51
|
Wang T, Ding J, Cheng X, Yang Q, Hu P. Glucagon-like peptide-1 receptor agonists: new strategies and therapeutic targets to treat atherosclerotic cardiovascular disease. Front Pharmacol 2024; 15:1396656. [PMID: 38720777 PMCID: PMC11076696 DOI: 10.3389/fphar.2024.1396656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is a leading cause of cardiovascular mortality and is increasingly prevalent in our population. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) can safely and effectively lower glucose levels while concurrently managing the full spectrum of ASCVD risk factors and improving patients' long-term prognosis. Several cardiovascular outcome trials (CVOTs) have been carried out to further investigate the cardiovascular benefits of GLP-1RAs. Analyzing data from CVOTs can provide insights into the pathophysiologic mechanisms by which GLP-1RAs are linked to ASCVD and define the use of GLP-1RAs in clinical practice. Here, we discussed various mechanisms hypothesized in previous animal and preclinical human studies, including blockade of the production of adhesion molecules and inflammatory factors, induction of endothelial cells' synthesis of nitric oxide, protection of mitochondrial function and restriction of oxidative stress, suppression of NOD-like receptor thermal protein domain associated protein three inflammasome, reduction of foam cell formation and macrophage inflammation, and amelioration of vascular smooth muscle cell dysfunction, to help explain the cardiovascular benefits of GLP-1RAs in CVOTs. This paper provides an overview of the clinical research, molecular processes, and possible therapeutic applications of GLP-1RAs in ASCVD, while also addressing current limitations in the literature and suggesting future research directions.
Collapse
Affiliation(s)
- Tianyu Wang
- Department of The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Juncan Ding
- Department of The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyi Cheng
- Department of The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiang Yang
- Department of The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Pengfei Hu
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
52
|
Neamțu M, Bild V, Vasincu A, Arcan OD, Bulea D, Ababei DC, Rusu RN, Macadan I, Sciucă AM, Neamțu A. Inflammasome Molecular Insights in Autoimmune Diseases. Curr Issues Mol Biol 2024; 46:3502-3532. [PMID: 38666950 PMCID: PMC11048795 DOI: 10.3390/cimb46040220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Autoimmune diseases (AIDs) emerge due to an irregular immune response towards self- and non-self-antigens. Inflammation commonly accompanies these conditions, with inflammatory factors and inflammasomes playing pivotal roles in their progression. Key concepts in molecular biology, inflammation, and molecular mimicry are crucial to understanding AID development. Exposure to foreign antigens can cause inflammation, potentially leading to AIDs through molecular mimicry triggered by cross-reactive epitopes. Molecular mimicry emerges as a key mechanism by which infectious or chemical agents trigger autoimmunity. In certain susceptible individuals, autoreactive T or B cells may be activated by a foreign antigen due to resemblances between foreign and self-peptides. Chronic inflammation, typically driven by abnormal immune responses, is strongly associated with AID pathogenesis. Inflammasomes, which are vital cytosolic multiprotein complexes assembled in response to infections and stress, are crucial to activating inflammatory processes in macrophages. Chronic inflammation, characterized by prolonged tissue injury and repair cycles, can significantly damage tissues, thereby increasing the risk of AIDs. Inhibiting inflammasomes, particularly in autoinflammatory disorders, has garnered significant interest, with pharmaceutical advancements targeting cytokines and inflammasomes showing promise in AID management.
Collapse
Affiliation(s)
- Monica Neamțu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Veronica Bild
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
- Center of Biomedical Research of the Romanian Academy, 8 Carol I Avenue, 700506 Iasi, Romania
| | - Alexandru Vasincu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Oana Dana Arcan
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Delia Bulea
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Daniela-Carmen Ababei
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Răzvan-Nicolae Rusu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Ioana Macadan
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Ana Maria Sciucă
- Department of Oral Medicine, Oral Dermatology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Andrei Neamțu
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| |
Collapse
|
53
|
Xu T, Chen T, Fang H, Shen X, Shen X, Tang Z, Zhao J. Human Umbilical Cord Mesenchymal Stem Cells Repair Endothelial Injury and Dysfunction by Regulating NLRP3 to Inhibit Endothelial Cell Pyroptosis in Kawasaki Disease. Inflammation 2024; 47:483-502. [PMID: 37948033 DOI: 10.1007/s10753-023-01921-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
Vascular endothelial inflammation and endothelial dysfunction are the main causes of endothelial injury in Kawasaki disease (KD). Human umbilical cord-derived mesenchymal stem cells (Huc-MSCs) have multiple functions in immune regulation. This study examined whether Huc-MSCs inhibited endothelial inflammation and improved endothelial function in KD through constructing cell and in vivo animal KD vasculitis models. The pyroptosis factor NOD-like receptor protein 3 (NLRP3) was involved in the inflammatory process in the acute phase of KD. After tail vein injection of Huc-MSCs, inflammatory cell infiltration and the expression of pyroptosis-related proteins in the LCWE-induced KD mouse vasculitis model were significantly reduced. In vitro, NLRP3-dependent pyroptosis successfully induced human umbilical vein endothelial cell (HUVEC) damage. Huc-MSCs effectively increased the abilities of impaired HUVECs to proliferate, migrate, invade, and form vessel-like tubes, while inhibiting their apoptosis, suggesting that Huc-MSCs can reduce inflammation and improve vascular endothelial function by inhibiting the NLRP3-dependent pyroptosis pathway in KD, providing a possibility and novel target for KD endothelial injury and dysfunction.
Collapse
Affiliation(s)
- Ting Xu
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong Jiangsu Province, 226001, China
- Research Institute of Comparative Medicine, Nantong University, Nantong Jiangsu Province, 226001, China
| | - Tao Chen
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong Jiangsu Province, 226001, China
| | - Hao Fang
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong Jiangsu Province, 226001, China
- Research Institute of Comparative Medicine, Nantong University, Nantong Jiangsu Province, 226001, China
| | - Xiwei Shen
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong Jiangsu Province, 226001, China
- Research Institute of Comparative Medicine, Nantong University, Nantong Jiangsu Province, 226001, China
| | - Xianjuan Shen
- Department of Clinical Laboratory, Affiliated Hospital of Nantong University, Nantong Jiangsu Province, 226001, China
| | - Zhiyuan Tang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Jianmei Zhao
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong Jiangsu Province, 226001, China.
| |
Collapse
|
54
|
Fu S, Song X. The clinical and immunological features of alopecia areata following SARS-CoV-2 infection or COVID-19 vaccines. Expert Opin Ther Targets 2024; 28:273-282. [PMID: 38646688 DOI: 10.1080/14728222.2024.2344696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
INTRODUCTION Alopecia areata (AA) is an autoimmune disease induced by viral infection or vaccination. With the increased incidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the incidence of AA has also increased. Recently the incidence was found to be 7.8% from a previously reported rate of 2.1%. The physical and psychological damage caused by AA could seriously affect patients' lives, while AA is a challenging dermatological disease owing to its complex pathogenesis. AREAS COVERED This paper presents a comprehensive review of the prevalence, pathogenesis and potential therapeutic targets for AA after infection with SARS-CoV-2 or SARS-CoV-2 vaccine. EXPERT OPINION The treatment of AA remains challenging because of the complexity of its pathogenesis. For patients with AA after SARS-CoV-2 infection or vaccination, the use of sex hormones and alternative regenerative therapies may be actively considered in addition to conventional treatments. For preexisting disease, therapeutic agents should be adjusted to the patient's specific condition.
Collapse
Affiliation(s)
- Shiqi Fu
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Hangzhou, China
| |
Collapse
|
55
|
Zhu P, Bi X, Su D, Li X, Chen B, Li J, Zhao L, Wang Y, Xu S, Wu X. Thiolutin, a selective NLRP3 inflammasome inhibitor, attenuates cyclophosphamide-induced impairment of sperm and fertility in mice. Immunopharmacol Immunotoxicol 2024; 46:172-182. [PMID: 38174705 DOI: 10.1080/08923973.2023.2298894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVE The activation of the NLRP3 inflammasome has been implicated in male infertility. Our study aimed to investigate the therapeutic role of Thiolutin (THL), an inhibitor of the NLRP3 inflammasome, on oligoasthenospermia (OA) and to elucidate its mechanisms. MATERIALS AND METHODS Semen from 50 OA and 20 healthy males were analyzed to assess the sperm quality and levels of inflammatory markers. Their correlation was determined using Pearson's correlation coefficient. The BALB/c mice were intraperitoneal injected by cyclophosphamide at 60 mg/kg/day for five days to induce OA, followed by a two-week treatment with THL or L-carnitine. Reproductive organ size and H&E staining were determined to observe the organ and seminiferous tubule morphology. ELISA and western blotting were utilized to measure sex hormone levels, inflammatory markers, and NLRP3 inflammasome levels. Furthermore, male and female mice were co-housed to observe pregnancy success rates. RESULTS OA patients exhibited a decrease in sperm density and motility compared to healthy individuals, along with elevated levels of IL-1β, IL-18 and NLRP3 inflammasome. In vivo, THL ameliorated OA-induced atrophy of reproductive organs, hormonal imbalance, and improved sperm density, motility, spermatogenesis and pregnancy success rates with negligible adverse effects on weight or liver-kidney function. THL also demonstrated to be able to inhibit the activation of NLRP3 inflammasome and associated proteins in OA mice. DISCUSSION THL can improve sperm quality and hormonal balance in OA mice through the inhibition of NLRP3 inflammasome activation. Thus, THL holds promising potential as a therapeutic agent for OA.
Collapse
Affiliation(s)
- Pengfei Zhu
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| | - Xingyu Bi
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| | - Dan Su
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| | - Xiaoling Li
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| | - Bingbing Chen
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| | - Juhua Li
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| | - Lijiang Zhao
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| | - Yaoqing Wang
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| | - Suming Xu
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| | - Xueqing Wu
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| |
Collapse
|
56
|
Wang M, Gu H, Zhai Y, Li X, Huang L, Li H, Xie Z, Wen C. Vaccination and the risk of systemic lupus erythematosus: a meta-analysis of observational studies. Arthritis Res Ther 2024; 26:60. [PMID: 38433222 PMCID: PMC10910799 DOI: 10.1186/s13075-024-03296-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024] Open
Abstract
OBJECTIVE This meta-analysis aims to explore the potential link between vaccines and systemic lupus erythematosus (SLE). METHODS We systematically searched PubMed, Cochrane Library, and Embase for observational studies from inception to September 3, 2023, using medical subject headings (MeSH) and keywords. Study quality was assessed using the NOS scale. Statistical analyses were conducted using STATA software (version 14.0). Publication bias was evaluated using funnel plots and Egger's regression. RESULTS The meta-analysis incorporated 17 studies, encompassing 45,067,349 individuals with follow-up periods ranging from 0.5 to 2 years. The pooled analysis revealed no significant association between vaccinations and an increased risk of SLE [OR = 1.14, 95% CI (0.86-1.52), I2 = 78.1%, P = 0.348]. Subgroup analyses indicated that HBV vaccination was significantly associated with an elevated risk of SLE [OR =2.11, 95% CI (1.11-4.00), I2 = 63.3%, P = 0.02], HPV vaccination was slightly associated with an increased risk of SLE [OR = 1.43, 95% CI (0.88-2.31), I2 = 72.4%, P = 0.148], influenza vaccination showed no association with an increased risk of SLE [OR = 0.96, 95% CI (0.82-1.12), I2 = 0.0%, P = 0.559], and COVID-19 vaccine was marginally associated with a decreased risk of SLE [OR = 0.44, 95% CI (0.18-1.21), I2 = 91.3%, P = 0.118]. CONCLUSIONS This study suggests that vaccinations are not linked to an increased risk of SLE. Our meta-analysis results provide valuable insights, alleviating concerns about SLE risk post-vaccination and supporting further vaccine development efforts.
Collapse
Affiliation(s)
- Meijiao Wang
- Research Institute of Chinese Medicine Clinical Foundation and Immunology, School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Binwen Road, Binjiang Dsitrict, Hangzhou, China
| | - Huanpeng Gu
- Research Institute of Chinese Medicine Clinical Foundation and Immunology, School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Binwen Road, Binjiang Dsitrict, Hangzhou, China
| | - Yingqi Zhai
- Research Institute of Chinese Medicine Clinical Foundation and Immunology, School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Binwen Road, Binjiang Dsitrict, Hangzhou, China
| | - Xuanlin Li
- Research Institute of Chinese Medicine Clinical Foundation and Immunology, School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Binwen Road, Binjiang Dsitrict, Hangzhou, China
| | - Lin Huang
- Research Institute of Chinese Medicine Clinical Foundation and Immunology, School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Binwen Road, Binjiang Dsitrict, Hangzhou, China
| | - Haichang Li
- Research Institute of Chinese Medicine Clinical Foundation and Immunology, School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Binwen Road, Binjiang Dsitrict, Hangzhou, China
| | - Zhijun Xie
- Research Institute of Chinese Medicine Clinical Foundation and Immunology, School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Binwen Road, Binjiang Dsitrict, Hangzhou, China.
| | - Chengping Wen
- Research Institute of Chinese Medicine Clinical Foundation and Immunology, School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Binwen Road, Binjiang Dsitrict, Hangzhou, China.
| |
Collapse
|
57
|
Wu X, Yang J, Wu J, Yang X. Therapeutic potential of MCC950, a specific inhibitor of NLRP3 inflammasome in systemic lupus erythematosus. Biomed Pharmacother 2024; 172:116261. [PMID: 38340397 DOI: 10.1016/j.biopha.2024.116261] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disorder with a pathogenesis that remains incompletely understood, resulting in limited treatment options. MCC950, a highly specific NLRP3 inflammasome inhibitor, effectively suppresses the activation of NLRP3, thus reducing the production of caspase-1, the pro-inflammatory cytokines IL-1β and IL-18. This review highlights the pivotal role of NLRP3 inflammasome activation pathways in the pathogenesis of SLE and discusses the potential therapeutic application of MCC950 in SLE. Notably, it comprehensively elucidates the mechanism of MCC950 targeting the NLRP3 pathway in SLE treatment, outlining its potential role in regulating autophagy and necroptosis. The insights gained contribute to a deeper understanding of the value of MCC950 in SLE therapy, serving as a robust foundation for further research and potential clinical applications.
Collapse
Affiliation(s)
- Xiaoxiao Wu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Junhao Yang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155North Nanjing Street, Heping District, Shenyang 110001, China
| | - Juanjie Wu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Xuyan Yang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China.
| |
Collapse
|
58
|
Palamidas DA, Chatzis L, Papadaki M, Gissis I, Kambas K, Andreakos E, Goules AV, Tzioufas AG. Current Insights into Tissue Injury of Giant Cell Arteritis: From Acute Inflammatory Responses towards Inappropriate Tissue Remodeling. Cells 2024; 13:430. [PMID: 38474394 PMCID: PMC10930978 DOI: 10.3390/cells13050430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Giant cell arteritis (GCA) is an autoimmune disease affecting large vessels in patients over 50 years old. It is an exemplary model of a classic inflammatory disorder with IL-6 playing the leading role. The main comorbidities that may appear acutely or chronically are vascular occlusion leading to blindness and thoracic aorta aneurysm formation, respectively. The tissue inflammatory bulk is expressed as acute or chronic delayed-type hypersensitivity reactions, the latter being apparent by giant cell formation. The activated monocytes/macrophages are associated with pronounced Th1 and Th17 responses. B-cells and neutrophils also participate in the inflammatory lesion. However, the exact order of appearance and mechanistic interactions between cells are hindered by the lack of cellular and molecular information from early disease stages and accurate experimental models. Recently, senescent cells and neutrophil extracellular traps have been described in tissue lesions. These structures can remain in tissues for a prolonged period, potentially favoring inflammatory responses and tissue remodeling. In this review, current advances in GCA pathogenesis are discussed in different inflammatory phases. Through the description of these-often overlapping-phases, cells, molecules, and small lipid mediators with pathogenetic potential are described.
Collapse
Affiliation(s)
- Dimitris Anastasios Palamidas
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.A.P.); (L.C.); (A.V.G.)
| | - Loukas Chatzis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.A.P.); (L.C.); (A.V.G.)
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (M.P.); (E.A.)
| | - Maria Papadaki
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (M.P.); (E.A.)
| | - Ilias Gissis
- Department of Thoracic and Cardiovascular Surgery, Evangelismos General Hospital, 11473 Athens, Greece;
| | - Konstantinos Kambas
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (M.P.); (E.A.)
| | - Andreas V. Goules
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.A.P.); (L.C.); (A.V.G.)
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (M.P.); (E.A.)
| | - Athanasios G. Tzioufas
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.A.P.); (L.C.); (A.V.G.)
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (M.P.); (E.A.)
- Research Institute for Systemic Autoimmune Diseases, 11527 Athens, Greece
| |
Collapse
|
59
|
Sun M, Zhang Y, Guo A, Xia Z, Peng L. Progress in the Correlation Between Inflammasome NLRP3 and Liver Fibrosis. J Clin Transl Hepatol 2024; 12:191-200. [PMID: 38343611 PMCID: PMC10851067 DOI: 10.14218/jcth.2023.00231] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/02/2023] [Accepted: 09/13/2023] [Indexed: 01/04/2025] Open
Abstract
Liver fibrosis is a reversible condition that occurs in the early stages of chronic liver disease. To develop effective treatments for liver fibrosis, understanding the underlying mechanism is crucial. The NOD-like receptor protein 3 (NLRP3) inflammasome, which is a part of the innate immune system, plays a crucial role in the progression of various inflammatory diseases. NLRP3 activation is also important in the development of various liver diseases, including viral hepatitis, alcoholic or nonalcoholic liver disease, and autoimmune liver disease. This review discusses the role of NLRP3 and its associated molecules in the development of liver fibrosis. It also highlights the signal pathways involved in NLRP3 activation, their downstream effects on liver disease progression, and potential therapeutic targets in liver fibrosis. Further research is encouraged to develop effective treatments for liver fibrosis.
Collapse
Affiliation(s)
- Meihua Sun
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Yanqing Zhang
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Anbing Guo
- Department of Gastroenterology, Linyi People’s Hospital, Linyi, Shandong, China
| | - Zongting Xia
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Lijun Peng
- Department of Gastroenterology, Linyi People’s Hospital, Linyi, Shandong, China
| |
Collapse
|
60
|
Calabrese L, Fiocco Z, Mellett M, Aoki R, Rubegni P, French LE, Satoh TK. Role of the NLRP1 inflammasome in skin cancer and inflammatory skin diseases. Br J Dermatol 2024; 190:305-315. [PMID: 37889986 DOI: 10.1093/bjd/ljad421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/07/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023]
Abstract
Inflammasomes are cytoplasmic protein complexes that play a crucial role in protecting the host against pathogenic and sterile stressors by initiating inflammation. Upon activation, these complexes directly regulate the proteolytic processing and activation of proinflammatory cytokines interleukin (IL)-1β and IL-18 to induce a potent inflammatory response, and induce a programmed form of cell death called pyroptosis to expose intracellular pathogens to the surveillance of the immune system, thus perpetuating inflammation. There are various types of inflammasome complexes, with the NLRP1 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-1) inflammasome being the first one identified and currently recognized as the predominant inflammasome sensor protein in human keratinocytes. Human NLRP1 exhibits a unique domain structure, containing both an N-terminal pyrin (PYD) domain and an effector C-terminal caspase recruitment domain (CARD). It can be activated by diverse stimuli, such as viruses, ultraviolet B radiation and ribotoxic stress responses. Specific mutations in NLRP1 or related genes have been associated with rare monogenic skin disorders, such as multiple self-healing palmoplantar carcinoma; familial keratosis lichenoides chronica; autoinflammation with arthritis and dyskeratosis; and dipeptidyl peptidase 9 deficiency. Recent research breakthroughs have also highlighted the involvement of dysfunctions in the NLRP1 pathway in a handful of seemingly unrelated dermatological conditions. These range from monogenic autoinflammatory diseases to polygenic autoimmune diseases such as vitiligo, psoriasis, atopic dermatitis and skin cancer, including squamous cell carcinoma, melanoma and Kaposi sarcoma. Additionally, emerging evidence implicates NLRP1 in systemic lupus erythematosus, pemphigus vulgaris, Addison disease, Papillon-Lefèvre syndrome and leprosy. The aim of this review is to shed light on the implications of pathological dysregulation of the NLRP1 inflammasome in skin diseases and investigate the potential rationale for targeting this pathway as a future therapeutic approach.
Collapse
Affiliation(s)
- Laura Calabrese
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
- Institute of Dermatology, Catholic University of the Sacred Heart, Rome, Italy
- Department of Dermatology and Allergy, University Hospital, LMU, Munich, Germany
| | - Zeno Fiocco
- Department of Dermatology and Allergy, University Hospital, LMU, Munich, Germany
| | - Mark Mellett
- Department of Dermatology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Rui Aoki
- Department of Dermatology and Allergy, University Hospital, LMU, Munich, Germany
| | - Pietro Rubegni
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Lars E French
- Department of Dermatology and Allergy, University Hospital, LMU, Munich, Germany
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Takashi K Satoh
- Department of Dermatology and Allergy, University Hospital, LMU, Munich, Germany
| |
Collapse
|
61
|
Yi YS. MicroRNA-mediated epigenetic regulation of inflammasomes in inflammatory responses and immunopathologies. Semin Cell Dev Biol 2024; 154:227-238. [PMID: 36437174 DOI: 10.1016/j.semcdb.2022.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
Inflammation represents the first-line defense mechanism of the host against pathogens and cellular stress. One of the most critical inflammatory responses is characterized by the activation of inflammasomes, intracellular multiprotein complexes that induce inflammatory signaling pathways in response to various pathogen-associated molecular patterns or danger-associated molecular patterns under physiological and pathological conditions. Inflammasomes are tightly regulated in normal cells, and dysregulation of these complexes is observed in various pathological conditions, especially inflammatory diseases and cancers. Epigenetic regulation has been suggested as a key mechanism in modulating inflammasome activity, and microRNAs (miRNAs) have been implicated in the post-transcriptional regulation of inflammasomes. Therefore, miRNA-mediated epigenetic regulation of inflammasomes in pathological conditions has received considerable attention, and current strategies for targeting inflammasomes have been shown to be effective in the treatment of diseases associated with inflammasome activation. This review summarizes recent studies suggesting the roles of miRNAs in the epigenetic control of inflammasomes and highlights the potential of miRNAs as a therapeutic tool for treating human diseases.
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Life Sciences, Kyonggi University, Suwon 16227, South Korea.
| |
Collapse
|
62
|
Yi YS. Roles of the Caspase-11 Non-Canonical Inflammasome in Rheumatic Diseases. Int J Mol Sci 2024; 25:2091. [PMID: 38396768 PMCID: PMC10888639 DOI: 10.3390/ijms25042091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Inflammasomes are intracellular multiprotein complexes that activate inflammatory signaling pathways. Inflammasomes comprise two major classes: canonical inflammasomes, which were discovered first and are activated in response to a variety of pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs), and non-canonical inflammasomes, which were discovered recently and are only activated in response to intracellular lipopolysaccharide (LPS). Although a larger number of studies have successfully demonstrated that canonical inflammasomes, particularly the NLRP3 inflammasome, play roles in various rheumatic diseases, including rheumatoid arthritis (RA), infectious arthritis (IR), gouty arthritis (GA), osteoarthritis (OA), systemic lupus erythematosus (SLE), psoriatic arthritis (PA), ankylosing spondylitis (AS), and Sjögren's syndrome (SjS), the regulatory roles of non-canonical inflammasomes, such as mouse caspase-11 and human caspase-4 non-canonical inflammasomes, in these diseases are still largely unknown. Interestingly, an increasing number of studies have reported possible roles for non-canonical inflammasomes in the pathogenesis of various mouse models of rheumatic disease. This review comprehensively summarizes and discusses recent emerging studies demonstrating the regulatory roles of non-canonical inflammasomes, particularly focusing on the caspase-11 non-canonical inflammasome, in the pathogenesis and progression of various types of rheumatic diseases and provides new insights into strategies for developing potential therapeutics to prevent and treat rheumatic diseases as well as associated diseases by targeting non-canonical inflammasomes.
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Life Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| |
Collapse
|
63
|
Zhou Y, Yang X, Zhu L. A novel Nlrp3 knock-in mouse model with hyperactive inflammasome in development of lethal inflammation. Clin Exp Immunol 2024; 215:202-214. [PMID: 37594231 PMCID: PMC10847811 DOI: 10.1093/cei/uxad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/23/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023] Open
Abstract
NOD-like receptor family, pyrin domain-containing 3 (NLRP3) is a central protein contributing to human inflammatory disorders, including cryopyrin-associated periodic syndrome and sepsis. However, the molecular mechanisms and functions of NLRP3 activation in various diseases remain unknown. Here, we generated gain-of-function knock-in mice associated with Muckle-Wells syndromes using the Cre-LoxP system allowing for the constitutive T346M mutation of NLRP3 to be globally expressed in all cells under the control of tamoxifen. The mice were treated with tamoxifen for 4 days before determining their genotype by PCR and sequence analysis. In vitro, we found that bone marrow-derived macrophage from homozygous T346M mutation mice displayed a robust ability to produce IL-1β in response to lipopolysaccharide exposure. Moreover, ASC specks and oligomerization were observed in the homozygous mutant bone marrow-derived macrophages in the presence of lipopolysaccharides alone. Mechanistically, K+ and Ca2+ depletion and mitochondrial depolarization contribute to the hyperactivation of mutant NLRP3. In vivo, homozygous mice carrying the T346M mutation exhibit weight loss and mild inflammation in the resting state. In the lipopolysaccharide-mediated sepsis model, homozygous mutant mice exhibited higher mortality and increased serum circulating cytokine levels, accompanied by serious liver injury. Furthermore, an increase in myeloid cells in the spleen has been suggested to be a risk factor for inducing sepsis sensitivity. Altogether, we describe a cryopyrin-associated syndrome animal model with the T346M mutation of NLRP3 and suggest that the hyperactivated inflammasome aggregated by the mutant NLRP3 lowers the inflammatory response threshold both in vitro and in vivo.
Collapse
Affiliation(s)
- Yongting Zhou
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College; Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Xiyue Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College; Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Lei Zhu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College; Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing, PR China
| |
Collapse
|
64
|
Fernández-Torres J, Zamudio-Cuevas Y, Ruiz-Dávila X, López-Macay A, Martínez-Flores K. MICA and NLRP3 gene polymorphisms interact synergistically affecting the risk of ankylosing spondylitis. Immunol Res 2024; 72:119-127. [PMID: 37665559 DOI: 10.1007/s12026-023-09419-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Ankylosing spondylitis (AS) is an autoinflammatory disease that affects the sacroiliac joints, causing stiffness and pain in the back. MICA is a ligand of the NKG2D receptor, and an increase in its expression affects the immune response in various diseases. NLRP3 is a multiprotein complex that promotes the release of IL-1β, but its role in AS has been minimally explored. The objective of this study was to analyze the association and interaction of polymorphic variants of the MICA and NLRP3 genes in patients with AS. In this case-control study, patients with AS were included and compared with healthy controls of Mexican origin. The polymorphisms rs4349859 and rs116488202 of MICA and rs3806268 and rs10754558 of NLRP3 were genotyped using TaqMan probes. Associations were determined using logistic regression models, while interactions were analyzed by the multifactorial dimensionality reduction (MDR) method. A P value < 0.05 was considered statistically significant. The minor allele of rs4349859 (A) and rs116488202 (T) of MICA polymorphisms showed risk associations with AS (OR = 9.22, 95% CI = 4.26-20.0, P < 0.001; OR = 9.36, 95% CI = 4.17-21.0, P < 0.001), while the minor allele of the rs3806268 (A) polymorphism of NLRP3 was associated with protection (OR = 0.55, 95% CI = 0.33-0.91, P = 0.019). MDR analysis revealed synergistic interactions between the MICA and NLRP3 polymorphisms (P = 0.012). In addition, high- and low-risk genotypes were identified among these variants. The study findings suggest that the MICA rs4349859 A allele and rs116488202 T allele are associated with AS risk. An interaction between MICA and NLRP3 was observed which could increase the genetic risk in AS.
Collapse
Affiliation(s)
- Javier Fernández-Torres
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco 289, C.P. 14389, Alcaldía Tlalpan, Mexico City, Mexico.
- Biology Department, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
| | - Yessica Zamudio-Cuevas
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco 289, C.P. 14389, Alcaldía Tlalpan, Mexico City, Mexico
| | | | - Ambar López-Macay
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco 289, C.P. 14389, Alcaldía Tlalpan, Mexico City, Mexico
| | - Karina Martínez-Flores
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco 289, C.P. 14389, Alcaldía Tlalpan, Mexico City, Mexico
| |
Collapse
|
65
|
Wang M, Zhao H, Zhao H, Huo C, Yuan Y, Zhu Y. Moxibustion-mediated alleviation of synovitis in rats with rheumatoid arthritis through the regulation of NLRP3 inflammasome by modulating neutrophil extracellular traps. Heliyon 2024; 10:e23633. [PMID: 38187290 PMCID: PMC10770485 DOI: 10.1016/j.heliyon.2023.e23633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Purpose This study investigates the potential mechanism of moxibustion in the treatment of rheumatoid arthritis (RA) by regulating the neutrophil extracellular trap (NET)/NOD-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome axis with the use of a rat model with adjuvant arthritis (AA). Methods Four groups, including normal control (NC), AA, moxibustion (MOX), and chlor-amidine (Cl-amidine) were created from 24 Wistar male rats (6 rats/group). After the intervention and treatment respectively, the joint swelling degree (JSD) and arthritis index (AI) were compared. The pathological changes of synovium were observed with hematoxylin and eosin staining and transmission electron microscopy. The formation of NETs in synovial tissues was detected with immunofluorescence staining. The protein expression of myeloperoxidase (MPO), neutrophil elastase (NE), citrullinated histone (Cit-H3), acyl arginine deiminase 4 (PAD-4), and NLRP3 was measured in the synovium of rat ankle joints with western blotting, and the levels of anti-cyclic citrullinated peptide antibody (CCP-Ab) and interleukin (IL)-1β were examined in rat serum with ELISA. Results AA modeling markedly increased JSD, AI, synovial protein expression of MPO, NE, Cit-H3, PAD-4, and NLRP3, and serum levels of CCP-Ab and IL-1β in rats (P < 0.01). JSD and AI, as well as the levels of MPO, NE, Cit-H3, PAD-4, NLRP3, CCP-Ab, and IL-1β, were significantly lowered in AA rats by MOX and Cl-amidine (P < 0.01). In addition, AA modeling caused severe pathological injury in the synovium of rats, which was annulled by MOX and Cl-amidine. The formation of NETs in synovium was substantially promoted in rats by AA modeling and was significantly reduced in AA rats after the treatment. Conclusion Moxibustion can markedly alleviate synovitis and repress inflammatory factor release in AA rats, which may be achieved by diminished synthesis of NETs or their constituents and the blocked formation of NLRP3 inflammasome.
Collapse
Affiliation(s)
- Miao Wang
- Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Hongfang Zhao
- Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Hui Zhao
- Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Chenlu Huo
- Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Yu Yuan
- Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Yan Zhu
- The Geriatrics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230061, China
| |
Collapse
|
66
|
Fornari Laurindo L, Aparecido Dias J, Cressoni Araújo A, Torres Pomini K, Machado Galhardi C, Rucco Penteado Detregiachi C, Santos de Argollo Haber L, Donizeti Roque D, Dib Bechara M, Vialogo Marques de Castro M, de Souza Bastos Mazuqueli Pereira E, José Tofano R, Jasmin Santos German Borgo I, Maria Barbalho S. Immunological dimensions of neuroinflammation and microglial activation: exploring innovative immunomodulatory approaches to mitigate neuroinflammatory progression. Front Immunol 2024; 14:1305933. [PMID: 38259497 PMCID: PMC10800801 DOI: 10.3389/fimmu.2023.1305933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
The increasing life expectancy has led to a higher incidence of age-related neurodegenerative conditions. Within this framework, neuroinflammation emerges as a significant contributing factor. It involves the activation of microglia and astrocytes, leading to the release of pro-inflammatory cytokines and chemokines and the infiltration of peripheral leukocytes into the central nervous system (CNS). These instances result in neuronal damage and neurodegeneration through activated nucleotide-binding domain and leucine-rich repeat containing (NLR) family pyrin domain containing protein 3 (NLRP3) and nuclear factor kappa B (NF-kB) pathways and decreased nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Due to limited effectiveness regarding the inhibition of neuroinflammatory targets using conventional drugs, there is challenging growth in the search for innovative therapies for alleviating neuroinflammation in CNS diseases or even before their onset. Our results indicate that interventions focusing on Interleukin-Driven Immunomodulation, Chemokine (CXC) Receptor Signaling and Expression, Cold Exposure, and Fibrin-Targeted strategies significantly promise to mitigate neuroinflammatory processes. These approaches demonstrate potential anti-neuroinflammatory effects, addressing conditions such as Multiple Sclerosis, Experimental autoimmune encephalomyelitis, Parkinson's Disease, and Alzheimer's Disease. While the findings are promising, immunomodulatory therapies often face limitations due to Immune-Related Adverse Events. Therefore, the conduction of randomized clinical trials in this matter is mandatory, and will pave the way for a promising future in the development of new medicines with specific therapeutic targets.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Jefferson Aparecido Dias
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Karina Torres Pomini
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Anatomy, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Cristiano Machado Galhardi
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Claudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Luíza Santos de Argollo Haber
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Domingos Donizeti Roque
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Anatomy, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Eliana de Souza Bastos Mazuqueli Pereira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Ricardo José Tofano
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Iris Jasmin Santos German Borgo
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, Universidade de São Paulo (FOB-USP), Bauru, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, Brazil
| |
Collapse
|
67
|
Tang Y, Zhou Y, Wang X, Che N, Tian J, Man K, Rui K, Peng N, Lu L. The role of epithelial cells in the immunopathogenesis of Sjögren's syndrome. J Leukoc Biol 2024; 115:57-67. [PMID: 37134025 DOI: 10.1093/jleuko/qiad049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/04/2023] Open
Abstract
Sjögren's syndrome is a systemic autoimmune disease characterized by dysfunction of the affected exocrine glands. Lymphocytic infiltration within the inflamed glands and aberrant B-cell hyperactivation are the two salient pathologic features in Sjögren's syndrome. Increasing evidence indicates that salivary gland epithelial cells act as a key regulator in the pathogenesis of Sjögren's syndrome, as revealed by the dysregulated innate immune signaling pathways in salivary gland epithelium and increased expression of various proinflammatory molecules as well as their interaction with immune cells. In addition, salivary gland epithelial cells can regulate adaptive immune responses as nonprofessional antigen-presenting cells and promote the activation and differentiation of infiltrated immune cells. Moreover, the local inflammatory milieu can modulate the survival of salivary gland epithelial cells, leading to enhanced apoptosis and pyroptosis with the release of intracellular autoantigens, which further contributes to SG autoimmune inflammation and tissue destruction in Sjögren's syndrome. Herein, we reviewed recent advances in elucidating the role of salivary gland epithelial cells in the pathogenesis of Sjögren's syndrome, which may provide rationales for potential therapeutic targeting of salivary gland epithelial cells to alleviate salivary gland dysfunction alongside treatments with immunosuppressive reagents in Sjögren's syndrome.
Collapse
Affiliation(s)
- Yuan Tang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong, China
| | - Yingbo Zhou
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong, China
| | - Xiaoran Wang
- Department of Rheumatology, The Second People's Hospital of Three Gorges University, College street, Xiling District, Yichang, China
| | - Nan Che
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, Gulou District, Nanjing, China
| | - Jie Tian
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Jiefang Road, Jingkou District, Zhenjiang, China
| | - Kwan Man
- Department of Surgery, School of Clinical Medicine, Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong, China
| | - Ke Rui
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Jiefang Road, Jingkou District, Zhenjiang, China
| | - Na Peng
- Department of Rheumatology, The Second People's Hospital of Three Gorges University, College street, Xiling District, Yichang, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Sha Tin, New Territories, Hong Kong, China
| |
Collapse
|
68
|
Chen PK, Tang KT, Chen DY. The NLRP3 Inflammasome as a Pathogenic Player Showing Therapeutic Potential in Rheumatoid Arthritis and Its Comorbidities: A Narrative Review. Int J Mol Sci 2024; 25:626. [PMID: 38203796 PMCID: PMC10779699 DOI: 10.3390/ijms25010626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune inflammatory disease characterized by chronic synovitis and the progressive destruction of cartilage and bone. RA is commonly accompanied by extra-articular comorbidities. The pathogenesis of RA and its comorbidities is complex and not completely elucidated. The assembly of the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome activates caspase-1, which induces the maturation of interleukin (IL)-1β and IL-18 and leads to the cleavage of gasdermin D with promoting pyroptosis. Accumulative evidence indicates the pathogenic role of NLRP3 inflammasome signaling in RA and its comorbidities, including atherosclerotic cardiovascular disease, osteoporosis, and interstitial lung diseases. Although the available therapeutic agents are effective for RA treatment, their high cost and increased infection rate are causes for concern. Recent evidence revealed the components of the NLRP3 inflammasome as potential therapeutic targets in RA and its comorbidities. In this review, we searched the MEDLINE database using the PubMed interface and reviewed English-language literature on the NLRP3 inflammasome in RA and its comorbidities from 2000 to 2023. The current evidence reveals that the NLRP3 inflammasome contributes to the pathogenesis of RA and its comorbidities. Consequently, the components of the NLRP3 inflammasome signaling pathway represent promising therapeutic targets, and ongoing research might lead to the development of new, effective treatments for RA and its comorbidities.
Collapse
Affiliation(s)
- Po-Ku Chen
- Rheumatology and Immunology Center, China Medical University Hospital, No. 2, Yude Road, Taichung 40447, Taiwan;
- College of Medicine, China Medical University, Taichung 40447, Taiwan
- Translational Medicine Laboratory, Rheumatology and Immunology Center, Taichung 40447, Taiwan
| | - Kuo-Tung Tang
- College of Medicine, National Chung Hsing University, Taichung 402202, Taiwan;
- Division of Allergy, Immunology, and Rheumatology, Taichung Veterans General Hospital, Taichung 40705, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei 112304, Taiwan
| | - Der-Yuan Chen
- Rheumatology and Immunology Center, China Medical University Hospital, No. 2, Yude Road, Taichung 40447, Taiwan;
- College of Medicine, China Medical University, Taichung 40447, Taiwan
- Translational Medicine Laboratory, Rheumatology and Immunology Center, Taichung 40447, Taiwan
- College of Medicine, National Chung Hsing University, Taichung 402202, Taiwan;
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| |
Collapse
|
69
|
Rizk SK, Alhosary A, Zahran ES, Awad S, Khalil M. Identification of potential biomarkers for SLE through mRNA expression profiling. J Immunoassay Immunochem 2024; 45:20-37. [PMID: 37807897 DOI: 10.1080/15321819.2023.2266013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is an autoimmune disease that influences numerous body systems. Furin, tristetraprolin (TTP), and NOD, LRR, and pyrin domain-containing protein 3 (NLRP3) contribute in developing autoimmune illnesses. AIM Understandthe role of furin, TTP, and NLRP3 mRNA gene expression in SLE pathogenesis and prognosis. Methods: Total 210 individuals were enrolled, divided in two group: cases and control; 105 participants in each group. Real-time quantitative PCR for furin, TTP,and NLRP3 mRNA gene expression were determined for each subject. RESULTS SLE patients showed significantly higher serum furin [median 20.10 (0.0-162.88) in comparison with control group [median 1.10 (0.33-8.64)] with significant pvalue (p < 0.001), for NLRP3 expression [median 7.03 (0.0-282.97) compared to control group [median 1.0 (0.44-9.48)] with significant p value (p = 0.006)but lower TTP [median 2.37 (0.0-30.13)] in comparison with control group [median 7.90 (1.0-29.29)] with significant p value (p < 0.001) . Elevated levels of Furin and NLRP3 and low levels of TTP were linked to increased illness activity. CONCLUSION Furin and NLRP increase in SLE and higher with illness activity. TTP is lowerin SLE and negatively correlates with disease activity.
Collapse
Affiliation(s)
- Sara Kamal Rizk
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Menoufia University, Shebin Elkom, Egypt
| | - Amal Alhosary
- Clinical Pathology, National Liver Institute, Menoufia University, Shebin Elkom, Egypt
| | - Enas S Zahran
- Internal Medicine Department, Immunology and Rheumatology Unit, Faculty of Medicine, Menoufia University, Shebin Elkom, Egypt
| | - Samah Awad
- Microbiology and Immunology, Clinical Microbiology and Immunology Department, National Liver Institute, Menoufia University, Shebin Elkom, Egypt
| | - Marwa Khalil
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Menoufia University, Shebin Elkom, Egypt
| |
Collapse
|
70
|
Marii M, Liu S. Evaluation of Mitochondrial Respiratory Function in Murine Splenocytes. Methods Mol Biol 2024; 2766:199-206. [PMID: 38270881 DOI: 10.1007/978-1-0716-3682-4_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Accumulated evidence has demonstrated a key role of mitochondria in the onset and progression of autoimmune disease. Understanding and modulation of mitochondrial dysfunction could provide new molecular targets for both preventive and therapeutic intervention in disease management. The ability to assess mitochondrial function has enabled rheumatologists to advance the understanding of the contribution of cellular metabolism in cellular physiology and disease pathology and etiology. Direct measurement of oxygen consumption rate using an Agilent Seahorse XF measurement system has been widely used as the gold-standard assay for evaluating mitochondrial function in cells. Using this assay system, measurement of parameters of basal respiration, ATP production, proton leak, maximal respiration, spare respiratory capacity, and nonmitochondrial respiration can be achieved. An optimized method which works well in mouse splenocytes and a Jurkat cell line is presented in this chapter.
Collapse
Affiliation(s)
- Mochitsuki Marii
- Department of Pharmacology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Shuang Liu
- Department of Pharmacology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan.
| |
Collapse
|
71
|
Fang ZE, Wang Y, Bian S, Qin S, Zhao H, Wen J, Liu T, Ren L, Li Q, Shi W, Zhao J, Yang H, Peng R, Wang Q, Bai Z, Xu G. Helenine blocks NLRP3 activation by disrupting the NEK7-NLRP3 interaction and ameliorates inflammatory diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155159. [PMID: 37931457 DOI: 10.1016/j.phymed.2023.155159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/19/2023] [Accepted: 10/19/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND The involvement of NLRP3 inflammasome is associated with the progress of numerous inflammatory conditions. However, there is currently no single compound used in the clinic. Search for the inhibitor of NLRP3 inflammasome from natural products is an attractive direction. The compound Helenin (Hel), which is obtained from Inula helenium L., is reported to have anti-inflammatory activities. However, the underlying molecular mechanisms and specific inflammatory signal pathway remains not well understood. PURPOSE This research aims to determine the impacts of Hel on NLRP3 inflammasome and the underlying mechanism involved, meanwhile also assessing its potential as a therapeutic intervention for inflammatory diseases mediated by NLRP3 overactivation. METHODS Pretreated with Hel in BMDMs (bone marrow-derived macrophages), then stimulated with NLRP3 triggers and measured the expression of active caspase-1 and interleukin 1β (IL-1β). Determination of intracellular K+ and Ca2+, ASC oligomerization and mitochondrial reactive oxygen species (mtROS) production were employed to explore the preliminary mechanism of Hel on NLRP3 activation. Subsequently, Co-immunoprecipitation was used to investigate protein-protein interaction and reduction of covalent bonds of Hel was to explore the binding mode between drugs and proteins. Finally, in vivo experiments, we utilized mouse lethal sepsis and monosodium urate(MSU)-induced peritonitis models to evaluate the effectiveness of Hel in inhibiting inflammatory diseases. RESULTS The findings revealed that Hel exhibited a specific blocking effect on NLRP3, with no impact on the assembly of NLRC4 and AIM2 inflammasome. Through the analysis of mechanisms targeting key upstream factors in NLRP3 activation, Hel inhibited NLRP3-dependent ASC oligomerization but did not regulating inflammasome priming, K+ efflux, Ca2+ influx, or mitochondrial damage and mtROS. Moreover, Hel effectively interrupted the binding of NEK7-NLRP3, which was dependent on the active double C=C of the α,β-unsaturated carbonyl units in Hel. In mouse models, Hel showed promising therapeutic effects in the treatment of NLRP3 overactivation-associated diseases, including the lethal sepsis and acute systemic inflammation induced by lipopolysaccharide (LPS) and peritonitis induced by MSU. CONCLUSION Our results indicate that Hel dependent α,β-unsaturated carbonyl units interrupt the formation of the NLRP3-NEK7 interaction, thereby blocks the inflammasome assemblage and activation. These fundings would suggest that Hel is a promising inhibitor for treating diseases driven by NLRP3 overactivation.
Collapse
Affiliation(s)
- Zhi-E Fang
- Department of Pharmacy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China; Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Yan Wang
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100105, China
| | - Shuyi Bian
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Shuanglin Qin
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China; School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Huanying Zhao
- Core Facilities Center, Capital Medical University, Beijing, 100069, China
| | - Jincai Wen
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Tingting Liu
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Lutong Ren
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Qiang Li
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Wei Shi
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Jia Zhao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Huijie Yang
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Rui Peng
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Qin Wang
- Department of Pharmacy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China.
| | - Zhaofang Bai
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China.
| | - Guang Xu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
72
|
Lv C, Hu C, Zhu C, Wan X, Chen C, Ji X, Qin Y, Lu L, Guo X. Empagliflozin alleviates the development of autoimmune myocarditis via inhibiting NF-κB-dependent cardiomyocyte pyroptosis. Biomed Pharmacother 2024; 170:115963. [PMID: 38042114 DOI: 10.1016/j.biopha.2023.115963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023] Open
Abstract
Autoimmune myocarditis, which falls within the broad spectrum of myocarditis, is characterized by an excessive inflammatory response in the heart, and can progress into dilated cardiomyopathy and irreversible heart failure in all possibility. However, effective clinical therapeutics are limited due to its complex inflammatory reactions. Empagliflozin (EMPA) has been previously demonstrated to possess anti-inflammatory properties. This study aimed to determine the improvement effects of EMPA on cardiac dysfunction under the condition of autoimmune myocarditis, and to further investigate the potential mechanisms. In vivo, all male Balb/c mice were randomly divided into four groups: control, experimental autoimmune myocarditis (EAM), EAM+EMPA and EMPA. In vitro, the effects of EMPA on IL-18-stimulated H9C2 cells were explored and the underlying molecular mechanisms were further determined. EMPA treatment significantly inhibited the development of autoimmune myocarditis, and mice treated with EMPA exhibited improved cardiac function compared with that in the EAM group, potentially through modulating pyroptosis of myocardium. Specifically, the NF-κB pathway was activated in the hearts of the EAM mice, which further activated NLRP3 inflammasome-dependent pyroptosis. EMPA treatment significantly inhibited such activation, thus alleviating inflammatory reactions in the context of EAM. Moreover, in vitro, we also observed that EMPA significantly inhibited pyroptosis of IL-18-stimulated H9C2 cells, and reduced nuclear translocation of NF-κB and degradation of activated IκBα. This work provides the first direct evidence that EMPA can inhibit myocardial inflammation and improve cardiac function in EAM mice, partly attributed to the drug-induced suppression of cardiomyocyte pyroptosis via disrupting the NF-κB pathway.
Collapse
Affiliation(s)
- Chao Lv
- Department of Cardiology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Chongqing Hu
- Department of Cardiology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Chuanmeng Zhu
- Department of Cardiology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Xiaoning Wan
- Department of Cardiology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Chen Chen
- Department of Cardiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Xinyun Ji
- Department of Cardiology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yating Qin
- Department of Cardiology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Li Lu
- Department of Orthopedics, Union Hospital, Tongji Medical college, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
| | - Xiaomei Guo
- Department of Cardiology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| |
Collapse
|
73
|
Liu S, Cao C, Wang Y, Hu L, Liu Q. Novel Therapies for ANCA-associated Vasculitis: Apilimod Ameliorated Endothelial Cells Injury through TLR4/NF-κB Pathway and NLRP3 Inflammasome. Curr Pharm Des 2024; 30:2325-2344. [PMID: 38910483 DOI: 10.2174/0113816128312530240607051608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Antineutrophil cytoplasmic antibody-associated vasculitis (AAV) is a rapidly progressive form of glomerulonephritis for which effective therapeutic drugs are currently lacking, and its underlying mechanism remains unclear. AIMS This study aimed to investigate new treatment options for AAV through a combination of bioinformatics analysis and cell molecular experiments. METHODS The research utilized integrated bioinformatics analysis to identify genes with differential expression, conduct enrichment analysis, and pinpoint hub genes associated with AAV. Potential therapeutic compounds for AAV were identified using Connectivity Map and molecular docking techniques. In vitro experiments were then carried out to examine the impact and mechanism of apilimod on endothelial cell injury induced by MPO-ANCA-positive IgG. RESULTS The findings revealed a set of 374 common genes from differentially expressed genes and key modules of WGCNA, which were notably enriched in immune and inflammatory response processes. A proteinprotein interaction network was established, leading to the identification of 10 hub genes, including TYROBP, PTPRC, ITGAM, KIF20A, CD86, CCL20, GAD1, LILRB2, CD8A, and COL5A2. Analysis from Connectivity Map and molecular docking suggested that apilimod could serve as a potential therapeutic cytokine inhibitor for ANCA-GN based on the hub genes. In vitro experiments demonstrated that apilimod could mitigate tight junction disruption, endothelial cell permeability, LDH release, and endothelial activation induced by MPO-ANCA-positive IgG. Additionally, apilimod treatment led to a significant reduction in the expression of proteins involved in the TLR4/NF-κB and NLRP3 inflammasome-mediated pyroptosis pathways. CONCLUSION This study sheds light on the potential pathogenesis of AAV and highlights the protective role of apilimod in mitigating MPO-ANCA-IgG-induced vascular endothelial cell injury by modulating the TLR4/ NF-kB and NLRP3 inflammasome-mediated pyroptosis pathway. These findings suggest that apilimod may hold promise as a treatment for AAV and warrant further investigation.
Collapse
Affiliation(s)
- Siyang Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenlin Cao
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of the Second Clinical College, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiru Wang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Hu
- Department of Health Management Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingquan Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
74
|
Singh S, Sharma S, Sharma H. Potential Impact of Bioactive Compounds as NLRP3 Inflammasome Inhibitors: An Update. Curr Pharm Biotechnol 2024; 25:1719-1746. [PMID: 38173061 DOI: 10.2174/0113892010276859231125165251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 01/05/2024]
Abstract
The inflammasome NLRP3 comprises a caspase recruitment domain, a pyrin domain containing receptor 3, an apoptosis-linked protein like a speck containing a procaspase-1, and an attached nucleotide domain leucine abundant repeat. There are a wide variety of stimuli that can activate the inflammasome NLRP3. When activated, the protein NLRP3 appoints the adapter protein ASC. Adapter ASC protein then recruits the procaspase-1 protein, which causes the procaspase- 1 protein to be cleaved and activated, which induces cytokines. At the same time, abnormal activation of inflammasome NLRP3 is associated with many diseases, such as diabetes, atherosclerosis, metabolic syndrome, cardiovascular and neurodegenerative diseases. As a result, a significant amount of effort has been put into comprehending the mechanisms behind its activation and looking for their specific inhibitors. In this review, we primarily focused on phytochemicals that inhibit the inflammasome NLRP3, as well as discuss the defects caused by NLRP3 signaling. We conducted an in-depth research review by searching for relevant articles in the Scopus, Google Scholar, and PubMed databases. By gathering information on phytochemical inhibitors that block NLRP3 inflammasome activation, a complicated balance between inflammasome activation or inhibition with NLRP3 as a key role was revealed in NLRP3-driven clinical situations.
Collapse
Affiliation(s)
- Sonia Singh
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University, Uttar Pradesh-281406, India
| | - Shiwangi Sharma
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University, Uttar Pradesh-281406, India
| | - Himanshu Sharma
- Department of Computer Engineering & Applications, GLA University, Uttar Pradesh-281406, India
| |
Collapse
|
75
|
Sun HG, Jiang Q, Fan WJ, Shen XY, Wang ZW, Wang X. TAGAP activates Th17 cell differentiation by promoting RhoA and NLRP3 to accelerate rheumatoid arthritis development. Clin Exp Immunol 2023; 214:26-35. [PMID: 37458218 PMCID: PMC10711349 DOI: 10.1093/cei/uxad084] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/06/2023] [Accepted: 07/16/2023] [Indexed: 12/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder that can give rise to joint swelling and inflammation, potentially affecting the entire body, closely linked to the state of T cells. The T-cell activation Rho GTPase activating protein (TAGAP) is associated with many autoimmune diseases including RA and is directly linked to the differentiation of Th17 cells. The present study intends to investigate the influence of TAGAP on the RA progression and its mechanism to empower new treatments for RA. A collagen-induced-arthritis (CIA) rat model was constructed, as well as the extraction of CD4+ T cells. RT-qPCR, H&E staining and safranin O/fast green staining revealed that TAGAP interference reduced TAGAP production in the ankle joint of CIA rats, and joint inflammation and swelling were alleviated, which reveals that TAGAP interference reduces synovial inflammation and cartilage erosion in the rat ankle joint. Expression of inflammatory factors (TNF-α, IL-1β, and IL-17) revealed that TAGAP interference suppressed the inflammatory response. Expression of pro-inflammatory cytokines, matrix-degrading enzymes, and anti-inflammatory cytokines at the mRNA level was detected by RT-qPCR and revealed that TAGAP interference contributed to the remission of RA. Mechanistically, TAGAP interference caused a significant decrease in the levels of RhoA and NLRP3. Assessment of Th17/Treg levels by flow cytometry revealed that TAGAP promotes Th17 cells differentiation and inhibits Treg cells differentiation in vitro and in vivo. In conclusion, TAGAP interference may decrease the differentiation of Th17 cells by suppressing the expression of RhoA and NLRP3 to slow down the RA progression.
Collapse
Affiliation(s)
- Hong-Gang Sun
- Department of Medical Laboratory, Shaoxing People’s Hospital, Shaoxing, Zhejiang Province, China
| | - Qi Jiang
- Department of Transfusion, Shaoxing People’s Hospital, Shaoxing, Zhejiang Province, China
| | - Wen-Jing Fan
- Department of Rheumatology and Immunology, Shaoxing People’s Hospital, Shaoxing, Zhejiang Province, China
| | - Xu-Yan Shen
- Department of Rheumatology and Immunology, Shaoxing People’s Hospital, Shaoxing, Zhejiang Province, China
| | - Zhao-Wei Wang
- Department of Neurology, Shaoxing People’s Hospital, Shaoxing, Zhejiang Province, China
| | - Xin Wang
- Department of Rheumatology and Immunology, Shaoxing People’s Hospital, Shaoxing, Zhejiang Province, China
| |
Collapse
|
76
|
Jin Z, Liu F, Zhang G, Zhang J, Zhao X, Huo X, Huang X, Xu C. An effective disease diagnostic model related to pyroptosis in ischemic cardiomyopathy. J Cell Mol Med 2023; 27:3816-3826. [PMID: 37724419 PMCID: PMC10718138 DOI: 10.1111/jcmm.17957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/10/2023] [Accepted: 09/04/2023] [Indexed: 09/20/2023] Open
Abstract
Pyroptosis is involved in ischemic cardiomyopathy (ICM). The study aimed to investigate the pyroptosis-related genes and clarify their diagnostic value in ICM. The bioinformatics method identified the differential pyroptosis genes between the normal control and ICM samples from online datasets. Then, protein-protein interaction (PPI) and function analysis were carried out to explore the function of these genes. Following, subtype analysis was performed using ConsensusClusterPlus, functions, immune score, stromal score, immune cell proportion and human leukocyte antigen (HLA) genes between subtypes were investigated. Moreover, optimal pyroptosis genes were selected using the least absolute shrinkage and selection operator (LASSO) analysis to construct a diagnostic model and evaluate its effectiveness using receiver operator characteristic (ROC) analysis. Twenty-one differential expressed pyroptosis genes were identified, and these genes were related to immune and pyroptosis. Subtype analysis identified two obvious subtypes: sub-1 and sub-2. And LASSO identified 13 optimal genes used to construct the diagnostic model. The diagnostic model in ICM diagnosis with the area under ROC (AUC) was 0.965. Our results suggested that pyroptosis was tightly associated with ICM.
Collapse
Affiliation(s)
- Zhankui Jin
- Department of OrthopedicsShaanxi Provincial People's HospitalXi'anChina
| | - Fuqiang Liu
- Department of CardiologyShaanxi Provincial People's HospitalXi'anChina
| | - Guoan Zhang
- Department of Cardiovascular SurgeryShaanxi Provincial People's HospitalXi'anChina
| | - Jingtao Zhang
- Department of Cardiovascular SurgeryShaanxi Provincial People's HospitalXi'anChina
| | - Xiangrong Zhao
- Shaanxi Provincial Key Laboratory of Infection and Immune DiseasesShaanxi Provincial People's HospitalXi'anChina
- Shaanxi Engineering Research Center of Cell ImmunologyShaanxi Provincial People's HospitalXi'anChina
| | - Xueping Huo
- Shaanxi Provincial Key Laboratory of Infection and Immune DiseasesShaanxi Provincial People's HospitalXi'anChina
- Shaanxi Engineering Research Center of Cell ImmunologyShaanxi Provincial People's HospitalXi'anChina
| | - Xiaoyan Huang
- Shaanxi Provincial Key Laboratory of Infection and Immune DiseasesShaanxi Provincial People's HospitalXi'anChina
- Shaanxi Engineering Research Center of Cell ImmunologyShaanxi Provincial People's HospitalXi'anChina
| | - Cuixiang Xu
- Shaanxi Provincial Key Laboratory of Infection and Immune DiseasesShaanxi Provincial People's HospitalXi'anChina
- Shaanxi Engineering Research Center of Cell ImmunologyShaanxi Provincial People's HospitalXi'anChina
| |
Collapse
|
77
|
Chen B, Wang Y, Chen G. New Potentiality of Bioactive Substances: Regulating the NLRP3 Inflammasome in Autoimmune Diseases. Nutrients 2023; 15:4584. [PMID: 37960237 PMCID: PMC10650318 DOI: 10.3390/nu15214584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is an essential component of the human innate immune system, and is closely associated with adaptive immunity. In most cases, the activation of the NLRP3 inflammasome requires priming and activating, which are influenced by various ion flux signals and regulated by various enzymes. Aberrant functions of intracellular NLRP3 inflammasomes promote the occurrence and development of autoimmune diseases, with the majority of studies currently focused on rheumatoid arthritis, systemic lupus erythematosus and systemic sclerosis. In recent years, a number of bioactive substances have shown new potentiality for regulating the NLRP3 inflammasome in autoimmune diseases. This review provides a concise overview of the composition, functions, and regulation of the NLRP3 inflammasome. Additionally, we focus on the newly discovered bioactive substances for regulating the NLRP3 inflammasome in autoimmune diseases in the past three years.
Collapse
Affiliation(s)
| | | | - Guangjie Chen
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (B.C.); (Y.W.)
| |
Collapse
|
78
|
Lu Q, Lao X, Gan J, Du P, Zhou Y, Nong W, Yang Z. Impact of NLRP3 gene polymorphisms (rs10754558 and rs10733113) on HPV infection and cervical cancer in southern Chinese population. Infect Agent Cancer 2023; 18:64. [PMID: 37885032 PMCID: PMC10601328 DOI: 10.1186/s13027-023-00529-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/08/2023] [Indexed: 10/28/2023] Open
Abstract
OBJECTIVE Mutations in the NLRP3gene have previously been linked to certain forms of cancer, but there have not been any specific studies examining the association between NLRP3 polymorphisms and cervical cancer (CC). This study was therefore designed to investigate the effect of NLRP3 gene polymorphisms on HPV infection and cervical cancer in southern Chinese population. METHODS Multiplex PCR and next-generation sequencing approaches were used to assess the NLRP3 rs10754558 and rs10733113 polymorphisms in 404 cervical lesion patients, including 227 diagnosed with CC and 177 diagnosed with cervical intraepithelial neoplasia(CIN), with 419 healthy female controls being included for comparison. Correlations between the rs10754558 and rs10733113 genotypes and alleles in these patients and CC and CIN were then analyzed. RESULTS No correlations were found between NLRP3 rs10754558 and rs10733113 and human papillomavirus(HPV) infection status. Relative to the healthy control group, the NLRP3 rs10754558 GG genotype, CG + GG genotype, and G allele frequencies were significantly increased among patients with cervical lesions (CC and CIN) (OR = 1.815,P = 0.013;OR = 1.383, P = 0.026; OR = 1.284, P = 0.014,respectively), whereas no such differences were observed for rs10733113. A higher cervical lesion risk was detected for patients over the age of 45 exhibiting the rs10754558 GG genotype (OR = 1.848, P = 0.040). Additionally, the risk of CC was elevated in patients with the rs10754558 GG genotype or the G allele relative to patients with the CC genotype or the C allele(OR = 1.830, P = 0.029; OR = 1.281, P = 0.039). The rs10733113 genotypes or alleles were not significantly associated with CC risk (P > 0.05). No association between rs10754558 and rs10733113 genotypes and CC patient clinicopathological features were observed (P > 0.05). Serum NLRP3, IL-1β, and IL-18 levels were significantly elevated in CC patients relative to healthy controls(P < 0.05). Relative to the CC genotype, CC patients harboring the rs10754558 GG genotype exhibited significantly elevated IL-1β and IL-18 levels(P < 0.05). CONCLUSION The rs10754558 polymorphism in the NLRP3 gene may contribute to an elevated risk of CC, although it is not significantly correlated with HPV infection and CC progression.
Collapse
Affiliation(s)
- Qingchun Lu
- Department of Gynecology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Affiliated Minzu Hospital of Guangxi Medical University, Guangxi, China
| | - Xiaoxia Lao
- Department of Clinical Laboratory, Minzu Hospital of Guangxi Zhuang Autonomous Region, Affiliated Minzu Hospital of Guangxi Medical University, Guangxi, China
| | - Jinghua Gan
- Department of Gynecology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Affiliated Minzu Hospital of Guangxi Medical University, Guangxi, China
| | - Ping Du
- Department of Gynecology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Affiliated Minzu Hospital of Guangxi Medical University, Guangxi, China
| | - Yingpei Zhou
- Department of Clinical Laboratory, Minzu Hospital of Guangxi Zhuang Autonomous Region, Affiliated Minzu Hospital of Guangxi Medical University, Guangxi, China
| | - Wenzheng Nong
- Department of Gynecology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Affiliated Minzu Hospital of Guangxi Medical University, Guangxi, China.
| | - Zhige Yang
- Department of Clinical Laboratory, Minzu Hospital of Guangxi Zhuang Autonomous Region, Affiliated Minzu Hospital of Guangxi Medical University, Guangxi, China.
| |
Collapse
|
79
|
Xiao Y, Zhang L. Mechanistic and therapeutic insights into the function of NLRP3 inflammasome in sterile arthritis. Front Immunol 2023; 14:1273174. [PMID: 37954594 PMCID: PMC10634342 DOI: 10.3389/fimmu.2023.1273174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
The NLRP3 inflammasome, which belongs to the pyrin domain containing 3 family of NOD-like receptors, has a significant impact on both the innate and adaptive immune responses. Regulating host immune function and protecting against microbial invasion and cell damage, the NLRP3 inflammasome plays a crucial role. By triggering caspase-1, it facilitates the development of the inflammatory cytokines IL-1β and IL-18, and triggers cell pyroptosis, resulting in cell lysis and demise. Common sterile arthritis includes osteoarthritis (OA), rheumatoid arthritis (RA) and gouty arthritis (GA), all of which manifest as bone destruction and synovial inflammation in a complex inflammatory state, placing a significant medical burden on the families of patients and government agencies. In the past few years, there has been a growing interest in investigating the impact of cell pyroptosis on arthritis development, particularly the widespread occurrence of pyroptosis mediated by the NLRP3 inflammasome. The NLRP3 inflammasome's biological properties are briefly described in this review, along with the presentation of the fundamental processes of pyroptosis resulting from its activation. Furthermore, we provide a summary of the advancements made in studying the NLRP3 inflammasome in various forms of arthritis and enumerate the intervention approaches that target the NLRP3-mediated pyroptosis, either directly or indirectly. These discoveries lay the groundwork for future investigations on medications for arthritis, offering fresh approaches for the clinical identification and treatment of this condition.
Collapse
Affiliation(s)
- Yi Xiao
- Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Zhang
- Department of Orthopedics, Hangzhou Medical College, Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
80
|
Wang S, Yu J, Yang J, Ge Y, Tian J. Effects of iguratimod on inflammatory factors and apoptosis of submandibular gland epithelial cells in NOD mice. Sci Rep 2023; 13:18205. [PMID: 37875724 PMCID: PMC10597989 DOI: 10.1038/s41598-023-45529-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/20/2023] [Indexed: 10/26/2023] Open
Abstract
Non-obese diabetic (NOD) mice were taken as primary Sjögren's syndrome (pSS) model mice to examine the therapeutic impact of iguratimod (IGU) on inflammatory factors levels and apoptosis of submandibular epithelial cells, and provide experimental basis for the treatment of pSS by iguratimod. Twenty-four NOD murine models were divided into the model, high-dose (IGU 30 mg/kg) and low-dose (IGU 10 mg/kg) groups, eight mice per group. The normal control group comprised eight C57B/L mice. From 8 weeks of age, the NOD mice were administered IGU by intragastric gavage administration every day for 8 weeks; their water consumption, saliva secretion, submandibular gland, and spleen indices were measured. The levels of serum inflammatory factor (IL-1β, TNF-α, IL-6, and IL-17) were evaluated, and Bax, caspase-3, and Bcl-2 levels were detected. The histological alterations in the submandibular glands were discovered. IGU can reduce the water intake of NOD mice (p < 0.01), increase the saliva secretion and the submandibular gland index (p < 0.01); reduce the spleen index and the serum inflammatory factors (p < 0.01); improve the pathological tissue damage and cell apoptosis of the submandibular gland (p < 0.05). IGU can reduce the expression levels of inflammatory mediators in the serum and the extent of lymphocyte infiltration and apoptosis in submandibular gland epithelial cells. It can also regulate apoptosis-related protein expression, thereby improving the secretory function of exocrine glands.
Collapse
Affiliation(s)
- Shuying Wang
- Affiliated Nanhua Hospital, University of South China, Hengyang, 421000, Hunan, China
| | - Jiake Yu
- Department of Rheumatology and Immunology, The 2nd Xiangya Hospital of Central South University, Changsha, 410000, Hunan, China
| | - Jie Yang
- Department of Rheumatology and Immunology, The 2nd Xiangya Hospital of Central South University, Changsha, 410000, Hunan, China
| | - Yan Ge
- Department of Rheumatology and Immunology, The 2nd Xiangya Hospital of Central South University, Changsha, 410000, Hunan, China
| | - Jing Tian
- Department of Rheumatology and Immunology, The 2nd Xiangya Hospital of Central South University, Changsha, 410000, Hunan, China.
| |
Collapse
|
81
|
Zhang B, Zhao M, Ji X, Xia Q, Jiang L, Zhao L. Acrylamide induces neurotoxicity in zebrafish (Danio rerio) via NLRP3-mediated pyroptosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165208. [PMID: 37392875 DOI: 10.1016/j.scitotenv.2023.165208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
Acrylamide (ACR) is widely used in water treatment, cosmetics, dyes, paper manufacturing, and other industries. Evidence suggests that ACR exposure causes selective neurotoxicity in humans. The primary symptoms include extremity numbness, skeletal muscle weakness, and ataxia, skeletal muscle weakness. An experimental zebrafish (Danio rerio) embryo model was used in this study to assess the impact of ACR toxicity on the development of the zebrafish nervous system. The results showed that neurodevelopmental disorders, inflammatory reactions, and oxidative stress were common in zebrafish exposed to ACR. Furthermore, ACR exposure induces pyroptotic phenotypical nerve cells, pyroptosis-related protein activation, and inflammasome NLR family pyrin domain-containing 3 (NLRP3) expression. Caspy and Caspy2 expression was knocked down via CRISPR/Cas9 to further investigate the pyroptotic mechanism, showing that these two targets alleviated the inflammatory reaction and neurodevelopmental disorder caused by ACR. Moreover, the Caspy-mediated classic pathway may be vital for the pyroptosis caused by ACR. In conclusion, this study is the first to show that ACR can activate NLRP3 inflammation to cause neurotoxicity in zebrafish via the Caspy pathways, which differs from the traditional exogenous infection model.
Collapse
Affiliation(s)
- Boya Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Mengyao Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China.
| | - Xiaoguo Ji
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Quanming Xia
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Lihua Jiang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China; Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai 200003, China.
| |
Collapse
|
82
|
Zhao H, Lin X, Chen Q, Wang X, Wu Y, Zhao X. Quercetin inhibits the NOX2/ROS-mediated NF-κB/TXNIP signaling pathway to ameliorate pyroptosis of cardiomyocytes to relieve sepsis-induced cardiomyopathy. Toxicol Appl Pharmacol 2023; 477:116672. [PMID: 37648089 DOI: 10.1016/j.taap.2023.116672] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/18/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
Sepsis-induced cardiomyopathy (SIC) has high morbidity and mortality. Quercetin (QUE) has been used to treat many inflammatory diseases related to pyroptosis. However, its effect on SIC has not been reported before. We aimed to explore the therapeutic mechanism of QUE on SIC. We found that the expression levels of NOX2, markers of myocardial injury and inflammatory factors related to pyroptosis were upregulated in the serum of SIC patients. QUE improved the viability and reduced the death rate of LPS-treated H9C2 cells. It could downregulate the expression level of NOX2 and alleviate NOX2-induced mitochondrial damage to inhibit the ROS-mediated NF-κB/TXNIP pathway thus ameliorating cell pyroptosis. Overexpression of NOX2 partially attenuated the anti-pyroptotic effects of QUE on LPS-treated H9C2 cells in vitro. Besides, the results of animal experiments reported that the mitochondrial damage was reduced by QUE treatment, which subsequently inhibited the ROS-mediated NF-κB/TXNIP pathway to ameliorate cell pyroptosis to further alleviate myocardial injury in CLP-induced rats in vivo. To conclude, QUE suppressed the NOX2/ROS-mediated NF-κB/TXNIP signaling pathway to ameliorate pyroptosis of cardiomyocytes to relieve SIC.
Collapse
Affiliation(s)
- Hao Zhao
- Department of Emergency and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42, Wenhuaxi Road, Lixia District, Jinan City, Shandong Province 250014, China
| | - Xin Lin
- Department of Emergency and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42, Wenhuaxi Road, Lixia District, Jinan City, Shandong Province 250014, China
| | - Qingfeng Chen
- Department of Emergency and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42, Wenhuaxi Road, Lixia District, Jinan City, Shandong Province 250014, China
| | - Xiaoyue Wang
- Department of Emergency and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42, Wenhuaxi Road, Lixia District, Jinan City, Shandong Province 250014, China
| | - Yongya Wu
- Department of Emergency and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42, Wenhuaxi Road, Lixia District, Jinan City, Shandong Province 250014, China
| | - Xiaoxia Zhao
- Department of Emergency and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42, Wenhuaxi Road, Lixia District, Jinan City, Shandong Province 250014, China.
| |
Collapse
|
83
|
Woo S, Gandhi S, Ghincea A, Saber T, Lee CJ, Ryu C. Targeting the NLRP3 inflammasome and associated cytokines in scleroderma associated interstitial lung disease. Front Cell Dev Biol 2023; 11:1254904. [PMID: 37849737 PMCID: PMC10577231 DOI: 10.3389/fcell.2023.1254904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023] Open
Abstract
SSc-ILD (scleroderma associated interstitial lung disease) is a complex rheumatic disease characterized in part by immune dysregulation leading to the progressive fibrotic replacement of normal lung architecture. Because improved treatment options are sorely needed, additional study of the fibroproliferative mechanisms mediating this disease has the potential to accelerate development of novel therapies. The contribution of innate immunity is an emerging area of investigation in SSc-ILD as recent work has demonstrated the mechanistic and clinical significance of the NLRP3 inflammasome and its associated cytokines of TNFα (tumor necrosis factor alpha), IL-1β (interleukin-1 beta), and IL-18 in this disease. In this review, we will highlight novel pathophysiologic insights afforded by these studies and the potential of leveraging this complex biology for clinical benefit.
Collapse
Affiliation(s)
| | | | | | | | | | - Changwan Ryu
- Department of Internal Medicine, Yale School of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, New Haven, CT, United States
| |
Collapse
|
84
|
Zheng X, Zhao D, Jin Y, Liu Y, Liu D. Role of the NLRP3 inflammasome in gynecological disease. Biomed Pharmacother 2023; 166:115393. [PMID: 37660654 DOI: 10.1016/j.biopha.2023.115393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023] Open
Abstract
The NLR family pyrin domain containing 3 (NLRP3) inflammasome is involved in the innate immune system and is a three-part macromolecular complex comprising the NLRP3 protein, apoptosis-associated speck-like protein containing a CARD (ASC) and the cysteine protease pro-caspase-1. When the NLRP3 inflammasome is activated, it can produce interleukin (IL)- 1β and IL-18 and eventually lead to inflammatory cell pyroptosis. Related studies have demonstrated that the NLRP3 inflammasome can induce an immune response and is related to the occurrence and development of gynecological diseases, such as endometriosis, polycystic ovary syndrome and breast cancer. NLRP3 inflammasome inhibitors are beneficial for maintaining cellular homeostasis and tissue health and have been found effective in targeting some gynecological diseases. However, excessive inhibitor concentrations have been found to cause adverse effects. Therefore, proper control of NLRP3 inflammasome activity is critical. This paper summarizes the structure and function of the NLRP3 inflammasome and highlights the therapeutic potential of targeting it in gynecological diseases, such as endometriosis, polycystic ovary syndrome and breast cancer The application of NLRP3 inflammasome inhibitors is also discussed.
Collapse
Affiliation(s)
- Xu Zheng
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Dan Zhao
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| | - Yang Liu
- Acupuncture department,Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| |
Collapse
|
85
|
Hseu JH, Chan CI, Vadivalagan C, Chen SJ, Yen HR, Hseu YC, Yang HL, Wu PY. Tranexamic acid improves psoriasis-like skin inflammation: Evidence from in vivo and in vitro studies. Biomed Pharmacother 2023; 166:115307. [PMID: 37573659 DOI: 10.1016/j.biopha.2023.115307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023] Open
Abstract
The chronic disease psoriasis is associated with severe inflammation and abnormal keratinocyte propagation in the skin. Tranexamic acid (TXA), a plasmin inhibitor, is used to cure serious bleeding. We investigated whether TXA ointment mitigated Imiquimod (IMQ)-induced psoriasis-like inflammation. Furthermore, this study investigated the effect of noncytotoxic concentrations of TXA on IL-17-induced human keratinocyte (HaCaT) cells to determine the status of proliferative psoriatic keratinocytes. We found that TXA reduced IMQ-induced psoriasis-like erythema, thickness, scaling, and cumulative scores (erythema plus thickness plus scaling) on the back skin of BALB/c mice. Additionally, TXA decreased ear thickness and suppressed hyperkeratosis, hyperplasia, and inflammation of the ear epidermis in IMQ-induced BALB/c mice. Furthermore, TXA inhibited IMQ-induced splenomegaly in BALB/c mouse models. In IL-17-induced HaCaT cells, TXA inhibited ROS production and IL-8 secretion. Interestingly, TXA suppressed the IL-17-induced NFκB signaling pathway via IKK-mediated IκB degradation. TXA inhibited IL-17-induced activation of the NLRP3 inflammasome through caspase-1 and IL1β expression. TXA inhibited IL-17-induced NLRP3 inflammasome activation by enhancing autophagy, as indicated by LC3-II accumulation, p62/SQSTM1 expression, ATG4B inhibition, and Beclin-1/Bcl-2 dysregulation. Notably, TXA suppressed IL-17-induced Nrf2-mediated keratin 17 expression. N-acetylcysteine pretreatment reversed the effects of TXA on NFκB, NLRP3 inflammasomes, and the Nrf2-mediated keratin 17 pathway in IL-17-induced HaCaT cells. Results further confirmed that in the ear skin of IMQ-induced mice, psoriasis biomarkers such as NLRP3, IL1β, Nrf2, and keratin 17 expression were downregulated by TXA treatment. TXA improves IMQ-induced psoriasis-like inflammation in vivo and psoriatic keratinocytes in vitro. Tranexamic acid is a promising future treatment for psoriasis.
Collapse
Affiliation(s)
- Jhih-Hsuan Hseu
- Department of Dermatology, China Medical University Hospital, Taichung 404327, Taiwan
| | - Chon-I Chan
- Institute of Nutrition, College of health Care, China Medical University, Taichung 406040, Taiwan
| | - Chithravel Vadivalagan
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109, United States
| | - Siang-Jyun Chen
- Institute of Nutrition, College of health Care, China Medical University, Taichung 406040, Taiwan
| | - Hung-Rong Yen
- Chinese Medicine Research Center, China Medical University, Taichung 404333, Taiwan; Research Center of Chinese Herbal Medicine, China Medical University, Taichung 404333, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung 404333, Taiwan; School of Chinese Medicine, China Medical University, Taichung 404333, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 406040, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung 404333, Taiwan; Research Center of Chinese Herbal Medicine, China Medical University, Taichung 404333, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung 413305, Taiwan.
| | - Hsin-Ling Yang
- Institute of Nutrition, College of health Care, China Medical University, Taichung 406040, Taiwan.
| | - Po-Yuan Wu
- Department of Dermatology, China Medical University Hospital, Taichung 404327, Taiwan; Department of Dermatology, School of Medicine, China Medical University, Taichung 404333, Taiwan.
| |
Collapse
|
86
|
Zheng YW, Wang M, Xie JW, Chen R, Wang XT, He Y, Yang TC, Liu LL, Lin LR. Recombinant Treponema pallidum protein Tp47 promoted the phagocytosis of macrophages by activating NLRP3 inflammasome induced by PKM2-dependent glycolysis. J Eur Acad Dermatol Venereol 2023; 37:2067-2079. [PMID: 37247195 DOI: 10.1111/jdv.19231] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/05/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Glycolysis is a critical pathway in cellular glucose metabolism that provides energy and participates in immune responses. However, whether glycolysis is involved in NOD-like receptor family protein 3 (NLRP3) inflammasome activation and phagocytosis of macrophages in response to Treponema pallidum infection remains unclear. OBJECTIVES To investigate the role of glycolysis in activating the NLRP3 inflammasome for regulating phagocytosis in macrophages in response to T. pallidum protein Tp47 and its associated mechanisms. METHODS Interactions between activation of the NLRP3 inflammasome and phagocytosis and the role of glycolysis in Tp47-treated macrophages were investigated through experiments on peritoneal macrophages and human monocytic cell line-derived macrophages. RESULTS Activation of phagocytosis and NLRP3 inflammasome were observed in Tp47-treated macrophages. Treatment with NLRP3 inhibitor MCC950 or si-NLRP3 attenuated Tp47-induced phagocytosis. Glycolysis and glycolytic capacity were enhanced by Tp47 stimulation in macrophages, and a change in the levels of glycolytic metabolites (phosphoenolpyruvate, citrate and lactate) was induced by Tp47 in macrophages. Inhibition of glycolysis with 2-deoxy-D-glucose, a glycolysis inhibitor, decreased the activation of NLRP3. Expression of M2 isoform of pyruvate kinase (PKM2), an enzyme catalysing a rate-limiting reaction in the glycolytic pathway, was upregulated in Tp47-stimulated macrophages. Inhibition of PKM2 with shikonin or si-PKM2 decreased glycolysis and NLRP3 activation. CONCLUSION Tp47 promotes phagocytosis in macrophages by activating the NLRP3 inflammasome, which is induced by the enhancement of PKM2-dependent glycolysis.
Collapse
Affiliation(s)
- Y-W Zheng
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - M Wang
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - J-W Xie
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - R Chen
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - X-T Wang
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Y He
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - T-C Yang
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - L-L Liu
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - L-R Lin
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
87
|
Zhang Z, Jin L, Liu L, Zhou M, Zhang X, Zhang L. The intricate relationship between autoimmunity disease and neutrophils death patterns: a love-hate story. Apoptosis 2023; 28:1259-1284. [PMID: 37486407 DOI: 10.1007/s10495-023-01874-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Autoimmune diseases are pathological conditions that result from the misidentification of self-antigens in immune system, leading to host tissue damage and destruction. These diseases can affect different organs and systems, including the blood, joints, skin, and muscles. Despite the significant progress made in comprehending the underlying pathogenesis, the complete mechanism of autoimmune disease is still not entirely understood. In autoimmune diseases, the innate immunocytes are not functioning properly: they are either abnormally activated or physically disabled. As a vital member of innate immunocyte, neutrophils and their modes of death are influenced by the microenvironment of different autoimmune diseases due to their short lifespan and diverse death modes. Related to neutrophil death pathways, apoptosis is the most frequent cell death form of neutrophil non-lytic morphology, delayed or aberrant apoptosis may contribute to the development anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV). In addition, NETosis, necroptosis and pyroptosis which are parts of lytic morphology exacerbate disease progression through various mechanisms in autoimmune diseases. This review aims to summarize recent advancements in understanding neutrophil death modes in various autoimmune diseases and provide insights into the development of novel therapeutic approaches for autoimmune diseases.
Collapse
Affiliation(s)
- Ziwei Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China
| | - Lin Jin
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China
| | - Lianghu Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China
| | - Mengqi Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China
| | - Xianzheng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China.
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China.
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China.
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China.
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China.
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China.
| |
Collapse
|
88
|
Chen L, Yang L, Li Y, Liu T, Yang B, Liu L, Wu R. Autophagy and Inflammation: Regulatory Roles in Viral Infections. Biomolecules 2023; 13:1454. [PMID: 37892135 PMCID: PMC10604974 DOI: 10.3390/biom13101454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Autophagy is a highly conserved intracellular degradation pathway in eukaryotic organisms, playing an adaptive role in various pathophysiological processes throughout evolution. Inflammation is the immune system's response to external stimuli and tissue damage. However, persistent inflammatory reactions can lead to a range of inflammatory diseases and cancers. The interaction between autophagy and inflammation is particularly evident during viral infections. As a crucial regulator of inflammation, autophagy can either promote or inhibit the occurrence of inflammatory responses. In turn, inflammation can establish negative feedback loops by modulating autophagy to suppress excessive inflammatory reactions. This interaction is pivotal in the pathogenesis of viral diseases. Therefore, elucidating the regulatory roles of autophagy and inflammation in viral infections will significantly enhance our understanding of the mechanisms underlying related diseases. Furthermore, it will provide new insights and theoretical foundations for disease prevention, treatment, and drug development.
Collapse
Affiliation(s)
- Li Chen
- School of Medicine, Jiamusi University, Jiamusi 154007, China; (L.C.); (Y.L.); (T.L.); (B.Y.)
| | - Limin Yang
- School of Medicine, Dalian University, Dalian 116622, China;
| | - Yingyu Li
- School of Medicine, Jiamusi University, Jiamusi 154007, China; (L.C.); (Y.L.); (T.L.); (B.Y.)
| | - Tianrun Liu
- School of Medicine, Jiamusi University, Jiamusi 154007, China; (L.C.); (Y.L.); (T.L.); (B.Y.)
| | - Bolun Yang
- School of Medicine, Jiamusi University, Jiamusi 154007, China; (L.C.); (Y.L.); (T.L.); (B.Y.)
| | - Lei Liu
- School of Medicine, Jiamusi University, Jiamusi 154007, China; (L.C.); (Y.L.); (T.L.); (B.Y.)
| | - Rui Wu
- School of Medicine, Jiamusi University, Jiamusi 154007, China; (L.C.); (Y.L.); (T.L.); (B.Y.)
| |
Collapse
|
89
|
Bagheri-Hosseinabadi Z, Shamsizadeh A, Bahrehmand F, Abbasifard M. Evaluation of the relationship between serum interleukin-1β levels and expression of inflammasome-related genes in patients with COVID-19. BMC Immunol 2023; 24:30. [PMID: 37723427 PMCID: PMC10507843 DOI: 10.1186/s12865-023-00568-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Inflammasomes are a group of molecules that are strongly involved in causing inflammation. This study aimed to evaluate the expression of NLR family pyrin domain containing 1 (NLRP1), NLRP3, and Apoptosis-associated speck-like protein containing a CARD (ASC) as well as their association with serum level of interleukin (IL)-1β in patients with coronavirus disease 2019 (COVID-19). METHODS Thirty COVID-19 patients and 30 healthy subjects (HS) were recruited. Peripheral blood specimens were collected from subjects to assess NLRP1, NLRP3, and ASC gene expression by Real time-PCR technique. Serum levels of IL-1β were also measured via the enzyme-linked immunosorbent assay (ELISA). RESULTS The findings showed no significant differences in serum IL-1β level between COVID-19 patients and the HS group. mRNA expression of ASC (P = 0.008) and NLRP1 (P = 0.03) gene had a significant increase in COVID-19 patients compared to HS, while there was no significant increase in the expression of NLRP3 between the studied group. There were significant correlations between patient's data and expression levels of NLRP1, NLRP3, IL-1β, and ACS. CONCLUSIONS NLRP1 and ASC may have a more critical role in the generation of the active form of IL-1β in COVID-19 patients compared to NLRP3. However, serum levels of IL-1β in patients did not show a significant increase, which may be due to the patient's condition and the application of virus escape mechanisms through impaired NLRP3 expression and its malfunction.
Collapse
Affiliation(s)
- Zahra Bagheri-Hosseinabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Shamsizadeh
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Bahrehmand
- Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
90
|
Zhang P, Wu P, Khan UZ, Zhou Z, Sui X, Li C, Dong K, Liu Y, Qing L, Tang J. Exosomes derived from LPS-preconditioned bone marrow-derived MSC modulate macrophage plasticity to promote allograft survival via the NF-κB/NLRP3 signaling pathway. J Nanobiotechnology 2023; 21:332. [PMID: 37716974 PMCID: PMC10504750 DOI: 10.1186/s12951-023-02087-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/29/2023] [Indexed: 09/18/2023] Open
Abstract
OBJECTIVES This study investigated whether exosomes from LPS pretreated bone marrow mesenchymal stem cells (LPS pre-MSCs) could prolong skin graft survival. METHODS The exosomes were isolated from the supernatant of MSCs pretreated with LPS. LPS pre-Exo and rapamycin were injected via the tail vein into C57BL/6 mice allografted with BALB/c skin; graft survival was observed and evaluated. The accumulation and polarization of macrophages were examined by immunohistochemistry. The differentiation of macrophages in the spleen was analyzed by flow cytometry. For in vitro, an inflammatory model was established. Specifically, bone marrow-derived macrophages (BMDMs) were isolated and cultured with LPS (100 ng/ml) for 3 h, and were further treated with LPS pre-Exo for 24 h or 48 h. The molecular signaling pathway responsible for modulating inflammation was examined by Western blotting. The expressions of downstream inflammatory cytokines were determined by Elisa, and the polarization of macrophages was analyzed by flow cytometry. RESULTS LPS pre-Exo could better ablate inflammation compared to untreated MSC-derived exosomes (BM-Exo). These loaded factors inhibited the expressions of inflammatory factors via a negative feedback mechanism. In vivo, LPS pre-Exo significantly attenuated inflammatory infiltration, thus improving the survival of allogeneic skin graft. Flow cytometric analysis of BMDMs showed that LPS pre-Exo were involved in the regulation of macrophage polarization and immune homeostasis during inflammation. Further investigation revealed that the NF-κB/NLRP3/procaspase-1/IL-1β signaling pathway played a key role in LPS pre-Exo-mediated regulation of macrophage polarization. Inhibiting NF-κB in BMDMs could abolish the LPS-induced activation of inflammatory pathways and the polarization of M1 macrophages while increasing the proportion of M2 cells. CONCLUSION LPS pre-Exo are able to switch the polarization of macrophages and enhance the resolution of inflammation. This type of exosomes provides an improved immunotherapeutic potential in prolonging graft survival.
Collapse
Affiliation(s)
- PeiYao Zhang
- Department of Orthopedics, Hand & Microsurgery Surgery, Xiangya Hospital of Central South University, Xiangy Road, Changsha, 410008, Hunan, China
| | - Panfeng Wu
- Department of Orthopedics, Hand & Microsurgery Surgery, Xiangya Hospital of Central South University, Xiangy Road, Changsha, 410008, Hunan, China
| | - Umar Zeb Khan
- Department of Orthopedics, Hand & Microsurgery Surgery, Xiangya Hospital of Central South University, Xiangy Road, Changsha, 410008, Hunan, China
| | - Zekun Zhou
- Department of Orthopedics, Hand & Microsurgery Surgery, Xiangya Hospital of Central South University, Xiangy Road, Changsha, 410008, Hunan, China
| | - Xinlei Sui
- Department of Orthopedics, Hand & Microsurgery Surgery, Xiangya Hospital of Central South University, Xiangy Road, Changsha, 410008, Hunan, China
| | - Cheng Li
- Department of Orthopedics, Hand & Microsurgery Surgery, Xiangya Hospital of Central South University, Xiangy Road, Changsha, 410008, Hunan, China
| | - Kangkang Dong
- Department of Orthopedics, Hand & Microsurgery Surgery, Xiangya Hospital of Central South University, Xiangy Road, Changsha, 410008, Hunan, China
| | - Yongjun Liu
- Department of Orthopedics, Hand & Microsurgery Surgery, Xiangya Hospital of Central South University, Xiangy Road, Changsha, 410008, Hunan, China
| | - Liming Qing
- Department of Orthopedics, Hand & Microsurgery Surgery, Xiangya Hospital of Central South University, Xiangy Road, Changsha, 410008, Hunan, China.
| | - Juyu Tang
- Department of Orthopedics, Hand & Microsurgery Surgery, Xiangya Hospital of Central South University, Xiangy Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
91
|
Hao SH, Ye LY, Yang C. The landscape of pathophysiology guided therapeutic strategies for gout treatment. Expert Opin Pharmacother 2023; 24:1993-2003. [PMID: 38037803 DOI: 10.1080/14656566.2023.2291073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023]
Abstract
INTRODUCTION Gout is a common autoinflammatory disease caused by hyperuricemia with acute and/or chronic inflammation as well as tissue damage. Currently, urate-lowering therapy (ULT) and anti-inflammatory therapy are used as first-line strategies for gout treatment. However, traditional drugs for gout treatment exhibit some unexpected side effects and are not suitable for certain patients due to their comorbidity with other chronic disease. AREAS COVERED In this review, we described the pathophysiology of hyperuricemia and monosodium urate (MSU) crystal induced inflammatory response during gout development in depth and comprehensively summarized the advances in the investigation of promising ULT drugs as well as anti-inflammatory drugs that might be safer and more effective for gout treatment. EXPERT OPINION New drugs that are developed based on these molecular mechanisms exhibited great efficacy on reduction of disease burden both in vitro and in vivo, implying their potential for clinical application. Moreover, hyperthermia also showed regulation effect on MSU crystals formation and the signaling pathways involved in inflammation.
Collapse
Affiliation(s)
- Sai Heng Hao
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lin Yan Ye
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chang Yang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
92
|
Xu Y, Chen C, Liao Z, Xu P. cGAS-STING signaling in cell death: Mechanisms of action and implications in pathologies. Eur J Immunol 2023; 53:e2350386. [PMID: 37424054 DOI: 10.1002/eji.202350386] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023]
Abstract
Cyclic GMP-AMP synthase (cGAS) monitors dsDNA in the cytosol in response to pathogenic invasion or tissue injury, initiating cGAS-STING signaling cascades that regulate various cellular physiologies, including IFN /cytokine production, autophagy, protein synthesis, metabolism, senescence, and distinct types of cell death. cGAS-STING signaling is crucial for host defense and tissue homeostasis; however, its dysfunction frequently leads to infectious, autoimmune, inflammatory, degenerative, and cancerous diseases. Our knowledge regarding the relationships between cGAS-STING signaling and cell death is rapidly evolving, highlighting their essential roles in pathogenesis and disease progression. Nevertheless, the direct control of cell death by cGAS-STING signaling, rather than IFN/NF-κB-mediated transcriptional regulation, remains relatively unexplored. This review examines the mechanistic interplays between cGAS-STING cascades and apoptosis, necroptosis, pyroptosis, ferroptosis, and autophagic/lysosomal cell death. We will also discuss their pathological implications in human diseases, particularly in autoimmunity, cancer, and organ injury scenarios. We hope that this summary will stimulate discussion for further exploration of the complex life-or-death responses to cellular damage mediated by cGAS-STING signaling.
Collapse
Affiliation(s)
- Yifan Xu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Chen Chen
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Zhiyong Liao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Pinglong Xu
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Institute of Intelligent Medicine, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center (HIC-ZJU), Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
93
|
Peng K, Li X, Yang D, Chan SC, Zhou J, Wan EY, Chui CS, Lai FT, Wong CK, Chan EW, Leung WK, Lau CS, Wong IC. Risk of autoimmune diseases following COVID-19 and the potential protective effect from vaccination: a population-based cohort study. EClinicalMedicine 2023; 63:102154. [PMID: 37637754 PMCID: PMC10458663 DOI: 10.1016/j.eclinm.2023.102154] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Background Case reports suggest that SARS-CoV-2 infection could lead to immune dysregulation and trigger autoimmunity while COVID-19 vaccination is effective against severe COVID-19 outcomes. We aim to examine the association between COVID-19 and development of autoimmune diseases (ADs), and the potential protective effect of COVID-19 vaccination on such an association. Methods A retrospective cohort study was conducted in Hong Kong between 1 April 2020 and 15 November 2022. COVID-19 was confirmed by positive polymerase chain reaction or rapid antigen test. Cox proportional hazard regression with inverse probability of treatment weighting was applied to estimate the risk of incident ADs following COVID-19. COVID-19 vaccinated population was compared against COVID-19 unvaccinated population to examine the protective effect of COVID-19 vaccination on new ADs. Findings The study included 1,028,721 COVID-19 and 3,168,467 non-COVID individuals. Compared with non-COVID controls, patients with COVID-19 presented an increased risk of developing pernicious anaemia [adjusted Hazard Ratio (aHR): 1.72; 95% Confidence Interval (CI): 1.12-2.64]; spondyloarthritis [aHR: 1.32 (95% CI: 1.03-1.69)]; rheumatoid arthritis [aHR: 1.29 (95% CI: 1.09-1.54)]; other autoimmune arthritis [aHR: 1.43 (95% CI: 1.33-1.54)]; psoriasis [aHR: 1.42 (95% CI: 1.13-1.78)]; pemphigoid [aHR: 2.39 (95% CI: 1.83-3.11)]; Graves' disease [aHR: 1.30 (95% CI: 1.10-1.54)]; anti-phospholipid antibody syndrome [aHR: 2.12 (95% CI: 1.47-3.05)]; immune mediated thrombocytopenia [aHR: 2.1 (95% CI: 1.82-2.43)]; multiple sclerosis [aHR: 2.66 (95% CI: 1.17-6.05)]; vasculitis [aHR: 1.46 (95% CI: 1.04-2.04)]. Among COVID-19 patients, completion of two doses of COVID-19 vaccine shows a decreased risk of pemphigoid, Graves' disease, anti-phospholipid antibody syndrome, immune-mediated thrombocytopenia, systemic lupus erythematosus and other autoimmune arthritis. Interpretation Our findings suggested that COVID-19 is associated with an increased risk of developing various ADs and the risk could be attenuated by COVID-19 vaccination. Future studies investigating pathology and mechanisms would be valuable to interpreting our findings. Funding Supported by RGC Collaborative Research Fund (C7154-20GF).
Collapse
Affiliation(s)
- Kuan Peng
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xue Li
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health (D4H), Hong Kong Science Park, Hong Kong SAR, China
| | - Deliang Yang
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Shirley C.W. Chan
- Division of Rheumatology and Clinical Immunology, Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jiayi Zhou
- Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Eric Y.F. Wan
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health (D4H), Hong Kong Science Park, Hong Kong SAR, China
- Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Celine S.L. Chui
- Laboratory of Data Discovery for Health (D4H), Hong Kong Science Park, Hong Kong SAR, China
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Francisco T.T. Lai
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health (D4H), Hong Kong Science Park, Hong Kong SAR, China
| | - Carlos K.H. Wong
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health (D4H), Hong Kong Science Park, Hong Kong SAR, China
- Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Esther W.Y. Chan
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health (D4H), Hong Kong Science Park, Hong Kong SAR, China
| | - Wai Keung Leung
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chak-Sing Lau
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ian C.K. Wong
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health (D4H), Hong Kong Science Park, Hong Kong SAR, China
- Aston Pharmacy School, Aston University, Birmingham, B4 7ET, UK
| |
Collapse
|
94
|
Ma Z, Wang F, Wang H, Sun T, Sun W, Xu Q. Quercetin ameliorates renal tubulointerstitial transformation and renal fibrosis by regulating NLRP3 in obstructive nephropathy. Minerva Med 2023; 114:530-532. [PMID: 35384439 DOI: 10.23736/s0026-4806.22.08104-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhi Ma
- Department of Pediatric Surgery, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, China
| | - Fuqiang Wang
- Department of Pediatric Surgery, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, China
| | - Huizhi Wang
- Department of Gynecology and Obstetrics, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, China
| | - Tao Sun
- Office of Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, China
| | - Wenlu Sun
- Department of Pediatric Surgery, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, China
| | - Qingyu Xu
- Department of Pediatric Surgery, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, China -
| |
Collapse
|
95
|
Luo Z, Lu G, Yang Q, Ding J, Wang T, Hu P. Identification of Shared Immune Cells and Immune-Related Co-Disease Genes in Chronic Heart Failure and Systemic Lupus Erythematosus Based on Transcriptome Sequencing. J Inflamm Res 2023; 16:2689-2705. [PMID: 37408607 PMCID: PMC10319289 DOI: 10.2147/jir.s418598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
Purpose The purpose was to identify shared immune cells and co-disease genes in chronic heart failure (HF) and systemic lupus erythematosus (SLE), as well as explore the potential mechanisms of action between HF and SLE. Methods A collection of peripheral blood mononuclear cells (PBMCs) from ten patients with HF and SLE and ten normal controls (NC) was used for transcriptome sequencing. Differentially expressed genes (DEGs) analysis, enrichment analysis, immune infiltration analysis, weighted gene co-expression network analysis (WGCNA), protein-protein interaction (PPI) analysis, and machine learning were applied for the screening of shared immune cells and co-disease genes in HF and SLE. Gene expression analysis and correlation analysis were used to explore the potential mechanisms of co-disease genes and immune cells in HF and SLE. Results In this study, it was found that two immune cells, T cells CD4 naïve and Monocytes, displayed similar expression patterns in HF and SLE at the same time. By taking intersection of the above immune cell-associated genes with the DEGs common to both HF and SLE, four immune-associated co-disease genes, CCR7, RNASE2, RNASE3 and CXCL10, were finally identified. CCR7, as one of the four key genes, was significantly down-regulated in HF and SLE, while the rest three key genes were all significantly up-regulated in both diseases. Conclusion T cells CD4 naïve and Monocytes were first revealed as possible shared immune cells of HF and SLE, and CCR7, RNASE2, RNASE3 and CXCL10 were identified as possible key genes common to HF and SLE as well as potential biomarkers or therapeutic targets for HF and SLE.
Collapse
Affiliation(s)
- Ziyue Luo
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, People's Republic of China
| | - Guifang Lu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310005, People's Republic of China
| | - Qiang Yang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, People's Republic of China
| | - Juncan Ding
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, People's Republic of China
| | - Tianyu Wang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, People's Republic of China
| | - Pengfei Hu
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310005, People's Republic of China
| |
Collapse
|
96
|
Li X, Li X, Wang H, Zhao X. Exploring hub pyroptosis-related genes, molecular subtypes, and potential drugs in ankylosing spondylitis by comprehensive bioinformatics analysis and molecular docking. BMC Musculoskelet Disord 2023; 24:532. [PMID: 37386410 DOI: 10.1186/s12891-023-06664-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Ankylosing spondylitis (AS) is a chronic inflammatory autoimmune disease, and the diagnosis and treatment of AS have been limited because its pathogenesis is still unclear. Pyroptosis is a proinflammatory type of cell death that plays an important role in the immune system. However, the relationship between pyroptosis genes and AS has never been elucidated. METHODS GSE73754, GSE25101, and GSE221786 datasets were collected from the Gene Expression Omnibus (GEO) database. Differentially expressed pyroptosis-related genes (DE-PRGs) were identified by R software. Machine learning and PPI networks were used to screen key genes to construct a diagnostic model of AS. AS patients were clustered into different pyroptosis subtypes according to DE-PRGs using consensus cluster analysis and validated using principal component analysis (PCA). WGCNA was used for screening hub gene modules between two subtypes. Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were used for enrichment analysis to elucidate underlying mechanisms. The ESTIMATE and CIBERSORT algorithms were used to reveal immune signatures. The connectivity map (CMAP) database was used to predict potential drugs for the treatment of AS. Molecular docking was used to calculate the binding affinity between potential drugs and the hub gene. RESULTS Sixteen DE-PRGs were detected in AS compared to healthy controls, and some of these genes showed a significant correlation with immune cells such as neutrophils, CD8 + T cells, and resting NK cells. Enrichment analysis showed that DE-PRGs were mainly related to pyroptosis, IL-1β, and TNF signaling pathways. The key genes (TNF, NLRC4, and GZMB) screened by machine learning and the protein-protein interaction (PPI) network were used to establish the diagnostic model of AS. ROC analysis showed that the diagnostic model had good diagnostic properties in GSE73754 (AUC: 0.881), GSE25101 (AUC: 0.797), and GSE221786 (AUC: 0.713). Using 16 DE-PRGs, AS patients were divided into C1 and C2 subtypes, and these two subtypes showed significant differences in immune infiltration. A key gene module was identified from the two subtypes using WGCNA, and enrichment analysis suggested that the module was mainly related to immune function. Three potential drugs, including ascorbic acid, RO 90-7501, and celastrol, were selected based on CMAP analysis. Cytoscape showed GZMB as the highest-scoring hub gene. Finally, molecular docking results showed that GZMB and ascorbic acid formed three hydrogen bonds, including ARG-41, LYS-40, and HIS-57 (affinity: -5.3 kcal/mol). GZMB and RO-90-7501 formed one hydrogen bond, including CYS-136 (affinity: -8.8 kcal/mol). GZMB and celastrol formed three hydrogen bonds, including TYR-94, HIS-57, and LYS-40 (affinity: -9.4 kcal/mol). CONCLUSIONS Our research systematically analyzed the relationship between pyroptosis and AS. Pyroptosis may play an essential role in the immune microenvironment of AS. Our findings will contribute to a further understanding of the pathogenesis of AS.
Collapse
Affiliation(s)
- Xin Li
- Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiangying Li
- Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Hongqiang Wang
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China.
| | - Xiang Zhao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China.
| |
Collapse
|
97
|
Muñoz-García R, Sánchez-Hidalgo M, Alcarranza M, Vazquéz-Román MV, de Sotomayor MA, González-Rodríguez ML, de Andrés MC, Alarcón-de-la-Lastra C. Effects of Dietary Oleacein Treatment on Endothelial Dysfunction and Lupus Nephritis in Balb/C Pristane-Induced Mice. Antioxidants (Basel) 2023; 12:1303. [PMID: 37372034 DOI: 10.3390/antiox12061303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic immune-inflammatory disease characterized by multiorgan affectation and lowered self-tolerance. Additionally, epigenetic changes have been described as playing a pivotal role in SLE. This work aims to assess the effects of oleacein (OLA), one of the main extra virgin olive oil secoiridoids, when used to supplement the diet of a murine pristane-induced SLE model. In the study, 12-week-old female BALB/c mice were injected with pristane and fed with an OLA-enriched diet (0.01 % (w/w)) for 24 weeks. The presence of immune complexes was evaluated by immunohistochemistry and immunofluorescence. Endothelial dysfunction was studied in thoracic aortas. Signaling pathways and oxidative-inflammatory-related mediators were evaluated by Western blotting. Moreover, we studied epigenetic changes such as DNA methyltransferase (DNMT-1) and micro(mi)RNAs expression in renal tissue. Nutritional treatment with OLA reduced the deposition of immune complexes, ameliorating kidney damage. These protective effects could be related to the modulation of mitogen-activated protein kinases, the Janus kinase/signal transducer and transcription activator of transcription, nuclear factor kappa, nuclear-factor-erythroid-2-related factor 2, inflammasome signaling pathways, and the regulation of miRNAs (miRNA-126, miRNA-146a, miRNA-24-3p, and miRNA-123) and DNMT-1 expression. Moreover, the OLA-enriched diet normalized endothelial nitric oxide synthase and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-1 overexpression. These preliminary results suggest that an OLA-supplemented diet could constitute a new alternative nutraceutical therapy in the management of SLE, supporting this compound as a novel epigenetic modulator of the immunoinflammatory response.
Collapse
Affiliation(s)
- Rocío Muñoz-García
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Marina Sánchez-Hidalgo
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Manuel Alcarranza
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - María Victoria Vazquéz-Román
- Department of Normal and Pathological Cytology and Histology, Faculty of Medicine, Universidad de Sevilla, 41012 Seville, Spain
| | | | | | - María C de Andrés
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Catalina Alarcón-de-la-Lastra
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| |
Collapse
|
98
|
Tang Y, Yu Y, Li R, Tao Z, Zhang L, Wang X, Qi X, Li Y, Meng T, Qu H, Zhou M, Xu J, Liu J. Phenylalanine promotes alveolar macrophage pyroptosis via the activation of CaSR in ARDS. Front Immunol 2023; 14:1114129. [PMID: 37377971 PMCID: PMC10291621 DOI: 10.3389/fimmu.2023.1114129] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is associated with high mortality rates in patients admitted to the intensive care unit (ICU) patients with overwhelming inflammation considered to be an internal cause. The authors' previous study indicated a potential correlation between phenylalanine levels and lung injury. Phenylalanine induces inflammation by enhancing the innate immune response and the release of pro-inflammatory cytokines. Alveolar macrophages (AMs) can respond to stimuli via synthesis and release of inflammatory mediators through pyroptosis, one form of programmed cell death acting through the nucleotide-binging oligomerization domain-like receptors protein 3 (NLRP3) signaling pathway, resulting in the cleavage of caspase-1 and gasdermin D (GSDMD) and the release of interleukin (IL) -1β and IL-18, aggravating lung inflammation and injury in ARDS. In this study, phenylalanine promoted pyroptosis of AMs, which exacerbated lung inflammation and ARDS lethality in mice. Furthermore, phenylalanine initiated the NLRP3 pathway by activating the calcium-sensing receptor (CaSR). These findings uncovered a critical mechanism of action of phenylalanine in the context of ARDS and may be a new treatment target for ARDS.
Collapse
Affiliation(s)
- Yiding Tang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Yu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ranran Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheying Tao
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoli Wang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoling Qi
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinjiaozhi Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianjiao Meng
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongping Qu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mi Zhou
- Department of Cardiac Surgery, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Xu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialin Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
99
|
Foster SL, Dutton AJ, Yerzhan A, March LB, Barry K, Seehus CR, Huang X, Talbot S, Woolf CJ. A Preliminary Study of Mild Heat Stress on Inflammasome Activation in Murine Macrophages. Cells 2023; 12:1189. [PMID: 37190098 PMCID: PMC10137183 DOI: 10.3390/cells12081189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Inflammation and mitochondrial-dependent oxidative stress are interrelated processes implicated in multiple neuroinflammatory disorders, including Alzheimer's disease (AD) and depression. Exposure to elevated temperature (hyperthermia) is proposed as a non-pharmacological, anti-inflammatory treatment for these disorders; however, the underlying mechanisms are not fully understood. Here we asked if the inflammasome, a protein complex essential for orchestrating the inflammatory response and linked to mitochondrial stress, might be modulated by elevated temperatures. To test this, in preliminary studies, immortalized bone-marrow-derived murine macrophages (iBMM) were primed with inflammatory stimuli, exposed to a range of temperatures (37-41.5 °C), and examined for markers of inflammasome and mitochondrial activity. We found that exposure to mild heat stress (39 °C for 15 min) rapidly inhibited iBMM inflammasome activity. Furthermore, heat exposure led to decreased ASC speck formation and increased numbers of polarized mitochondria. These results suggest that mild hyperthermia inhibits inflammasome activity in the iBMM, limiting potentially harmful inflammation and mitigating mitochondrial stress. Our findings suggest an additional potential mechanism by which hyperthermia may exert its beneficial effects on inflammatory diseases.
Collapse
Affiliation(s)
- Simmie L. Foster
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Abigail J. Dutton
- FM Kirby Neurobiology Center, Boston Children’s Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Adina Yerzhan
- FM Kirby Neurobiology Center, Boston Children’s Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Lindsay B. March
- FM Kirby Neurobiology Center, Boston Children’s Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine Barry
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Corey R. Seehus
- FM Kirby Neurobiology Center, Boston Children’s Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Xudong Huang
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Sebastien Talbot
- Department of Pharmacology and Physiology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Clifford J. Woolf
- FM Kirby Neurobiology Center, Boston Children’s Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
100
|
Jiao Y, Yan Z, Yang A. Mitochondria in innate immunity signaling and its therapeutic implications in autoimmune diseases. Front Immunol 2023; 14:1160035. [PMID: 37122709 PMCID: PMC10130412 DOI: 10.3389/fimmu.2023.1160035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Autoimmune diseases are characterized by vast alterations in immune responses, but the pathogenesis remains sophisticated and yet to be fully elucidated. Multiple mechanisms regulating cell differentiation, maturation, and death are critical, among which mitochondria-related cellular organelle functions have recently gained accumulating attention. Mitochondria, as a highly preserved organelle in eukaryotes, have crucial roles in the cellular response to both exogenous and endogenous stress beyond their fundamental functions in chemical energy conversion. In this review, we aim to summarize recent findings on the function of mitochondria in the innate immune response and its aberrancy in autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, etc., mainly focusing on its direct impact on cellular metabolism and its machinery on regulating immune response signaling pathways. More importantly, we summarize the status quo of potential therapeutic targets found in the mitochondrial regulation in the setting of autoimmune diseases and wish to shed light on future studies.
Collapse
Affiliation(s)
- Yuhao Jiao
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhiyu Yan
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- 4+4 Medical Doctor Program, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Aiming Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|