51
|
Chen M, Ren YX, Xie Y, Lu WL. Gene regulations and delivery vectors for
treatment of cancer. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2020. [DOI: 10.1007/s40005-020-00484-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
52
|
Zwergel C, Fioravanti R, Stazi G, Sarno F, Battistelli C, Romanelli A, Nebbioso A, Mendes E, Paulo A, Strippoli R, Tripodi M, Pechalrieu D, Arimondo PB, De Luca T, Del Bufalo D, Trisciuoglio D, Altucci L, Valente S, Mai A. Novel Quinoline Compounds Active in Cancer Cells through Coupled DNA Methyltransferase Inhibition and Degradation. Cancers (Basel) 2020; 12:E447. [PMID: 32075099 PMCID: PMC7073229 DOI: 10.3390/cancers12020447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/31/2020] [Accepted: 02/12/2020] [Indexed: 01/20/2023] Open
Abstract
DNA methyltransferases (DNMTs) play a relevant role in epigenetic control of cancer cell survival and proliferation. Since only two DNMT inhibitors (azacitidine and decitabine) have been approved to date for the treatment of hematological malignancies, the development of novel potent and specific inhibitors is urgent. Here we describe the design, synthesis, and biological evaluation of a new series of compounds acting at the same time as DNMTs (mainly DNMT3A) inhibitors and degraders. Tested against leukemic and solid cancer cell lines, 2a-c and 4a-c (the last only for leukemias) displayed up to submicromolar antiproliferative activities. In HCT116 cells, such compounds induced EGFP gene expression in a promoter demethylation assay, confirming their demethylating activity in cells. In the same cell line, 2b and 4c chosen as representative samples induced DNMT1 and -3A protein degradation, suggesting for these compounds a double mechanism of DNMT3A inhibition and DNMT protein degradation.
Collapse
Affiliation(s)
- Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy; (C.Z.); (R.F.); (G.S.); (A.R.)
- Department of Precision Medicine, University of Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138 Naples, Italy; (F.S.); (A.N.); (L.A.)
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy; (C.Z.); (R.F.); (G.S.); (A.R.)
| | - Giulia Stazi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy; (C.Z.); (R.F.); (G.S.); (A.R.)
| | - Federica Sarno
- Department of Precision Medicine, University of Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138 Naples, Italy; (F.S.); (A.N.); (L.A.)
| | - Cecilia Battistelli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy (R.S.); (M.T.)
| | - Annalisa Romanelli
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy; (C.Z.); (R.F.); (G.S.); (A.R.)
| | - Angela Nebbioso
- Department of Precision Medicine, University of Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138 Naples, Italy; (F.S.); (A.N.); (L.A.)
| | - Eduarda Mendes
- Research Institute for Medicines, Medicinal Chemistry Group, Faculty of Pharmacy, Universidade de Lisboa, 1649 003 Lisbon, Portugal; (E.M.); (A.P.)
| | - Alexandra Paulo
- Research Institute for Medicines, Medicinal Chemistry Group, Faculty of Pharmacy, Universidade de Lisboa, 1649 003 Lisbon, Portugal; (E.M.); (A.P.)
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy (R.S.); (M.T.)
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Marco Tripodi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy (R.S.); (M.T.)
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
- Istituto Pasteur- Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza Università di Roma, 00185 Rome, Italy
| | - Dany Pechalrieu
- ETaC CNRS FRE3600, LMBE, 118 route de Narbonne, 31062 Toulouse, France; (D.P.); (P.B.A.)
| | - Paola B. Arimondo
- ETaC CNRS FRE3600, LMBE, 118 route de Narbonne, 31062 Toulouse, France; (D.P.); (P.B.A.)
- Epigenetic Chemical Biology, Institute Pasteur, CNRS UMR3523, 28 rue du Docteur Roux, 75724 Paris, France
| | - Teresa De Luca
- Preclinical Models and New Therapeutic Agents Unit, IRCCS-Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy; (T.D.L.); (D.D.B.)
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS-Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy; (T.D.L.); (D.D.B.)
| | - Daniela Trisciuoglio
- Preclinical Models and New Therapeutic Agents Unit, IRCCS-Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy; (T.D.L.); (D.D.B.)
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Via Degli Apuli 4, 00185 Rome, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138 Naples, Italy; (F.S.); (A.N.); (L.A.)
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy; (C.Z.); (R.F.); (G.S.); (A.R.)
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy; (C.Z.); (R.F.); (G.S.); (A.R.)
| |
Collapse
|
53
|
Shahkarami S, Zoghi S, Rezaei N. The Role of DNA Methylation in Cancer. CANCER IMMUNOLOGY 2020:491-511. [DOI: 10.1007/978-3-030-30845-2_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
54
|
Coronado-Posada N, Olivero-Verbel J. In silico evaluation of pesticides as potential modulators of human DNA methyltransferases. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2019; 30:865-878. [PMID: 31595789 DOI: 10.1080/1062936x.2019.1666165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
DNA methylations are carried out by DNA methyltransferases (DNMTs) that are key enzymes during gene expression. Many chemicals, including pesticides, have shown modulation of epigenetic functions by inhibiting DNMTs. In this work, human DNMTs were evaluated as a potential target for pesticides through virtual screening of 1038 pesticides on DNMT1 (3SWR) and DNMT3A (2QRV). Molecular docking calculations for DNMTs-pesticide complexes were performed using AutoDock Vina. Binding-affinity values and contact patterns were employed as selection criteria of pesticides as virtual hits for DNMTs. The best three DNMT-pesticides complexes selected according to their high absolute affinity values (kcal/mol), for both DNMT1 and DNMT3A, were flocoumafen (-12.5; -9.9), brodifacoum (-12.4; -8.4) and difenacoum (-12.1; -8.7). These chemicals belong to second-generation rodenticides. The most frequent predicted interacting residues for DNMT1-pesticide complexes were Trp1170A, Phe1145A, Asn1578A, Arg1574A and Pro1225A; whereas for DNMT3A those were Arg271B, Lys740A, and Glu303B. These results suggest that rodenticides used for pest control are potential DNMT ligands and therefore, may modulate DNA methylations. This finding has important environmental and clinical implications, as epigenetic pathways are critical in many biochemical processes leading to diseases.
Collapse
Affiliation(s)
- N Coronado-Posada
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia
| | - J Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia
| |
Collapse
|
55
|
Yang Q, Jiang W, Hou P. Emerging role of PI3K/AKT in tumor-related epigenetic regulation. Semin Cancer Biol 2019; 59:112-124. [DOI: 10.1016/j.semcancer.2019.04.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/14/2019] [Accepted: 04/01/2019] [Indexed: 01/23/2023]
|
56
|
Yu J, Zayas J, Qin B, Wang L. Targeting DNA methylation for treating triple-negative breast cancer. Pharmacogenomics 2019; 20:1151-1157. [PMID: 31755366 PMCID: PMC7026764 DOI: 10.2217/pgs-2019-0078] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/23/2019] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) accounts for 15-20% of all invasive breast cancers and tends to have aggressive histological features and poor clinical outcomes. Unlike, estrogen receptor- or HER2-positive diseases, TNBC patients currently lack the US FDA-approved targeted therapies. DNA methylation is a critical mechanism of epigenetic modification. It is well known that aberrant DNA methylation contributes to the malignant transformation of cells by silencing critical tumor suppressor genes. DNA methyltransferase inhibitors reactivate silenced tumor suppressor genes and result in tumor growth arrest, with therapeutic effects observed in patients with hematologic malignancies. The antitumor effect of these DNA methyltransferase inhibitors has also been explored in solid tumors, especially in TNBC that currently lacks targeted therapies.
Collapse
Affiliation(s)
- Jia Yu
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jacqueline Zayas
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic School of Medicine & The Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN 55905, USA
| | - Bo Qin
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Liewei Wang
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
57
|
Zeng Z, Mukherjee A, Zhang H. From Genetics to Epigenetics, Roles of Epigenetics in Inflammatory Bowel Disease. Front Genet 2019; 10:1017. [PMID: 31737035 PMCID: PMC6834788 DOI: 10.3389/fgene.2019.01017] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/24/2019] [Indexed: 02/05/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a destructive, recurrent, and heterogeneous disease. Its detailed pathogenesis is still unclear, although available evidence supports that IBD is caused by a complex interplay between genetic predispositions, environmental factors, and aberrant immune responses. Recent breakthroughs with regard to its genetics have offered valuable insights into the sophisticated genetic basis, but the identified genetic factors only explain a small part of overall disease variance. It is becoming increasingly apparent that epigenetic factors can mediate the interaction between genetics and environment, and play a fundamental role in the pathogenesis of IBD. This review outlines recent genetic and epigenetic discoveries in IBD, with a focus on the roles of epigenetics in disease susceptibility, activity, behavior and colorectal cancer (CRC), and their potential translational applications.
Collapse
Affiliation(s)
- Zhen Zeng
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Center for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | | | - Hu Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Center for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
58
|
The role of DNA-demethylating agents in cancer therapy. Pharmacol Ther 2019; 205:107416. [PMID: 31626871 DOI: 10.1016/j.pharmthera.2019.107416] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/20/2019] [Indexed: 12/29/2022]
Abstract
DNA methylation patterns are frequently altered in cancer cells as compared to normal cells. A large body of research associates these DNA methylation aberrations with cancer initiation and progression. Moreover, cancer cells seem to depend upon these aberrant DNA methylation profiles to thrive. Finally, DNA methylation modifications are reversible, highlighting the potential to target the global methylation patterns for cancer therapy. In this review, we will discuss the scientific and clinical aspects of DNA methylation in cancer. We will review the limited success of targeting DNA methylation in the clinic, the associated clinical challenges, the impact of novel DNA methylation inhibitors and how combination therapies are improving patient outcomes.
Collapse
|
59
|
Switzer RL, Medrano J, Reedel DA, Weiss J. Substituted anthraquinones represent a potential scaffold for DNA methyltransferase 1-specific inhibitors. PLoS One 2019; 14:e0219830. [PMID: 31306451 PMCID: PMC6629088 DOI: 10.1371/journal.pone.0219830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022] Open
Abstract
In humans, the most common epigenetic DNA modification is methylation of the 5-carbon of cytosines, predominantly in CpG dinucleotides. DNA methylation is an important epigenetic mark associated with gene repression. Disruption of the normal DNA methylation pattern is known to play a role in the initiation and progression of many cancers. DNA methyltransferase 1 (DNMT1), the most abundant DNA methyltransferase in humans, is primarily responsible for maintenance of the DNA methylation pattern and is considered an important cancer drug target. Recently, laccaic acid A (LCA), a highly substituted anthraquinone natural product, was identified as a direct, DNA-competitive inhibitor of DNMT1. Here, we have successfully screened a small library of simplified anthraquinone compounds for DNMT1 inhibition. Using an endonuclease-coupled DNA methylation assay, we identified two anthraquinone compounds, each containing an aromatic substituent, that act as direct DNMT1 inhibitors. These simplified anthraquinone compounds retain the DNA-competitive mechanism of action of LCA and exhibit some selectivity for DNMT1 over DNMT3a. The newly identified compounds are at least 40-fold less potent than LCA, but have significantly less complex structures. Collectively, this data indicates that substituted anthraquinone compounds could serve as a novel scaffold for developing DNMT1-specific inhibitors.
Collapse
Affiliation(s)
- Rebecca L. Switzer
- Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania, United States of America
- * E-mail:
| | - Jessica Medrano
- Program in Cell Biology/Biochemistry, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - David A. Reedel
- Program in Cell Biology/Biochemistry, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - Jill Weiss
- Program in Cell Biology/Biochemistry, Bucknell University, Lewisburg, Pennsylvania, United States of America
| |
Collapse
|
60
|
Beloglazkina AA, Karpov NA, Mefedova SR, Polyakov VS, Skvortsov DA, Kalinina MA, Tafeenko VA, Majouga AG, Zyk NV, Beloglazkina EK. Synthesis of dispirooxindoles containing N-unsubstituted heterocyclic moieties and study of their anticancer activity. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2511-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
61
|
Tu J, Chen R, Yang Y, Cao W, Xie W. Suicide inactivation of the uracil DNA glycosylase UdgX by covalent complex formation. Nat Chem Biol 2019; 15:615-622. [PMID: 31101915 DOI: 10.1038/s41589-019-0290-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/10/2019] [Indexed: 01/08/2023]
Abstract
A uracil DNA glycosylase (UDG) from Mycobacterium smegmatis (MsmUdgX) shares sequence similarity with family 4 UDGs and forms exceedingly stable complexes with single-stranded uracil-containing DNAs (ssDNA-Us) that are resistant to denaturants. However, MsmUdgX has been reported to be inactive in excising uracil from ssDNA-Us and the underlying structural basis is unclear. Here, we report high-resolution crystal structures of MsmUdgX in the free, uracil- and DNA-bound forms, respectively. The structural information, supported by mutational and biochemical analyses, indicates that the conserved residue His109 located on a characteristic loop forms an irreversible covalent linkage with the deoxyribose at the apyrimidinic site of ssDNA-U, thus rendering the enzyme unable to regenerate. By proposing the catalytic pathway and molecular mechanism for MsmUdgX, our studies provide an insight into family 4 UDGs and UDGs in general.
Collapse
Affiliation(s)
- Jie Tu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ran Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ye Yang
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Weiguo Cao
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Wei Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
62
|
Zwergel C, Schnekenburger M, Sarno F, Battistelli C, Manara MC, Stazi G, Mazzone R, Fioravanti R, Gros C, Ausseil F, Florean C, Nebbioso A, Strippoli R, Ushijima T, Scotlandi K, Tripodi M, Arimondo PB, Altucci L, Diederich M, Mai A, Valente S. Identification of a novel quinoline-based DNA demethylating compound highly potent in cancer cells. Clin Epigenetics 2019; 11:68. [PMID: 31060628 PMCID: PMC6501426 DOI: 10.1186/s13148-019-0663-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/09/2019] [Indexed: 12/16/2022] Open
Abstract
Background DNA methyltransferases (DNMTs) are epigenetic enzymes involved in embryonic development, cell differentiation, epithelial to mesenchymal transition, and control of gene expression, whose overexpression or enhanced catalytic activity has been widely reported in cancer initiation and progression. To date, two DNMT inhibitors (DNMTi), 5-azacytidine (5-AZA) and 5-aza-2′-deoxycytidine (DAC), are approved for the treatment of myelodysplastic syndromes and acute myeloid leukemia. Nevertheless, they are chemically instable and quite toxic for healthy cells; thus, the discovery of novel DNMTi is urgent. Results Here, we report the identification of a new quinoline-based molecule, MC3353, as a non-nucleoside inhibitor and downregulator of DNMT. This compound was able, in promoter demethylating assays, to induce enhanced green fluorescence protein (EGFP) gene expression in HCT116 cells and transcription in a cytomegalovirus (CMV) promoter-driven luciferase reporter system in KG-1 cells. Moreover, MC3353 displayed a strong antiproliferative activity when tested on HCT116 colon cancer cells after 48 h of treatment at 0.5 μM. At higher doses, this compound provided a cytotoxic effect in double DNMT knockout HCT116 cells. MC3353 was also screened on a different panel of cancer cells (KG-1 and U-937 acute myeloid leukemia, RAJI Burkitt’s lymphoma, PC-3 prostate cancer, and MDA-MB-231 breast cancer), where it arrested cell proliferation and reduced viability after 48 h of treatment with IC50 values ranging from 0.3 to 0.9 μM. Compared to healthy cell models, MC3353 induced apoptosis (e.g., U-937 and KG-1 cells) or necrosis (e.g., RAJI cells) at lower concentrations. Importantly, together with the main DNMT3A enzyme inhibition, MC3353 was also able to downregulate the DNMT3A protein level in selected HCT116 and PC-3 cell lines. Additionally, this compound provided impairment of the epithelial-to-mesenchymal transition (EMT) by inducing E-cadherin while reducing matrix metalloproteinase (MMP2) mRNA and protein levels in PC-3 and HCT116 cells. Last, tested on a panel of primary osteosarcoma cell lines, MC3353 markedly inhibited cell growth with low single-digit micromolar IC50 ranging from 1.1 to 2.4 μM. Interestingly, in Saos-2 osteosarcoma cells, MC3353 induced both expression of genes and mineralized the matrix as evidence of osteosarcoma to osteoblast differentiation. Conclusions The present work describes MC3353 as a novel DNMTi displaying a stronger in cell demethylating ability than both 5-AZA and DAC, providing re-activation of the silenced ubiquitin C-terminal hydrolase L1 (UCHL1) gene. MC3353 displayed dose- and time-dependent antiproliferative activity in several cancer cell types, inducing cell death and affecting EMT through E-cadherin and MMP2 modulation. In addition, this compound proved efficacy even in primary osteosarcoma cell models, through the modulation of genes involved in osteoblast differentiation. Electronic supplementary material The online version of this article (10.1186/s13148-019-0663-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clemens Zwergel
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Michael Schnekenburger
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9 rue Edward Steichen, L-2540, Luxembourg City, Luxembourg
| | - Federica Sarno
- Department of Medicine of Precision, University of Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138, Naples, Italy
| | - Cecilia Battistelli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Maria Cristina Manara
- Laboratory of Experimental Oncology, IRCCS - Istituto Ortopedico Rizzoli, via di Barbiano, 1/10, Bologna, 40136, Italy
| | - Giulia Stazi
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Roberta Mazzone
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Rossella Fioravanti
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Christina Gros
- Center for High-Throughput Chemical Biology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Frédéric Ausseil
- Pierre Fabre Laboratories, 3 Avenue Hubert Curien, Toulouse, 31100, France
| | - Cristina Florean
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9 rue Edward Steichen, L-2540, Luxembourg City, Luxembourg
| | - Angela Nebbioso
- Department of Medicine of Precision, University of Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138, Naples, Italy
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.,National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, Rome, 00149, Italy
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS - Istituto Ortopedico Rizzoli, via di Barbiano, 1/10, Bologna, 40136, Italy
| | - Marco Tripodi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.,National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, Rome, 00149, Italy.,Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Paola B Arimondo
- Epigenetic Chemical Biology, Institut Pasteur, CNRS UMR3523, 28 rue du Docteur Roux, Paris, 75724, France
| | - Lucia Altucci
- Department of Medicine of Precision, University of Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138, Naples, Italy
| | - Marc Diederich
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Korea
| | - Antonello Mai
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy. .,Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy.
| | - Sergio Valente
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy.
| |
Collapse
|
63
|
Halby L, Marechal N, Pechalrieu D, Cura V, Franchini DM, Faux C, Alby F, Troffer-Charlier N, Kudithipudi S, Jeltsch A, Aouadi W, Decroly E, Guillemot JC, Page P, Ferroud C, Bonnefond L, Guianvarc'h D, Cavarelli J, Arimondo PB. Hijacking DNA methyltransferase transition state analogues to produce chemical scaffolds for PRMT inhibitors. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0072. [PMID: 29685976 DOI: 10.1098/rstb.2017.0072] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2017] [Indexed: 12/12/2022] Open
Abstract
DNA, RNA and histone methylation is implicated in various human diseases such as cancer or viral infections, playing a major role in cell process regulation, especially in modulation of gene expression. Here we developed a convergent synthetic pathway starting from a protected bromomethylcytosine derivative to synthesize transition state analogues of the DNA methyltransferases. This approach led to seven 5-methylcytosine-adenosine compounds that were, surprisingly, inactive against hDNMT1, hDNMT3Acat, TRDMT1 and other RNA human and viral methyltransferases. Interestingly, compound 4 and its derivative 2 showed an inhibitory activity against PRMT4 in the micromolar range. Crystal structures showed that compound 4 binds to the PRMT4 active site, displacing strongly the S-adenosyl-l-methionine cofactor, occupying its binding site, and interacting with the arginine substrate site through the cytosine moiety that probes the space filled by a substrate peptide methylation intermediate. Furthermore, the binding of the compounds induces important structural switches. These findings open new routes for the conception of new potent PRMT4 inhibitors based on the 5-methylcytosine-adenosine scaffold.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'.
Collapse
Affiliation(s)
- Ludovic Halby
- CNRS FRE3600 ETaC, bât. IBCG, 31062 Toulouse, France.,Maison Française d'Oxford, CNRS, MEAE, 2-10 Norham Road, Oxford, UK
| | - Nils Marechal
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U 1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | | | - Vincent Cura
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U 1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | | | - Céline Faux
- CNRS FRE3600 ETaC, bât. IBCG, 31062 Toulouse, France
| | - Fréderic Alby
- Laboratoire Pierre Fabre, 3 avenue H. Curien, 31100 Toulouse, France
| | - Nathalie Troffer-Charlier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U 1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Srikanth Kudithipudi
- Institute of Biochemistry, Faculty of Chemistry, University Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry, Faculty of Chemistry, University Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Wahiba Aouadi
- Laboratoire Architecture Fonction des Macromolécules Biologiques (AFMB-UMR 7257), Aix-Marseille Université & CNRS, 163 avenue de Luminy, 13288 Marseille cedex 09, France
| | - Etienne Decroly
- Laboratoire Architecture Fonction des Macromolécules Biologiques (AFMB-UMR 7257), Aix-Marseille Université & CNRS, 163 avenue de Luminy, 13288 Marseille cedex 09, France
| | - Jean-Claude Guillemot
- Laboratoire Architecture Fonction des Macromolécules Biologiques (AFMB-UMR 7257), Aix-Marseille Université & CNRS, 163 avenue de Luminy, 13288 Marseille cedex 09, France
| | - Patrick Page
- Epiremed SAS, 1 Rue des Pénitents Blancs, 31000 Toulouse, France
| | - Clotilde Ferroud
- Laboratoire de chimie moléculaire, CMGPCE, EA7341, Conservatoire National des Arts et Métiers, 2 rue Conté, 75003 Paris, France
| | - Luc Bonnefond
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U 1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Dominique Guianvarc'h
- Sorbonne Universités, UPMC Université Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules (LBM), 4 place Jussieu, 75005 Paris, France.,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Université Paris 06, CNRS, Laboratoire des Biomolécules (LBM), 75005 Paris, France
| | - Jean Cavarelli
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U 1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Paola B Arimondo
- CNRS FRE3600 ETaC, bât. IBCG, 31062 Toulouse, France .,Churchill College, CB3 0DS Cambridge, UK
| |
Collapse
|
64
|
Milite C, Feoli A, Horton JR, Rescigno D, Cipriano A, Pisapia V, Viviano M, Pepe G, Amendola G, Novellino E, Cosconati S, Cheng X, Castellano S, Sbardella G. Discovery of a Novel Chemotype of Histone Lysine Methyltransferase EHMT1/2 (GLP/G9a) Inhibitors: Rational Design, Synthesis, Biological Evaluation, and Co-crystal Structure. J Med Chem 2019; 62:2666-2689. [PMID: 30753076 DOI: 10.1021/acs.jmedchem.8b02008] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Since the discovery of compound BIX01294 over 10 years ago, only a very limited number of nonquinazoline inhibitors of H3K9-specific methyltransferases G9a and G9a-like protein (GLP) have been reported. Herein, we report the identification of a novel chemotype for G9a/GLP inhibitors, based on the underinvestigated 2-alkyl-5-amino- and 2-aryl-5-amino-substituted 3 H-benzo[ e][1,4]diazepine scaffold. Our research efforts resulted in the identification 12a (EML741), which not only maintained the high in vitro and cellular potency of its quinazoline counterpart, but also displayed improved inhibitory potency against DNA methyltransferase 1, improved selectivity against other methyltransferases, low cell toxicity, and improved apparent permeability values in both parallel artificial membrane permeability assay (PAMPA) and blood-brain barrier-specific PAMPA, and therefore might potentially be a better candidate for animal studies. Finally, the co-crystal structure of GLP in complex with 12a provides the basis for the further development of benzodiazepine-based G9a/GLP inhibitors.
Collapse
Affiliation(s)
| | | | - John R Horton
- Department of Molecular and Cellular Oncology , The University of Texas MD Anderson Cancer Center , Houston , Texas 77030 , United States
| | | | | | | | | | | | - Giorgio Amendola
- DiSTABiF , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy
| | - Ettore Novellino
- Department of Pharmacy , University Federico II of Naples , Via D. Montesano 49 , 80131 Naples , Italy
| | - Sandro Cosconati
- DiSTABiF , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy
| | - Xiaodong Cheng
- Department of Molecular and Cellular Oncology , The University of Texas MD Anderson Cancer Center , Houston , Texas 77030 , United States
| | | | | |
Collapse
|
65
|
Leroy M, Mélin L, LaPlante SR, Medina-Franco JL, Gagnon A. Synthesis of NSC 106084 and NSC 14778 and evaluation of their DNMT inhibitory activity. Bioorg Med Chem Lett 2019; 29:826-831. [PMID: 30704813 DOI: 10.1016/j.bmcl.2019.01.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/11/2019] [Accepted: 01/17/2019] [Indexed: 01/01/2023]
Abstract
DNA methylation is an epigenetic modification that is performed by DNA methyltransferases (DNMTs) and that leads to the transfer of a methyl group from S-adenosylmethionine (SAM) to the C5 position of cytosine. This transformation results in hypermethylation and silencing of genes such as tumor suppressor genes. Aberrant DNA methylation has been associated with the development of many diseases, including cancer. Inhibition of DNMTs promotes the demethylation and reactivation of epigenetically silenced genes. NSC 106084 and 14778 have been reported to inhibit DNMTs in the micromolar range. We report herein the synthesis of NSC 106084 and 14778 and the evaluation of their DNMT inhibitory activity. Our results indicate that while commercial NSC 14778 is moderately active against DNMT1, 3A/3L and 3B/3L, resynthesized NSC 14778 is inactive under our assay conditions. Resynthesized 106084 was also found to be inactive.
Collapse
Affiliation(s)
- Maxime Leroy
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Léa Mélin
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Steven R LaPlante
- Centre INRS-Armand Frappier, 531 boul. des Prairies, Laval, Québec H7V 1B7, Canada
| | - José L Medina-Franco
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico
| | - Alexandre Gagnon
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada.
| |
Collapse
|
66
|
Bouchut A, Rotili D, Pierrot C, Valente S, Lafitte S, Schultz J, Hoglund U, Mazzone R, Lucidi A, Fabrizi G, Pechalrieu D, Arimondo PB, Skinner-Adams TS, Chua MJ, Andrews KT, Mai A, Khalife J. Identification of novel quinazoline derivatives as potent antiplasmodial agents. Eur J Med Chem 2019; 161:277-291. [DOI: 10.1016/j.ejmech.2018.10.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/30/2022]
|
67
|
Da Ros S, Aresu L, Ferraresso S, Zorzan E, Gaudio E, Bertoni F, Dacasto M, Giantin M. Validation of epigenetic mechanisms regulating gene expression in canine B-cell lymphoma: An in vitro and in vivo approach. PLoS One 2018; 13:e0208709. [PMID: 30533020 PMCID: PMC6289462 DOI: 10.1371/journal.pone.0208709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 11/21/2018] [Indexed: 01/26/2023] Open
MESH Headings
- Animals
- Cell Line, Tumor
- Dog Diseases/genetics
- Dog Diseases/metabolism
- Dogs
- Epigenesis, Genetic/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/physiology
- Histone Deacetylase Inhibitors/pharmacology
- Lymph Nodes
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/veterinary
- Promoter Regions, Genetic
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Silvia Da Ros
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Luca Aresu
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Serena Ferraresso
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Eleonora Zorzan
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Eugenio Gaudio
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | - Francesco Bertoni
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
- * E-mail:
| |
Collapse
|
68
|
Huang MH, Chou YW, Li MH, Shih TE, Lin SZ, Chuang HM, Chiou TW, Su HL, Harn HJ. Epigenetic targeting DNMT1 of pancreatic ductal adenocarcinoma using interstitial control release biodegrading polymer reduced tumor growth through hedgehog pathway inhibition. Pharmacol Res 2018; 139:50-61. [PMID: 30385365 DOI: 10.1016/j.phrs.2018.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/28/2018] [Accepted: 10/15/2018] [Indexed: 12/18/2022]
Abstract
Annually, 48,000 people die from pancreatic ductal adenocarcinoma (PDAC), ranking it the fourth among cancer-related deaths in the United States. Currently, anti-cancer drugs are not effective against PDAC, and only extends survival by 3 months. Aberrant DNA methylation has been shown to play an important role during carcinogenesis in PDAC, with approximately 80% of tumor overexpressing the DNA methyltransferase 1 (DNMT1) protein. In the present study, we used DNMTs as a screening platform to find a new DNMT inhibitor, n-butylidenephthalide (n-BP), which is identified from a Chinese herbal drug. n-BP could inhibit DNMT1 expression in both dose-dependent and time-dependent manner. It also displays an effect in suppressing growth of PDAC cells and inducing cell cycle arrest at G0/G1 phase leading apoptosis. Growth suppression can be restored by the overexpression of DNMT1 in PDAC cells. Furthermore, we found n-BP-mediated DNMT1 suppression influenced the protein stability rather than changing the RNA expression. Through microarray studies, we found that the patched domain contained 4 (PTCHD4) is the potential downstream gene of DNMT1. Following silencing of PTCHD4 expression by siRNA, n-BP decreased tumor growth inhibition. Finally, in vivo, two animal models were used to evaluate the efficacy and survival after n-BP treatment by interstitial control release polymer delivery. The results show that n-BP could effectively inhibit PDAC tumor volume growth and extend animal survival. In summary, n-BP may inhibit the growth of human PDAC cells though reducing DNMT1 and increasing the expression of PTCHD4 both in vitro and in vivo.
Collapse
Affiliation(s)
- Mao-Hsuan Huang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan; Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yi-Wen Chou
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Ming-Hsun Li
- Department of Pathology, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Tina E Shih
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Department of Neurosurgery, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Hong-Meng Chuang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan; Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tzyy-Wen Chiou
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Hong-Lin Su
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.
| | - Horng-Jyh Harn
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Department of Pathology, Hualien Tzu Chi Hospital, Hualien, Taiwan; Department of Pathology, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
69
|
Synthesis and cytotoxicity of novel dispiro derivatives of 5-arylidenoxazolones, potential inhibitors of p53—MDM2 protein-protein interaction. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2111-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
70
|
Fardi M, Solali S, Farshdousti Hagh M. Epigenetic mechanisms as a new approach in cancer treatment: An updated review. Genes Dis 2018; 5:304-311. [PMID: 30591931 PMCID: PMC6303480 DOI: 10.1016/j.gendis.2018.06.003] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
Epigenetic, along with genetic mechanisms, is essential for natural evolution and maintenance of specific patterns of gene expression in mammalians. Global epigenetic variation is inherited somatically and unlike genetic variation, it is dynamic and reversible. They are somatically associated with known genetic variations. Recent studies indicate the broad role of epigenetic mechanisms in the initiation and development of cancers, that they are including DNA methylation, histone modifications, nucleosomes changes, non-coding RNAs. The reversible nature of epigenetic changes has led to the emergence of novel epigenetic therapeutic approaches, so that several types of these medications have been approved by the FDA so far. In this review, we discuss the concept of epigenetic changes in diseases, especially cancers, the role of these changes in the onset and progression of cancers and the potential of using this knowledge in designing novel therapeutic strategies.
Collapse
Affiliation(s)
- Masoumeh Fardi
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran.,Department of Immunology, Division of Hematology and Blood Transfusion Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Saeed Solali
- Molecular Medicine Research Center, Tabriz University of Medical Science, Tabriz, Iran.,Hematology and Oncology Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | | |
Collapse
|
71
|
Godfrey JD, Morton JP, Wilczynska A, Sansom OJ, Bushell MD. MiR-142-3p is downregulated in aggressive p53 mutant mouse models of pancreatic ductal adenocarcinoma by hypermethylation of its locus. Cell Death Dis 2018; 9:644. [PMID: 29844410 PMCID: PMC5973943 DOI: 10.1038/s41419-018-0628-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/15/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive disease with poor prognostic implications. This is partly due to a large proportion of PDACs carrying mutations in TP53, which impart gain-of-function characteristics that promote metastasis. There is evidence that microRNAs (miRNAs) may play a role in both gain-of-function TP53 mutations and metastasis, but this has not been fully explored in PDAC. Here we set out to identify miRNAs which are specifically dysregulated in metastatic PDAC. To achieve this, we utilised established mouse models of PDAC to profile miRNA expression in primary tumours expressing the metastasis-inducing mutant p53R172H and compared these to two control models carrying mutations, which promote tumour progression but do not induce metastasis. We show that a subset of miRNAs are dysregulated in mouse PDAC tumour tissues expressing mutant p53R172H, primary cell lines derived from mice with the same mutations and in TP53 null cells with ectopic expression of the orthologous human mutation, p53R175H. Specifically, miR-142-3p is downregulated in all of these experimental models. We found that DNA methyltransferase 1 (Dnmt1) is upregulated in tumour tissue and cell lines, which express p53R172H. Inhibition or depletion of Dnmt1 restores miR-142-3p expression. Overexpression of miR-142-3p attenuates the invasive capacity of p53R172H-expressing tumour cells. MiR-142-3p dysregulation is known to be associated with cancer progression, metastasis and the miRNA is downregulated in patients with PDAC. Here we link TP53 gain-of-function mutations to Dnmt1 expression and in turn miR-142-3p expression. Additionally, we show a correlation between expression of these genes and patient survival, suggesting that they may have potential to be therapeutic targets.
Collapse
Affiliation(s)
- Jack D Godfrey
- Medical Research Council Toxicology Unit, Lancaster Rd, Leicester, LE1 7HB, UK
| | - Jennifer P Morton
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road Glasgow, Glasgow, G61 1QH, UK
| | - Ania Wilczynska
- Medical Research Council Toxicology Unit, Lancaster Rd, Leicester, LE1 7HB, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road Glasgow, Glasgow, G61 1QH, UK
| | - Martin D Bushell
- Medical Research Council Toxicology Unit, Lancaster Rd, Leicester, LE1 7HB, UK.
| |
Collapse
|
72
|
Abstract
The epigenetic regulation of gene expression is accomplished primarily through DNA methylation, histone modification, and gene silencing via the action of microRNAs. While previously very difficult to study, the field of epigenetics has been greatly facilitated by recent technological innovations. Alterations in the epigenome and epigenetic machinery are now known to be present in a variety of diseases, most notably cancers. Moreover, evidence has emerged that epigenetic dysregulation plays a causative role in disease pathogenesis. Novel drugs that alter the epigenetic landscape have been developed and are now available as treatment for cutaneous T-cell lymphoma (CTCL) and other blood cancers. Epigenetic changes in CTCL have been studied extensively and continue to be a focus of drug development. Given the success of epigenetic therapies for CTCL, epigenetic research has begun to expand into other dermatologic conditions, including primary skin cancers and immune-mediated diseases. This article provides an overview of current epigenetic therapies for CTCL and reviews the epigenetics of other dermatologic diseases, including melanoma, psoriasis, systemic lupus erythematosus and systemic sclerosis, with attention toward potential epigenetic pharmacotherapies.
Collapse
Affiliation(s)
- Joshua S Mervis
- a Department of Dermatology , Boston University School of Medicine , Boston , MA , USA
| | - Jean S McGee
- a Department of Dermatology , Boston University School of Medicine , Boston , MA , USA
| |
Collapse
|
73
|
Abstract
Neuroblastomas are characterized by heterogeneous clinical behavior, from spontaneous regression or differentiation into a benign ganglioneuroma, to relentless progression despite aggressive, multimodality therapy. Indeed, neuroblastoma is unique among human cancers in terms of its propensity to undergo spontaneous regression. The strongest evidence for this comes from the mass screening studies conducted in Japan, North America and Europe and it is most evident in infants with stage 4S disease. This propensity is associated with a pattern of genomic change characterized by whole chromosome gains rather than segmental chromosome changes but the mechanism(s) underlying spontaneous regression are currently a matter of speculation. There is evidence to support several possible mechanisms of spontaneous regression in neuroblastomas: (1) neurotrophin deprivation, (2) loss of telomerase activity, (3) humoral or cellular immunity and (4) alterations in epigenetic regulation and possibly other mechanisms. It is likely that a better understanding of the mechanisms of spontaneous regression will help to identify targeted therapeutic approaches for these tumors. The most easily targeted mechanism is the delayed activation of developmentally programmed cell death regulated by the tropomyosin receptor kinase A (TrkA) pathway. Pan-Trk inhibitors are currently in clinical trials and so Trk inhibition might be used as the first line of therapy in infants with biologically favorable tumors that require treatment. Alternative approaches consist of breaking immune tolerance to tumor antigens but approaches to telomere shortening or epigenetic regulation are not easily druggable. The different mechanisms of spontaneous neuroblastoma regression are reviewed here, along with possible therapeutic approaches.
Collapse
Affiliation(s)
- Garrett M Brodeur
- Division of Oncology, Department of Pediatrics, the Children's Hospital of Philadelphia, University of Pennsylvania/Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Oncology Research, The Children's Hospital of Philadelphia, CTRB Rm. 3018, 3501 Civic Center Blvd., Philadelphia, PA, 19104-4302, USA.
| |
Collapse
|
74
|
Takemura Y, Satoh M, Hatanaka K, Kubota S. Zebularine exerts its antiproliferative activity through S phase delay and cell death in human malignant mesothelioma cells. Biosci Biotechnol Biochem 2018; 82:1159-1164. [PMID: 29685095 DOI: 10.1080/09168451.2018.1459466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Malignant mesothelioma is an asbestos-related aggressive tumor and current therapy remains ineffective. Zebularine as a DNA methyltransferase (DNMT) inhibitor has an anti-tumor effect in several human cancer cells. The aim of the present study was to investigate whether zebularine could induce antiproliferative effect in human malignant mesothelioma cells. Zebularine induced cell growth inhibition in a dose-dependent manner. In addition, zebularine dose-dependently decreased expression of DNMT1 in all malignant mesothelioma cells tested. Cell cycle analysis indicated that zebularine induced S phase delay. Zebularine also induced cell death in malignant mesothelioma cells. In contrast, zebularine did not induce cell growth inhibition and cell death in human normal fibroblast cells. These results suggest that zebularine has a potential for the treatment of malignant mesothelioma by inhibiting cell growth and inducing cell death.
Collapse
Affiliation(s)
- Yukitoshi Takemura
- a Institute of Industrial Science , The University of Tokyo , Tokyo , Japan
| | - Motohiko Satoh
- a Institute of Industrial Science , The University of Tokyo , Tokyo , Japan
| | - Kenichi Hatanaka
- a Institute of Industrial Science , The University of Tokyo , Tokyo , Japan
| | - Shunichiro Kubota
- a Institute of Industrial Science , The University of Tokyo , Tokyo , Japan.,b Department of Pharmaceutical Sciences , Teikyo Heisei University , Tokyo , Japan
| |
Collapse
|
75
|
Sergeev AV, Kirsanova OV, Loiko AG, Nomerotskaya EI, Gromova ES. Detection of DNA Methylation by Dnmt3a Methyltransferase using Methyl-Dependent Restriction Endonucleases. Mol Biol 2018. [DOI: 10.1134/s0026893318020139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
76
|
Florean C, Schnekenburger M, Lee JY, Kim KR, Mazumder A, Song S, Kim JM, Grandjenette C, Kim JG, Yoon AY, Dicato M, Kim KW, Christov C, Han BW, Proksch P, Diederich M. Discovery and characterization of Isofistularin-3, a marine brominated alkaloid, as a new DNA demethylating agent inducing cell cycle arrest and sensitization to TRAIL in cancer cells. Oncotarget 2018; 7:24027-49. [PMID: 27006469 PMCID: PMC5029682 DOI: 10.18632/oncotarget.8210] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 03/02/2016] [Indexed: 12/20/2022] Open
Abstract
We characterized the brominated alkaloid Isofistularin-3 (Iso-3), from the marine sponge Aplysina aerophoba, as a new DNA methyltransferase (DNMT)1 inhibitor. Docking analysis confirmed our in vitro DNMT inhibition data and revealed binding of Iso-3 within the DNA binding site of DNMT1. Subsequent increased expression of tumor suppressor gene aryl hydrocarbon receptor (AHR) could be correlated to decreased methylation of CpG sites within the essential Sp1 regulatory region of its promoter. Iso-3 induced growth arrest of cancer cells in G0/G1 concomitant with increased p21 and p27 expression and reduced cyclin E1, PCNA and c-myc levels. Reduced proliferation was accompanied by morphological changes typical of autophagy revealed by fluorescent and transmission electron microscopy and validated by LC3I-II conversion. Furthermore, Iso-3 strongly synergized with tumor-necrosis-factor related apoptosis inducing ligand (TRAIL) in RAJI [combination index (CI) = 0.22] and U-937 cells (CI = 0.21) and increased TRAIL-induced apoptosis via a mechanism involving reduction of survivin expression but not of Bcl-2 family proteins nor X-linked inhibitor of apoptosis protein (XIAP). Iso-3 treatment decreased FLIPL expression and triggered activation of endoplasmatic reticulum (ER) stress with increased GRP78 expression, eventually inducing TRAIL receptor death receptor (DR)5 surface expression. Importantly, as a potential candidate for further anticancer drug development, Iso-3 reduced the viability, colony and in vivo tumor forming potential without affecting the viability of PBMCs from healthy donors or zebrafish development.
Collapse
Affiliation(s)
- Cristina Florean
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Lëtzebuerg, Luxembourg
| | - Michael Schnekenburger
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Lëtzebuerg, Luxembourg
| | - Jin-Young Lee
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Korea
| | - Kyung Rok Kim
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Korea
| | - Aloran Mazumder
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Korea
| | - Sungmi Song
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Korea
| | - Jae-Myun Kim
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Korea
| | - Cindy Grandjenette
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Lëtzebuerg, Luxembourg
| | - Jeoung-Gyun Kim
- SNU-Harvard Neurovascular Protection Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Korea
| | - Ah-Young Yoon
- SNU-Harvard Neurovascular Protection Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Korea
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Lëtzebuerg, Luxembourg
| | - Kyu-Won Kim
- SNU-Harvard Neurovascular Protection Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Korea
| | | | - Byung-Woo Han
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Korea
| | - Peter Proksch
- Institut für Pharmazeutische Biologie und Biotechnologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Marc Diederich
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Korea
| |
Collapse
|
77
|
Wang F, Bie L. Application of GATA-3 gene marker in the detection of hematologic disorders in children. Exp Ther Med 2018; 15:1879-1885. [PMID: 29434778 PMCID: PMC5776561 DOI: 10.3892/etm.2017.5614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/16/2017] [Indexed: 11/29/2022] Open
Abstract
The aim of the present study was to investigate the use of GATA-3 markers in the detection of hematologic disorders in children. In total, 35 pediatric patients diagnosed with blood disease and treated in Henan Red Cross Blood Center from January 2014 to June 2015 were selected for the observation group. Another 32 healthy children were selected for the control group. The differences in the GATA-3 mRNA expression levels between the control and observation groups were detected via reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The differences in the GATA-3 protein expression levels were detected via enzyme-linked immunosorbent assay (ELISA) and western blot analysis. Compared with those in the healthy children, the mRNA expression levels of GATA-3 in patients with hematologic malignancies, acute lymphoblastic leukemia, myeloproliferative disorder, acute non-lymphocytic leukemia or thrombocytopenic purpura were significantly higher, and there were statistically significant differences between the groups (P<0.05). The results of ELISA showed that the GATA-3 protein expression levels in patients with hematologic malignancies (241.3±42.6 µg/l), acute lymphoblastic leukemia (196.3±21.6 µg/l), myeloproliferative disorder (284.2±45.1 µg/l), acute non-lymphocytic leukemia (269.3±31.4 µg/l) or thrombocytopenic purpura (272.1±39.1 µg/l) were significantly higher than those in healthy subjects (69.3±15.2 µg/l). The results of western blot analysis were consistent with those of ELISA. Based on our results, the expression levels of GATA-3 in healthy children and pediatric patients with blood diseases exhibit significant differences, and can be used as important markers for the clinical diagnosis of blood diseases in children.
Collapse
Affiliation(s)
- Fenghua Wang
- Institute of Physical Education, Xinjiang Normal University, Urumqi, Xinjiang 830054, P.R. China
| | - Lili Bie
- Department of Blood Component Preparation, Henan Red Cross Blood Center, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
78
|
Wils LJ, Bijlsma MF. Epigenetic regulation of the Hedgehog and Wnt pathways in cancer. Crit Rev Oncol Hematol 2018; 121:23-44. [DOI: 10.1016/j.critrevonc.2017.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022] Open
|
79
|
Andersen GB, Tost J. A Summary of the Biological Processes, Disease-Associated Changes, and Clinical Applications of DNA Methylation. Methods Mol Biol 2018; 1708:3-30. [PMID: 29224136 DOI: 10.1007/978-1-4939-7481-8_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
DNA methylation at cytosines followed by guanines, CpGs, forms one of the multiple layers of epigenetic mechanisms controlling and modulating gene expression through chromatin structure. It closely interacts with histone modifications and chromatin remodeling complexes to form the local genomic and higher-order chromatin landscape. DNA methylation is essential for proper mammalian development, crucial for imprinting and plays a role in maintaining genomic stability. DNA methylation patterns are susceptible to change in response to environmental stimuli such as diet or toxins, whereby the epigenome seems to be most vulnerable during early life. Changes of DNA methylation levels and patterns have been widely studied in several diseases, especially cancer, where interest has focused on biomarkers for early detection of cancer development, accurate diagnosis, and response to treatment, but have also been shown to occur in many other complex diseases. Recent advances in epigenome engineering technologies allow now for the large-scale assessment of the functional relevance of DNA methylation. As a stable nucleic acid-based modification that is technically easy to handle and which can be analyzed with great reproducibility and accuracy by different laboratories, DNA methylation is a promising biomarker for many applications.
Collapse
Affiliation(s)
- Gitte Brinch Andersen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Bâtiment G2, 2 rue Gaston Crémieux, 91000, Evry, France
| | - Jörg Tost
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Bâtiment G2, 2 rue Gaston Crémieux, 91000, Evry, France.
| |
Collapse
|
80
|
Bayat S, Shekari Khaniani M, Choupani J, Alivand MR, Mansoori Derakhshan S. HDACis (class I), cancer stem cell, and phytochemicals: Cancer therapy and prevention implications. Biomed Pharmacother 2018; 97:1445-1453. [DOI: 10.1016/j.biopha.2017.11.065] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022] Open
|
81
|
The antihypertensive drug hydralazine activates the intrinsic pathway of apoptosis and causes DNA damage in leukemic T cells. Oncotarget 2017; 7:21875-86. [PMID: 26942461 PMCID: PMC5008330 DOI: 10.18632/oncotarget.7871] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/20/2016] [Indexed: 12/20/2022] Open
Abstract
Epigenetic therapies have emerged as promising anticancer approaches, since epigenetic modifications play a major role in tumor initiation and progression. Hydralazine, an approved vasodilator and antihypertensive drug, has been recently shown to act as a DNA methylation inhibitor. Even though hydralazine is already tested in clinical cancer trials, its mechanism of antitumor action remains undefined. Here, we show that hydralazine induced caspase-dependent apoptotic cell death in human p53-mutant leukemic T cells. Moreover, we demonstrate that hydralazine triggered the mitochondrial pathway of apoptosis by inducing Bak activation and loss of the mitochondrial membrane potential. Hydralazine treatment further resulted in the accumulation of reactive oxygen species, whereas a superoxide dismutase mimetic inhibited hydralazine-induced cell death. Interestingly, caspase-9-deficient Jurkat cells or Bcl-2- and Bcl-xL-overexpressing cells were strongly resistant to hydralazine treatment, thereby demonstrating the dependence of hydralazine-induced apoptosis on the mitochondrial death pathway. Furthermore, we demonstrate that hydralazine treatment triggered DNA damage which might contribute to its antitumor effect.
Collapse
|
82
|
Ginder GD, Williams DC. Readers of DNA methylation, the MBD family as potential therapeutic targets. Pharmacol Ther 2017; 184:98-111. [PMID: 29128342 DOI: 10.1016/j.pharmthera.2017.11.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA methylation represents a fundamental epigenetic modification that regulates chromatin architecture and gene transcription. Many diseases, including cancer, show aberrant methylation patterns that contribute to the disease phenotype. DNA methylation inhibitors have been used to block methylation dependent gene silencing to treat hematopoietic neoplasms and to restore expression of developmentally silenced genes. However, these inhibitors disrupt methylation globally and show significant off-target toxicities. As an alternative approach, we have been studying readers of DNA methylation, the 5-methylcytosine binding domain family of proteins, as potential therapeutic targets to restore expression of aberrantly and developmentally methylated and silenced genes. In this review, we discuss the role of DNA methylation in gene regulation and cancer development, the structure and function of the 5-methylcytosine binding domain family of proteins, and the possibility of targeting the complexes these proteins form to treat human disease.
Collapse
Affiliation(s)
- Gordon D Ginder
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, United States; Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States.
| | - David C Williams
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
83
|
The Warburg effect and glucose-derived cancer theranostics. Drug Discov Today 2017; 22:1637-1653. [DOI: 10.1016/j.drudis.2017.08.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 07/16/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022]
|
84
|
Jones SEF, Hibbitts S, Hurt CN, Bryant D, Fiander AN, Powell N, Tristram AJ. Human Papillomavirus DNA Methylation Predicts Response to Treatment Using Cidofovir and Imiquimod in Vulval Intraepithelial Neoplasia 3. Clin Cancer Res 2017; 23:5460-5468. [PMID: 28600473 DOI: 10.1158/1078-0432.ccr-17-0040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/28/2017] [Accepted: 06/05/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Response rates to treatment of vulval intraepithelial neoplasia (VIN) with imiquimod and cidofovir are approximately 57% and 61%, respectively. Treatment is associated with significant side effects and, if ineffective, risk of malignant progression. Treatment response is not predicted by clinical factors. Identification of a biomarker that could predict response is an attractive prospect. This work investigated HPV DNA methylation as a potential predictive biomarker in this setting.Experimental Design: DNA from 167 cases of VIN 3 from the RT3 VIN clinical trial was assessed. HPV-positive cases were identified using Greiner PapilloCheck and HPV 16 type-specific PCR. HPV DNA methylation status was assessed in three viral regions: E2, L1/L2, and the promoter, using pyrosequencing.Results: Methylation of the HPV E2 region was associated with response to treatment. For cidofovir (n = 30), median E2 methylation was significantly higher in patients who responded (P ≤ 0.0001); E2 methylation >4% predicted response with 88.2% sensitivity and 84.6% specificity. For imiquimod (n = 33), median E2 methylation was lower in patients who responded to treatment (P = 0.03; not significant after Bonferroni correction); E2 methylation <4% predicted response with 70.6% sensitivity and 62.5% specificity.Conclusions: These data indicate that cidofovir and imiquimod may be effective in two biologically defined groups. HPV E2 DNA methylation demonstrated potential as a predictive biomarker for the treatment of VIN with cidofovir and may warrant investigation in a biomarker-guided clinical trial. Clin Cancer Res; 23(18); 5460-8. ©2017 AACR.
Collapse
Affiliation(s)
- Sadie E F Jones
- School of Medicine, Cardiff University, Cardiff, United Kingdom.
| | | | - Christopher N Hurt
- Wales Cancer Trials Unit (WCTU), School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Dean Bryant
- University of Southampton, Southampton, United Kingdom
| | | | - Ned Powell
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
85
|
Shen K, Tu T, Yuan Z, Yi J, Zhou Y, Liao X, Liu Q, Zhou X. DNA methylation dysregulations in valvular atrial fibrillation. Clin Cardiol 2017; 40:686-691. [PMID: 28846808 PMCID: PMC6490353 DOI: 10.1002/clc.22715] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The epigenetic changes underlying the development of atrial fibrillation (AF) remain incompletely understood. Limited evidence suggests that abnormal DNA methylation might be involved in the pathogenesis of AF. In the present study, we evaluated the methylation status of genomic DNA from myocardial tissue in AF patients and sinus rhythm (SR) patients systematically. HYPOTHESIS DNA methylation dysregulations will be associated with valvular AF. METHODS Right atrial myocardial tissue was obtained from rheumatic valvular patients who had undergone valve replacement surgery (SR group, n = 10; AF group, n = 10). The global DNA methylation level, the promoter methylation level of the natriuretic peptide receptor-A gene (NPRA), and its correlation with the mRNA expression level of DNA methyltransferase genes were detected. RESULTS The global DNA methylation level was significantly higher in the AF group than in the SR group (P < 0.05). The NPRA mRNA expression was decreased and the NPRA gene was hypermethylated in the AF group (P < 0.05). Meanwhile, the NPRA mRNA expression level has a negative correlation with the mean methylation level in the promoter region of the NPRA gene. CONCLUSIONS DNA methylation dysregulations may be relevant in the pathogenesis of AF. DNA methyltransferase 3B likely plays an essential role in the DNA methylation dysregulations in AF.
Collapse
Affiliation(s)
- Kangjun Shen
- Department of Cardiovascular Surgery, The Second Xiangya HospitalCentral South UniversityChangshaHunanPR China
| | - Tao Tu
- Department of Cardiovascular Medicine, The Second Xiangya HospitalCentral South UniversityChangshaHunanPR China
| | - Zhaoshun Yuan
- Department of Cardiovascular Surgery, The Second Xiangya HospitalCentral South UniversityChangshaHunanPR China
| | - Jiangfeng Yi
- Department of Cardiovascular Surgery, The Second Xiangya HospitalCentral South UniversityChangshaHunanPR China
| | - Yangzhao Zhou
- Department of Cardiovascular Surgery, The Second Xiangya HospitalCentral South UniversityChangshaHunanPR China
| | - Xiaobo Liao
- Department of Cardiovascular Surgery, The Second Xiangya HospitalCentral South UniversityChangshaHunanPR China
| | - Qiming Liu
- Department of Cardiovascular Medicine, The Second Xiangya HospitalCentral South UniversityChangshaHunanPR China
| | - Xinmin Zhou
- Department of Cardiovascular Surgery, The Second Xiangya HospitalCentral South UniversityChangshaHunanPR China
| |
Collapse
|
86
|
Inhibition studies of DNA methyltransferases by maleimide derivatives of RG108 as non-nucleoside inhibitors. Future Med Chem 2017; 9:1465-1481. [PMID: 28795598 DOI: 10.4155/fmc-2017-0074] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIM DNA methyltransferases (DNMTs) are important drug targets for epigenetic therapy of cancer. Nowadays, non-nucleoside DNMT inhibitors are in development to address high toxicity of nucleoside analogs. However, these compounds still have low activity in cancer cells and mode of action of these compounds remains unclear. MATERIALS & METHODS In this work, we studied maleimide derivatives of RG108 by biochemical, structural and computational approaches to highlight their inhibition mechanism on DNMTs. RESULTS Findings demonstrated a correlation between cytotoxicity on mesothelioma cells of these compounds and their inhibitory potency against DNMTs. Noncovalent and covalent docking studies, supported by crystallographic (apo structure of M.HhaI) and differential scanning fluorimetry assays, provided detailed insights into their mode of action and revealed essential residues for the stabilization of such compounds inside DNMTs. [Formula: see text].
Collapse
|
87
|
Zhang J, Zhao J, Gao N, Wang Y, Chen Y, Han J. MECP2 expression in gastric cancer and its correlation with clinical pathological parameters. Medicine (Baltimore) 2017; 96:e7691. [PMID: 28767600 PMCID: PMC5626154 DOI: 10.1097/md.0000000000007691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
This study is to investigate the expression of methyl CpG binding protein 2 (MECP2) in gastric cancer (GC) and its clinical significance.Expression of MECP2 was analyzed in 69 cases of GC tissues and 12 paracancerous tissues, either by qRT-PCR at the mRNA level or by Western blot and immunochemistry at the protein level. The correlation of MECP2 expression with clinicopathological parameters was analyzed in the 69 GC patients, and validated in data from the TCGA database. The effect of MECP2 expression on survival was also investigated.MECP2 was significantly increased at both mRNA and protein levels in GC compared with paracancerous tissues. MECP2 positive expression was significantly correlated with the TNM stages, histological types, and lymph node metastasis status, but was not correlated with sex or age. Significantly shorter overall survival and disease-free survival was observed in MECP2 positive GC cases compared with the MECP2 negative cases. Univariate and multivariate analyses showed that gender, histological type, lymph node metastasis, and MECP2 expression were independent prognostic factors of GC.The dysregulated expression of MECP2 in GC and its correlation to clinicopathological parameters indicate that MECP2 may regulate the development of GC.
Collapse
|
88
|
Carja O, Plotkin JB. The evolutionary advantage of heritable phenotypic heterogeneity. Sci Rep 2017; 7:5090. [PMID: 28698577 PMCID: PMC5505965 DOI: 10.1038/s41598-017-05214-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 05/25/2017] [Indexed: 11/13/2022] Open
Abstract
Phenotypic plasticity is an evolutionary driving force in diverse biological processes, including the adaptive immune system, the development of neoplasms, and the persistence of pathogens despite drug pressure. It is essential, therefore, to understand the evolutionary advantage of an allele that confers on cells the ability to express a range of phenotypes. Here, we study the fate of a new mutation that allows the expression of multiple phenotypic states, introduced into a finite population of individuals that can express only a single phenotype. We show that the advantage of such a mutation depends on the degree of phenotypic heritability between generations, called phenotypic memory. We analyze the fixation probability of the phenotypically plastic allele as a function of phenotypic memory, the variance of expressible phenotypes, the rate of environmental changes, and the population size. We find that the fate of a phenotypically plastic allele depends fundamentally on the environmental regime. In constant environments, plastic alleles are advantageous and their fixation probability increases with the degree of phenotypic memory. In periodically fluctuating environments, by contrast, there is an optimum phenotypic memory that maximizes the probability of the plastic allele's fixation. This same optimum memory also maximizes geometric mean fitness, in steady state. We interpret these results in the context of previous studies in an infinite-population framework. We also discuss the implications of our results for the design of therapies that can overcome persistence and, indirectly, drug resistance.
Collapse
Affiliation(s)
- Oana Carja
- Department of Biology, University of Pennsylvania, Philadelphia, 19104, USA.
| | - Joshua B Plotkin
- Department of Biology, University of Pennsylvania, Philadelphia, 19104, USA
| |
Collapse
|
89
|
Novohradsky V, Zanellato I, Marzano C, Pracharova J, Kasparkova J, Gibson D, Gandin V, Osella D, Brabec V. Epigenetic and antitumor effects of platinum(IV)-octanoato conjugates. Sci Rep 2017. [PMID: 28623355 PMCID: PMC5473904 DOI: 10.1038/s41598-017-03864-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We present the anticancer properties of cis, cis, trans-[Pt(IV)(NH3)2Cl2(OA)2] [Pt(IV)diOA] (OA = octanoato), Pt(IV) derivative of cisplatin containing two OA units appended to the axial positions of a six-coordinate Pt(IV) center. Our results demonstrate that Pt(IV)diOA is a potent cytotoxic agent against many cancer cell lines (the IC50 values are approximately two orders of magnitude lower than those of clinically used cisplatin or Pt(IV) derivatives with biologically inactive axial ligands). Importantly, Pt(IV)diOA overcomes resistance to cisplatin, is significantly more potent than its branched Pt(IV) valproato isomer and exhibits promising in vivo antitumor activity. The potency of Pt(IV)diOA is a consequence of several factors including enhanced cellular accumulation correlating with enhanced DNA platination and cytotoxicity. Pt(IV)diOA induces DNA hypermethylation and reduces mitochondrial membrane potential in cancer cells at levels markedly lower than the IC50 value of free OA suggesting the synergistic action of platinum and OA moieties. Collectively, the remarkable antitumor effects of Pt(IV)diOA are a consequence of the enhanced cellular uptake which makes it possible to simultaneously accumulate high levels of both cisplatin and OA in cells. The simultaneous dual action of cisplatin and OA by different mechanisms in tumor cells may result in a markedly enhanced and unique antitumor effects of Pt(IV) prodrugs.
Collapse
Affiliation(s)
- Vojtech Novohradsky
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265, Brno, Czech Republic
| | - Ilaria Zanellato
- Dipartimento di Scienze e Innovazione Tecnologica, Universita del Piemonte Orientale, "A. Avogadro"Viale T. Michel 11, 15121, Alessandria, Italy
| | - Cristina Marzano
- Dipartimento di Scienze del Farmaco, Universita di Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Jitka Pracharova
- Department of Biophysics, Centre of the Region Hana for Biotechnological Agricultural Research, Faculty of Science, Palacky University, 17. listopadu 12, CZ-77146, Olomouc, Czech Republic
| | - Jana Kasparkova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265, Brno, Czech Republic
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy, The Hebrew University, Jerusalem, 91120, Israel
| | - Valentina Gandin
- Dipartimento di Scienze del Farmaco, Universita di Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Domenico Osella
- Dipartimento di Scienze e Innovazione Tecnologica, Universita del Piemonte Orientale, "A. Avogadro"Viale T. Michel 11, 15121, Alessandria, Italy.
| | - Viktor Brabec
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265, Brno, Czech Republic.
| |
Collapse
|
90
|
Halby L, Menon Y, Rilova E, Pechalrieu D, Masson V, Faux C, Bouhlel MA, David-Cordonnier MH, Novosad N, Aussagues Y, Samson A, Lacroix L, Ausseil F, Fleury L, Guianvarc'h D, Ferroud C, Arimondo PB. Rational Design of Bisubstrate-Type Analogues as Inhibitors of DNA Methyltransferases in Cancer Cells. J Med Chem 2017; 60:4665-4679. [PMID: 28463515 DOI: 10.1021/acs.jmedchem.7b00176] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aberrant DNA hypermethylation of promoter of tumor suppressor genes is commonly observed in cancer, and its inhibition by small molecules is promising for their reactivation. Here we designed bisubstrate analogues-based inhibitors, by mimicking each substrate, the S-adenosyl-l-methionine and the deoxycytidine, and linking them together. This approach resulted in quinazoline-quinoline derivatives as potent inhibitors of DNMT3A and DNMT1, some showing certain isoform selectivity. We highlighted the importance of (i) the nature and rigidity of the linker between the two moieties for inhibition, as (ii) the presence of the nitrogen on the quinoline group, and (iii) of a hydrophobic group on the quinazoline. The most potent inhibitors induced demethylation of CDKN2A promoter in colon carcinoma HCT116 cells and its reactivation after 7 days of treatment. Furthermore, in a leukemia cell model system, we found a correlation between demethylation of the promoter induced by the treatment, chromatin opening at the promoter, and the reactivation of a reporter gene.
Collapse
Affiliation(s)
- Ludovic Halby
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Yoann Menon
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Elodie Rilova
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Dany Pechalrieu
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Véronique Masson
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Celine Faux
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Mohamed Amine Bouhlel
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, IRCL , 59045 Lille, France
| | - Marie-Hélène David-Cordonnier
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, IRCL , 59045 Lille, France
| | - Natacha Novosad
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Yannick Aussagues
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Arnaud Samson
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | | | - Fréderic Ausseil
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Laurence Fleury
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Dominique Guianvarc'h
- Laboratoire des BioMolécules, UMR 7203, Université Pierre et Marie Curie-Paris 6-ENS-CNRS , 4, place Jussieu, 75252 Paris Cedex 05, France
| | - Clotilde Ferroud
- Laboratoire de Chimie Moléculaire, CMGPCE, EA7341, Conservatoire National des Arts et Métiers , 2 rue Conté, 75003 Paris, France
| | - Paola B Arimondo
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France.,Churchill College , CB3 0DS Cambridge, U.K
| |
Collapse
|
91
|
In silico design of the first DNA-independent mechanism-based inhibitor of mammalian DNA methyltransferase Dnmt1. PLoS One 2017; 12:e0174410. [PMID: 28399172 PMCID: PMC5388339 DOI: 10.1371/journal.pone.0174410] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 03/08/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND We use our earlier experimental studies of the catalytic mechanism of DNA methyltransferases to prepare in silico a family of novel mechanism-based inhibitors of human Dnmt1. Highly specific inhibitors of DNA methylation can be used for analysis of human epigenome and for the creation of iPS cells. RESULTS We describe a set of adenosyl-1-methyl-pyrimidin-2-one derivatives as novel mechanism-based inhibitors of mammalian DNA methyltransferase Dnmt1. The inhibitors have been designed to bind simultaneously in the active site and the cofactor site and thus act as transition-state analogues. Molecular dynamics studies showed that the lead compound can form between 6 to 9 binding interactions with Dnmt1. QM/MM analysis showed that the upon binding to Dnmt1 the inhibitor can form a covalent adduct with active site Cys1226 and thus act as a mechanism-based suicide-inhibitor. The inhibitor can target DNA-bond and DNA-free form of Dnmt1, however the suicide-inhibition step is more likely to happen when DNA is bound to Dnmt1. The validity of presented analysis is described in detail using 69 modifications in the lead compound structure. In total 18 of the presented 69 modifications can be used to prepare a family of highly specific inhibitors that can differentiate even between closely related enzymes such as Dnmt1 and Dnmt3a DNA methyltransferases. CONCLUSIONS Presented results can be used for preparation of some highly specific and potent inhibitors of mammalian DNA methylation with specific pharmacological properties.
Collapse
|
92
|
Berndsen RH, Abdul UK, Weiss A, Zoetemelk M, te Winkel MT, Dyson PJ, Griffioen AW, Nowak-Sliwinska P. Epigenetic approach for angiostatic therapy: promising combinations for cancer treatment. Angiogenesis 2017; 20:245-267. [DOI: 10.1007/s10456-017-9551-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 03/10/2017] [Indexed: 12/15/2022]
|
93
|
Biergans SD, Claudianos C, Reinhard J, Galizia CG. DNA methylation mediates neural processing after odor learning in the honeybee. Sci Rep 2017; 7:43635. [PMID: 28240742 PMCID: PMC5378914 DOI: 10.1038/srep43635] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/26/2017] [Indexed: 01/04/2023] Open
Abstract
DNA methyltransferases (Dnmts) - epigenetic writers catalyzing the transfer of methyl-groups to cytosine (DNA methylation) - regulate different aspects of memory formation in many animal species. In honeybees, Dnmt activity is required to adjust the specificity of olfactory reward memories and bees' relearning capability. The physiological relevance of Dnmt-mediated DNA methylation in neural networks, however, remains unknown. Here, we investigated how Dnmt activity impacts neuroplasticity in the bees' primary olfactory center, the antennal lobe (AL) an equivalent of the vertebrate olfactory bulb. The AL is crucial for odor discrimination, an indispensable process in forming specific odor memories. Using pharmacological inhibition, we demonstrate that Dnmt activity influences neural network properties during memory formation in vivo. We show that Dnmt activity promotes fast odor pattern separation in trained bees. Furthermore, Dnmt activity during memory formation increases both the number of responding glomeruli and the response magnitude to a novel odor. These data suggest that Dnmt activity is necessary for a form of homoeostatic network control which might involve inhibitory interneurons in the AL network.
Collapse
Affiliation(s)
- Stephanie D Biergans
- Queensland Brain Institute, The University of Queensland, Australia.,Neurobiologie, Universität Konstanz, Germany
| | - Charles Claudianos
- Queensland Brain Institute, The University of Queensland, Australia.,Monash Institute of Cognitive and Clinical Neuroscience, Faculty of Medicine, Nursing Health and Sciences, Monash University, Australia
| | - Judith Reinhard
- Queensland Brain Institute, The University of Queensland, Australia
| | | |
Collapse
|
94
|
Lindsay C, Seikaly H, Biron VL. Epigenetics of oropharyngeal squamous cell carcinoma: opportunities for novel chemotherapeutic targets. J Otolaryngol Head Neck Surg 2017; 46:9. [PMID: 28143553 PMCID: PMC5282807 DOI: 10.1186/s40463-017-0185-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/20/2017] [Indexed: 12/29/2022] Open
Abstract
Epigenetic modifications are heritable changes in gene expression that do not directly alter DNA sequence. These modifications include DNA methylation, histone post-translational modifications, small and non-coding RNAs. Alterations in epigenetic profiles cause deregulation of fundamental gene expression pathways associated with carcinogenesis. The role of epigenetics in oropharyngeal squamous cell carcinoma (OPSCC) has recently been recognized, with implications for novel biomarkers, molecular diagnostics and chemotherapeutics. In this review, important epigenetic pathways in human papillomavirus (HPV) positive and negative OPSCC are summarized, as well as the potential clinical utility of this knowledge.This material has never been published and is not currently under evaluation in any other peer-reviewed publication.
Collapse
Affiliation(s)
- Cameron Lindsay
- Faculty of Medicine and Dentistry, Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Alberta, 1E4.34 WMC, 8440 112 Street, Edmonton, AB, T6G 2B7, Canada
| | - Hadi Seikaly
- Faculty of Medicine and Dentistry, Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Alberta, 1E4.34 WMC, 8440 112 Street, Edmonton, AB, T6G 2B7, Canada
| | - Vincent L Biron
- Faculty of Medicine and Dentistry, Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Alberta, 1E4.34 WMC, 8440 112 Street, Edmonton, AB, T6G 2B7, Canada.
| |
Collapse
|
95
|
Castillo-Aguilera O, Depreux P, Halby L, Arimondo PB, Goossens L. DNA Methylation Targeting: The DNMT/HMT Crosstalk Challenge. Biomolecules 2017; 7:biom7010003. [PMID: 28067760 PMCID: PMC5372715 DOI: 10.3390/biom7010003] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/08/2016] [Accepted: 12/12/2016] [Indexed: 12/22/2022] Open
Abstract
Chromatin can adopt a decondensed state linked to gene transcription (euchromatin) and a condensed state linked to transcriptional repression (heterochromatin). These states are controlled by epigenetic modulators that are active on either the DNA or the histones and are tightly associated to each other. Methylation of both DNA and histones is involved in either the activation or silencing of genes and their crosstalk. Since DNA/histone methylation patterns are altered in cancers, molecules that target these modifications are interesting therapeutic tools. We present herein a vast panel of DNA methyltransferase inhibitors classified according to their mechanism, as well as selected histone methyltransferase inhibitors sharing a common mode of action.
Collapse
Affiliation(s)
- Omar Castillo-Aguilera
- Univ. Lille, ICPAL, EA 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, 3 rue du Pr. Laguesse, F-59000 Lille, France.
| | - Patrick Depreux
- Univ. Lille, ICPAL, EA 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, 3 rue du Pr. Laguesse, F-59000 Lille, France.
| | - Ludovic Halby
- FRE3600 Epigenetic Targeting of Cancer, CNRS, 31035 Toulouse, France.
| | - Paola B Arimondo
- FRE3600 Epigenetic Targeting of Cancer, CNRS, 31035 Toulouse, France.
- Churchill College, Cambridge CB3 0DS, UK.
| | - Laurence Goossens
- Univ. Lille, ICPAL, EA 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, 3 rue du Pr. Laguesse, F-59000 Lille, France.
| |
Collapse
|
96
|
García-Jacas CR, Martinez-Mayorga K, Marrero-Ponce Y, Medina-Franco JL. Conformation-dependent QSAR approach for the prediction of inhibitory activity of bromodomain modulators. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2017; 28:41-58. [PMID: 28161994 DOI: 10.1080/1062936x.2017.1278616] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/22/2016] [Indexed: 06/06/2023]
Abstract
Epigenetic drug discovery is a promising research field with growing interest in the scientific community, as evidenced by the number of publications and the large amount of structure-epigenetic activity information currently available in the public domain. Computational methods are valuable tools to analyse and understand the activity of large compound collections from their structural information. In this manuscript, QSAR models to predict the inhibitory activity of a diverse and heterogeneous set of 88 organic molecules against the bromodomains BRD2, BRD3 and BRD4 are presented. A conformation-dependent representation of the chemical structures was established using the RDKit software and a training and test set division was performed. Several two-linear and three-linear QuBiLS-MIDAS molecular descriptors ( www.tomocomd.com ) were computed to extract the geometric structural features of the compounds studied. QuBiLS-MIDAS-based features sets, to be used in the modelling, were selected using dimensionality reduction strategies. The multiple linear regression procedure coupled with a genetic algorithm were employed to build the predictive models. Regression models containing between 6 to 9 variables were developed and assessed according to several internal and external validation methods. Analyses of outlier compounds and the applicability domain for each model were performed. As a result, the models against BRD2 and BRD3 with 8 variables and the model with 9 variables against BRD4 were those with the best overall performance according to the criteria accounted for. The results obtained suggest that the models proposed will be a good tool for studying the inhibitory activities of drug candidates against the bromodomains considered during epigenetic drug discovery.
Collapse
Affiliation(s)
- C R García-Jacas
- a Instituto de Química, Universidad Nacional Autónoma de México (UNAM) , Ciudad de México , México
- b Escuela de Sistemas y Computación , Pontificia Universidad Católica del Ecuador Sede Esmeraldas (PUCESE) , Esmeraldas , Ecuador
- c Grupo de Investigación de Bioinformática , Universidad de las Ciencias Informáticas (UCI) , La Habana , Cuba
| | - K Martinez-Mayorga
- a Instituto de Química, Universidad Nacional Autónoma de México (UNAM) , Ciudad de México , México
| | - Y Marrero-Ponce
- d Grupo de Medicina Molecular y Traslacional (MeM&T) , Universidad San Francisco de Quito (USFQ) , Quito , Ecuador
- e Grupo de Investigación Ambiental (GIA) , Fundación Universitaria Tecnológica de Comfenalco , Bolívar , Colombia
| | - J L Medina-Franco
- f Departamento de Farmacia , Universidad Nacional Autónoma de México (UNAM) , Ciudad de México , México
| |
Collapse
|
97
|
Huang J, Li XY, Du YC, Zhang LN, Liu KK, Zhu LN, Kong DM. Sensitive fluorescent detection of DNA methyltransferase using nicking endonuclease-mediated multiple primers-like rolling circle amplification. Biosens Bioelectron 2016; 91:417-423. [PMID: 28063390 DOI: 10.1016/j.bios.2016.12.061] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/13/2016] [Accepted: 12/29/2016] [Indexed: 11/19/2022]
Abstract
Sensitive and reliable detection of DNA methyltransferase (MTase) is of great significance for both early tumor diagnosis and therapy. In this study, a simple, label-free and sensitive DNA MTase-sensing method was developed on the basis of a nicking endonuclease-mediated multiple primers-like rolling circle amplification (RCA) strategy. In this method, a dumbbell RCA template was prepared by blunt-end ligation of two molecules of hairpin DNA. In addition to the primer-binding sequence, the dumbbell template contained another three important parts: 5'-CCGG-3' sequences in double-stranded stems, nicking endonuclease recognition sites and C-rich sequences in single-stranded loops. The introduction of 5'-CCGG-3' sequences allows the dumbbell template to be destroyed by the restriction endonuclease, HpaII, but is not destroyed in the presence of the target MTase-M.SssI MTase. The introduction of nicking endonuclease recognition sites makes the M.SssI MTase-protected dumbbell template-mediated RCA proceed in a multiple primers-like exponential mode, thus providing the RCA with high amplification efficiency. The introduction of C-rich sequences may promote the folding of amplification products into a G-quadruplex structure, which is specifically recognized by the commercially available fluorescent probe thioflavin T. Improved RCA amplification efficiency and specific fluorescent recognition of RCA products provide the M.SssI MTase-sensing platform with high sensitivity. When a dumbbell template containing four nicking endonuclease sites is used, highly specific M.SssI MTase activity detection can be achieved in the range of 0.008-50U/mL with a detection limit as low as 0.0011U/mL. Simple experimental operation and mix-and-detection fluorescent sensing mode ensures that M.SssI MTase quantitation works well in a real-time RCA mode, thus further simplifying the sensing performance and making high throughput detection possible. The proposed MTase-sensing strategy was also demonstrated to be applicable for screening and evaluating the inhibitory activity of MTase inhibitors.
Collapse
Affiliation(s)
- Juan Huang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, PR China
| | - Xiao-Yu Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, PR China
| | - Yi-Chen Du
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, PR China
| | - Li-Na Zhang
- Department of Chemistry, Tianjin University, Tianjin 300072, PR China
| | - Ke-Ke Liu
- Department of Chemistry, Tianjin University, Tianjin 300072, PR China
| | - Li-Na Zhu
- Department of Chemistry, Tianjin University, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, PR China.
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, PR China.
| |
Collapse
|
98
|
Qi Y, Wang D, Wang D, Jin T, Yang L, Wu H, Li Y, Zhao J, Du F, Song M, Wang R. HEDD: the human epigenetic drug database. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2016; 2016:baw159. [PMID: 28025347 PMCID: PMC5199199 DOI: 10.1093/database/baw159] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/06/2016] [Accepted: 11/06/2016] [Indexed: 01/08/2023]
Abstract
Epigenetic drugs are chemical compounds that target disordered post-translational modification of histone proteins and DNA through enzymes, and the recognition of these changes by adaptor proteins. Epigenetic drug-related experimental data such as gene expression probed by high-throughput sequencing, co-crystal structure probed by X-RAY diffraction and binding constants probed by bio-assay have become widely available. The mining and integration of multiple kinds of data can be beneficial to drug discovery and drug repurposing. HEMD and other epigenetic databases store comprehensively epigenetic data where users can acquire segmental information of epigenetic drugs. However, some data types such as high-throughput datasets are not provide by these databases and they do not support flexible queries for epigenetic drug-related experimental data. Therefore, in reference to HEMD and other epigenetic databases, we developed a relatively comprehensive database for human epigenetic drugs. The human epigenetic drug database (HEDD) focuses on the storage and integration of epigenetic drug datasets obtained from laboratory experiments and manually curated information. The latest release of HEDD incorporates five kinds of datasets: (i) drug, (ii) target, (iii) disease, (vi) high-throughput and (v) complex. In order to facilitate data extraction, flexible search options were built in HEDD, which allowed an unlimited condition query for specific kinds of datasets using drug names, diseases and experiment types. Database URL:http://hedds.org/
Collapse
Affiliation(s)
- Yunfeng Qi
- Department of Bioscience, School of Life Science, Jilin Normal University, Siping, China
| | - Dadong Wang
- Department of Computer Science and Technology, Computer College, Jilin Normal University, Siping, China
| | - Daying Wang
- Department of Social Physical Education, Physical Education College, Jilin Normal University, Siping, China
| | - Taicheng Jin
- Department of Biotechnology, School of Life Science, Jilin Normal University, Siping, China
| | - Liping Yang
- Department of Bioscience, School of Life Science, Jilin Normal University, Siping, China
| | - Hui Wu
- Department of Bioscience, School of Life Science, Jilin Normal University, Siping, China
| | - Yaoyao Li
- Department of Bioscience, School of Life Science, Jilin Normal University, Siping, China
| | - Jing Zhao
- Department of Bioscience, School of Life Science, Jilin Normal University, Siping, China
| | - Fengping Du
- Department of Bioscience, School of Life Science, Jilin Normal University, Siping, China
| | - Mingxia Song
- Department of Bioscience, School of Life Science, Jilin Normal University, Siping, China
| | - Renjun Wang
- Department of Biotechnology, School of Life Science, Jilin Normal University, Siping, China
| |
Collapse
|
99
|
Pechalrieu D, Etievant C, Arimondo PB. DNA methyltransferase inhibitors in cancer: From pharmacology to translational studies. Biochem Pharmacol 2016; 129:1-13. [PMID: 27956110 DOI: 10.1016/j.bcp.2016.12.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/07/2016] [Indexed: 12/31/2022]
Abstract
DNA methylation is a mammalian epigenetic mark that participates to define where and when genes are expressed, both in normal cells and in the context of diseases. Like other epigenetic marks, it is reversible and can be modulated by chemical agents. Because it plays an important role in cancer by silencing certain genes, such as tumour suppressor genes, it is a promising therapeutic target. Two compounds are already approved to treat haematological cancers, and many efforts have been carried out to discover new molecules that inhibit DNA methyltransferases, the enzymes responsible for DNA methylation. Here, we analyse the molecular mechanisms and cellular pharmacology of these inhibitors, pointing out the necessity for new pharmacological models and paradigms. The parameters of pharmacological responses need to be redefined: the aim is cellular reprogramming rather than general cytotoxicity. Thus, "epigenetic" rather than cytotoxic dosages are defined. Another issue is the delay of the response: cellular reprogramming can take several generations to produce observable phenotypes. Is this compatible with laboratory scale experiments? Finally, it is important to consider the specificity for cancer cells compared to normal cells and the appearance of resistance. We also discuss different techniques that are used and the selection of pharmacological models.
Collapse
Affiliation(s)
- Dany Pechalrieu
- Unité de Service et de Recherche CNRS-Pierre Fabre USR3388, CNRS FRE3600, ETaC, Epigenetic Targeting of Cancer, Toulouse, France
| | - Chantal Etievant
- Unité de Service et de Recherche CNRS-Pierre Fabre USR3388, CNRS FRE3600, ETaC, Epigenetic Targeting of Cancer, Toulouse, France
| | - Paola B Arimondo
- Unité de Service et de Recherche CNRS-Pierre Fabre USR3388, CNRS FRE3600, ETaC, Epigenetic Targeting of Cancer, Toulouse, France.
| |
Collapse
|
100
|
Increased Global DNA Methylation and Decreased TGFβ1 Promoter Methylation in Glaucomatous Lamina Cribrosa Cells. J Glaucoma 2016; 25:e834-e842. [DOI: 10.1097/ijg.0000000000000453] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|