51
|
Mizes KGC, Lindsey J, Escola GS, Ölveczky BP. Dissociating the contributions of sensorimotor striatum to automatic and visually guided motor sequences. Nat Neurosci 2023; 26:1791-1804. [PMID: 37667040 PMCID: PMC11187818 DOI: 10.1038/s41593-023-01431-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/14/2023] [Indexed: 09/06/2023]
Abstract
The ability to sequence movements in response to new task demands enables rich and adaptive behavior. However, such flexibility is computationally costly and can result in halting performances. Practicing the same motor sequence repeatedly can render its execution precise, fast and effortless, that is, 'automatic'. The basal ganglia are thought to underlie both types of sequence execution, yet whether and how their contributions differ is unclear. We parse this in rats trained to perform the same motor sequence instructed by cues and in a self-initiated overtrained, or 'automatic,' condition. Neural recordings in the sensorimotor striatum revealed a kinematic code independent of the execution mode. Although lesions reduced the movement speed and affected detailed kinematics similarly, they disrupted high-level sequence structure for automatic, but not visually guided, behaviors. These results suggest that the basal ganglia are essential for 'automatic' motor skills that are defined in terms of continuous kinematics, but can be dispensable for discrete motor sequences guided by sensory cues.
Collapse
Affiliation(s)
- Kevin G C Mizes
- Program in Biophysics, Harvard University, Cambridge, MA, USA
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Jack Lindsey
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York City, NY, USA
| | - G Sean Escola
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York City, NY, USA
- Department of Psychiatry, Columbia University, New York City, NY, USA
| | - Bence P Ölveczky
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
52
|
Puyjarinet F, Madramany P, Autexier A, Madieu E, Nesensohn J, Biotteau M. Psychomotor intervention to improve handwriting skills in children with ADHD: A single-case experimental design with direct inter-subject and systematic replications. Neuropsychol Rehabil 2023; 33:1537-1563. [PMID: 36007100 DOI: 10.1080/09602011.2022.2114503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/15/2022] [Indexed: 02/04/2023]
Abstract
Dysgraphia is highly prevalent in children with attention deficit hyperactivity disorder (ADHD) and adversely affects academic and developmental trajectories. To date, no study has rigorously examined the effects of a training program on handwriting quality in this specific population. Our objective was thus to develop an innovative program - we entitled PRO-PEN - and to evaluate its effects. We planned a multiple-baseline design across participants from grade 3-5, with direct inter-subject and systematic replications. Children of Group 1 (n = 4) were diagnosed with ADHD. Systematic replication was conducted in a second group of participants (Group 2, n = 4) with a diagnosis of developmental coordination disorder in addition to ADHD. The primary assessment focused on quality of handwriting. Generalization measures evaluated diverse neuropsychological and behavioural domains. In Group 1, effect sizes regarding handwriting quality were large (Taus > .60). Improvement was also observed for children of Group 2 (Taus > .50). Importantly, the positive effects persisted three months after the end of the training. Generalization effects extended beyond handwriting sphere. Therefore, PRO-PEN can be considered a promising training program for improving handwriting quality in ADHD, with a possible impact on wide cerebral regulation loops underpinning both handwriting and other neuropsychological and behavioural domains.
Collapse
Affiliation(s)
- Frédéric Puyjarinet
- University of Montpellier, UFR Médecine Montpellier-Nîmes, Institut de Formation en Psychomotricité de Montpellier, Montpellier, France
| | | | - Anne Autexier
- Academy of Montpellier, French National Education Institute, France
| | | | - Jessica Nesensohn
- University of Montpellier, UFR Médecine Montpellier-Nîmes, Institut de Formation en Psychomotricité de Montpellier, Montpellier, France
- CHRU of Montpellier, Montpellier, France
| | - Maëlle Biotteau
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
- Children's Hospital, Toulouse-Purpan University Hospital, Toulouse, France
| |
Collapse
|
53
|
Keith CM, McCuddy WT, Lindberg K, Miller LE, Bryant K, Mehta RI, Wilhelmsen K, Miller M, Navia RO, Ward M, Deib G, D'Haese PF, Haut MW. Procedural learning and retention relative to explicit learning and retention in mild cognitive impairment and Alzheimer's disease using a modification of the trail making test. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2023; 30:669-686. [PMID: 35603568 DOI: 10.1080/13825585.2022.2077297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
Abstract
Amnestic mild cognitive impairment (aMCI) and Alzheimer's disease (AD) dementia are characterized by pathological changes to the medial temporal lobes, resulting in explicit learning and retention reductions. Studies demonstrate that implicit/procedural memory processes are relatively intact in these populations, supporting different anatomical substrates for differing memory systems. This study examined differences between explicit and procedural learning and retention in individuals with aMCI and AD dementia relative to matched healthy controls. We also examined anatomical substrates using volumetric MRI. Results revealed expected difficulties with explicit learning and retention in individuals with aMCI and AD with relatively preserved procedural memory. Explicit verbal retention was associated with medial temporal cortex volumes. However, procedural retention was not related to medial temporal or basal ganglia volumes. Overall, this study confirms the dissociation between explicit relative to procedural learning and retention in aMCI and AD dementia and supports differing anatomical substrates.
Collapse
Affiliation(s)
- Cierra M Keith
- Department of Behavioral Medicine and Psychiatry, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- The Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - William T McCuddy
- Department of Behavioral Medicine and Psychiatry, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- The Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Katharine Lindberg
- Department of Behavioral Medicine and Psychiatry, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- The Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Liv E Miller
- Department of Behavioral Medicine and Psychiatry, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- The Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Kirk Bryant
- Department of Behavioral Medicine and Psychiatry, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- The Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Rashi I Mehta
- The Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Neuroradiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Kirk Wilhelmsen
- The Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Neurology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Mark Miller
- Department of Behavioral Medicine and Psychiatry, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- The Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - R Osvaldo Navia
- The Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Medicine, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Melanie Ward
- The Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Neurology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Gerard Deib
- The Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Neuroradiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Pierre-François D'Haese
- The Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Neuroradiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Marc W Haut
- Department of Behavioral Medicine and Psychiatry, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- The Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Neurology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| |
Collapse
|
54
|
Herzog R, Bolte C, Radecke JO, von Möller K, Lencer R, Tzvi E, Münchau A, Bäumer T, Weissbach A. Neuronavigated Cerebellar 50 Hz tACS: Attenuation of Stimulation Effects by Motor Sequence Learning. Biomedicines 2023; 11:2218. [PMID: 37626715 PMCID: PMC10452137 DOI: 10.3390/biomedicines11082218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Cerebellar transcranial alternating current stimulation (tACS) is an emerging non-invasive technique that induces electric fields to modulate cerebellar function. Although the effect of cortical tACS seems to be state-dependent, the impact of concurrent motor activation and the duration of stimulation on the effects of cerebellar tACS has not yet been examined. In our study, 20 healthy subjects received neuronavigated 50 Hz cerebellar tACS for 40 s or 20 min, each during performance using a motor sequence learning task (MSL) and at rest. We measured the motor evoked potential (MEP) before and at two time points after tACS application to assess corticospinal excitability. Additionally, we investigated the online effect of tACS on MSL. Individual electric field simulations were computed to evaluate the distribution of electric fields, showing a focal electric field in the right cerebellar hemisphere with the highest intensities in lobe VIIb, VIII and IX. Corticospinal excitability was only increased after tACS was applied for 40 s or 20 min at rest, and motor activation during tACS (MSL) cancelled this effect. In addition, performance was better (shorter reaction times) for the learned sequences after 20 min of tACS, indicating more pronounced learning under 20 min of tACS compared to tACS applied only in the first 40 s.
Collapse
Affiliation(s)
- Rebecca Herzog
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; (R.H.); (C.B.)
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Department of Neurology, University Hospital Schleswig Holstein, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Christina Bolte
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; (R.H.); (C.B.)
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Jan-Ole Radecke
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Kathinka von Möller
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; (R.H.); (C.B.)
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Rebekka Lencer
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Elinor Tzvi
- Department of Neurology, Leipzig University, Liebigstraße 20, 04103 Leipzig, Germany
- Syte Institute, Hohe Bleichen 8, 20354 Hamburg, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; (R.H.); (C.B.)
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Tobias Bäumer
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; (R.H.); (C.B.)
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Anne Weissbach
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; (R.H.); (C.B.)
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| |
Collapse
|
55
|
García‐Ramos BR, Villarroel R, González‐Mora JL, Revert C, Modroño C. Neurofunctional correlates of a neurorehabilitation system based on eye movements in chronic stroke impairment levels: A pilot study. Brain Behav 2023; 13:e3049. [PMID: 37434341 PMCID: PMC10454340 DOI: 10.1002/brb3.3049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/06/2023] [Accepted: 04/18/2023] [Indexed: 07/13/2023] Open
Abstract
INTRODUCTION Rehabilitation after a stroke is widely considered fundamental to improve secondary functional impairments. Accessible methods based on motor learning, motor transfer and virtual environments are necessary to help to improve stroke patients' quality of life. OBJECTIVES Continuing the line of our previous studies, this work investigated the effect of our new and innovative game-based virtual reality training using the control of virtual objects with gaze in three chronic stroke survivors. METHODS All participants performed an eye-controlled virtual training task for 4 weeks. Pre- and post-training evaluation were carried out with the Fugl-Meyer Assessment for upper extremity scale as well as performing a tracking task inside an MRI scanner with a MRI-compatible eye-tracker or a joystick. RESULTS Neural results for each participant show the increase of activity in the motor cortex, basal ganglia and cerebellum for both effectors (hand or eye). CONCLUSION These promising results have a potential application as a new game-based neurorehabilitation approach to enhance the motor activity of stroke patients.
Collapse
Affiliation(s)
| | - Rebeca Villarroel
- Departamento de Ciencias Médicas BásicasUniversidad de la LagunaTenerifeSpain
| | - José L. González‐Mora
- Departamento de Ciencias Médicas BásicasUniversidad de la LagunaTenerifeSpain
- Instituto de Tecnologías BiomédicasUniversidad de la LagunaTenerifeSpain
- Instituto Universitario de NeurocienciaUniversidad de la LagunaTenerifeSpain
| | - Consuelo Revert
- Departamento de Medicina Física y FarmacologíaUniversidad de la LagunaTenerifeSpain
| | - Cristián Modroño
- Departamento de Ciencias Médicas BásicasUniversidad de la LagunaTenerifeSpain
- Instituto de Tecnologías BiomédicasUniversidad de la LagunaTenerifeSpain
- Instituto Universitario de NeurocienciaUniversidad de la LagunaTenerifeSpain
| |
Collapse
|
56
|
Yang CJ, Yu HY, Hong TY, Shih CH, Yeh TC, Chen LF, Hsieh JC. Trait representation of embodied cognition in dancers pivoting on the extended mirror neuron system: a resting-state fMRI study. Front Hum Neurosci 2023; 17:1173993. [PMID: 37492559 PMCID: PMC10364845 DOI: 10.3389/fnhum.2023.1173993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/14/2023] [Indexed: 07/27/2023] Open
Abstract
Introduction Dance is an art form that integrates the body and mind through movement. Dancers develop exceptional physical and mental abilities that involve various neurocognitive processes linked to embodied cognition. We propose that dancers' primary trait representation is movement-actuated and relies on the extended mirror neuron system (eMNS). Methods A total of 29 dancers and 28 non-dancer controls were recruited. A hierarchical approach of intra-regional and inter-regional functional connectivity (FC) analysis was adopted to probe trait-like neurodynamics within and between regions in the eMNS during rest. Correlation analyses were employed to examine the associations between dance training, creativity, and the FC within and between different brain regions. Results Within the eMNS, dancers exhibited increased intra-regional FC in various brain regions compared to non-dancers. These regions include the left inferior frontal gyrus, left ventral premotor cortex, left anterior insula, left posterior cerebellum (crus II), and bilateral basal ganglia (putamen and globus pallidus). Dancers also exhibited greater intrinsic inter-regional FC between the cerebellum and the core/limbic mirror areas within the eMNS. In dancers, there was a negative correlation observed between practice intensity and the intrinsic FC within the eMNS involving the cerebellum and basal ganglia. Additionally, FCs from the basal ganglia to the dorsolateral prefrontal cortex were found to be negatively correlated with originality in dancers. Discussion Our results highlight the proficient communication within the cortical-subcortical hierarchy of the eMNS in dancers, linked to the automaticity and cognitive-motor interactions acquired through training. Altered functional couplings in the eMNS can be regarded as a unique neural signature specific to virtuoso dancers, which might predispose them for skilled dancing performance, perception, and creation.
Collapse
Affiliation(s)
- Ching-Ju Yang
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Hsin-Yen Yu
- Graduate Institute of Arts and Humanities Education, Taipei National University of the Arts, Taipei City, Taiwan
| | - Tzu-Yi Hong
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Chung-Heng Shih
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Tzu-Chen Yeh
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Li-Fen Chen
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei City, Taiwan
- Institute of Biomedical Informatics, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Jen-Chuen Hsieh
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei City, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
57
|
Yadav G, Duque J. Reflecting on what is "skill" in human motor skill learning. Front Hum Neurosci 2023; 17:1117889. [PMID: 37484917 PMCID: PMC10356990 DOI: 10.3389/fnhum.2023.1117889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Humans have an exceptional ability to execute a variety of skilled movements. Researchers have been long interested in understanding behavioral and neurophysiological basis of human motor skill learning for advancing both fundamental neuroscientific knowledge and clinical outcomes. However, despite decades of work in this field there is a lack of consensus about what is meant by "skill" in skill learning. With an advent of various task paradigms testing human motor behavior and increasing heterogeneity in motor learning assessments methods, it is very crucial to identify key features of skill in order to avoid any ambiguity that may result in misinterpretation or over-generalization of findings, which could have serious implications for replication and translational research. In this review, we attempt to highlight the features of skill following a historical approach, considering the seminal work that led to the first definitions of skill and including some contemporary concepts emerging from human motor learning research. Overall, based on this literature, we emphasize that skill has some fundamental characteristics, such as- (i) optimal movement selection and execution, (ii) improved movement speed and accuracy, and (iii) reduced movement variability and error. These features of skill can emerge as a consequence of extensive practice/training/learning, thus resulting in an improved performance state beyond baseline levels. Finally we provide some examples of model tasks that can appropriately capture these features of skill, and conclude that any neuroscientific endeavor aimed at understanding the essence of skill in human motor skill learning should focus on these aspects.
Collapse
|
58
|
Kumar J, Patel T, Sugandh F, Dev J, Kumar U, Adeeb M, Kachhadia MP, Puri P, Prachi F, Zaman MU, Kumar S, Varrassi G, Syed ARS. Innovative Approaches and Therapies to Enhance Neuroplasticity and Promote Recovery in Patients With Neurological Disorders: A Narrative Review. Cureus 2023; 15:e41914. [PMID: 37588309 PMCID: PMC10425702 DOI: 10.7759/cureus.41914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 07/15/2023] [Indexed: 08/18/2023] Open
Abstract
Brain rehabilitation and recovery for people with neurological disorders, such as stroke, traumatic brain injury (TBI), and neurodegenerative diseases, depend mainly on neuroplasticity, the brain's capacity to restructure and adapt. This literature review aims to look into cutting-edge methods and treatments that support neuroplasticity and recovery in these groups. A thorough search of electronic databases revealed a wide range of research and papers investigating several neuroplasticity-targeting methods, such as cognitive training, physical activity, non-invasive brain stimulation, and pharmaceutical interventions. The results indicate that these therapies can control neuroplasticity and improve motor, mental, and sensory function. In addition, cutting-edge approaches, such as virtual reality (VR) and brain-computer interfaces (BCIs), promise to increase neuroplasticity and foster rehabilitation. However, many issues and restrictions still need to be resolved, including the demand for individualized treatments and the absence of defined standards. In conclusion, this review emphasizes the significance of neuroplasticity in brain rehabilitation. It identifies novel strategies and treatments that promise to enhance recovery in patients with neurological illnesses. Future studies should concentrate on improving these therapies and developing evidence-based standards to direct clinical practice and enhance outcomes for this vulnerable population.
Collapse
Affiliation(s)
- Jitesh Kumar
- Internal Medicine, Ghulam Muhammad Mahar Medical College, Sukkur, PAK
| | - Tirath Patel
- Medical Student, American University of Antigua, St. John's, ATG
| | - Fnu Sugandh
- Medicine, Ghulam Muhammad Mahar Medical College, Sukkur, PAK
- Medicine, Civil Hospital Karachi, Karachi, PAK
| | - Jyotishna Dev
- Pediatric Medicine, Green City Hospital, Kathmandu, NPL
- Internal Medicine, TUTH (Tribhuvan University Teaching Hospital) Institute Of Medicine, Kathmandu, NPL
| | - Umesh Kumar
- Medicine and Surgery, Dow University of Health Sciences, Karachi, PAK
| | - Maham Adeeb
- Medicine, Dow University of Health Sciences, Karachi, PAK
| | - Meet Popatbhai Kachhadia
- Internal Medicine, PDU (Pandit Deendayal Upadhyay) Medical College, Civil Hospital Campus, Rajkot, IND
| | - Piyush Puri
- Internal Medicine, Adesh Institute of Medical Science and Research, Bathinda, IND
| | - Fnu Prachi
- Medicine, Guru Teg Bahadur Hospital, Delhi, IND
| | | | - Satesh Kumar
- Medicine and Surgery, Shaheed Mohtarma Benazir Bhutto Medical College, Karachi, PAK
| | | | | |
Collapse
|
59
|
Fong PY, Spampinato D, Michell K, Mancuso M, Brown K, Ibáñez J, Santo AD, Latorre A, Bhatia K, Rothwell JC, Rocchi L. EEG responses induced by cerebellar TMS at rest and during visuomotor adaptation. Neuroimage 2023; 275:120188. [PMID: 37230209 DOI: 10.1016/j.neuroimage.2023.120188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Connections between the cerebellum and the cortex play a critical role in learning and executing complex behaviours. Dual-coil transcranial magnetic stimulation (TMS) can be used non-invasively to probe connectivity changes between the lateral cerebellum and motor cortex (M1) using the motor evoked potential as an outcome measure (cerebellar-brain inhibition, CBI). However, it gives no information about cerebellar connections to other parts of cortex. OBJECTIVES We used electroencephalography (EEG) to investigate whether it was possible to detect activity evoked in any areas of cortex by single-pulse TMS of the cerebellum (cerebellar TMS evoked potentials, cbTEPs). A second experiment tested if these responses were influenced by the performance of a cerebellar-dependent motor learning paradigm. METHODS In the first series of experiments, TMS was applied over either the right or left cerebellar cortex, and scalp EEG was recorded simultaneously. Control conditions that mimicked auditory and somatosensory inputs associated with cerebellar TMS were included to identify responses due to non-cerebellar sensory stimulation. We conducted a follow-up experiment that evaluated whether cbTEPs are behaviourally sensitive by assessing individuals before and after learning a visuomotor reach adaptation task. RESULTS A TMS pulse over the lateral cerebellum evoked EEG responses that could be distinguished from those caused by auditory and sensory artefacts. Significant positive (P80) and negative peaks (N110) over the contralateral frontal cerebral area were identified with a mirrored scalp distribution after left vs. right cerebellar stimulation. The P80 and N110 peaks were replicated in the cerebellar motor learning experiment and changed amplitude at different stages of learning. The change in amplitude of the P80 peak was associated with the degree of learning that individuals retained following adaptation. Due to overlap with sensory responses, the N110 should be interpreted with caution. CONCLUSIONS Cerebral potentials evoked by TMS of the lateral cerebellum provide a neurophysiological probe of cerebellar function that complements the existing CBI method. They may provide novel insight into mechanisms of visuomotor adaptation and other cognitive processes.
Collapse
Affiliation(s)
- Po-Yu Fong
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK; Division of Movement Disorders, Department of Neurology and Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan; Medical School, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Danny Spampinato
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK; Non-invasive Brain Stimulation Unit, IRCCS Santa Lucia Foundation, Via Ardeatina 306/354, 00142, Rome, Italy
| | - Kevin Michell
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Marco Mancuso
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Katlyn Brown
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | - Jaime Ibáñez
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK; BSICoS group, I3A Institute, University of Zaragoza, IIS Aragón, Zaragoza, Spain; Department of Bioengineering, Imperial College, London, UK
| | - Alessandro Di Santo
- NEuroMuscular Omnicentre (NEMO), Serena Onlus, AOS Monaldi, Naples, Italy; Unit of Neurology, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kailash Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK; Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
60
|
Kinany N, Khatibi A, Lungu O, Finsterbusch J, Büchel C, Marchand-Pauvert V, Ville DVD, Vahdat S, Doyon J. Decoding cerebro-spinal signatures of human behavior: application to motor sequence learning. Neuroimage 2023; 275:120174. [PMID: 37201642 DOI: 10.1016/j.neuroimage.2023.120174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023] Open
Abstract
Mapping the neural patterns that drive human behavior is a key challenge in neuroscience. Even the simplest of our everyday actions stem from the dynamic and complex interplay of multiple neural structures across the central nervous system (CNS). Yet, most neuroimaging research has focused on investigating cerebral mechanisms, while the way the spinal cord accompanies the brain in shaping human behavior has been largely overlooked. Although the recent advent of functional magnetic resonance imaging (fMRI) sequences that can simultaneously target the brain and spinal cord has opened up new avenues for studying these mechanisms at multiple levels of the CNS, research to date has been limited to inferential univariate techniques that cannot fully unveil the intricacies of the underlying neural states. To address this, we propose to go beyond traditional analyses and instead use a data-driven multivariate approach leveraging the dynamic content of cerebro-spinal signals using innovation-driven coactivation patterns (iCAPs). We demonstrate the relevance of this approach in a simultaneous brain-spinal cord fMRI dataset acquired during motor sequence learning (MSL), to highlight how large-scale CNS plasticity underpins rapid improvements in early skill acquisition and slower consolidation after extended practice. Specifically, we uncovered cortical, subcortical and spinal functional networks, which were used to decode the different stages of learning with a high accuracy and, thus, delineate meaningful cerebro-spinal signatures of learning progression. Our results provide compelling evidence that the dynamics of neural signals, paired with a data-driven approach, can be used to disentangle the modular organization of the CNS. While we outline the potential of this framework to probe the neural correlates of motor learning, its versatility makes it broadly applicable to explore the functioning of cerebro-spinal networks in other experimental or pathological conditions.
Collapse
Affiliation(s)
- N Kinany
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, 1211, Switzerland; Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, 1202, Switzerland.
| | - A Khatibi
- Center of Precision Rehabilitation for Spinal Pain, School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, United Kingdom
| | - O Lungu
- McConnell Brain Imaging Center, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - J Finsterbusch
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Germany
| | - C Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Germany
| | - V Marchand-Pauvert
- Sorbonne Université, Inserm, CNRS, Laboratoire d'Imagerie biomédicale, Paris F-75006, France
| | - D Van De Ville
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, 1211, Switzerland; Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, 1202, Switzerland
| | - S Vahdat
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, FL 32611, United States
| | - J Doyon
- McConnell Brain Imaging Center, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
61
|
Deleglise A, Donnelly-Kehoe PA, Yeffal A, Jacobacci F, Jovicich J, Amaro E, Armony JL, Doyon J, Della-Maggiore V. Human motor sequence learning drives transient changes in network topology and hippocampal connectivity early during memory consolidation. Cereb Cortex 2023; 33:6120-6131. [PMID: 36587288 DOI: 10.1093/cercor/bhac489] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/03/2022] [Accepted: 11/20/2022] [Indexed: 01/02/2023] Open
Abstract
In the last decade, the exclusive role of the hippocampus in human declarative learning has been challenged. Recently, we have shown that gains in performance observed in motor sequence learning (MSL) during the quiet rest periods interleaved with practice are associated with increased hippocampal activity, suggesting a role of this structure in motor memory reactivation. Yet, skill also develops offline as memory stabilizes after training and overnight. To examine whether the hippocampus contributes to motor sequence memory consolidation, here we used a network neuroscience strategy to track its functional connectivity offline 30 min and 24 h post learning using resting-state functional magnetic resonance imaging. Using a graph-analytical approach we found that MSL transiently increased network modularity, reflected in an increment in local information processing at 30 min that returned to baseline at 24 h. Within the same time window, MSL decreased the connectivity of a hippocampal-sensorimotor network, and increased the connectivity of a striatal-premotor network in an antagonistic manner. Finally, a supervised classification identified a low-dimensional pattern of hippocampal connectivity that discriminated between control and MSL data with high accuracy. The fact that changes in hippocampal connectivity were detected shortly after training supports a relevant role of the hippocampus in early stages of motor memory consolidation.
Collapse
Affiliation(s)
- Alvaro Deleglise
- University of Buenos Aires, CONICET, Institute of Physiology and Biophysics (IFIBIO) Bernardo Houssay, Buenos Aires C1121ABG, Argentina
| | | | - Abraham Yeffal
- University of Buenos Aires, CONICET, Institute of Physiology and Biophysics (IFIBIO) Bernardo Houssay, Buenos Aires C1121ABG, Argentina
| | - Florencia Jacobacci
- University of Buenos Aires, CONICET, Institute of Physiology and Biophysics (IFIBIO) Bernardo Houssay, Buenos Aires C1121ABG, Argentina
| | - Jorge Jovicich
- Center for Mind/Brain Sciences, University of Trento, 38068 Trento, Italy
| | - Edson Amaro
- Plataforma de Imagens na Sala de Autopsia (PISA), Instituto de Radiologia, Facultade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Jorge L Armony
- Douglas Mental Health Research Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Julien Doyon
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Valeria Della-Maggiore
- University of Buenos Aires, CONICET, Institute of Physiology and Biophysics (IFIBIO) Bernardo Houssay, Buenos Aires C1121ABG, Argentina
- School of Science and Technology (ECyT), National University of San Martin, B1650 Villa Lynch, Buenos Aires, Argentina
| |
Collapse
|
62
|
Standage DI, Areshenkoff CN, Gale DJ, Nashed JY, Flanagan JR, Gallivan JP. Whole-brain dynamics of human sensorimotor adaptation. Cereb Cortex 2023; 33:4761-4778. [PMID: 36245212 PMCID: PMC10110437 DOI: 10.1093/cercor/bhac378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/13/2022] Open
Abstract
Humans vary greatly in their motor learning abilities, yet little is known about the neural processes that underlie this variability. We identified distinct profiles of human sensorimotor adaptation that emerged across 2 days of learning, linking these profiles to the dynamics of whole-brain functional networks early on the first day when cognitive strategies toward sensorimotor adaptation are believed to be most prominent. During early learning, greater recruitment of a network of higher-order brain regions, involving prefrontal and anterior temporal cortex, was associated with faster learning. At the same time, greater integration of this "cognitive network" with a sensorimotor network was associated with slower learning, consistent with the notion that cognitive strategies toward adaptation operate in parallel with implicit learning processes of the sensorimotor system. On the second day, greater recruitment of a network that included the hippocampus was associated with faster learning, consistent with the notion that declarative memory systems are involved with fast relearning of sensorimotor mappings. Together, these findings provide novel evidence for the role of higher-order brain systems in driving variability in adaptation.
Collapse
Affiliation(s)
- Dominic I Standage
- Centre for Neuroscience Studies, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, Ontario K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Corson N Areshenkoff
- Centre for Neuroscience Studies, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, Ontario K7L 3N6, Canada
| | - Daniel J Gale
- Centre for Neuroscience Studies, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, Ontario K7L 3N6, Canada
| | - Joseph Y Nashed
- Centre for Neuroscience Studies, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, Ontario K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - J Randall Flanagan
- Centre for Neuroscience Studies, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, Ontario K7L 3N6, Canada
- Department of Psychology, Queen’s University, Humphrey Hall, 62 Arch Street, Kingston, Ontario K7L 3N6, Canada
| | - Jason P Gallivan
- Centre for Neuroscience Studies, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, Ontario K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Psychology, Queen’s University, Humphrey Hall, 62 Arch Street, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
63
|
Jiang L, Zhang R, Tao L, Zhang Y, Zhou Y, Cai Q. Neural mechanisms of musical structure and tonality, and the effect of musicianship. Front Psychol 2023; 14:1092051. [PMID: 36844277 PMCID: PMC9948014 DOI: 10.3389/fpsyg.2023.1092051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction The neural basis for the processing of musical syntax has previously been examined almost exclusively in classical tonal music, which is characterized by a strictly organized hierarchical structure. Musical syntax may differ in different music genres caused by tonality varieties. Methods The present study investigated the neural mechanisms for processing musical syntax across genres varying in tonality - classical, impressionist, and atonal music - and, in addition, examined how musicianship modulates such processing. Results Results showed that, first, the dorsal stream, including the bilateral inferior frontal gyrus and superior temporal gyrus, plays a key role in the perception of tonality. Second, right frontotemporal regions were crucial in allowing musicians to outperform non-musicians in musical syntactic processing; musicians also benefit from a cortical-subcortical network including pallidum and cerebellum, suggesting more auditory-motor interaction in musicians than in non-musicians. Third, left pars triangularis carries out online computations independently of tonality and musicianship, whereas right pars triangularis is sensitive to tonality and partly dependent on musicianship. Finally, unlike tonal music, the processing of atonal music could not be differentiated from that of scrambled notes, both behaviorally and neurally, even among musicians. Discussion The present study highlights the importance of studying varying music genres and experience levels and provides a better understanding of musical syntax and tonality processing and how such processing is modulated by music experience.
Collapse
Affiliation(s)
- Lei Jiang
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China,School of Music, East China Normal University, Shanghai, China
| | - Ruiqing Zhang
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Lily Tao
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yuxin Zhang
- Shanghai High School International Division, Shanghai, China
| | - Yongdi Zhou
- School of Psychology, Shenzhen University, Shenzhen, China,Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, United States,Yongdi Zhou, ✉
| | - Qing Cai
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China,Shanghai Changning Mental Health Center, Shanghai, China,NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai, China,*Correspondence: Qing Cai, ✉
| |
Collapse
|
64
|
Guimarães AN, Porto AB, Marcori AJ, Lage GM, Altimari LR, Alves Okazaki VH. Motor learning and tDCS: A systematic review on the dependency of the stimulation effect on motor task characteristics or tDCS assembly specifications. Neuropsychologia 2023; 179:108463. [PMID: 36567006 DOI: 10.1016/j.neuropsychologia.2022.108463] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/21/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
TDCS is one of the most commonly used methods among studies with transcranial electrical stimulation and motor skills learning. Differences between study results suggest that the effect of tDCS on motor learning is dependent on the motor task performed or on the tDCS assembly specification used in the learning process. This systematic review aimed to analyze the tDCS effect on motor learning and verify whether this effect is dependent on the task or tDCS assembly specifications. Searches were performed in PubMed, SciELO, LILACS, Web of Science, CINAHL, Scopus, SPORTDiscus, Cochrane Central Register of Controlled Trials (CENTRAL), Embase, and PsycINFO. Articles were included that analyzed the effect of tDCS on motor learning through pre-practice, post-practice, retention, and/or transfer tests (period ≥24 h). The tDCS was most frequently applied to the primary motor cortex (M1) or the cerebellar cortex (CC) and the majority of studies found significant stimulation effects. Studies that analyzed identical or similar motor tasks show divergent results for the tDCS effect, even when the assembly specifications are the same. The tDCS effect is not dependent on motor task characteristics or tDCS assembly specifications alone but is dependent on the interaction between these factors. This interaction occurs between uni and bimanual tasks with anodal uni and bihemispheric (bilateral) stimulations at M1 or with anodal unihemispheric stimulations (unilateral and centrally) at CC, and between tasks of greater or lesser difficulty with single or multiple tDCS sessions. Movement time seems to be more sensitive than errors to indicate the effects of tDCS on motor learning, and a sufficient amount of motor practice to reach the "learning plateau" also seems to determine the effect of tDCS on motor learning.
Collapse
Affiliation(s)
- Anderson Nascimento Guimarães
- State University of Londrina, Londrina. Rodovia Celso Garcia Cid - Pr 445, Km 380, Cx. Postal 10.011, CEP 86057-970, Campus Universitário, Londrina, PR, Brazil.
| | - Alessandra Beggiato Porto
- State University of Londrina, Londrina. Rodovia Celso Garcia Cid - Pr 445, Km 380, Cx. Postal 10.011, CEP 86057-970, Campus Universitário, Londrina, PR, Brazil.
| | - Alexandre Jehan Marcori
- University of São Paulo, Av. Professor Mello Moraes 65, CEP 05508-030, Vila Universitaria, São Paulo, SP, Brazil.
| | - Guilherme Menezes Lage
- Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil.
| | - Leandro Ricardo Altimari
- State University of Londrina, Londrina. Rodovia Celso Garcia Cid - Pr 445, Km 380, Cx. Postal 10.011, CEP 86057-970, Campus Universitário, Londrina, PR, Brazil.
| | - Victor Hugo Alves Okazaki
- State University of Londrina, Londrina. Rodovia Celso Garcia Cid - Pr 445, Km 380, Cx. Postal 10.011, CEP 86057-970, Campus Universitário, Londrina, PR, Brazil.
| |
Collapse
|
65
|
Ghasemian-Shirvan E, Ungureanu R, Melo L, van Dun K, Kuo MF, Nitsche MA, Meesen RLJ. Optimizing the Effect of tDCS on Motor Sequence Learning in the Elderly. Brain Sci 2023; 13:brainsci13010137. [PMID: 36672118 PMCID: PMC9857096 DOI: 10.3390/brainsci13010137] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
One of the most visible effects of aging, even in healthy, normal aging, is a decline in motor performance. The range of strategies applicable to counteract this deterioration has increased. Transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique that can promote neuroplasticity, has recently gained attention. However, knowledge about optimized tDCS parameters in the elderly is limited. Therefore, in this study, we investigated the effect of different anodal tDCS intensities on motor sequence learning in the elderly. Over the course of four sessions, 25 healthy older adults (over 65 years old) completed the Serial Reaction Time Task (SRTT) while receiving 1, 2, or 3 mA of anodal or sham stimulation over the primary motor cortex (M1). Additionally, 24 h after stimulation, motor memory consolidation was assessed. The results confirmed that motor sequence learning in all tDCS conditions was maintained the following day. While increased anodal stimulation intensity over M1 showed longer lasting excitability enhancement in the elderly in a prior study, the combination of higher intensity stimulation with an implicit motor learning task showed no significant effect. Future research should focus on the reason behind this lack of effect and probe alternative stimulation protocols.
Collapse
Affiliation(s)
- Ensiyeh Ghasemian-Shirvan
- Department of Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors, 44139 Dortmund, Germany
- International Graduate School of Neuroscience, Ruhr-University Bochum, 44780 Bochum, Germany
- Neuroplasticity and Movement Control Research Group, REVAL Rehabilitation Research Center, REVAL, Faculty of Rehabilitation Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Ruxandra Ungureanu
- Department of Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors, 44139 Dortmund, Germany
- Institute of Cognitive Neuroscience, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Lorena Melo
- Department of Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors, 44139 Dortmund, Germany
- International Graduate School of Neuroscience, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Kim van Dun
- Neuroplasticity and Movement Control Research Group, REVAL Rehabilitation Research Center, REVAL, Faculty of Rehabilitation Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Min-Fang Kuo
- Department of Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors, 44139 Dortmund, Germany
| | - Michael A. Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors, 44139 Dortmund, Germany
- University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Protestant Hospital of Bethel Foundation, University Hospital OWL, Bielefeld University, 33617 Bielefeld, Germany
| | - Raf L. J. Meesen
- Neuroplasticity and Movement Control Research Group, REVAL Rehabilitation Research Center, REVAL, Faculty of Rehabilitation Sciences, Hasselt University, 3590 Diepenbeek, Belgium
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Leuven, Belgium
- Correspondence:
| |
Collapse
|
66
|
Löfgren M, Sandström A, Bileviciute-Ljungar I, Mannerkorpi K, Gerdle B, Ernberg M, Fransson P, Kosek E. The effects of a 15-week physical exercise intervention on pain modulation in fibromyalgia: Increased pain-related processing within the cortico-striatal- occipital networks, but no improvement of exercise-induced hypoalgesia. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100114. [PMID: 36660198 PMCID: PMC9843267 DOI: 10.1016/j.ynpai.2023.100114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/09/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Dysfunctional top-down pain modulation is a hallmark of fibromyalgia (FM) and physical exercise is a cornerstone in FM treatment. The aim of this study was to explore the effects of a 15-week intervention of strengthening exercises, twice per week, supervised by a physiotherapist, on exercise-induced hypoalgesia (EIH) and cerebral pain processing in FM patients and healthy controls (HC). FM patients (n = 59) and HC (n = 39) who completed the exercise intervention as part of a multicenter study were examined at baseline and following the intervention. Following the exercise intervention, FM patients reported a reduction of pain intensity, fibromyalgia severity and depression. Reduced EIH was seen in FM patients compared to HC at baseline and no improvement of EIH was seen following the 15-week resistance exercise intervention in either group. Furthermore, a subsample (Stockholm site: FM n = 18; HC n = 19) was also examined with functional magnetic resonance imaging (fMRI) during subjectively calibrated thumbnail pressure pain stimulations at baseline and following intervention. A significant main effect of exercise (post > pre) was observed both in FM patients and HC, in pain-related brain activation within left dorsolateral prefrontal cortex and caudate, as well as increased functional connectivity between caudate and occipital lobe bordering cerebellum (driven by the FM patients). In conclusion, the results indicate that 15-week resistance exercise affect pain-related processing within the cortico-striatal-occipital networks (involved in motor control and cognition), rather than directly influencing top-down descending pain inhibition. In alignment with this, exercise-induced hypoalgesia remained unaltered.
Collapse
Key Words
- AAL, Automated Anatomical Labeling
- ACR, American College of Rheumatology
- CNS, central nervous system
- CPM, conditioned pain modulation
- EIH, exercise-induced hypoalgesia
- Exercise induced hypoalgesia
- Exercise intervention
- FD, Frame-wise displacement
- FEW, family-wise error
- FIQ, Fibromyalgia Impact Questionnaire
- FM, fibromyalgia
- FOV, field of view
- FWHM, full-width-half-maximum
- Fibromyalgia
- Functional connectivity
- Functional magnetic resonance imaging (fMRI)
- GLM, general linear model
- HADS, Hospital Anxiety and Depression Scale
- HC, healthy controls
- MNI, Montreal Neurological Institute
- MVC, maximum voluntary contraction force
- NSAIDs, non-steroidal anti-inflammatory drugs
- P50, pressure stimuli corresponding to a pain rating of 50mm on a 100 mm VAS
- PPI, psychophysiological interaction
- PPTs, pressure pain thresholds
- Pressure pain
- RM, repetition maximum
- SM, stimulation maximum
- SPM, Statistical Parametric Mapping
- T1, longitudinal relaxation time
- T2, transverse relaxation time
- TR/TE, time repetition/time echo
- VAS, visual analogue scale
- VOI, volume of interest
- dlPFC, dorsolateral prefrontal cortex
- fMRI, functional magnetic resonance imaging
- rACC, rostral anterior cingulate cortex
Collapse
Affiliation(s)
- Monika Löfgren
- Department of Clinical Sciences, Karolinska Institutet and Department of Rehabilitation Medicine, Danderyd Hospital, Stockholm SE-182 88, Sweden
| | - Angelica Sandström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm SE-171 77, Sweden,Department of Neuroradiology, Karolinska University Hospital, Stockholm SE-171 78, Sweden,Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Indre Bileviciute-Ljungar
- Department of Clinical Sciences, Karolinska Institutet and Department of Rehabilitation Medicine, Danderyd Hospital, Stockholm SE-182 88, Sweden
| | - Kaisa Mannerkorpi
- Institute of Neuroscience and Physiology, Department of Health and Rehabilitation, Physiotherapy Unit, Sahlgrenska Academy, Gothenburg University, Gothenburg SE- 413 90, Sweden
| | - Björn Gerdle
- Pain and Rehabilitation Centre, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping SE-581 83, Sweden
| | - Malin Ernberg
- Department of Dental Medicine, Karolinska Institutet and Scandinavian Centre for Orofacial Neurosciences, Huddinge SE-141 04, Sweden
| | - Peter Fransson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm SE-171 77, Sweden,Department of Neuroradiology, Karolinska University Hospital, Stockholm SE-171 78, Sweden
| | - Eva Kosek
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm SE-171 77, Sweden,Department of Neuroradiology, Karolinska University Hospital, Stockholm SE-171 78, Sweden,Department of Surgical Sciences, Uppsala University, Uppsala SE- 752 36, Sweden,Corresponding author at: Department of Clinical Neuroscience, Karolinska Institutet, Nobels väg 9, Stockholm SE-171 77, Sweden.
| |
Collapse
|
67
|
Chan ST, Tai CH, Wang LY, Luh JJ, Lee YY. Influences of Aerobic Exercise on Motor Sequence Learning and Corticomotor Excitability in People With Parkinson's Disease. Neurorehabil Neural Repair 2023; 37:37-45. [PMID: 36636767 DOI: 10.1177/15459683221147006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND People with Parkinson's disease (PD) are known to have motor learning difficulties. Although numerous studies have demonstrated that a single bout of aerobic exercise (AEX) can facilitate motor learning in non-disabled adults, the same beneficial effect in PD is unknown. Furthermore, associated neuroplastic changes have not been investigated. OBJECTIVES This study aimed to determine whether a single bout of aerobic exercise (AEX) can facilitate motor sequence learning in people with PD and to investigate the associated neurophysiological changes. METHODS Thirty individuals with PD were recruited and randomized into the exercise group (PD + AEX) and non-exercise group (PD - AEX). At the first visit, corticomotor excitability was assessed using transcranial magnetic stimulation (TMS). All participants then performed a serial reaction time task (SRTT) followed by 20 minutes of moderately-high intensity aerobic exercise (AEX) for the PD + AEX group or rest for the PD - AEX group. The SRTT and TMS were reevaluated at 3 time points: immediately after aerobic exercise (AEX) or rest, on the second day after practice (D2), and a week after practice (D7). RESULTS Both groups showed improvement throughout practice. At retention, the PD + AEX group showed improved SRTT performance on D7 compared to D2 (P = .001), while the PD - AEX group showed no change in performance. TMS results showed that the PD + AEX group had significantly higher corticomotor excitability than the PD - AEX group on D7. CONCLUSION A single session of aerobic exercise (AEX) could enhance motor sequence learning and induce neuroplastic changes. Clinicians can consider providing aerobic exercise (AEX) after motor task training for people with PD. CLINICAL REGISTRATION NCT04189887 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Suet-Ting Chan
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei
| | - Chun-Hwei Tai
- Department of Neurology, National Taiwan University Hospital, Taipei
| | - Li-Ying Wang
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei
| | - Jer-Junn Luh
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei
| | - Ya-Yun Lee
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei
| |
Collapse
|
68
|
Hsu G, Shereen AD, Cohen LG, Parra LC. Robust enhancement of motor sequence learning with 4 mA transcranial electric stimulation. Brain Stimul 2023; 16:56-67. [PMID: 36574814 PMCID: PMC10171179 DOI: 10.1016/j.brs.2022.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Motor learning experiments with transcranial direct current stimulation (tDCS) at 2 mA have produced mixed results. We hypothesize that tDCS boosts motor learning provided sufficiently high field intensity on the motor cortex. METHODS In a single-blinded design, 108 healthy participants received either anodal (N = 36) or cathodal (N = 36) tDCS at 4 mA total, or no stimulation (N = 36) while they practiced a 12-min sequence learning task. Anodal stimulation was delivered across four electrode pairs (1 mA each), with anodes above the right parietal lobe and cathodes above the right frontal lobe. Cathodal stimulation, with reversed polarities, served as an active control for sensation, while the no-stimulation condition established baseline performance. fMRI-localized targets on the primary motor cortex in 10 subjects were used in current flow models to optimize electrode placement for maximal field intensity. A single electrode montage was then selected for all participants. RESULTS We found a significant difference in performance with anodal vs. cathodal stimulation (Cohen's d = 0.71) and vs. no stimulation (d = 0.56). This effect persisted for at least 1 h, and subsequent learning for a new sequence and the opposite hand also improved. Sensation ratings were comparable in the active groups and did not exceed moderate levels. Current flow models suggest the new electrode montage can achieve stronger motor cortex polarization than alternative montages. CONCLUSION The present paradigm shows a medium to large effect size and is well-tolerated. It may serve as a go-to experiment for future studies on motor learning and tDCS.
Collapse
Affiliation(s)
- Gavin Hsu
- Department of Biomedical Engineering, The City College of New York, The City University of New York, New York, NY, USA.
| | - A Duke Shereen
- Advanced Science Research Center at the Graduate Center of the City University of New York, USA
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Lucas C Parra
- Department of Biomedical Engineering, The City College of New York, The City University of New York, New York, NY, USA
| |
Collapse
|
69
|
Cristini J, Parwanta Z, De las Heras B, Medina-Rincon A, Paquette C, Doyon J, Dagher A, Steib S, Roig M. Motor Memory Consolidation Deficits in Parkinson's Disease: A Systematic Review with Meta-Analysis. JOURNAL OF PARKINSON'S DISEASE 2023; 13:865-892. [PMID: 37458048 PMCID: PMC10578244 DOI: 10.3233/jpd-230038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND The ability to encode and consolidate motor memories is essential for persons with Parkinson's disease (PD), who usually experience a progressive loss of motor function. Deficits in memory encoding, usually expressed as poorer rates of skill improvement during motor practice, have been reported in these patients. Whether motor memory consolidation (i.e., motor skill retention) is also impaired is unknown. OBJECTIVE To determine whether motor memory consolidation is impaired in PD compared to neurologically intact individuals. METHODS We conducted a pre-registered systematic review (PROSPERO: CRD42020222433) following PRISMA guidelines that included 46 studies. RESULTS Meta-analyses revealed that persons with PD have deficits in retaining motor skills (SMD = -0.17; 95% CI = -0.32, -0.02; p = 0.0225). However, these deficits are task-specific, affecting sensory motor (SMD = -0.31; 95% CI -0.47, -0.15; p = 0.0002) and visuomotor adaptation (SMD = -1.55; 95% CI = -2.32, -0.79; p = 0.0001) tasks, but not sequential fine motor (SMD = 0.17; 95% CI = -0.05, 0.39; p = 0.1292) and gross motor tasks (SMD = 0.04; 95% CI = -0.25, 0.33; p = 0.7771). Importantly, deficits became non-significant when augmented feedback during practice was provided, and additional motor practice sessions reduced deficits in sensory motor tasks. Meta-regression analyses confirmed that deficits were independent of performance during encoding, as well as disease duration and severity. CONCLUSION Our results align with the neurodegenerative models of PD progression and motor learning frameworks and emphasize the importance of developing targeted interventions to enhance motor memory consolidation in PD.
Collapse
Affiliation(s)
- Jacopo Cristini
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC, Canada
- School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Zohra Parwanta
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC, Canada
- School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Bernat De las Heras
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC, Canada
- School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Almudena Medina-Rincon
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC, Canada
- Grupo de investigación iPhysio, San Jorge University, Zaragoza, Aragón, Spain
- Department of Physiotherapy, San Jorge University, Zaragoza, Aragón, Spain
| | - Caroline Paquette
- Department of Kinesiology & Physical Education, McGill University, Montreal, QC,Canada
- Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC, Canada
| | - Julien Doyon
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Alain Dagher
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Simon Steib
- Department of Human Movement, Training and Active Aging, Institute of Sports and Sports Sciences, Heidelberg University, Heidelberg, Germany
| | - Marc Roig
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC, Canada
- School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
70
|
Bao S, Lei Y. Memory decay and generalization following distinct motor learning mechanisms. J Neurophysiol 2022; 128:1534-1545. [PMID: 36321731 DOI: 10.1152/jn.00105.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Motor skill learning is considered to arise out of contributions from multiple learning mechanisms, including error-based learning (EBL), use-dependent learning (UDL), and reinforcement learning (RL). These learning mechanisms exhibit dissociable roles and engage different neural circuits during skill acquisition. However, it remains largely unknown how a newly formed motor memory acquired through each learning mechanism decays over time and whether distinct learning mechanisms produce different generalization patterns. Here, we used variants of reaching paradigms that dissociated these learning mechanisms to examine the time course of memory decay following each learning and the generalization patterns of each learning. We found that motor memories acquired through these learning mechanisms decayed as a function of time. Notably, 15 min, 6 h, and 24 h after acquisition, the memory of EBL decayed much greater than that of RL. The memory acquired through UDL faded away within a few minutes. Motor memories formed through EBL and RL for given movement directions generalized to untrained movement directions, with the generalization of EBL being greater than that of RL. In contrast, motor memory of UDL could not generalize to untrained movement directions. These results suggest that distinct learning mechanisms exhibit different patterns of memory decay and generalization.NEW & NOTEWORTHY Motor skill learning is likely to involve error-based learning, use-dependent plasticity, and operant reinforcement. Here, we showed that these dissociable learning mechanisms exhibited distinct patterns of memory decay and generalization. With a better understanding of the characteristics of these learning mechanisms, it becomes possible to regulate each learning process separately to improve neurological rehabilitation.
Collapse
Affiliation(s)
- Shancheng Bao
- Department of Kinesiology & Sport Management, Texas A&M University, College Station, Texas
| | - Yuming Lei
- Department of Kinesiology & Sport Management, Texas A&M University, College Station, Texas
| |
Collapse
|
71
|
Yokoi A, Weiler J. Pupil diameter tracked during motor adaptation in humans. J Neurophysiol 2022; 128:1224-1243. [PMID: 36197019 PMCID: PMC9722266 DOI: 10.1152/jn.00021.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/22/2022] Open
Abstract
Pupil diameter, under constant illumination, is known to reflect individuals' internal states, such as surprise about observation and environmental uncertainty. Despite the growing use of pupillometry in cognitive learning studies as an additional measure for examining internal states, few studies have used pupillometry in human motor learning studies. Here, we provide the first detailed characterization of pupil diameter changes in a short-term reach adaptation paradigm. We measured pupil changes in 121 human participants while they adapted to abrupt, gradual, or switching force field conditions. Sudden increases in movement error caused by the introduction/reversal of the force field resulted in strong phasic pupil dilation during movement accompanied by a transient increase in tonic premovement baseline pupil diameter in subsequent trials. In contrast, pupil responses were reduced when the force field was gradually introduced, indicating that large, unexpected errors drove the changes in pupil responses. Interestingly, however, error-induced pupil responses gradually became insensitive after experiencing multiple force field reversals. We also found an association between baseline pupil diameter and incidental knowledge of the gradually introduced perturbation. Finally, in all experiments, we found a strong co-occurrence of larger baseline pupil diameter with slower reaction and movement times after each rest break. Collectively, these results suggest that tonic baseline pupil diameter reflects one's belief about environmental uncertainty, whereas phasic pupil dilation during movement reflects surprise about a sensory outcome (i.e., movement error), and both effects are modulated by novelty. Our results provide a new approach for nonverbally assessing participants' internal states during motor learning.NEW & NOTEWORTHY Pupil diameter is known as a noninvasive window into individuals' internal states. Despite the growing use of pupillometry in cognitive learning studies, it receives little attention in motor learning studies. Here, we characterized the pupil responses in a short-term reach adaptation paradigm by measuring pupil diameter of human participants while they adapted to abrupt, gradual, or switching force field conditions. Our results demonstrate how surprise and uncertainty reflected in pupil diameter develop during motor adaptation.
Collapse
Affiliation(s)
- Atsushi Yokoi
- Center for Information and Neural Networks, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- The Brain and Mind Institute, Western University, London, Ontario, Canada
| | - Jeffrey Weiler
- Schulich School of Medicine and Dentistry, Western University, London Ontario, Canada
- The Gray Centre for Mobility and Activity, Parkwood Institute, London, Ontario, Canada
- The Brain and Mind Institute, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| |
Collapse
|
72
|
Goodman SPJ, Immink MA, Marino FE. Hypohydration alters pre-frontal cortex haemodynamics, but does not impair motor learning. Exp Brain Res 2022; 240:2255-2268. [PMID: 35881154 PMCID: PMC9458583 DOI: 10.1007/s00221-022-06424-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022]
Abstract
It is unknown how hypohydration influences fine motor performance training and motor learning. Here, 30 participants (aged 19-46 years) were randomly assigned to a hypohydration (HYPO) or control (CON) group (both n = 15). Moderate hypohydration (~ 2.4% loss in body mass) was produced in HYPO via active dehydration before a 46 min fluid restricted rest period was undertaken. The conclusion of rest coincided with when CON attended the facilities. Both groups undertook a discrete sequence production task consisting of 6 training blocks, and returned ~ 300 min later to complete a delayed retention and transfer test while euhydrated. Bilateral pre-frontal cortex (PFC) haemodynamics were assessed using functional near-infrared spectroscopy throughout training and delayed learning assessments. Response time improved across training (P < 0.01) and was similar between the groups (both P = 0.22). Analysis of training PFC haemodynamics revealed a significant group by block interaction for oxygenated (O2Hb; P < 0.01), but not deoxygenated haemoglobin (P = 0.77). In training block 1, bilateral O2Hb was higher in HYPO (P = 0.02), while bilateral O2Hb increased in CON between blocks 2-3 and 5-6 (both P ≤ 0.03). During the delayed retention and transfer test, no group differences or interactions were found in response time, response error, or PFC haemodynamics (all P ≥ 0.27). Moderate hypohydration does increase PFC activation during motor skill learning, however, this appears to be transient and of little consequence to training or delayed retention or transfer performance.
Collapse
Affiliation(s)
- Stephen P J Goodman
- School of Allied Health, Exercise and Sport Science, Charles Sturt University, Bathurst, NSW, Australia.
- School of Science and Technology, University of New England, Armidale, NSW, Australia.
| | - Maarten A Immink
- Sport, Health, Physical Activity and Exercise Research Centre and College of Nursing and Health Sciences, Flinders University, Adelaide, SA, Australia
| | - Frank E Marino
- School of Allied Health, Exercise and Sport Science, Charles Sturt University, Bathurst, NSW, Australia
| |
Collapse
|
73
|
Veldman MP, Dolfen N, Gann MA, Van Roy A, Peeters R, King BR, Albouy G. Somatosensory targeted memory reactivation enhances motor performance via hippocampal-mediated plasticity. Cereb Cortex 2022; 33:3734-3749. [PMID: 35972408 DOI: 10.1093/cercor/bhac304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/14/2022] Open
Abstract
Increasing evidence suggests that reactivation of newly acquired memory traces during postlearning wakefulness plays an important role in memory consolidation. Here, we sought to boost the reactivation of a motor memory trace during postlearning wakefulness (quiet rest) immediately following learning using somatosensory targeted memory reactivation (TMR). Using functional magnetic resonance imaging, we examined the neural correlates of the reactivation process as well as the effect of the TMR intervention on brain responses elicited by task practice on 24 healthy young adults. Behavioral data of the post-TMR retest session showed a faster learning rate for the motor sequence that was reactivated as compared to the not-reactivated sequence. Brain imaging data revealed that motor, parietal, frontal, and cerebellar brain regions, which were recruited during initial motor learning, were specifically reactivated during the TMR episode and that hippocampo-frontal connectivity was modulated by the reactivation process. Importantly, the TMR-induced behavioral advantage was paralleled by dynamical changes in hippocampal activity and hippocampo-motor connectivity during task practice. Altogether, the present results suggest that somatosensory TMR during postlearning quiet rest can enhance motor performance via the modulation of hippocampo-cortical responses.
Collapse
Affiliation(s)
- Menno P Veldman
- KU Leuven, Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, Leuven 3001, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven 3001, Belgium
| | - Nina Dolfen
- KU Leuven, Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, Leuven 3001, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven 3001, Belgium
| | - Mareike A Gann
- KU Leuven, Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, Leuven 3001, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven 3001, Belgium
| | - Anke Van Roy
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT 84112, United States
| | - Ronald Peeters
- Department of Radiology, University Hospitals Leuven, Leuven 3000, Belgium.,Department of Imaging and Pathology, Biomedical Sciences Group, Leuven 3000, Belgium
| | - Bradley R King
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT 84112, United States
| | - Geneviève Albouy
- KU Leuven, Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, Leuven 3001, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven 3001, Belgium.,Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT 84112, United States
| |
Collapse
|
74
|
Repeated series learning revisited with a novel prediction on the reduced effect of item frequency in dyslexia. Sci Rep 2022; 12:13521. [PMID: 35941176 PMCID: PMC9359986 DOI: 10.1038/s41598-022-16805-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
Developmental dyslexia, a difficulty with acquiring fluent reading, has also been characterized by reduced short-term memory (STM) capacity, which is often operationalized with span tasks. The low performance of individuals with dyslexia (IDDs) in such tasks is commonly attributed to poor phonological memory. However, we suggest an alternative explanation based on the observation that many times the items that are used in spans tasks are high-frequency items (e.g., digit words). We suggest that IDDs do not enjoy the benefit of item frequency to the same extent as controls, and thus their performance in span tasks is especially hampered. On the contrary, learning of repeated sequences was shown to be largely independent of item frequency, and therefore this type of learning may be unimpaired in dyslexia. To test both predictions, we used the Hebb-learning paradigm. We found that IDDs’ performance is especially poor compared to controls’ when high-frequency items are used, and that their repeated series learning does not differ from that of controls. Taken together with existing literature, our findings suggest that impaired learning of repeated series is not a core characteristic of dyslexia, and that the reports on reduced STM in dyslexia may to a large extent be explained by reduced benefit of item frequency.
Collapse
|
75
|
Mapping grip-force related brain activity after a fatiguing motor task in multiple sclerosis. Neuroimage Clin 2022; 36:103147. [PMID: 36030719 PMCID: PMC9434128 DOI: 10.1016/j.nicl.2022.103147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Motor fatigue is common in multiple sclerosis (MS), but its pathophysiology is still poorly understood. Here we used functional magnetic resonance imaging (fMRI) to delineate how the acute induction of motor fatigue alters functional activity of the motor system and how these activity changes are related to motor fatigue. METHOD Forty-four right-handed mildly disabled patients with relapsing-remitting MS and 25 healthy controls performed a maximal tonic precision grip with their right hand until they developed motor fatigue. Before and after the fatiguing task, participants performed a non-fatiguing tonic grip force task, producing 15-20% of their maximum grip force based on visual feedback. Task related brain activity was mapped with blood-oxygen level dependent fMRI at 3 T. Statistical parametric mapping was used to identify relative changes in task-related activation from the pre-fatigue to the recovery MRI session. RESULTS Following fatigue induction, task performance was perturbed in both groups, and task-related activation increased in the right (ipsilateral) primary motor hand area. In patients with MS, task-related activity increased bilaterally during the recovery phase in the ventrolateral portion of the middle putamen and lateral prefrontal cortex relative to controls. The more patients increased task-related activity in left dorsal premotor cortex after the fatiguing task, the less they experienced motor fatigue during daily life. CONCLUSION Patients with MS show enhanced functional engagement of the associative cortico-basal ganglia loop following acute induction of motor fatigue in the contralateral hand. This may reflect increased mental effort to generate movements in the recovery phase after fatigue induction. The ability to recruit the contralateral dorsal premotor cortex after fatigue induction may constitute a protective mechanism against experiencing motor fatigue in everyday life.
Collapse
|
76
|
Differences in implicit motor learning between adults who do and do not stutter. Neuropsychologia 2022; 174:108342. [PMID: 35931135 DOI: 10.1016/j.neuropsychologia.2022.108342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/20/2022]
Abstract
Implicit learning allows us to acquire complex motor skills through repeated exposure to sensory cues and repetition of motor behaviours, without awareness or effort. Implicit learning is also critical to the incremental fine-tuning of the perceptual-motor system. To understand how implicit learning and associated domain-general learning processes may contribute to motor learning differences in people who stutter, we investigated implicit finger-sequencing skills in adults who do (AWS) and do not stutter (ANS) on an Alternating Serial Reaction Time task. Our results demonstrated that, while all participants showed evidence of significant sequence-specific learning in their speed of performance, male AWS were slower and made fewer sequence-specific learning gains than their ANS counterparts. Although there were no learning gains evident in accuracy of performance, AWS performed the implicit learning task more accurately than ANS, overall. These findings may have implications for sex-based differences in the experience of developmental stuttering, for the successful acquisition of complex motor skills during development by individuals who stutter, and for the updating and automatization of speech motor plans during the therapeutic process.
Collapse
|
77
|
Ma Q, Pu M, Haihambo NP, Baetens K, Heleven E, Deroost N, Baeken C, Van Overwalle F. The posterior cerebellum and temporoparietal junction support explicit learning of social belief sequences. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:467-491. [PMID: 34811709 DOI: 10.3758/s13415-021-00966-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
This study tests the hypothesis that the posterior cerebellum is involved in social cognition by identifying and automatizing sequences of social actions. We applied a belief serial reaction time task (Belief SRT task), which requires mentalizing about two protagonists' beliefs about how many flowers they receive. The protagonists' beliefs could either be true or false depending on their orientation (true belief: oriented towards and directly observing the flowers; or false belief: oriented away and knowing only prior information about flowers). A Control SRT task was created by replacing protagonists and their beliefs with shapes and colors. Participants were explicitly told that there was a standard sequence related to the two protagonists' belief orientations (Belief SRT task) or the shapes' colors (Control SRT task). Both tasks included a Training phase where the standard sequence was repeated and a Test phase where this standard sequence was interrupted by random sequences. As hypothesized, compared with the Control SRT task, the Belief SRT task recruited the posterior cerebellar Crus II and the temporoparietal junction (TPJ) more. Faster response times were correlated with less Crus II activation and with more TPJ activation, suggesting that the Crus II supported automatizing the belief sequence while the TPJ supported inferring the protagonists' beliefs. Also as hypothesized, compared with an implicit version of the Belief SRT task (i.e., participants did not know about the existence of sequences; Ma, Pu, et al., 2021b), the cerebellar Crus I &II was engaged less during initial training and automatic application of the sequence, and the cortical TPJ was activated more in processing random sequences.
Collapse
Affiliation(s)
- Qianying Ma
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B -, 1050, Brussels, Belgium.
| | - Min Pu
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B -, 1050, Brussels, Belgium
| | - Naem P Haihambo
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B -, 1050, Brussels, Belgium
| | - Kris Baetens
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B -, 1050, Brussels, Belgium
| | - Elien Heleven
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B -, 1050, Brussels, Belgium
| | - Natacha Deroost
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B -, 1050, Brussels, Belgium
| | - Chris Baeken
- Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent Experimental, Ghent, Belgium
- Psychiatry (GHEP) Laboratory, Ghent University, Ghent, Belgium
- Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Frank Van Overwalle
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B -, 1050, Brussels, Belgium.
| |
Collapse
|
78
|
Connectivity in Large-Scale Resting-State Brain Networks Is Related to Motor Learning: A High-Density EEG Study. Brain Sci 2022; 12:brainsci12050530. [PMID: 35624919 PMCID: PMC9138969 DOI: 10.3390/brainsci12050530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 11/28/2022] Open
Abstract
Previous research has shown that resting-state functional connectivity (rsFC) between different brain regions (seeds) is related to motor learning and motor memory consolidation. Using high-density electroencephalography (hdEEG), we addressed this question from a brain network perspective. Specifically, we examined frequency-dependent functional connectivity in resting-state networks from twenty-nine young healthy participants before and after they were trained on a motor sequence learning task. Consolidation was assessed with an overnight retest on the motor task. Our results showed training-related decreases in gamma-band connectivity within the motor network, and between the motor and functionally distinct resting-state networks including the attentional network. Brain-behavior correlation analyses revealed that baseline beta, delta, and theta rsFC were related to subsequent motor learning and memory consolidation such that lower connectivity within the motor network and between the motor and several distinct resting-state networks was correlated with better learning and overnight consolidation. Lastly, training-related increases in beta-band connectivity between the motor and the visual networks were related to greater consolidation. Altogether, our results indicate that connectivity in large-scale resting-state brain networks is related to—and modulated by—motor learning and memory consolidation processes. These finding corroborate previous seed-based connectivity research and provide evidence that frequency-dependent functional connectivity in resting-state networks is critically linked to motor learning and memory consolidation.
Collapse
|
79
|
Areshenkoff C, Gale DJ, Standage D, Nashed JY, Flanagan JR, Gallivan JP. Neural excursions from manifold structure explain patterns of learning during human sensorimotor adaptation. eLife 2022; 11:e74591. [PMID: 35438633 PMCID: PMC9018069 DOI: 10.7554/elife.74591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
Humans vary greatly in their motor learning abilities, yet little is known about the neural mechanisms that underlie this variability. Recent neuroimaging and electrophysiological studies demonstrate that large-scale neural dynamics inhabit a low-dimensional subspace or manifold, and that learning is constrained by this intrinsic manifold architecture. Here, we asked, using functional MRI, whether subject-level differences in neural excursion from manifold structure can explain differences in learning across participants. We had subjects perform a sensorimotor adaptation task in the MRI scanner on 2 consecutive days, allowing us to assess their learning performance across days, as well as continuously measure brain activity. We find that the overall neural excursion from manifold activity in both cognitive and sensorimotor brain networks is associated with differences in subjects' patterns of learning and relearning across days. These findings suggest that off-manifold activity provides an index of the relative engagement of different neural systems during learning, and that subject differences in patterns of learning and relearning are related to reconfiguration processes occurring in cognitive and sensorimotor networks.
Collapse
Affiliation(s)
- Corson Areshenkoff
- Centre for Neuroscience Studies, Queen's UniversityKingstonCanada
- Department of Psychology, Queen's UniversityKingstonCanada
| | - Daniel J Gale
- Centre for Neuroscience Studies, Queen's UniversityKingstonCanada
| | - Dominic Standage
- School of Psychology, Centre for Computational Neuroscience and Cognitive Robotics, University of BirminghamBirminghamUnited Kingdom
| | - Joseph Y Nashed
- Centre for Neuroscience Studies, Queen's UniversityKingstonCanada
| | - J Randall Flanagan
- Centre for Neuroscience Studies, Queen's UniversityKingstonCanada
- Department of Psychology, Queen's UniversityKingstonCanada
| | - Jason P Gallivan
- Centre for Neuroscience Studies, Queen's UniversityKingstonCanada
- Department of Psychology, Queen's UniversityKingstonCanada
- Department of Biomedical and Molecular Sciences, Queen's UniversityKingstonCanada
| |
Collapse
|
80
|
Hedenius M, Persson J. Neural correlates of sequence learning in children with developmental dyslexia. Hum Brain Mapp 2022; 43:3559-3576. [PMID: 35434881 PMCID: PMC9248315 DOI: 10.1002/hbm.25868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 12/02/2022] Open
Abstract
Developmental Dyslexia (DD) is a condition in which reading accuracy and/or fluency falls substantially below what is expected based on the individuals age, general level of cognitive ability, and educational opportunities. The procedural circuit deficit hypothesis (PDH) proposes that DD may be largely explained in terms of alterations of the cortico‐basal ganglia procedural memory system (in particular of the striatum) whereas the (hippocampus‐dependent) declarative memory system is intact, and may serve a compensatory role in the condition. The present study was designed to test this hypothesis. Using Magnetic Resonance Imaging, we examined the functional and structural brain correlates of sequence‐specific procedural learning (SL) on the serial reaction time task, in 17 children with DD and 18 typically developing (TD) children. The study was performed over 2 days with a 24‐h interval between sessions. In line with the PDH, the DD group showed less activation of the striatum during the processing of sequential statistical regularities. These alterations predicted the amount of SL at day 2, which in turn explained variance in children's reading fluency. Additionally, reduced hippocampal activation predicted larger SL gains between day 1 and day 2 in the TD group, but not in the DD group. At the structural level, caudate nucleus volume predicted the amount of acquired SL at day 2 in the TD group, but not in the DD group. The findings encourage further research into factors that promote learning in children with DD, including through compensatory mechanisms.
Collapse
Affiliation(s)
- Martina Hedenius
- Department of Public Health and Caring Sciences, Speech-Language Pathology, Uppsala University, Uppsala, Sweden.,Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet and Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholml, Stockholm County Council, BUP-FOU Centrum, Gävlegatan, Stockholm, Sweden
| | - Jonas Persson
- Aging Research Center (ARC), Karolinska Institutet and Stockholm University, Solna, Sweden.,Center for Lifespan Developmental Research (LEADER), School of Law, Psychology, and Social Work, Örebro University, Örebro, Sweden
| |
Collapse
|
81
|
Badreddine N, Zalcman G, Appaix F, Becq G, Tremblay N, Saudou F, Achard S, Fino E. Spatiotemporal reorganization of corticostriatal networks encodes motor skill learning. Cell Rep 2022; 39:110623. [PMID: 35385722 DOI: 10.1016/j.celrep.2022.110623] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/21/2022] [Accepted: 03/15/2022] [Indexed: 11/28/2022] Open
Abstract
Motor skill learning requires the activity of the dorsal striatum, with a differential global implication of the dorsomedial and dorsolateral territories. We investigate here whether and how specific striatal neurons encode the acquisition and consolidation of a motor skill. Using ex vivo two-photon calcium imaging after rotarod training, we report that highly active (HA) striatal populations arise from distinct spatiotemporal reorganization in the dorsomedial (DMS) and dorsolateral (DLS) striatum networks and are correlated with learning performance. The DMS overall activity decreases in early training, with few and sparsely distributed HA cells, while the DLS shows a progressive and long-lasting formation of HA cell clusters. These reorganizations result from reinforcement of synaptic connections to the DMS and anatomical rearrangements to the DLS. Targeted silencing of DMS or DLS HA cells with the cFos-TRAP strategy strongly impairs individual performance. Our data reveal that discrete domains of striatal populations encode acquisition and long-lasting retention of a motor skill.
Collapse
Affiliation(s)
- Nagham Badreddine
- Université Grenoble Alpes, INSERM, U1216, CHU Grenoble Alpes, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Gisela Zalcman
- Université Grenoble Alpes, INSERM, U1216, CHU Grenoble Alpes, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Florence Appaix
- Université Grenoble Alpes, INSERM, U1216, CHU Grenoble Alpes, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Guillaume Becq
- Université Grenoble Alpes, CNRS, Grenoble INP, GIPSA-Lab, 38000 Grenoble, France
| | - Nicolas Tremblay
- Université Grenoble Alpes, CNRS, Grenoble INP, GIPSA-Lab, 38000 Grenoble, France
| | - Frédéric Saudou
- Université Grenoble Alpes, INSERM, U1216, CHU Grenoble Alpes, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Sophie Achard
- Université Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000 Grenoble, France
| | - Elodie Fino
- Université Grenoble Alpes, INSERM, U1216, CHU Grenoble Alpes, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France.
| |
Collapse
|
82
|
Nikolaidis A, He X, Pekar J, Rosch K, Mostofsky SH. Frontal corticostriatal functional connectivity reveals task positive and negative network dysregulation in relation to ADHD, sex, and inhibitory control. Dev Cogn Neurosci 2022; 54:101101. [PMID: 35338900 PMCID: PMC8956922 DOI: 10.1016/j.dcn.2022.101101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 01/21/2023] Open
Abstract
Frontal corticostriatal circuits (FCSC) are involved in self-regulation of cognition, emotion, and motor function. While these circuits are implicated in attention-deficit/hyperactivity disorder (ADHD), the literature establishing FCSC associations with ADHD is inconsistent. This may be due to study variability in considerations of how fMRI motion regression was handled between groups, or study specific differences in age, sex, or the striatal subregions under investigation. Given the importance of these domains in ADHD it is crucial to consider the complex interactions of age, sex, striatal subregions and FCSC in ADHD presentation and diagnosis. In this large-scale study of 362 8-12 year-old children with ADHD (n = 165) and typically developing (TD; n = 197) children, we investigate associations between FCSC with ADHD diagnosis and symptoms, sex, and go/no-go (GNG) task performance. Results include: (1) increased striatal connectivity with age across striatal subregions with most of the frontal cortex, (2) increased frontal-limbic striatum connectivity among boys with ADHD only, mostly in default mode network (DMN) regions not associated with age, and (3) increased frontal-motor striatum connectivity to regions of the DMN were associated with greater parent-rated inattention problems, particularly among the ADHD group. Although diagnostic group differences were no longer significant when strictly controlling for head motion, with motion possibly reflecting the phenotypic variance of ADHD itself, the spatial distribution of all symptom, age, sex, and other ADHD group effects were nearly identical to the initial results. These results demonstrate differential associations of FCSC between striatal subregions with the DMN and FPN in relation to age, ADHD, sex, and inhibitory control.
Collapse
Affiliation(s)
- Aki Nikolaidis
- Center for the Developing Brain, Child Mind Institute, USA.
| | - Xiaoning He
- Center for the Developing Brain, Child Mind Institute, USA
| | - James Pekar
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, USA; F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, USA; Department of Radiology, Johns Hopkins University School of Medicine, USA
| | - Keri Rosch
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA; Department of Neuropsychology, Kennedy Krieger Institute, USA
| | - Stewart H Mostofsky
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA; Department of Neurology, Johns Hopkins University School of Medicine, USA
| |
Collapse
|
83
|
Toor B, van den Berg NH, Fang Z, Pozzobon A, Ray LB, Fogel SM. Age-related differences in problem-solving skills: Reduced benefit of sleep for memory trace consolidation. Neurobiol Aging 2022; 116:55-66. [DOI: 10.1016/j.neurobiolaging.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 04/05/2022] [Accepted: 04/17/2022] [Indexed: 10/18/2022]
|
84
|
Khatibi A, Vahdat S, Lungu O, Finsterbusch J, Büchel C, Cohen-Adad J, Marchand-Pauvert V, Doyon J. Brain-spinal cord interaction in long-term motor sequence learning in human: An fMRI study. Neuroimage 2022; 253:119111. [PMID: 35331873 DOI: 10.1016/j.neuroimage.2022.119111] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022] Open
Abstract
The spinal cord is important for sensory guidance and execution of skilled movements. Yet its role in human motor learning is not well understood. Despite evidence revealing an active involvement of spinal circuits in the early phase of motor learning, whether long-term learning engages similar changes in spinal cord activation and functional connectivity remains unknown. Here, we investigated spinal-cerebral functional plasticity associated with learning of a specific sequence of visually-guided joystick movements (sequence task) over six days of training. On the first and last training days, we acquired high-resolution functional images of the brain and cervical cord simultaneously, while participants practiced the sequence or a random task while electromyography was recorded from wrist muscles. After six days of training, the subjects' motor performance improved in the sequence compared to the control condition. These behavioral changes were associated with decreased co-contractions and increased reciprocal activations between antagonist wrist muscles. Importantly, early learning was characterized by activation in the C8 level, whereas a more rostral activation in the C6-C7 was found during the later learning phase. Motor sequence learning was also supported by increased spinal cord functional connectivity with distinct brain networks, including the motor cortex, superior parietal lobule, and the cerebellum at the early stage, and the angular gyrus and cerebellum at a later stage of learning. Our results suggest that the early vs. late shift in spinal activation from caudal to rostral cervical segments synchronized with distinct brain networks, including parietal and cerebellar regions, is related to progressive changes reflecting the increasing fine control of wrist muscles during motor sequence learning.
Collapse
Affiliation(s)
- Ali Khatibi
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada; Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), University of Birmingham, UK; Centre for Human Brain Health, University of Birmingham, UK.
| | - Shahabeddin Vahdat
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada; Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Ovidiu Lungu
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada; Department of psychiatry and addictology, University of Montreal, Montreal, QC, Canada
| | - Jurgen Finsterbusch
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Germany
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Germany
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada; Functional Neuroimaging Unit, CRIUGM, University of Montreal, Montreal, QC, Canada; Mila Quebec AI Institute, Montreal, QC, Canada
| | | | - Julien Doyon
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| |
Collapse
|
85
|
Czyż SH, Marusiak J, Klobušiaková P, Sajdlová Z, Rektorová I. Neuroplasticity in Motor Learning Under Variable and Constant Practice Conditions-Protocol of Randomized Controlled Trial. Front Hum Neurosci 2022; 16:773730. [PMID: 35370573 PMCID: PMC8967977 DOI: 10.3389/fnhum.2022.773730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/12/2022] [Indexed: 11/20/2022] Open
Abstract
Background There is numerous literature on mechanisms underlying variability of practice advantages. Literature includes both behavioral and neuroimaging studies. Unfortunately, no studies are focusing on practice in constant conditions to the best of our knowledge. Hence it is essential to assess possible differences in mechanisms of neuroplasticity between constant vs. variable practice conditions. The primary objectives of the study described in this protocol will be: (1) to determine the brain's structural and functional changes following constant and variable practice conditions in motor learning (structural and functional magnetic resonance imaging, MRI); (2) to determine the EEG activation and connectivity between cognitive, sensory, and motor cerebral cortex areas (central, temporal, parietal, occipital) in constant and variable practice conditions and as a function of practice time. Methods The study will follow the interventional (experimental) design with two arms (parallel groups). Fifty participants will be randomly assigned to two groups practicing in constant (CG) and variable conditions (VG). CG will be practicing only one pattern of step isometric contractions during unimanual index finger abduction, i.e., 90 trials in all training sessions, whereas VG will practice three different patterns. Each will be practiced 30 times per session in variable conditions. Resting-state fMRI, EEG (cortical networking), and motor task proficiency will be examined before (pre-) and after practice (post- and retentions tests). Discussion Findings will enhance our understanding of structural and functional neural changes following practice in constant and variable conditions. Therefore, the study can be considered pure (basic) research (clinical research in healthy individuals). Clinical Trial Registration Study registered at clinicaltrials.gov (ID# NCT04921072) on 9 June 2021. Last version update: 21 December 2021.The protocol has been prepared according to the complete SPIRIT checklist (http://www.spirit-statement.org/), although the item order has been modified in order to comply with the manuscript structure.
Collapse
Affiliation(s)
- Stanisław H. Czyż
- Faculty of Physical Education and Sports, Wrocław University of Health and Sport Sciences, Wrocław, Poland
- Faculty of Sport Studies, Masaryk University, Brno, Czechia
- Physical Activity, Sport and Recreation (PhASRec), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Jarosław Marusiak
- Department of Kinesiology, Faculty of Physiotherapy, Wrocław University of Health and Sport Sciences, Wrocław, Poland
| | - Patrícia Klobušiaková
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno, Czechia
- First Department of Neurology, Faculty of Medicine, Masaryk University, and St. Anne’s University Hospital, Brno, Czechia
- Surgeon General Office of the Slovak Armed Forces, Ružomberok, Slovakia
| | | | - Irena Rektorová
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno, Czechia
- First Department of Neurology, Faculty of Medicine, Masaryk University, and St. Anne’s University Hospital, Brno, Czechia
| |
Collapse
|
86
|
Monick AJ, Joyce MR, Chugh N, Creighton JA, Morgan OP, Strain EC, Marvel CL. Characterization of basal ganglia volume changes in the context of HIV and polysubstance use. Sci Rep 2022; 12:4357. [PMID: 35288604 PMCID: PMC8921181 DOI: 10.1038/s41598-022-08364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/04/2022] [Indexed: 11/10/2022] Open
Abstract
HIV and psychoactive substances can impact the integrity of the basal ganglia (BG), a neural substrate of cognition, motor control, and reward-seeking behaviors. This study assessed BG gray matter (GM) volume as a function of polysubstance (stimulant and opioid) use and HIV status. We hypothesized that comorbid polysubstance use and HIV seropositivity would alter BG GM volume differently than would polysubstance use or HIV status alone. We collected structural MRI scans, substance use history, and HIV diagnoses. Participants who had HIV (HIV +), a history of polysubstance dependence (POLY +), both, or neither completed assessments for cognition, motor function, and risk-taking behaviors (N = 93). All three clinical groups showed a left-lateralized pattern of GM reduction in the BG relative to controls. However, in the HIV + /POLY + group, stimulant use was associated with increased GM volume within the globus pallidus and putamen. This surpassed the effects from opioid use, as indicated by decreased GM volume throughout the BG in the HIV-/POLY + group. Motor learning was impaired in all three clinical groups, and in the HIV + /POLY + group, motor learning was associated with increased caudate and putamen GM volume. We also observed associations between BG GM volume and risk-taking behaviors in the HIV + /POLY- and HIV-/POLY + groups. The effects of substance use on the BG differed as a function of substance type used, HIV seropositivity, and BG subregion. Although BG volume decreased in association with HIV and opioid use, stimulants can, inversely, lead to BG volume increases within the context of HIV.
Collapse
Affiliation(s)
- Andrew J Monick
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Michelle R Joyce
- Department of Neurology, Johns Hopkins University School of Medicine, 1620 McElderry St., Reed Hall W102A, Baltimore, MD, 21205, USA
| | - Natasha Chugh
- Department of Neurology, Johns Hopkins University School of Medicine, 1620 McElderry St., Reed Hall W102A, Baltimore, MD, 21205, USA
| | - Jason A Creighton
- Department of Neurology, Johns Hopkins University School of Medicine, 1620 McElderry St., Reed Hall W102A, Baltimore, MD, 21205, USA
| | - Owen P Morgan
- Department of Neurology, Johns Hopkins University School of Medicine, 1620 McElderry St., Reed Hall W102A, Baltimore, MD, 21205, USA
- Department of Psychology, Cornell University, Ithaca, NY, 14853, USA
| | - Eric C Strain
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Cherie L Marvel
- Department of Neurology, Johns Hopkins University School of Medicine, 1620 McElderry St., Reed Hall W102A, Baltimore, MD, 21205, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
87
|
Simpson MW, Mak M. Single session transcranial direct current stimulation to the primary motor cortex fails to enhance early motor sequence learning in Parkinson's disease. Behav Brain Res 2022; 418:113624. [PMID: 34634239 DOI: 10.1016/j.bbr.2021.113624] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/15/2021] [Accepted: 10/05/2021] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Explicit motor sequence learning is impaired in Parkinson's disease (PD). Transcranial direct current stimulation (tDCS) applied over the motor cortex in healthy can improve explicit motor learning, but comparative effects in PD are unknown. This exploratory study aims to examine the effect of single session tDCS on explicit motor sequence learning in PD. METHODS Thirty-three people with mild to moderate PD learnt a short and long finger tapping sequence with their right hand. Participants received either anodal, cathodal, or sham tDCS applied over the left primary motor cortex during task practice. Single- and dual-task finger tapping performance was assessed before and after task practice and functional near-infrared spectroscopy used to measure task related changes of oxygenated haemoglobin. RESULTS Finger tapping performance of short and long sequences under single-task conditions significantly improved following practice (p = 0.010 and p < 0.001, respectively). A condition-by-time interaction trend was observed for the long finger tapping sequence (p = 0.069) driven by improved performance in the cathodal (p = 0.001) and sham (p < 0.001) tDCS conditions, but not anodal tDCS (p = 0.198). The primary and premotor cortex and supplementary motor area were active in all tasks. No interaction or main effects were observed for task related changes of oxygenated haemoglobin. CONCLUSIONS PD patients retain the capacity to learn an explicit sequence of movements. Motor cortex tDCS does not improve explicit motor learning in PD and anodal tDCS may even suppress the rate of learning.
Collapse
Affiliation(s)
- Michael William Simpson
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Margaret Mak
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| |
Collapse
|
88
|
Klingner CM, Kattlun F, Krolopp L, Jochmann E, Volk GF, Brodoehl S, Guntinas-Lichius O, Witte OW, Dobel C. Shaping the Sensory-Motor Network by Short-Term Unresolvable Sensory-Motor Mismatch. Front Neurol 2022; 12:793662. [PMID: 35095737 PMCID: PMC8790475 DOI: 10.3389/fneur.2021.793662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/15/2021] [Indexed: 12/05/2022] Open
Abstract
Learning from errors as the main mechanism for motor adaptation has two fundamental prerequisites: a mismatch between the intended and performed movement and the ability to adapt motor actions. Many neurological patients are limited in their ability to transfer an altered motor representation into motor action due to a compromised motor pathway. Studies that have investigated the effects of a sustained and unresolvable mismatch over multiple days found changes in brain processing that seem to optimize the potential for motor learning (increased drive for motor adaptation and a weakening of the current implementation of motor programs). However, it remains unclear whether the observed effects can be induced experimentally and more important after shorter periods. Here, we used task-based and resting-state fMRI to investigate whether the known pattern of cortical adaptations due to a sustained mismatch can be induced experimentally by a short (20 min), but unresolvable, sensory–motor mismatch by impaired facial movements in healthy participants by transient facial tapping. Similar to long-term mismatch, we found plastic changes in a network that includes the striatal, cerebellar and somatosensory brain areas. However, in contrast to long-term mismatch, we did not find the involvement of the cerebral motor cortex. The lack of the involvement of the motor cortex can be interpreted both as an effect of time and also as an effect of the lack of a reduction in the motor error. The similar effects of long-term and short-term mismatch on other parts of the sensory–motor network suggest that the brain-state caused by long-term mismatch can be (at least partly) induced by short-term mismatch. Further studies should investigate whether short-term mismatch interventions can be used as therapeutic strategy to induce an altered brain-state that increase the potential for motor learning.
Collapse
Affiliation(s)
- Carsten M Klingner
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.,Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Fabian Kattlun
- Clinic for Otorhinolaryngology, Jena University Hospital, Jena, Germany
| | - Lena Krolopp
- Clinic for Otorhinolaryngology, Jena University Hospital, Jena, Germany
| | - Elisabeth Jochmann
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.,Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Gerd F Volk
- Clinic for Otorhinolaryngology, Jena University Hospital, Jena, Germany
| | - Stefan Brodoehl
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | | | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Christian Dobel
- Clinic for Otorhinolaryngology, Jena University Hospital, Jena, Germany
| |
Collapse
|
89
|
Parkinson's disease: Alterations of motor plasticity and motor learning. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:135-151. [PMID: 35034730 DOI: 10.1016/b978-0-12-819410-2.00007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This chapter reviews the alterations in motor learning and motor cortical plasticity in Parkinson's disease (PD), the most common movement disorder. Impairments in motor learning, which is a hallmark of basal ganglia disorders, influence the performance of motor learning-related behavioral tasks and have clinical implications for the management of disturbance in gait and posture, and for rehabilitative management of PD. Although plasticity is classically induced and assessed in sliced preparation in animal models, in this review we have concentrated on the results from non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS), transcranial alternating current stimulation (tACS) and transcranial direct current stimulation (tDCS) in patients with PD, in addition to a few animal electrophysiologic studies. The chapter summarizes the results from different cortical and subcortical plasticity investigations. Plasticity induction protocols reveal deficient plasticity in PD and these plasticity measures are modulated by medications and deep brain stimulation. There is considerable variability in these measures that are related to inter-individual variations, different disease characteristics and methodological considerations. Nevertheless, these pathophysiologic studies expand our knowledge of cortical excitability, plasticity and the effects of different treatments in PD. These tools of modulating plasticity and motor learning improve our understanding of PD pathophysiology and help to develop new treatments for this disabling condition.
Collapse
|
90
|
Lahlou S, Gabitov E, Owen L, Shohamy D, Sharp M. Preserved motor memory in Parkinson's disease. Neuropsychologia 2022; 167:108161. [PMID: 35041839 DOI: 10.1016/j.neuropsychologia.2022.108161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 01/02/2022] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
Abstract
Patients with Parkinson's disease, who lose the dopaminergic projections to the striatum, are impaired in certain aspects of motor learning. Recent evidence suggests that, in addition to its role in motor performance, the striatum plays a key role in the memory of motor learning. Whether Parkinson's patients have impaired motor memory and whether motor memory is modulated by dopamine at the time of initial learning is unknown. To address these questions, we measured memory of a learned motor sequence in Parkinson's patients who were either On or Off their dopaminergic medications at the time of initial learning. We compared them to a group of older and younger controls. Contrary to our predictions, motor memory was not impaired in patients compared to older controls, and was not influenced by dopamine state at the time of initial learning. To probe post-learning consolidation processes, we also tested whether learning a new sequence shortly after learning the initial sequence would interfere with later memory. We found that, in contrast to younger adults, neither older adults nor patients were susceptible to this interference. These findings suggest that motor memory is preserved in Parkinson's patients and raise the possibility that motor memory in patients is supported by compensatory non-dopamine sensitive mechanisms. Furthermore, given the similar performance characteristics observed in the patients and older adults and the absence of an effect of dopamine, these results raise the possibility that aging and Parkinson's disease affect motor memory in similar ways.
Collapse
Affiliation(s)
- Soraya Lahlou
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Canada
| | - Ella Gabitov
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Canada
| | - Lucy Owen
- Department of Psychological and Brain Sciences, Dartmouth College, USA
| | - Daphna Shohamy
- Department of Psychology, Columbia University, USA; Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Science, Columbia University, USA
| | - Madeleine Sharp
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Canada.
| |
Collapse
|
91
|
Aznárez-Sanado M, Eudave L, Martínez M, Luis EO, Villagra F, Loayza FR, Fernández-Seara MA, Pastor MA. Brain Activity and Functional Connectivity Patterns Associated With Fast and Slow Motor Sequence Learning in Late Middle Adulthood. Front Aging Neurosci 2022; 13:778201. [PMID: 35095468 PMCID: PMC8792532 DOI: 10.3389/fnagi.2021.778201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
The human brain undergoes structural and functional changes across the lifespan. The study of motor sequence learning in elderly subjects is of particularly interest since previous findings in young adults might not replicate during later stages of adulthood. The present functional magnetic resonance imaging (fMRI) study assessed the performance, brain activity and functional connectivity patterns associated with motor sequence learning in late middle adulthood. For this purpose, a total of 25 subjects were evaluated during early stages of learning [i.e., fast learning (FL)]. A subset of these subjects (n = 11) was evaluated after extensive practice of a motor sequence [i.e., slow learning (SL) phase]. As expected, late middle adults improved motor performance from FL to SL. Learning-related brain activity patterns replicated most of the findings reported previously in young subjects except for the lack of hippocampal activity during FL and the involvement of cerebellum during SL. Regarding functional connectivity, precuneus and sensorimotor lobule VI of the cerebellum showed a central role during improvement of novel motor performance. In the sample of subjects evaluated, connectivity between the posterior putamen and parietal and frontal regions was significantly decreased with aging during SL. This age-related connectivity pattern may reflect losses in network efficiency when approaching late adulthood. Altogether, these results may have important applications, for instance, in motor rehabilitation programs.
Collapse
Affiliation(s)
- Maite Aznárez-Sanado
- School of Education and Psychology, University of Navarra, Pamplona, Spain
- Neuroimaging Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Luis Eudave
- School of Education and Psychology, University of Navarra, Pamplona, Spain
- Neuroimaging Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Martín Martínez
- School of Education and Psychology, University of Navarra, Pamplona, Spain
- Neuroimaging Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Elkin O. Luis
- School of Education and Psychology, University of Navarra, Pamplona, Spain
- Neuroimaging Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Federico Villagra
- Neuroimaging Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Francis R. Loayza
- Neuroimaging Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Faculty of Mechanical Engineering and Production Sciences (FIMCP), Escuela Superior Politecnica del Litoral (ESPOL), Guayaquil, Ecuador
| | - María A. Fernández-Seara
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain
| | - María A. Pastor
- Neuroimaging Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- School of Medicine, University of Navarra, Pamplona, Spain
| |
Collapse
|
92
|
Fitzroy AB, Jones BJ, Kainec KA, Seo J, Spencer RMC. Aging-Related Changes in Cortical Sources of Sleep Oscillatory Neural Activity Following Motor Learning Reflect Contributions of Cortical Thickness and Pre-sleep Functional Activity. Front Aging Neurosci 2022; 13:787654. [PMID: 35087393 PMCID: PMC8786737 DOI: 10.3389/fnagi.2021.787654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/25/2021] [Indexed: 01/01/2023] Open
Abstract
Oscillatory neural activity during sleep, such as that in the delta and sigma bands, is important for motor learning consolidation. This activity is reduced with typical aging, and this reduction may contribute to aging-related declines in motor learning consolidation. Evidence suggests that brain regions involved in motor learning contribute to oscillatory neural activity during subsequent sleep. However, aging-related differences in regional contributions to sleep oscillatory activity following motor learning are unclear. To characterize these differences, we estimated the cortical sources of consolidation-related oscillatory activity using individual anatomical information in young and older adults during non-rapid eye movement sleep after motor learning and analyzed them in light of cortical thickness and pre-sleep functional brain activation. High-density electroencephalogram was recorded from young and older adults during a midday nap, following completion of a functional magnetic resonance imaged serial reaction time task as part of a larger experimental protocol. Sleep delta activity was reduced with age in a left-weighted motor cortical network, including premotor cortex, primary motor cortex, supplementary motor area, and pre-supplementary motor area, as well as non-motor regions in parietal, temporal, occipital, and cingulate cortices. Sleep theta activity was reduced with age in a similar left-weighted motor network, and in non-motor prefrontal and middle cingulate regions. Sleep sigma activity was reduced with age in left primary motor cortex, in a non-motor right-weighted prefrontal-temporal network, and in cingulate regions. Cortical thinning mediated aging-related sigma reductions in lateral orbitofrontal cortex and frontal pole, and partially mediated delta reductions in parahippocampal, fusiform, and lingual gyri. Putamen, caudate, and inferior parietal cortex activation prior to sleep predicted frontal and motor cortical contributions to sleep delta and theta activity in an age-moderated fashion, reflecting negative relationships in young adults and positive or absent relationships in older adults. Overall, these results support the local sleep hypothesis that brain regions active during learning contribute to consolidation-related neural activity during subsequent sleep and demonstrate that sleep oscillatory activity in these regions is reduced with aging.
Collapse
Affiliation(s)
- Ahren B. Fitzroy
- Neuroscience & Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Bethany J. Jones
- Neuroscience & Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Kyle A. Kainec
- Neuroscience & Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Jeehye Seo
- Neuroscience & Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Rebecca M. C. Spencer
- Neuroscience & Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States
- Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
93
|
Hassett J, Carlson H, Babwani A, Kirton A. Bihemispheric developmental alterations in basal ganglia volumes following unilateral perinatal stroke. NEUROIMAGE: CLINICAL 2022; 35:103143. [PMID: 36002972 PMCID: PMC9421529 DOI: 10.1016/j.nicl.2022.103143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/25/2022] [Accepted: 08/01/2022] [Indexed: 12/02/2022] Open
Abstract
Basal ganglia segmentation appears reliable in children with perinatal stroke. Alterations from perinatal stroke to basal ganglia development may be bihemispheric. Stroke type may dictate nucleus-specific differences in basal ganglia development. Putamen volume is associated with motor function in children with perinatal stroke.
Introduction Perinatal stroke affects millions of children and results in lifelong disability. Two forms prevail: arterial ischemic stroke (AIS), and periventricular venous infarction (PVI). With such focal damage early in life, neural structures may reorganize during development to determine clinical function, particularly in the contralesional hemisphere. Such processes are increasingly understood in the motor system, however, the role of the basal ganglia, a group of subcortical nuclei that are critical to movement, behaviour, and learning, remain relatively unexplored. Perinatal strokes that directly damage the basal ganglia have been associated with worse motor outcomes, but how developmental plasticity affects bilateral basal ganglia structure is unknown. We hypothesized that children with perinatal stroke have alterations in bilateral basal ganglia volumes, the degree of which correlates with clinical motor function. Methods Children with AIS or PVI, and controls, aged 6–19 years, were recruited from a population-based cohort. MRIs were acquired on a 3 T GE MR750w scanner. High-resolution T1-weighted images (166 slices, 1 mm isotropic voxels) underwent manual segmentations of bilateral caudate and putamen. Extracted volumes were corrected for total intracranial volume. A structure volume ratio quantified hemispheric asymmetry of caudate and putamen (non-dominant/dominant hemisphere structure volume) with ratios closer to 1 reflecting a greater degree of symmetry between structures. Participants were additionally dichotomized by volume ratios into two groups, those with values above the group mean (0.8) and those below. Motor function was assessed using the Assisting Hand Assessment (AHA) and the Box and Blocks test in affected (BBTA) and unaffected (BBTU) hands. Group differences in volumes were explored using Kruskal-Wallis tests, and interhemispheric differences using Wilcoxon. Partial Spearman correlations explored associations between volumes and motor function (factoring out age, and whole-brain white matter volume, a proxy for lesion extent). Results In the dominant (non-lesioned) hemisphere, volumes were larger in AIS compared to PVI for both the caudate (p < 0.05) and putamen (p < 0.01) but comparable between stroke groups and controls. Non-dominant (lesioned) hemisphere volumes were larger for controls than AIS for the putamen (p < 0.05), and for the caudate in PVI (p = 0.001). Interhemispheric differences showed greater dominant hemisphere volumes for the putamen in controls (p < 0.01), for both the caudate (p < 0.01) and putamen (p < 0.001) in AIS, and for the caudate (p = 0.01) in PVI. Motor scores did not differ between AIS and PVI thus groups were combined to increase statistical power. Better motor scores were associated with larger non-dominant putamen volumes (BBTA: r = 0.40, p = 0.011), and larger putamen volume ratios (BBTA: r = 0.52, p < 0.001, AHA: r = 0.43, p < 0.01). For those with relatively symmetrical putamen volume ratios (ratio > group mean of 0.8), age was positively correlated with BBTA (r = 0.54, p < 0.01) and BBTU (r = 0.69, p < 0.001). For those with more asymmetrical putamen volume ratios, associations with motor function and age were not seen (BBTA: r = 0.21, p = 0.40, BBTU: r = 0.37, p = 0.13). Conclusion Specific perinatal stroke lesions affect different elements of basal ganglia development. PVI primarily affected the caudate, while AIS primarily affected the putamen. Putamen volumes in the lesioned hemisphere are associated with clinical motor function. The basal ganglia should be included in evolving models of developmental plasticity after perinatal stroke.
Collapse
Affiliation(s)
- Jordan Hassett
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Helen Carlson
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada
| | - Ali Babwani
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Adam Kirton
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada.
| |
Collapse
|
94
|
Belyk M, Eichert N, McGettigan C. A dual larynx motor networks hypothesis. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200392. [PMID: 34719252 PMCID: PMC8558777 DOI: 10.1098/rstb.2020.0392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 01/14/2023] Open
Abstract
Humans are vocal modulators par excellence. This ability is supported in part by the dual representation of the laryngeal muscles in the motor cortex. Movement, however, is not the product of motor cortex alone but of a broader motor network. This network consists of brain regions that contain somatotopic maps that parallel the organization in motor cortex. We therefore present a novel hypothesis that the dual laryngeal representation is repeated throughout the broader motor network. In support of the hypothesis, we review existing literature that demonstrates the existence of network-wide somatotopy and present initial evidence for the hypothesis' plausibility. Understanding how this uniquely human phenotype in motor cortex interacts with broader brain networks is an important step toward understanding how humans evolved the ability to speak. We further suggest that this system may provide a means to study how individual components of the nervous system evolved within the context of neuronal networks. This article is part of the theme issue 'Voice modulation: from origin and mechanism to social impact (Part I)'.
Collapse
Affiliation(s)
- Michel Belyk
- Department of Speech Hearing and Phonetic Sciences, University College London, London WC1N 1PJ, UK
- Department of Psychology, Edge Hill University, Ormskirk, L39 4QP, UK
| | - Nicole Eichert
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Carolyn McGettigan
- Department of Speech Hearing and Phonetic Sciences, University College London, London WC1N 1PJ, UK
| |
Collapse
|
95
|
Rossi F, Savi F, Prestia A, Mongardi A, Demarchi D, Buccino G. Combining Action Observation Treatment with a Brain-Computer Interface System: Perspectives on Neurorehabilitation. SENSORS 2021; 21:s21248504. [PMID: 34960597 PMCID: PMC8707407 DOI: 10.3390/s21248504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/30/2021] [Accepted: 12/17/2021] [Indexed: 12/04/2022]
Abstract
Action observation treatment (AOT) exploits a neurophysiological mechanism, matching an observed action on the neural substrates where that action is motorically represented. This mechanism is also known as mirror mechanism. In a typical AOT session, one can distinguish an observation phase and an execution phase. During the observation phase, the patient observes a daily action and soon after, during the execution phase, he/she is asked to perform the observed action at the best of his/her ability. Indeed, the execution phase may sometimes be difficult for those patients where motor impairment is severe. Although, in the current practice, the physiotherapist does not intervene on the quality of the execution phase, here, we propose a stimulation system based on neurophysiological parameters. This perspective article focuses on the possibility to combine AOT with a brain–computer interface system (BCI) that stimulates upper limb muscles, thus facilitating the execution of actions during a rehabilitation session. Combining a rehabilitation tool that is well-grounded in neurophysiology with a stimulation system, such as the one proposed, may improve the efficacy of AOT in the treatment of severe neurological patients, including stroke patients, Parkinson’s disease patients, and children with cerebral palsy.
Collapse
Affiliation(s)
- Fabio Rossi
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy; (F.R.); (A.P.); (A.M.); (D.D.)
| | - Federica Savi
- Fondazione Don Carlo Gnocchi, Piazzale dei Servi 3, 43100 Parma, Italy;
| | - Andrea Prestia
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy; (F.R.); (A.P.); (A.M.); (D.D.)
| | - Andrea Mongardi
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy; (F.R.); (A.P.); (A.M.); (D.D.)
| | - Danilo Demarchi
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy; (F.R.); (A.P.); (A.M.); (D.D.)
| | - Giovanni Buccino
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, University San Raffaele, Via Olgettina 60, 20132 Milan, Italy
- Correspondence: ; Tel.: +39-02-91751596
| |
Collapse
|
96
|
Offline low-frequency rTMS of the primary and premotor cortices does not impact motor sequence memory consolidation despite modulation of corticospinal excitability. Sci Rep 2021; 11:24186. [PMID: 34921224 PMCID: PMC8683442 DOI: 10.1038/s41598-021-03737-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Motor skills are acquired and refined across alternating phases of practice (online) and subsequent consolidation in the absence of further skill execution (offline). Both stages of learning are sustained by dynamic interactions within a widespread motor learning network including the premotor and primary motor cortices. Here, we aimed to investigate the role of the dorsal premotor cortex (dPMC) and its interaction with the primary motor cortex (M1) during motor memory consolidation. Forty-eight healthy human participants (age 22.1 ± 3.1 years) were assigned to three different groups corresponding to either low-frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) of left dPMC, rTMS of left M1, or sham rTMS. rTMS was applied immediately after explicit motor sequence training with the right hand. Motor evoked potentials were recorded before training and after rTMS to assess potential stimulation-induced changes in corticospinal excitability (CSE). Participants were retested on motor sequence performance after eight hours to assess consolidation. While rTMS of dPMC significantly increased CSE and rTMS of M1 significantly decreased CSE, no CSE modulation was induced by sham rTMS. However, all groups demonstrated similar significant offline learning indicating that consolidation was not modulated by the post-training low-frequency rTMS intervention despite evidence of an interaction of dPMC and M1 at the level of CSE. Motor memory consolidation ensuing explicit motor sequence training seems to be a rather robust process that is not affected by low-frequency rTMS-induced perturbations of dPMC or M1. Findings further indicate that consolidation of explicitly acquired motor skills is neither mediated nor reflected by post-training CSE.
Collapse
|
97
|
Farkas BC, Tóth-Fáber E, Janacsek K, Nemeth D. A Process-Oriented View of Procedural Memory Can Help Better Understand Tourette's Syndrome. Front Hum Neurosci 2021; 15:683885. [PMID: 34955784 PMCID: PMC8707288 DOI: 10.3389/fnhum.2021.683885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Tourette's syndrome (TS) is a neurodevelopmental disorder characterized by repetitive movements and vocalizations, also known as tics. The phenomenology of tics and the underlying neurobiology of the disorder have suggested that the altered functioning of the procedural memory system might contribute to its etiology. However, contrary to the robust findings of impaired procedural memory in neurodevelopmental disorders of language, results from TS have been somewhat mixed. We review the previous studies in the field and note that they have reported normal, impaired, and even enhanced procedural performance. These mixed findings may be at least partially be explained by the diversity of the samples in both age and tic severity, the vast array of tasks used, the low sample sizes, and the possible confounding effects of other cognitive functions, such as executive functions, working memory or attention. However, we propose that another often overlooked factor could also contribute to the mixed findings, namely the multiprocess nature of the procedural system itself. We propose that a process-oriented view of procedural memory functions could serve as a theoretical framework to help integrate these varied findings. We discuss evidence suggesting heterogeneity in the neural regions and their functional contributions to procedural memory. Our process-oriented framework can help to deepen our understanding of the complex profile of procedural functioning in TS and atypical development in general.
Collapse
Affiliation(s)
- Bence Cs. Farkas
- LNC, Département d’Études Cognitives, École Normale Supérieure, INSERM, PSL Research University, Paris, France
| | - Eszter Tóth-Fáber
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Centre for Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, Faculty of Education, Health and Human Sciences, University of Greenwich, London, United Kingdom
| | - Dezso Nemeth
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
98
|
Kuhne LA, Ksiezarczyk AM, Braumann KM, Reer R, Jacobs T, Röder B, Hötting K. The Effects of Acute Cardiovascular Exercise on Memory and Its Associations With Exercise-Induced Increases in Neurotrophic Factors. Front Aging Neurosci 2021; 13:750401. [PMID: 34858160 PMCID: PMC8630591 DOI: 10.3389/fnagi.2021.750401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/15/2021] [Indexed: 01/10/2023] Open
Abstract
Due to increasing life expectancy, low-cost interventions to counteract age-related memory impairment have gained popularity. Physical activity has been shown to positively affect memory and hippocampal plasticity in rodents and humans. These effects have been proposed to be mediated by the release of neurotrophic factors. However, studies examining the effects of a single cardiovascular exercise session on human memory have yielded conflicting results. Moreover, it remains unclear whether exercise-induced memory enhancements are related to changes in peripheral neurotrophic factor concentrations. The present study tested whether one bout of cardiovascular exercise during an early phase of memory consolidation, compared to one bout of stretching and toning, positively affected memory. Furthermore, it was analyzed whether exercise-induced changes in the brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) were related to memory enhancement after a single bout of physical exercise. Fifty healthy participants (20–40 years) were randomly assigned to either a cycling group (BIKE) or a stretching and toning group (STRETCH). Participants performed an implicit vocabulary learning task which was immediately followed by physical exercise. Memory for the learned vocabulary was tested 1–2 weeks later. To measure exercise-induced changes in serum neurotrophic factor levels, blood samples were collected at rest (baseline) and immediately after the exercise session. Results did not show a significant difference in memory between the BIKE group and the STRETCH group. However, in the BIKE group, a larger increase in BDNF and VEGF levels was observed than in the STRETCH group. Moreover, the increase in BDNF and memory performance tended to be positively related in the BIKE group. We speculate that the correlation between exercise-increased BDNF levels and memory in the cycling group may indicate an involvement of BDNF in mediating memory processes after acute cardiovascular exercise.
Collapse
Affiliation(s)
- Laura A Kuhne
- Biological Psychology and Neuropsychology, Institute of Psychology, University of Hamburg, Hamburg, Germany
| | - Anna-Maria Ksiezarczyk
- Sports and Exercise Medicine, Institute of Human Movement Science, University of Hamburg, Hamburg, Germany
| | - Klaus-Michael Braumann
- Sports and Exercise Medicine, Institute of Human Movement Science, University of Hamburg, Hamburg, Germany
| | - Rüdiger Reer
- Sports and Exercise Medicine, Institute of Human Movement Science, University of Hamburg, Hamburg, Germany
| | - Thomas Jacobs
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Brigitte Röder
- Biological Psychology and Neuropsychology, Institute of Psychology, University of Hamburg, Hamburg, Germany
| | - Kirsten Hötting
- Biological Psychology and Neuropsychology, Institute of Psychology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
99
|
Grohs MN, Lebel C, Carlson HL, Craig BT, Dewey D. Subcortical brain structure in children with developmental coordination disorder: A T1-weighted volumetric study. Brain Imaging Behav 2021; 15:2756-2765. [PMID: 34386927 PMCID: PMC8761714 DOI: 10.1007/s11682-021-00502-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 11/04/2022]
Abstract
Developmental coordination disorder (DCD) is a neurodevelopmental disorder occurring in 5-6% of school-aged children. Converging evidence suggests that dysfunction within cortico-striatal and cortico-cerebellar networks may contribute to motor deficits in DCD, yet limited research has examined the brain morphology of these regions. Using T1-weighted magnetic resonance imaging the current study investigated cortical and subcortical volumes in 37 children with DCD, aged 8 to 12 years, and 48 controls of a similar age. Regional brain volumes of the thalamus, basal ganglia, cerebellum and primary motor and sensory cortices were extracted using the FreeSurfer recon-all pipeline and compared between groups. Reduced volumes within both the left and right pallidum (Left: F = 4.43, p = 0.039; Right: F = 5.24, p = 0.025) were observed in children with DCD; however, these results did not withstand correction for multiple comparisons. These findings provide preliminary evidence of altered subcortical brain structure in DCD. Future studies that examine the morphology of these subcortical regions are highly encouraged in order replicate these findings.
Collapse
Affiliation(s)
- Melody N Grohs
- Department of Neurosciences, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, Canada
| | - Catherine Lebel
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, Canada
- Department of Radiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Canada
| | - Helen L Carlson
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Canada
- Department of Pediatrics, University of Calgary, Calgary, Canada
| | - Brandon T Craig
- Department of Neurosciences, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Canada
| | - Deborah Dewey
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, Canada.
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Canada.
- Department of Pediatrics, University of Calgary, Calgary, Canada.
- Department of Community Health Sciences, University of Calgary, Calgary, Canada.
- Child Development Center, #397 Owerko Center, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
100
|
Pixa NH, Hübner L, Kutz DF, Voelcker-Rehage C. A Single Bout of High-Intensity Cardiovascular Exercise Does Not Enhance Motor Performance and Learning of a Visuomotor Force Modulation Task, but Triggers Ipsilateral Task-Related EEG Activity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12512. [PMID: 34886237 PMCID: PMC8657224 DOI: 10.3390/ijerph182312512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022]
Abstract
Acute cardiovascular exercise (aCE) seems to be a promising strategy to improve motor performance and learning. However, results are heterogeneous, and the related neurophysiological mechanisms are not well understood. Oscillatory brain activitiy, such as task-related power (TRPow) in the alpha and beta frequencies, are known neural signatures of motor activity. Here, we tested the effects of aCE on motor performance and learning, along with corresponding modulations in EEG TRPow over the sensorimotor cortex. Forty-five right-handed participants (aged 18-34 years) practiced a visuomotor force-matching (FM) task after either high-intensity (HEG), low-intensity (LEG), or no exercise (control group, CG). Motor performance was assessed immediately, 15 min, 30 min, and 24 h after aCE/control. EEG was measured during the FM task. Results of frequentist and Bayesian statistics revealed that high- and low-intensity aCE had no effect at the behavioral level, adding to the previous mixed results. Interestingly, EEG analyses showed an effect of aCE on the ipsilateral sensorimotor cortex, with a stronger decrease in β-TRPow 15 min after exercise in both groups compared to the CG. Overall, aCE applied before motor practice increased ipsilateral sensorimotor activity, while motor learning was not affected; it remains to be seen whether aCE might affect motor learning in the long run.
Collapse
Affiliation(s)
- Nils Henrik Pixa
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Münster, 48149 Münster, Germany; (D.F.K.); (C.V.-R.)
| | - Lena Hübner
- Institute of Human Movement Science and Health, Faculty of Behavioral and Social Sciences, Chemnitz University of Technology, 09107 Chemnitz, Germany;
| | - Dieter F. Kutz
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Münster, 48149 Münster, Germany; (D.F.K.); (C.V.-R.)
| | - Claudia Voelcker-Rehage
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Münster, 48149 Münster, Germany; (D.F.K.); (C.V.-R.)
- Institute of Human Movement Science and Health, Faculty of Behavioral and Social Sciences, Chemnitz University of Technology, 09107 Chemnitz, Germany;
| |
Collapse
|