51
|
Kiani BH, Kayani WK, Khayam AU, Dilshad E, Ismail H, Mirza B. Artemisinin and its derivatives: a promising cancer therapy. Mol Biol Rep 2020; 47:6321-6336. [PMID: 32710388 DOI: 10.1007/s11033-020-05669-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022]
Abstract
The world is experiencing a cancer epidemic and an increase in the prevalence of the disease. Cancer remains a major killer, accounting for more than half a million deaths annually. There is a wide range of natural products that have the potential to treat this disease. One of these products is artemisinin; a natural product from Artemisia plant. The Nobel Prize for Medicine was awarded in 2015 for the discovery of artemisinin in recognition of the drug's efficacy. Artemisinin produces highly reactive free radicals by the breakdown of two oxygen atoms that kill cancerous cells. These cells sequester iron and accumulate as much as 1000 times in comparison with normal cells. Generally, chemotherapy is toxic to both cancerous cells and normal cells, while no significant cytotoxicity from artemisinin to normal cells has been found in more than 4000 case studies, which makes it far different than conventional chemotherapy. The pleiotropic response of artemisinin in cancer cells is responsible for growth inhibition by multiple ways including inhibition of angiogenesis, apoptosis, cell cycle arrest, disruption of cell migration, and modulation of nuclear receptor responsiveness. It is very encouraging that artemisinin and its derivatives are anticipated to be a novel class of broad-spectrum antitumor agents based on efficacy and safety. This review aims to highlight these achievements and propose potential strategies to develop artemisinin and its derivatives as a new class of cancer therapeutic agents.
Collapse
Affiliation(s)
- Bushra Hafeez Kiani
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad, 44000, Pakistan.
| | - Waqas Khan Kayani
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, 23053, Alnarp, Sweden
| | - Asma Umer Khayam
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Erum Dilshad
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Hammad Ismail
- Department of Biochemistry and Molecular Biology, University of Gujrat, Gujrat, 50700, Pakistan
| | - Bushra Mirza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| |
Collapse
|
52
|
Lewicky JD, Fraleigh NL, Boraman A, Martel AL, Nguyen TMD, Schiller PW, Shiao TC, Roy R, Montaut S, Le HT. Mannosylated glycoliposomes for the delivery of a peptide kappa opioid receptor antagonist to the brain. Eur J Pharm Biopharm 2020; 154:290-296. [PMID: 32717389 DOI: 10.1016/j.ejpb.2020.07.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 06/03/2020] [Accepted: 07/21/2020] [Indexed: 10/23/2022]
Abstract
Dynantin is a potent and selective synthetic polypeptide kappa opioid receptor antagonist which has potential antidepressant and anxiolytic-like therapeutic applications, however its clinical development has been hampered by plasma stability issues and poor penetration of the blood brain barrier. Targeted liposome delivery systems represent a promising and non-invasive approach to improving the delivery of therapeutic agents across the blood brain barrier. As part of our work focused on targeted drug delivery, we have developed a novel mannosylated liposome system. Herein, we investigate these glycoliposomes for the targeted delivery of dynantin to the central nervous system. Cholesterol was tested and optimized as a formulation excipient, where it improved particle stability as measured via particle size, entrapment and ex vivo plasma stability of dynantin. The in vitro PRESTO-TANGO assay system was used to confirm that glycoliposomal entrapment did not impact the affinity or activity of the peptide at its receptor. Finally, in vivo distribution studies in mice showed that the mannosylated glycoliposomes significantly improved delivery of dynantin to the brain. Overall, the results clearly demonstrate the potential of our glycoliposomes as a targeted delivery system for therapeutic agents of the central nervous system.
Collapse
Affiliation(s)
- Jordan D Lewicky
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, Ontario P3E 2H2, Canada
| | - Nya L Fraleigh
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, Ontario P3E 2H2, Canada
| | - Amanda Boraman
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, Ontario P3E 2H2, Canada; Department of Chemistry and Biochemistry, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada
| | - Alexandrine L Martel
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, Ontario P3E 2H2, Canada
| | - Thi M-D Nguyen
- Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, 110 Pine Avenue W, Montreal, Quebec H2W 1R7, Canada
| | - Peter W Schiller
- Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, 110 Pine Avenue W, Montreal, Quebec H2W 1R7, Canada; Department of Pharmacology and Physiology, University of Montreal, 2900 Boulevard Édouard-Montpetit, Montreal, Quebec H3T 1J4, Canada
| | - Tze Chieh Shiao
- Department of Chemistry, Université du Québec à Montréal, Montreal, Quebec H3C 3P8, Canada
| | - René Roy
- Department of Chemistry, Université du Québec à Montréal, Montreal, Quebec H3C 3P8, Canada
| | - Sabine Montaut
- Department of Chemistry and Biochemistry, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada; Biomolecular Sciences Programme, Laurentian University, Subdury, Ontario, Canada
| | - Hoang-Thanh Le
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, Ontario P3E 2H2, Canada; Department of Chemistry and Biochemistry, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada; Northern Ontario School of Medicine, Medicinal Sciences Division, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada; Department of Biology, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada.
| |
Collapse
|
53
|
Kim HJ, Kang SU, Lee YS, Jang JY, Kang H, Kim CH. Protective Effects of N-Acetylcysteine against Radiation-Induced Oral Mucositis In Vitro and In Vivo. Cancer Res Treat 2020; 52:1019-1030. [PMID: 32599978 PMCID: PMC7577823 DOI: 10.4143/crt.2020.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Radiation-induced oral mucositis limits delivery of high-dose radiation to targeted cancers. Therefore, it is necessary to develop a treatment strategy to alleviate radiation-induced oral mucositis during radiation therapy. We previously reported that inhibiting reactive oxygen species (ROS) generation suppresses autophagy. Irradiation induces autophagy, suggesting that antioxidant treatment may be used to inhibit radiation-induced oral mucositis. Materials and Methods We determined whether treatment with N-acetyl cysteine (NAC) could attenuate radiation-induced buccal mucosa damage in vitro and in vivo. The protective effects of NAC against oral mucositis were confirmed by transmission electron microscopy and immunocytochemistry. mRNA and protein levels of DNA damage and autophagy-related genes were measured by quantitative real-time polymerase chain reaction and western blot analysis, respectively. RESULTS Rats manifesting radiation-induced oral mucositis showed decreased oral intake, loss of body weight, and low survival rate. NAC intake slightly increased oral intake, body weight, and the survival rate without statistical significance. However, histopathologic characteristics were markedly restored in NAC-treated irradiated rats. LC3B staining of rat buccal mucosa revealed that NAC treatment significantly decreased the number of radiation-induced autophagic cells. Further, NAC inhibited radiation-induced ROS generation and autophagy signaling. In vitro, NAC treatment significantly reduced the expression of NRF2, LC3B, p62, and Beclin-1 in keratinocytes compared with that after radiation treatment. CONCLUSION NAC treatment significantly inhibited radiation-induced autophagy in keratinocytes and rat buccal mucosa and may be a potentially safe and effective option for the prevention of radiation-induced buccal mucosa damage.
Collapse
Affiliation(s)
- Haeng Jun Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Sung Un Kang
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Korea
| | - Yun Sang Lee
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Korea
| | - Jeon Yeob Jang
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Korea
| | - Hami Kang
- Program of Public Health Studies, Johns Hopkins University, Baltimore, MD, USA
| | - Chul-Ho Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
54
|
Li XY, Wang JH, Gu LY, Yao XM, Cai FY, Jing M, Li XT, Ju RJ. Dual variable of drug loaded micelles in both particle and electrical charge on gastric cancer treatment. J Drug Target 2020; 28:1071-1084. [PMID: 32484364 DOI: 10.1080/1061186x.2020.1777419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Gastric cancer is a malignant tumour characterised by the uncontrolled cell growth. The incidence and mortality of gastric cancer remain high for the invasion and metastasis. We are urgently seeking a risk-free and effective treatment strategy for gastric cancer. In this study, paclitaxel and tetrandrine were encapsulated in the inner core of micelles, and DSPE-PEG2000-CPP and HA were modified on the micellar surface. HA/CPP modified paclitaxel plus tetrandrine micelles had a suitable particle size (90 nm) for permeating tumour tissue. The zeta potential of the targeting micelles was 8.37 mV after hydrolysis by HAase solution. Results of in vitro experiments indicated that HA/CPP modified paclitaxel plus tetrandrine micelles + HAase could enhance the intracellular uptake, inhibit the formation of neovascularization, block the process of EMT and destroy the invasion and metastasis. In vivo assays indicated that HA/CPP modified paclitaxel plus tetrandrine micelles could be selectively accumulated into tumour sites and exhibited the strong antitumor activity with negligible toxicity. These results suggested that HA/CPP modified paclitaxel plus tetrandrine micelles might provide a new strategy for treating gastric cancer.
Collapse
Affiliation(s)
- Xiu-Ying Li
- School of Pharmacy, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Jian-Hua Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Li-Yan Gu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xue-Min Yao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Fu-Yi Cai
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Ming Jing
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Rui-Jun Ju
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| |
Collapse
|
55
|
Kim HK, Baek AR, Choi G, Lee JJ, Yang JU, Jung H, Lee T, Kim D, Kim M, Cho A, Lee GH, Chang Y. Highly brain-permeable apoferritin nanocage with high dysprosium loading capacity as a new T2 contrast agent for ultra-high field magnetic resonance imaging. Biomaterials 2020; 243:119939. [DOI: 10.1016/j.biomaterials.2020.119939] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 02/14/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
|
56
|
Cai H, Liu W, Liu X, Li Z, Feng T, Xue Y, Liu Y. Advances and Prospects of Vasculogenic Mimicry in Glioma: A Potential New Therapeutic Target? Onco Targets Ther 2020; 13:4473-4483. [PMID: 32547078 PMCID: PMC7247597 DOI: 10.2147/ott.s247855] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022] Open
Abstract
Vasculogenic mimicry (VM) is the formation of a “vessel-like” structure without endothelial cells. VM exists in vascular-dependent solid tumors and is a special blood supply source involved in the highly invasive tumor progression. VM is observed in a variety of human malignant tumors and is closely related to tumor proliferation, invasion, and recurrence. Here, we review the mechanism, related signaling pathways, and molecular regulation of VM in glioma and discuss current research problems and the potential future applications of VM in glioma treatment. This review may provide a new viewpoint for glioma therapy.
Collapse
Affiliation(s)
- Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, People's Republic of China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang 110004, People's Republic of China
| | - Wenjing Liu
- Department of Geriatrics, First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, People's Republic of China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang 110004, People's Republic of China
| | - Zhiqing Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, People's Republic of China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang 110004, People's Republic of China
| | - Tianda Feng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, People's Republic of China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang 110004, People's Republic of China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, People's Republic of China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang 110004, People's Republic of China
| |
Collapse
|
57
|
Khatri H, Chokshi N, Rawal S, Patel BM, Badanthadka M, Patel MM. Fabrication and in vivo evaluation of ligand appended paclitaxel and artemether loaded lipid nanoparticulate systems for the treatment of NSCLC: A nanoparticle assisted combination oncotherapy. Int J Pharm 2020; 583:119386. [PMID: 32376440 DOI: 10.1016/j.ijpharm.2020.119386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/03/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
The aim of present study was to develop folate appended PEGylated solid lipid nanoparticles(SLNs) of paclitaxel(FPS) and artemether(FAS). The SLNs were prepared by employing high pressure homogenization technique. The results of MTT assays revealed better cytotoxicity of FPS when given in combination with FAS on human lung cancer cell line H-1299 as compared to pure drugs, unconjugated SLNs and FPS alone. The cellular uptake of FPS and FAS was confirmed by fluorescence imaging and flow cytometric analysis. In-vivo pharmacokinetic study revealed better absorption and long circulation of FPS and FAS, which further leads to increased relative bioavailability of drugs(13.81-folds and 7.07-folds for PTX and ART, respectively) as compared to their solutions counterpart. In-vivo pharmacodynamic study confirmed tumor regression of developed SLNs formulations, which was observed highest when used in combination of FPS and FAS. Serum creatinine, blood urea nitrogen(BUN), SGOT, albumin and total protein levels revealed that formulated FPS and FAS does not exhibit any renal and hepatic toxicity. It can be concluded that by administering ART-SLNs along with PTX-SLNs via oral route, anticancer potential of PTX was improved without any toxicity (both renal, hepatic), thus, indicating the potential of developed formulations in reducing dose related toxicity of PTX.
Collapse
Affiliation(s)
- Hiren Khatri
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India
| | - Nimitt Chokshi
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India
| | - Shruti Rawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India
| | - Bhoomika M Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India
| | - Murali Badanthadka
- Deputy Director at NUCARE, Paneer Campus, Deralakatte, Mangalore 575 018, India
| | - Mayur M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India.
| |
Collapse
|
58
|
Kong L, Li XT, Ni YN, Xiao HH, Yao YJ, Wang YY, Ju RJ, Li HY, Liu JJ, Fu M, Wu YT, Yang JX, Cheng L. Transferrin-Modified Osthole PEGylated Liposomes Travel the Blood-Brain Barrier and Mitigate Alzheimer's Disease-Related Pathology in APP/PS-1 Mice. Int J Nanomedicine 2020; 15:2841-2858. [PMID: 32425521 PMCID: PMC7186891 DOI: 10.2147/ijn.s239608] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/06/2020] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Osthole (Ost) is a coumarin compound that strengthens hippocampal neurons and neural stem cells against Aβ oligomer-induced neurotoxicity in mice, and is a potential drug for the treatment of Alzheimer's disease (AD). However, the effectiveness of the drug is limited by its solubility and bioavailability, as well as by the low permeability of the blood-brain barrier (BBB). In this study, a kind of transferrin-modified Ost liposomes (Tf-Ost-Lip) was constructed, which could improve the bioavailability and enhance brain targeting. METHODS Tf-Ost-Lip was prepared by thin-film hydration method. The ability of liposomal formulations to translocate across BBB was investigated using in vitro BBB model. And the protective effect of Tf-Ost-Lip was evaluated in APP-SH-SY5Y cells. In addition, we performed pharmacokinetics study and brain tissue distribution analysis of liposomal formulations in vivo. We also observed the neuroprotective effect of the varying formulations in APP/PS-1 mice. RESULTS In vitro studies reveal that Tf-Ost-Lip could increase the intracellular uptake of hCMEC/D3 cells and APP-SH-SY5Y cells, and increase the drug concentration across the BBB. Additionally, Tf-Ost-Lip was found to exert a protective effect on APP-SH-SY5Y cells. In vivo studies of pharmacokinetics and the Ost distribution in brain tissue indicate that Tf-Ost-Lip prolonged the cycle time in mice and increased the accumulation of Ost in the brain. Furthermore, Tf-Ost-Lip was also found to enhance the effect of Ost on the alleviation of Alzheimer's disease-related pathology. CONCLUSION Transferrin-modified liposomes for delivery of Ost has great potential for AD treatment.
Collapse
Affiliation(s)
- Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian116600, People’s Republic of China
| | - Xue-tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian116600, People’s Republic of China
| | - Ying-nan Ni
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian116600, People’s Republic of China
| | - Hong-he Xiao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian116600, People’s Republic of China
| | - Ying-jia Yao
- College of Life and Health Sciences, Northeastern University, Shenyang110819, People’s Republic of China
| | - Yuan-yuan Wang
- Department of Pharmacy, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning116001, People’s Republic of China
| | - Rui-jun Ju
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing102617, People’s Republic of China
| | - Hong-yan Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian116600, People’s Republic of China
| | - Jing-jing Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian116600, People’s Republic of China
| | - Min Fu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian116600, People’s Republic of China
| | - Yu-tong Wu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian116600, People’s Republic of China
| | - Jing-xian Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian116600, People’s Republic of China
| | - Lan Cheng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian116600, People’s Republic of China
| |
Collapse
|
59
|
Li J, Chai Z, Lu J, Xie C, Ran D, Wang S, Zhou J, Lu W. ɑ vβ 3-targeted liposomal drug delivery system with attenuated immunogenicity enabled by linear pentapeptide for glioma therapy. J Control Release 2020; 322:542-554. [PMID: 32277962 DOI: 10.1016/j.jconrel.2020.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/26/2020] [Accepted: 04/05/2020] [Indexed: 01/20/2023]
Abstract
Owing to the binding capacity to ɑvβ3 integrin overexpressed on glioma, vasculogenic mimicry and neovasculature, the peptide c(RGDyK) has been exploited pervasively to functionalize nanocarriers for targeted delivery of bioactives. The former study in our group substantiated the immunotoxicity of c(RGDyK)-modified liposome, and this unfavorable immunogenicity is known to compromise blood circulation, targeting efficacy and therapeutic outcome. Therefore, we need to find a superior alternative ligand in order to evade the exquisite immuno-sensitization. We developed mn by structure-guided peptide design and retro-inverso isomerization technique, which was experimentally substantiated to have exceptional binding affinity to ɑvβ3 integrin. Besides mn does not have affinity toward normal liver cells and kidney cells, which c(RGDyK) possesses in a certain degree. Warranting that mn and c(RGDyK) anchored ɑvβ3, we formulated peptide-tethered liposomes and investigated in vivo bio-fate. Compared with c(RGDyK)-modified liposome, mn-modified liposome presented longer blood circulation and reduced ingestion by Kupffer cells with decreased retention in liver accordingly, benefitting from attenuated anti-liposome IgG and IgM response elicited by multiple sequential doses. Those merits strengthened the anti-glioma efficacy of ɑvβ3-targeted doxorubicin-loaded liposomes, proving the importance of immunocompatibility in process of targeted drug delivery.
Collapse
Affiliation(s)
- Jinyang Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, Shanghai 201203, China
| | - Zhilan Chai
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, Shanghai 201203, China
| | - Jiasheng Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, Shanghai 201203, China
| | - Cao Xie
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, Shanghai 201203, China
| | - Danni Ran
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, Shanghai 201203, China
| | - Songli Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, Shanghai 201203, China
| | - Jianfen Zhou
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, Shanghai 201203, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, Shanghai 201203, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China; Zhongshan Hospital and Institute of Fudan-Minghang Academic Health System, Minghang Hospital, Fudan University, Shanghai 201199, China; The Institutes of Integrative Medicine of Fudan University, Shanghai 200041, China.
| |
Collapse
|
60
|
Ahir BK, Engelhard HH, Lakka SS. Tumor Development and Angiogenesis in Adult Brain Tumor: Glioblastoma. Mol Neurobiol 2020; 57:2461-2478. [PMID: 32152825 PMCID: PMC7170819 DOI: 10.1007/s12035-020-01892-8] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 02/14/2020] [Indexed: 02/07/2023]
Abstract
Angiogenesis is the growth of new capillaries from the preexisting blood vessels. Glioblastoma (GBM) tumors are highly vascularized tumors, and glioma growth depends on the formation of new blood vessels. Angiogenesis is a complex process involving proliferation, migration, and differentiation of vascular endothelial cells (ECs) under the stimulation of specific signals. It is controlled by the balance between its promoting and inhibiting factors. Various angiogenic factors and genes have been identified that stimulate glioma angiogenesis. Therefore, attention has been directed to anti-angiogenesis therapy in which glioma proliferation is inhibited by inhibiting the formation of new tumor vessels using angiogenesis inhibitory factors and drugs. Here, in this review, we highlight and summarize the various molecular mediators that regulate GBM angiogenesis with focus on recent clinical research on the potential of exploiting angiogenic pathways as a strategy in the treatment of GBM patients.
Collapse
Affiliation(s)
- Bhavesh K Ahir
- Section of Hematology and Oncology, University of Illinois College of Medicine at Chicago, Chicago, IL, 60612, USA
| | - Herbert H Engelhard
- Department of Neurosurgery, University of Illinois College of Medicine at Chicago, Chicago, IL, 60612, USA
| | - Sajani S Lakka
- Section of Hematology and Oncology, University of Illinois College of Medicine at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
61
|
Preparation, characterization, and evaluation of the anticancer activity of artemether-loaded nano-niosomes against breast cancer. Breast Cancer 2019; 27:243-251. [DOI: 10.1007/s12282-019-01014-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/03/2019] [Indexed: 11/27/2022]
|
62
|
Ruan S, Xie R, Qin L, Yu M, Xiao W, Hu C, Yu W, Qian Z, Ouyang L, He Q, Gao H. Aggregable Nanoparticles-Enabled Chemotherapy and Autophagy Inhibition Combined with Anti-PD-L1 Antibody for Improved Glioma Treatment. NANO LETTERS 2019; 19:8318-8332. [PMID: 31610656 DOI: 10.1021/acs.nanolett.9b03968] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Shaobo Ruan
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P.R. China
| | - Rou Xie
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P.R. China
| | - Lin Qin
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P.R. China
| | - Meinan Yu
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P.R. China
| | - Wei Xiao
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P.R. China
| | - Chuan Hu
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P.R. China
| | - Wenqi Yu
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P.R. China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Center, West China Hospital and collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, P.R. China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Center, West China Hospital and collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, P.R. China
| | - Qin He
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P.R. China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
63
|
Zhu H, Dai C, He L, Xu A, Chen T. Iron (II) Polypyridyl Complexes as Antiglioblastoma Agents to Overcome the Blood-Brain Barrier and Inhibit Cell Proliferation by Regulating p53 and 4E-BP1 Pathways. Front Pharmacol 2019; 10:946. [PMID: 31551768 PMCID: PMC6733960 DOI: 10.3389/fphar.2019.00946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/24/2019] [Indexed: 12/28/2022] Open
Abstract
Background and Purpose: It is urgently required to develop promising candidates to permeate across blood-brain barrier (BBB) efficiently with simultaneous disrupting vasculogenic mimicry capability of gliomas. Previously, a series of iron (II) complexes were synthesized through a modified method. Hence, the aim of this study was to evaluate anticancer activity of Fe(PIP)3SO4 against glioma cancer cells. Methods: Cytotoxic effects were determined via MTT assay, and IC50 values were utilized to evaluate the cytotoxicity. Cellular uptake of Fe(PIP)3SO4 between U87 and HEB cells was conducted by subtracting content of the complex remaining in the cell culture supernatants. Propidium Iodide (PI)-flow cytometric analysis was used to analyze cell cycle proportion of U87 cells treated with Fe(PIP)3SO4. The reactive oxygen species levels induced by Fe(PIP)3SO4 were measured by 2'-deoxycoformycin (DCF) probe; ABTS assay was utilized to examine the radical scavenge capacity of Fe(PIP)3SO4. To study the bind efficiency to thioredoxin reductase (TrxR), Fe(PIP)3SO4 was introduced into solution containing TrxR. To verify if Fe(PIP)3SO4 could penetrate BBB, HBMEC/U87 coculture as BBB model was established, and penetrating capability of Fe(PIP)3SO4 was tested. In vitro U87 tumor spheroids were formed to test the permeating ability of Fe(PIP)3SO4. Acute toxicity and biodistribution of Fe(PIP)3SO4 were tested on mice for 72 h. Protein profiles associated with U87 cells treated with Fe(PIP)3SO4 were determined by Western blotting analysis. Results: Results showed that Fe(PIP)3SO4 could suppress cell proliferation by inducing G2/M phase cycle retardation and apoptotic pathways, which was related with expression of p53 and initiation factor 4E binding protein 1. In addition, Fe complex could suppress cell proliferation by downregulating reactive oxygen species levels via scavenging free radicals and interaction with TrxR. Furthermore, Fe(PIP)3SO4 could permeate across BBB and simultaneously inhibited the vasculogenic mimicry-channel of U87 cells, suggesting favorable antiglioblastoma efficacy. Acute toxicity manifested lower degree of the complex compared with cisplatin and temozolomide. Conclusion: Fe(PIP)3SO4 exhibited favorable anticancer activity against glioma cells associated with p53 and 4E binding protein 1, accompanied with negligible toxic effects on normal tissues. Herein, Fe(PIP)3SO4 could be developed as a promising metal-based chemotherapeutic agent to overcome BBB and antagonize glioblastomas.
Collapse
Affiliation(s)
- Huili Zhu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Chengli Dai
- The First Affiliated Hospital and the Department of Chemistry, Jinan University, Guangzhou, China
| | - Lizhen He
- The First Affiliated Hospital and the Department of Chemistry, Jinan University, Guangzhou, China
| | - Anding Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Tianfeng Chen
- The First Affiliated Hospital and the Department of Chemistry, Jinan University, Guangzhou, China
| |
Collapse
|
64
|
Rogobete AF, Bedreag OH, Sărăndan M, Păpurică M, Preda G, Dumbuleu MC, Vernic C, Stoicescu ER, Săndesc D. Liposomal bupivacaine – New trends in Anesthesia and Intensive Care Units. EGYPTIAN JOURNAL OF ANAESTHESIA 2019. [DOI: 10.1016/j.egja.2014.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Alexandru Florin Rogobete
- Emergency County Hospital, Clinic of Anesthesia and Intensive Care , Bd. Iosif Bulbuca Nr. 10 , 300736 Timişoara, Romania
- “Victor Babeş” University of Medicine and Pharmacy, Faculty of Medicine , Piata E. Murgu 2 , 300041 Timişoara, Romania
- West University of Timişoara, Faculty of Chemistry, Biology, Geography , Str. Pestalozzi 16A , 300115 Timişoara, Romania
| | - Ovidiu Horea Bedreag
- Emergency County Hospital, Clinic of Anesthesia and Intensive Care , Bd. Iosif Bulbuca Nr. 10 , 300736 Timişoara, Romania
- “Victor Babeş” University of Medicine and Pharmacy, Faculty of Medicine , Piata E. Murgu 2 , 300041 Timişoara, Romania
| | - Mirela Sărăndan
- Emergency County Hospital, Clinic of Anesthesia and Intensive Care , Department Anesthesia and Intensive Care “Casa Austria” , Bd. Iosif Bulbuca Nr. 10 , 300736 Timişoara, Romania
| | - Marius Păpurică
- Emergency County Hospital, Clinic of Anesthesia and Intensive Care , Bd. Iosif Bulbuca Nr. 10 , 300736 Timişoara, Romania
- “Victor Babeş” University of Medicine and Pharmacy, Faculty of Medicine , Piata E. Murgu 2 , 300041 Timişoara, Romania
| | - Gabriela Preda
- West University of Timişoara, Faculty of Chemistry, Biology, Geography , Str. Pestalozzi 16A , 300115 Timişoara, Romania
| | - Maria Corina Dumbuleu
- Emergency County Hospital, Clinic of Anesthesia and Intensive Care , Bd. Iosif Bulbuca Nr. 10 , 300736 Timişoara, Romania
| | - Corina Vernic
- “Victor Babeş” University of Medicine and Pharmacy, Faculty of Medicine , Piata E. Murgu 2 , 300041 Timişoara, Romania
| | - Emil Robert Stoicescu
- “Victor Babeş” University of Medicine and Pharmacy, Faculty of Medicine , Piata E. Murgu 2 , 300041 Timişoara, Romania
| | - Dorel Săndesc
- Emergency County Hospital, Clinic of Anesthesia and Intensive Care , Bd. Iosif Bulbuca Nr. 10 , 300736 Timişoara, Romania
- “Victor Babeş” University of Medicine and Pharmacy, Faculty of Medicine , Piata E. Murgu 2 , 300041 Timişoara, Romania
| |
Collapse
|
65
|
Bai L, Liu Y, Guo K, Zhang K, Liu Q, Wang P, Wang X. Ultrasound Facilitates Naturally Equipped Exosomes Derived from Macrophages and Blood Serum for Orthotopic Glioma Treatment. ACS APPLIED MATERIALS & INTERFACES 2019; 11:14576-14587. [PMID: 30900870 DOI: 10.1021/acsami.9b00893] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Exosomes (Exos) are endogenous nanocarriers that have utility as novel delivery systems for the treatment of brain cancers. However, in general, natural Exos show limited BBB-crossing capacity and lack specific targeting. Further modifications including targeting peptides and genetic engineering approaches can circumvent these issues, but the process is time-consuming. Focused ultrasound (FUS) has been approved by the Food and Drug Administration for the diagnosis and treatment of brain diseases due to its noninvasive nature, reversibility, and instantaneous local opening of the BBB. In this study, we developed a natural and safe transportation system using FUS to increase the targeted delivery of Exos for glioma therapy. We also compared the advantages of macrophage-derived Exos (R-Exos) and blood serum-derived Exos (B-Exos) to screen for an improved platform with scope for clinical transformation. In vitro, both R-Exos and B-Exos were transported through BBB models and accumulated in glioma cells with the assistance of ultrasound exposure. R-Exos and B-Exos displayed no obvious differences in physical characteristics, drug release, tumor targeting, and cytotoxicity when combined with FUS. In vivo animal imaging studies suggested that the fluorescence intensity of B-Exos plus single FUS in brains was 4.45-fold higher than that of B-Exos alone. Furthermore, B-Exos plus twice FUS treatment efficiently suppressed glioma growth with no obvious side effects. We therefore demonstrate that the combination of FUS and naturally abundant B-Exos is a potent strategy for brain cancer therapeutics.
Collapse
Affiliation(s)
- Lianmei Bai
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences , Shaanxi Normal University , Xi'an , Shaanxi 710119 , China
| | - Yichen Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences , Shaanxi Normal University , Xi'an , Shaanxi 710119 , China
| | - Kaili Guo
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences , Shaanxi Normal University , Xi'an , Shaanxi 710119 , China
| | - Kun Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences , Shaanxi Normal University , Xi'an , Shaanxi 710119 , China
| | - Quanhong Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences , Shaanxi Normal University , Xi'an , Shaanxi 710119 , China
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences , Shaanxi Normal University , Xi'an , Shaanxi 710119 , China
| | - Xiaobing Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences , Shaanxi Normal University , Xi'an , Shaanxi 710119 , China
| |
Collapse
|
66
|
Cui L, Wang Y, Liang M, Chu X, Fu S, Gao C, Liu Q, Gong W, Yang M, Li Z, Yu L, Yang C, Su Z, Xie X, Yang Y, Gao C. Dual-modified natural high density lipoprotein particles for systemic glioma-targeting drug delivery. Drug Deliv 2019; 25:1865-1876. [PMID: 30474437 PMCID: PMC6263114 DOI: 10.1080/10717544.2018.1519002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Therapeutic outcome for the treatment of glioma was often limited due to the two barriers involved: the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB). Therefore, the development of nanocarriers that possess both BBB and BBTB permeability and glioma-targeting ability is of great importance for the chemotherapy of glioma. New frontiers in nanomedicine are advancing the research of new biomaterials. Here we constructed a natural high-density lipoprotein particle (HDL)-based drug delivery system with the dual-modification of T7 and dA7R peptide ligand (T7/dA7R-HDL) to achieve the above goals. HDL, the smallest lipoprotein, plays a biological role and is highly suitable as a platform for delivering imaging and therapeutic agents. T7 is a seven-peptide ligand of transferrin receptors (TfR) capable of circumventing the BBB and then targeting glioma. dA7R is a d-peptide ligand of vascular endothelial growth factor receptor 2 (VEGFR 2) overexpressed on angiogenesis, presenting excellent glioma-homing property. 10-Hydroxycamptothecin (HCPT), a hydrophobic anti-cancer drug, was used as the model drug in this study. By combining the dual-targeting delivery effect, the dual-modified HDL displayed higher glioma localization than that of single ligand-modified HDL or free HCPT. After loading with HCPT, T7/dA7R-HDL showed the most favorable anti-glioma effect in vivo. These results demonstrated that the dual-targeting natural nanocarriers strategy provides a potential method for improving brain drug delivery and anti-glioma treatment efficacy.
Collapse
Affiliation(s)
- Lin Cui
- a Jiamusi University , Jiamusi , China.,b State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Yuli Wang
- b State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Meng Liang
- b State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | | | - Shiyao Fu
- a Jiamusi University , Jiamusi , China.,b State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Chunsheng Gao
- b State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Qianqian Liu
- b State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Wei Gong
- b State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Meiyan Yang
- b State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Zhiping Li
- b State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Lian Yu
- a Jiamusi University , Jiamusi , China
| | | | - Zhide Su
- d Weifang People's Hospital , Weifang , China
| | - Xiangyang Xie
- e Department of Pharmacy , Wuhan General Hospital of the PLA , Wuhan , China
| | - Yang Yang
- b State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Chunsheng Gao
- b State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing , China
| |
Collapse
|
67
|
Nurunnabi M, Khatun Z, Badruddoza AZM, McCarthy JR, Lee YK, Huh KM. Biomaterials and Bioengineering Approaches for Mitochondria and Nuclear Targeting Drug Delivery. ACS Biomater Sci Eng 2019. [DOI: 10.1021/acsbiomaterials.8b01615] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Md Nurunnabi
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129 United States
| | - Zehedina Khatun
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111 United States
| | - Abu Zayed Md Badruddoza
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219 United States
| | - Jason R. McCarthy
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129 United States
| | - Yong-kyu Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380-706, Republic of Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon 305-764, Republic of Korea
| |
Collapse
|
68
|
Discovery of a New Xanthone against Glioma: Synthesis and Development of (Pro)liposome Formulations. Molecules 2019; 24:molecules24030409. [PMID: 30678085 PMCID: PMC6384625 DOI: 10.3390/molecules24030409] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 02/02/2023] Open
Abstract
Following our previous work on the antitumor activity of acetylated flavonosides, a new acetylated xanthonoside, 3,6-bis(2,3,4,6-tetra-O-acetyl-β-glucopyranosyl)xanthone (2), was synthesized and discovered as a potent inhibitor of tumor cell growth. The synthesis involved the glycosylation of 3,6-di-hydroxyxanthone (1) with acetobromo-α-d-glucose. Glycosylation with silver carbonate decreased the amount of glucose donor needed, comparative to the biphasic glycosylation. Xanthone 2 showed a potent anti-growth activity, with GI50 < 1 μM, in human cell lines of breast, lung, and glioblastoma cancers. Current treatment for invasive brain glioma is still inadequate and new agents against glioblastoma with high brain permeability are urgently needed. To overcome these issues, xanthone 2 was encapsulated in a liposome. To increase the well-known low stability of these drug carriers, a proliposome formulation was developed using the spray drying method. Both formulations were characterized and compared regarding three months stability and in vitro anti-growth activity. While the proliposome formulation showed significantly higher stability, it was at the expense of losing its biocompatibility as a drug carrier in higher concentrations. More importantly, the new xanthone 2 was still able to inhibit the growth of glioblastoma cells after liposome formulation.
Collapse
|
69
|
Fu S, Liang M, Wang Y, Cui L, Gao C, Chu X, Liu Q, Feng Y, Gong W, Yang M, Li Z, Yang C, Xie X, Yang Y, Gao C. Dual-Modified Novel Biomimetic Nanocarriers Improve Targeting and Therapeutic Efficacy in Glioma. ACS APPLIED MATERIALS & INTERFACES 2019; 11:1841-1854. [PMID: 30582685 DOI: 10.1021/acsami.8b18664] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Glioma is a fatal disease with limited treatment options and very short survival. Although chemotherapy is one of the most important strategies in glioma treatment, it remains extremely clinically challenging largely due to the blood-brain barrier (BBB) and the blood-brain tumor barrier (BBTB). Thus, the development of nanoparticles with both BBB and BBTB penetrability, as well as glioma-targeting feature, is extremely important for the therapy of glioma. New findings in nanomedicine are promoting the development of novel biomaterials. Herein, we designed a red blood cell membrane-coated solid lipid nanoparticle (RBCSLN)-based nanocarrier dual-modified with T7 and NGR peptide (T7/NGR-RBCSLNs) to accomplish these objectives. As a new kind of biomimetic nanovessels, RBCSLNs preserve the complex biological functions of natural cell membranes while possessing physicochemical properties that are needed for efficient drug delivery. T7 is a ligand of transferrin receptors with seven peptides that is able to circumvent the BBB and target to glioma. NGR is a peptide ligand of CD13 that is overexpressed during angiogenesis, representing an excellent glioma-homing property. After encapsulating vinca alkaloid vincristine as the model drug, T7/NGR-RBCSLNs exhibited the most favorable antiglioma effects in vitro and in vivo by combining the dual-targeting delivery effect. The results demonstrate that dual-modified biomimetic nanoparticles provide a potential method to improve drug delivery to the brain, hence increasing glioma therapy efficacy.
Collapse
Affiliation(s)
- Shiyao Fu
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing 100850 , China
- Jiamusi University , Jiamusi 154002 , China
| | - Meng Liang
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing 100850 , China
| | - Yuli Wang
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing 100850 , China
| | - Lin Cui
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing 100850 , China
- Jiamusi University , Jiamusi 154002 , China
| | - Chunhong Gao
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing 100850 , China
| | - Xiaoyang Chu
- 307 Hospital of the PLA , Beijing 100071 , China
| | - Qianqian Liu
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing 100850 , China
| | - Ye Feng
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing 100850 , China
| | - Wei Gong
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing 100850 , China
| | - Meiyan Yang
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing 100850 , China
| | - Zhiping Li
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing 100850 , China
| | | | - Xiangyang Xie
- General Hospital of Central Theater of the PLA , Wuhan 430070 , China
| | - Yang Yang
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing 100850 , China
| | - Chunsheng Gao
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing 100850 , China
| |
Collapse
|
70
|
You Y, Wang N, He L, Shi C, Zhang D, Liu Y, Luo L, Chen T. Designing dual-functionalized carbon nanotubes with high blood–brain-barrier permeability for precise orthotopic glioma therapy. Dalton Trans 2019; 48:1569-1573. [PMID: 30499579 DOI: 10.1039/c8dt03948h] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Herein we synthesize a cell penetrating peptide- and cancer-targeted molecule-functionalized multi-walled carbon nanotube for precise orthotopic glioma therapy.
Collapse
Affiliation(s)
- Yuanyuan You
- The First Affiliated Hospital
- and Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Ni Wang
- The First Affiliated Hospital
- and Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Lizhen He
- The First Affiliated Hospital
- and Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Changzheng Shi
- The First Affiliated Hospital
- and Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Dong Zhang
- The First Affiliated Hospital
- and Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Yiyong Liu
- The First Affiliated Hospital
- and Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Liangping Luo
- The First Affiliated Hospital
- and Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Tianfeng Chen
- The First Affiliated Hospital
- and Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| |
Collapse
|
71
|
Kumar MS, Yadav TT, Khair RR, Peters GJ, Yergeri MC. Combination Therapies of Artemisinin and its Derivatives as a Viable Approach for Future Cancer Treatment. Curr Pharm Des 2019; 25:3323-3338. [PMID: 31475891 DOI: 10.2174/1381612825666190902155957] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Many anticancer drugs have been developed for clinical usage till now, but the major problem is the development of drug-resistance over a period of time in the treatment of cancer. Anticancer drugs produce huge adverse effects, ultimately leading to death of the patient. Researchers have been focusing on the development of novel molecules with higher efficacy and lower toxicity; the anti-malarial drug artemisinin and its derivatives have exhibited cytotoxic effects. METHODS We have done extensive literature search for artemisinin for its new role as anti-cancer agent for future treatment. Last two decades papers were referred for deep understanding to strengthen its role. RESULT Literature shows changes at 9, 10 position in the artemisinin structure produces anticancer activity. Artemisinin shows anticancer activity in leukemia, hepatocellular carcinoma, colorectal and breast cancer cell lines. Artemisinin and its derivatives have been studied as combination therapy with several synthetic compounds, RNA interfaces, recombinant proteins and antibodies etc., for synergizing the effect of these drugs. They produce an anticancer effect by causing cell cycle arrest, regulating signaling in apoptosis, angiogenesis and cytotoxicity activity on the steroid receptors. Many novel formulations of artemisinin are being developed in the form of carbon nanotubes, polymer-coated drug particles, etc., for delivering artemisinin, since it has poor water/ oil solubility and is chemically unstable. CONCLUSION We have summarize the combination therapies of artemisinin and its derivatives with other anticancer drugs and also focussed on recent developments of different drug delivery systems in the last 10 years. Various reports and clinical trials of artemisinin type drugs indicated selective cytotoxicity along with minimal toxicity thus projecting them as promising anti-cancer agents in future cancer therapies.
Collapse
Affiliation(s)
- Maushmi S Kumar
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle west, Mumbai-400056, India
| | - Tanuja T Yadav
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle west, Mumbai-400056, India
| | - Rohan R Khair
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle west, Mumbai-400056, India
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Amsterdam, Netherlands
| | - Mayur C Yergeri
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle west, Mumbai-400056, India
| |
Collapse
|
72
|
Andrade S, Ramalho MJ, Pereira MDC, Loureiro JA. Resveratrol Brain Delivery for Neurological Disorders Prevention and Treatment. Front Pharmacol 2018; 9:1261. [PMID: 30524273 PMCID: PMC6262174 DOI: 10.3389/fphar.2018.01261] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022] Open
Abstract
Resveratrol (RES) is a natural polyphenolic non-flavonoid compound present in grapes, mulberries, peanuts, rhubarb and in several other plants. Numerous health effects have been related with its intake, such as anti-carcinogenic, anti-inflammatory and brain protective effects. The neuroprotective effects of RES in neurological diseases, such as Alzheimer's (AD) and Parkinson's (PD) diseases, are related to the protection of neurons against oxidative damage and toxicity, and to the prevention of apoptotic neuronal death. In brain cancer, RES induces cell apoptotic death and inhibits angiogenesis and tumor invasion. Despite its great potential as therapeutic agent for the treatment of several diseases, RES exhibits some limitations. It has poor water solubility and it is chemically instable, being degraded by isomerization once exposed to high temperatures, pH changes, UV light, or certain types of enzymes. Thus, RES has low bioavailability, limiting its biological and pharmacological benefits. To overcome these limitations, RES can be delivered by nanocarriers. This field of nanomedicine studies how the drug administration, pharmacokinetics, and pharmacodynamics are affected by the use of nanosized materials. The role of nanotechnology, in the prevention and treatment of neurological diseases, arises from the necessity to mask the physicochemical properties of therapeutic drugs to prolong the half-life and to be able to cross the blood-brain barrier (BBB). This can be achieved by encapsulating the drug in a nanoparticle (NP), which can be made of different kinds of materials. An increasing trend to encapsulate and direct RES to the brain has been observed. RES has been encapsulated in many different types of nanosystems, as liposomes, lipid and polymeric NPs. Furthermore, some of these nanocarriers have been modified with targeting molecules able to recognize the brain areas. Then, this article aims to overview the RES benefits and limitations in the treatment of neurological diseases, as the different nanotechnology strategies to overcome these limitations.
Collapse
Affiliation(s)
| | | | | | - Joana A. Loureiro
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal
| |
Collapse
|
73
|
Zhang Y, Zhang L, Hu Y, Jiang K, Li Z, Lin YZ, Wei G, Lu W. Cell-permeable NF-κB inhibitor-conjugated liposomes for treatment of glioma. J Control Release 2018; 289:102-113. [DOI: 10.1016/j.jconrel.2018.09.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 08/05/2018] [Accepted: 09/19/2018] [Indexed: 12/17/2022]
|
74
|
Zhai M, Wang Y, Zhang L, Liang M, Fu S, Cui L, Yang M, Gong W, Li Z, Yu L, Xie X, Yang C, Yang Y, Gao C. Glioma targeting peptide modified apoferritin nanocage. Drug Deliv 2018; 25:1013-1024. [PMID: 29726297 PMCID: PMC6058491 DOI: 10.1080/10717544.2018.1464082] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Therapeutic outcome for the treatment of glioma was often limited due to the non-targeted nature of drugs and the physiological barriers, including the blood-brain barrier (BBB) and the blood-brain tumor barrier (BBTB). An ideal glioma-targeted delivery system must be sufficiently potent to cross the BBB and BBTB and then target glioma cells with adequate optimized physiochemical properties and biocompatibility. However, it is an enormous challenge to the researchers to engineer the above-mentioned features into a single nanocarrier particle. New frontiers in nanomedicine are advancing the research of new biomaterials. In this study, we demonstrate a strategy for glioma targeting by encapsulating vincristine sulfate (VCR) into a naturally available apoferritin nanocage-based drug delivery system with the modification of GKRK peptide ligand (GKRK-APO). Apoferritin (APO), an endogenous nanosize spherical protein, can specifically bind to brain endothelial cells and glioma cells via interacting with the transferrin receptor 1 (TfR1). GKRK is a peptide ligand of heparan sulfate proteoglycan (HSPG) over-expressed on angiogenesis and glioma, presenting excellent glioma-homing property. By combining the dual-targeting delivery effect of GKRK peptide and parent APO, GKRK-APO displayed higher glioma localization than that of parent APO. After loading with VCR, GKRK-APO showed the most favorable antiglioma effect in vitro and in vivo. These results demonstrated that GKRK-APO is an important potential drug delivery system for glioma-targeted therapy.
Collapse
Affiliation(s)
- Meifang Zhai
- a College of Pharmacy of Jiamusi University , Jiamusi Heilongjiang , China.,b State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Yuli Wang
- b State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Ligang Zhang
- d Clinical Department, Beijing Huilongguan Hospital , Beijng , China
| | - Meng Liang
- b State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Shiyao Fu
- a College of Pharmacy of Jiamusi University , Jiamusi Heilongjiang , China.,b State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Lin Cui
- a College of Pharmacy of Jiamusi University , Jiamusi Heilongjiang , China.,b State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Meiyan Yang
- b State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Wei Gong
- b State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Zhiping Li
- b State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Lian Yu
- a College of Pharmacy of Jiamusi University , Jiamusi Heilongjiang , China
| | - Xiangyang Xie
- c Department of Pharmacy , Wuhan General Hospital of the PLA , Wuhan , China
| | - Chunrong Yang
- a College of Pharmacy of Jiamusi University , Jiamusi Heilongjiang , China
| | - Yang Yang
- b State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Chunsheng Gao
- b State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing , China
| |
Collapse
|
75
|
Wang F, Xiao W, Elbahnasawy MA, Bao X, Zheng Q, Gong L, Zhou Y, Yang S, Fang A, Farag MMS, Wu J, Song X. Optimization of the Linker Length of Mannose-Cholesterol Conjugates for Enhanced mRNA Delivery to Dendritic Cells by Liposomes. Front Pharmacol 2018; 9:980. [PMID: 30233368 PMCID: PMC6134263 DOI: 10.3389/fphar.2018.00980] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/09/2018] [Indexed: 02/05/2023] Open
Abstract
Liposomes (LPs) as commonly used mRNA delivery systems remain to be rationally designed and optimized to ameliorate the antigen expression of mRNA vaccine in dendritic cells (DCs). In this study, we synthesized mannose-cholesterol conjugates (MPn-CHs) by click reaction using different PEG units (PEG100, PEG1000, and PEG2000) as linker molecules. MPn-CHs were fully characterized and subsequently used to prepare DC-targeting liposomes (MPn-LPs) by a thin-film dispersion method. MPn-LPs loaded with mRNA (MPn-LPX) were finally prepared by a simple self-assembly method. MPn-LPX displayed bigger diameter (about 135 nm) and lower zeta potential (about 40 mV) compared to MPn-LPs. The in vitro transfection experiment on DC2.4 cells demonstrated that the PEG length of mannose derivatives had significant effect on the expression of GFP-encoding mRNA. MP1000-LPX containing MP1000-CH can achieve the highest transfection efficiency (52.09 ± 4.85%), which was significantly superior to the commercial transfection reagent Lipo 3K (11.47 ± 2.31%). The optimal DC-targeting MP1000-LPX showed an average size of 132.93 ± 4.93 nm and zeta potential of 37.93 ± 2.95 mV with nearly spherical shape. Moreover, MP1000-LPX can protect mRNA against degradation in serum with high efficacy. The uptake study indicated that MP1000-LPX enhanced mRNA expression mainly through the over-expressing mannose receptor (CD206) on the surface of DCs. In conclusion, mannose modified LPs might be a potential DC-targeting delivery system for mRNA vaccine after rational design and deserve further study on the in vivo delivery profile and anti-tumor efficacy.
Collapse
Affiliation(s)
- Fazhan Wang
- State Key Laboratory of Biotherapy, Geriatrics and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Wen Xiao
- State Key Laboratory of Biotherapy, Geriatrics and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Mostafa A Elbahnasawy
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Xingting Bao
- State Key Laboratory of Biotherapy, Geriatrics and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Qian Zheng
- State Key Laboratory of Biotherapy, Geriatrics and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Linhui Gong
- State Key Laboratory of Biotherapy, Geriatrics and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Yang Zhou
- State Key Laboratory of Biotherapy, Geriatrics and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Shuping Yang
- State Key Laboratory of Biotherapy, Geriatrics and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Aiping Fang
- State Key Laboratory of Biotherapy, Geriatrics and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Mohamed M S Farag
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Jinhui Wu
- State Key Laboratory of Biotherapy, Geriatrics and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Xiangrong Song
- State Key Laboratory of Biotherapy, Geriatrics and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
76
|
Yang L, Song X, Gong T, Jiang K, Hou Y, Chen T, Sun X, Zhang Z, Gong T. Development a hyaluronic acid ion-pairing liposomal nanoparticle for enhancing anti-glioma efficacy by modulating glioma microenvironment. Drug Deliv 2018; 25:388-397. [PMID: 29378465 PMCID: PMC6058578 DOI: 10.1080/10717544.2018.1431979] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glioma, one of the most common brain tumors, remains a challenge worldwide. Due to the specific biological barriers such as blood–brain barrier (BBB), cancer stem cells (CSCs), tumor associated macrophages (TAMs), and vasculogenic mimicry channels (VMs), a novel versatile targeting delivery for anti-glioma is in urgent need. Here, we designed a hyaluronic acid (HA) ion-pairing nanoparticle. Then, these nanoparticles were encapsulated in liposomes, termed as DOX-HA-LPs, which showed near-spherical morphology with an average size of 155.8 nm and uniform distribution (PDI = 0.155). HA was proven to specifically bind to CD44 receptor, which is over-expressed on the surface of tumor cells, other associated cells (such as CSCs and TAMs) and VMs. We systematically investigated anti-glioma efficacy and mechanisms in vivo and in vitro. The strong anti-glioma efficacy could attribute to the accumulation in glioma site and the regulation of tumor microenvironment with depletion of TAMs, inhibition of VMs, and elimination of CSCs.
Collapse
Affiliation(s)
- Liuqing Yang
- a Key Laboratory of Drug Targeting and Drug Delivery Systems , Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu , PR China
| | - Xu Song
- a Key Laboratory of Drug Targeting and Drug Delivery Systems , Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu , PR China
| | - Ting Gong
- a Key Laboratory of Drug Targeting and Drug Delivery Systems , Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu , PR China
| | - Kejun Jiang
- a Key Laboratory of Drug Targeting and Drug Delivery Systems , Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu , PR China
| | - Yingying Hou
- a Key Laboratory of Drug Targeting and Drug Delivery Systems , Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu , PR China
| | - Tijia Chen
- a Key Laboratory of Drug Targeting and Drug Delivery Systems , Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu , PR China
| | - Xun Sun
- a Key Laboratory of Drug Targeting and Drug Delivery Systems , Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu , PR China
| | - Zhirong Zhang
- a Key Laboratory of Drug Targeting and Drug Delivery Systems , Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu , PR China
| | - Tao Gong
- a Key Laboratory of Drug Targeting and Drug Delivery Systems , Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu , PR China
| |
Collapse
|
77
|
Zhang Y, Xu G, Zhang S, Wang D, Saravana Prabha P, Zuo Z. Antitumor Research on Artemisinin and Its Bioactive Derivatives. NATURAL PRODUCTS AND BIOPROSPECTING 2018; 8:303-319. [PMID: 29633188 PMCID: PMC6102173 DOI: 10.1007/s13659-018-0162-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/27/2018] [Indexed: 05/02/2023]
Abstract
Cancer is the leading cause of human death which seriously threatens human life. The antimalarial drug artemisinin and its derivatives have been discovered with considerable anticancer properties. Simultaneously, a variety of target-selective artemisinin-related compounds with high efficiency have been discovered. Many researches indicated that artemisinin-related compounds have cytotoxic effects against a variety of cancer cells through pleiotropic effects, including inhibiting the proliferation of tumor cells, promoting apoptosis, inducing cell cycle arrest, disrupting cancer invasion and metastasis, preventing angiogenesis, mediating the tumor-related signaling pathways, and regulating tumor microenvironment. More importantly, artemisinins demonstrated minor side effects to normal cells and manifested the ability to overcome multidrug-resistance which is widely observed in cancer patients. Therefore, we concentrated on the new advances and development of artemisinin and its derivatives as potential antitumor agents in recent 5 years. It is our hope that this review could be helpful for further exploration of novel artemisinin-related antitumor agents.
Collapse
Affiliation(s)
- Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Guowei Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuqun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Dong Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - P Saravana Prabha
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhili Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, Yunnan, China.
| |
Collapse
|
78
|
Huang ST, Wang YP, Chen YH, Lin CT, Li WS, Wu HC. Liposomal paclitaxel induces fewer hematopoietic and cardiovascular complications than bioequivalent doses of Taxol. Int J Oncol 2018; 53:1105-1117. [PMID: 29956746 PMCID: PMC6065427 DOI: 10.3892/ijo.2018.4449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/06/2018] [Indexed: 12/27/2022] Open
Abstract
Paclitaxel (PTX) exhibits potent antineoplastic activity against various human malignancies; however, clinical application must overcome the inherent hydrophobicity of this molecule. The commercialized Taxol formulation utilizes Cremophor EL (CrEL)/ethanol as a solvent to stabilize and dispense PTX in an aqueous solution. However, adverse CrEL-induced hypersensitivity reactions have been reported in ~30% of recipients, and 40% of patients receiving premedication may also experience this adverse effect. Therefore, the development of a CrEL-free delivery system is crucial, in order to fully exploit the therapeutic efficacy of PTX. In the present study, a novel liposomal PTX (lipo-PTX) formulation was optimized with regards to encapsulation rate and long-term stability, arriving at a molar constituent ratio of soybean phosp hatidylcholine:cholesterol:N-(carbonyl-methoxy-poly-ethylene glycol 2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine, sodium salt:PTX at 95:2:1:2. Comparable doses of lipo-PTX and Taxol were bioequivalent in terms of therapeutic efficacy in xenograft tumor models. However, the systemic side effects, including hematopoietic toxicity, acute hypersensitivity reactions and cardiac irregularities, were significantly reduced in lipo-PTX-treated mice compared with those infused with reference formulations of PTX. In conclusion, the present study reported that lipo-PTX exhibited a higher therapeutic index than clinical PTX formulations.
Collapse
Affiliation(s)
- Shih-Ting Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan, R.O.C
| | - Yi-Ping Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan, R.O.C
| | - Yen-Hui Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, R.O.C
| | - Chin-Tarng Lin
- Department of Pathology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, R.O.C
| | - Wen-Shan Li
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan, R.O.C
| | - Han-Chung Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan, R.O.C
| |
Collapse
|
79
|
Li G, Huang M, Cai Y, Ke Y, Yang Y, Sun X. miR‑141 inhibits glioma vasculogenic mimicry by controlling EphA2 expression. Mol Med Rep 2018; 18:1395-1404. [PMID: 29901110 PMCID: PMC6072184 DOI: 10.3892/mmr.2018.9108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/03/2018] [Indexed: 12/21/2022] Open
Abstract
Human glioma is a pernicious tumor from the central nervous system; it has been reported that microRNAs (miRs) may have carcinogenic or tumor suppressor effects on human glioma. The aim of the present study was to assess miR-141 expression and functional role in human primary glioma, as well as in tumor-derived cell lines. The expression of miR-141 in primary human glioma tissues and cell lines was assessed by employing reverse transcription-quantitative polymerase chain reaction. Next, its role in cellular growth, migration, invasion and vasculogenic mimicry (VM) regulation was determined using various in vitro and in vivo assays, and on the identification its target gene(s) using luciferase assays. The results demonstrated that miR-141 expression was downregulated, and Ephrin type-A receptor 2 (EphA2) was upregulated in the primary human gliomas and human glioma-derived cell lines tested. In addition, a negative correlation existed between miR-141 and EphA2 expression levels in glioma grades II, III and IV. Furthermore, exogenous miR-141 expression resulted in decreased proliferation, migration and invasion, as well as in apoptosis and cell cycle arrest in vitro. It was also revealed that exogenous miR-141 expression resulted in in vivo inhibition of tumor growth and inhibition of the development of VM. Finally, the present study successfully confirmed that EphA2 was a direct target of miR-141 in glioma-derived cells using luciferase assays. Based on these results, it was concluded that miR-141 may regulate cell proliferation, migration, invasion and VM formation by controlling EphA2 expression; also, its target EphA2 may be a novel diagnostic/prognostic biomarker and a potential anti-VM therapeutic target.
Collapse
Affiliation(s)
- Guoxiong Li
- Department of Neurosurgery, People's Hospital of Shiyan, Shenzhen, Guangdong 518108, P.R. China
| | - Min Huang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, Guangdong 510280, P.R. China
| | - Yingqian Cai
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, Guangdong 510280, P.R. China
| | - Yiquan Ke
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, Guangdong 510280, P.R. China
| | - Yuantao Yang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, Guangdong 510280, P.R. China
| | - Xinlin Sun
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
80
|
Wu JS, Mu LM, Bu YZ, Liu L, Yan Y, Hu YJ, Bai J, Zhang JY, Lu W, Lu WL. C-type natriuretic peptide-modified lipid vesicles: fabrication and use for the treatment of brain glioma. Oncotarget 2018; 8:40906-40921. [PMID: 28402948 PMCID: PMC5522305 DOI: 10.18632/oncotarget.16641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/14/2017] [Indexed: 11/25/2022] Open
Abstract
Chemotherapy of brain glioma faces a major obstacle owing to the inability of drug transport across the blood-brain barrier (BBB). Besides, neovasculatures in brain glioma site result in a rapid infiltration, making complete surgical removal virtually impossible. Herein, we reported a novel kind of C-type natriuretic peptide (CNP) modified vinorelbine lipid vesicles for transferring drug across the BBB, and for treating brain glioma along with disrupting neovasculatures. The studies were performed on brain glioma U87-MG cells in vitro and on glioma-bearing nude mice in vivo. The results showed that the CNP-modified vinorelbine lipid vesicles could transport vinorelbine across the BBB, kill the brain glioma, and destroy neovasculatures effectively. The above mechanisms could be associated with the following aspects, namely, long circulation in the blood; drug transport across the BBB via natriuretic peptide receptor B (NPRB)-mediated transcytosis; elimination of brain glioma cells and disruption of neovasculatures by targeting uptake and cytotoxic injury. Besides, CNP-modified vinorelbine lipid vesicles could induce apoptosis of the glioma cells. The mechanisms could be related to the activations of caspase 8, caspase 3, p53, and reactive oxygen species (ROS), and inhibition of survivin. Hence, CNP-modified lipid vesicles could be used as a carrier material for treating brain glioma and disabling glioma neovasculatures.
Collapse
Affiliation(s)
- Jia-Shuan Wu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Li-Min Mu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ying-Zi Bu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Lei Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yan Yan
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ying-Jie Hu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing Bai
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing-Ying Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Weiyue Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wan-Liang Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
81
|
Ruan H, Chai Z, Shen Q, Chen X, Su B, Xie C, Zhan C, Yao S, Wang H, Zhang M, Ying M, Lu W. A novel peptide ligand RAP12 of LRP1 for glioma targeted drug delivery. J Control Release 2018; 279:306-315. [PMID: 29679668 DOI: 10.1016/j.jconrel.2018.04.035] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 03/22/2018] [Accepted: 04/17/2018] [Indexed: 12/18/2022]
Abstract
The receptor associated protein (RAP) is a 39 kDa chaperone protein, binding tightly to low-density lipoprotein receptor-related protein-1 (LRP1) that is overexpressed in glioma, tumor neovasculature, vasculogenic mimicry (VM), the blood-brain barrier (BBB) and the blood-brain tumor barrier (BBTB). Herein, we miniaturized the RAP protein into a short peptide RAP12 (EAKIEKHNHYQK) aiding by computer-aided peptide design technique. RAP12 contained the essential lysines at the positions 253 and 256. The binding affinity of RAP12 to LRP1 was theoretically and experimentally evaluated. In cellular level, RAP12 could effectively internalize into U87, HUVEC and bEnd.3 cells. When modified on the surface of PEG-PLA micelles (RAP12-PEG-PLA), RAP12 could effectively facilitate the penetration of micelles through the BBB/BBTB in vitro/vivo. Paclitaxel-loaded RAP12-PEG-PLA could remarkably inhibit the growth of glioma cells and the formation of tumor neovasculature and VM, significantly prolong the median survival time of nude mice bearing intracranial glioma in comparison to model mice treated with plain micelles or Taxol. These results suggested that the RAP12 held the potential for multifunctional glioma-targeted drug delivery.
Collapse
Affiliation(s)
- Huitong Ruan
- Key Laboratory of Smart Drug Delivery of the Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China; State Key Laboratory of Medical Neurobiology and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Zhilan Chai
- Key Laboratory of Smart Drug Delivery of the Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China; State Key Laboratory of Medical Neurobiology and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Qing Shen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xishan Chen
- Key Laboratory of Smart Drug Delivery of the Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China; State Key Laboratory of Medical Neurobiology and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Bingxia Su
- Key Laboratory of Smart Drug Delivery of the Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China; State Key Laboratory of Medical Neurobiology and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Cao Xie
- Key Laboratory of Smart Drug Delivery of the Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China; State Key Laboratory of Medical Neurobiology and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Changyou Zhan
- Key Laboratory of Smart Drug Delivery of the Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China; Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Shengyu Yao
- Key Laboratory of Smart Drug Delivery of the Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China; State Key Laboratory of Medical Neurobiology and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Huan Wang
- Key Laboratory of Smart Drug Delivery of the Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China; State Key Laboratory of Medical Neurobiology and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Mingfei Zhang
- Key Laboratory of Smart Drug Delivery of the Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China; State Key Laboratory of Medical Neurobiology and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Man Ying
- Key Laboratory of Smart Drug Delivery of the Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China; State Key Laboratory of Medical Neurobiology and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Weiyue Lu
- Key Laboratory of Smart Drug Delivery of the Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China; Minhang Hospital, Fudan University, Shanghai 201199, China; State Key Laboratory of Medical Neurobiology and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; The Institutes of Integrative Medicine of Fudan University, Shanghai 200040, China.
| |
Collapse
|
82
|
Ju RJ, Mu LM, Li XT, Li CQ, Cheng ZJ, Lu WL. Development of functional docetaxel nanomicelles for treatment of brain glioma. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018. [DOI: 10.1080/21691401.2018.1446971] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Rui-Jun Ju
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Li-Min Mu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Cui-Qing Li
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Zhan-Jie Cheng
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Wan-Liang Lu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
83
|
Curcumin-Loaded Mixed Micelles: Preparation, Characterization, and In Vitro Antitumor Activity. JOURNAL OF NANOTECHNOLOGY 2018. [DOI: 10.1155/2018/9103120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The objective of this study was to prepare curcumin-loaded mixed Soluplus/TPGS micelles (Cur-TPGS-PMs) for oral administration. The Cur-TPGS-PMs showed a mean size of 65.54 ± 2.57 nm, drug encapsulation efficiency over 85%, and drug loading of 8.17%. The Cur-TPGS-PMs were found to be stable in various pH media (pH 1.2 for 2 h, pH 6.8 for 2 h, and pH 7.4 for 6 h). The X-ray diffraction (XRD) patterns illustrated that curcumin was in the amorphous or molecular state within PMs. The In vitro release test indicated that Cur-TPGS-PMs possessed a significant sustained-release property. The cell viability in MCF-7 cells was found to be relatively lower in Cur-TPGS-PM-treated cells as compared to free Cur-treated cells. CLSM imaging revealed that mixed micelles were efficiently absorbed into the cytoplasm region of MCF-7 cells. Therefore, Cur-TPGS-PMs could have the significant value for the chronic breast cancer therapy.
Collapse
|
84
|
Huang D, Zhang S, Zhong T, Ren W, Yao X, Guo Y, Duan XC, Yin YF, Zhang SS, Zhang X. Multi-targeting NGR-modified liposomes recognizing glioma tumor cells and vasculogenic mimicry for improving anti-glioma therapy. Oncotarget 2017; 7:43616-43628. [PMID: 27283987 PMCID: PMC5190048 DOI: 10.18632/oncotarget.9889] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/16/2016] [Indexed: 01/05/2023] Open
Abstract
Like the anti-angiogenic strategy, anti-vascular mimicry is considered as a novel targeting strategy for glioma. In the present study, we used NGR as a targeting ligand and prepared NGR-modified liposomes containing combretastatin A4 (NGR-SSL-CA4) in order to evaluate their potential targeting of glioma tumor cells and vasculogenic mimicry (VM) formed by glioma cells as well as their anti-VM activity in mice with glioma tumor cells. NGR-SSL-CA4 was prepared by a thin-film hydration method. The in vitro targeting of U87-MG (human glioma tumor cells) by NGR-modified liposomes was evaluated. The in vivo targeting activity of NGR-modified liposomes was tested in U87-MG orthotopic tumor-bearing nude mice. The anti-VM activity of NGR-SSL-CA4 was also investigated in vitro and in vivo. The targeting activity of the NGR-modified liposomes was demonstrated by in vitro flow cytometry and in vivo biodistribution. The in vitro anti-VM activity of NGR-SSL-CA4 was indicated in a series of cell migration and VM channel experiments. NGR-SSL-CA4 produced very marked anti-tumor and anti-VM activity in U87-MG orthotopic tumor-bearing mice in vivo. Overall, the NGR-SSL-CA4 has great potential in the multi-targeting therapy of glioma involving U87-MG cells, and the VM formed by U87-MG cells as well as endothelial cells producing anti-U87-MG cells, and anti-VM formed by U87-MG cells as well as anti-endothelial cell activity.
Collapse
Affiliation(s)
- Dan Huang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Shuang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ting Zhong
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wei Ren
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xin Yao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yang Guo
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiao-Chuan Duan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yi-Fan Yin
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Shu-Shi Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xuan Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
85
|
Li XT, Tang W, Jiang Y, Wang XM, Wang YH, Cheng L, Meng XS. Multifunctional targeting vinorelbine plus tetrandrine liposomes for treating brain glioma along with eliminating glioma stem cells. Oncotarget 2017; 7:24604-22. [PMID: 27029055 PMCID: PMC5029727 DOI: 10.18632/oncotarget.8360] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 03/04/2016] [Indexed: 11/26/2022] Open
Abstract
Malignant brain glioma is the most lethal and aggressive type of cancer. Surgery and radiotherapy cannot eliminate all glioma stem cells (GSCs) and blood–brain barrier (BBB) restricts the movement of antitumor drugs from blood to brain, thus leading to the poor prognosis with high recurrence rate. In the present study, the targeting conjugates of cholesterol polyethylene glycol polyethylenimine (CHOL-PEG2000-PEI) and D-a-tocopheryl polyethylene glycol 1000 succinate vapreotide (TPGS1000-VAP) were newly synthesized for transporting drugs across the BBB and targeting glioma cells and GSCs. The multifunctional targeting vinorelbine plus tetrandrine liposomes were constructed by modifying the targeting conjugates. The studies were undertaken on BBB model, glioma cells, GSCs, and glioma-bearing mice. In vitro results showed that multifunctional targeting drugs-loaded liposomes with suitable physicochemical property could enhance the transport drugs across the BBB, increase the intracellular uptake, inhibit glioma cells and GSCs, penetrate and destruct the GSCs spheroids, and induce apoptosis via activating related apoptotic proteins. In vivo results demonstrated that multifunctional targeting drugs-loaded liposomes could significantly accumulate into brain tumor location, show the specificity to tumor sites, and result in a robust overall antitumor efficacy in glioma-bearing mice. These data suggested that the multifunctional targeting vinorelbine plus tetrandrine liposomes could offer a promising strategy for treating brain glioma.
Collapse
Affiliation(s)
- Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Wei Tang
- Linyi Food and Drug Testing Center, Linyi 276000, China
| | - Ying Jiang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Xiao-Min Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yan-Hong Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Lan Cheng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Xian-Sheng Meng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| |
Collapse
|
86
|
Xu X, Wang L, Luo Z, Ni Y, Sun H, Gao X, Li Y, Zhang S, Li Y, Wei S. Facile and Versatile Strategy for Construction of Anti-Inflammatory and Antibacterial Surfaces with Polydopamine-Mediated Liposomes Releasing Dexamethasone and Minocycline for Potential Implant Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:43300-43314. [PMID: 29140074 DOI: 10.1021/acsami.7b06295] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Reducing early nonbacterial inflammation induced by implanted materials and infection resulting from bacterial contamination around the implant-abutment interface could greatly decrease implant failure rates, which would be of clinical significance. In this work, we presented a facile and versatile strategy for the construction of anti-inflammatory and antibacterial surfaces. Briefly, the surfaces of polystyrene culture plates were first coated with polydopamine and then decorated with dexamethasone plus minocycline-loaded liposomes (Dex/Mino liposomes), which was validated by contact angle goniometry, quartz crystal microbalance, and fluorescence microscopy. Dex/Mino liposomes were dispersed on functional surfaces and the drug release kinetics exhibited the sustained release of dexamethasone and minocycline. Our results demonstrated that the Dex/Mino liposome-modified surfaces had good biocompatibility. Additionally, liposomal dexamethasone reduced proinflammatory mediator expression (particularly IL-6 and TNF-α) in lipopolysaccharide-stimulated human gingival fibroblasts and human mesenchymal stem cells. Moreover, liposomal minocycline prevented the adhesion and proliferation of Porphyromonas gingivalis (Gram-negative bacteria) and Streptococcus mutans (Gram-positive bacteria). These findings demonstrate that an anti-inflammatory and antibacterial surface was developed, using dopamine as a medium and combining a liposomal delivery device, which has potential for use to reduce implant failure rates. Accordingly, the surface modification strategy presented could be useful in biofunctionalization of implant materials.
Collapse
Affiliation(s)
- Xiao Xu
- Central Laboratory/Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Beijing 100081, P. R. China
| | - Lixin Wang
- Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University , Beijing 100038, P. R. China
| | - Zuyuan Luo
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, P. R. China
| | - Yaofeng Ni
- Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University , Beijing 100038, P. R. China
| | - Haitao Sun
- Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University , Beijing 100038, P. R. China
| | - Xiang Gao
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University , Chongqing 401147, P. R. China
| | - Yongliang Li
- Central Laboratory/Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Beijing 100081, P. R. China
| | - Siqi Zhang
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, P. R. China
| | - Yan Li
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, P. R. China
| | - Shicheng Wei
- Central Laboratory/Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Beijing 100081, P. R. China
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, P. R. China
| |
Collapse
|
87
|
Li XT, Tang W, Xie HJ, Liu S, Song XL, Xiao Y, Wang X, Cheng L, Chen GR. The efficacy of RGD modified liposomes loaded with vinorelbine plus tetrandrine in treating resistant brain glioma. J Liposome Res 2017; 29:21-34. [DOI: 10.1080/08982104.2017.1408649] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Wei Tang
- Linyi Food and Drug Testing Center, Linyi, China
| | - Hong-Jun Xie
- School of Medicine, Tibet University, Lasa, China
| | - Shuang Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xiao-Li Song
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Yao Xiao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xin Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Lan Cheng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Gui-Rong Chen
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| |
Collapse
|
88
|
Collateral Damage Intended-Cancer-Associated Fibroblasts and Vasculature Are Potential Targets in Cancer Therapy. Int J Mol Sci 2017; 18:ijms18112355. [PMID: 29112161 PMCID: PMC5713324 DOI: 10.3390/ijms18112355] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/25/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023] Open
Abstract
After oncogenic transformation, tumor cells rewire their metabolism to obtain sufficient energy and biochemical building blocks for cell proliferation, even under hypoxic conditions. Glucose and glutamine become their major limiting nutritional demands. Instead of being autonomous, tumor cells change their immediate environment not only by their metabolites but also by mediators, such as juxtacrine cell contacts, chemokines and other cytokines. Thus, the tumor cells shape their microenvironment as well as induce resident cells, such as fibroblasts and endothelial cells (ECs), to support them. Fibroblasts differentiate into cancer-associated fibroblasts (CAFs), which produce a qualitatively and quantitatively different extracellular matrix (ECM). By their contractile power, they exert tensile forces onto this ECM, leading to increased intratumoral pressure. Moreover, along with enhanced cross-linkage of the ECM components, CAFs thus stiffen the ECM. Attracted by tumor cell- and CAF-secreted vascular endothelial growth factor (VEGF), ECs sprout from pre-existing blood vessels during tumor-induced angiogenesis. Tumor vessels are distinct from EC-lined vessels, because tumor cells integrate into the endothelium or even mimic and replace it in vasculogenic mimicry (VM) vessels. Not only the VM vessels but also the characteristically malformed EC-lined tumor vessels are typical for tumor tissue and may represent promising targets in cancer therapy.
Collapse
|
89
|
Chan L, He L, Zhou B, Guan S, Bo M, Yang Y, Liu Y, Liu X, Zhang Y, Xie Q, Chen T. Cancer-Targeted Selenium Nanoparticles Sensitize Cancer Cells to Continuous γ Radiation to Achieve Synergetic Chemo-Radiotherapy. Chem Asian J 2017; 12:3053-3060. [PMID: 28892302 DOI: 10.1002/asia.201701227] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/09/2017] [Indexed: 12/23/2022]
Abstract
Cancer radiotherapy with 125 I seeds demonstrates higher long-term efficacy and fewer side effects than traditional X-ray radiotherapy owing to its low-dose and continuous radiation but is still limited by radioresistance in clinical applications. Therefore, the design and synthesis of sensitizers that could enhance the sensitivity of cancer cells to 125 I seeds is of great importance for future radiotherapy. Selenium nanoparticles (SeNPs) have been found to exhibit high potential in cancer chemotherapy and as drug carriers. In this study, we found that, based on the Auger-electron effect and Compton effect of Se atoms, cancer-targeted SeNPs in combination with 125 I seeds achieve synergetic effects to inhibit cancer-cell growth and colony formation through the induction of cell apoptosis and cell cycle arrest. Detailed studies on the action mechanisms reveal that the combined treatments effectively activate intracellular reactive oxygen species (ROS) overproduction to regulate p53-mediated DNA damage apoptotic signaling pathways and mitogen-activated protein kinase (MAPK) phosphorylation and to prevent the self-repair of cancer cells simultaneously. Taken together, the combination of SeNPs with 125 I seeds could be further exploited as a safe and effective strategy for next-generation cancer chemo-radiotherapy in clinical applications.
Collapse
Affiliation(s)
- Leung Chan
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Lizhen He
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Binwei Zhou
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Shouhai Guan
- The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Mingjun Bo
- The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yahui Yang
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Ying Liu
- Wu Jing Zong Dui Hospital of Guangdong Province, Guangzhou, 510507, China
| | - Xiao Liu
- Wu Jing Zong Dui Hospital of Guangdong Province, Guangzhou, 510507, China
| | - Yanyang Zhang
- The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Qiang Xie
- The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
90
|
Zhang Y, Zhai M, Chen Z, Han X, Yu F, Li Z, Xie X, Han C, Yu L, Yang Y, Mei X. Dual-modified liposome codelivery of doxorubicin and vincristine improve targeting and therapeutic efficacy of glioma. Drug Deliv 2017; 24:1045-1055. [PMID: 28687044 PMCID: PMC8240983 DOI: 10.1080/10717544.2017.1344334] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 12/24/2022] Open
Abstract
Therapeutic outcome for the treatment of glioma was often limited due to drug resistance and low permeability of drug across the multiple physiological barriers, including the blood-brain barrier (BBB), and the blood-tumor barrier (BTB). In order to overcome these hurdles, we designed T7 and DA7R dual peptides-modified liposomes (abbreviated as T7/DA7R-LS) to efficiently co-delivery doxorubicin (DOX) and vincristine (VCR) to glioma in this study. T7 is a seven-peptide ligand of transferrin receptors (TfR) capable of circumventing the BBB and then targeting glioma. DA7R is a d-peptide ligand of vascular endothelial growth factor receptor 2 (VEGFR 2) overexpressed on angiogenesis, presenting excellent glioma-homing property. By combining the dual-targeting delivery effect, the dual-modified liposomes displayed higher glioma localization than that of single ligand-modified liposomes or free drug. After loading with DOX and VCR, T7/DA7R-LS showed the most favorable antiglioma effect in vivo. In conclusion, this dual-targeting, co-delivery strategy provides a potential method for improving brain drug delivery and antiglioma treatment efficacy.
Collapse
Affiliation(s)
- Yue Zhang
- State key Laboratory of Toxicology and Medical Countermeasure, Department of Pharmaceutics, Beijing Institute of Pharmacology and Toxicology, Beijing, PR China
- Hubei University of Science and Technology, Xianning, PR China
| | - Meifang Zhai
- State key Laboratory of Toxicology and Medical Countermeasure, Department of Pharmaceutics, Beijing Institute of Pharmacology and Toxicology, Beijing, PR China
- Jiamusi University, Jiamusi, PR China
| | - Zhijiang Chen
- State key Laboratory of Toxicology and Medical Countermeasure, Department of Pharmaceutics, Beijing Institute of Pharmacology and Toxicology, Beijing, PR China
- Hubei University of Science and Technology, Xianning, PR China
| | - Xiaoyang Han
- Outpatient Department of Beijing Space City, Aerospace Systems Divison, PLA Strategic Support Force, Beijing, PR China
| | - Fanglin Yu
- State key Laboratory of Toxicology and Medical Countermeasure, Department of Pharmaceutics, Beijing Institute of Pharmacology and Toxicology, Beijing, PR China
| | - Zhiping Li
- State key Laboratory of Toxicology and Medical Countermeasure, Department of Pharmaceutics, Beijing Institute of Pharmacology and Toxicology, Beijing, PR China
| | - Xiangyang Xie
- Department of Pharmacy, Wuhan General Hospital of the Chinese People’s Liberation Army, Wuhan, PR China
| | - Cuiyan Han
- School of Pharmacy, Qiqihar Medical University, Qiqihar, PR China
| | - Lian Yu
- Jiamusi University, Jiamusi, PR China
| | - Yang Yang
- State key Laboratory of Toxicology and Medical Countermeasure, Department of Pharmaceutics, Beijing Institute of Pharmacology and Toxicology, Beijing, PR China
| | - Xingguo Mei
- State key Laboratory of Toxicology and Medical Countermeasure, Department of Pharmaceutics, Beijing Institute of Pharmacology and Toxicology, Beijing, PR China
| |
Collapse
|
91
|
Tsou YH, Zhang XQ, Zhu H, Syed S, Xu X. Drug Delivery to the Brain across the Blood-Brain Barrier Using Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1701921. [PMID: 29045030 DOI: 10.1002/smll.201701921] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/09/2017] [Indexed: 05/24/2023]
Abstract
A major obstacle facing brain diseases such as Alzheimer's disease, multiple sclerosis, brain tumors, and strokes is the blood-brain barrier (BBB). The BBB prevents the passage of certain molecules and pathogens from the circulatory system into the brain. Therefore, it is nearly impossible for therapeutic drugs to target the diseased cells without the assistance of carriers. Nanotechnology is an area of growing public interest; nanocarriers, such as polymer-based, lipid-based, and inorganic-based nanoparticles can be engineered in different sizes, shapes, and surface charges, and they can be modified with functional groups to enhance their penetration and targeting capabilities. Hence, understanding the interaction between nanomaterials and the BBB is crucial. In this Review, the components and properties of the BBB are revisited and the types of nanocarriers that are most commonly used for brain drug delivery are discussed. The properties of the nanocarriers and the factors that affect drug delivery across the BBB are elaborated upon in this review. Additionally, the most recent developments of nanoformulations and nonconventional drug delivery strategies are highlighted. Finally, challenges and considerations for the development of brain targeting nanomedicines are discussed. The overall objective is to broaden the understanding of the design and to develop nanomedicines for the treatment of brain diseases.
Collapse
Affiliation(s)
- Yung-Hao Tsou
- Department of Chemical Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Xue-Qing Zhang
- Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - He Zhu
- Department of Chemical Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Sahla Syed
- Department of Chemical Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Xiaoyang Xu
- Department of Chemical Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|
92
|
Ma S, Li M, Liu N, Li Y, Li Z, Yang Y, Yu F, Hu X, Liu C, Mei X. Vincristine liposomes with smaller particle size have stronger diffusion ability in tumor and improve tumor accumulation of vincristine significantly. Oncotarget 2017; 8:87276-87291. [PMID: 29152080 PMCID: PMC5675632 DOI: 10.18632/oncotarget.20162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/20/2017] [Indexed: 01/13/2023] Open
Abstract
The passive targeting is the premise of active targeting that could make nanocarrier detained in tumor tissue. The particle size is the most important factor that influences the diffusion and distribution of nanoparticle both in vivo and in vitro. In order to investigate the relationship between particle size and diffusion ability, two kinds of liposome loaded with Vincristine (VCR-Lip) were prepared. The diffusion behavior of VCR-Lip with different particle size and free VCR was compared through diffusion stability study. The diffusion ability from 12-well culture plate to Millipore transwell of each formulation reflected on HepG-2 cytotoxicity results. Different cell placement methods and drug adding positions were used to study the VCR-Lip diffusion behaviors, which influenced the apoptosis of HepG-2 cell. The different cell uptake of Nile red–Lip and free Nile red was compared when changed the adding way of fluorescent fluorescein. To study the penetration ability in HepG-2 tumor spheroids, we constructed 30 nm and 100 nm Cy5.5-Lip to compare with free Cy5.5. Then the anti-tumor effect, tissue distribution of free VCR injection, 30 nm and 100 nm VCR-Lip were further investigated on the HepG-2 tumor bearing nude mice. The results of these study showed that the diffusion ability of free drug and fluorescent fluorescein was remarkable stronger than which encapsulated in liposomes. Moreover, diffusion ability of smaller liposome was stronger than larger one. In this way, 30 nm liposome had not only faster and stronger tumor distribution than 100 nm liposome, but also higher tumor drug accumulation than free drug as well. Our study provided a new thinking to improve the targeting efficiency of nano drug delivery system, no matter passive or active targeting.
Collapse
Affiliation(s)
- Siyu Ma
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, PR China.,Wuhan Institute of Technology, Wuhan, PR China
| | - Mingyuan Li
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, PR China.,China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Nan Liu
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, PR China
| | - Ying Li
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, PR China
| | - Zhiping Li
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, PR China
| | - Yang Yang
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, PR China
| | - Fanglin Yu
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, PR China
| | - Xiaoqin Hu
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, PR China.,Wuhan Institute of Technology, Wuhan, PR China
| | - Cheng Liu
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, PR China.,Wuhan Institute of Technology, Wuhan, PR China
| | - Xingguo Mei
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, PR China
| |
Collapse
|
93
|
Miranda A, Blanco-Prieto MJ, Sousa J, Pais A, Vitorino C. Breaching barriers in glioblastoma. Part II: Targeted drug delivery and lipid nanoparticles. Int J Pharm 2017; 531:389-410. [DOI: 10.1016/j.ijpharm.2017.07.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 02/07/2023]
|
94
|
Chen Z, Zhai M, Xie X, Zhang Y, Ma S, Li Z, Yu F, Zhao B, Zhang M, Yang Y, Mei X. Apoferritin Nanocage for Brain Targeted Doxorubicin Delivery. Mol Pharm 2017; 14:3087-3097. [PMID: 28728419 DOI: 10.1021/acs.molpharmaceut.7b00341] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An ideal brain-targeted nanocarrier must be sufficiently potent to penetrate the blood-brain barrier (BBB) and sufficiently competent to target the cells of interest with adequate optimized physiochemical features and biocompatibility. However, it is an enormous challenge to the researchers to organize the above-mentioned properties into a single nanocarrier particle. New frontiers in nanomedicine are advancing the research of new biomaterials. Herein, we demonstrate a straightforward strategy for brain targeting by encapsulating doxorubicin (DOX) into a naturally available and unmodified apoferritin nanocage (DOX-loaded APO). APO can specifically bind to cells expressing transferrin receptor 1 (TfR1). Because of the high expression of TfR1 in both brain endothelial and glioma cells, DOX-loaded APO can cross the BBB and deliver drugs to the glioma with TfR1. Subsequent research demonstrated that the DOX-loaded APO had good physicochemical properties (particle size of 12.03 ± 0.42 nm, drug encapsulation efficiency of 81.8 ± 1.1%) and significant penetrating and targeting effects in the coculture model of bEnd.3 and C6 cells in vitro. In vivo imaging revealed that DOX-loaded APO accumulated specifically in brain tumor tissues. Additionally, in vivo tumor therapy experiments (at a dosage of 1 mg/kg DOX) demonstrated that a longer survival period was observed in mice that had been treated with DOX-loaded APO (30 days) compared with mice receiving free DOX solution (19 days).
Collapse
Affiliation(s)
- Zhijiang Chen
- State Key Laboratory of Toxicology and Medical Countermeasure , Beijing 100850, China.,Beijing Institute of Pharmacology and Toxicology , Beijing 100850, China.,Hubei University of Science and Technology , Xianning 437100, China
| | - Meifang Zhai
- State Key Laboratory of Toxicology and Medical Countermeasure , Beijing 100850, China.,Beijing Institute of Pharmacology and Toxicology , Beijing 100850, China.,Jiamusi University , Jiamusi 154002, China
| | | | - Yue Zhang
- State Key Laboratory of Toxicology and Medical Countermeasure , Beijing 100850, China.,Beijing Institute of Pharmacology and Toxicology , Beijing 100850, China.,Wuhan General Hospital of PLA , Wuhan 430070, China
| | - Siyu Ma
- State Key Laboratory of Toxicology and Medical Countermeasure , Beijing 100850, China.,Beijing Institute of Pharmacology and Toxicology , Beijing 100850, China
| | - Zhiping Li
- State Key Laboratory of Toxicology and Medical Countermeasure , Beijing 100850, China.,Beijing Institute of Pharmacology and Toxicology , Beijing 100850, China
| | - Fanglin Yu
- State Key Laboratory of Toxicology and Medical Countermeasure , Beijing 100850, China.,Beijing Institute of Pharmacology and Toxicology , Beijing 100850, China
| | - Baoquan Zhao
- State Key Laboratory of Toxicology and Medical Countermeasure , Beijing 100850, China.,Beijing Institute of Pharmacology and Toxicology , Beijing 100850, China
| | - Min Zhang
- State Key Laboratory of Toxicology and Medical Countermeasure , Beijing 100850, China.,Beijing Institute of Pharmacology and Toxicology , Beijing 100850, China
| | - Yang Yang
- State Key Laboratory of Toxicology and Medical Countermeasure , Beijing 100850, China.,Beijing Institute of Pharmacology and Toxicology , Beijing 100850, China
| | - Xingguo Mei
- State Key Laboratory of Toxicology and Medical Countermeasure , Beijing 100850, China.,Beijing Institute of Pharmacology and Toxicology , Beijing 100850, China
| |
Collapse
|
95
|
Ying X, Wang Y, Xu H, Li X, Yan H, Tang H, Wen C, Li Y. The construction of the multifunctional targeting ursolic acids liposomes and its apoptosis effects to C6 glioma stem cells. Oncotarget 2017; 8:64129-64142. [PMID: 28969057 PMCID: PMC5609989 DOI: 10.18632/oncotarget.19784] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/20/2017] [Indexed: 12/11/2022] Open
Abstract
Brain gliomas, one of the most fatal tumors to human, severely threat the health and life of human. They are capable of extremely strong invasion ability. And invasive glioma cells could rapidly penetrate into normal brain tissues and break them. We prepared a kind of functional liposomes, which could be transported acrossing the blood-brain barrier (BBB) and afterwards induce the apoptosis of glioma stem cells. In this research, we chose ursolic acids (UA) as an anti-cancer drug to inhibit the growth of C6 glioma cells, while epigallocatechin 3-gallate(EGCG) as the agent that could induce the apoptosis of C6 glioma stem cells. With the targeting ability of MAN, the liposomes could be delivered through the BBB and finally were concentrated on the brain gliomas. Cell experiments in vitro demonstrated that the functional liposomes were able to significantly enhance the anti-cancer effects of the drugs due to promoting the apoptosis and endocytosis effects of C6 glioma cells and C6 glioma stem cells at the same time. Furthermore, the evaluations through animal models showed that the drugs could obviously prolong the survival period of brain glioma-bearing mice and inhibit the tumor growth. Consequently, multifunctional targeting ursolic acids liposomes could potentially improve the therapeutic effects on C6 glioma cells and C6 glioma stem cells.
Collapse
Affiliation(s)
- Xue Ying
- School of Pharmaceutical Sciences, Shihezi University, Shihezi 832002, People's Republic of China
| | - Yahua Wang
- School of Pharmaceutical Sciences, Shihezi University, Shihezi 832002, People's Republic of China
| | - Haolun Xu
- School of Pharmaceutical Sciences, Shihezi University, Shihezi 832002, People's Republic of China
| | - Xia Li
- School of Pharmaceutical Sciences, Shihezi University, Shihezi 832002, People's Republic of China
| | - Helu Yan
- School of Pharmaceutical Sciences, Shihezi University, Shihezi 832002, People's Republic of China
| | - Hui Tang
- School of Pharmaceutical Sciences, Shihezi University, Shihezi 832002, People's Republic of China
| | - Chen Wen
- School of Pharmaceutical Sciences, Shihezi University, Shihezi 832002, People's Republic of China
| | - Yingchun Li
- School of Pharmaceutical Sciences, Shihezi University, Shihezi 832002, People's Republic of China.,School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| |
Collapse
|
96
|
Liu S, Zhang SM, Ju RJ, Xiao Y, Wang X, Song XL, Gu LY, Cheng L, Li XT, Chen GR. Antitumor efficacy of Lf modified daunorubicin plus honokiol liposomes in treatment of brain glioma. Eur J Pharm Sci 2017; 106:185-197. [DOI: 10.1016/j.ejps.2017.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/23/2017] [Accepted: 06/02/2017] [Indexed: 12/30/2022]
|
97
|
Zhu H, Zhou B, Chan L, Du Y, Chen T. Transferrin-functionalized nanographene oxide for delivery of platinum complexes to enhance cancer-cell selectivity and apoptosis-inducing efficacy. Int J Nanomedicine 2017; 12:5023-5038. [PMID: 28761342 PMCID: PMC5516881 DOI: 10.2147/ijn.s139207] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Rational design and construction of delivery nanosystems for anticancer metal complexes is a crucial strategy to improve solubility under physiological conditions and permeability and retention behavior in tumor cells. Therefore, in this study, we designed and synthesize a transferrin (Tf)-conjugated nanographene oxide (NGO) nanosystem as a cancer-targeted nanocarrier of Pt complexes (Tf-NGO@Pt). This nanodelivery system exhibited good solubility under physiological conditions. Moreover, Tf-NGO@Pt showed higher anticancer efficacy against MCF human breast cancer cells than the free Pt complex, and effectively inhibited cancer-cell migration and invasion, with involvement of reactive oxygen species overproduction. In addition, nanolization also enhanced the penetration ability and inhibitory effect of the Pt complex toward MCF7 breast cancer-cell tumor spheroids. The enhancement of anticancer efficacy was positively correlated with increased cellular uptake and cellular drug retention. This study provides a new strategy to facilitate the future application of metal complexes in cancer therapy.
Collapse
Affiliation(s)
- Hai Zhu
- Department of Internal Medicine and Orthopedics, Guangdong Provincial Hospital of Traditional Chinese Medicine
| | - Binwei Zhou
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Leung Chan
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Yanxin Du
- Department of Internal Medicine and Orthopedics, Guangdong Provincial Hospital of Traditional Chinese Medicine
| | - Tianfeng Chen
- Department of Internal Medicine and Orthopedics, Guangdong Provincial Hospital of Traditional Chinese Medicine
| |
Collapse
|
98
|
Wong YK, Xu C, Kalesh KA, He Y, Lin Q, Wong WSF, Shen HM, Wang J. Artemisinin as an anticancer drug: Recent advances in target profiling and mechanisms of action. Med Res Rev 2017. [PMID: 28643446 DOI: 10.1002/med.21446] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Artemisinin and its derivatives (collectively termed as artemisinins) are among the most important and effective antimalarial drugs, with proven safety and efficacy in clinical use. Beyond their antimalarial effects, artemisinins have also been shown to possess selective anticancer properties, demonstrating cytotoxic effects against a wide range of cancer types both in vitro and in vivo. These effects appear to be mediated by artemisinin-induced changes in multiple signaling pathways, interfering simultaneously with multiple hallmarks of cancer. Great strides have been taken to characterize these pathways and to reveal their anticancer mechanisms of action of artemisinin. Moreover, encouraging data have also been obtained from a limited number of clinical trials to support their anticancer property. However, there are several key gaps in knowledge that continue to serve as significant barriers to the repurposing of artemisinins as effective anticancer agents. This review focuses on important and emerging aspects of this field, highlighting breakthroughs in unresolved questions as well as novel techniques and approaches that have been taken in recent studies. We discuss the mechanism of artemisinin activation in cancer, novel and significant findings with regards to artemisinin target proteins and pathways, new understandings in artemisinin-induced cell death mechanisms, as well as the practical issues of repurposing artemisinin. We believe these will be important topics in realizing the potential of artemisinin and its derivatives as safe and potent anticancer agents.
Collapse
Affiliation(s)
- Yin Kwan Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chengchao Xu
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Karunakaran A Kalesh
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Yingke He
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jigang Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
99
|
Mu LM, Ju RJ, Liu R, Bu YZ, Zhang JY, Li XQ, Zeng F, Lu WL. Dual-functional drug liposomes in treatment of resistant cancers. Adv Drug Deliv Rev 2017; 115:46-56. [PMID: 28433739 DOI: 10.1016/j.addr.2017.04.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/15/2017] [Accepted: 04/18/2017] [Indexed: 12/26/2022]
Abstract
Efficacy of regular chemotherapy is significantly hampered by multidrug resistance (MDR) and severe systemic toxicity. The reduced toxicity has been evidenced after administration of drug liposomes, consisting of the first generation of regular drug liposomes, the second generation of long-circulation drug liposomes, and the third generation of targeting drug liposomes. However, MDR of cancers remains as an unsolved issue. The objective of this article is to review the dual-functional drug liposomes, which demonstrate the potential in overcoming MDR. Herein, dual-functional drug liposomes are referring to the drug-containing phospholipid bilayer vesicles that possess a dual-function of providing the basic efficacy of drug and the extended effect of the drug carrier. They exhibit unique roles in treatment of resistant cancer via circumventing drug efflux caused by adenosine triphosphate binding cassette (ABC) transporters, eliminating cancer stem cells, destroying mitochondria, initiating apoptosis, regulating autophagy, destroying supply channels, utilizing microenvironment, and silencing genes of the resistant cancer. As the prospect of an estimation, dual-functional drug liposomes would exhibit more strength in their extended function, hence deserving further investigation for clinical validation.
Collapse
|
100
|
Liu L, Mu LM, Yan Y, Wu JS, Hu YJ, Bu YZ, Zhang JY, Liu R, Li XQ, Lu WL. The use of functional epirubicin liposomes to induce programmed death in refractory breast cancer. Int J Nanomedicine 2017; 12:4163-4176. [PMID: 28615943 PMCID: PMC5459983 DOI: 10.2147/ijn.s133194] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Currently, chemotherapy is less efficient in controlling the continued development of breast cancer because it cannot eliminate extrinsic and intrinsic refractory cancers. In this study, mitochondria were modified by functional epirubicin liposomes to eliminate refractory cancers through initiation of an apoptosis cascade. The efficacy and mechanism of epirubicin liposomes were investigated on human breast cancer cells in vitro and in vivo using flow cytometry, confocal microscopy, high-content screening system, in vivo imaging system, and tumor inhibition in mice. Mechanistic studies revealed that the liposomes could target the mitochondria, activate the apoptotic enzymes caspase 8, 9, and 3, upregulate the proapoptotic protein Bax while downregulating the antiapoptotic protein Mcl-1, and induce the generation of reactive oxygen species (ROS) through an apoptosis cascade. In xenografted mice bearing breast cancer, the epirubicin liposomes demonstrated prolonged blood circulation, significantly increased accumulation in tumor tissue, and robust anticancer efficacy. This study demonstrated that functional epirubicin liposomes could significantly induce programmed death of refractory breast cancer by activating caspases and ROS-related apoptotic signaling pathways, in addition to the direct killing effect of the anticancer drug itself. Thus, we present a simple nanomedicine strategy to treat refractory breast cancer.
Collapse
Affiliation(s)
- Lei Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Li-Min Mu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Yan Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Jia-Shuan Wu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Ying-Jie Hu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Ying-Zi Bu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Jing-Ying Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Rui Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Xue-Qi Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Wan-Liang Lu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| |
Collapse
|