include (1) a shift from oxidative phosphorylation to aerobic glycolysis to support the increased need for ATP, (2) increased glutaminolysis for NADPH regeneration, (3) altered flux through the pentose phosphate pathway and the tricarboxylic acid cycle for macromolecule generation, (4) increased lipid uptake, lipogenesis, and cholesterol synthesis, (5) upregulation of one-carbon metabolism for the production of ATP, NADH/NADPH, nucleotides, and glutathione, (6) altered amino acid metabolism, (7) metabolism-based regulation of apoptosis, and (8) the utilization of alternative substrates, such as lactate and acetate. Altered metabolic flux in cancer is controlled by tumor-host cell interactions, key oncogenes, tumor suppressors, and other regulatory molecules, including non-coding RNAs. Changes to metabolic pathways in cancer are dynamic, exhibit plasticity, and are often dependent on the type of tumor and the tumor microenvironment, leading in a shift of thought from the Warburg Effect and the “reverse Warburg Effect” to metabolic plasticity. Understanding the complex nature of altered flux through these multiple pathways in cancer cells can support the development of new therapies.
Collapse
Affiliation(s)
- Chelsea Schiliro
- Cell and Developmental Biology Graduate Program and Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA;
| | - Bonnie L. Firestein
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
- Correspondence: ; Tel.: +1-848-445-8045
| |
Collapse
|
82
|
Chen Z, Chen L, Sun B, Liu D, He Y, Qi L, Li G, Han Z, Zhan L, Zhang S, Zhu K, Luo Y, Chen L, Zhang N, Guo H. LDLR inhibition promotes hepatocellular carcinoma proliferation and metastasis by elevating intracellular cholesterol synthesis through the MEK/ERK signaling pathway. Mol Metab 2021; 51:101230. [PMID: 33823318 PMCID: PMC8102998 DOI: 10.1016/j.molmet.2021.101230] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Abstract
Objective Adaptive rewiring of cancer energy metabolism has received increasing attention. By binding with LDLs, LDLRs make most of the circulating cholesterol available for cells to utilize. However, it remains unclear how LDLR works in HCC development by affecting cholesterol metabolism. Methods Database analyses and immunohistochemical staining were used to identify the clinical significance of LDLR in HCC. A transcriptome analysis was used to reveal the mechanism of LDLR aberration in HCC progression. A liver orthotopic transplantation model was used to evaluate the role of LDLR in HCC progression in vivo. Results Downregulation of LDLR was identified as a negative prognostic factor in human HCC. Reduced expression of LDLR in HCC cell lines impaired LDL uptake but promoted proliferation and metastasis in vitro and in vivo. Mechanistically, increasing intracellular de novo cholesterol biosynthesis was the chief contributor to malignant behaviors caused by LDLR inhibition, which could be rescued by simvastatin. Activation of the MEK/ERK pathway by LDLR downregulation partially contributed to intracellular cholesterol synthesis in HCC. Conclusions Downregulation of LDLR may elevate intracellular cholesterol synthesis to accelerate proliferation and motility through a mechanism partially attributed to stimulation of the MEK/ERK signaling pathway. Repression of intracellular cholesterol synthesis with statins may constitute a targetable liability in the context of lower LDLR expression in HCC. Downregulation of LDLR is identified as a negative prognostic factor in human HCC. LDLR inhibition facilitates the proliferation and metastasis of HCC cells. Increased cholesterol synthesis chiefly contributes to the malignant behaviors caused by LDLR reduction. Blockade of cholesterol synthesis by simvastatin attenuates HCC progression under lower LDLR. Activation of the MEK/ERK pathway by LDLR downregulation promotes cholesterol synthesis in HCC.
Collapse
Affiliation(s)
- Ziye Chen
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Lu Chen
- Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Bo Sun
- The Second Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Dongming Liu
- Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yuchao He
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Lisha Qi
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Guangtao Li
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zhiqiang Han
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Linlin Zhan
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Su Zhang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Keyun Zhu
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yi Luo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Liwei Chen
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Ning Zhang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Translational Cancer Research Center, Peking University First Hospital, Beijing 100034, China.
| | - Hua Guo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| |
Collapse
|
83
|
Huang J, Zhao X, Li X, Peng J, Yang W, Mi S. HMGCR inhibition stabilizes the glycolytic enzyme PKM2 to support the growth of renal cell carcinoma. PLoS Biol 2021; 19:e3001197. [PMID: 33905408 PMCID: PMC8104400 DOI: 10.1371/journal.pbio.3001197] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 05/07/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
Renal cell carcinoma (RCC) is responsible for most cases of the kidney cancer. Previous research showed that low serum levels of cholesterol level positively correlate with poorer RCC-specific survival outcomes. However, the underlying mechanisms and functional significance of the role of cholesterol in the development of RCC remain obscure. 3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) plays a pivotal role in RCC development as it is the key rate-limiting enzyme of the cholesterol biosynthetic pathway. In this study, we demonstrated that the inhibition of HMGCR could accelerate the development of RCC tumors by lactate accumulation and angiogenesis in animal models. We identified that the inhibition of HMGCR led to an increase in glycolysis via the regulated HSP90 expression levels, thus maintaining the levels of a glycolysis rate-limiting enzyme, pyruvate kinase M2 (PKM2). Based on these findings, we reversed the HMGCR inhibition-induced tumor growth acceleration in RCC xenograft mice by suppressing glycolysis. Furthermore, the coadministration of Shikonin, a potent PKM2 inhibitor, reverted the tumor development induced by the HMGCR signaling pathway.
Collapse
Affiliation(s)
- Jiajun Huang
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Xiaoyu Zhao
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Xiang Li
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Jiwei Peng
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Weihao Yang
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Shengli Mi
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| |
Collapse
|
84
|
Haney SL, Varney ML, Chhonker Y, Talmon G, Smith LM, Murry DJ, Holstein SA. In vivo evaluation of combination therapy targeting the isoprenoid biosynthetic pathway. Pharmacol Res 2021; 167:105528. [PMID: 33667685 DOI: 10.1016/j.phrs.2021.105528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
Geranylgeranyl diphosphate synthase (GGDPS), an enzyme in the isoprenoid biosynthetic pathway (IBP), produces the isoprenoid (geranylgeranyl pyrophosphate, GGPP) used in protein geranylgeranylation reactions. Our prior studies utilizing triazole bisphosphonate-based GGDPS inhibitors (GGSIs) have revealed that these agents represent a novel strategy by which to induce cancer cell death, including multiple myeloma and pancreatic cancer. Statins inhibit the rate-limiting enzyme in the IBP and potentiate the effects of GGSIs in vitro. The in vivo effects of combination therapy with statins and GGSIs have not been determined. Here we evaluated the effects of combining VSW1198, a novel GGSI, with a statin (lovastatin or pravastatin) in CD-1 mice. Twice-weekly dosing with VSW1198 at the previously established maximally tolerated dose in combination with a statin led to hepatotoxicity, while once-weekly VSW1198-based combinations were feasible. No abnormalities in kidney, spleen, brain or skeletal muscle were observed with combination therapy. Combination therapy disrupted protein geranylgeranylation in vivo. Evaluation of hepatic isoprenoid levels revealed decreased GGPP levels in the single drug groups and undetectable GGPP levels in the combination groups. Additional studies with combinations using 50% dose-reductions of either VSW1198 or lovastatin revealed minimal hepatotoxicity with expected on-target effects of diminished GGPP levels and disruption of protein geranylgeranylation. Combination statin/GGSI therapy significantly slowed tumor growth in a myeloma xenograft model. Collectively, these studies are the first to demonstrate that combination IBP inhibitor therapy alters isoprenoid levels and disrupts protein geranylgeranylation in vivo as well as slows tumor growth in a myeloma xenograft model, thus providing the framework for future clinical exploration.
Collapse
Affiliation(s)
- Staci L Haney
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Michelle L Varney
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yashpal Chhonker
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Geoffrey Talmon
- Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Lynette M Smith
- College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Daryl J Murry
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sarah A Holstein
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
85
|
Guerra B, Recio C, Aranda-Tavío H, Guerra-Rodríguez M, García-Castellano JM, Fernández-Pérez L. The Mevalonate Pathway, a Metabolic Target in Cancer Therapy. Front Oncol 2021; 11:626971. [PMID: 33718197 PMCID: PMC7947625 DOI: 10.3389/fonc.2021.626971] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
A hallmark of cancer cells includes a metabolic reprograming that provides energy, the essential building blocks, and signaling required to maintain survival, rapid growth, metastasis, and drug resistance of many cancers. The influence of tumor microenviroment on cancer cells also results an essential driving force for cancer progression and drug resistance. Lipid-related enzymes, lipid-derived metabolites and/or signaling pathways linked to critical regulators of lipid metabolism can influence gene expression and chromatin remodeling, cellular differentiation, stress response pathways, or tumor microenviroment, and, collectively, drive tumor development. Reprograming of lipid metabolism includes a deregulated activity of mevalonate (MVA)/cholesterol biosynthetic pathway in specific cancer cells which, in comparison with normal cell counterparts, are dependent of the continuous availability of MVA/cholesterol-derived metabolites (i.e., sterols and non-sterol intermediates) for tumor development. Accordingly, there are increasing amount of data, from preclinical and epidemiological studies, that support an inverse association between the use of statins, potent inhibitors of MVA biosynthetic pathway, and mortality rate in specific cancers (e.g., colon, prostate, liver, breast, hematological malignances). In contrast, despite the tolerance and therapeutic efficacy shown by statins in cardiovascular disease, cancer treatment demands the use of relatively high doses of single statins for a prolonged period, thereby limiting this therapeutic strategy due to adverse effects. Clinically relevant, synergistic effects of tolerable doses of statins with conventional chemotherapy might enhance efficacy with lower doses of each drug and, probably, reduce adverse effects and resistance. In spite of that, clinical trials to identify combinatory therapies that improve therapeutic window are still a challenge. In the present review, we revisit molecular evidences showing that deregulated activity of MVA biosynthetic pathway has an essential role in oncogenesis and drug resistance, and the potential use of MVA pathway inhibitors to improve therapeutic window in cancer.
Collapse
Affiliation(s)
- Borja Guerra
- Molecular and Translational Pharmacology Lab, Institute for Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Carlota Recio
- Molecular and Translational Pharmacology Lab, Institute for Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Haidée Aranda-Tavío
- Molecular and Translational Pharmacology Lab, Institute for Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Miguel Guerra-Rodríguez
- Molecular and Translational Pharmacology Lab, Institute for Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - José M García-Castellano
- Molecular and Translational Pharmacology Lab, Institute for Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Leandro Fernández-Pérez
- Molecular and Translational Pharmacology Lab, Institute for Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
86
|
Manzano-León N, Garcia-Lopez P. Statins as adjuvants in the treatment of ovarian cancer: Controversy and misunderstanding. Eur J Pharmacol 2021; 896:173915. [PMID: 33513335 DOI: 10.1016/j.ejphar.2021.173915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/06/2020] [Accepted: 01/22/2021] [Indexed: 02/03/2023]
Abstract
Ovarian cancer is frequently detected in advanced stages when the chances of survival are very low. Although chemotherapy is the treatment of choice, it is often rapidly compromised by the development of chemoresistance in patients. There are few pharmacological alternatives for managing chemoresistant ovarian cancer and statins have been suggested as an alternative, but their use is considered controversial. We present an overview of the most relevant epidemiological, in vitro and in vivo studies on the effects of statins in mono- or polytherapy for ovarian cancer. We conclude that the negative or inconclusive results of some epidemiological studies on statin-based cancer treatment are probably due, in large part, to the low doses given to patients, equivalent to those prescribed for hypercholesterolemia. Higher concentrations are well tolerated in animal models and by most patients in clinical trials. Future research is necessary to explore this possibility.
Collapse
Affiliation(s)
- Natalia Manzano-León
- Laboratorio de Farmacología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Av. San Fernando 22. Col. Sección XVI, C.P. 14080, CDMX, Mexico.
| | - Patricia Garcia-Lopez
- Laboratorio de Farmacología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Av. San Fernando 22. Col. Sección XVI, C.P. 14080, CDMX, Mexico.
| |
Collapse
|
87
|
Juarez D, Fruman DA. Targeting the Mevalonate Pathway in Cancer. Trends Cancer 2021; 7:525-540. [PMID: 33358111 DOI: 10.1016/j.trecan.2020.11.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
The mevalonate synthesis inhibitors, statins, are mainstay therapeutics for cholesterol management and cardiovascular health. Thirty years of research have uncovered supportive roles for the mevalonate pathway in numerous cellular processes that support oncogenesis, most recently macropinocytosis. Central to the diverse mechanisms of statin sensitivity is an acquired dependence on one mevalonate pathway output, protein geranylgeranylation. New chemical prenylation probes and the discovery of a novel geranylgeranyl transferase hold promise to deepen our understanding of statin mechanisms of action. Further, insights into statin selection and the counterproductive role of dietary geranylgeraniol highlight how we should assess statins in the clinic. Lastly, rational combination strategies preview how statins will enter the oncology toolbox.
Collapse
Affiliation(s)
- Dennis Juarez
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - David A Fruman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
88
|
Xu B, Muramatsu T, Inazawa J. Suppression of MET Signaling Mediated by Pitavastatin and Capmatinib Inhibits Oral and Esophageal Cancer Cell Growth. Mol Cancer Res 2020; 19:585-597. [PMID: 33443139 DOI: 10.1158/1541-7786.mcr-20-0688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/09/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022]
Abstract
Despite increasing knowledge on oral and esophageal squamous cell carcinoma (OSCC and ESCC), specific medicines against both have not yet been developed. Here, we aimed to find novel anticancer drugs through functional cell-based screening of an FDA-approved drug library against OSCC and ESCC. Pitavastatin, an HMGCR inhibitor, emerged as an anticancer drug that inhibits tumor growth by downregulating AKT and ERK signals in OSCC and ESCC cells. One of the mechanisms by which pitavastatin inhibits cell growth might be the suppression of MET signaling through immature MET due to dysfunction of the Golgi apparatus. Moreover, the sensitivity of tumor growth to pitavastatin might be correlated with GGPS1 expression levels. In vivo therapeutic models revealed that the combination of pitavastatin with capmatinib, a MET-specific inhibitor, dramatically reduced tumor growth. Our findings suggest that GGPS1 expression could be a biomarker in cancer therapy with pitavastatin, and the combination of pitavastatin with capmatinib might be a promising therapeutic strategy in OSCC and ESCC. IMPLICATIONS: This study provides new insight into the mechanism of pitavastatin as an anticancer drug and suggests that the combination of pitavastatin with capmatinib is a useful therapeutic strategy in OSCC and ESCC.
Collapse
Affiliation(s)
- Bo Xu
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tomoki Muramatsu
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan. .,Laboratory for Integrated Research Projects on Intractable Diseases, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan. .,Bioresource Research Center, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
89
|
Audano M, Pedretti S, Ligorio S, Crestani M, Caruso D, De Fabiani E, Mitro N. "The Loss of Golden Touch": Mitochondria-Organelle Interactions, Metabolism, and Cancer. Cells 2020; 9:cells9112519. [PMID: 33233365 PMCID: PMC7700504 DOI: 10.3390/cells9112519] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Mitochondria represent the energy hub of cells and their function is under the constant influence of their tethering with other subcellular organelles. Mitochondria interact with the endoplasmic reticulum, lysosomes, cytoskeleton, peroxisomes, and nucleus in several ways, ranging from signal transduction, vesicle transport, and membrane contact sites, to regulate energy metabolism, biosynthetic processes, apoptosis, and cell turnover. Tumorigenesis is often associated with mitochondrial dysfunction, which could likely be the result of an altered interaction with different cell organelles or structures. The purpose of the present review is to provide an updated overview of the links between inter-organellar communications and interactions and metabolism in cancer cells, with a focus on mitochondria. The very recent publication of several reviews on these aspects testifies the great interest in the area. Here, we aim at (1) summarizing recent evidence supporting that the metabolic rewiring and adaptation observed in tumors deeply affect organelle dynamics and cellular functions and vice versa; (2) discussing insights on the underlying mechanisms, when available; and (3) critically presenting the gaps in the field that need to be filled, for a comprehensive understanding of tumor cells’ biology. Chemo-resistance and druggable vulnerabilities of cancer cells related to the aspects mentioned above is also outlined.
Collapse
Affiliation(s)
| | | | | | | | | | - Emma De Fabiani
- Correspondence: (E.D.F.); (N.M.); Tel.: +39-02-503-18329 (E.D.F.); +39-02-503-18253 (N.M.)
| | - Nico Mitro
- Correspondence: (E.D.F.); (N.M.); Tel.: +39-02-503-18329 (E.D.F.); +39-02-503-18253 (N.M.)
| |
Collapse
|
90
|
The mevalonate pathway promotes the metastasis of osteosarcoma by regulating YAP1 activity via RhoA. Genes Dis 2020; 9:741-752. [PMID: 35782968 PMCID: PMC9243346 DOI: 10.1016/j.gendis.2020.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/21/2020] [Accepted: 11/16/2020] [Indexed: 11/30/2022] Open
Abstract
Osteosarcoma is the most common malignant bone tumour, and the metastasis of osteosarcoma is an important cause of death. Evidence has shown that the mevalonate pathway is highly activated and is expected to be a new target for tumour therapy. In this study, we investigated the effect of mevalonate signalling on osteosarcoma metastasis and its molecular mechanism. First, we found that the key rate-limiting enzyme of mevalonate signalling, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), was highly expressed in osteosarcoma cells, and inhibition of HMGCR with simvastatin significantly inhibited the motility of 143B cells. Next, we found that YAP1 activity was significantly upregulated in osteosarcoma cells and that YAP1 knockdown inhibited the motility of 143B cells. We also found that the mevalonate pathway regulated the motility of 143B cells by modulating YAP1 phosphorylation and cellular localization. Moreover, we found that the activity of YAP1 was regulated by the mevalonate pathway by modulating the cell membrane localization of RhoA. Finally, we demonstrated that inhibition of the mevalonate pathway notably reduced the lung metastasis of 143B cells, as reflected by the decreased incidence and number of metastatic nodules and the increased survival time of the nude mice. Taken together, our findings suggest that the mevalonate pathway can promote the metastasis of osteosarcoma by activating YAP1 via RhoA. Inhibition of the mevalonate pathway may be a promising therapeutic strategy for osteosarcoma metastasis.
Collapse
|
91
|
Ortiz N, Díaz C. Mevalonate pathway as a novel target for the treatment of metastatic gastric cancer. Oncol Lett 2020; 20:320. [PMID: 33093924 PMCID: PMC7573883 DOI: 10.3892/ol.2020.12183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
Gastric mucosa tumors may present as two distinct major entities: Diffuse and intestinal subtypes. There is no standard treatment for advanced or metastatic gastric cancer. The mevalonate pathway and cholesterol homeostasis are important processes in cancer cells that may be highly relevant in terms of cell growth, survival and metastatic potential. Two model cell lines representing intestinal (NCI-N87) and diffuse (Hs746T) metastatic gastric tumor histological subtypes were treated with different drugs that alter membrane lipid metabolism to determine whether cell proliferation, viability and migration were affected. The results indicated that the cells exhibited significant differences in proliferation when treated with the cholesterol-lowering drug simvastatin, but not with terbinafine, another compound that affects cholesterol synthesis. Only simvastatin affected migration in both cell lines. Reposition studies with mevalonolactone, farnesyl pyrophosphate and geranylgeranyl pyrophosphate in the presence of high and low FBS concentrations indicated that both isoprenoids and cholesterol reversed the antiproliferative effects of simvastatin in gastric cancer cells. The cell lines used in the present study had different sensitivities to several potential anti-neoplastic agents that affect the synthesis of membrane lipids. The diffuse gastric cancer cells were particularly sensitive to simvastatin, suggesting it as an option for combination treatment.
Collapse
Affiliation(s)
- Natalia Ortiz
- Department of Biochemistry, School of Medicine, University of Costa Rica, San Pedro de Montes de Oca, San José 11501-2060, Costa Rica
| | - Cecilia Díaz
- Department of Biochemistry, School of Medicine, University of Costa Rica, San Pedro de Montes de Oca, San José 11501-2060, Costa Rica.,Institute Clodomiro Picado, Faculty of Microbiology, University of Costa Rica, San Pedro de Montes de Oca, San José 11501-2060, Costa Rica
| |
Collapse
|
92
|
Kobayashi K, Baba K, Kambayashi S, Okuda M. Effect of simvastatin on cell proliferation and Ras activation in canine tumour cells. Vet Comp Oncol 2020; 19:99-108. [PMID: 32779819 DOI: 10.1111/vco.12644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 12/24/2022]
Abstract
Statins are inhibitors of the mevalonate cascade that is responsible for cholesterol biosynthesis and the formation of intermediate metabolites, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) used in the prenylation of proteins. Although statins are widely used in the treatment of hypercholesterolemia, recent studies suggest that they also inhibit proliferation of tumour cells by reducing prenylation of small GTP-binding proteins, such as, Ras. This study aimed to evaluate the effect of simvastatin on cell proliferation and Ras activation in various canine tumour cell lines, including hemangiosarcoma (HSA), melanoma, and lymphoma cell lines. Simvastatin inhibited cell proliferation of all cell lines tested in a concentration- and time-dependent manner, but the susceptibilities were different amongst the cell lines. Simvastatin induced apoptotic cell death via activation of caspase-3 and cell cycle arrest. The cytotoxic effects of simvastatin were attenuated by GGPP and FPP. Simvastatin decreased the amount of prenylated Ras and GTP-bound Ras in HSA and melanoma cell lines, but not in lymphoma cell lines. These results indicate that simvastatin induces cytotoxic effects through the depletion of GGPP and FPP in a variety of canine tumour cells, whereas multiple mechanisms are involved in the effects. Further study is required to elucidate the underlying mechanisms of simvastatin-induced cytotoxic effects in a variety of canine tumour cells.
Collapse
Affiliation(s)
- Kosuke Kobayashi
- Laboratory of Veterinary Internal Medicine, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Kenji Baba
- Laboratory of Veterinary Internal Medicine, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Satoshi Kambayashi
- Laboratory of Veterinary Internal Medicine, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Masaru Okuda
- Laboratory of Veterinary Internal Medicine, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
93
|
Xue L, Qi H, Zhang H, Ding L, Huang Q, Zhao D, Wu BJ, Li X. Targeting SREBP-2-Regulated Mevalonate Metabolism for Cancer Therapy. Front Oncol 2020; 10:1510. [PMID: 32974183 PMCID: PMC7472741 DOI: 10.3389/fonc.2020.01510] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Recently, targeting metabolic reprogramming has emerged as a potential therapeutic approach for fighting cancer. Sterol regulatory element binding protein-2 (SREBP-2), a basic helix-loop-helix leucine zipper transcription factor, mainly regulates genes involved in cholesterol biosynthesis and homeostasis. SREBP-2 binds to the sterol regulatory elements (SREs) in the promoters of its target genes and activates the transcription of mevalonate pathway genes, such as HMG-CoA reductase (HMGCR), mevalonate kinase and other key enzymes. In this review, we first summarized the structure of SREBP-2 and its activation and regulation by multiple signaling pathways. We then found that SREBP-2 and its regulated enzymes, including HMGCR, FPPS, SQS, and DHCR4 from the mevalonate pathway, participate in the progression of various cancers, including prostate, breast, lung, and hepatocellular cancer, as potential targets. Importantly, preclinical and clinical research demonstrated that fatostatin, statins, and N-BPs targeting SREBP-2, HMGCR, and FPPS, respectively, alone or in combination with other drugs, have been used for the treatment of different cancers. This review summarizes new insights into the critical role of the SREBP-2-regulated mevalonate pathway for cancer and its potential for targeted cancer therapy.
Collapse
Affiliation(s)
- Linyuan Xue
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hongyu Qi
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - He Zhang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Lu Ding
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Qingxia Huang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Boyang Jason Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, United States
| | - Xiangyan Li
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
94
|
Göbel A, Zinna VM, Dell'Endice S, Jaschke N, Kuhlmann JD, Wimberger P, Rachner TD. Anti-tumor effects of mevalonate pathway inhibition in ovarian cancer. BMC Cancer 2020; 20:703. [PMID: 32727400 PMCID: PMC7388525 DOI: 10.1186/s12885-020-07164-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Ovarian cancer remains the most fatal gynecological malignancy. Current therapeutic options are limited due to late diagnosis in the majority of the cases, metastatic spread to the peritoneal cavity and the onset of chemo-resistance. Thus, novel therapeutic approaches are required. Statins and amino-bisphosphonates are inhibitors of the mevalonate pathway, which is a fundamental pathway of cellular metabolism, essential for cholesterol production and posttranslational protein farnesylation and geranylgeranylation. While this pathway has emerged as a promising treatment target in several human malignancies, its potential as a therapeutic approach in ovarian cancer is still not fully understood. METHODS Human ovarian cancer cell lines (IGROV-1, A2780, A2780cis) were treated with increasing concentrations (0.5-100 μM) of statins (simvastatin, atorvastatin, rosuvastatin) and zoledronic acid. Effects on cell vitality and apoptosis were assessed using Cell Titer Blue®, Caspase 3/7 Glo®, clonogenic assays as well as cleaved poly (ADP-ribose) polymerase (cPARP) detection. The inhibition of the mevalonate pathway was confirmed using Western Blot of unprenylated Ras and Rap1a proteins. Quantitative real-time PCR and ELISA were used to analyze modulations on several key regulators of ovarian cancer tumorigenesis. RESULTS The treatment of IGROV-1 and A2780 cells with statins and zoledronic acid reduced vitality (by up to 80%; p < 0.001) and induced apoptosis by up to 8-folds (p < 0.001) in a dose-dependent fashion. Rescue experiments using farnesyl pyrophosphate or geranylgeranyl pyrophosphate evidenced that blocked geranylgeranylation is the major underlying mechanism of the pro-apoptotic effects. Gene expression of the tumor-promoting cytokines and mediators, such as transforming growth factor (TGF)-β1, vascular endothelial growth factor (VEGF), interleukin (IL)-8, and IL-6 were significantly suppressed by statins and zoledronic acid by up to 90% (p < 0.001). For all readouts, simvastatin was most potent of all agents used. Cisplatin-resistant A2780cis cells showed a relative resistance to statins and zoledronic acid. However, similar to the effects in A2780 cells, simvastatin and zoledronic acid significantly induced caspase 3/7 activation (6-folds; p < 0.001). CONCLUSION Our in vitro findings point to promising anti-tumor effects of statins and zoledronic acid in ovarian cancer and warrant additional validation in preclinical and clinical settings.
Collapse
Affiliation(s)
- Andy Göbel
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität, Fetscherstraße 74, 01307, Dresden, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Valentina M Zinna
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Stefania Dell'Endice
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität, Fetscherstraße 74, 01307, Dresden, Germany
| | - Nikolai Jaschke
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität, Fetscherstraße 74, 01307, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Jan Dominik Kuhlmann
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Pauline Wimberger
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Tilman D Rachner
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität, Fetscherstraße 74, 01307, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
95
|
Cholesterol metabolism: New functions and therapeutic approaches in cancer. Biochim Biophys Acta Rev Cancer 2020; 1874:188394. [PMID: 32698040 DOI: 10.1016/j.bbcan.2020.188394] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/08/2020] [Accepted: 07/12/2020] [Indexed: 02/05/2023]
Abstract
Cholesterol and its metabolites (precursors and derivatives) play an important role in cancer. In recent years, numerous studies have reported the functions of cholesterol metabolism in the regulation of tumor biological processes, especially oncogenic signaling pathways, ferroptosis, and tumor microenvironment. Preclinical studies have over the years indicated the inhibitory effects of blocking cholesterol synthesis and uptake on tumor formation and growth. Besides, some new cholesterol metabolic molecules such as SOAT1, SQLE, and NPC1 have recently emerged as promising drug targets for cancer treatment. Here, we systematically review the roles of cholesterol and its metabolites, and the latest advances in cancer therapy targeting cholesterol metabolism.
Collapse
|
96
|
Targeting Oxidative Stress for Disease Prevention and Therapy: Where Do We Stand, and Where Do We Go from Here. Molecules 2020; 25:molecules25112653. [PMID: 32517368 PMCID: PMC7321135 DOI: 10.3390/molecules25112653] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress (OxS) is one of the main processes related to aging and a common denominator of many different chronic/degenerative diseases (e.g., cardiovascular and neurodegenerative conditions and cancer). Thus, its potential modulation by supplementation/pharmacological therapy caused a lot of interest. However, these expectations have been mitigated by the obtainment of controversial results (beneficial, null, or adverse effects) following antioxidant interventions. Here, we discuss the current understanding of OxS assessment in health and disease, challenges and the potential of its evaluation in clinical practice, and available and future development for supplementation and pharmacologic strategies targeting OxS.
Collapse
|
97
|
Wang IH, Huang TT, Chen JL, Chu LW, Ping YH, Hsu KW, Huang KH, Fang WL, Lee HC, Chen CF, Liao CC, Hsieh RH, Yeh TS. Mevalonate Pathway Enzyme HMGCS1 Contributes to Gastric Cancer Progression. Cancers (Basel) 2020; 12:1088. [PMID: 32349352 PMCID: PMC7281414 DOI: 10.3390/cancers12051088] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 01/26/2023] Open
Abstract
The 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) is a potential regulatory node in the mevalonate pathway that is frequently dysregulated in tumors. This study found that HMGCS1 expression is upregulated in stomach adenocarcinoma samples of patients and tumorspheres of gastric cancer cells. HMGCS1 elevates the expression levels of the pluripotency genes Oct4 and SOX-2 and contributes to tumorsphere formation ability in gastric cancer cells. HMGCS1 also promotes in vitro cell growth and progression and the in vivo tumor growth and lung metastasis of gastric cancer cells. After blocking the mevalonate pathway by statin and dipyridamole, HMGCS1 exerts nonmetabolic functions in enhancing gastric cancer progression. Furthermore, the level and nuclear translocation of HMGCS1 in gastric cancer cells are induced by serum deprivation. HMGCS1 binds to and activates Oct4 and SOX-2 promoters. HMGCS1 also enhances the integrated stress response (ISR) and interacts with the endoplasmic reticulum (ER) stress transducer protein kinase RNA-like endoplasmic reticulum kinase (PERK). Our results reveal that HMGCS1 contributes to gastric cancer progression in both metabolic and nonmetabolic manners.
Collapse
Affiliation(s)
- I-Han Wang
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei 112, Taiwan;
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (T.-T.H.); (J.-L.C.)
| | - Tzu-Ting Huang
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (T.-T.H.); (J.-L.C.)
| | - Ji-Lin Chen
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (T.-T.H.); (J.-L.C.)
| | - Li-Wei Chu
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (L.-W.C.); (Y.-H.P.); (H.-C.L.)
| | - Yueh-Hsin Ping
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (L.-W.C.); (Y.-H.P.); (H.-C.L.)
| | - Kai-Wen Hsu
- Research Center for Tumor Medical Science, China Medical University, Taichung 404, Taiwan;
- Graduate Institutes of New Drug Development, China Medical University, Taichung 404, Taiwan
| | - Kuo-Hung Huang
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (K.-H.H.); (W.-L.F.)
- Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Wen-Liang Fang
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (K.-H.H.); (W.-L.F.)
- Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Hsin-Chen Lee
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (L.-W.C.); (Y.-H.P.); (H.-C.L.)
| | - Chian-Feng Chen
- Cancer Progression Research Center, National Yang-Ming University, Taipei 112, Taiwan;
| | - Chen-Chung Liao
- Proteomics Research Center, National Yang-Ming University, Taipei 112, Taiwan;
| | - Rong-Hong Hsieh
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan;
| | - Tien-Shun Yeh
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (T.-T.H.); (J.-L.C.)
- Cancer Progression Research Center, National Yang-Ming University, Taipei 112, Taiwan;
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|