51
|
Veszelka S, Tóth A, Walter FR, Tóth AE, Gróf I, Mészáros M, Bocsik A, Hellinger É, Vastag M, Rákhely G, Deli MA. Comparison of a Rat Primary Cell-Based Blood-Brain Barrier Model With Epithelial and Brain Endothelial Cell Lines: Gene Expression and Drug Transport. Front Mol Neurosci 2018; 11:166. [PMID: 29872378 PMCID: PMC5972182 DOI: 10.3389/fnmol.2018.00166] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/01/2018] [Indexed: 01/16/2023] Open
Abstract
Cell culture-based blood-brain barrier (BBB) models are useful tools for screening of CNS drug candidates. Cell sources for BBB models include primary brain endothelial cells or immortalized brain endothelial cell lines. Despite their well-known differences, epithelial cell lines are also used as surrogate models for testing neuropharmaceuticals. The aim of the present study was to compare the expression of selected BBB related genes including tight junction proteins, solute carriers (SLC), ABC transporters, metabolic enzymes and to describe the paracellular properties of nine different culture models. To establish a primary BBB model rat brain capillary endothelial cells were co-cultured with rat pericytes and astrocytes (EPA). As other BBB and surrogate models four brain endothelial cells lines, rat GP8 and RBE4 cells, and human hCMEC/D3 cells with or without lithium treatment (D3 and D3L), and four epithelial cell lines, native human intestinal Caco-2 and high P-glycoprotein expressing vinblastine-selected VB-Caco-2 cells, native MDCK and MDR1 transfected MDCK canine kidney cells were used. To test transporter functionality, the permeability of 12 molecules, glucopyranose, valproate, baclofen, gabapentin, probenecid, salicylate, rosuvastatin, pravastatin, atorvastatin, tacrine, donepezil, was also measured in the EPA and epithelial models. Among the junctional protein genes, the expression level of occludin was high in all models except the GP8 and RBE4 cells, and each model expressed a unique claudin pattern. Major BBB efflux (P-glycoprotein or ABCB1) and influx transporters (GLUT-1, LAT-1) were present in all models at mRNA levels. The transcript of BCRP (ABCG2) was not expressed in MDCK, GP8 and RBE4 cells. The absence of gene expression of important BBB efflux and influx transporters BCRP, MRP6, -9, MCT6, -8, PHT2, OATPs in one or both types of epithelial models suggests that Caco-2 or MDCK models are not suitable to test drug candidates which are substrates of these transporters. Brain endothelial cell lines GP8, RBE4, D3 and D3L did not form a restrictive paracellular barrier necessary for screening small molecular weight pharmacons. Therefore, among the tested culture models, the primary cell-based EPA model is suitable for the functional analysis of the BBB.
Collapse
Affiliation(s)
- Szilvia Veszelka
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - András Tóth
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Fruzsina R Walter
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Andrea E Tóth
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Ilona Gróf
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Mária Mészáros
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Doctoral School in Theoretical Medicine, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Alexandra Bocsik
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Éva Hellinger
- In Vitro Metabolism Research, Division of Pharmacology and Drug Safety, Gedeon Richter Plc., Budapest, Hungary
| | - Monika Vastag
- In Vitro Metabolism Research, Division of Pharmacology and Drug Safety, Gedeon Richter Plc., Budapest, Hungary
| | - Gábor Rákhely
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Mária A Deli
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
52
|
Permeability of the Blood-Brain Barrier and Transport of Nanobodies Across the Blood-Brain Barrier. FOLIA VETERINARIA 2018. [DOI: 10.2478/fv-2018-0009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The presence of a blood-brain barrier (BBB) and a blood-cerebrospinal fluid barrier presents animmense challenge for effective delivery of therapeutics to the central nervous system. Many potential drugs, which are effective at their site of action, have failed due to the lack of distribution in sufficient quantity to the central nervous system (CNS). In consequence, many diseases of the central nervous system remain undertreated. Antibodies, IgG for example, are difficult to deliver to the CNS due to their size (~155 kDa), physico-chemical properties and the presence of Fc receptor on the blood-brain barrier. Smaller antibodies, like the recently developed nanobodies, may overcome the obstacle of the BBB and enter into the CNS. The nanobodies are the smallest available antigen-binding fragments harbouring the full antigenbinding capacity of conventional antibodies. They represent a new generation of therapeutics with exceptional properties, such as: recognition of unique epitopes, target specificity, high affinity, high solubility, high stability and high expression yields in cost-effective recombinant production. Their ability to permeate across the BBBmakes thema promising alternative for central nervous system disease therapeutics. In this review, we have systematically presented different aspects of the BBB, drug delivery mechanisms employed to cross the BBB, and finally nanobodies — a potential therapeutic molecule against neuroinfections.
Collapse
|
53
|
Effects of simvastatin on nuclear receptors, drug metabolizing enzymes and transporters expression in Human Umbilical Vein Endothelial Cells. Pharmacol Rep 2018; 70:875-880. [PMID: 32002969 DOI: 10.1016/j.pharep.2018.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/10/2018] [Accepted: 03/22/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND Vascular endothelial cells (EC) are constantly exposed to endo- and exogenous compounds, which may disturb EC function. One of the protecting mechanisms against chemicals consists of drug metabolizing enzymes and transporter proteins regulated by nuclear receptors and transcription factors. Therefore, the aim of the current study was to assess the regulation of nuclear receptors and their coordinated genes in Human Umbilical Vein Endothelial Cells (HUVEC). METHODS HUVEC were exposed to TCDD (10 nM), oltipraz (100 μM) and simvastatin (1 μM) for 24 h. Gene expressions were evaluated using quantitative real-time PCR. The protein expression levels were determined by Western blotting. Enzymatic activity of CYP1A1/CYP1B1 was assessed by luciferin-labelled CYPs substrate. RESULTS Our study confirmed that nuclear receptor AhR and nuclear factor Nrf2 are highly expressed in HUVECs. Treatment of HUVECs with TCDD (AhR inducer) resulted in a significant induction of AHR target genes CYP1A1, CYP1B1 and NQO1. Oltipraz (Nrf2 inducer) also markedly increased expression of NQO1 but did not affect Nrf2 mRNA nor protein levels. Under simvastatin stimulation PXR and NRF2 target transcripts were not altered, however AHR-regulated genes: CYP1A1, CYP1B1 and MDR1 were significantly induced. Western blot analysis confirmed CYP1B1 induction in TCDD-treated HUVECs, but not in the simvastatin group. Moreover, HUVEC exposure to TCDD resulted in induction of CYP1A1/CYP1B1 enzymatic activity. CONCLUSIONS This study revealed functional expression of AhR and Nrf2 in HUVECs. Moreover, it was defined that simvastatin induced AhR and its related genes.
Collapse
|
54
|
Runtz L, Girard B, Toussenot M, Espallergues J, Fayd'Herbe De Maudave A, Milman A, deBock F, Ghosh C, Guérineau NC, Pascussi JM, Bertaso F, Marchi N. Hepatic and hippocampal cytochrome P450 enzyme overexpression during spontaneous recurrent seizures. Epilepsia 2017; 59:123-134. [PMID: 29125184 DOI: 10.1111/epi.13942] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Available evidence points to a role of cytochrome P450 (Cyp) drug biotransformation enzymes in central nervous system diseases, including epilepsy. Deviations in drug pharmacokinetic profiles may impact therapeutic outcomes. Here, we ask whether spontaneous recurrent seizure (SRS) activity is sufficient to modulate the expression of major Cyp enzymes in the liver and brain. METHODS Unilateral intrahippocampal (IH) kainic acid (KA) injections were used to elicit nonconvulsive status epilepticus (SE), epileptogenesis, and SRS, as monitored by video-electroencephalography. Intraperitoneal (IP) KA injection was used to trigger generalized tonic-clonic SE. KA-injected mice and sham controls were sacrificed at 24-72 hours and 1 week post-SE (IH or IP KA), and during the chronic stage (SRS; 6 weeks post-IH KA). Liver and brain tissues were processed for histology, real-time quantitative polymerase chain reaction, Western blot, or microsomal enzymatic assay. Cyp2e1, Cyp3a13, glial fibrillary acidic protein (GFAP), IBA1, xenobiotic nuclear receptors nr1i2 (PXR), nr1i3 (CAR) and nr3c1 (glucocorticoid receptor [GR]) expression was examined. Serum samples were obtained to assay corticosterone levels, a GR activator. RESULTS A significant increase of Cyp3a13 and Cyp2e1 transcript level and protein expression was found in the liver and hippocampi during SRS, as compared to control mice. In the ipsilateral hippocampus, Cyp2e1 and Cyp3a protein upregulation during SRS positively correlated to GFAP expression. GFAP+ , and not IBA1+ , cells colocalized with Cyp2e1 or Cyp3a expression. In the liver, a trend increase in Cyp3a microsomal activity was found during SRS as compared to control mice. The transcript levels of the Cyp upstream regulators GR, xenobiotic nr1i2, and nr1i3 receptors were unchanged at SRS. Corticosterone levels, a GR ligand, were increased in the blood post-SE. SIGNIFICANCE SRS modifies Cyp expression in the liver and the hippocampus. Nuclear receptors or inflammatory pathways are candidate mechanisms of Cyp regulation during seizures.
Collapse
Affiliation(s)
- Leonie Runtz
- Laboratory of Cerebrovascular Mechanisms of Brain Disorders, Institute of Functional Genomics (UMR 5203 CNRS-U 1191 INSERM), Montpellier, France
| | - Benoit Girard
- Laboratory of Pathophysiology of Synaptic Transmission, Institute of Functional Genomics (UMR 5203 CNRS-U 1191 INSERM), Montpellier, France
| | - Marion Toussenot
- Laboratory of Cerebrovascular Mechanisms of Brain Disorders, Institute of Functional Genomics (UMR 5203 CNRS-U 1191 INSERM), Montpellier, France
| | | | - Alexis Fayd'Herbe De Maudave
- Laboratory of Cerebrovascular Mechanisms of Brain Disorders, Institute of Functional Genomics (UMR 5203 CNRS-U 1191 INSERM), Montpellier, France
| | - Alexandre Milman
- Ion channels in Neuronal Excitability and Diseases, Institute of Functional Genomics (UMR 5203 CNRS-U 1191 INSERM), Montpellier, France
| | - Frederic deBock
- Laboratory of Cerebrovascular Mechanisms of Brain Disorders, Institute of Functional Genomics (UMR 5203 CNRS-U 1191 INSERM), Montpellier, France
| | - Chaitali Ghosh
- Cerebrovascular Research, Cleveland Clinic, Cleveland, OH, USA
| | - Nathalie C Guérineau
- Ion channels in Neuronal Excitability and Diseases, Institute of Functional Genomics (UMR 5203 CNRS-U 1191 INSERM), Montpellier, France
| | - Jean-Marc Pascussi
- Laboratory of Self-Renewal and Differentiation of Epithelia, Institute of Functional Genomics (UMR 5203 CNRS-U 1191 INSERM), Montpellier, France
| | - Federica Bertaso
- Laboratory of Pathophysiology of Synaptic Transmission, Institute of Functional Genomics (UMR 5203 CNRS-U 1191 INSERM), Montpellier, France
| | - Nicola Marchi
- Laboratory of Cerebrovascular Mechanisms of Brain Disorders, Institute of Functional Genomics (UMR 5203 CNRS-U 1191 INSERM), Montpellier, France
| |
Collapse
|
55
|
Trastuzumab distribution in an in-vivo and in-vitro model of brain metastases of breast cancer. Oncotarget 2017; 8:83734-83744. [PMID: 29137378 PMCID: PMC5663550 DOI: 10.18632/oncotarget.19634] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/03/2017] [Indexed: 11/25/2022] Open
Abstract
Background Drug and antibody delivery to brain metastases has been highly debated in the literature. The blood-tumor barrier (BTB) is more permeable than the blood-brain barrier (BBB), and has shown to have highly functioning efflux transporters and barrier properties, which limits delivery of targeted therapies. Methods We characterized the permeability of 125I-trastuzumab in an in-vivo, and fluorescent trastuzumab-Rhodamine123 (t-Rho123) in a novel microfluidic in-vitro, BBB and BTB brain metastases of breast cancer model. In-vivo: Human MDA-MB-231-HER2+ metastatic breast cancer cells were grown and maintained under static conditions. Cells were harvested at 80% confluency and prepped for intra-cardiac injection into 20 homozygous female Nu/Nu mice. In-vitro: In a microfluidic device (SynVivo), human umbilical vein endothelial cells were grown and maintained under shear stress conditions in the outer compartment and co-cultured with CTX-TNA2 rat brain astrocytes (BBB) or Met-1 metastatic HER2+ murine breast cancer cells (BTB), which were maintained in the central compartment under static conditions. Results Tissue distribution of 125I-trastuzumab revealed only ~3% of injected dose reached normal brain, with ~5% of injected dose reaching brain tumors. No clear correlation was observed between size of metastases and the amount of 125I-trastuzumab localized in-vivo. This heterogeneity was paralleled in-vitro, where the distribution of t-Rho123 from the outer chamber to the central chamber of the microfluidic device was qualitatively and quantitatively analyzed over time. The rate of t-Rho123 linear uptake in the BBB (0.27 ± 0.33 × 104) and BTB (1.29 ± 0.93 × 104) showed to be significantly greater than 0 (p < 0.05). The BTB devices showed significant heterogenetic tendencies, as seen in in-vivo. Conclusions This study is one of the first studies to measure antibody movement across the blood-brain and blood-tumor barriers, and demonstrates that, though in small and most likely not efficacious quantities, trastuzumab does cross the blood-brain and blood-tumor barriers.
Collapse
|
56
|
Li Y, Revalde J, Paxton JW. The effects of dietary and herbal phytochemicals on drug transporters. Adv Drug Deliv Rev 2017; 116:45-62. [PMID: 27637455 DOI: 10.1016/j.addr.2016.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/10/2016] [Accepted: 09/05/2016] [Indexed: 12/22/2022]
Abstract
Membrane transporter proteins (the ABC transporters and SLC transporters) play pivotal roles in drug absorption and disposition, and thus determine their efficacy and safety. Accumulating evidence suggests that the expression and activity of these transporters may be modulated by various phytochemicals (PCs) found in diets rich in plants and herbs. PC absorption and disposition are also subject to the function of membrane transporter and drug metabolizing enzymes. PC-drug interactions may involve multiple major drug transporters (and metabolizing enzymes) in the body, leading to alterations in the pharmacokinetics of substrate drugs, and thus their efficacy and toxicity. This review summarizes the reported in vitro and in vivo interactions between common dietary PCs and the major drug transporters. The oral absorption, distribution into pharmacological sanctuaries and excretion of substrate drugs and PCs are considered, along with their possible interactions with the ABC and SLC transporters which influence these processes.
Collapse
|
57
|
Morris ME, Rodriguez-Cruz V, Felmlee MA. SLC and ABC Transporters: Expression, Localization, and Species Differences at the Blood-Brain and the Blood-Cerebrospinal Fluid Barriers. AAPS JOURNAL 2017; 19:1317-1331. [PMID: 28664465 DOI: 10.1208/s12248-017-0110-8] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/05/2017] [Indexed: 12/11/2022]
Abstract
The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) separate the brain and cerebrospinal fluid (CSF) from the systemic circulation and represent a barrier to the uptake of both endogenous compounds and xenobiotics into the brain. For compounds whose passive diffusion is limited due to their ionization or hydrophilicity, membrane transporters can facilitate their uptake across the BBB or BCSFB. Members of the solute carrier (SLC) and ATP-binding case (ABC) families are present on these barriers. Differences exist in the localization and expression of transport proteins between the BBB and BCSFB, resulting in functional differences in transport properties. This review focuses on the expression, membrane localization, and different isoforms present at each barrier. Diseases that affect the central nervous system including brain tumors, HIV, Alzheimer's disease, Parkinson's disease, and stroke affect the integrity and expression of transporters at the BBB and BCSFB and will be briefly reviewed.
Collapse
Affiliation(s)
- Marilyn E Morris
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, New York, 14214-8033, USA.
| | - Vivian Rodriguez-Cruz
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, New York, 14214-8033, USA
| | - Melanie A Felmlee
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, 3601 Pacific Ave, Stockton, California, 95211, USA
| |
Collapse
|
58
|
Aryl hydrocarbon receptor upregulates IL-1β expression in hCMEC/D3 human cerebral microvascular endothelial cells after TCDD exposure. Toxicol In Vitro 2017; 41:200-204. [DOI: 10.1016/j.tiv.2017.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 12/02/2022]
|
59
|
Dhers L, Ducassou L, Boucher JL, Mansuy D. Cytochrome P450 2U1, a very peculiar member of the human P450s family. Cell Mol Life Sci 2017; 74:1859-1869. [PMID: 28083596 PMCID: PMC11107762 DOI: 10.1007/s00018-016-2443-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 12/14/2022]
Abstract
Cytochrome P450 2U1 (CYP2U1) exhibits several distinctive characteristics among the 57 human CYPs, such as its presence in almost all living organisms with a highly conserved sequence, its particular gene organization with only five exons, its major location in thymus and brain, and its protein sequence involving an unusually long N-terminal region containing 8 proline residues and an insert of about 20 amino acids containing 5 arginine residues after the transmembrane helix. Few substrates, including fatty acids, N-arachidonoylserotonin (AS), and some drugs, have been reported so far. However, its biological roles remain largely unknown, even though CYP2U1 mutations have been involved in some pathological situations, such as complicated forms of hereditary spastic paraplegia. These data together with its ability to hydroxylate some fatty acids and AS suggest its possible role in lipid metabolism.
Collapse
Affiliation(s)
- L Dhers
- UMR 8601 CNRS, Université Paris Descartes, Paris Sorbonne Cité, 45 rue des Saints Pères, 75006, Paris, France
| | - L Ducassou
- UMR 8601 CNRS, Université Paris Descartes, Paris Sorbonne Cité, 45 rue des Saints Pères, 75006, Paris, France
| | - J-L Boucher
- UMR 8601 CNRS, Université Paris Descartes, Paris Sorbonne Cité, 45 rue des Saints Pères, 75006, Paris, France.
| | - D Mansuy
- UMR 8601 CNRS, Université Paris Descartes, Paris Sorbonne Cité, 45 rue des Saints Pères, 75006, Paris, France
| |
Collapse
|
60
|
Gameiro M, Silva R, Rocha-Pereira C, Carmo H, Carvalho F, Bastos MDL, Remião F. Cellular Models and In Vitro Assays for the Screening of modulators of P-gp, MRP1 and BCRP. Molecules 2017; 22:600. [PMID: 28397762 PMCID: PMC6153761 DOI: 10.3390/molecules22040600] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 12/12/2022] Open
Abstract
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are highly expressed in tumor cells, as well as in organs involved in absorption and secretion processes, mediating the ATP-dependent efflux of compounds, both endogenous substances and xenobiotics, including drugs. Their expression and activity levels are modulated by the presence of inhibitors, inducers and/or activators. In vitro, ex vivo and in vivo studies with both known and newly synthesized P-glycoprotein (P-gp) inducers and/or activators have shown the usefulness of these transport mechanisms in reducing the systemic exposure and specific tissue access of potentially harmful compounds. This article focuses on the main ABC transporters involved in multidrug resistance [P-gp, multidrug resistance-associated protein 1 (MRP1) and breast cancer resistance protein (BCRP)] expressed in tissues of toxicological relevance, such as the blood-brain barrier, cardiovascular system, liver, kidney and intestine. Moreover, it provides a review of the available cellular models, in vitro and ex vivo assays for the screening and selection of safe and specific inducers and activators of these membrane transporters. The available cellular models and in vitro assays have been proposed as high throughput and low-cost alternatives to excessive animal testing, allowing the evaluation of a large number of compounds.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/chemistry
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Animals
- Drug Discovery
- Drug Evaluation, Preclinical/methods
- Drug Resistance/drug effects
- Humans
- Models, Biological
- Multidrug Resistance-Associated Proteins/chemistry
- Multidrug Resistance-Associated Proteins/metabolism
- Organ Specificity
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Mariline Gameiro
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Renata Silva
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Carolina Rocha-Pereira
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Helena Carmo
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Félix Carvalho
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Maria de Lourdes Bastos
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Fernando Remião
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
61
|
Shawahna R, Ganeshamoorthy K, Huilong L, Scherrmann JM, Couraud PO, Declèves X. Effect of Long-term In Vitro Lithium Exposure on mRNA Levels of Claudin-3, CYP1A1, ABCG2 and GSTM3 Genes in the hCMEC/D3 Human Brain Endothelial Cell Line. Eur J Drug Metab Pharmacokinet 2017; 42:1013-1017. [DOI: 10.1007/s13318-017-0412-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
62
|
Kaur M, Badhan RKS. Phytochemical mediated-modulation of the expression and transporter function of breast cancer resistance protein at the blood-brain barrier: An in-vitro study. Brain Res 2016; 1654:9-23. [PMID: 27771282 DOI: 10.1016/j.brainres.2016.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/10/2016] [Accepted: 10/18/2016] [Indexed: 01/29/2023]
Abstract
Clinical translation of BCRP inhibitors have failed due to neurotoxicity and novel approaches are required to identify suitable modulators of BCRP to enhance CNS drug delivery. In this study we examine 18 compounds, primarily phytochemicals, as potential novel modulators of AhR-mediated regulation of BCRP expression and function in immortalised and primary porcine brain microvascular endothelial cells as a mechanism to enhance CNS drug delivery. The majority of modulators possessed a cellular viability IC50 >100µm in both cell systems. BCRP activity, when exposed to modulators for 1h, was diminished for most modulators through significant increases in H33342 accumulation at <10µm with 2,6,4-trimethoflavone increasing H33342 intracellular accumulation by 3.7-6.6 fold over 1-100µm. Western blotting and qPCR identified two inducers of BCRP (quercetin and naringin) and two down-regulators (17-β-estradiol and curcumin) with associated changes in BCRP efflux transport function further confirmed in both cell lines. siRNA downregulation of AhR resulted in a 1.75±0.08 fold change in BCRP expression, confirming the role of AhR in the regulation of BCRP. These findings establish the regulatory role AhR of in controlling BCRP expression at the BBB and confirm quercetin, naringin, 17-β-estradiol, and curcumin as novel inducers and down-regulators of BCRP gene, protein expression and functional transporter activity and hence potential novel target sites and candidates for enhancing CNS drug delivery.
Collapse
Affiliation(s)
- Manjit Kaur
- Aston University, Aston Research Centre for Healthy Ageing, School of Life and Health Sciences, Birmingham B4 7ET, UK
| | - Raj K S Badhan
- Aston University, Aston Research Centre for Healthy Ageing, School of Life and Health Sciences, Birmingham B4 7ET, UK.
| |
Collapse
|
63
|
Alam C, Whyte-Allman SK, Omeragic A, Bendayan R. Role and modulation of drug transporters in HIV-1 therapy. Adv Drug Deliv Rev 2016; 103:121-143. [PMID: 27181050 DOI: 10.1016/j.addr.2016.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 12/15/2022]
Abstract
Current treatment of human immunodeficiency virus type-1 (HIV-1) infection involves a combination of antiretroviral drugs (ARVs) that target different stages of the HIV-1 life cycle. This strategy is commonly referred to as highly active antiretroviral therapy (HAART) or combined antiretroviral therapy (cART). Membrane-associated drug transporters expressed ubiquitously in mammalian systems play a crucial role in modulating ARV disposition during HIV-1 infection. Members of the ATP-binding cassette (ABC) and solute carrier (SLC) transporter superfamilies have been shown to interact with ARVs, including those that are used as part of first-line treatment regimens. As a result, the functional expression of drug transporters can influence the distribution of ARVs at specific sites of infection. In addition, pathological factors related to HIV-1 infection and/or ARV therapy itself can alter transporter expression and activity, thus further contributing to changes in ARV disposition and the effectiveness of HAART. This review summarizes current knowledge on the role of drug transporters in regulating ARV transport in the context of HIV-1 infection.
Collapse
Affiliation(s)
- Camille Alam
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Sana-Kay Whyte-Allman
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Amila Omeragic
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada.
| |
Collapse
|
64
|
Immortalized endothelial cell lines for in vitro blood–brain barrier models: A systematic review. Brain Res 2016; 1642:532-545. [DOI: 10.1016/j.brainres.2016.04.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/05/2016] [Accepted: 04/12/2016] [Indexed: 12/18/2022]
|
65
|
Aparicio-Blanco J, Martín-Sabroso C, Torres-Suárez AI. In vitro screening of nanomedicines through the blood brain barrier: A critical review. Biomaterials 2016; 103:229-255. [PMID: 27392291 DOI: 10.1016/j.biomaterials.2016.06.051] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 12/16/2022]
Abstract
The blood-brain barrier accounts for the high attrition rate of the treatments of most brain disorders, which therefore remain one of the greatest health-care challenges of the twenty first century. Against this background of hindrance to brain delivery, nanomedicine takes advantage of the assembly at the nanoscale of available biomaterials to provide a delivery platform with potential to raising brain levels of either imaging or therapeutic agents. Nevertheless, to prevent later failure due to ineffective drug levels at the target site, researchers have been endeavoring to develop a battery of in vitro screening procedures that can predict earlier in the drug discovery process the ability of these cutting-edge drug delivery platforms to cross the blood-brain barrier for biomedical purposes. This review provides an in-depth analysis of the currently available in vitro blood-brain barrier models (both cell-based and non-cell-based) with the focus on their suitability for understanding the biological brain distribution of forthcoming nanomedicines. The relationship between experimental factors and underlying physiological assumptions that would ultimately lead to a more predictive capacity of their in vivo performance, and those methods already assayed for the evaluation of the brain distribution of nanomedicines are comprehensively discussed.
Collapse
Affiliation(s)
- Juan Aparicio-Blanco
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain
| | - Cristina Martín-Sabroso
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain
| | - Ana-Isabel Torres-Suárez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain; University Institute of Industrial Pharmacy, Complutense University, 28040, Madrid, Spain.
| |
Collapse
|
66
|
Ghosh C, Hossain M, Solanki J, Dadas A, Marchi N, Janigro D. Pathophysiological implications of neurovascular P450 in brain disorders. Drug Discov Today 2016; 21:1609-1619. [PMID: 27312874 DOI: 10.1016/j.drudis.2016.06.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/14/2016] [Accepted: 06/06/2016] [Indexed: 01/12/2023]
Abstract
Over the past decades, the significance of cytochrome P450 (CYP) enzymes has expanded beyond their role as peripheral drug metabolizers in the liver and gut. CYP enzymes are also functionally active at the neurovascular interface. CYP expression is modulated by disease states, impacting cellular functions, detoxification, and reactivity to toxic stimuli and brain drug biotransformation. Unveiling the physiological and molecular complexity of brain P450 enzymes will improve our understanding of the mechanisms underlying brain drug availability, pharmacological efficacy, and neurotoxic adverse effects from pharmacotherapy targeting brain disorders.
Collapse
Affiliation(s)
- Chaitali Ghosh
- Cerebrovascular Research, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA; Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA; Department of Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA.
| | - Mohammed Hossain
- Cerebrovascular Research, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA; Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | | | - Aaron Dadas
- The Ohio State University, Columbus, OH, USA
| | - Nicola Marchi
- Cerebrovascular Mechanisms of Brain Disorders, Department of Neuroscience, Institute of Functional Genomics (CNRS/INSERM), Montpellier, France
| | - Damir Janigro
- Flocel Inc. and Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
67
|
Helms HC, Abbott NJ, Burek M, Cecchelli R, Couraud PO, Deli MA, Förster C, Galla HJ, Romero IA, Shusta EV, Stebbins MJ, Vandenhaute E, Weksler B, Brodin B. In vitro models of the blood-brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metab 2016; 36:862-90. [PMID: 26868179 PMCID: PMC4853841 DOI: 10.1177/0271678x16630991] [Citation(s) in RCA: 548] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/05/2016] [Indexed: 12/12/2022]
Abstract
The endothelial cells lining the brain capillaries separate the blood from the brain parenchyma. The endothelial monolayer of the brain capillaries serves both as a crucial interface for exchange of nutrients, gases, and metabolites between blood and brain, and as a barrier for neurotoxic components of plasma and xenobiotics. This "blood-brain barrier" function is a major hindrance for drug uptake into the brain parenchyma. Cell culture models, based on either primary cells or immortalized brain endothelial cell lines, have been developed, in order to facilitate in vitro studies of drug transport to the brain and studies of endothelial cell biology and pathophysiology. In this review, we aim to give an overview of established in vitro blood-brain barrier models with a focus on their validation regarding a set of well-established blood-brain barrier characteristics. As an ideal cell culture model of the blood-brain barrier is yet to be developed, we also aim to give an overview of the advantages and drawbacks of the different models described.
Collapse
Affiliation(s)
- Hans C Helms
- Department of Pharmacy, University of Copenhagen, Denmark
| | - N Joan Abbott
- Institute of Pharmaceutical Science, King's College London, UK
| | - Malgorzata Burek
- Klinik und Poliklinik für Anästhesiologie, University of Wurzburg, Germany
| | | | - Pierre-Olivier Couraud
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Maria A Deli
- Institute of Biophysics, Biological Research Centre, HAS, Szeged, Hungary
| | - Carola Förster
- Klinik und Poliklinik für Anästhesiologie, University of Wurzburg, Germany
| | - Hans J Galla
- Institute of Biochemistry, University of Muenster, Germany
| | - Ignacio A Romero
- Department of Biological Sciences, The Open University, Walton Hall, Milton Keynes, UK
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, WI, USA
| | - Matthew J Stebbins
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, WI, USA
| | | | - Babette Weksler
- Division of Hematology and Medical Oncology, Weill Cornell Medical College, NY, USA
| | - Birger Brodin
- Department of Pharmacy, University of Copenhagen, Denmark
| |
Collapse
|
68
|
Grabrucker AM, Ruozi B, Belletti D, Pederzoli F, Forni F, Vandelli MA, Tosi G. Nanoparticle transport across the blood brain barrier. Tissue Barriers 2016; 4:e1153568. [PMID: 27141426 DOI: 10.1080/21688370.2016.1153568] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 01/13/2023] Open
Abstract
While the role of the blood-brain barrier (BBB) is increasingly recognized in the (development of treatments targeting neurodegenerative disorders, to date, few strategies exist that enable drug delivery of non-BBB crossing molecules directly to their site of action, the brain. However, the recent advent of Nanomedicines may provide a potent tool to implement CNS targeted delivery of active compounds. Approaches for BBB crossing are deeply investigated in relation to the pathology: among the main important diseases of the CNS, this review focuses on the application of nanomedicines to neurodegenerative disorders (Alzheimer, Parkinson and Huntington's Disease) and to other brain pathologies as epilepsy, infectious diseases, multiple sclerosis, lysosomal storage disorders, strokes.
Collapse
Affiliation(s)
- Andreas M Grabrucker
- WG Molecular Analysis of Synaptopathies, Neurology Dept, Neurocenter of Ulm University , Ulm, Germany
| | - Barbara Ruozi
- Pharmaceutical Technology, Te.Far.T.I. Group, Department of Life Sciences, University of Modena and Reggio Emilia ; Modena, Italy
| | - Daniela Belletti
- Pharmaceutical Technology, Te.Far.T.I. Group, Department of Life Sciences, University of Modena and Reggio Emilia ; Modena, Italy
| | - Francesca Pederzoli
- Pharmaceutical Technology, Te.Far.T.I. Group, Department of Life Sciences, University of Modena and Reggio Emilia ; Modena, Italy
| | - Flavio Forni
- Pharmaceutical Technology, Te.Far.T.I. Group, Department of Life Sciences, University of Modena and Reggio Emilia ; Modena, Italy
| | - Maria Angela Vandelli
- Pharmaceutical Technology, Te.Far.T.I. Group, Department of Life Sciences, University of Modena and Reggio Emilia ; Modena, Italy
| | - Giovanni Tosi
- Pharmaceutical Technology, Te.Far.T.I. Group, Department of Life Sciences, University of Modena and Reggio Emilia ; Modena, Italy
| |
Collapse
|
69
|
The effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on the development and function of the blood–brain barrier. Neurotoxicology 2016; 52:64-71. [DOI: 10.1016/j.neuro.2015.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 11/05/2015] [Accepted: 11/09/2015] [Indexed: 01/03/2023]
|
70
|
Llombart V, García-Berrocoso T, Bech-Serra JJ, Simats A, Bustamante A, Giralt D, Reverter-Branchat G, Canals F, Hernández-Guillamon M, Montaner J. Characterization of secretomes from a human blood brain barrier endothelial cells in-vitro model after ischemia by stable isotope labeling with aminoacids in cell culture (SILAC). J Proteomics 2015; 133:100-112. [PMID: 26718731 DOI: 10.1016/j.jprot.2015.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/04/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
Abstract
UNLABELLED The human immortalized brain endothelial cell line hCMEC/D3 is considered a simple in-vitro model of the blood-brain-barrier. Our aim was to characterize changes in the secretome of hCMEC/D3 subjected to oxygen and glucose deprivation (OGD) to identify new proteins altered after ischemia and that might trigger blood-brain-barrier disruption and test their potential as blood biomarkers for ischemic stroke. Using a quantitative proteomic approach based on SILAC, 19 proteins were found differentially secreted between OGD and normoxia/normoglycemia conditions. Among the OGD-secreted proteins, protein folding was the main molecular function identified and for the main canonical pathways there was an enrichment in epithelial adherens junctions and aldosterone signaling. Western blot was used to verify the MS results in a set of 9 differentially secreted proteins and 5 of these were analyzed in serum samples of 38 ischemic stroke patients, 18 stroke-mimicking conditions and 18 healthy controls. SIGNIFICANCE "We characterized changes in the secretome of hCMEC/D3 cells after an ischemic insult by SILAC and identified proteins associated with ischemia that might be involved in the disruption of the blood-brain barrier. Besides we analyzed the putative potential of the candidate proteins to become biomarkers for the diagnosis of ischemic stroke.
Collapse
Affiliation(s)
- Victor Llombart
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Teresa García-Berrocoso
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Joan Josep Bech-Serra
- Proteomics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Alba Simats
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Alejandro Bustamante
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Dolors Giralt
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Gemma Reverter-Branchat
- Proteomics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Francesc Canals
- Proteomics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
71
|
Yasuda K, Cline C, Lin YS, Scheib R, Ganguly S, Thirumaran RK, Chaudhry A, Kim RB, Schuetz EG. In Vivo Imaging of Human MDR1 Transcription in the Brain and Spine of MDR1-Luciferase Reporter Mice. Drug Metab Dispos 2015; 43:1646-54. [PMID: 26281846 PMCID: PMC4613952 DOI: 10.1124/dmd.115.065078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/12/2015] [Indexed: 01/16/2023] Open
Abstract
P-glycoprotein (Pgp) [the product of the MDR1 (ABCB1) gene] at the blood-brain barrier (BBB) limits central nervous system (CNS) entry of many prescribed drugs, contributing to the poor success rate of CNS drug candidates. Modulating Pgp expression could improve drug delivery into the brain; however, assays to predict regulation of human BBB Pgp are lacking. We developed a transgenic mouse model to monitor human MDR1 transcription in the brain and spinal cord in vivo. A reporter construct consisting of ∼10 kb of the human MDR1 promoter controlling the firefly luciferase gene was used to generate a transgenic mouse line (MDR1-luc). Fluorescence in situ hybridization localized the MDR1-luciferase transgene on chromosome 3. Reporter gene expression was monitored with an in vivo imaging system following D-luciferin injection. Basal expression was detectable in the brain, and treatment with activators of the constitutive androstane, pregnane X, and glucocorticoid receptors induced brain and spinal MDR1-luc transcription. Since D-luciferin is a substrate of ABCG2, the feasibility of improving D-luciferin brain accumulation (and luciferase signal) was tested by coadministering the dual ABCB1/ABCG2 inhibitor elacridar. The brain and spine MDR1-luc signal intensity was increased by elacridar treatment, suggesting enhanced D-luciferin brain bioavailability. There was regional heterogeneity in MDR1 transcription (cortex > cerebellum) that coincided with higher mouse Pgp protein expression. We confirmed luciferase expression in brain vessel endothelial cells by ex vivo analysis of tissue luciferase protein expression. We conclude that the MDR1-luc mouse provides a unique in vivo system to visualize MDR1 CNS expression and regulation.
Collapse
Affiliation(s)
- Kazuto Yasuda
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (K.Y., C.C., R.S., S.G., R.K.T., A.C., E.G.S.); Department of Medicine, Division of Clinical Pharmacology, University of Western Ontario, London, Ontario, Canada (R.B.K.); and Department of Pharmaceutics, The University of Washington, Seattle, Washington (Y.S.L.)
| | - Cynthia Cline
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (K.Y., C.C., R.S., S.G., R.K.T., A.C., E.G.S.); Department of Medicine, Division of Clinical Pharmacology, University of Western Ontario, London, Ontario, Canada (R.B.K.); and Department of Pharmaceutics, The University of Washington, Seattle, Washington (Y.S.L.)
| | - Yvonne S Lin
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (K.Y., C.C., R.S., S.G., R.K.T., A.C., E.G.S.); Department of Medicine, Division of Clinical Pharmacology, University of Western Ontario, London, Ontario, Canada (R.B.K.); and Department of Pharmaceutics, The University of Washington, Seattle, Washington (Y.S.L.)
| | - Rachel Scheib
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (K.Y., C.C., R.S., S.G., R.K.T., A.C., E.G.S.); Department of Medicine, Division of Clinical Pharmacology, University of Western Ontario, London, Ontario, Canada (R.B.K.); and Department of Pharmaceutics, The University of Washington, Seattle, Washington (Y.S.L.)
| | - Samit Ganguly
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (K.Y., C.C., R.S., S.G., R.K.T., A.C., E.G.S.); Department of Medicine, Division of Clinical Pharmacology, University of Western Ontario, London, Ontario, Canada (R.B.K.); and Department of Pharmaceutics, The University of Washington, Seattle, Washington (Y.S.L.)
| | - Ranjit K Thirumaran
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (K.Y., C.C., R.S., S.G., R.K.T., A.C., E.G.S.); Department of Medicine, Division of Clinical Pharmacology, University of Western Ontario, London, Ontario, Canada (R.B.K.); and Department of Pharmaceutics, The University of Washington, Seattle, Washington (Y.S.L.)
| | - Amarjit Chaudhry
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (K.Y., C.C., R.S., S.G., R.K.T., A.C., E.G.S.); Department of Medicine, Division of Clinical Pharmacology, University of Western Ontario, London, Ontario, Canada (R.B.K.); and Department of Pharmaceutics, The University of Washington, Seattle, Washington (Y.S.L.)
| | - Richard B Kim
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (K.Y., C.C., R.S., S.G., R.K.T., A.C., E.G.S.); Department of Medicine, Division of Clinical Pharmacology, University of Western Ontario, London, Ontario, Canada (R.B.K.); and Department of Pharmaceutics, The University of Washington, Seattle, Washington (Y.S.L.)
| | - Erin G Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (K.Y., C.C., R.S., S.G., R.K.T., A.C., E.G.S.); Department of Medicine, Division of Clinical Pharmacology, University of Western Ontario, London, Ontario, Canada (R.B.K.); and Department of Pharmaceutics, The University of Washington, Seattle, Washington (Y.S.L.)
| |
Collapse
|
72
|
Chapy H, Goracci L, Vayer P, Parmentier Y, Carrupt PA, Declèves X, Scherrmann JM, Cisternino S, Cruciani G. Pharmacophore-based discovery of inhibitors of a novel drug/proton antiporter in human brain endothelial hCMEC/D3 cell line. Br J Pharmacol 2015. [PMID: 26220580 DOI: 10.1111/bph.13258] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE An influx drug/proton antiporter of unknown structure has been functionally demonstrated at the blood-brain barrier. This transporter, which handles some psychoactive drugs like diphenhydramine, clonidine, oxycodone, nicotine and cocaine, could represent a new pharmacological target in drug addiction therapy. However, at present there are no known drugs/inhibitors that effectively inhibit/modulate this transporter in vivo. EXPERIMENTAL APPROACH The FLAPpharm approach was used to establish a pharmacophore model for inhibitors of this transporter. The inhibitory potency of 44 selected compounds was determined against the specific substrate, [(3)H]-clonidine, in the human cerebral endothelial cell line hCMEC/D3 and ranked as good, medium, weak or non-inhibitor. KEY RESULTS The pharmacophore model obtained was used as a template to screen xenobiotic and endogenous compounds from databases [Specs, Recon2, Human Metabolome Database (HMDB), human intestinal transporter database], and hypothetical candidates were tested in vitro to determine their inhibitory capacity with [(3)H]-clonidine. According to the transporter database, 80% of the proton antiporter inhibitor candidates could inhibit P-glycoprotein/MDR1/ABCB1 and specificity is improved by reducing inhibitor size/shape and increasing water solubility. Virtual screening results using HMDB and Recon2 for endogenous compounds appropriately scored tryptamine as an inhibitor. CONCLUSIONS AND IMPLICATIONS The pharmacophore model for the proton-antiporter inhibitors was a good predictor of known inhibitors and allowed us to identify new good inhibitors. This model marks a new step towards the discovery of this drug/proton antiporter and will be of great use for the discovery and design of potent inhibitors that could potentially help to assess and validate its pharmacological role in drug addiction in vivo.
Collapse
Affiliation(s)
- Hélène Chapy
- INSERM U1144, Variabilité de réponse aux psychotropes, Paris, 75006, France.,UMR-S 1144, Université Paris Descartes, Paris, 75006, France.,UMR-S 1144, Université Paris Diderot, Paris, 75013, France
| | - Laura Goracci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, 06123, Italy
| | - Philippe Vayer
- Département de recherche biopharmaceutique, Technologie Servier, Orléans, 45000, France
| | - Yannick Parmentier
- Département de recherche biopharmaceutique, Technologie Servier, Orléans, 45000, France
| | - Pierre-Alain Carrupt
- Laboratoire de Pharmacochimie, Université de Genève, Genève, CH-1211, Switzerland
| | - Xavier Declèves
- INSERM U1144, Variabilité de réponse aux psychotropes, Paris, 75006, France.,UMR-S 1144, Université Paris Descartes, Paris, 75006, France.,UMR-S 1144, Université Paris Diderot, Paris, 75013, France.,Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
| | - Jean-Michel Scherrmann
- INSERM U1144, Variabilité de réponse aux psychotropes, Paris, 75006, France.,UMR-S 1144, Université Paris Descartes, Paris, 75006, France.,UMR-S 1144, Université Paris Diderot, Paris, 75013, France.,Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
| | - Salvatore Cisternino
- INSERM U1144, Variabilité de réponse aux psychotropes, Paris, 75006, France.,UMR-S 1144, Université Paris Descartes, Paris, 75006, France.,UMR-S 1144, Université Paris Diderot, Paris, 75013, France.,Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, 06123, Italy
| |
Collapse
|
73
|
Riches Z, Walia G, Berman JM, Wright TE, Collier AC. ATP-binding cassette proteins BCRP, MRP1 and P-gp expression and localization in the human umbilical cord. Xenobiotica 2015; 46:548-56. [PMID: 26407213 DOI: 10.3109/00498254.2015.1091118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. The umbilical cord is a direct conduit to the fetus hence transporters could have roles in partitioning substances between the maternal-placental-fetal units. Here we determined the expression and localization of the ATP-Binding Cassette (ABC) transporters BCRP (ABCG2), P-gp (ABCB1) and MRP1 (ABCC1) in human umbilical cords. 2. The mRNA for BCRP and MRP1 was detected in 25/25 samples, but P-gp was detected in only 5/25. ABC transporter mRNA expression relative to 18S was 25.6 ± 0.3, 26.5 ± 0.6 and 22.2 ± 0.2 cycles for BCRP, MRP1 and P-gp respectively. 3. Using a subset of 10 umbilical cords, BCRP protein was present in all samples (immunoblot) with positive correlation between mRNA and proteins (p = 0.07, r = 0.62) and between immunoblotting and immunohistochemistry (IHC) (p = 0.03, r = 0.67). P-gp protein was observed in 4/10 samples by both immunoblot and IHC, with no correlation between mRNA and protein (p = 0.45, r = 0.55) or immunoblotting and IHC (p = 0.2, r = 0.72), likely due to small sample size. MRP1 protein was not observed. 4. Localization of BCRP and P-gp proteins was to Wharton's jelly with no specific staining in arterial or venous endothelia. 5. Understanding ABC transporter expression in the umbilical cord may be useful for determining fetal exposures to xenobiotics if functional properties can be defined.
Collapse
Affiliation(s)
- Zoe Riches
- a Faculty of Pharmaceutical Sciences , University of British Columbia , Vancouver , BC , Canada and
| | - Gurinder Walia
- a Faculty of Pharmaceutical Sciences , University of British Columbia , Vancouver , BC , Canada and
| | - Jacob M Berman
- a Faculty of Pharmaceutical Sciences , University of British Columbia , Vancouver , BC , Canada and
| | - Tricia E Wright
- b Department of Obstetrics , Gynecology and Women's Health, John A. Burns School of Medicine, Kapi'Olani Medical Center for Women and Children , Honolulu , HI , USA
| | - Abby C Collier
- a Faculty of Pharmaceutical Sciences , University of British Columbia , Vancouver , BC , Canada and
| |
Collapse
|
74
|
Barón E, Hauler C, Gallistl C, Giménez J, Gauffier P, Castillo JJ, Fernández-Maldonado C, de Stephanis R, Vetter W, Eljarrat E, Barceló D. Halogenated Natural Products in Dolphins: Brain-Blubber Distribution and Comparison with Halogenated Flame Retardants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:9073-83. [PMID: 26148182 DOI: 10.1021/acs.est.5b02736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Halogenated natural products (MHC-1, TriBHD, TetraBHD, MeO-PBDEs, Q1, and related PMBPs) and halogenated flame retardants (PBDEs, HBB, Dec 602, Dec 603, and DP) in blubber and brain are reported from five Alboran Sea delphinids (Spain). Both HNPs and HFRs were detected in brain, implying that they are able to surpass the blood-brain barrier and reach the brain, which represents a new finding for some compounds, such as Q1 and PMBPs, MHC-1, TriBHD, TetraBHD, or Dec 603. Moreover, some compounds (TetraBHD, BDE-153, or HBB) presented higher levels in brain than in blubber. This study evidence the high concentrations of HNPs in the marine environment, especially in top predators. It shows the importance of further monitoring these natural compounds and evaluating their potential toxicity, when most studies focus on anthropogenic compounds only. While no bioaccumulation was found for ∑HNPs, ∑HFRs increased significantly with body size for both common and striped dolphins. Studies evaluating BBB permeation mechanisms of these compounds together with their potential neurotoxic effects in dolphins are recommended.
Collapse
Affiliation(s)
- E Barón
- †Institute of Environmental Assessment and Water Research Studies (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - C Hauler
- ‡University of Hohenheim, Institute of Food Chemistry, Garbenstraße 28, 70599 Stuttgart, Germany
| | - C Gallistl
- ‡University of Hohenheim, Institute of Food Chemistry, Garbenstraße 28, 70599 Stuttgart, Germany
| | - J Giménez
- §Department of Conservation Biology, Estación Biológica de Doñana-Consejo Superior de Investigaciones Científicas (EBD-CSIC), Americo Vespucio s/n, Isla Cartuja, 42092, Seville, Spain
| | - P Gauffier
- ∥Conservation, Information, and Research on Cetaceans (CIRCE), Cabeza de Manzaneda 3, Algeciras-Pelayo, 11390 Cádiz, Spain
| | - J J Castillo
- ⊥Centro de Recuperación de Especies Marinas Amenazadas (CREMA), Aula del Mar de Málaga, Pacífico 80, 29004 Málaga, Spain
| | - C Fernández-Maldonado
- #Agencia de Medio Ambiente y Agua de Andalucía, Consejería de Medio Ambiente y Ordenación del Territorio, Junta de Andalucía, Johan Gütemberg, 1, Isla de la Cartuja, 41092, Seville, Spain
| | - R de Stephanis
- ∥Conservation, Information, and Research on Cetaceans (CIRCE), Cabeza de Manzaneda 3, Algeciras-Pelayo, 11390 Cádiz, Spain
| | - W Vetter
- ‡University of Hohenheim, Institute of Food Chemistry, Garbenstraße 28, 70599 Stuttgart, Germany
| | - E Eljarrat
- †Institute of Environmental Assessment and Water Research Studies (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - D Barceló
- †Institute of Environmental Assessment and Water Research Studies (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
75
|
Jacob A, Potin S, Chapy H, Crete D, Glacial F, Ganeshamoorthy K, Couraud PO, Scherrmann JM, Declèves X. Aryl hydrocarbon receptor regulates CYP1B1 but not ABCB1 and ABCG2 in hCMEC/D3 human cerebral microvascular endothelial cells after TCDD exposure. Brain Res 2015; 1613:27-36. [DOI: 10.1016/j.brainres.2015.03.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/16/2015] [Accepted: 03/24/2015] [Indexed: 01/28/2023]
|
76
|
Blecharz KG, Colla R, Rohde V, Vajkoczy P. Control of the blood-brain barrier function in cancer cell metastasis. Biol Cell 2015; 107:342-71. [PMID: 26032862 DOI: 10.1111/boc.201500011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/22/2015] [Indexed: 12/25/2022]
Abstract
Cerebral metastases are the most common brain neoplasms seen clinically in the adults and comprise more than half of all brain tumours. Actual treatment options for brain metastases that include surgical resection, radiotherapy and chemotherapy are rarely curative, although palliative treatment improves survival and life quality of patients carrying brain-metastatic tumours. Chemotherapy in particular has also shown limited or no activity in brain metastasis of most tumour types. Many chemotherapeutic agents used systemically do not cross the blood-brain barrier (BBB), whereas others may transiently weaken the BBB and allow extravasation of tumour cells from the circulation into the brain parenchyma. Increasing evidence points out that the interaction between the BBB and tumour cells plays a key role for implantation and growth of brain metastases in the central nervous system. The BBB, as the tightest endothelial barrier, prevents both early detection and treatment by creating a privileged microenvironment. Therefore, as observed in several in vivo studies, precise targetting the BBB by a specific transient opening of the structure making it permeable for therapeutic compounds, might potentially help to overcome this difficult clinical problem. Moreover, a better understanding of the molecular features of the BBB, its interrelation with metastatic tumour cells and the elucidation of cellular mechanisms responsible for establishing cerebral metastasis must be clearly outlined in order to promote treatment modalities that particularly involve chemotherapy. This in turn would substantially expand the survival and quality of life of patients with brain metastasis, and potentially increase the remission rate. Therefore, the focus of this review is to summarise the current knowledge on the role and function of the BBB in cancer metastasis.
Collapse
Affiliation(s)
- Kinga G Blecharz
- Department of Experimental Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, 10119, Germany
| | - Ruben Colla
- Department of Neurosurgery, Göttingen University Medical Center, Göttingen, 37070, Germany
| | - Veit Rohde
- Department of Neurosurgery, Göttingen University Medical Center, Göttingen, 37070, Germany
| | - Peter Vajkoczy
- Department of Experimental Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, 10119, Germany.,Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany
| |
Collapse
|
77
|
Sajja RK, Cucullo L. Altered glycaemia differentially modulates efflux transporter expression and activity in hCMEC/D3 cell line. Neurosci Lett 2015; 598:59-65. [PMID: 25982326 DOI: 10.1016/j.neulet.2015.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/18/2015] [Accepted: 05/09/2015] [Indexed: 11/29/2022]
Abstract
The unique phenotype of blood-brain barrier (BBB) endothelium is partly maintained by abundant expression of ATP-binding cassette superfamily of efflux transporters that strictly restrict the CNS access to toxic substances including xenobiotics in circulation. Previously, we have shown that diabetes-related altered glycemic conditions differentially affect and compromise BBB integrity. However, the impact of diabetes on BBB efflux transporters is less understood. In this study, we examined the effects of single or repeated episodes of hypo-and hyperglycemia on major BBB efflux transporters expression/function in human cerebromicrovascular endothelial cell line (hCMEC/D3). Cells were exposed to normal (5.5 mM), hypo (2.2 mM) or hyper (25 or 35 mM)-glycemic media containing D-glucose for 12h (acute) or two 3h episodes/day of hypo- or hyperglycemia with an intercalated 2h normalglycemic exposure for 3 days ("glycemic variability", see Methods). Acute hypoglycemic exposure (12h) up-regulated BBB endothelial mRNA and protein expression of P-glycoprotein, BCRP and other multidrug resistance associated proteins (MRP1 and 4) paralleled by an increase in transporter-specific efflux activity (∼ 2-fold vs. control). Although, 12h hyperglycemia did not affect the efflux transporter expression (except for MRP4), a significant increase in BCRP activity was observed. By contrast, DNA microarray data revealed that repeated hyperglycemic episodes (but not hypoglycemia) significantly up-regulate P-glycoprotein expression and activity. Thus, this study suggests a differential impact of altered glycemic conditions on major BBB drug efflux transporters expression/function, sensitive to the length of exposure (acute vs. repeated), with an implication for altered CNS drug disposition in diabetic population.
Collapse
Affiliation(s)
- Ravi K Sajja
- Center for Blood-Brain Barrier Research, Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Luca Cucullo
- Center for Blood-Brain Barrier Research, Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| |
Collapse
|
78
|
Lopalco A, Ali H, Denora N, Rytting E. Oxcarbazepine-loaded polymeric nanoparticles: development and permeability studies across in vitro models of the blood-brain barrier and human placental trophoblast. Int J Nanomedicine 2015; 10:1985-96. [PMID: 25792832 PMCID: PMC4362902 DOI: 10.2147/ijn.s77498] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Encapsulation of antiepileptic drugs (AEDs) into nanoparticles may offer promise for treating pregnant women with epilepsy by improving brain delivery and limiting the transplacental permeability of AEDs to avoid fetal exposure and its consequent undesirable adverse effects. Oxcarbazepine-loaded nanoparticles were prepared by a modified solvent displacement method from biocompatible polymers (poly(lactic-co-glycolic acid) [PLGA] with or without surfactant and PEGylated PLGA [Resomer® RGPd5055]). The physical properties of the developed nanoparticles were determined with subsequent evaluation of their permeability across in vitro models of the blood–brain barrier (hCMEC/D3 cells) and human placental trophoblast cells (BeWo b30 cells). Oxcarbazepine-loaded nanoparticles with encapsulation efficiency above 69% were prepared with sizes ranging from 140–170 nm, polydispersity indices below 0.3, and zeta potential values below -34 mV. Differential scanning calorimetry and X-ray diffraction studies confirmed the amorphous state of the nanoencapsulated drug. The apparent permeability (Pe) values of the free and nanoencapsulated oxcarbazepine were comparable across both cell types, likely due to rapid drug release kinetics. Transport studies using fluorescently-labeled nanoparticles (loaded with coumarin-6) demonstrated increased permeability of surfactant-coated nanoparticles. Future developments in enzyme-prodrug therapy and targeted delivery are expected to provide improved options for pregnant patients with epilepsy.
Collapse
Affiliation(s)
- Antonio Lopalco
- Department of Obstretrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA ; Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA ; Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Hazem Ali
- Department of Obstretrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nunzio Denora
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Erik Rytting
- Department of Obstretrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA ; Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX, USA ; Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
79
|
Ghosh C, Hossain M, Spriggs A, Ghosh A, Grant GA, Marchi N, Perucca E, Janigro D. Sertraline-induced potentiation of the CYP3A4-dependent neurotoxicity of carbamazepine: an in vitro study. Epilepsia 2015; 56:439-49. [PMID: 25656284 PMCID: PMC4413932 DOI: 10.1111/epi.12923] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2014] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Drug toxicity is a hurdle to drug development and to clinical translation of basic research. Antiepileptic drugs such as carbamazepine (CBZ) and selective serotonin reuptake inhibitors such as sertraline (SRT) are commonly co-prescribed to patients with epilepsy and comorbid depression. Because SRT may interfere with cytochrome P450 (CYP) enzyme activity and CYPs have been implicated in the conversion of CBZ to reactive cytotoxic metabolites, we investigated in vitro models to determine whether SRT affects the neurotoxic potential of CBZ and the mechanisms involved. METHODS Human fetal brain-derived dopaminergic neurons, human brain microvascular endothelial cells (HBMECs), and embryonic kidney (HEK) cells were used to evaluate cytotoxicity of CBZ and SRT individually and in combination. Nitrite and glutathione (GSH) levels were measured with drug exposure. To validate the role of CYP3A4 in causing neurotoxicity, drug metabolism was compared to cell death in HEK CYP3A4 overexpressed and cells pretreated with the CYP3A4 inhibitor ketoconazole. RESULTS In all cellular systems tested, exposure to CBZ (127 μM) or SRT (5 μM) alone caused negligible cytotoxicity. By contrast CBZ, tested at a much lower concentration (17 μM) in combination with SRT (5 μM), produced prominent cytotoxicity within 15 min exposure. In neurons and HBMECs, cytotoxicity was associated with increased nitrite levels, suggesting involvement of free radicals as a pathogenetic mechanism. Pretreatment of HBMECs with reduced GSH or with the GSH precursor N-acetyl-L-cysteine prevented cytotoxic response. In HEK cells, the cytotoxic response to the CBZ + SRT combination correlated with the rate of CBZ biotransformation and production of 2-hydroxy CBZ, further suggesting a causative role of reactive metabolites. In the same system, cytotoxicity was potentiated by overexpression of CYP3A4, and prevented by CYP3A4 inhibitor. SIGNIFICANCE These results demonstrate an unexpected neurotoxic interaction between CBZ and SRT, apparently related to increased CYP3A4-mediated production of reactive CBZ metabolites. The potential clinical implications of these findings are discussed.
Collapse
Affiliation(s)
- Chaitali Ghosh
- Cerebrovascular Research, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
- Department of Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
- Department of Bio-medical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
| | - Mohammad Hossain
- Cerebrovascular Research, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
- Department of Bio-medical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
| | - Addison Spriggs
- Cerebrovascular Research, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
- Department of Bio-medical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
| | - Arnab Ghosh
- Department of Pathobiology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
| | - Gerald A. Grant
- Department of Neurosurgery and Neurobiology, Stanford University School of Medicine, Stanford, California, U.S.A
| | - Nicola Marchi
- Laboratory of Cerebrovascular Mechanisms of Brain Disorders, Department of Neuroscience, Institute of Functional Genomics, CNRS, Montpellier, France
| | - Emilio Perucca
- Department of Internal Medicine and Therapeutics, University of Pavia and C. Mondino National Neurological Institute, Pavia, Italy
| | - Damir Janigro
- Cerebrovascular Research, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
- Department of Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
- Department of Bio-medical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
- Department of Neurosurgery, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
| |
Collapse
|
80
|
Booth Depaz IM, Toselli F, Wilce PA, Gillam EMJ. Differential expression of cytochrome P450 enzymes from the CYP2C subfamily in the human brain. Drug Metab Dispos 2015; 43:353-7. [PMID: 25504503 PMCID: PMC6067382 DOI: 10.1124/dmd.114.061242] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/11/2014] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450 enzymes from the CYP2C subfamily play a prominent role in the metabolic clearance of many drugs. CYP2C enzymes have also been implicated in the metabolism of arachidonic acid to vasoactive epoxyeicosatrienoic acids. CYP2C8, CYP2C9, and CYP2C19 are expressed in the adult liver at significant levels; however, the expression of CYP2C enzymes in extrahepatic tissues such as the brain is less well characterized. Form-specific antibodies to CYP2C9 and CYP2C19 were prepared by affinity purification of antibodies raised to unique peptides. CYP2C9 and CYP2C19 were located in microsomal fractions of all five human brain regions examined, namely the frontal cortex, hippocampus, basal ganglia, amygdala, and cerebellum. Both CYP2C9 and CYP2C19 were detected predominantly within the neuronal soma but with expression extending down axons and dendrites in certain regions. Finally, a comparison of cortex samples from alcoholics and age-matched controls suggested that CYP2C9 expression was increased in alcoholics.
Collapse
Affiliation(s)
- Iris M Booth Depaz
- Schools of Biomedical Sciences (I.M.B.D.) and Chemistry and Molecular Biosciences (F.T., P.A.W., E.M.J.G.), University of Queensland, Brisbane, Australia
| | - Francesca Toselli
- Schools of Biomedical Sciences (I.M.B.D.) and Chemistry and Molecular Biosciences (F.T., P.A.W., E.M.J.G.), University of Queensland, Brisbane, Australia
| | - Peter A Wilce
- Schools of Biomedical Sciences (I.M.B.D.) and Chemistry and Molecular Biosciences (F.T., P.A.W., E.M.J.G.), University of Queensland, Brisbane, Australia
| | - Elizabeth M J Gillam
- Schools of Biomedical Sciences (I.M.B.D.) and Chemistry and Molecular Biosciences (F.T., P.A.W., E.M.J.G.), University of Queensland, Brisbane, Australia
| |
Collapse
|
81
|
Chapy H, Smirnova M, André P, Schlatter J, Chiadmi F, Couraud PO, Scherrmann JM, Declèves X, Cisternino S. Carrier-mediated cocaine transport at the blood-brain barrier as a putative mechanism in addiction liability. Int J Neuropsychopharmacol 2014; 18:pyu001. [PMID: 25539501 PMCID: PMC4368859 DOI: 10.1093/ijnp/pyu001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The rate of entry of cocaine into the brain is a critical factor that influences neuronal plasticity and the development of cocaine addiction. Until now, passive diffusion has been considered the unique mechanism known by which cocaine crosses the blood-brain barrier. METHODS We reassessed mechanisms of transport of cocaine at the blood-brain barrier using a human cerebral capillary endothelial cell line (hCMEC/D3) and in situ mouse carotid perfusion. RESULTS Both in vivo and in vitro cocaine transport studies demonstrated the coexistence of a carrier-mediated process with passive diffusion. At pharmacological exposure level, passive diffusion of cocaine accounted for only 22.5% of the total cocaine influx in mice and 5.9% in hCMEC/D3 cells, whereas the carrier-mediated influx rate was 3.4 times greater than its passive diffusion rate in vivo. The functional identification of this carrier-mediated transport demonstrated the involvement of a proton antiporter that shared the properties of the previously characterized clonidine and nicotine transporter. The functionnal characterization suggests that the solute carrier (SLC) transporters Oct (Slc22a1-3), Mate (Slc47a1) and Octn (Slc22a4-5) are not involved in the cocaine transport in vivo and in vitro. Diphenhydramine, heroin, tramadol, cocaethylene, and norcocaine all strongly inhibited cocaine transport, unlike benzoylecgonine. Trans-stimulation studies indicated that diphenhydramine, nicotine, 3,4-methylenedioxyamphetamine (ecstasy) and the cathinone compound 3,4-methylenedioxypyrovalerone (MDPV) were also substrates of the cocaine transporter. CONCLUSIONS Cocaine transport at the BBB involves a proton-antiporter flux that is quantitatively much more important than its passive diffusion. The molecular identification and characterization of this transporter will provide new tools to understand its role in addictive mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Salvatore Cisternino
- Variabilité de réponse aux psychotropes, INSERM, U1144, 75006 Paris, France (Drs. Chapy, Smirnova, André, Scherrmann, Declèves, Cisternino); Université Paris Descartes, UMR-S 1144, Paris, F-75006, France (Drs. Chapy, Smirnova, André, Scherrmann, Declèves, Cisternino); Université Paris Diderot, UMR-S 1144, Paris, F-75013, France (Drs. Chapy, Smirnova, André, Scherrmann, Declèves, Cisternino); Assistance publique hôpitaux de Paris, AP-HP, Jean Verdier, Bondy, F-93140, France (Drs. Schlatter, Chiadmi, Cisternino); INSERM, U1016, Institut Cochin, 75014, Paris, France (Dr. Couraud); CNRS, UMR8104, Paris, France (Dr. Couraud); Université Paris Descartes, Sorbonne Paris Cité, Paris, France (Dr. Couraud).
| |
Collapse
|
82
|
A new nonpolar N-hydroxy imidazoline lead compound with improved activity in a murine model of late-stage Trypanosoma brucei brucei infection is not cross-resistant with diamidines. Antimicrob Agents Chemother 2014; 59:890-904. [PMID: 25421467 DOI: 10.1128/aac.03958-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Treatment of late-stage sleeping sickness requires drugs that can cross the blood-brain barrier (BBB) to reach the parasites located in the brain. We report here the synthesis and evaluation of four new N-hydroxy and 12 new N-alkoxy derivatives of bisimidazoline leads as potential agents for the treatment of late-stage sleeping sickness. These compounds, which have reduced basicity compared to the parent leads (i.e., are less ionized at physiological pH), were evaluated in vitro against Trypanosoma brucei rhodesiense and in vivo in murine models of first- and second-stage sleeping sickness. Resistance profile, physicochemical parameters, in vitro BBB permeability, and microsomal stability also were determined. The N-hydroxy imidazoline analogues were the most effective in vivo, with 4-((1-hydroxy-4,5-dihydro-1H-imidazol-2-yl)amino)-N-(4-((1-hydroxy-4,5-dihydro-1H-imidazol-2-yl)amino)phenyl)benzamide (14d) showing 100% cures in the first-stage disease, while 15d, 16d, and 17d appeared to slightly improve survival. In addition, 14d showed weak activity in the chronic model of central nervous system infection in mice. No evidence of reduction of this compound with hepatic microsomes and mitochondria was found in vitro, suggesting that N-hydroxy imidazolines are metabolically stable and have intrinsic activity against T. brucei. In contrast to its unsubstituted parent compound, the uptake of 14d in T. brucei was independent of known drug transporters (i.e., T. brucei AT1/P2 and HAPT), indicating a lower predisposition to cross-resistance with other diamidines and arsenical drugs. Hence, the N-hydroxy bisimidazolines (14d in particular) represent a new class of promising antitrypanosomal agents.
Collapse
|
83
|
Jacob A, Potin S, Saubaméa B, Crete D, Scherrmann JM, Curis E, Peyssonnaux C, Declèves X. Hypoxia interferes with aryl hydrocarbon receptor pathway in hCMEC/D3 human cerebral microvascular endothelial cells. J Neurochem 2014; 132:373-83. [PMID: 25327972 DOI: 10.1111/jnc.12972] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/24/2014] [Accepted: 10/10/2014] [Indexed: 12/12/2022]
Abstract
The expression of aryl hydrocarbon receptor (AhR) transcription factor was detected at transcript level in freshly isolated human brain microvessels and in the hCMEC/D3 human cerebral microvascular endothelial cell line. Recent studies have demonstrated that AhR pathway is able to crosstalk with other pathways such as hypoxia signaling pathway. Therefore, we used the hCMEC/D3 cell line to investigate the potential crosstalk between AhR and hypoxia signaling pathways. First, we performed two different hypoxia-like procedures in hCMEC/D3 cells; namely, exposition of cells to 150 μM deferoxamine or to glucose and oxygen deprivation for 6 h. These two procedures led to hypoxia-inducible factor (HIF)-1α and HIF-2α proteins accumulation together with a significant induction of the two well-known hypoxia-inducible genes VEGF and GLUT-1. Both HIF-1α and -2α functionally mediated hypoxia response in the hCMEC/D3 cells. Then, we observed that a 6 h exposure to 25 nM 2,3,7,8-tetrachlorodibenzo-p-dioxin, a strong AhR ligand, up-regulated CYP1A1 and CYP1B1 expression, and that this effect was AhR dependent. Regarding AhR and hypoxia crosstalk, our experiments revealed that an asymmetric interference between these two pathways effectively occurred in hCMEC/D3 cells: hypoxia pathway interfered with AhR signaling but not the other way around. We studied the putative crosstalk of AhR and hypoxia pathways in hCMEC/D3 human cerebral microvascular endothelial cells. While hypoxia decreased the expression of the two AhR target genes CYP1A1 and CYP1B1, AhR activation results in no change in hypoxia target gene expression. This is the first sign of AhR and hypoxia pathway crosstalk in an in vitro model of the human cerebral endothelium.
Collapse
Affiliation(s)
- Aude Jacob
- INSERM, UMR-S 1144, Paris, France; Université Paris Descartes, UMR-S 1144, Paris, France; Université Paris Diderot, UMR-S 1144, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Compounds blocking methylglyoxal-induced protein modification and brain endothelial injury. Arch Med Res 2014; 45:753-64. [PMID: 25446614 DOI: 10.1016/j.arcmed.2014.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 10/23/2014] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND AIMS Elevated levels of reactive carbonyl species such as methylglyoxal triggers carbonyl stress and activates a series of inflammatory responses leading to accelerated vascular damage. Carbonyl stress is implicated in conditions and diseases like aging, diabetes mellitus, Alzheimer's disease and cardiovascular diseases. Our aim was to examine the effects of methylglyoxal on human hCMEC/D3 brain endothelial cells and search for protective molecules to prevent endothelial damage. METHODS Methylglyoxal-induced modification of albumin was tested in a cell-free assay. Endothelial cell viability was monitored by impedance measurement in real-time. The following compounds were tested in cell-free and viability assays: β-alanine, all-trans-retinoic acid, aminoguanidine, ascorbic acid, L-carnosine, GW-3333, indapamide, piracetam, γ-tocopherol, U0126, verapamil. Barrier function of brain endothelial monolayers was characterized by permeability measurements and visualized by immunohistochemistry for β-catenin. mRNA expression level of 60 selected blood-brain barrier-related genes in hCMEC/D3 cells was investigated by a custom Taqman gene array. RESULTS Methylglyoxal treatment significantly elevated protein modification, exerted toxicity, reduced barrier integrity, increased permeability for markers FITC-dextran and albumin and caused higher production of reactive oxygen species in hCMEC/D3 endothelial cells. Changes in the mRNA expression of 30 genes coding tight junction proteins, transporters and enzymes were observed in methylglyoxal-treated hCMEC/D3 cells. From the tested 11 compounds only all-trans-retinoic acid, an antioxidant and antiglycation agent, U0126, a MAP/ERK kinase inhibitor and aminoguanidine attenuated methylglyoxal-induced damage in hCMEC/D3 cells. CONCLUSIONS All-trans-retinoic acid and inhibition of the MAP/ERK signaling pathway may be protective in carbonyl stress induced brain endothelial damage.
Collapse
|
85
|
Effect of status epilepticus and antiepileptic drugs on CYP2E1 brain expression. Neuroscience 2014; 281:124-34. [PMID: 25280786 DOI: 10.1016/j.neuroscience.2014.09.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/01/2014] [Accepted: 09/25/2014] [Indexed: 10/24/2022]
Abstract
P450 metabolic enzymes are expressed in the human and rodent brain. Recent data support their involvement in the pathophysiology of epilepsy. However, the determinants of metabolic enzyme expression in the epileptic brain are unclear. We tested the hypothesis that status epilepticus (SE) or exposure to phenytoin or phenobarbital affects brain expression of the metabolic enzyme CYP2E1. SE was induced in C57BL/6J mice by systemic kainic acid. Brain CYP2E1 expression was evaluated 18-24h after severe SE by immunohistochemistry. Co-localization with neuronal nuclei (NEUN), glial fibrillary acidic protein (GFAP) and CD31 was determined by confocal microscopy. The effect of phenytoin, carbamazepine and phenobarbital on CYP2E1 expression was evaluated in vivo or by using organotypic hippocampal cultures in vitro. CYP2E1 expression was investigated in brain resections from a cohort of drug-resistant epileptic brain resections and human endothelial cultures (EPI-EC). Immunohistochemistry showed an increase of CYP2E1 expression limited to hippocampal CA2/3 and hilar neurons after severe SE in mice. CYP2E1 expression was also observed at the astrocyte-vascular interface. Analysis of human brain specimens revealed CYP2E1 expression in neurons and vascular endothelial cells (EC). CYP2E1 was expressed in cultured human EC and over-expressed by EPI-EC. When analyzing the effect of drug exposure on CYP2E1 expression we found that, in vivo or in vitro, ethanol increased CYP2E1 levels in the brain and liver. Treatment with phenytoin induced localized CYP2E1 expression in the brain whereas no significant effects were exerted by carbamazepine or phenobarbital. Our data indicate that the effect of acute SE on brain CYP2E1 expression is localized and cell specific. Exposure to selected anti-epileptic drugs could play a role in determining CYP2E1 brain expression. Additional investigation is required to fully reproduce the culprits of P450 enzyme expression as observed in the human epileptic brain.
Collapse
|
86
|
Triggering of protection mechanism against Phoneutria nigriventer spider venom in the brain. PLoS One 2014; 9:e107292. [PMID: 25211468 PMCID: PMC4161398 DOI: 10.1371/journal.pone.0107292] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/11/2014] [Indexed: 01/03/2023] Open
Abstract
Severe accidents caused by the "armed" spider Phoneutria nigriventer cause neurotoxic manifestations in victims. In experiments with rats, P. nigriventer venom (PNV) temporarily disrupts the properties of the BBB by affecting both the transcellular and the paracellular route. However, it is unclear how cells and/or proteins participate in the transient opening of the BBB. The present study demonstrates that PNV is a substrate for the multidrug resistance protein-1 (MRP1) in cultured astrocyte and endothelial cells (HUVEC) and increases mrp1 and cx43 and down-regulates glut1 mRNA transcripts in cultured astrocytes. The inhibition of nNOS by 7-nitroindazole suggests that NO derived from nNOS mediates some of these effects by either accentuating or opposing the effects of PNV. In vivo, MRP1, GLUT1 and Cx43 protein expression is increased differentially in the hippocampus and cerebellum, indicating region-related modulation of effects. PNV contains a plethora of Ca(2+), K(+) and Na(+) channel-acting neurotoxins that interfere with glutamate handling. It is suggested that the findings of the present study are the result of a complex interaction of signaling pathways, one of which is the NO, which regulates BBB-associated proteins in response to PNV interference on ions physiology. The present study provides additional insight into PNV-induced BBB dysfunction and shows that a protective mechanism is activated against the venom. The data shows that PNV has qualities for potential use in drug permeability studies across the BBB.
Collapse
|
87
|
Gotovdorj T, Lee E, Lim Y, Cha EJ, Kwon D, Hong E, Kim Y, Oh MY. 2,3,7,8-Tetrachlorodibenzo-p-dioxin induced cell-specific drug transporters with acquired cisplatin resistance in cisplatin sensitive cancer cells. J Korean Med Sci 2014; 29:1188-98. [PMID: 25246735 PMCID: PMC4168170 DOI: 10.3346/jkms.2014.29.9.1188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 06/05/2014] [Indexed: 12/23/2022] Open
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can induce drug transporter genes such as the ATP-binding cassette G member 2 (ABCG2), which contributes to multidrug resistance. We investigated the effect of TCDD pretreatment on drug transporters induction from cancer cells of various origins. Cell viabilities after treatment of cisplatin were measured to evaluate acquiring cisplatin resistance by TCDD. Acquring cisplatin resistance was found only in cisplatin senstivie cancer cells including gastric SNU601, colon LS180, brain CRT-MG and lymphoma Jurkat cells which showed a significant increase in cell viability after combined treatment with TCDD and cisplatin. High increase of ABCG2 gene expression was found in SNU601 and LS180 cells with a mild increase in the expression of the ABCC3, ABCC5,and SLC29A2 genes in SNU601 cells, and of major vault protein (MVP) in LS180 cells. The AhR inhibitor kaempferol suppressed the upregulation of ABCG2 expression and reversed the TCDD-induced increase in cell viability in LS180 cells. However, in CRT-MG cells, other transporter genes including ABCC1, ABCC5, ABCA3, ABCA2, ABCB4, ABCG1, and SLC29A1 were up-regulated. These findings suggested the acquiring cisplatin resistance by TCDD associated with cancer cell-type-specific induction of drug transporters.
Collapse
Affiliation(s)
- Tuvshinjargal Gotovdorj
- Molecular, Cellular and Developmental Biology, Division of Biomedical Science, Graduate School, Korea University, Seoul, Korea
- Department of Preventive Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Eunil Lee
- Molecular, Cellular and Developmental Biology, Division of Biomedical Science, Graduate School, Korea University, Seoul, Korea
- Department of Preventive Medicine, College of Medicine, Korea University, Seoul, Korea
- Department of Public Health, Graduate School, Korea University, Seoul, Korea
- Graduate School of Public Health, Korea University, Seoul, Korea
| | - Yongchul Lim
- Department of Preventive Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Eun Jeong Cha
- Department of Preventive Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Daeho Kwon
- Department of Microbiology, College of Medicine, Kwandong University, Gangneung, Korea
| | - Eunyoung Hong
- Department of Public Health, Graduate School, Korea University, Seoul, Korea
| | - YunJeong Kim
- Graduate School of Public Health, Korea University, Seoul, Korea
| | - Min-Yeong Oh
- Graduate School of Public Health, Korea University, Seoul, Korea
| |
Collapse
|
88
|
Dos Santos Pereira JN, Tadjerpisheh S, Abu Abed M, Saadatmand AR, Weksler B, Romero IA, Couraud PO, Brockmöller J, Tzvetkov MV. The poorly membrane permeable antipsychotic drugs amisulpride and sulpiride are substrates of the organic cation transporters from the SLC22 family. AAPS JOURNAL 2014; 16:1247-58. [PMID: 25155823 DOI: 10.1208/s12248-014-9649-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 07/18/2014] [Indexed: 01/10/2023]
Abstract
Variations in influx transport at the blood-brain barrier might affect the concentration of psychotropic drugs at their site of action and as a consequence might alter therapy response. Furthermore, influx transporters in organs such as the gut, liver and kidney may influence absorption, distribution, and elimination. Here, we analyzed 30 commonly used psychotropic drugs using a parallel artificial membrane permeability assay. Amisulpride and sulpiride showed the lowest membrane permeability (P e < 1.5 × 10(-6) cm/s) and will require influx transport to penetrate the blood-brain barrier and other physiological barriers. We then studied the uptake of amisulpride and sulpiride by the organic cation transporters of the SLC22 family OCT1, OCT2, OCT3, OCTN1, and OCTN2 Amisulpride was found to be transported by all five transporters studied. In contrast, sulpiride was only transported by OCT1 and OCT2. OCT1 showed the highest transport ability both for amisulpride (CLint = 1.9 ml/min/mg protein) and sulpiride (CLint = 4.2 ml/min/mg protein) and polymorphisms in OCT1 significantly reduced the uptake of both drugs. Furthermore, we observed carrier-mediated uptake that was inhibitable by known OCT inhibitors in the immortalized human brain microvascular endothelial cell line hCMEC/D3. In conclusion, this study demonstrates that amisulpride and sulpiride are substrates of organic cation transporters of the SLC22 family. SLC22 transporters may play an important role in the distribution of amisulpride and sulpiride, including their ability to penetrate the blood-brain barrier.
Collapse
Affiliation(s)
- Joao N Dos Santos Pereira
- Institute for Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Qiu X, Zhang H, Lai Y. Quantitative targeted proteomics for membrane transporter proteins: method and application. AAPS JOURNAL 2014; 16:714-26. [PMID: 24830943 DOI: 10.1208/s12248-014-9607-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/05/2014] [Indexed: 01/04/2023]
Abstract
Although global proteomics has shown promise for discovery of many new proteins, biomarkers, protein modifications, and polymorphisms, targeted proteomics is emerging in the proteomics research field as a complement to untargeted shotgun proteomics, particularly when a determined set of low-abundance functional proteins need to be measured. The function and expression of proteins related to drug absorption, distribution, metabolism, and excretion (ADME) such as cytochrome P450 enzymes and membrane transporters are of great interest in biopharmaceutical research. Since the variation in ADME-related protein expression is known to be a major complicating factor encountered during in vitro-in vivo and in vivo-in vivo extrapolations (IVIVE), the accurate quantification of the ADME proteins in complex biological systems becomes a fundamental element in establishing IVIVE for pharmacokinetic predictions. In this review, we provide an overview of relevant methodologies followed by a summary of recent applications encompassing mass spectrometry-based targeted quantifications of membrane transporters.
Collapse
Affiliation(s)
- Xi Qiu
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, New Jersey, 08543, USA
| | | | | |
Collapse
|
90
|
Bicker J, Alves G, Fortuna A, Falcão A. Blood-brain barrier models and their relevance for a successful development of CNS drug delivery systems: a review. Eur J Pharm Biopharm 2014; 87:409-32. [PMID: 24686194 DOI: 10.1016/j.ejpb.2014.03.012] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 03/13/2014] [Accepted: 03/20/2014] [Indexed: 02/05/2023]
Abstract
During the research and development of new drugs directed at the central nervous system, there is a considerable attrition rate caused by their hampered access to the brain by the blood-brain barrier. Throughout the years, several in vitro models have been developed in an attempt to mimic critical functionalities of the blood-brain barrier and reliably predict the permeability of drug candidates. However, the current challenge lies in developing a model that retains fundamental blood-brain barrier characteristics and simultaneously remains compatible with the high throughput demands of pharmaceutical industries. This review firstly describes the roles of all elements of the neurovascular unit and their influence on drug brain penetration. In vitro models, including non-cell based and cell-based models, and in vivo models are herein presented, with a particular emphasis on their methodological aspects. Lastly, their contribution to the improvement of brain drug delivery strategies and drug transport across the blood-brain barrier is also discussed.
Collapse
Affiliation(s)
- Joana Bicker
- Laboratory of Pharmacology, University of Coimbra, Coimbra, Portugal; CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Gilberto Alves
- CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| | - Ana Fortuna
- Laboratory of Pharmacology, University of Coimbra, Coimbra, Portugal; CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, University of Coimbra, Coimbra, Portugal; CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
91
|
Freese C, Reinhardt S, Hefner G, Unger RE, Kirkpatrick CJ, Endres K. A novel blood-brain barrier co-culture system for drug targeting of Alzheimer's disease: establishment by using acitretin as a model drug. PLoS One 2014; 9:e91003. [PMID: 24608847 PMCID: PMC3946622 DOI: 10.1371/journal.pone.0091003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 02/07/2014] [Indexed: 11/18/2022] Open
Abstract
In the pathogenesis of Alzheimer’s disease (AD) the homeostasis of amyloid precursor protein (APP) processing in the brain is impaired. The expression of the competing proteases ADAM10 (a disintegrin and metalloproteinase 10) and BACE-1 (beta site APP cleaving enzyme 1) is shifted in favor of the A-beta generating enzyme BACE-1. Acitretin–a synthetic retinoid–e.g., has been shown to increase ADAM10 gene expression, resulting in a decreased level of A-beta peptides within the brain of AD model mice and thus is of possible value for AD therapy. A striking challenge in evaluating novel therapeutically applicable drugs is the analysis of their potential to overcome the blood-brain barrier (BBB) for central nervous system targeting. In this study, we established a novel cell-based bio-assay model to test ADAM10-inducing drugs for their ability to cross the BBB. We therefore used primary porcine brain endothelial cells (PBECs) and human neuroblastoma cells (SH-SY5Y) transfected with an ADAM10-promoter luciferase reporter vector in an indirect co-culture system. Acitretin served as a model substance that crosses the BBB and induces ADAM10 expression. We ensured that ADAM10-dependent constitutive APP metabolism in the neuronal cells was unaffected under co-cultivation conditions. Barrier properties established by PBECs were augmented by co-cultivation with SH-SY5Y cells and they remained stable during the treatment with acitretin as demonstrated by electrical resistance measurement and permeability-coefficient determination. As a consequence of transcellular acitretin transport measured by HPLC, the activity of the ADAM10-promoter reporter gene was significantly increased in co-cultured neuronal cells as compared to vehicle-treated controls. In the present study, we provide a new bio-assay system relevant for the study of drug targeting of AD. This bio-assay can easily be adapted to analyze other Alzheimer- or CNS disease-relevant targets in neuronal cells, as their therapeutical potential also depends on the ability to penetrate the BBB.
Collapse
Affiliation(s)
- Christian Freese
- REPAIR-lab, Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Mainz, Germany
- * E-mail:
| | - Sven Reinhardt
- Department of Psychiatry and Psychotherapy, Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Gudrun Hefner
- Department of Psychiatry and Psychotherapy, Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ronald E. Unger
- REPAIR-lab, Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Mainz, Germany
| | - C. James Kirkpatrick
- REPAIR-lab, Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
92
|
Noack A, Noack S, Hoffmann A, Maalouf K, Buettner M, Couraud PO, Romero IA, Weksler B, Alms D, Römermann K, Naim HY, Löscher W. Drug-induced trafficking of p-glycoprotein in human brain capillary endothelial cells as demonstrated by exposure to mitomycin C. PLoS One 2014; 9:e88154. [PMID: 24505408 PMCID: PMC3913777 DOI: 10.1371/journal.pone.0088154] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 01/05/2014] [Indexed: 02/07/2023] Open
Abstract
P-glycoprotein (Pgp; ABCB1/MDR1) is a major efflux transporter at the blood-brain barrier (BBB), restricting the penetration of various compounds. In other tissues, trafficking of Pgp from subcellular stores to the cell surface has been demonstrated and may constitute a rapid way of the cell to respond to toxic compounds by functional membrane insertion of the transporter. It is not known whether drug-induced Pgp trafficking also occurs in brain capillary endothelial cells that form the BBB. In this study, trafficking of Pgp was investigated in human brain capillary endothelial cells (hCMEC/D3) that were stably transfected with a doxycycline-inducible MDR1-EGFP fusion plasmid. In the presence of doxycycline, these cells exhibited a 15-fold increase in Pgp-EGFP fusion protein expression, which was associated with an increased efflux of the Pgp substrate rhodamine 123 (Rho123). The chemotherapeutic agent mitomycin C (MMC) was used to study drug-induced trafficking of Pgp. Confocal fluorescence microscopy of single hCMEC/D3-MDR1-EGFP cells revealed that Pgp redistribution from intracellular pools to the cell surface occurred within 2 h of MMC exposure. Pgp-EGFP exhibited a punctuate pattern at the cell surface compatible with concentrated regions of the fusion protein in membrane microdomains, i.e., lipid rafts, which was confirmed by Western blot analysis of biotinylated cell surface proteins in Lubrol-resistant membranes. MMC exposure also increased the functionality of Pgp as assessed in three functional assays with Pgp substrates (Rho123, eFluxx-ID Gold, calcein-AM). However, this increase occurred with some delay after the increased Pgp expression and coincided with the release of Pgp from the Lubrol-resistant membrane complexes. Disrupting rafts by depleting the membrane of cholesterol increased the functionality of Pgp. Our data present the first direct evidence of drug-induced Pgp trafficking at the human BBB and indicate that Pgp has to be released from lipid rafts to gain its full functionality.
Collapse
Affiliation(s)
- Andreas Noack
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sandra Noack
- Department of Trauma Surgery, Hannover Medical School, Hannover, Germany
| | - Andrea Hoffmann
- Department of Trauma Surgery, Hannover Medical School, Hannover, Germany
| | - Katia Maalouf
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Manuela Buettner
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Pierre-Olivier Couraud
- INSERM, U1016, Institut Cochin, Paris, France
- Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris, France
- Université René Descartes, Paris, France
| | - Ignacio A. Romero
- Department of Biological Sciences, The Open University, Milton Keynes, United Kingdom
| | - Babette Weksler
- Weill Medical College of Cornell University, New York, New York, United States of America
| | - Dana Alms
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kerstin Römermann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Hassan Y. Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
- * E-mail:
| |
Collapse
|
93
|
Alms D, Fedrowitz M, Römermann K, Noack A, Löscher W. Marked differences in the effect of antiepileptic and cytostatic drugs on the functionality of P-glycoprotein in human and rat brain capillary endothelial cell lines. Pharm Res 2014; 31:1588-604. [PMID: 24477677 DOI: 10.1007/s11095-013-1264-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 12/09/2013] [Indexed: 01/16/2023]
Abstract
PURPOSE The expression of P-glycoprotein (Pgp) is increased in brain capillary endothelial cells (BCECs) of patients with pharmacoresistant epilepsy. This may restrict the penetration of antiepileptic drugs (AEDs) into the brain. However, the mechanisms underlying increased Pgp expression in epilepsy patients are not known. One possibility is that AEDs induce the expression and functionality of Pgp in BCECs. Several older AEDs that induce human cytochrome P450 enzymes also induce Pgp in hepatocytes and enterocytes, but whether this extends to Pgp at the human BBB and to newer AEDs is not known. METHODS This prompted us to study the effects of various old and new AEDs on Pgp functionality in the human BCEC line, hCMEC/D3, using the rhodamine 123 (Rho123) efflux assay. For comparison, experiments were performed in two rat BCEC lines, RBE4 and GPNT, and primary cultures of rat and pig BCECs. Furthermore, known Pgp inducers, such as dexamethasone and several cytostatic drugs, were included in our experiments. RESULTS Under control conditions, GPNT cells exhibited the highest and RBE4 the lowest Pgp expression and Rho123 efflux, while intermediate values were determined in hCMEC/D3. Known Pgp inducers increased Rho123 efflux in all cell lines, but marked inter-cell line differences in effect size were observed. Of the various AEDs examined, only carbamazepine (100 μM) moderately increased Pgp functionality in hCMEC/D3, while valproate (300 μM) inhibited Pgp. CONCLUSIONS These data do not indicate that treatment with AEDs causes a clinically relevant induction in Pgp functionality in BCECs that form the BBB.
Collapse
Affiliation(s)
- Dana Alms
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
| | | | | | | | | |
Collapse
|
94
|
|
95
|
Vu K, Eigenheer RA, Phinney BS, Gelli A. Cryptococcus neoformans promotes its transmigration into the central nervous system by inducing molecular and cellular changes in brain endothelial cells. Infect Immun 2013; 81:3139-47. [PMID: 23774597 PMCID: PMC3754227 DOI: 10.1128/iai.00554-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/07/2013] [Indexed: 12/31/2022] Open
Abstract
Cryptococcus spp. cause fungal meningitis, a life-threatening infection that occurs predominately in immunocompromised individuals. In order for Cryptococcus neoformans to invade the central nervous system (CNS), it must first penetrate the brain endothelium, also known as the blood-brain barrier (BBB). Despite the importance of the interrelation between C. neoformans and the brain endothelium in establishing CNS infection, very little is known about this microenvironment. Here we sought to resolve the cellular and molecular basis that defines the fungal-BBB interface during cryptococcal attachment to, and internalization by, the human brain endothelium. In order to accomplish this by a systems-wide approach, the proteomic profile of human brain endothelial cells challenged with C. neoformans was resolved using a label-free differential quantitative mass spectrometry method known as spectral counting (SC). Here, we demonstrate that as brain endothelial cells associate with, and internalize, cryptococci, they upregulate the expression of several proteins involved with cytoskeleton, metabolism, signaling, and inflammation, suggesting that they are actively signaling and undergoing cytoskeleton remodeling via annexin A2, S100A10, transgelin, and myosin. Transmission electronic microscopy (TEM) analysis demonstrates dramatic structural changes in nuclei, mitochondria, the endoplasmic reticulum (ER), and the plasma membrane that are indicative of cell stress and cell damage. The translocation of HMGB1, a marker of cell injury, the downregulation of proteins that function in transcription, energy production, protein processing, and the upregulation of cyclophilin A further support the notion that C. neoformans elicits changes in brain endothelial cells that facilitate the migration of cryptococci across the BBB and ultimately induce endothelial cell necrosis.
Collapse
Affiliation(s)
- Kiem Vu
- Department of Pharmacology, School of Medicine, University of California, Genome and Biomedical Sciences Facility, Davis, California, USA
| | - Richard A. Eigenheer
- Proteomics Core Facility, University of California, Genome Center, Davis, California, USA
| | - Brett S. Phinney
- Proteomics Core Facility, University of California, Genome Center, Davis, California, USA
| | - Angie Gelli
- Department of Pharmacology, School of Medicine, University of California, Genome and Biomedical Sciences Facility, Davis, California, USA
| |
Collapse
|
96
|
Jarrar YB, Cho SA, Oh KS, Kim DH, Shin JG, Lee SJ. Identification of cytochrome P450s involved in the metabolism of arachidonic acid in human platelets. Prostaglandins Leukot Essent Fatty Acids 2013; 89:227-34. [PMID: 23932368 DOI: 10.1016/j.plefa.2013.06.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 05/22/2013] [Accepted: 06/30/2013] [Indexed: 01/17/2023]
Abstract
Although cytochrome P450s (CYPs) have been identified in most human cells, identification of CYPs in human platelets remains poorly explored. CYP expressions in human platelets were screened by using reverse transcriptase-polymerase chain reaction and western blot analysis followed by functional assays using arachidonic acid (ARA). CYP1A1, 2U1, 2J2, 4A11, 4F2, and 5A1 were expressed as both proteins and mRNAs in platelets. Ethoxyresorufin-O-deethylase activity was observed in platelets and this activity was significantly decreased after treatment with the general P450 inhibitor SKF-525A and the CYP1A inhibitor, α-naphthoflavone (40-45%, P<0.001). Seventeen ARA metabolites were detected in ARA-treated platelets. Among these, the levels of 20-hydroxyeicosatetraenoic acid and epoxyeicosatrienoic acids were significantly decreased with the treatment of the P450 ω-hydroxylase inhibitor 17-octadecynoic acid (P<0.05-0.001). In summary, multiple ARA-metabolizing P450s were identified in human platelets. These findings may provide an important resource for understanding physiological function of platelet.
Collapse
Affiliation(s)
- Yazun B Jarrar
- Department of Pharmacology, Pharmacogenomics Research Center, Inje University College of Medicine, Inje University, Busan, South Korea
| | | | | | | | | | | |
Collapse
|
97
|
Campbell SD, Regina KJ, Kharasch ED. Significance of lipid composition in a blood-brain barrier-mimetic PAMPA assay. ACTA ACUST UNITED AC 2013; 19:437-44. [PMID: 23945876 DOI: 10.1177/1087057113497981] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endothelial cells forming the blood-brain barrier limit drug access into the brain, due to tight junctions, membrane drug transporters, and unique lipid composition. Passive permeability, thought to mediate drug access, is typically tested using porcine whole-brain lipid. However, human endothelial cell lipid composition differs. This investigation evaluated the influence of lipid composition on passive permeability across artificial membranes. Permeability of CNS-active drugs across an immobilized lipid membrane was determined using three lipid models: crude extract from whole pig brain, human brain microvessel lipid, and microvessel lipid plus cholesterol. Lipids were immobilized on polyvinylidene difluoride, forming donor and receiver chambers, in which drug concentrations were measured after 2 h. The log of effective permeability was then calculated using the measured concentrations. Permeability of small, neutral compounds was unaffected by lipid composition. Several structurally diverse drugs were highly permeable in porcine whole-brain lipid but one to two orders of magnitude less permeable across human brain endothelial cell lipid. Inclusion of cholesterol had the greatest influence on bulky amphipathic compounds such as glucuronide conjugates. Lipid composition markedly influences passive permeability. This was most apparent for charged or bulky compounds. These results demonstrate the importance of using species-specific lipid models in passive permeability assays.
Collapse
Affiliation(s)
- Scott D Campbell
- 1Department of Anesthesiology, Division of Clinical and Translational Research, Washington University in St. Louis, St. Louis, MO, USA
| | | | | |
Collapse
|
98
|
Kratzer I, Liddelow SA, Saunders NR, Dziegielewska KM, Strazielle N, Ghersi-Egea JF. Developmental changes in the transcriptome of the rat choroid plexus in relation to neuroprotection. Fluids Barriers CNS 2013; 10:25. [PMID: 23915922 PMCID: PMC3737068 DOI: 10.1186/2045-8118-10-25] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/10/2013] [Indexed: 11/10/2022] Open
Abstract
Background The choroid plexuses are the interface between the blood and the cerebrospinal fluid (CSF) contained within the ventricular spaces of the central nervous system. The tight junctions linking adjacent cells of the choroidal epithelium create a physical barrier to paracellular movement of molecules. Multispecific efflux transporters as well as drug-metabolizing and antioxidant enzymes functioning in these cells contribute to a metabolic barrier. These barrier properties reflect a neuroprotective function of the choroid plexus. The choroid plexuses develop early during embryogenesis and provide pivotal control of the internal environment throughout development when the brain is especially vulnerable to toxic insults. Perinatal injuries like hypoxia and trauma, and exposure to drugs or toxic xenobiotics can have serious consequences on neurogenesis and long-term development. The present study describes the developmental expression pattern of genes involved in the neuroprotective functions of the blood–CSF barrier. Methods The transcriptome of rat lateral ventricular choroid plexuses isolated from fifteen-day-old embryos, nineteen-day old fetuses, two-day old pups, and adults was analyzed by a combination of Affymetrix microarrays, Illumina RNA-Sequencing, and quantitative RT-PCR. Results Genes coding for proteins involved in junction formation are expressed early during development. Overall perinatal expression levels of genes involved in drug metabolism and antioxidant mechanisms are similar to, or higher than levels measured in adults. A similar developmental pattern was observed for multispecific efflux transporter genes of the Abc and Slc superfamilies. Expression of all these genes was more variable in choroid plexus from fifteen-day-old embryos. A large panel of transcription factors involved in the xenobiotic- or cell stress-mediated induction of detoxifying enzymes and transporters is also expressed throughout development. Conclusions This transcriptomic analysis suggests relatively well–established neuroprotective mechanisms at the blood-CSF barrier throughout development of the rat. The expression of many transcription factors early in development raises the possibility of additional protection for the vulnerable developing brain, should the fetus or newborn be exposed to drugs or other xenobiotics.
Collapse
Affiliation(s)
- Ingrid Kratzer
- Inserm U1028, Lyon Neuroscience Research Center, Neurooncology & Neuroinflammation Team, Lyon-1 University, Lyon F-69000, France.
| | | | | | | | | | | |
Collapse
|
99
|
CYP3A5*3 and C3435T MDR1 polymorphisms in prognostication of drug-resistant epilepsy in children and adolescents. BIOMED RESEARCH INTERNATIONAL 2013; 2013:526837. [PMID: 23984379 PMCID: PMC3747339 DOI: 10.1155/2013/526837] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/25/2013] [Indexed: 01/13/2023]
Abstract
Drug-resistant epilepsies still remain one of the most profound problems of contemporary epileptology. Several mechanisms of drug resistance are possible; among them, genetic factors have a prominent place. Much importance is attached to genes, which encode enzymes that metabolize antiepileptic drugs CYP 3A, which belong to the family of cytochromes P450 and the genome of multidrug resistance, such as multidrug resistance 1 (MDR1) that expresses P-glycoprotein (P-gp), a drug transporter protein. The aim of the study was to assess the relation between polymorphism of gene CYP3A5 and polymorphism C3435T of MDR1 gene with the occurrence of focal, drug-resistant epilepsy in children and youths up to 18 years of age. The study comprised 85 patients, and their age range was from 33 months to 18 years of age, suffering from epilepsy, partly responding well to treatment, partly drug resistant. The polymorphism of both genes has been analysed using the PCR-RFLP method. The study failed to corroborate association between polymorphism CYP3A5∗3 and C3435T polymorphism in MDR1 gene and pharmacoresistant epilepsy. The results of our research do not confirm the prognostic value of the polymorphisms examined in the prognostication of drug resistance in epilepsies.
Collapse
|
100
|
Ghosh C, Hossain M, Puvenna V, Martinez-Gonzalez J, Alexopolous A, Janigro D, Marchi N. Expression and functional relevance of UGT1A4 in a cohort of human drug-resistant epileptic brains. Epilepsia 2013; 54:1562-70. [PMID: 23865846 DOI: 10.1111/epi.12318] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE Brain drug bioavailability is regulated by the blood-brain barrier (BBB). It was recently suggested that cytochrome P450 (CYP) enzymes could act in concert with multidrug transporter proteins to regulate drug penetration and distribution into the diseased brain. The possibility that phase II metabolic enzymes could be expressed in the epileptic brain has been not evaluated. Phase II enzymes are involved in the metabolism of common antiepileptic drugs (AEDs). METHODS Phase II enzyme UGT1A4 brain expression was evaluated in temporal lobe resections from patients with epilepsy. UGT1A4 expression was determined by western blot and immunocytochemistry in primary cultures of human drug-resistant brain endothelial human brain epileptic endothelial cells (EPI-EC)s and commercially available control cells human brain microvascular endothelial cells (HBMECs). Lack of DNA condensation measured by 4',6-diamidino-2-phenylindole (DAPI) was used as a surrogate marker of cell viability and was correlated to UGT1A4 expression high performance liquid chromatography ultraviolet detection (HPLC-UV) was used to quantify lamotrigine metabolism by EPI-EC and HBMEC. The appearance of the specific lamotrigine metabolite, 2-n glucuronide (MET-1), was also evaluated. Lamotrigine and MET-1 levels were measured in selected surgical brain and matched blood samples. KEY FINDINGS UGT1A4 expression was observed in BBB endothelial cells and neurons. Our quantification study revealed variable levels of UGT1A4 expression across the brain specimens analyzed. Neurons devoid of UGT1A4 expression displayed nuclear DAPI condensation, a sign of cellular distress. UGT1A4 overexpression in EPI-EC, as compared to HBMEC, was reflected by a proportional increase in lamotrigine metabolism. The lamotrigine metabolite, MET-1, was formed in vitro by EPI-EC and, to a lesser extent, by HBMEC. HPLC-UV measurements of brain and blood samples obtained from patients receiving lamotrigine prior to surgery revealed the presence of lamotrigine and its metabolites in the brain. SIGNIFICANCE These initial results suggest the presence of a phase II enzyme in the epileptic brain. Further studies are required to fully describe the pattern of brain UGT1A4 expression in relation to clinical variables and drug resistance.
Collapse
Affiliation(s)
- Chaitali Ghosh
- Department of Cellular, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | | | | | | | | |
Collapse
|