51
|
Kuang M, Lu S, Yang R, Chen H, Zhang S, Sheng G, Zou Y. Association of predicted fat mass and lean body mass with diabetes: a longitudinal cohort study in an Asian population. Front Nutr 2023; 10:1093438. [PMID: 37229472 PMCID: PMC10203423 DOI: 10.3389/fnut.2023.1093438] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Objective The relationship between body composition fat mass (FM) and lean body mass (LBM) and diabetes risk is currently debated, and the purpose of this study was to examine the association of predicted FM and LBM with diabetes in both sexes. Methods The current study was a secondary analysis of data from the NAGALA (NAfld in the Gifu Area, Longitudinal Analysis) cohort study of 15,463 baseline normoglycemic participants. Predicted LBM and FM were calculated for each participant using anthropometric prediction equations developed and validated for different sexes based on the National Health and Nutrition Examination Survey (NHANES) database, and the outcome of interest was diabetes (types not distinguished) onset. Multivariate Cox regression analyses were applied to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs) for the associations of predicted FM and LBM with diabetes risk and further visualized their associations using a restricted cubic spline function. Results The incidence density of diabetes was 3.93/1000 person-years over a mean observation period of 6.13 years. In women, predicted LBM and FM were linearly associated with diabetes risk, with each kilogram increase in predicted LBM reducing the diabetes risk by 65% (HR 0.35, 95%CI 0.17, 0.71; P < 0.05), whereas each kilogram increase in predicted FM increased the diabetes risk by 84% (HR 1.84, 95%CI 1.26, 2.69; P < 0.05). In contrast, predicted LBM and FM were non-linearly associated with diabetes risk in men (all P for non-linearity < 0.05), with an L-shaped association between predicted LBM and diabetes risk and a saturation point that minimized the risk of diabetes was 45.4 kg, while predicted FM was associated with diabetes risk in a U-shape pattern and a threshold point with the lowest predicted FM-related diabetes risk was 13.76 kg. Conclusion In this Asian population cohort, we found that high LBM and low FM were associated with lower diabetes risk according to anthropometric equations. Based on the results of the non-linear analysis, we believed that it may be appropriate for Asian men to keep their LBM above 45.4 kg and their FM around 13.76 kg.
Collapse
Affiliation(s)
- Maobin Kuang
- Medical College of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Song Lu
- Medical College of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Ruijuan Yang
- Medical College of Nanchang University, Nanchang, Jiangxi, China
- Department of Endocrinology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Huaigang Chen
- Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Shuhua Zhang
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Guotai Sheng
- Jiangxi Provincial Geriatric Hospital, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Yang Zou
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| |
Collapse
|
52
|
Lempesis IG, Georgakopoulou VE. Implications of obesity and adiposopathy on respiratory infections; focus on emerging challenges. World J Clin Cases 2023; 11:2925-2933. [PMID: 37215426 PMCID: PMC10198078 DOI: 10.12998/wjcc.v11.i13.2925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
Obesity is characterized by excessive adipose tissue accumulation, which impacts physiological, metabolic, and immune functions. Several respiratory infections, including bacterial pneumonia, influenza, and coronavirus disease 2019, appear to be linked to unfavorable results in individuals with obesity. These may be attributed to the direct mechanical/physiological effects of excess body fat on the lungs’ function. Notably, adipose tissue dysfunction is associated with a low-grade chronic inflammatory status and hyperleptinemia, among other characteristics. These have all been linked to immune system dysfunction and weakened immune responses to these infections. A better understanding and clinical awareness of these risk factors are necessary for better disease outcomes.
Collapse
Affiliation(s)
- Ioannis G Lempesis
- Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, Athens 11527, Greece
| | | |
Collapse
|
53
|
Liu Y, Jin ZY, Wang JX, Wang D, Liu H, Li D, Zhu J, Luo ZB, Han SZ, Chang SY, Yang LH, Kang JD, Quan LH. Ginsenoside Rg1 activates brown adipose tissue to counteract obesity in high-fat diet-fed mice by regulating gut microbes and bile acid composition. Food Funct 2023; 14:4696-4705. [PMID: 37186251 DOI: 10.1039/d2fo03142f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Obesity is a global health problem strongly linked to gut microbes and their metabolites. In this study, ginsenoside Rg1 (Rg1) reduced lipid droplet size and hepatic lipid accumulation by activating uncoupling protein 1 expression in brown adipose tissue (BAT), which in turn inhibited high-fat diet (HFD)-induced weight gain in mice. Furthermore, the intestinal flora of mice was altered, the abundance of Lachnoclostridium, Streptococcus, Lactococcus, Enterococcus and Erysipelatoclostridium was upregulated, and the concentrations of fecal bile acids were altered, with cholic acid and taurocholic acid concentrations being significantly increased. In addition, the beneficial effects of Rg1 were eliminated in mice treated with a combination of antibiotics. In conclusion, these results suggest that Rg1 activates BAT to counteract obesity by regulating gut microbes and bile acid composition in HFD-fed mice.
Collapse
Affiliation(s)
- Yize Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Zheng-Yun Jin
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China.
| | - Jun-Xia Wang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China.
| | - Danqi Wang
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanji, 133002, China
| | - Hongye Liu
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China.
| | - Dongxu Li
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanji, 133002, China
| | - Jun Zhu
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanji, 133002, China
| | - Zhao-Bo Luo
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China.
| | - Sheng-Zhong Han
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China.
| | - Shuang-Yan Chang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China.
| | - Liu-Hui Yang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China.
| | - Jin-Dan Kang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China.
| | - Lin-Hu Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
54
|
Li G, Yu W, Yang H, Wang X, Ma T, Luo X. Relationship between Serum Ferritin Level and Dyslipidemia in US Adults Based on Data from the National Health and Nutrition Examination Surveys 2017 to 2020. Nutrients 2023; 15:1878. [PMID: 37111096 PMCID: PMC10143246 DOI: 10.3390/nu15081878] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Previous research has suggested that high serum ferritin (SF) levels may be associated with dyslipidemia. This study investigated the association between SF levels and dyslipidemia in American adults, which held relevance for both clinical and public health areas concerned with screening and prevention. Data from the pre-pandemic National Health and Nutrition Examination Surveys (NHANES), conducted between 2017 and 2020, were utilized for this analysis. Multivariate linear regression models were used to explore the correlation between lipid and SF concentrations, and the connection between SF and the four types of dyslipidemia was further assessed by using multivariate logistic regression analysis. Odds ratios (ORs; 95% CI) for dyslipidemia were calculated for quartiles of SF concentrations, with the lowest ferritin quartile as the reference. The final subjects consisted of 2676 participants (1290 males and 1386 females). ORs for dyslipidemia were the highest in the fourth quartile (Q4) of SF both in males (OR: 1.60, 95% CI: 1.12-2.28) and females (OR: 1.52, 95% CI: 1.07-2.17). The crude ORs (95% CI) for the risk of High TC and High LDL-C increased progressively in both genders. However, after adjusting for covariates, the trend of significance was only present in females. Finally, the association between total daily iron intake and the four types of dyslipidemia was examined, revealing that the risk of High TG in the third quartile of the total daily iron intake was 2.16 times greater in females (adjusted OR: 3.16, 95% CI: 1.38-7.23). SF concentrations were remarkably associated with dyslipidemia. In females, daily dietary iron intake was associated with High-TG dyslipidemia.
Collapse
Affiliation(s)
| | | | | | | | - Tianyou Ma
- Department of Nutrition and Food Safety, School of Public Health, Xi’an Jiaotong University, Xi’an 710061, China
| | - Xiaoqin Luo
- Department of Nutrition and Food Safety, School of Public Health, Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
55
|
Santillana N, Astudillo-Guerrero C, D’Espessailles A, Cruz G. White Adipose Tissue Dysfunction: Pathophysiology and Emergent Measurements. Nutrients 2023; 15:nu15071722. [PMID: 37049561 PMCID: PMC10096946 DOI: 10.3390/nu15071722] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
White adipose tissue (AT) dysfunction plays an important role in the development of cardiometabolic alterations associated with obesity. AT dysfunction is characterized by the loss of the expansion capacity of the AT, an increment in adipocyte hypertrophy, and changes in the secretion profile of adipose cells, associated with accumulation of macrophages and inflammation. Since not all people with an excess of adiposity develop comorbidities, it is necessary to find simple tools that can evidence AT dysfunction and allow the detection of those people with the potential to develop metabolic alterations. This review focuses on the current pathophysiological mechanisms of white AT dysfunction and emerging measurements to assess its functionality.
Collapse
Affiliation(s)
- Natalia Santillana
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 8380453, Chile
| | - Camila Astudillo-Guerrero
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Programa de Doctorado en Ciencias Mención Neurociencia, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Amanda D’Espessailles
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2820000, Chile
| | - Gonzalo Cruz
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| |
Collapse
|
56
|
Gasbarrino K, Hafiane A, Gianopoulos I, Zheng H, Mantzoros CS, Daskalopoulou SS. Relationship between circulating adipokines and cholesterol efflux in subjects with severe carotid atherosclerosis. Metabolism 2023; 140:155381. [PMID: 36566801 DOI: 10.1016/j.metabol.2022.155381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/02/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
AIMS Cholesterol efflux capacity (CEC) as a measure of high-density lipoprotein functionality is independently and inversely associated with increased risk of cardiovascular events and mortality, and advanced plaque morphology. Adipokines, adipose tissue-derived factors, can influence systemic lipoprotein metabolism, and participate in the regulation of vascular function and inflammation. We aimed to investigate the association between CEC and circulating adipokine levels (anti-inflammatory adiponectin, and pro-inflammatory chemerin and resistin) in subjects with severe carotid atherosclerotic disease and evaluate its impact on post-surgical outcomes. METHODS AND RESULTS This is a cross-sectional study with a 5-year follow-up component. Consecutive patients with severe carotid atherosclerosis scheduled for a carotid endarterectomy were recruited from hospital-based centres in Montreal, Canada (n = 285). Fasting blood samples were collected pre-operatively and used to measure plasma total and high-molecular weight (HMW) adiponectin, chemerin, and resistin, and to perform cholesterol efflux assays in J774 macrophage-like cells. Five-year post-surgery outcomes were obtained through medical chart review. Subjects had a mean age of 70.1 ± 9.4, were 67.0 % male, had various comorbidities (hypercholesterolemia [85.3 %], hypertension [83.5 %], type 2 diabetes [34.5 %], coronary artery disease [38.6 %]), and previously experienced cerebrovascular symptomatology (77.9 %). CEC was independently and positively associated with total and HMW adiponectin levels (ß [95 % confidence interval]; 0.216 [0.134-0.298] and 0.107 [0.037-0.176], respectively) but not with chemerin or resistin. Total adiponectin had the greatest association accounting for 8.3 % of the variance in CEC. Interaction regression models demonstrated a significant interaction between adiponectin and chemerin in increasing CEC. Notably, with each unit increase in CEC there was a 93.9 % decrease in the odds of having an ischemic cerebrovascular event 5 years post-surgery (0.061 [0.007-0.561]). CONCLUSIONS Our findings demonstrated circulating adiponectin to have a strong association with increased CEC in subjects with severe carotid atherosclerosis and high CEC to be associated with more favourable post-surgical outcomes. These findings reflect the importance of adipose tissue health in influencing CEC levels and atherosclerotic cardiovascular disease risk.
Collapse
Affiliation(s)
- Karina Gasbarrino
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, Research Institute of the McGill University Health Centre, McGill University Montreal, Canada
| | - Anouar Hafiane
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, Research Institute of the McGill University Health Centre, McGill University Montreal, Canada
| | - Ioanna Gianopoulos
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, Research Institute of the McGill University Health Centre, McGill University Montreal, Canada
| | - Huaien Zheng
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, Research Institute of the McGill University Health Centre, McGill University Montreal, Canada
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Section of Endocrinology, Diabetes and Metabolism, Boston VA Healthcare System, Boston, MA, United States
| | - Stella S Daskalopoulou
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, Research Institute of the McGill University Health Centre, McGill University Montreal, Canada; Division of Internal Medicine, Department of Medicine, Faculty of Medicine, McGill University Health Centre, McGill University Montreal, Canada.
| |
Collapse
|
57
|
Lempesis IG, Karlafti E, Papalexis P, Fotakopoulos G, Tarantinos K, Lekakis V, Papadakos SP, Cholongitas E, Georgakopoulou VE. COVID-19 and liver injury in individuals with obesity. World J Gastroenterol 2023; 29:908-916. [PMID: 36844135 PMCID: PMC9950870 DOI: 10.3748/wjg.v29.i6.908] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/18/2022] [Accepted: 01/09/2023] [Indexed: 02/10/2023] Open
Abstract
Coronavirus disease 2019 is an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 that manifests as a variety of clinical manifestations, including liver damage commonly detected by a hepatocellular pattern from liver function tests. Liver injury is associated with a worse prognosis overall. Conditions associated with the severity of the disease include obesity and cardiometabolic comorbidities, which are also associated with nonalcoholic fatty liver disease (NAFLD). The presence of NAFLD, similarly to obesity, is associated with an unfavourable impact on the coronavirus disease 2019 outcome. Individuals with these conditions could present with liver damage and elevated liver function tests due to direct viral cytotoxicity, systemic inflammation, ischemic or hypoxic liver damage or drug side effects. However, liver damage in the setting of NAFLD could also be attributed to a pre-existing chronic low-grade inflammation associated with surplus and dysfunctional adipose tissue in these individuals. Here we investigate the hypothesis that a pre-existing inflammatory status is exacerbated after severe acute respiratory syndrome coronavirus 2 infection, which embodies a second hit to the underestimated liver damage.
Collapse
Affiliation(s)
- Ioannis G Lempesis
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, United Kingdom
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht 616 6200, Netherlands
| | - Eleni Karlafti
- Department of Emergency, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki 546 21, Greece
| | - Petros Papalexis
- Unit of Endocrinology, First Department of Internal Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, Athens 11527, Greece
- Department of Biomedical Sciences, University of West Attica, Athens 12243, Greece
| | - George Fotakopoulos
- Department of Neurosurgery, General University Hospital of Larisa, Larisa 41221, Greece
| | | | - Vasileios Lekakis
- Department of Gastroenterology, Laiko General Hospital, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Stavros P Papadakos
- Department of Gastroenterology, Laiko General Hospital, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Evangelos Cholongitas
- First Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | | |
Collapse
|
58
|
Vliora M, Ravelli C, Grillo E, Corsini M, Flouris AD, Mitola S. The impact of adipokines on vascular networks in adipose tissue. Cytokine Growth Factor Rev 2023; 69:61-72. [PMID: 35953434 DOI: 10.1016/j.cytogfr.2022.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 02/07/2023]
Abstract
Adipose tissue (AT) is a highly active and plastic endocrine organ. It secretes numerous soluble molecules known as adipokines, which act locally to AT control the remodel and homeostasis or exert pleiotropic functions in different peripheral organs. Aberrant production or loss of certain adipokines contributes to AT dysfunction associated with metabolic disorders, including obesity. The AT plasticity is strictly related to tissue vascularization. Angiogenesis supports the AT expansion, while regression of blood vessels is associated with AT hypoxia, which in turn mediates tissue inflammation, fibrosis and metabolic dysfunction. Several adipokines can regulate endothelial cell functions and are endowed with either pro- or anti-angiogenic properties. Here we address the role of adipokines in the regulation of angiogenesis. A better understanding of the link between adipokines and angiogenesis will open the way for novel therapeutic approaches to treat obesity and metabolic diseases.
Collapse
Affiliation(s)
- Maria Vliora
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece; Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Michela Corsini
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Andreas D Flouris
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy.
| |
Collapse
|
59
|
Yan Z, Zong Y, Zhang C, Han Z, Wu L, Qin L, Liu T. Exploring the role of Tibetan medicinal formula Qishiwei Zhenzhu Pills (Ranasampel) against diabetes mellitus-linked cognitive impairment of db/db mice through serum pharmacochemistry and microarray data analysis. Front Aging Neurosci 2022; 14:1033128. [PMID: 36620773 PMCID: PMC9814129 DOI: 10.3389/fnagi.2022.1033128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background Diabetes cognitive impairment (DCI) is a common diabetic central nervous system disorder that severely affects the quality of life of patients. Qishiwei Zhenzhu Pills (Ranasampel) is a valuable Tibetan medicine formula with the ability to improve cerebral blood vessels, protect nerves and improve learning and memory, which has also been widely verified in clinical and basic research. Currently, the prevention and treatment of DCI are still in the exploratory research stage, and the use of Ranasampel will provide new ideas and insights for its treatment. Objective This study is to explore the absorbed components in serum derived from Ranasampel using serum pharmacochemistry, then identify the potential mechanism of Ranasampel for the treatment of DCI through bioinformatics and microarray data validation. Methods The UPLC-Q-Exactive MS/MS-based serum pharmacochemistry method was conducted to identify the main active components in serum containing Ranasampel. Then, these components were used to predict the possible biological targets of Ranasampel and explore the potential targets in treating DCI by overlapping with differentially expressed genes (DEGs) screened from Gene Expression Omnibus datasets. Afterward, the protein-protein interaction network, enrichment analyses, hub gene identification, and co-expression analysis were used to study the potential mechanism of Ranasampel. Particularly, the hub genes and co-expression transcription factors were further validated using hippocampal expression profiles of db/db mice treated with Ranasampel, while the Morris water-maze test and H&E staining were used to assess the spatial learning and memory behaviors and histopathological changes. Results Totally, 40 compounds derived from Ranasampel had been identified by serum sample analysis, and 477 genes related to these identified compounds in Ranasampel, 110 overlapping genes were collected by the intersection of Ranasampel target genes and DEGs. Further comprehensive analysis and verification emphasized that the mechanism of Ranasampel treatment of DCI may be related to the improvement of learning and memory function as well as insulin resistance, hyperglycemia-induced neuronal damage, and neuroinflammation. Conclusion This study provided useful strategies to explore the potential material basis for compound prescriptions such as Ranasampel. These hub genes and common pathways also provided new ideas for further study of therapeutic targets of DCI and the pharmacological mechanism of Ranasampel.
Collapse
Affiliation(s)
- Zhiyi Yan
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China,Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China
| | - Yonghua Zong
- Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China,Department of Tibetan Medicine, University of Tibetan Medicine, Lhasa, China
| | - Chengfei Zhang
- Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China
| | - Zekun Han
- Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China
| | - Lili Wu
- Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China
| | - Lingling Qin
- Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China
| | - Tonghua Liu
- Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China,*Correspondence: Tonghua Liu,
| |
Collapse
|
60
|
Bertoncini-Silva C, Zingg JM, Fassini PG, Suen VMM. Bioactive dietary components-Anti-obesity effects related to energy metabolism and inflammation. Biofactors 2022; 49:297-321. [PMID: 36468445 DOI: 10.1002/biof.1921] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/18/2022] [Indexed: 12/10/2022]
Abstract
Obesity is the result of the long-term energy imbalance between the excess calories consumed and the few calories expended. Reducing the intake of energy dense foods (fats, sugars), and strategies such as fasting and caloric restriction can promote body weight loss. Not only energy in terms of calories, but also the specific composition of the diet can affect the way the food is absorbed and how its energy is stored, used or dissipated. Recent research has shown that bioactive components of food, such as polyphenols and vitamins, can influence obesity and its pathologic complications such as insulin resistance, inflammation and metabolic syndrome. Individual micronutrients can influence lipid turnover but for long-term effects on weight stability, dietary patterns containing several micronutrients may be required. At the molecular level, these molecules modulate signaling and the expression of genes that are involved in the regulation of energy intake, lipid metabolism, adipogenesis into white, beige and brown adipose tissue, thermogenesis, lipotoxicity, adipo/cytokine synthesis, and inflammation. Higher concentrations of these molecules can be reached in the intestine, where they can modulate the composition and action of the microbiome. In this review, the molecular mechanisms by which bioactive compounds and vitamins modulate energy metabolism, inflammation and obesity are discussed.
Collapse
Affiliation(s)
- Caroline Bertoncini-Silva
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Priscila Giacomo Fassini
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Vivian Marques Miguel Suen
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
61
|
The catcher in the gut: Tirzepatide, a dual incretin analog for the treatment of type 2 diabetes mellitus and obesity. Metabol Open 2022; 16:100220. [DOI: 10.1016/j.metop.2022.100220] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/11/2022] Open
|
62
|
Corrêa CR, da Costa BGG, Silva KS, Shivappa N, Wirth MD, Hébert JR, Nunes EA. A higher energy-adjusted Dietary Inflammatory Index is positively associated with total and visceral body fat in young male adults. J Hum Nutr Diet 2022; 35:1136-1150. [PMID: 35377488 DOI: 10.1111/jhn.13012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 03/18/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND The energy-adjusted Dietary Inflammatory Index (E-DII™) has been associated with a high body mass index and markers of chronic diseases. Also, pro-inflammatory diets with a high E-DII have been positively associated with metabolic disturbances such as glucose intolerance and type II diabetes mellitus. However, it is unclear whether E-DII scores are positively associated with body fat percentage and visceral fat per se. This cross-sectional study aimed to evaluate whether the E-DII is associated with body fat content and metabolic health indicators in lean and obese young men. METHODS The present study was conducted on 59 participants, without comorbidities, not using tobacco, medication and nutritional supplements. Dietary data were obtained by 3-day food records to calculate E-DII scores based on 28 food parameters. Body composition was assessed by dual X-ray absorptiometry (DXA). Blood samples were taken to measure fasting glucose, insulin, triacylglycerols, total cholesterol, and low- and high-density lipoprotein cholesterol. An oral glucose tolerance test also was performed. Associations were determined by mixed-effects linear regression. RESULTS E-DII scores ranged from -3.48 to +3.10. Energy intake was similar across E-DII tertiles. After adjusting for covariates, the highest E-DII tertile was associated with increased body fat, visceral adipose tissue and waist circumference. There was no association between E-DII scores and glycaemic parameters. CONCLUSIONS In young participants, a dietary pattern with a higher E-DII (i.e., pro-inflammatory) score was associated with high body fat and markers of central adiposity assessed by DXA, regardless of body mass.
Collapse
Affiliation(s)
- Cinthia R Corrêa
- Health Sciences Center, Nutrition Graduate Program, Federal University of Santa Catarina, Florianópolis, SC, Brazil.,Department of Physiological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Bruno G G da Costa
- Sports Center, Physical Education Graduate Program, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Kelly S Silva
- Sports Center, Physical Education Graduate Program, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Nitin Shivappa
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA.,Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Michael D Wirth
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA.,Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA.,College of Nursing, University of South Carolina, Columbia, South Carolina, USA
| | - James R Hébert
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA.,Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Everson A Nunes
- Health Sciences Center, Nutrition Graduate Program, Federal University of Santa Catarina, Florianópolis, SC, Brazil.,Department of Physiological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
63
|
Hypoxia as a Double-Edged Sword to Combat Obesity and Comorbidities. Cells 2022; 11:cells11233735. [PMID: 36496995 PMCID: PMC9736735 DOI: 10.3390/cells11233735] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
The global epidemic of obesity is tightly associated with numerous comorbidities, such as type II diabetes, cardiovascular diseases and the metabolic syndrome. Among the key features of obesity, some studies have suggested the abnormal expansion of adipose-tissue-induced local endogenous hypoxic, while other studies indicated endogenous hyperoxia as the opposite trend. Endogenous hypoxic aggravates dysfunction in adipose tissue and stimulates secretion of inflammatory molecules, which contribute to obesity. In contrast, hypoxic exposure combined with training effectively generate exogenous hypoxic to reduce body weight and downregulate metabolic risks. The (patho)physiological effects in adipose tissue are distinct from those of endogenous hypoxic. We critically assess the latest advances on the molecular mediators of endogenous hypoxic that regulate the dysfunction in adipose tissue. Subsequently we propose potential therapeutic targets in adipose tissues and the small molecules that may reverse the detrimental effect of local endogenous hypoxic. More importantly, we discuss alterations of metabolic pathways in adipose tissue and the metabolic benefits brought by hypoxic exercise. In terms of therapeutic intervention, numerous approaches have been developed to treat obesity, nevertheless durability and safety remain the major concern. Thus, a combination of the therapies that suppress endogenous hypoxic with exercise plans that augment exogenous hypoxic may accelerate the development of more effective and durable medications to treat obesity and comorbidities.
Collapse
|
64
|
Cyclosorus terminans Extract Ameliorates Insulin Resistance and Non-Alcoholic Fatty Liver Disease (NAFLD) in High-Fat Diet (HFD)-Induced Obese Rats. Nutrients 2022; 14:nu14224895. [PMID: 36432581 PMCID: PMC9693870 DOI: 10.3390/nu14224895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Interruptins A and B exhibited anti-diabetic, anti-inflammatory, and anti-oxidative effects. This study aimed to investigate the therapeutic ability of extract enriched by interruptins A and B (EEI) from an edible fern Cyclosorus terminans on insulin resistance and non-alcoholic fatty liver disease (NAFLD) in a high-fat diet (HFD)-induced obese rats and elucidate their possible mechanisms. HFD-induced obese rats were treated with EEI for 2 weeks. Real-time polymerase chain reaction (PCR) was used to examine the molecular basis. We found that EEI supplementation significantly attenuated body and liver weight gain, glucose intolerance, and insulin resistance. Concurrently, EEI increased liver and soleus muscle glycogen storage and serum high-density lipoprotein (HDL) levels. EEI also attenuated NAFLD, as indicated by improving liver function. These effects were associated with enhanced expression of insulin signaling genes (Slc2a2, Slc2a4, Irs1 and Irs2) along with diminished expression of inflammatory genes (Il6 and Tnf). Furthermore, EEI led to the suppression of lipogenesis genes, Srebf1 and Fasn, together with an increase in fatty acid oxidation genes, Ppara and Cpt2, in the liver. These findings suggest that EEI could ameliorate HFD-induced insulin resistance and NAFLD via improving insulin signaling pathways, inflammatory response, lipogenesis, and fatty acid oxidation.
Collapse
|
65
|
Yang L, Wang H, Hao W, Li T, Fang H, Bai H, Yan P, Wei S. TGFβ3 regulates adipogenesis of bovine subcutaneous preadipocytes via typical Smad and atypical MAPK signaling pathways. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
66
|
Yuan Y, Sun W, Kong X. Relationship between metabolically healthy obesity and the development of hypertension: a nationwide population-based study. Diabetol Metab Syndr 2022; 14:150. [PMID: 36229850 PMCID: PMC9559015 DOI: 10.1186/s13098-022-00917-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Metabolically healthy obesity (MHO), has been recognized as a transient phenotype with few cardiometabolic diseases; however, little is known regarding the development of hypertension in subjects with an absence of cardiometabolic abnormalities and general obesity evaluated by body mass index (BMI) or abdominal obesity evaluated by waist circumference (WC). METHODS A total of 4764 participants were enrolled from the China Health and Nutrition Survey and followed up from 2009 to 2015, whose fasting blood samples were collected in 2009. Obesity was classified as abdominal obesity (WC ≥ 90 cm in men and ≥ 80 cm in women) and general obesity (BMI ≥ 25.0 kg/m2). Logistic regression was used to analyze the relationship between MHO and prehypertension (120 < SBP < 140 mmHg or 80 < DBP < 90 mmHg) and hypertension (SBP ≥ 140 or DBP ≥ 90 mmHg). The age- and sex-specific impacts were further analyzed. RESULTS There were 412 (37.9%) participants with prehypertension and 446 (41.0%) participants with hypertension and metabolically healthy abdominal obesity (MHAO). The participants with the MHAO phenotype had significantly higher risks of prehypertension [odds ratio (OR) = 1.89 (1.51-2.36), p < 0.001] and hypertension [OR = 2.58 (2.02-3.30), p < 0.001] than those metabolically healthy but without abdominal obesity. Similar associations were observed in the subjects with metabolically healthy general obesity (MHGO) phenotype, particularly those aged under 64 years. Men with the MHAO phenotype seemed to have higher risks of prehypertension [2.42 (1.52-3.86) in men vs. 1.76 (1.36-2.29) in women] and hypertension [3.80 (2.38-6.06) in men vs. 2.22 (1.64-3.00) in women] than women, when compared with those metabolically healthy but without abdominal obesity. CONCLUSION The MHO phenotype, regardless of the presence of general or abdominal obesity, showed a worse effect on the development of prehypertension and hypertension, particularly in young adults. Abdominal adiposity with a healthy metabolic state is significantly associated with incident hypertension in both men and women. These findings can guide the establishment of risk-stratified obesity treatments.
Collapse
Affiliation(s)
- Yue Yuan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
- Cardiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China.
- Cardiology, Nanjing Medical University, Nanjing, People's Republic of China.
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China.
- Cardiology, Nanjing Medical University, Nanjing, People's Republic of China.
| |
Collapse
|
67
|
Albar SA. Dietary Omega-6/Omega-3 Polyunsaturated Fatty Acid (PUFA) and Omega-3 Are Associated With General and Abdominal Obesity in Adults: UK National Diet and Nutritional Survey. Cureus 2022; 14:e30209. [PMID: 36381926 PMCID: PMC9650245 DOI: 10.7759/cureus.30209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Introduction The link between dietary fats and obesity is still controversial, as in Western diets the percentage of energy from total fat has decreased while the intake of omega-6 has increased, and omega-3 decreased. These changes have corresponded with a significant increase in the prevalence of obesity. Objective This study aims to examine the association of percentages of energy intake (EI) from omega-3 and omega-6 and Σω-6/Σω-3 ratio with BMI and two proxy indicators of central obesity (waist circumference [WC], waist-to-height ratio [WHtR]) and relative fat mass (RFM) estimator of whole-body fat. Design A representative sample of 3,733 adults was used from the UK National Diet and Nutrition Survey Rolling Programme (2008/09-2018/19). An estimated four-day food record was used to calculate dietary intake. Regression models were used to verify the association of omega-3 and omega-6 and quintiles of Σω-6/ Σω-3 ratio with general and abdominal obesity with adjustment for important confounders. A p-value of <0.05 represented statistical significance. Results The findings of this study show that the average ratio of Σω-6/Σω-3 was 5.5:1 ± 2. There was a significant association between the ratio of Σω-6/Σω-3 and BMI, WC, WHtR and RFM. However, the percentage of total EI from total fat was only significant with BMI, while the percentage of EI from omega-3 was negatively associated with WC, WHtR and RFM. No association was found between the percentage of EI from omega-6 and general or abdominal obesity. Conclusion The effect of Σω-6/Σω-3 may be largely driven by a deficiency in the intake of omega-3. Omega-6 and omega-3 should be listed as such in national surveys instead of polyunsaturated fatty acid (PUFA). Meeting recommended levels of omega-3 and lowering Σω-6/Σω-3 are imperative to establish healthier dietary patterns and prevent obesity.
Collapse
|
68
|
He J, Yang Y, Zhang F, Li Y, Li X, Pu X, He X, Zhang M, Yang X, Yu Q, Qi Y, Li X, Yu J. Effects of Poria cocos extract on metabolic dysfunction-associated fatty liver disease via the FXR/PPARα-SREBPs pathway. Front Pharmacol 2022; 13:1007274. [PMID: 36278226 PMCID: PMC9581278 DOI: 10.3389/fphar.2022.1007274] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the increase in the global prevalence of metabolic dysfunction-associated fatty liver disease (MAFLD), no approved drug currently exists for the disease. Poria cocos (Schw.) Wolf (P. cocos) is a medicinal mushroom belonging to a family of polyporaceae widely used in TCM clinics to protect the liver and treat obesity. However, its efficacy, practical components, and underlying mechanism against MAFLD are yet to be determined. In this study, we evaluated the effects of Poria cocos (P. cocos) ethanol extract (EPC) on hepatic dyslipidemia, steatosis, and inflammation by both bioinformatics analysis and MAFLD rats induced by HFD feeding. We found EPC treatment dramatically reduced lipid accumulation, inflammatory cell infiltration, and liver injury. EPC reduced serum TC, TG levels, and hepatic TG, TBA, and NEFA contents. UHPLC Q-Trap/MS examination of BA profiles in serum and feces showed that EPC increased fecal conjugated BAs, decreased free BAs, and improved BA metabolism in HFD-fed rats. Western blot and RT-qPCR analysis showed that EPC could activate hepatic FXR and PPARα expression and reduce CYP7A1 and SREBP-1c expression. Systemic pharmacology combined with molecular docking suggested that poricoic acid B and polyporenic acid C, the major active compounds in EPC, could ameliorate lipid homeostasis by activating the nuclear receptor PPARα. We further confirmed their inhibition effects of lipid droplet deposition in steatized L-02 hepatocytes. In summary, EPC alleviated HFD-induced MAFLD by regulating lipid homeostasis and BA metabolism via the FXR/PPARα-SREBPs signaling pathway. P. cocos triterpenes, such as poricoic acid B and polyporenic acid C, were the characteristic substances of P. cocos for the treatment of MAFLD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yan Qi
- *Correspondence: Yan Qi, ; Xuefang Li, ; Jie Yu,
| | - Xuefang Li
- *Correspondence: Yan Qi, ; Xuefang Li, ; Jie Yu,
| | - Jie Yu
- *Correspondence: Yan Qi, ; Xuefang Li, ; Jie Yu,
| |
Collapse
|
69
|
Decreased Epicardial CTRP3 mRNA Levels in Patients with Type 2 Diabetes Mellitus and Coronary Artery Disease Undergoing Elective Cardiac Surgery: A Possible Association with Coronary Atherosclerosis. Int J Mol Sci 2022; 23:ijms23179988. [PMID: 36077376 PMCID: PMC9456433 DOI: 10.3390/ijms23179988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: C1q TNF-related protein 3 (CTRP3) is an adipokine with anti-inflammatory and cardioprotective properties. In our study, we explored changes in serum CTRP3 and its gene expression in epicardial (EAT) and subcutaneous (SAT) adipose tissue in patients with and without coronary artery disease (CAD) and type 2 diabetes mellitus (T2DM) undergoing elective cardiac surgery. (2) Methods: SAT, EAT, and blood samples were collected at the start and end of surgery from 34 patients: (i) 11 without CAD or T2DM, (ii) 14 with CAD and without T2DM, and (iii) 9 with both CAD and T2DM. mRNA levels of CTRP3 were assessed by quantitative reverse transcription PCR. Circulating levels of CTRP3 and other factors were measured using ELISA and Luminex Multiplex commercial kits. (3) Results: Baseline plasma levels of TNF-α and IL6 did not differ among the groups and increased at the end of surgery. Baseline circulating levels of CTRP3 did not differ among the groups and decreased after surgery. In contrast, baseline CTRP3 mRNA levels in EAT were significantly decreased in CAD/T2DM group, while no differences were found for TNF-α and IL6 gene expression. (4) Conclusions: Our data suggest that decreased EAT mRNA levels of CTRP3 could contribute to higher risk of atherosclerosis in patients with CAD and T2DM.
Collapse
|
70
|
Hany M, Demerdash HM, Ahmed AAE, Agayby ASS, Ghaballa M, Ibrahim M, Maged P, Torensma B. microRNA Profiling and the Effect on Metabolic Biomarkers and Weight Loss after Laparoscopic Sleeve Gastrectomy. JOURNAL OF BARIATRIC SURGERY 2022; 1:88-96. [DOI: 10.4103/jbs.jbs_8_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
Background:
Epigenetic changes after bariatric surgery are of increasing interest; we evaluated the levels of two circulating microRNAs (miRNA-222 and miRNA-146a) before and after the laparoscopic sleeve gastrectomy (LSG) and the effect of weight loss on the levels of metabolic biomarkers.
Materials and Methods:
We prospectively evaluated patients pre- and 12 months post-LSG for percent excess weight loss (%EWL), miRNAs levels, metabolic biomarkers (leptin, ghrelin, peptide YY, and glucagon peptide-1 [GLP-1]) levels from August 2019 to September 2021.
Results:
Significant differences were observed in the miRNA146a-3p (median: 0.64 (0.012-2.68) vs. 1.07 (0.1-3.6); P = 0.019) and miRNA222-5p (median 1.80 (0.1–3.61) vs. 1.19 (0.1-3.68); P = 0.003) levels before and after (12 months) LSG; fasting leptin, ghrelin, insulin, total cholesterol, high- and low-density lipoproteins, fasting blood sugar (FBS), and triglyceride levels also showed significant differences. Significant changes were observed in postprandial values of glucagon-like peptide l (GLP-1) (P = 0.0001) and peptide YY (P = 0.0006) 12 months after LSG. Homeostatic model assessment of insulin resistance (IR) was significantly correlated with %EWL, miRNA146a, and miRNA222-5p (P = 0.002). Postoperatively measured miR146a-39 and miRNA222-5p showed significant coefficient of determination R
2 of 0.184 (P = 0.008) and 0.259, P = 0.0007 toward %EWL, respectively. Furthermore, significant correlations of miRNA146a were observed with FBS and IR.
Conclusions:
LSG-mediated weight loss affected the plasma levels of miR146a and miR222-5p. Due to the simultaneous decrease of ghrelin and increase of postprandial hormones (peptide YY and GLP-1), medical problems in patients with obesity were reduced. This study identified miRNAs as the new markers in the treatment, diagnosis, and therapeutic direction of patients with obesity.
Collapse
|
71
|
Of mice and men: Considerations on adipose tissue physiology in animal models of obesity and human studies. Metabol Open 2022; 15:100208. [PMID: 36092796 PMCID: PMC9460138 DOI: 10.1016/j.metop.2022.100208] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 12/26/2022] Open
Abstract
The ever-increasing burden of obesity demands a better pathophysiological understanding, especially regarding adipose tissue pathophysiology. Animal models of obesity are of great importance in investigating potential mechanisms and implications of obesity. Many issues should be considered while interpreting the preclinical results as anatomical and pathophysiological differences exist among species. Importantly, the natural history of obesity development differs considerably. An important example of conflicting results among preclinical models and human physiological studies is that of adipose tissue oxygenation, where rodent models almost unanimously have shown the presence of hypoxia in the adipose tissue of obese animals while human studies have yielded conflicting results to date. Other issues which require further clarification before generalizing preclinical data in humans include adipose tissue browning, endocrine function and fibrosis. The aim of this mini-review is to synopsize similarities and differences between rodent models and humans, which should be taken into consideration in obesity studies.
Collapse
|
72
|
Cao W, Xu Y, Shen Y, Wang Y, Ma X, Bao Y. Associations between sex hormones and metabolic-associated fatty liver disease in a middle-aged and elderly community. Endocr J 2022; 69:1007-1014. [PMID: 35321990 DOI: 10.1507/endocrj.ej21-0559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) was proposed by an international expert consensus to replace non-alcoholic fatty liver disease (NAFLD) in 2020. Previous studies have shown that sex hormones are strongly linked to NAFLD development. This study aims to explore whether sex hormones are associated with MAFLD and liver fat content (LFC) in a middle-aged and elderly community. The study included 732 subjects aged 50-80 years enrolled from communities. MAFLD was diagnosed using the 2020 International Expert Consensus. LFC was calculated using parameters from abdominal ultrasound images. Serum estradiol (E2), total testosterone (TT), sex hormone-binding globulin (SHBG), FSH, and LH were measured by chemiluminescent microparticle immunoassay. MAFLD was diagnosed in 107/304 (35.2%) men and 154/428 (35.2%) women. After adjustments for confounding factors, logistic regression analysis showed that SHBG was negatively correlated with MAFLD in men (OR, 0.95 [0.93-0.97], p < 0.001). In women, SHBG and FSH were negatively correlated with MAFLD (OR, 0.95 [0.94-0.97], p < 0.001; OR, 0.97 [0.96-0.98], p < 0.001). Multivariate linear regression analysis showed that SHBG was a negative factor for LFC in both men (standardized β = -0.188, p < 0.001) and women (standardized β = -0.184, p < 0.001). FSH was a negative factor for LFC in women (standardized β = -0.082, p = 0.046). SHBG was negatively correlated with MAFLD in middle-aged and elderly men and women. Moreover, FSH was negatively correlated, and bioactive testosterone was positively correlated with MAFLD in women. These findings suggest a relationship between sex hormones and MAFLD.
Collapse
Affiliation(s)
- Weijie Cao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, 600 Yishan road, Shanghai 200233, China
| | - Yiting Xu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, 600 Yishan road, Shanghai 200233, China
| | - Yun Shen
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, 600 Yishan road, Shanghai 200233, China
| | - Yufei Wang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, 600 Yishan road, Shanghai 200233, China
| | - Xiaojing Ma
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, 600 Yishan road, Shanghai 200233, China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, 600 Yishan road, Shanghai 200233, China
| |
Collapse
|
73
|
Cornejo PJ, Vergoni B, Ohanna M, Angot B, Gonzalez T, Jager J, Tanti JF, Cormont M. The Stress-Responsive microRNA-34a Alters Insulin Signaling and Actions in Adipocytes through Induction of the Tyrosine Phosphatase PTP1B. Cells 2022; 11:cells11162581. [PMID: 36010657 PMCID: PMC9406349 DOI: 10.3390/cells11162581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/18/2022] Open
Abstract
Metabolic stresses alter the signaling and actions of insulin in adipocytes during obesity, but the molecular links remain incompletely understood. Members of the microRNA-34 (miR-34 family play a pivotal role in stress response, and previous studies showed an upregulation of miR-34a in adipose tissue during obesity. Here, we identified miR-34a as a new mediator of adipocyte insulin resistance. We confirmed the upregulation of miR-34a in adipose tissues of obese mice, which was observed in the adipocyte fraction exclusively. Overexpression of miR-34a in 3T3-L1 adipocytes or in fat pads of lean mice markedly reduced Akt activation by insulin and the insulin-induced glucose transport. This was accompanied by a decreased expression of VAMP2, a target of miR-34a, and an increased expression of the tyrosine phosphatase PTP1B. Importantly, PTP1B silencing prevented the inhibitory effect of miR-34a on insulin signaling. Mechanistically, miR-34a decreased the NAD+ level through inhibition of Naprt and Nampt, resulting in an inhibition of Sirtuin-1, which promoted an upregulation of PTP1B. Furthermore, the mRNA expression of Nampt and Naprt was decreased in adipose tissue of obese mice. Collectively, our results identify miR-34a as a new inhibitor of insulin signaling in adipocytes, providing a potential pathway to target to fight insulin resistance.
Collapse
Affiliation(s)
- Pierre-Jean Cornejo
- Université Côte d’Azur, Inserm, C3M, Team “Molecular and Cellular Physiopathology of Obesity and Diabetes”, 06204 Nice, France
| | - Bastien Vergoni
- Université Côte d’Azur, Inserm, C3M, Team “Molecular and Cellular Physiopathology of Obesity and Diabetes”, 06204 Nice, France
| | - Mickaël Ohanna
- Université Côte d’Azur, Inserm, C3M, “Team Microenvironnement, Signalisation et Cancer”, 06204 Nice, France
| | - Brice Angot
- Université Côte d’Azur, Inserm, C3M, Team “Molecular and Cellular Physiopathology of Obesity and Diabetes”, 06204 Nice, France
| | - Teresa Gonzalez
- Université Côte d’Azur, Inserm, C3M, Team “Molecular and Cellular Physiopathology of Obesity and Diabetes”, 06204 Nice, France
- Aix Marseille Université, Inserm, INRAE, C2VN, 13385 Marseille, France
| | - Jennifer Jager
- Université Côte d’Azur, Inserm, C3M, Team “Molecular and Cellular Physiopathology of Obesity and Diabetes”, 06204 Nice, France
| | - Jean-François Tanti
- Université Côte d’Azur, Inserm, C3M, Team “Molecular and Cellular Physiopathology of Obesity and Diabetes”, 06204 Nice, France
| | - Mireille Cormont
- Université Côte d’Azur, Inserm, C3M, Team “Molecular and Cellular Physiopathology of Obesity and Diabetes”, 06204 Nice, France
- Correspondence: ; Tel.: +33-4-89-15-38-31
| |
Collapse
|
74
|
Contribution of specific ceramides to obesity-associated metabolic diseases. Cell Mol Life Sci 2022; 79:395. [PMID: 35789435 PMCID: PMC9252958 DOI: 10.1007/s00018-022-04401-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022]
Abstract
Ceramides are a heterogeneous group of bioactive membrane sphingolipids that play specialized regulatory roles in cellular metabolism depending on their characteristic fatty acyl chain lengths and subcellular distribution. As obesity progresses, certain ceramide molecular species accumulate in metabolic tissues and cause cell-type-specific lipotoxic reactions that disrupt metabolic homeostasis and lead to the development of cardiometabolic diseases. Several mechanisms for ceramide action have been inferred from studies in vitro, but only recently have we begun to better understand the acyl chain length specificity of ceramide-mediated signaling in the context of physiology and disease in vivo. New discoveries show that specific ceramides affect various metabolic pathways and that global or tissue-specific reduction in selected ceramide pools in obese rodents is sufficient to improve metabolic health. Here, we review the tissue-specific regulation and functions of ceramides in obesity, thus highlighting the emerging concept of selectively inhibiting production or action of ceramides with specific acyl chain lengths as novel therapeutic strategies to ameliorate obesity-associated diseases.
Collapse
|
75
|
Lü K, Song X, Zhang P, Zhao W, Zhang N, Yang F, Guan W, Liu J, Huang H, Ho CT, Di R, Zhao H. Effects of Siraitia grosvenorii extracts on high fat diet-induced obese mice:a comparison with artificial sweetener aspartame. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
76
|
Kraynak M, Willging MM, Kuehlmann AL, Kapoor AA, Flowers MT, Colman RJ, Levine JE, Abbott DH. Aromatase Inhibition Eliminates Sexual Receptivity Without Enhancing Weight Gain in Ovariectomized Marmoset Monkeys. J Endocr Soc 2022; 6:bvac063. [PMID: 35592515 PMCID: PMC9113444 DOI: 10.1210/jendso/bvac063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 11/19/2022] Open
Abstract
Context Ovarian estradiol supports female sexual behavior and metabolic function. While ovariectomy (OVX) in rodents abolishes sexual behavior and enables obesity, OVX in nonhuman primates decreases, but does not abolish, sexual behavior, and inconsistently alters weight gain. Objective We hypothesize that extra-ovarian estradiol provides key support for both functions, and to test this idea, we employed aromatase inhibition to eliminate extra-ovarian estradiol biosynthesis and diet-induced obesity to enhance weight gain. Methods Thirteen adult female marmosets were OVX and received (1) estradiol-containing capsules and daily oral treatments of vehicle (E2; n = 5); empty capsules and daily oral treatments of either (2) vehicle (VEH, 1 mL/kg, n = 4), or (3) letrozole (LET, 1 mg/kg, n = 4). Results After 7 months, we observed robust sexual receptivity in E2, intermediate frequencies in VEH, and virtually none in LET females (P = .04). By contrast, few rejections of male mounts were observed in E2, intermediate frequencies in VEH, and high frequencies in LET females (P = .04). Receptive head turns were consistently observed in E2, but not in VEH and LET females. LET females, alone, exhibited robust aggressive rejection of males. VEH and LET females demonstrated increased % body weight gain (P = .01). Relative estradiol levels in peripheral serum were E2 >>> VEH > LET, while those in hypothalamus ranked E2 = VEH > LET, confirming inhibition of local hypothalamic estradiol synthesis by letrozole. Conclusion Our findings provide the first evidence for extra-ovarian estradiol contributing to female sexual behavior in a nonhuman primate, and prompt speculation that extra-ovarian estradiol, and in particular neuroestrogens, may similarly regulate sexual motivation in other primates, including humans.
Collapse
Affiliation(s)
- Marissa Kraynak
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
- Endocrinology-Reproductive Physiology Training Program, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Molly M Willging
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
- Endocrinology-Reproductive Physiology Training Program, University of Wisconsin-Madison, Madison, WI 53715, USA
- Center for Women’s Health, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Alex L Kuehlmann
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Amita A Kapoor
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Matthew T Flowers
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Ricki J Colman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
- Endocrinology-Reproductive Physiology Training Program, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Jon E Levine
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
- Endocrinology-Reproductive Physiology Training Program, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - David H Abbott
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
- Endocrinology-Reproductive Physiology Training Program, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53715, USA
| |
Collapse
|
77
|
Schmitz K, Turnwald EM, Kretschmer T, Janoschek R, Bae-Gartz I, Voßbrecher K, Kammerer MD, Köninger A, Gellhaus A, Handwerk M, Wohlfarth M, Gründemann D, Hucklenbruch-Rother E, Dötsch J, Appel S. Metformin Prevents Key Mechanisms of Obesity-Related Complications in Visceral White Adipose Tissue of Obese Pregnant Mice. Nutrients 2022; 14:nu14112288. [PMID: 35684088 PMCID: PMC9182976 DOI: 10.3390/nu14112288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022] Open
Abstract
With the gaining prevalence of obesity, related risks during pregnancy are rising. Inflammation and oxidative stress are considered key mechanisms arising in white adipose tissue (WAT) sparking obesity-associated complications and diseases. The established anti-diabetic drug metformin reduces both on a systemic level, but only little is known about such effects on WAT. Because inhibiting these mechanisms in WAT might prevent obesity-related adverse effects, we investigated metformin treatment during pregnancy using a mouse model of diet-induced maternal obesity. After mating, obese mice were randomised to metformin administration. On gestational day G15.5, phenotypic data were collected and perigonadal WAT (pgWAT) morphology and proteome were examined. Metformin treatment reduced weight gain and visceral fat accumulation. We detected downregulation of perilipin-1 as a correlate and observed indications of recovering respiratory capacity and adipocyte metabolism under metformin treatment. By regulating four newly discovered potential adipokines (alpha-1 antitrypsin, Apoa4, Lrg1 and Selenbp1), metformin could mediate anti-diabetic, anti-inflammatory and oxidative stress-modulating effects on local and systemic levels. Our study provides an insight into obesity-specific proteome alterations and shows novel modulating effects of metformin in pgWAT of obese dams. Accordingly, metformin therapy appears suitable to prevent some of obesity’s key mechanisms in WAT.
Collapse
Affiliation(s)
- Katrin Schmitz
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Eva-Maria Turnwald
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Tobias Kretschmer
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
- UFZ-Helmholtz Centre for Environmental Research, Department Environmental Immunology, Permoserstraße 15, 04318 Leipzig, Germany
| | - Ruth Janoschek
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Inga Bae-Gartz
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Kathrin Voßbrecher
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Merlin D. Kammerer
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Angela Köninger
- Department of Obstetrics and Gynecology, University of Regensburg, St. Hedwigs Clinic of the Order of St. John, Steinmetzstrasse 1-3, 93049 Regensburg, Germany;
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany;
| | - Marion Handwerk
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Maria Wohlfarth
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Dirk Gründemann
- Department of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Gleueler Straße 24, 50931 Cologne, Germany;
| | - Eva Hucklenbruch-Rother
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Jörg Dötsch
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Sarah Appel
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
- Correspondence: ; Tel.: +49-221-478-96890
| |
Collapse
|
78
|
Reyes-Barrera J, Medina-Urrutia AX, Jorge-Galarza E, Osorio-Alonso H, Arellano-Buendía AS, Olvera-Mayorga G, Sánchez-Ortiz NA, Torres-Tamayo M, Tovar Palacio AR, Torre-Villalvazo I, Juárez-Rojas JG. Uric acid is associated with morpho-functional adipose tissue markers in apparently healthy subjects. Clin Chim Acta 2022; 531:368-374. [DOI: 10.1016/j.cca.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022]
|
79
|
Vacurova E, Trnovska J, Svoboda P, Skop V, Novosadova V, Reguera DP, Petrezselyová S, Piavaux B, Endaya B, Spoutil F, Zudova D, Stursa J, Melcova M, Bielcikova Z, Werner L, Prochazka J, Sedlacek R, Huttl M, Hubackova SS, Haluzik M, Neuzil J. Mitochondrially targeted tamoxifen alleviates markers of obesity and type 2 diabetes mellitus in mice. Nat Commun 2022; 13:1866. [PMID: 35387987 PMCID: PMC8987092 DOI: 10.1038/s41467-022-29486-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/17/2022] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes mellitus represents a major health problem with increasing prevalence worldwide. Limited efficacy of current therapies has prompted a search for novel therapeutic options. Here we show that treatment of pre-diabetic mice with mitochondrially targeted tamoxifen, a potential anti-cancer agent with senolytic activity, improves glucose tolerance and reduces body weight with most pronounced reduction of visceral adipose tissue due to reduced food intake, suppressed adipogenesis and elimination of senescent cells. Glucose-lowering effect of mitochondrially targeted tamoxifen is linked to improvement of type 2 diabetes mellitus-related hormones profile and is accompanied by reduced lipid accumulation in liver. Lower senescent cell burden in various tissues, as well as its inhibitory effect on pre-adipocyte differentiation, results in lower level of circulating inflammatory mediators that typically enhance metabolic dysfunction. Targeting senescence with mitochodrially targeted tamoxifen thus represents an approach to the treatment of type 2 diabetes mellitus and its related comorbidities, promising a complex impact on senescence-related pathologies in aging population of patients with type 2 diabetes mellitus with potential translation into the clinic.
Collapse
Affiliation(s)
- Eliska Vacurova
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Jaroslava Trnovska
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petr Svoboda
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Vojtech Skop
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, 20892, USA
| | - Vendula Novosadova
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague-West, Czech Republic
| | - David Pajuelo Reguera
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Silvia Petrezselyová
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Benoit Piavaux
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Berwini Endaya
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Frantisek Spoutil
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Dagmar Zudova
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Jan Stursa
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Magdalena Melcova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | | | - Lukas Werner
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Jan Prochazka
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Radislav Sedlacek
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Martina Huttl
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | - Martin Haluzik
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic.
- School of Pharmacy and Medical Science, Griffith University, Southport, QLD, Australia.
| |
Collapse
|
80
|
Preventing White Adipocyte Browning during Differentiation In Vitro: The Effect of Differentiation Protocols on Metabolic and Mitochondrial Phenotypes. Stem Cells Int 2022; 2022:3308194. [PMID: 35422865 PMCID: PMC9005291 DOI: 10.1155/2022/3308194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/01/2022] [Indexed: 11/29/2022] Open
Abstract
Mitochondrial dysfunction in white adipose tissue is strongly associated with obesity and its metabolic complications, which are important health challenges worldwide. Human adipose-derived stromal/stem cells (hASCs) are a promising tool to investigate the underlying mechanisms of such mitochondrial dysfunction and to subsequently provide knowledge for the development of treatments for obesity-related pathologies. A substantial obstacle in using hASCs is that the key compounds for adipogenic differentiation in vitro increase mitochondrial uncoupling, biogenesis, and activity, which are the signature features of brown adipocytes, thus altering the white adipocyte phenotype towards brown-like cells. Additionally, commonly used protocols for hASC adipogenic differentiation exhibit high variation in their composition of media, and a systematic comparison of their effect on mitochondria is missing. Here, we compared the five widely used adipogenic differentiation protocols for their effect on metabolic and mitochondrial phenotypes to identify a protocol that enables in vitro differentiation of white adipocytes and can more faithfully recapitulate the white adipocyte phenotype observed in human adipose tissue. We developed a workflow that included functional assays and morphological analysis of mitochondria and lipid droplets. We observed that triiodothyronine- or indomethacin-containing media and commercially available adipogenic media induced browning during in vitro differentiation of white adipocytes. However, the differentiation protocol containing 1 μM of the peroxisome proliferator-activated receptor gamma (PPARγ) agonist rosiglitazone prevented the browning effect and would be proposed for adipogenic differentiation protocol for hASCs to induce a white adipocyte phenotype. Preserving the white adipocyte phenotype in vitro is a crucial step for the study of obesity and associated metabolic diseases, adipose tissue pathologies, such as lipodystrophies, possible therapeutic compounds, and basic adipose tissue physiology.
Collapse
|
81
|
Selected Organ and Endocrine Complications According to BMI and the Metabolic Category of Obesity: A Single Endocrine Center Study. Nutrients 2022; 14:nu14061307. [PMID: 35334964 PMCID: PMC8954480 DOI: 10.3390/nu14061307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
Obesity is a chronic and complex disease associated with metabolic, organ and endocrine complications. In the study, we analyzed a group of 105 patients suffering from obesity without any other previously recognized serious disorders who had been referred to a single endocrine center. The study aimed to assess the prevalence of selected organ and endocrine complications by subdividing the group, firstly according to body mass index (BMI) and secondly with regard to metabolic syndrome (MetS), pre-MetS and the metabolically healthy obesity (MHO) category. We have observed that in our groups, the prevalence of hyperlipidemia, hypertension, asthma, obstructive sleep apnea (OSA) depended on BMI category, whereas the incidence of hyperlipidemia, hypertension, OSA, hypothyroidism, non-alcoholic fatty liver disease, prediabetes, and type 2 diabetes was related to the metabolic category. We concluded that the distribution of particular organ and endocrine complications change significantly with increased BMI and with the shift from MHO to pre-MetS and MetS. Thus, to determine the risk of organ and endocrine complications more effectively, BMI and metabolic status should be assessed during the examination of patients with obesity.
Collapse
|
82
|
Suau R, Pardina E, Domènech E, Lorén V, Manyé J. The Complex Relationship Between Microbiota, Immune Response and Creeping Fat in Crohn's Disease. J Crohns Colitis 2022; 16:472-489. [PMID: 34528668 DOI: 10.1093/ecco-jcc/jjab159] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the last decade, there has been growing interest in the pathological involvement of hypertrophic mesenteric fat attached to the serosa of the inflamed intestinal segments involved in Crohn's disease [CD], known as creeping fat. In spite of its protective nature, creeping fat harbours an aberrant inflammatory activity which, in an already inflamed intestine, may explain why creeping fat is associated with a greater severity of CD. The transmural inflammation of CD facilitates the interaction of mesenteric fat with translocated intestinal microorganisms, contributing to activation of the immune response. This may be not the only way in which microorganisms alter the homeostasis of this fatty tissue: intestinal dysbiosis may also impair xenobiotic metabolism. All these CD-related alterations have a functional impact on nuclear receptors such as the farnesoid X receptor or the peroxisome proliferator-activated receptor γ, which are implicated in regulation of the immune response, adipogenesis and the maintenance of barrier function, as well as on creeping fat production of inflammatory-associated cells such as adipokines. The dysfunction of creeping fat worsens the inflammatory course of CD and may favour intestinal fibrosis and fistulizing complications. However, our current knowledge of the pathophysiology and pathogenic role of creeping fat is controversial and a better understanding might provide new therapeutic targets for CD. Here we aim to review and update the key cellular and molecular alterations involved in this inflammatory process that link the pathological components of CD with the development of creeping fat.
Collapse
Affiliation(s)
- Roger Suau
- IBD Research Group, 'Germans Trias i Pujol' Research Institute (IGTP), Badalona (Catalonia), Spain.,Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
| | - Eva Pardina
- Biochemistry and Molecular Biomedicine Department, University of Barcelona, Barcelona (Catalonia), Spain
| | - Eugeni Domènech
- IBD Research Group, 'Germans Trias i Pujol' Research Institute (IGTP), Badalona (Catalonia), Spain.,Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain.,Gastroenterology Department, 'Germans Trias i Pujol' University Hospital, Badalona (Catalonia), Spain
| | - Violeta Lorén
- IBD Research Group, 'Germans Trias i Pujol' Research Institute (IGTP), Badalona (Catalonia), Spain.,Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
| | - Josep Manyé
- IBD Research Group, 'Germans Trias i Pujol' Research Institute (IGTP), Badalona (Catalonia), Spain.,Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
| |
Collapse
|
83
|
Fitch AK, Bays HE. Obesity definition, diagnosis, bias, standard operating procedures (SOPs), and telehealth: An Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) 2022. OBESITY PILLARS (ONLINE) 2022; 1:100004. [PMID: 37990702 PMCID: PMC10661988 DOI: 10.1016/j.obpill.2021.100004] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/23/2023]
Abstract
Background The Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) regarding definition, diagnosis, bias, standard operating procedures (SOPs) and telehealth is intended to provide clinicians an overview of obesity medicine and provide basic organizational tools towards establishing, directing, managing, and maintaining an obesity medical practice. Methods This CPS is based upon published scientific citations, clinical perspectives of OMA authors, and peer review by Obesity Medicine Association leadership. Results OMA has defined obesity as: "A chronic, progressive, relapsing, and treatable multi-factorial, neurobehavioral disease, wherein an increase in body fat promotes adipose tissue dysfunction and abnormal fat mass physical forces, resulting in adverse metabolic, biomechanical, and psychosocial health consequences." While body mass index may be sufficiently diagnostic for populations and many patients, accurate diagnosis of adiposity in an individual may require anthropometric assessments beyond body weight alone (e.g., waist circumference, percent body fat, and android/visceral fat). Obesity complications can be categorized as "sick fat disease" (adiposopathy) and/or "fat mass disease." Obesity complications predominantly of fat mass origins include sleep apnea and orthopedic conditions. Obesity complications due to adiposopathic endocrinopathies and/or immunopathies include cardiovascular disease, cancer, elevated blood sugar, elevated blood pressure, dyslipidemia, fatty liver, and alterations in sex hormones in both males (i.e., hypogonadism) and females (i.e., polycystic ovary syndrome). Obesity treatment begins with proactive steps to avoid weight bias, including patient-appropriate language, office equipment, and supplies. To help manage obesity and its complications, this CPS provides a practical template for an obesity medicine practice, creation of standard operating procedures, and incorporation of the OMA "ADAPT" method in telehealth (Assessment, Diagnosis, Advice, Prognosis, and Treatment). Conclusions The OMA CPS regarding "Obesity Definition, Diagnosis, Bias, Standard Operating Procedures (SOPs), and Telehealth" is one in a series of OMA CPSs designed to assist clinicians care for patients with the disease of obesity.
Collapse
Affiliation(s)
- Angela K. Fitch
- Massachusetts General Hospital Weight Center, Harvard Medical School, 50 Staniford Street Suite 430, Boston, MA, 02114, USA
| | - Harold E. Bays
- Louisville Metabolic and Atherosclerosis Research Center, University of Louisville School of Medicine, 3288 Illinois Avenue, Louisville, KY, 40213, USA
| |
Collapse
|
84
|
Whole Body Ip6k1 Deletion Protects Mice from Age-Induced Weight Gain, Insulin Resistance and Metabolic Dysfunction. Int J Mol Sci 2022; 23:ijms23042059. [PMID: 35216174 PMCID: PMC8878859 DOI: 10.3390/ijms23042059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022] Open
Abstract
(1) Background: We previously demonstrated that disruption of IP6K1 improves metabolism, protecting mice from high-fat diet-induced obesity, insulin resistance, and non-alcoholic fatty liver disease and steatohepatitis. Age-induced metabolic dysfunction is a major risk factor for metabolic diseases. The involvement of IP6K1 in this process is unknown. (2) Methods: Here, we compared body and fat mass, insulin sensitivity, energy expenditure and serum-, adipose tissue- and liver-metabolic parameters of chow-fed, aged, wild type (aWT) and whole body Ip6k1 knockout (aKO) mice. (3) Results: IP6K1 was upregulated in the adipose tissue and liver of aWT mice compared to young WT mice. Moreover, Ip6k1 deletion blocked age-induced increase in body- and fat-weight and insulin resistance in mice. aKO mice oxidized carbohydrates more efficiently. The knockouts displayed reduced levels of serum insulin, triglycerides, and non-esterified fatty acids. Ip6k1 deletion partly protected age-induced decline of the thermogenic uncoupling protein UCP1 in inguinal white adipose tissue. Targets inhibited by IP6K1 activity such as the insulin sensitivity- and energy expenditure-inducing protein kinases, protein kinase B (PKB/Akt) and AMP-activated protein kinase (AMPK), were activated in the adipose tissue and liver of aKO mice. (4) Conclusions: Ip6k1 deletion maintains healthy metabolism in aging and thus, targeting this kinase may delay the development of age-induced metabolic dysfunction.
Collapse
|
85
|
Díaz-Chamorro S, Garrido-Jiménez S, Barrera-López JF, Mateos-Quirós CM, Cumplido-Laso G, Lorenzo MJ, Román ÁC, Bernardo E, Sabio G, Carvajal-González JM, Centeno F. Title: p38δ Regulates IL6 Expression Modulating ERK Phosphorylation in Preadipocytes. Front Cell Dev Biol 2022; 9:708844. [PMID: 35111744 PMCID: PMC8802314 DOI: 10.3389/fcell.2021.708844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
IL6 is an essential cytokine in metabolism regulation and for intercommunication among different organs and tissues. IL6 produced by different tissues has different functions and therefore it is very important to understand the mechanism of its expression in adipose tissue. In this work we demonstrated that IL6 expression in mouse preadipocytes, like in human, is partially dependent on Wnt5a and JNK. Using mouse preadipocytes lacking each one of the p38 SAPK family members, we have shown that IL6 expression is also p38γ and p38δ dependent. In fact, the lack of some of these two kinases increases IL6 expression without altering that of Wnt5a. Moreover, we show that the absence of p38δ promotes greater ERK1/2 phosphorylation in a MEK1/2 independent manner, and that this increased ERK1/2 phosphorylation state is contributing to the higher IL6 expression in p38δ−/- preadipocytes. These results suggest a new crosstalk between two MAPK signaling pathway, p38δ and ERK1/2, where p38δ modulates the phosphorylation state of ERK1/2.
Collapse
Affiliation(s)
- Selene Díaz-Chamorro
- Universidad de Extremadura, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Badajoz, Spain
| | - Sergio Garrido-Jiménez
- Universidad de Extremadura, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Badajoz, Spain
| | - Juan Francisco Barrera-López
- Universidad de Extremadura, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Badajoz, Spain
| | - Clara María Mateos-Quirós
- Universidad de Extremadura, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Badajoz, Spain
| | - Guadalupe Cumplido-Laso
- Universidad de Extremadura, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Badajoz, Spain
| | - María Jesús Lorenzo
- Universidad de Extremadura, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Cáceres, Spain
| | - Ángel Carlos Román
- Universidad de Extremadura, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Badajoz, Spain
| | - Edgar Bernardo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - José María Carvajal-González
- Universidad de Extremadura, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Badajoz, Spain
| | - Francisco Centeno
- Universidad de Extremadura, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Badajoz, Spain
| |
Collapse
|
86
|
Shinohara I, Kataoka T, Mifune Y, Inui A, Sakata R, Nishimoto H, Yamaura K, Mukohara S, Yoshikawa T, Kato T, Furukawa T, Matsushita T, Kuroda R. Influence of adiponectin and inflammatory cytokines in fatty degenerative atrophic muscle. Sci Rep 2022; 12:1557. [PMID: 35091650 PMCID: PMC8799651 DOI: 10.1038/s41598-022-05608-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/12/2022] [Indexed: 11/29/2022] Open
Abstract
Tendon rupture and nerve injury cause fatty infiltration of the skeletal muscle, and the adipokines secreted from the infiltrated adipocytes are known to contribute to chronic inflammation. Therefore, in this study, we evaluated the effects of the adipokines on chronic inflammation using a rat sciatic nerve-crushed injury model. In vitro and in vivo experiments showed that the expression of adiponectin was decreased (0.3-fold) and the expression of Il6 (~ 3.8-fold) and Tnf (~ 6.2-fold) was increased in the nerve-crushed group compared to that in the control group. It was also observed that the administration of an adiponectin receptor agonist decreased the levels of Il6 (0.38-fold) and Tnf (0.28-fold) and improved cellular viability (~ 1.9-fold) in vitro. Additionally, in the fatty infiltrated skeletal muscle, low adiponectin levels were found to be associated with chronic inflammation. Therefore, the local administration of adiponectin receptor agonists would prevent chronic inflammation.
Collapse
Affiliation(s)
- Issei Shinohara
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Takeshi Kataoka
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Yutaka Mifune
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan.
| | - Atsuyuki Inui
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Ryosuke Sakata
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Hanako Nishimoto
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Kohei Yamaura
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Shintaro Mukohara
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Tomoya Yoshikawa
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Tatsuo Kato
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Takahiro Furukawa
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Takehiko Matsushita
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| |
Collapse
|
87
|
Xiao JY, Zhang WS, Jiang CQ, Jin YL, Zhu F, Cheng KK, Lam TH, Xu L. Obesity indicators as mediators of association between daytime napping and type 2 diabetes mellitus: the Guangzhou Biobank Cohort Study. BMC Public Health 2022; 22:56. [PMID: 35012516 PMCID: PMC8744231 DOI: 10.1186/s12889-021-12451-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE To examine the mediating effect of obesity indicators on the association between daytime napping and type 2 diabetes mellitus (T2DM) qualitatively and quantitatively using baseline data from the Guangzhou Biobank Cohort Study. METHODS Twenty-nine thousand three hundred fifty-five participants aged 50+ years were included in this cross-sectional study. Mediation analysis was used to assess the mediating effect of body mass index (BMI), waist circumference (WC), hip circumference (HC), waist-to-hip ratio (WHR) and waist-to-height ratio (WHtR) on the association between daytime napping and T2DM after adjustment for sex, age, education, occupation, smoking status, alcohol use and physical activity. RESULTS The mean (standard deviation) age of participants was 61.5 ( 7.1) years. The prevalence of T2DM and daytime napping was 12.5% and 65.2%, respectively. After adjustment for potential confounders, WC, WHR and WHtR showed partial mediating effects on the association between daytime napping and T2DM, with the proportion (95% confidence interval) of mediation effect being 10.17% (8.14-14.43%), 14.91% (11.95-21.24%) and 9.36% (7.49-13.29%), respectively. No mediating effect of BMI or HC on the association between daytime napping and T2DM was found. CONCLUSIONS Our results showed significant mediating effects of WC, WHR and WHtR on the association between daytime napping and T2DM, suggesting that waist circumference management could be important in daytime nappers.
Collapse
Affiliation(s)
- Jing Yi Xiao
- School of Public Health, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, Guangdong Province, China
| | - Wei Sen Zhang
- Guangzhou Twelfth People's Hospital, Guangzhou, 510620, China
| | | | - Ya Li Jin
- Guangzhou Twelfth People's Hospital, Guangzhou, 510620, China
| | - Feng Zhu
- Guangzhou Twelfth People's Hospital, Guangzhou, 510620, China
| | - Kar Keung Cheng
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Tai Hing Lam
- School of Public Health, the University of Hong Kong, Hong Kong, Hong Kong
| | - Lin Xu
- School of Public Health, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, Guangdong Province, China. .,School of Public Health, the University of Hong Kong, Hong Kong, Hong Kong.
| |
Collapse
|
88
|
Blüher M, Müller-Wieland D. Editorial: Adipose tissue dysfunction. Front Endocrinol (Lausanne) 2022; 13:999188. [PMID: 36060968 PMCID: PMC9428705 DOI: 10.3389/fendo.2022.999188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital, Leipzig, Germany
- Medical Department III – Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- *Correspondence: Matthias Blüher, ; Dirk Müller-Wieland,
| | - Dirk Müller-Wieland
- Department of Cardiology, Angiology and Intensive Care Medicine, University Hospital Aachen, Aachen, Germany
- *Correspondence: Matthias Blüher, ; Dirk Müller-Wieland,
| |
Collapse
|
89
|
Nankam PAN, Cornely M, Klöting N, Blüher M. Is subcutaneous adipose tissue expansion in people living with lipedema healthier and reflected by circulating parameters? Front Endocrinol (Lausanne) 2022; 13:1000094. [PMID: 36387874 PMCID: PMC9659629 DOI: 10.3389/fendo.2022.1000094] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
Abstract
Lipedema may be considered a model for healthy expandability of subcutaneous adipose tissue (SAT). This condition is characterized by the disproportional and symmetrical SAT accumulation in the lower-body parts and extremities, avoiding the abdominal area. There are no circulating biomarkers facilitating the diagnosis of lipedema. We tested the hypothesis that women living with lipedema present a distinct pattern of circulating parameters compared to age- and BMI-matched women. In 26 women (Age 48.3 ± 13.9 years, BMI 32.6 ± 5.8 kg/m2; lipedema group: n=13; control group: n=13), we assessed circulating parameters of glucose and lipid metabolism, inflammation, oxidative stress, sex hormones and a proteomics panel. We find that women with lipedema have better glucose metabolism regulation represented by lower HbA1c (5.55 ± 0.62%) compared to controls (6.73 ± 0.85%; p<0.001); and higher adiponectin levels (lipedema: 4.69 ± 1.99 mmol/l; control: 3.28 ± 1.00 mmol/l; p=0.038). Despite normal glycemic parameters, women with lipedema have significantly higher levels of total cholesterol (5.84 ± 0.70 mmol/L vs 4.55 ± 0.77 mmol/L in control; p<0.001), LDL-C (3.38 ± 0.68 mmol/L vs 2.38 ± 0.66 mmol/L in control; p=0.002), as well as higher circulating inflammation (top 6 based on p-values: TNFSF14, CASP8, EN-RAGE, EIF4EBP1, ADA, MCP-1) and oxidative stress markers (malondialdehyde, superoxide dismutase and catalase). Our findings suggest that the expected association between activation of inflammatory and oxidative stress pathways and impaired glucose metabolism are counterbalanced by protective factors in lipedema.
Collapse
Affiliation(s)
- Pamela A. Nono Nankam
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
- *Correspondence: Pamela A. Nono Nankam, ; Matthias Blüher,
| | - Manuel Cornely
- Basic Scientific Research of Lymphological Diseases and Patient-oriented Improvement of Diagnosis and Treatment Ly.Search GmbH, Cologne, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
- Medical Department III – Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- *Correspondence: Pamela A. Nono Nankam, ; Matthias Blüher,
| |
Collapse
|
90
|
PINHO ARYANEC, BURGEIRO ANA, PEREIRA MARIAJOÃO, CARVALHO EUGENIA. Drug-induced metabolic alterations in adipose tissue - with an emphasis in epicardial adipose tissue. AN ACAD BRAS CIENC 2022. [DOI: 10.1590/0001-3765202220201819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2025] Open
Affiliation(s)
| | | | | | - EUGENIA CARVALHO
- University of Coimbra, Portugal; University of Coimbra, Portugal; APDP-Portuguese Diabetes Association, Portugal
| |
Collapse
|
91
|
Kovačević S, Brkljačić J, Vojnović Milutinović D, Gligorovska L, Bursać B, Elaković I, Djordjevic A. Fructose Induces Visceral Adipose Tissue Inflammation and Insulin Resistance Even Without Development of Obesity in Adult Female but Not in Male Rats. Front Nutr 2021; 8:749328. [PMID: 34869524 PMCID: PMC8632624 DOI: 10.3389/fnut.2021.749328] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Introduction: Obesity and related metabolic disturbances are frequently related to modern lifestyle and are characterized by excessive fructose intake. Visceral adipose tissue (VAT) inflammation has a central role in the development of insulin resistance, type 2 diabetes (T2D), and metabolic syndrome. Since sex-related differences in susceptibility and progression of metabolic disorders are not yet fully understood, our aim was to examine inflammation and insulin signaling in VAT of fructose-fed female and male adult rats. Methods: We analyzed effects of 9-week 10% fructose-enriched diet on energy intake, VAT mass and histology, and systemic insulin sensitivity. VAT insulin signaling and markers of VAT inflammation, and antioxidative defense status were also evaluated. Results: The fructose diet had no effect on VAT mass and systemic insulin signaling in the female and male rats, while it raised plasma uric acid, increased PPARγ level in the VAT, and initiated the development of a distinctive population of small adipocytes in the females. Also, adipose tissue insulin resistance, evidenced by increased PTP1B and insulin receptor substrate 1 (IRS1) inhibitory phosphorylation and decreased Akt activity, was detected. In addition, fructose stimulated the nuclear accumulation of NFκB, increased expression of proinflammatory cytokines (IL-1β, IL-6, and TNFα), and protein level of macrophage marker F4/80, superoxide dismutase 1, and glutathione reductase. In contrast to the females, the fructose diet had no effect on plasma uric acid and VAT inflammation in the male rats, but less prominent alterations in VAT insulin signaling were observed. Conclusion: Even though dietary fructose did not elicit changes in energy intake and led to obesity in the females, it initiated the proliferation of small-sized adipocytes capable of storing fats further. In contrast to the males, this state of VAT was accompanied with enhanced inflammation, which most likely contributed to the development of insulin resistance. The observed distinction could possibly originate from sex-related differences in uric acid metabolism. Our results suggest that VAT inflammation could precede obesity and start even before the measurable increase in VAT mass, making it a silent risk factor for the development of T2D. Our results emphasize that adipose tissue dysfunction, rather than its simple enlargement, could significantly contribute to the onset and development of obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Sanja Kovačević
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena Brkljačić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Danijela Vojnović Milutinović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ljupka Gligorovska
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Biljana Bursać
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivana Elaković
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
92
|
Ha EE, Quartuccia GI, Ling R, Xue C, Karikari RA, Hernandez-Ono A, Hu KY, Matias CV, Imam R, Cui J, Pellegata NS, Herzig S, Georgiadi A, Soni RK, Bauer RC. Adipocyte-specific tribbles pseudokinase 1 regulates plasma adiponectin and plasma lipids in mice. Mol Metab 2021; 56:101412. [PMID: 34890852 PMCID: PMC8749272 DOI: 10.1016/j.molmet.2021.101412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/16/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Multiple genome-wide association studies (GWAS) have identified SNPs in the 8q24 locus near TRIB1 that are significantly associated with plasma lipids and other markers of cardiometabolic health, and prior studies have revealed the roles of hepatic and myeloid Trib1 in plasma lipid regulation and atherosclerosis. The same 8q24 SNPs are additionally associated with plasma adiponectin levels in humans, implicating TRIB1 in adipocyte biology. Here, we hypothesize that TRIB1 in adipose tissue regulates plasma adiponectin, lipids, and metabolic health. METHODS We investigate the metabolic phenotype of adipocyte-specific Trib1 knockout mice (Trib1_ASKO) fed on chow and high-fat diet (HFD). Through secretomics of adipose tissue explants and RNA-seq of adipocytes and livers from these mice, we further investigate the mechanism of TRIB1 in adipose tissue. RESULTS Trib1_ASKO mice have an improved metabolic phenotype with increased plasma adiponectin levels, improved glucose tolerance, and decreased plasma lipids. Trib1_ASKO adipocytes have increased adiponectin production and secretion independent of the known TRIB1 function of regulating proteasomal degradation. RNA-seq analysis of adipocytes and livers from Trib1_ASKO mice indicates that alterations in adipocyte function underlie the observed plasma lipid changes. Adipose tissue explant secretomics further reveals that Trib1_ASKO adipose tissue has decreased ANGPTL4 production, and we demonstrate an accompanying increase in the lipoprotein lipase (LPL) activity that likely underlies the triglyceride phenotype. CONCLUSIONS This study shows that adipocyte Trib1 regulates multiple aspects of metabolic health, confirming previously observed genetic associations in humans and shedding light on the further mechanisms by which TRIB1 regulates plasma lipids and metabolic health.
Collapse
Affiliation(s)
- Elizabeth E Ha
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Gabriella I Quartuccia
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Ruifeng Ling
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Chenyi Xue
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Rhoda A Karikari
- Institute for Diabetes and Cancer, Helmholtz Centre, Munich, Germany
| | - Antonio Hernandez-Ono
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Krista Y Hu
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Caio V Matias
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Rami Imam
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Jian Cui
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | | | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Centre, Munich, Germany
| | | | - Rajesh K Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Robert C Bauer
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
93
|
Reyes-Barrera J, Sainz-Escárrega VH, Medina-Urritia AX, Jorge-Galarza E, Osorio-Alonso H, Torres-Tamayo M, Leal-Escobar G, Posadas-Romero C, Torre-Villalvazo I, Juárez-Rojas JG. Dysfunctional adiposity index as a marker of adipose tissue morpho-functional abnormalities and metabolic disorders in apparently healthy subjects. Adipocyte 2021; 10:142-152. [PMID: 33722154 PMCID: PMC7971216 DOI: 10.1080/21623945.2021.1893452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Compared to body mass index, waist circumference (WC), and adiposity measurements, adipose tissue (AT) morpho-functionality evaluations are better predictors of cardiometabolic abnormalities (CA). The present study establishes a dysfunctional adiposity index (DAI) as an early marker of CA based on adipocytes morpho-functional abnormalities. DAI was established in 340 subjects without cardiovascular risk factors selected from a cross-sectional study (n=1600). Then, DAI was calculated in 36 healthy subjects who underwent subcutaneous AT biopsy. The correlation of DAI with adipocyte morphology (size/number) and functionality (adiponectin/leptin ratio) was analyzed. The DAI cut-off point was identified and its independent association with CA was determined in 1418 subjects from the cross-sectional study. The constant parameters to calculate the DAI were [WC/[22.79+[2.68*BMI]]]*[triglycerides (TG, mmol/L)/1.37]*[1.19/high density lipoprotein-cholesterol (HDL-C, mmol/L)] for males, and [WC/[24.02+[2.37*BMI]]]*[TG(mmol/L)/1.32]*[1.43/HDL-C(mmol/L)] for females. DAI correlated with adipocytes mean area, adipocyte number and adiponectin/leptin ratio. DAI ≥1.065 was independently associated with diabetes, non-alcoholic fatty liver disease, subclinical atherosclerosis, and hypertension. The present study highlights that DAI is associated with early CA independently of adiposity and other risk factors. Since DAI is obtained using accessible parameters, it can be easily incorporated into clinical practice for early identification of AT abnormalities in apparently healthy subjects.
Collapse
Affiliation(s)
- Juan Reyes-Barrera
- Department of Endocrinology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, México
| | - Victor H. Sainz-Escárrega
- Department of Cardiothoracic Surgery, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, México
| | - Aida X. Medina-Urritia
- Department of Endocrinology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, México
| | - Esteban Jorge-Galarza
- Department of Endocrinology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, México
| | - Horacio Osorio-Alonso
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, México
| | - Margarita Torres-Tamayo
- Department of Endocrinology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, México
| | - Gabriela Leal-Escobar
- Department of Nephrology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, México
| | - Carlos Posadas-Romero
- Department of Endocrinology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, México
| | - Ivan Torre-Villalvazo
- Department of Nutrition Physiology, Instituto Nacional De Ciencias Médicas Y Nutrición Salvador Zubirán, Mexico City, México
| | - Juan G. Juárez-Rojas
- Department of Endocrinology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, México
| |
Collapse
|
94
|
Wiśniewski O, Rajczewski A, Szumigała A, Gibas-Dorna M. Diet-Induced Adipocyte Browning. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/143164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
95
|
Rahimi GRM, Yousefabadi HA, Niyazi A, Rahimi NM, Alikhajeh Y. Effects of Lifestyle Intervention on Inflammatory Markers and Waist Circumference in Overweight/Obese Adults With Metabolic Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Biol Res Nurs 2021; 24:94-105. [PMID: 34702086 DOI: 10.1177/10998004211044754] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Physical inactivity and an imbalanced diet could lead to some cardio metabolic risk factors. OBJECTIVE The objective of this meta-analysis was to investigate the effects of lifestyle modification on inflammatory indicators and waist circumference (WC) in overweight/obese subjects with metabolic syndrome (MS). DATA SOURCES A systematic search was conducted in PubMed, CINAHL, MEDLINE, Cochrane, Google Scholar, and Web of Science. STUDY SELECTION The selection criteria were randomized controlled trials (RCTs) investigating the effects of lifestyle interventions on inflammation and WC from inception to 20 December 2020. The weighted mean difference (WMD) and 95% confidence interval (CI) between interventions were computed using a random or fixed-effects model. RESULTS Six RCTs (including 1246 MS patients who had, on average, overweight/obesity) met all inclusion criteria. Interventions lasted 6 to 12 months (2-5 sessions per week). Lifestyle intervention significantly reduced C-reactive protein (WMD: -0.52 mg/ml, 95% CI: -0.72, -0.33), IL-6 (WMD: -0.50 pg/ml, 95% CI: -0.56, -0.45), and increased adiponectin (WMD: 0.81 µg/ml, 95% CI, 0.64, 0.98). Moreover, lifestyle modification significantly decreased WC (WMD: -3.12 cm, 95% CI, -4.61, -1.62). CONCLUSION Our findings provide evidence that lifestyle alterations, including physical activity and diet, can lead to significant improvement in abdominal obesity, measured by WC and some inflammation markers among overweight/obese individuals with MS. Further high-quality research is needed to clarify the mechanisms underlying the effect of such interventions on this population's inflammatory markers.
Collapse
Affiliation(s)
| | | | - Arghavan Niyazi
- Sanabad Institution of Higher Education Mashhad, Mashhad, Iran
| | | | - Yaser Alikhajeh
- Department of Physical Education and Sports Sciences, Faculty of Educational Science and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
96
|
Ain QU, Sarfraz M, Prasesti GK, Dewi TI, Kurniati NF. Confounders in Identification and Analysis of Inflammatory Biomarkers in Cardiovascular Diseases. Biomolecules 2021; 11:biom11101464. [PMID: 34680097 PMCID: PMC8533132 DOI: 10.3390/biom11101464] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 02/08/2023] Open
Abstract
Proinflammatory biomarkers have been increasingly used in epidemiologic and intervention studies over the past decades to evaluate and identify an association of systemic inflammation with cardiovascular diseases. Although there is a strong correlation between the elevated level of inflammatory biomarkers and the pathology of various cardiovascular diseases, the mechanisms of the underlying cause are unclear. Identification of pro-inflammatory biomarkers such as cytokines, chemokines, acute phase proteins, and other soluble immune factors can help in the early diagnosis of disease. The presence of certain confounding factors such as variations in age, sex, socio-economic status, body mass index, medication and other substance use, and medical illness, as well as inconsistencies in methodological practices such as sample collection, assaying, and data cleaning and transformation, may contribute to variations in results. The purpose of the review is to identify and summarize the effect of demographic factors, epidemiological factors, medication use, and analytical and pre-analytical factors with a panel of inflammatory biomarkers CRP, IL-1b, IL-6, TNFa, and the soluble TNF receptors on the concentration of these inflammatory biomarkers in serum.
Collapse
Affiliation(s)
- Qurrat Ul Ain
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung 40132, Indonesia; (Q.U.A.); (G.K.P.)
| | - Mehak Sarfraz
- Department of Pharmacy, Comsats University Islamabad Abbottabad Campus, Abbottabad 22060, Pakistan;
| | - Gayuk Kalih Prasesti
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung 40132, Indonesia; (Q.U.A.); (G.K.P.)
| | - Triwedya Indra Dewi
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung 40124, Indonesia;
| | - Neng Fisheri Kurniati
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung 40132, Indonesia; (Q.U.A.); (G.K.P.)
- Correspondence: ; +62-853-1582-6154
| |
Collapse
|
97
|
Martinelli I, Tomassoni D, Roy P, Amenta F, Tayebati SK. Altered Brain Cholinergic and Synaptic Markers in Obese Zucker Rats. Cells 2021; 10:cells10102528. [PMID: 34685507 PMCID: PMC8534069 DOI: 10.3390/cells10102528] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/27/2022] Open
Abstract
The association between obesity and loss of cognitive performance has been recognized. Although there are data regarding the metabolic alterations in obese conditions and the development of neuroinflammation, no clear evidence concerning obesity-related cholinergic and synaptic impairments in the frontal cortex and hippocampus has been reported yet. Here, we investigate different cholinergic and synaptic markers in 12-, 16-, and 20-week-old obese Zucker rats (OZRs) compared with lean littermate rats (LZRs), using immunochemical and immunohistochemical analysis. Consequently, OZRs showed body weight gain, hypertension, and dysmetabolism. In 20-week-old OZRs, the reduction of vesicular acetylcholine transporter (VAChT) and alpha7 nicotinic acetylcholine receptors (α7nAChR) occurred both in the frontal cortex and in the hippocampus, suggesting a cognitive dysfunction due to obesity and aging. Among the muscarinic receptors analyzed, the level of expression of type 1 (mAChR1) was lower in the hippocampus of the older OZRs. Finally, we showed synaptic dysfunctions in OZRs, with a reduction of synaptophysin (SYP) and synaptic vesicle glycoprotein 2B (SV2B) in 20-week-old OZRs, both in the frontal cortex and in the hippocampus. Taken together, our data suggest specific alterations of cholinergic and synaptic markers that can be targeted to prevent cognitive deficits related to obesity and aging.
Collapse
Affiliation(s)
- Ilenia Martinelli
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (I.M.); (F.A.)
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (D.T.); (P.R.)
| | - Proshanta Roy
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (D.T.); (P.R.)
| | - Francesco Amenta
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (I.M.); (F.A.)
| | - Seyed Khosrow Tayebati
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (I.M.); (F.A.)
- Correspondence:
| |
Collapse
|
98
|
Czerwińska M, Czarzasta K, Cudnoch-Jędrzejewska A. New Peptides as Potential Players in the Crosstalk Between the Brain and Obesity, Metabolic and Cardiovascular Diseases. Front Physiol 2021; 12:692642. [PMID: 34497533 PMCID: PMC8419452 DOI: 10.3389/fphys.2021.692642] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/03/2021] [Indexed: 01/09/2023] Open
Abstract
According to the World Health Organization report published in 2016, 650 million people worldwide suffer from obesity, almost three times more than in 1975. Obesity is defined as excessive fat accumulation which may impair health with non-communicable diseases such as diabetes, cardiovascular diseases (hypertension, coronary artery disease, stroke), and some cancers. Despite medical advances, cardiovascular complications are still the leading causes of death arising from obesity. Excessive fat accumulation is caused by the imbalance between energy intake and expenditure. The pathogenesis of this process is complex and not fully understood, but current research is focused on the role of the complex crosstalk between the central nervous system (CNS), neuroendocrine and immune system including the autonomic nervous system, adipose tissue, digestive and cardiovascular systems. Additionally, special attention has been paid to newly discovered substances: neuropeptide 26RFa, preptin, and adropin. It was shown that the above peptides are synthesized both in numerous structures of the CNS and in many peripheral organs and tissues, such as the heart, adipose tissue, and the gastrointestinal tract. Recently, particular attention has been paid to the role of the presented peptides in the pathogenesis of obesity, metabolic and cardiovascular system diseases. This review summarizes the role of newly investigated peptides in the crosstalk between brain and peripheral organs in the pathogenesis of obesity, metabolic, and cardiovascular diseases.
Collapse
|
99
|
Nono Nankam PA, Blüher M. Retinol-binding protein 4 in obesity and metabolic dysfunctions. Mol Cell Endocrinol 2021; 531:111312. [PMID: 33957191 DOI: 10.1016/j.mce.2021.111312] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022]
Abstract
Excessive increased adipose tissue mass in obesity is associated with numerous co-morbid disorders including increased risk of type 2 diabetes, fatty liver disease, hypertension, dyslipidemia, cardiovascular diseases, dementia, airway disease and some cancers. The causal mechanisms explaining these associations are not fully understood. Adipose tissue is an active endocrine organ that secretes many adipokines, cytokines and releases metabolites. These biomolecules referred to as adipocytokines play a significant role in the regulation of whole-body energy homeostasis and metabolism by influencing and altering target tissues function. Understanding the mechanisms of adipocytokine actions represents a hot topic in obesity research. Among several secreted bioactive signalling molecules from adipose tissue and liver, retinol-binding protein 4 (RBP4) has been associated with systemic insulin resistance, dyslipidemia, type 2 diabetes and other metabolic diseases. Here, we aim to review and discuss the current knowledge on RBP4 with a focus on its role in the pathogenesis of obesity comorbid diseases.
Collapse
Affiliation(s)
- Pamela A Nono Nankam
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Germany.
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Germany; Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Germany
| |
Collapse
|
100
|
Expression Pattern of Leptin and Its Receptors in Endometrioid Endometrial Cancer. J Clin Med 2021; 10:jcm10132787. [PMID: 34202922 PMCID: PMC8268664 DOI: 10.3390/jcm10132787] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022] Open
Abstract
The identification of novel molecular markers and the development of cancer treatment strategies are very important as cancer incidence is still very high. Obesity can contribute to cancer progression, including endometrial cancer. Adipocytes secrete leptin, which, when at a high level, is associated with an increased risk of cancer. The aim of this study was to determine the expression profile of leptin-related genes in the endometrial tissue samples and whole blood of patients. The study material included tissue samples and whole blood collected from 30 patients with endometrial cancer and 30 without cancer. Microarrays were used to assess the expression profile of leptin-related genes. Then, the expression of leptin (LEP), leptin receptor (LEPR), leptin receptor overlapping transcript (LEPROT), and leptin receptor overlapping transcript-like 1 (LEPROTL1) was determined by the Real-Time Quantitative Reverse Transcription Reaction (RT-qPCR). The serum leptin concentration was evaluated using Enzyme-linked immunosorbent assay (ELISA). Leptin and its receptors were overexpressed both at the mRNA and protein levels. Furthermore, there were strong positive correlations between leptin levels and patient Body Mass Index (BMI). Elevated levels of leptin and its receptors may potentially contribute to the progression of endometrial cancer. These observations may be useful in designing endometrial cancer treatment strategies.
Collapse
|