51
|
Tandon S, Aggarwal P, Sarkar S. Polyglutamine disorders: Pathogenesis and potential drug interventions. Life Sci 2024; 344:122562. [PMID: 38492921 DOI: 10.1016/j.lfs.2024.122562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Polyglutamine/poly(Q) diseases are a group nine hereditary neurodegenerative disorders caused due to abnormally expanded stretches of CAG trinucleotide in functionally distinct genes. All human poly(Q) diseases are characterized by the formation of microscopically discernable poly(Q) positive aggregates, the inclusion bodies. These toxic inclusion bodies are responsible for the impairment of several cellular pathways such as autophagy, transcription, cell death, etc., that culminate in disease manifestation. Although, these diseases remain largely without treatment, extensive research has generated mounting evidences that various events of poly(Q) pathogenesis can be developed as potential drug targets. The present review article briefly discusses the key events of disease pathogenesis, model system-based investigations that support the development of effective therapeutic interventions against pathogenesis of human poly(Q) disorders, and a comprehensive list of pharmacological and bioactive compounds that have been experimentally shown to alleviate poly(Q)-mediated neurotoxicity. Interestingly, due to the common cause of pathogenesis, all poly(Q) diseases share etiology, thus, findings from one disease can be potentially extrapolated to other poly(Q) diseases as well.
Collapse
Affiliation(s)
- Shweta Tandon
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Prerna Aggarwal
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Surajit Sarkar
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| |
Collapse
|
52
|
Bappi MH, Mia MN, Ansari SA, Ansari IA, Prottay AAS, Akbor MS, El-Nashar HAS, El-Shazly M, Mubarak MS, Torequl Islam M. Quercetin increases the antidepressant-like effects of sclareol and antagonizes diazepam in thiopental sodium-induced sleeping mice: A possible GABAergic transmission intervention. Phytother Res 2024; 38:2198-2214. [PMID: 38414297 DOI: 10.1002/ptr.8139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/29/2024]
Abstract
Quercetin is the most common polyphenolic flavonoid present in fruits and vegetables demonstrating versatile health-promoting effects. This study aimed to examine the effects of quercetin (QR) and sclareol (SCL) on the thiopental sodium (TS)-induced sleeping and forced swimming test (FST) mouse models. SCL (1, 5, and 10 mg/kg, p.o.) or QR (50 mg/kg, p.o.) and/or diazepam (DZP) (3 mg/kg, i.p.) were employed. After 30 min of TS induction, individual or combined effects on the animals were checked. In the FST test, the animals were subjected to forced swimming after 30 min of administration of the test and/or controls for 5 min. In this case, immobility time was measured. In silico studies were conducted to evaluate the involvement of GABA receptors. SCL (5 and 10 mg/kg) significantly increased the latency and decreased sleeping time compared to the control in the TS-induced sleeping time study. DZP (3 mg/kg) showed a sedative-like effect in animals in both sleeping and FST studies. QR (50 mg/kg) exhibited a similar pattern of activity as SCL. However, its effects were more prominent than those of SCL groups. SCL (10 mg/kg) altered the DZP-3-mediated effects. SCL-10 co-treated with QR-50 significantly (p < 0.05) increased the latency and decreased sleep time and immobility time, suggesting possible synergistic antidepressant-like effects. In silico studies revealed that SCL and QR demonstrated better binding affinities with GABAA receptor, especially α2, α3, and α5 subunits. Both compounds also exhibited good ADMET and drug-like properties. In animal studies, the both compounds worked synergistically to provide antidepressant-like effects in a slightly different fashion. As a conclusion, the combined administration of SCL and QR may be used in upcoming neurological clinical trials, according to in vivo and in silico findings. However, additional investigation is necessary to verify this behavior and clarify the potential mechanism of action.
Collapse
Affiliation(s)
- Mehedi Hasan Bappi
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md Nayem Mia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Abdullah Al Shamsh Prottay
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md Showkoth Akbor
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| |
Collapse
|
53
|
Alanazi IS, Altyar AE, Zaazouee MS, Elshanbary AA, Abdel-Fattah AFM, Kamel M, Albaik M, Ghaboura N. Effect of moringa seed extract in chlorpyrifos-induced cerebral and ocular toxicity in mice. Front Vet Sci 2024; 11:1381428. [PMID: 38659447 PMCID: PMC11041635 DOI: 10.3389/fvets.2024.1381428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 02/27/2024] [Indexed: 04/26/2024] Open
Abstract
Chlorpyrifos (CPF) is one of the most commonly used organophosphosphate-based (OP) insecticides. Its wide use has led to higher morbidity and mortality, especially in developing countries. Moringa seed extracts (MSE) have shown neuroprotective activity, antioxidant, anti-inflammatory, and antibacterial features. The literature lacks data investigating the role of MSE against CPF-induced cerebral and ocular toxicity in mice. Therefore, we aim to investigate this concern. A total of 40 mature male Wistar Albino mice were randomly distributed to five groups. Initially, they underwent a one-week adaptation period, followed by a one-week treatment regimen. The groups included a control group that received saline, MSE 100 mg/kg, CPF 12 mg/kg, CPF-MSE 50 mg/kg, and CPF-MSE 100 mg/kg. After the treatment phase, analyses were conducted on serum, ocular, and cerebral tissues. MSE100 and CPF-MSE100 normalized the pro-inflammatory markers (interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α)) and AChE serum levels. CPF-MSE50 significantly enhanced these serum levels compared to CPF; however, it showed higher levels compared to the control. Moreover, the tissue analysis showed a significant decrease in oxidative stress (malondialdehyde (MDA) and nitric oxide (NO)) and an increase in antioxidant markers (glutathione (GSH), glutathione peroxidase (GSH-PX)), superoxide dismutase (SOD), and catalase (CAT) in the treated groups compared to CPF. Importantly, the significance of these effects was found to be dose-dependent, particularly evident in the CPF-MSE100 group. We conclude that MSE has a promising therapeutic effect in the cerebral and ocular tissues of CPF-intoxicated mice, providing a potential solution for OP public health issues.
Collapse
Affiliation(s)
- Ibtesam S. Alanazi
- Department of Biology, Faculty of Sciences, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | | | | | | | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mai Albaik
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Nehmat Ghaboura
- Pharmacy Practice Department, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| |
Collapse
|
54
|
Babanzadeh R, Vafaei SY, Moghadam DA, Komaki A, Mohammadi M. Quercetin-loaded nanoemulsions prevent Scopolamine-induced neurotoxicity in male rats. Physiol Behav 2024; 277:114494. [PMID: 38360390 DOI: 10.1016/j.physbeh.2024.114494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Quercetin (QCT) is well-known as a neuroprotective agent due to its antioxidant capacities and reinstating mitochondrial functions. Scopolamine is commonly used as a model to induce Alzheimer's disease (AD-like) symptoms. The current study develops QCT-loaded nanoemulsion (QCT-NE) accompanied by evaluating its neuro-therapeutic effectiveness against SCO-induced neurotoxicity in male rats. The QCT-NE was prepared by the spontaneous emulsification technique and characterized by using particle size, zeta potential, drug loading, in vitro drug release behavior, and stability studies. In vivo studies were done on adult Wistar rats by applying the Morris water maze (MWM) test to study spatial memory and learning. The levels of lipid peroxidation and reduced glutathione were quantitatively determined to reveal the potential mechanism of SCO-induced oxidative stress. Finally, histological studies were performed using staining techniques. The QCT-NE particle size, zeta potential, polydispersity index (PDI), and DL were obtained at 172.4 ± 16.8 nm, -29 ± 0.26 mV, 0.3 ± 0.07, and 81.42 ± 9.14 %, respectively. The QCT and more effectively QCT-NE reduced the elevation of neurobehavioral abnormalities in the MWM test in SCO-exposed rats. The results of oxidative status showed that SCO significantly could increase the LPO and decrease the GSH levels in the rat's brain. However, QCT-NE treatment was more effective than free QCT to inhibit oxidative damage and was well correlated with histopathological findings. Taken together, QCT-NE, compared to QCT, was superior in ameliorating SCO-induced AD-like symptoms due to its better neuroprotective activity and can be considered a novel supplementary therapeutic agent in AD management.
Collapse
Affiliation(s)
- Reza Babanzadeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Yaser Vafaei
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Davood Ahmadi Moghadam
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
55
|
Zhu H, Du Z, Lu R, Zhou Q, Shen Y, Jiang Y. Investigating the Mechanism of Chufan Yishen Formula in Treating Depression through Network Pharmacology and Experimental Verification. ACS OMEGA 2024; 9:12698-12710. [PMID: 38524447 PMCID: PMC10955564 DOI: 10.1021/acsomega.3c08350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/29/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024]
Abstract
Objective: To investigate the antidepressant effect and potential mechanism of the Chufan Yishen Formula (CFYS) through network pharmacology, molecular docking, and experimental verification. Methods: The active ingredients and their target genes of CFYS were identified through Traditional Chinese Medicine Systems Pharmacology (TCMSP) and TCM-ID. We obtained the differentially expressed genes in patients with depression from the GEO database and screened out the genes intersecting with the target genes of CFYS to construct the PPI network. The key pathways were selected through STRING and KEGG. Then, molecular docking and experimental verification were performed. Results: A total of 113 effective components and 195 target genes were obtained. After intersecting the target genes with the differentially expressed genes in patients with depression, we obtained 37 differential target genes, among which HMOX1, VEGFA, etc., were the key genes. After enriching the differential target genes by KEGG, we found that the "chemical carcinogenesis-reactive oxygen species" pathway was the key pathway for the CFYS antidepressant effect. Besides, VEGFA might be a key marker for depression. Experimental verification found that CFYS could significantly improve the behavioral indicators of rats with depression models, including improving the antioxidant enzyme activity and increasing VEGFA levels. The results are consistent with the network pharmacology analysis. Conclusions: CFYS treatment for depression is a multicomponent, multitarget, and multipathway complex process, which may mainly exert an antidepressant effect by improving the neuron antioxidant stress response and regulating VEGFA levels.
Collapse
Affiliation(s)
- Haohao Zhu
- Mental Health
Center of
Jiangnan University, Wuxi, Jiangsu 214151, China
| | - Zhiqiang Du
- Mental Health
Center of
Jiangnan University, Wuxi, Jiangsu 214151, China
| | - Rongrong Lu
- Mental Health
Center of
Jiangnan University, Wuxi, Jiangsu 214151, China
| | - Qin Zhou
- Mental Health
Center of
Jiangnan University, Wuxi, Jiangsu 214151, China
| | - Yuan Shen
- Mental Health
Center of
Jiangnan University, Wuxi, Jiangsu 214151, China
| | - Ying Jiang
- Mental Health
Center of
Jiangnan University, Wuxi, Jiangsu 214151, China
| |
Collapse
|
56
|
Dai C, Sharma G, Liu G, Shen J, Shao B, Hao Z. Therapeutic detoxification of quercetin for aflatoxin B1-related toxicity: Roles of oxidative stress, inflammation, and metabolic enzymes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123474. [PMID: 38309422 DOI: 10.1016/j.envpol.2024.123474] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Aflatoxins (AFTs), a type of mycotoxin mainly produced by Aspergillus parasiticus and Aspergillus flavus, could be detected in food, feed, Chinese herbal medicine, grain crops and poses a great threat to public health security. Among them, aflatoxin B1 (AFB1) is the most toxic one. Exposure to AFB1 poses various health risks to both humans and animals, including the development of chronic inflammatory diseases, cardiovascular diseases, neurodegenerative diseases, and cancer. The molecular mechanisms underlying these risks are intricate and dependent on specific contexts. This review primarily focuses on summarizing the protective effects of quercetin, a natural phenolic compound, in mitigating the toxic effects induced by AFB1 in both in vitro experiments and animal models. Additionally, the review explores the molecular mechanisms that underlie these protective effects. Quercetin has been demonstrated to not only have the direct inhibitory action on the production of AFTs from Aspergillus, both also possess potent ameliorative effects against AFB1-induced cytotoxicity, hepatotoxicity, and neurotoxicity. These effects are attributed to the inhibition of oxidative stress, mitochondrial dysfunction, mitochondrial apoptotic pathway, and inflammatory response. It could also directly target several metabolic enzymes (i.e., CYP3As and GSTA1) to reduce the production of toxic metabolites of AFB1 within cells, then reduce AFB1-induced cytotoxicity. In conclusion, this review highlights quercetin is a promising detoxification agent for AFB1. By advancing our understanding of the protective mechanisms offered by quercetin, we aim to contribute to the development of effective detoxification agents against AFB1, ultimately promoting better health outcomes.
Collapse
Affiliation(s)
- Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Gaurav Sharma
- Cardiovascular and Thoracic Surgery, Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Gaoyi Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Centre for Disease Control and Prevention, Beijing, 100013, PR China
| | - Zhihui Hao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China.
| |
Collapse
|
57
|
Zhang Z, Wu Y, Shi D, Jiang C, Cao H, Jiang F, Bao X, Shen Y, Shi X. Acanthopanax senticosus improves cognitive impairment in Alzheimer's disease by promoting the phosphorylation of the MAPK signaling pathway. Front Immunol 2024; 15:1383464. [PMID: 38545117 PMCID: PMC10965608 DOI: 10.3389/fimmu.2024.1383464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 04/18/2024] Open
Abstract
Background Acanthopanax senticosus (AS) can improve sleep, enhance memory, and reduce fatigue and is considered as an effective drug for Alzheimer's disease (AD). The therapeutic effect and mechanism need to be further investigated. Methods To confirm the AS play efficacy in alleviating memory impairment in mice, 5×FAD transgenic mice were subjected to an open-field experiment and a novelty recognition experiment. Network pharmacology technique was used to analyze the information of key compounds and potential key targets of AS for the treatment of AD, molecular docking technique was applied to predict the binding ability of targets and compounds, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were also performed on the targets to derive the possible metabolic processes and pathway mechanisms of AS in treating AD. Quantitative real-time PCR (qRT-PCR) and western blot technique were carried out to validate the candidate genes and pathways. Results In the open-field experiment, compared with the wild-type (WT) group, the number of times the mice in the AD group crossed the central zone was significantly reduced (P< 0.01). Compared with the AD group, the number of times the mice in the AS group crossed the central zone was significantly increased (P< 0.001). In the new object recognition experiment, compared with the WT group, the percentage of times the AD group explored new objects was significantly reduced (P< 0.05). Compared with the AD group, the AS group had an increase in the percentage of time spent exploring new things and the number of times it was explored (P< 0.05). At the same time, the donepezil group had a significantly higher percentage of times exploring new things (P< 0.01). By using network pharmacology technology, 395 common targets of AS and AD were retrieved. The Cytoscape software was used to construct the protein-protein interaction (PPI) network of common targets. Using the algorithm, nine key targets were retrieved: APP, NTRK1, ESR1, CFTR, CSNK2A1, EGFR, ESR2, GSK3B, and PAK1. The results of molecular docking indicate that 11 pairs of compounds and their corresponding targets have a significant binding ability, as the molecular binding energies were less than -7.0. In comparison to the AD group, the mRNA expression of the key target genes was significantly decreased in the AS treatment group (P< 0.001). The KEGG analysis showed that the MAPK signaling pathway was significantly enriched, and Western blot confirmed that the TRAF6 protein decreased significantly (P< 0.0001). Meanwhile, the levels of MAP3K7 and P38 phosphorylation increased, and there was also an increase in the expression of HSP27 proteins. Conclusion Our study indicates that the multi-component and multi-target properties of AS play an important role in the alleviation of anxiety and memory impairment caused by AD, and the mechanism is involved in the phosphorylation and activation of the MAPK signaling pathway. The results of this study could provide a novel perspective for the clinical treatment of AD.
Collapse
Affiliation(s)
- Zhichun Zhang
- Department of Gerontology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yonghui Wu
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Shi
- Department of Gerontology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Chanyu Jiang
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hengyan Cao
- Department of Gerontology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Fengyi Jiang
- Department of Gerontology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Xiaomin Bao
- Department of Gerontology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Yan Shen
- Department of Gerontology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Xiao Shi
- Department of Gerontology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| |
Collapse
|
58
|
Li W, Meng X, Peng K, Han Y, Liu H, Zhao W, Wang G, Deng L, Liu H, Li Z, Ji F. Boosting Microglial Lipid Metabolism via TREM2 Signaling by Biomimetic Nanoparticles to Attenuate the Sevoflurane-Induced Developmental Neurotoxicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305989. [PMID: 38145349 PMCID: PMC10933683 DOI: 10.1002/advs.202305989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/06/2023] [Indexed: 12/26/2023]
Abstract
Lipid metabolism has been considered as a potential therapeutic target in sevoflurane-induced neurotoxicity that can potentially affect the learning and memory function in the developmental brain. Recently, triggering receptor expressed on myeloid cells 2 (TREM2) is identified as a crucial step in regulating lipid metabolism and associated with the pathogenesis of neurodegenerative diseases. Herein, it is reported that quercetin modified Cu2- x Se (abbreviated as CSPQ) nanoparticles can ameliorate sevoflurane-induced neurotoxicity by tuning the microglial lipid metabolism and promoting microglial M2-like polarization via TREM2 signaling pathway, in which the apolipoprotein E (ApoE), and adenosine triphosphate-binding cassette transporters (ABCA1 and ABCG1) levels are upregulated. Furthermore, the protective effects of CSPQ nanoparticles against sevoflurane-induced neurotoxicity via TREM2 are further demonstrated by the small interfering RNA (siRNA)-TREM2 transfected BV2 cells, which are obviously not influenced by CSPQ nanoparticles. The cell membrane coated CSPQ (referred as CSPQ@CM) nanoparticles can significantly reduce sevoflurane-induced learning and memory deficits, improve lipid metabolism dysfunction, and promote the remyelination in the hippocampus of mice. The study shows great potential of targeting microglial lipid metabolism in promoting remyelination of neurons for treatment of neurotoxicity and neurodegenerative diseases.
Collapse
Affiliation(s)
- Wenting Li
- Department of Anesthesiologythe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215006China
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Suzhou Medical CollegeSoochow UniversityCollaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSuzhou215123China
- Institute of AnesthesiologySoochow UniversitySuzhouJiangsu215006China
| | - Xiaowen Meng
- Department of Anesthesiologythe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215006China
- Institute of AnesthesiologySoochow UniversitySuzhouJiangsu215006China
| | - Ke Peng
- Department of Anesthesiologythe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215006China
- Institute of AnesthesiologySoochow UniversitySuzhouJiangsu215006China
| | - Yaobao Han
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Suzhou Medical CollegeSoochow UniversityCollaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSuzhou215123China
| | - Hanghang Liu
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Suzhou Medical CollegeSoochow UniversityCollaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSuzhou215123China
| | - Weiming Zhao
- Department of Anesthesiologythe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215006China
- Institute of AnesthesiologySoochow UniversitySuzhouJiangsu215006China
| | - Gang Wang
- Department of Anesthesiologythe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215006China
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Suzhou Medical CollegeSoochow UniversityCollaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSuzhou215123China
- Institute of AnesthesiologySoochow UniversitySuzhouJiangsu215006China
| | - Li Deng
- Department of Anesthesiologythe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215006China
- Institute of AnesthesiologySoochow UniversitySuzhouJiangsu215006China
| | - Hong Liu
- Department of Anaesthesiology and Pain MedicineUniversity of California Davis HealthSacramentoCA 95817USA
| | - Zhen Li
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Suzhou Medical CollegeSoochow UniversityCollaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSuzhou215123China
| | - Fuhai Ji
- Department of Anesthesiologythe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215006China
- Institute of AnesthesiologySoochow UniversitySuzhouJiangsu215006China
| |
Collapse
|
59
|
Guo Y, Yang Y. Progress of plant polyphenol extracts in treating depression by anti-neuroinflammatory mechanism: A review. Medicine (Baltimore) 2024; 103:e37151. [PMID: 38306547 PMCID: PMC10843529 DOI: 10.1097/md.0000000000037151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/11/2024] [Indexed: 02/04/2024] Open
Abstract
There is a growing body of evidence supporting the involvement of central nervous system inflammation in the pathophysiology of depression. Polyphenols are a diverse group of compounds known for their antioxidative and anti-inflammatory properties. They offer a promising and effective supplementary approach to alleviating neuropsychiatric symptoms associated with inflammation-induced depression. This paper provides a summary of the potential anti-neuroinflammatory mechanisms of plant polyphenol extracts against depression. This includes direct interference with inflammatory regulators and inhibition of the expression of pro-inflammatory cytokines. Additionally, it covers downregulating the expression of pro-inflammatory cytokines by altering protein kinases or affecting the activity of the signaling pathways that they activate. These pathways interfere with the conduction of signaling molecules, resulting in the destruction and reduced synthesis of all inflammatory mediators and cytokines. This reduces the apoptosis of neurons and plays a neuroprotective role. This paper provides a theoretical basis for the clinical application of plant polyphenols.
Collapse
Affiliation(s)
- Yuting Guo
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Yang
- Medical Department, The Third Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
60
|
Abbasi H, Ghavami-Kia S, Davoodian N, Davoodian N. Maternal quercetin supplementation improved lipopolysaccharide-induced cognitive deficits and inflammatory response in a rat model of maternal immune activation. Toxicol Appl Pharmacol 2024; 483:116830. [PMID: 38246289 DOI: 10.1016/j.taap.2024.116830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND There is strong evidence that prenatal infection during a specific period of brain development increases the risk of neurodevelopmental disorders, partly through immune-inflammatory pathways. This suggests that anti-inflammatory agents could prevent these disorders by targeting the maternal inflammatory response. In the present study, we used a rat model of maternal immune activation (MIA) to examine whether maternal quercetin (QE) supplementation can alleviate behavioral deficits and inflammatory mediators in the prefrontal cortex (PFC) and hippocampus of adult male offspring. METHODS Pregnant rats were supplemented with QE (50 mg/kg) or vehicle throughout pregnancy and injected with either lipopolysaccharide (0.5 mg/kg) or saline on gestational days 15/16. At postnatal day 60, we evaluated the offspring's behavior, hippocampal and prefrontal cortex glial density, pro-inflammatory gene expression, and neuronal survival. RESULTS Our data showed that maternal QE supplementation can prevent working and recognition memory impairments in adult MIA offspring. This behavioral improvement correlates with the decrease in MIA-induced expression of pro-inflammatory genes, microglia, and astrocyte densities, without affecting neuronal survival, in both PFC and CA1 hippocampus areas. CONCLUSION Therefore, our study supports the potential preventive effect of QE on MIA-induced behavioral dysfunctions, at least in part, by suppressing the glial-mediated inflammatory response.
Collapse
Affiliation(s)
- Hossein Abbasi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Sina Ghavami-Kia
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Nahid Davoodian
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Najmeh Davoodian
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
61
|
Chen J, Chen J, Yu P, Yang C, Xia C, Deng J, Yu M, Xiang Z, Gan L, Zhu B, Wu Y, Yang X. A Novel Quercetin Encapsulated Glucose Modified Liposome and Its Brain-Target Antioxidative Neuroprotection Effects. Molecules 2024; 29:607. [PMID: 38338352 PMCID: PMC10856503 DOI: 10.3390/molecules29030607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Neurodegenerative diseases (NDDs) are mainly induced by oxidative stress which produces excessive reactive oxygen species (ROS). Quercetin (QU) is a potent antioxidant with some effects on NDDs. This study prepared and characterized a novel glucose-modified QU liposome (QU-Glu-Lip), aiming not only to overcome QU's poor water solubility and bioavailability but also to deliver more QU to brain tissue to enhance its neuroprotective effect. QU-Glu-Lip possessed encapsulation efficiency (EE) of 89.9%, homogenous particle sizes (116-124 nm), small PDI value (<0.3), zeta value -1.363 ± 0.437 mV, proper pH and salt stability, and proper cytotoxicity. The glucose-modified liposome penetrated the blood-brain barrier (BBB) mediated via the glucose transporter 1 (GLUT1) and was taken by neuronal cells more efficiently than liposome without glucose, according to bEnd.3 and PC12 cell tests. QU-Glu-Lip attenuated H2O2-induced oxidative damage to PC12 with higher cell viability (88.42%) and lower intracellular ROS compared to that of QU. QU-Glu-Lip had higher brain target ability and delivered more QU to neuronal cells, effectively exerting the antioxidative neuroprotection effect. There is potential for the QU-Glu-Lip application for more effective treatment of NDDs.
Collapse
Affiliation(s)
- Jian Chen
- Institute of Agro-Products Processing Science and Technology, Institute of Food Nutrition and Health, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Jinxia Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Peiyun Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chunyan Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chen Xia
- Institute of Agro-Products Processing Science and Technology, Institute of Food Nutrition and Health, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Junlin Deng
- Institute of Agro-Products Processing Science and Technology, Institute of Food Nutrition and Health, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Manyou Yu
- Institute of Agro-Products Processing Science and Technology, Institute of Food Nutrition and Health, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Zuoya Xiang
- Institute of Agro-Products Processing Science and Technology, Institute of Food Nutrition and Health, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Lu Gan
- Institute of Agro-Products Processing Science and Technology, Institute of Food Nutrition and Health, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Boyu Zhu
- Institute of Agro-Products Processing Science and Technology, Institute of Food Nutrition and Health, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xing Yang
- Institute of Agro-Products Processing Science and Technology, Institute of Food Nutrition and Health, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| |
Collapse
|
62
|
Can B, Sanlier N. Alzheimer, Parkinson, dementia, and phytochemicals: insight review. Crit Rev Food Sci Nutr 2024; 65:1706-1728. [PMID: 38189347 DOI: 10.1080/10408398.2023.2299340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Alzheimer's, Parkinson's, and dementia are the leading neurodegenerative diseases that threaten the world with the aging population. Although the pathophysiology of each disease is unique, the steps to be taken to prevent diseases are similar. One of the changes that a person can make alone is to gain the habit of an antioxidant-rich diet. Phytochemicals known for their antioxidant properties have been reported to prevent neurodegenerative diseases in various studies. Phytochemicals with similar chemical structures are grouped. Accordingly, there are two main groups of phytochemicals, flavonoid and non-flavonoid. Various in vitro and in vivo studies on phytochemicals have proven neuroprotective effects by increasing cognitive function with their anti-inflammatory and antioxidant mechanisms. The purpose of this review is to summarize the in vitro and in vivo studies on phytochemicals with neuroprotective effects and to provide insight.
Collapse
Affiliation(s)
- Basak Can
- Nutrition and Dietetics, School of Health Sciences, Istanbul Gelisim University, Istanbul, Turkey
| | - Nevin Sanlier
- School of Health Sciences, Nutrition and Dietetics, Ankara Medipol University, Ankara, Turkey
| |
Collapse
|
63
|
Hasan GM, Anwar S, Shamsi A, Sohal SS, Hassan MI. The neuroprotective potential of phytochemicals in traumatic brain injury: mechanistic insights and pharmacological implications. Front Pharmacol 2024; 14:1330098. [PMID: 38239205 PMCID: PMC10794744 DOI: 10.3389/fphar.2023.1330098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/15/2023] [Indexed: 01/22/2024] Open
Abstract
Traumatic brain injury (TBI) leads to brain damage, comprising both immediate primary damage and a subsequent cascade of secondary injury mechanisms. The primary injury results in localized brain damage, while the secondary damage initiates inflammatory responses, followed by the disruption of the blood-brain barrier, infiltration of peripheral blood cells, brain edema, and the release of various immune mediators, including chemotactic factors and interleukins. TBI disrupts molecular signaling, cell structures, and functions. In addition to physical tissue damage, such as axonal injuries, contusions, and haemorrhages, TBI interferes with brain functioning, impacting cognition, decision-making, memory, attention, and speech capabilities. Despite a deep understanding of the pathophysiology of TBI, an intensive effort to evaluate the underlying mechanisms with effective therapeutic interventions is imperative to manage the repercussions of TBI. Studies have commenced to explore the potential of employing natural compounds as therapeutic interventions for TBI. These compounds are characterized by their low toxicity and limited interactions with conventional drugs. Moreover, many natural compounds demonstrate the capacity to target various aspects of the secondary injury process. While our understanding of the pathophysiology of TBI, there is an urgent need for effective therapeutic interventions to mitigate its consequences. Here, we aimed to summarize the mechanism of action and the role of phytochemicals against TBI progression. This review discusses the therapeutic implications of various phytonutrients and addresses primary and secondary consequences of TBI. In addition, we highlighted the roles of emerging phytochemicals as promising candidates for therapeutic intervention of TBI. The review highlights the neuroprotective roles of phytochemicals against TBI and the mechanistic approach. Furthermore, our efforts focused on the underlying mechanisms, providing a better understanding of the therapeutic potential of phytochemicals in TBI therapeutics.
Collapse
Affiliation(s)
- Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
64
|
Chen X, Walton K, Brodaty H, Chalton K. Polyphenols and Diets as Current and Potential Nutrition Senotherapeutics in Alzheimer's Disease: Findings from Clinical Trials. J Alzheimers Dis 2024; 101:S479-S501. [PMID: 38875032 DOI: 10.3233/jad-231222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Cellular senescence, a hallmark of aging, plays an important role in age-related conditions among older adults. Targeting senescent cells and its phenotype may provide a promising strategy to delay the onset or progression of Alzheimer's disease (AD). In this review article, we investigated efficacy and safety of nutrition senotherapy in AD, with a focus on the role of polyphenols as current and potential nutrition senotherapeutic agents, as well as relevant dietary patterns. Promising results with neuroprotective effects of senotherapeutic agents such as quercetin, resveratrol, Epigallocatechin-gallate, curcumin and fisetin were reported from preclinical studies. However, in-human trials remain limited, and findings were inconclusive. In future, nutrition senotherapeutic agents should be studied both individually and within dietary patterns, through the perspective of cellular senescence and AD. Further studies are warranted to investigate bioavailability, dosing regimen, long term effects of nutrition senotherapy and provide better understanding of the underlying mechanisms. Collaboration between researchers needs to be established, and methodological limitations of current studies should be addressed.
Collapse
Affiliation(s)
- Xi Chen
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Kensington, NSW, Australia
| | - Karen Walton
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Henry Brodaty
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Kensington, NSW, Australia
| | - Karen Chalton
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
65
|
Lv X, Wang X, Wang X, Han Y, Chen H, Hao Y, Zhang H, Cui C, Gao Q, Zheng Z. Research progress in arthritis treatment with the active components of Herba siegesbeckiae. Biomed Pharmacother 2023; 169:115939. [PMID: 38007937 DOI: 10.1016/j.biopha.2023.115939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023] Open
Abstract
Arthritis is a group of diseases characterized by joint pain, swelling, stiffness, and limited movement. Osteoarthritis, rheumatoid arthritis, and gouty arthritis are the most common types of arthritis. Arthritis severely affects the quality of life of patients and imposes a heavy financial and medical burden on their families and society at large. As a widely used traditional Chinese medicine, Herba siegesbeckiae has many pharmacological effects such as anti-inflammatory and analgesic, anti-ischemic injury, cardiovascular protection, and hypoglycemic. In addition, it has significant therapeutic effects on arthritis. The rich chemical compositions of H. siegesbeckiae primarily include diterpenoids, sesquiterpenoids, and flavonoids. As one of the main active components of H. siegesbeckiae, kirenol and quercetin play a vital role in reducing arthritis symptoms. In the present study, the research progress in arthritis treatment with the active components of H. siegesbeckiae is reviewed.
Collapse
Affiliation(s)
- Xiaoqian Lv
- Binzhou Medical University, 264003 Yantai, China
| | - Xiaoyu Wang
- The Affiliated Taian City Central Hospital of Qingdao University, 271000 Taian, China
| | - Xuelei Wang
- Binzhou Medical University, 264003 Yantai, China
| | - Yunna Han
- Binzhou Medical University, 264003 Yantai, China
| | - Haoyue Chen
- The Affiliated Taian City Central Hospital of Qingdao University, 271000 Taian, China
| | - Yuwen Hao
- The Affiliated Taian City Central Hospital of Qingdao University, 271000 Taian, China
| | - Hao Zhang
- The Affiliated Taian City Central Hospital of Qingdao University, 271000 Taian, China
| | - Chao Cui
- The Affiliated Taian City Central Hospital of Qingdao University, 271000 Taian, China
| | - Qiang Gao
- The Affiliated Taian City Central Hospital of Qingdao University, 271000 Taian, China.
| | - Zuncheng Zheng
- The Affiliated Taian City Central Hospital of Qingdao University, 271000 Taian, China.
| |
Collapse
|
66
|
Li L, Jiang W, Yu B, Liang H, Mao S, Hu X, Feng Y, Xu J, Chu L. Quercetin improves cerebral ischemia/reperfusion injury by promoting microglia/macrophages M2 polarization via regulating PI3K/Akt/NF-κB signaling pathway. Biomed Pharmacother 2023; 168:115653. [PMID: 37812891 DOI: 10.1016/j.biopha.2023.115653] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023] Open
Abstract
The modulation of microglial polarization from the pro-inflammatory M1 to the anti-inflammatory M2 phenotype shows promise as a therapeutic strategy for ischemic stroke. Quercetin, a natural flavonoid abundant in various plants, possesses anti-inflammatory, anti-apoptotic, and antioxidant properties. Nevertheless, its effect and underlying mechanism on microglia/macrophages M1/M2 polarization in the treatment of cerebral ischemia/reperfusion injury (CI/RI) remain poorly explored. In the current study, we observed that quercetin ameliorated neurological deficits, reduced infarct volume, decreased the number of M1 microglia/macrophages (CD16/32+/Iba1+), and enhanced the number of M2 microglia/macrophages (CD206+/Iba1+) after establishing the CI/RI model in rats. Subsequent in vivo and in vitro experiments indicated that quercetin downregulated M1 markers (CD86, iNOS, TNF-α, IL-1β, and IL-6) and upregulated M2 markers (CD206, Arg-1, IL-10, and TGF-β). Network pharmacology analysis and molecular docking revealed that the PI3K/Akt/NF-κB signaling pathway emerged as the core pathway. Western blot confirmed that quercetin upregulated the phosphorylation of PI3K and Akt, while alleviating the phosphorylation of IκBα and NF-κB both in vivo and in vitro. However, the PI3K inhibitor LY294002 reversed the effects of quercetin on M2 polarization and the expression of key proteins in the PI3K/Akt/NF-κB pathway in primary microglia after oxygen-glucose deprivation/reoxygenation (OGD/R) in vitro. Collectively, our findings demonstrate that quercetin facilitates microglia/macrophages M2 polarization by modulating the PI3K/Akt/NF-κB signaling pathway in the treatment of CI/RI. These findings provide novel insights into the therapeutic mechanisms of quercetin in ischemic stroke.
Collapse
Affiliation(s)
- Lin Li
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Weifeng Jiang
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Baojian Yu
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Huiqi Liang
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shihui Mao
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaowei Hu
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yan Feng
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiadong Xu
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lisheng Chu
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
67
|
Sakhawat A, Khan MU, Rehman R, Khan S, Shan MA, Batool A, Javed MA, Ali Q. Natural compound targeting BDNF V66M variant: insights from in silico docking and molecular analysis. AMB Express 2023; 13:134. [PMID: 38015338 PMCID: PMC10684480 DOI: 10.1186/s13568-023-01640-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
Brain-Derived Neurotrophic Factor (BDNF) is a neurotrophin gene family gene that encodes proteins vital for the growth, maintenance, and survival of neurons in the nervous system. The study aimed to screen natural compounds against BDNF variant (V66M), which affects memory, cognition, and mood regulation. BDNF variant (V66M) as a target structure was selected, and Vitamin D, Curcumin, Vitamin C, and Quercetin as ligands structures were taken from PubChem database. Multiple tools like AUTODOCK VINA, BIOVIA discovery studio, PyMOL, CB-dock, IMOD server, Swiss ADEMT, and Swiss predict ligands target were used to analyze binding energy, interaction, stability, toxicity, and visualize BDNF-ligand complexes. Compounds Vitamin D3, Curcumin, Vitamin C, and Quercetin with binding energies values of - 5.5, - 6.1, - 4.5, and - 6.7 kj/mol, respectively, were selected. The ligands bind to the active sites of the BDNF variant (V66M) via hydrophobic bonds, hydrogen bonds, and electrostatic interactions. Furthermore, ADMET analysis of the ligands revealed they exhibited sound pharmacokinetic and toxicity profiles. In addition, an MD simulation study showed that the most active ligand bound favorably and dynamically to the target protein, and protein-ligand complex stability was determined. The finding of this research could provide an excellent platform for discovering and rationalizing novel drugs against stress related to BDNF (V66M). Docking, preclinical drug testing and MD simulation results suggest Quercetin as a more potent BDNF variant (V66M) inhibitor and forming a more structurally stable complex.
Collapse
Affiliation(s)
- Azra Sakhawat
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Umer Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
| | - Raima Rehman
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Samiullah Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Adnan Shan
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Alia Batool
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Arshad Javed
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
68
|
Makeeva VS, Dyrkheeva NS, Lavrik OI, Zakian SM, Malakhova AA. Mutant-Huntingtin Molecular Pathways Elucidate New Targets for Drug Repurposing. Int J Mol Sci 2023; 24:16798. [PMID: 38069121 PMCID: PMC10706709 DOI: 10.3390/ijms242316798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/18/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The spectrum of neurodegenerative diseases known today is quite extensive. The complexities of their research and treatment lie not only in their diversity. Even many years of struggle and narrowly focused research on common pathologies such as Alzheimer's, Parkinson's, and other brain diseases have not brought cures for these illnesses. What can be said about orphan diseases? In particular, Huntington's disease (HD), despite affecting a smaller part of the human population, still attracts many researchers. This disorder is known to result from a mutation in the HTT gene, but having this information still does not simplify the task of drug development and studying the mechanisms of disease progression. Nonetheless, the data accumulated over the years and their analysis provide a good basis for further research. Here, we review studies devoted to understanding the mechanisms of HD. We analyze genes and molecular pathways involved in HD pathogenesis to describe the action of repurposed drugs and try to find new therapeutic targets.
Collapse
Affiliation(s)
- Vladlena S. Makeeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (V.S.M.); (S.M.Z.); (A.A.M.)
| | - Nadezhda S. Dyrkheeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia;
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia;
| | - Suren M. Zakian
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (V.S.M.); (S.M.Z.); (A.A.M.)
| | - Anastasia A. Malakhova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (V.S.M.); (S.M.Z.); (A.A.M.)
| |
Collapse
|
69
|
Alexander C, Parsaee A, Vasefi M. Polyherbal and Multimodal Treatments: Kaempferol- and Quercetin-Rich Herbs Alleviate Symptoms of Alzheimer's Disease. BIOLOGY 2023; 12:1453. [PMID: 37998052 PMCID: PMC10669725 DOI: 10.3390/biology12111453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder impairing cognition and memory in the elderly. This disorder has a complex etiology, including senile plaque and neurofibrillary tangle formation, neuroinflammation, oxidative stress, and damaged neuroplasticity. Current treatment options are limited, so alternative treatments such as herbal medicine could suppress symptoms while slowing cognitive decline. We followed PRISMA guidelines to identify potential herbal treatments, their associated medicinal phytochemicals, and the potential mechanisms of these treatments. Common herbs, including Ginkgo biloba, Camellia sinensis, Glycyrrhiza uralensis, Cyperus rotundus, and Buplerum falcatum, produced promising pre-clinical results. These herbs are rich in kaempferol and quercetin, flavonoids with a polyphenolic structure that facilitate multiple mechanisms of action. These mechanisms include the inhibition of Aβ plaque formation, a reduction in tau hyperphosphorylation, the suppression of oxidative stress, and the modulation of BDNF and PI3K/AKT pathways. Using pre-clinical findings from quercetin research and the comparatively limited data on kaempferol, we proposed that kaempferol ameliorates the neuroinflammatory state, maintains proper cellular function, and restores pro-neuroplastic signaling. In this review, we discuss the anti-AD mechanisms of quercetin and kaempferol and their limitations, and we suggest a potential alternative treatment for AD. Our findings lead us to conclude that a polyherbal kaempferol- and quercetin-rich cocktail could treat AD-related brain damage.
Collapse
Affiliation(s)
- Claire Alexander
- Department of Biology, Lamar University, Beaumont, TX 77705, USA
| | - Ali Parsaee
- Biological Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Maryam Vasefi
- Department of Biology, Lamar University, Beaumont, TX 77705, USA
| |
Collapse
|
70
|
Adedara IA, Atanda OE, Sant'Anna Monteiro C, Rosemberg DB, Aschner M, Farombi EO, Rocha JBT, Furian AF, Emanuelli T. Cellular and molecular mechanisms of aflatoxin B 1-mediated neurotoxicity: The therapeutic role of natural bioactive compounds. ENVIRONMENTAL RESEARCH 2023; 237:116869. [PMID: 37567382 DOI: 10.1016/j.envres.2023.116869] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Aflatoxin B1 (AFB1), a dietary toxin from the mold Aspergillus species, is well acknowledged to elicit extra-hepatic toxicity in both animals and humans. The neurotoxicity of AFB1 has become a global public health concern. Contemporary research on how AFB1 enters the brain to elicit neuronal dysregulation leading to noxious neurological outcomes has increased greatly in recent years. The current review discusses several neurotoxic outcomes and susceptible targets of AFB1 toxicity at cellular, molecular and genetic levels. Specifically, neurotoxicity studies involving the use of brain homogenates, neuroblastoma cell line IMR-32, human brain microvascular endothelial cells, microglial cells, and astrocytes, as well as mammalian and non-mammalian models to unravel the mechanisms associated with AFB1 exposure are highlighted. Further, some naturally occurring bioactive compounds with compelling therapeutic effects on AFB1-induced neurotoxicity are reviewed. In conclusion, available data from literature highlight AFB1 as a neurotoxin and its possible pathological contribution to neurological disorders. Further mechanistic studies aimed at discovering and developing effective therapeutics for AFB1 neurotoxicity is warranted.
Collapse
Affiliation(s)
- Isaac A Adedara
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil; Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Oluwadarasimi E Atanda
- Human Toxicology Program, Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Camila Sant'Anna Monteiro
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology; Albert Einstein College of Medicine Forchheimer 209; 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Joao B T Rocha
- Department of Biochemical and Molecular Biology, Federal University of Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Ana Flávia Furian
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Tatiana Emanuelli
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil
| |
Collapse
|
71
|
Łuszczki E, Boakye F, Zielińska M, Dereń K, Bartosiewicz A, Oleksy Ł, Stolarczyk A. Vegan diet: nutritional components, implementation, and effects on adults' health. Front Nutr 2023; 10:1294497. [PMID: 38024367 PMCID: PMC10665534 DOI: 10.3389/fnut.2023.1294497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Vegan diet has emerged as a popular dietary choice for people worldwide in recent times, due to concerns such as health issues, animal rights and welfare, and the sustainability of the environment. The purpose of this literature review was to explain how a vegan diet may affect the health of adults and to point out beneficial components found in it as well as any difficulties associated with its implementation. Evidence supports that a vegan diet can reduce the risk of chronic diseases, such as type 2 diabetes, hypertension, and certain types of cancer. A well-planned vegan diet must include adequate calories and nutrients, as well as the necessary supplements, such as vitamin B12, vitamin D and EPA/DHA. Given the current growing interest in plant-based diets among the general population, it is crucial to understand both the barriers, risks, and benefits of the vegan diet among physicians, policy makers, and the general population.
Collapse
Affiliation(s)
- Edyta Łuszczki
- Institute of Health Sciences, Medical College of Rzeszów University, Rzeszów, Poland
| | - Faustina Boakye
- Institute of Health Sciences, Medical College of Rzeszów University, Rzeszów, Poland
| | - Magdalena Zielińska
- Institute of Health Sciences, Medical College of Rzeszów University, Rzeszów, Poland
| | - Katarzyna Dereń
- Institute of Health Sciences, Medical College of Rzeszów University, Rzeszów, Poland
| | - Anna Bartosiewicz
- Institute of Health Sciences, Medical College of Rzeszów University, Rzeszów, Poland
| | - Łukasz Oleksy
- Faculty of Health Sciences, Department of Physiotherapy, Jagiellonian University Medical College, Kraków, Poland
| | - Artur Stolarczyk
- Orthopedic and Rehabilitation Department, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
72
|
Sanad SM, Farouk R, Nassar SE, Alshahrani MY, Suliman M, Ezzat Ahmed A, Eid Elesawi I. The neuroprotective effect of quercetin nanoparticles in the therapy of neuronal damage stimulated by acrolein. Saudi J Biol Sci 2023; 30:103792. [PMID: 37711970 PMCID: PMC10498005 DOI: 10.1016/j.sjbs.2023.103792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 08/27/2023] [Indexed: 09/16/2023] Open
Abstract
A gradual loss of neuronal function or structure causes neurodegenerative disorders such as Parkinson's and Alzheimer's. Neurological damage might cause cell death. Acrolein is a high-risk air and water contaminant that causes neurodegenerative disorders. Quercetin has several strategies for treating neurodegenerative disorders but has limited bioavailability inside the body. One of the hypotheses offered to improve quercetin's bioavailability is to convert it into quercetin nanoparticles. This study aims to comprehend the immunohistochemical devastation that might arise in the cerebellum because of acrolein treatment. Furthermore, the protective and ameliorative roles of quercetin nanoparticles against oxidative stress and neurotoxicity induced in mice by acrolein were assessed. Ninety male albino rats weighing 120 to 200 g were used in the present investigation. The animals were split up into the following six groups: the control group, the acrolein-treated group: animals were given acrolein (3 mg/kg) for 30 days, quercetin nanoparticles treated group: animals were given quercetin nanoparticles (30 mg/kg) for 30 days. The administration of acrolein was found to be connected to immunohistochemical abnormalities in the cerebellum. Marked differences were observed in Bax, Bcl-2, TNF-α, and GFAP expressions in the cerebellum. Treatment of rats with quercetin nanoparticles either before or after treatment with acrolein has been found to preserve the cerebellum tissues from the toxic impacts and oxidative stress induced by acrolein. This may open the door to more nanomedicine studies and a new avenue for employing nanoparticles as a therapeutic intervention in neurodegenerative illnesses.
Collapse
Affiliation(s)
- Samia M. Sanad
- Zoology Department, Faculty of Science, Zagazig University, Sharkia 44519, Egypt
| | - Reham Farouk
- Zoology Department, Faculty of Science, Zagazig University, Sharkia 44519, Egypt
| | - Safaa E. Nassar
- Zoology Department, Faculty of Science, Zagazig University, Sharkia 44519, Egypt
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, P.O. Box 61413 Abha 9088, Saudi Arabia
| | - Ibrahim Eid Elesawi
- Agricultural Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
73
|
Zaa CA, Espitia C, Reyes-Barrera KL, An Z, Velasco-Velázquez MA. Neuroprotective Agents with Therapeutic Potential for COVID-19. Biomolecules 2023; 13:1585. [PMID: 38002267 PMCID: PMC10669388 DOI: 10.3390/biom13111585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
COVID-19 patients can exhibit a wide range of clinical manifestations affecting various organs and systems. Neurological symptoms have been reported in COVID-19 patients, both during the acute phase of the illness and in cases of long-term COVID. Moderate symptoms include ageusia, anosmia, altered mental status, and cognitive impairment, and in more severe cases can manifest as ischemic cerebrovascular disease and encephalitis. In this narrative review, we delve into the reported neurological symptoms associated with COVID-19, as well as the underlying mechanisms contributing to them. These mechanisms include direct damage to neurons, inflammation, oxidative stress, and protein misfolding. We further investigate the potential of small molecules from natural products to offer neuroprotection in models of neurodegenerative diseases. Through our analysis, we discovered that flavonoids, alkaloids, terpenoids, and other natural compounds exhibit neuroprotective effects by modulating signaling pathways known to be impacted by COVID-19. Some of these compounds also directly target SARS-CoV-2 viral replication. Therefore, molecules of natural origin show promise as potential agents to prevent or mitigate nervous system damage in COVID-19 patients. Further research and the evaluation of different stages of the disease are warranted to explore their potential benefits.
Collapse
Affiliation(s)
- César A. Zaa
- School of Biological Sciences, Universidad Nacional Mayor de San Marcos (UNMSM), Lima 15081, Peru;
| | - Clara Espitia
- Department of Immunology, Institute of Biomedical Research, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (C.E.); (K.L.R.-B.)
| | - Karen L. Reyes-Barrera
- Department of Immunology, Institute of Biomedical Research, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (C.E.); (K.L.R.-B.)
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA;
| | - Marco A. Velasco-Velázquez
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA;
- School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| |
Collapse
|
74
|
Fuentes Y, Giovagnoli-Vicuña C, Faúndez M, Giordano A. Microencapsulation of Chilean Papaya Waste Extract and Its Impact on Physicochemical and Bioactive Properties. Antioxidants (Basel) 2023; 12:1900. [PMID: 37891979 PMCID: PMC10604294 DOI: 10.3390/antiox12101900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
The microencapsulation of bioactive extracts of Chilean papaya waste, including both seeds and skin, was investigated. Papaya waste extract microcapsules utilizing maltodextrin at 10% (MD10), 20% (MD20), and 30% (MD30) (w/v) as the wall material through the freeze-drying process were obtained, and subsequently their physicochemical, antioxidant, and antimicrobial properties were evaluated. The TPC efficiency and yield values achieved were more than 60% for the microencapsulated seed and skin extracts, respectively. The best results for phenolic and antioxidant compounds were found in the microencapsulated seed extract with MD20, with a value of 44.20 ± 3.32 EAG/g DW for total phenols and an antioxidant capacity of 12.0 ± 0.32 mol ET/g DW for the DPPH and 236.3 ± 4.1 mol ET/g DW for the FRAP assay. In addition, the seed and skin samples reduced ROS generation in H2O2-treated Hek293 cells. In terms of antimicrobial activity, values ranging from 7 to 15 mm of inhibitory halos were found, with the maximum value corresponding to the inhibition of S. aureus, for both microencapsulated extracts. Therefore, the successful microencapsulation of the waste bioactive extracts (seed and skin) with the demonstrated antimicrobial and antioxidant properties highlight the bioactivity from Chilean papaya waste resources.
Collapse
Affiliation(s)
- Yihajara Fuentes
- Departamento de Química Inorgánica, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Macul 7820436, Chile;
| | - Claudia Giovagnoli-Vicuña
- Departamento de Química Inorgánica, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Macul 7820436, Chile;
| | - Mario Faúndez
- Departamento de Farmacia, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Macul 7820436, Chile;
| | - Ady Giordano
- Departamento de Química Inorgánica, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Macul 7820436, Chile;
| |
Collapse
|
75
|
Kaboli Z, Hosseini MJ, Sadighian S, Rostamizadeh K, Hamidi M, Manjili HK. Valine conjugated polymeric nanocarriers for targeted co-delivery of rivastigmine and quercetin in rat model of Alzheimer disease. Int J Pharm 2023; 645:123418. [PMID: 37716484 DOI: 10.1016/j.ijpharm.2023.123418] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Multifunctional nanocarriers are increasingly promising for disease treatment aimed at finding effective therapy and overcoming barriers in drug delivery. Herein, valine conjugated chitosan (VLCS) was used for surface modification of nanocarriers (NCs) based on Poly (ε-caprolactone)-Poly (ethylene glycol)-Poly (ε-caprolactone) (PCL-PEG-PCL) triblock copolymers (NCs@VLCS). The nanocarriers were co-loaded with rivastigmine (RV) and quercetin (QT) to yield the final RV/QT-NCs@VLCS as a multifunctional nanocarrier for Alzheimer's disease (AD) treatment. The large amino acid transporter 1 (LAT-1) was selected for the direction of the NCs to the brain. The biocompatibility of the nanocarrier was studied in HEK-293 and SH-SY5Y cells and rats. The Morris water maze test demonstrated a faster regain of memory loss with RV/QT-NCs@VLCS compared to the other groups. Furthermore, RV/QT-NCs@VLCS and RV/QT-NCs improved GSH depletion induced by scopolamine (SCO), with RV/QT-NCs@VLCS having a superior effect. The real-time PCR analysis revealed that co-delivery of RV and QT by NCs@VLCS showed significantly higher efficacy than sole delivery of RV. RV/QT-NCs@VLCS treatment also modulated the expression of BDNF, ACHE, and TNF-α. The findings revealed that NCs@VLCS co-loaded with RV and QT, significantly increased efficacy relative to the single use of RV and could be considered a potent multifunctional drug delivery system for Alzheimer's treatment.
Collapse
Affiliation(s)
- Zahra Kaboli
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mir-Jamal Hosseini
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Somayeh Sadighian
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Kobra Rostamizadeh
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Psychiatry and Behavioral Sciences, Department of Pharmacology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Mehrdad Hamidi
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamidreza Kheiri Manjili
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
76
|
Reza-Zaldívar E, Jacobo-Velázquez DA. Comprehensive Review of Nutraceuticals against Cognitive Decline Associated with Alzheimer's Disease. ACS OMEGA 2023; 8:35499-35522. [PMID: 37810693 PMCID: PMC10552500 DOI: 10.1021/acsomega.3c04855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023]
Abstract
Nowadays, nutraceuticals are being incorporated into functional foods or used as supplements with nonpharmacological approaches in the prevention and management of several illnesses, including age-related conditions and chronic neurodegenerative diseases. Nutraceuticals are apt for preventing and treating such disorders because of their nontoxic, non-habit-forming, and efficient bioactivities for promoting neurological well-being due to their ability to influence cellular processes such as neurogenesis, synaptogenesis, synaptic transmission, neuro-inflammation, oxidative stress, cell death modulation, and neuronal survival. The capacity of nutraceuticals to modify all of these processes reveals the potential to develop food-based strategies to aid brain development and enhance brain function, prevent and ameliorate neurodegeneration, and possibly reverse the cognitive impairment observed in Alzheimer's disease, the most predominant form of dementia in the elderly. The current review summarizes the experimental evidence of the neuroprotective capacity of nutraceuticals against Alzheimer's disease, describing their mechanisms of action and the in vitro and in vivo models applied to evaluate their neuroprotective potential.
Collapse
Affiliation(s)
- Edwin
E. Reza-Zaldívar
- Tecnologico
de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C. 64849 Monterrey, NL, Mexico
| | - Daniel A. Jacobo-Velázquez
- Tecnologico
de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C. 64849 Monterrey, NL, Mexico
- Tecnologico
de Monterrey, Escuela de Ingeniería
y Ciencias, Campus Guadalajara, Av. General Ramon Corona 2514, C. 45201 Zapopan, Jalisco, Mexico
| |
Collapse
|
77
|
Khakha N, Khan H, Kaur A, Singh TG. Therapeutic implications of phosphorylation- and dephosphorylation-dependent factors of cAMP-response element-binding protein (CREB) in neurodegeneration. Pharmacol Rep 2023; 75:1152-1165. [PMID: 37688751 DOI: 10.1007/s43440-023-00526-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/11/2023]
Abstract
Neurodegeneration is a condition of the central nervous system (CNS) characterized by loss of neural structures and function. The most common neurodegenerative disorders (NDDs) include Alzheimer's disease (AD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), multiple sclerosis (MS), motor neuron disorders, psychological disorders, dementia with vascular dementia (VaD), Lewy body dementia (DLB), epilepsy, cerebral ischemia, mental illness, and behavioral disorders. CREB (cAMP-response element-binding protein) represent a nuclear protein that regulates gene transcriptional activity. The primary focus of the review pertains to the exploration of CREB expression and activation within the context of neurodegenerative diseases, specifically in relation to the phosphorylation and dephosphorylation events that occur within the CREB signaling pathway under normal physiological conditions. The findings mentioned have contributed to the elucidation of the regulatory mechanisms governing CREB activity. Additionally, they have provided valuable insights into the potential mediation of diverse biological processes, such as memory consolidation and neuroprotective effects, by various related studies. The promotion of synaptic plasticity and neurodevelopment in the central nervous system through the targeting of CREB proteins has the potential to contribute to the prevention or delay of the onset of neurodegenerative disorders. Multiple drugs have been found to initiate downstream signaling pathways, leading to neuroprotective advantages in both animal model studies and clinical trials. The clinical importance of the cAMP-response element-binding protein (CREB) is examined in this article, encompassing its utility as both a predictive/prognostic marker and a target for therapeutic interventions.
Collapse
Affiliation(s)
- Nilima Khakha
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
78
|
Ebrahimi A, Parivar K, Roodbari NHE, Eidi A. Treatment with quercetin increases Nrf2 expression and neuronal differentiation of sub ventricular zone derived neural progenitor stem cells in adult rats. Mol Biol Rep 2023; 50:8163-8175. [PMID: 37555870 DOI: 10.1007/s11033-023-08707-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/21/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND The presence of neural precursor stem cells (NPSCs) in some parts of the adult brain and the potency of these types of cells with a therapeutic viewpoint, has opened up a new approach for the treatment and recovery of the defects of central nervous system (CNS). Quercetin, as an herbal flavonoid, has been extensively investigated and shown to have numerous restoratives, inhibitory, and protective effects on some cell-lines and disorders. The purpose of this study is to simultaneously investigate the effect of quercetin on the expression of the nuclear factor erythroid 2-related factor 2 (Nrf2) gene and the effect on the proliferation and differentiation of NPSCs derived from the subventricular zone (SVZ) of the brain of adult rats. METHODS AND RESULTS The cell obtained from SVZ cultured for one week and treated with quercetin at the concentrations of 1, 5, and 15 μM to evaluate the Nrf2 expression, proliferation and differentiation of NSCs after one week. Cellular and genetic results was performed by RT-PCR, MTT assay test, quantification of images with Image-J and counting. The results indicated that the quercetin increases expression of Nrf2 at concentration above 5 μM. Also differentiation and proliferation rate of NSCs is affected by various concentrations of quercetin in a dose-dependent manner. CONCLUSION These findings confirmed the dose-dependent effect of quercetin on proliferation and differentiation of cell. In addition, quercetin increased the expression of Nrf2 gene. By combining these two effects of quercetin, this substance can be considered an effective compound in the treatment of degenerative defects in CNS.
Collapse
Affiliation(s)
- Ali Ebrahimi
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kazem Parivar
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Nasim Hayati-E Roodbari
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
79
|
Fideles SOM, Ortiz ADC, Reis CHB, Buchaim DV, Buchaim RL. Biological Properties and Antimicrobial Potential of Cocoa and Its Effects on Systemic and Oral Health. Nutrients 2023; 15:3927. [PMID: 37764711 PMCID: PMC10534671 DOI: 10.3390/nu15183927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Cocoa is considered a functional food because it is a natural source of macro- and micronutrients. Thus, cocoa is rich in vitamins, minerals, fiber, fatty acids, methylxanthines and flavonoids. In addition to favoring the metabolism of lipids and carbohydrates, the bioactive components of cocoa can have an antioxidant, anti-inflammatory and antimicrobial effect, providing numerous benefits for health. This literature review presents an overview of the effects of cocoa, fruit of the Theobroma cacao tree, on systemic and oral health. Several studies report that cocoa intake may contribute to the prevention of cardiovascular, neurodegenerative, immunological, inflammatory, metabolic and bone diseases, in addition to reducing the risk of vascular alterations and cognitive dysfunctions. On oral health, in vitro studies have shown that cocoa extract exerted an inhibitory effect on the growth, adherence and metabolism of cariogenic and periodontopathogenic bacteria, also inhibiting acid production, glycosyltransferase enzyme activity and the synthesis of insoluble polysaccharides. Additionally, administration of cocoa extract reduced biofilm accumulation and caries development in animals infected with cariogenic species. Clinical studies also reported that the use of mouthwashes containing cocoa extract reduced Streptococcus mutans counts in saliva and dental biofilm formation. In short, these studies highlight the nutritional value of cocoa, considering its clinical applicability, stability and economic accessibility.
Collapse
Affiliation(s)
- Simone Ortiz Moura Fideles
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil; (S.O.M.F.); (A.d.C.O.); (C.H.B.R.)
| | - Adriana de Cássia Ortiz
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil; (S.O.M.F.); (A.d.C.O.); (C.H.B.R.)
| | - Carlos Henrique Bertoni Reis
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil; (S.O.M.F.); (A.d.C.O.); (C.H.B.R.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil
| | - Rogério Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil; (S.O.M.F.); (A.d.C.O.); (C.H.B.R.)
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil
| |
Collapse
|
80
|
Srivastava A, Kumari A, Jagdale P, Ayanur A, Pant AB, Khanna VK. Potential of Quercetin to Protect Cadmium Induced Cognitive Deficits in Rats by Modulating NMDA-R Mediated Downstream Signaling and PI3K/AKT-Nrf2/ARE Signaling Pathways in Hippocampus. Neuromolecular Med 2023; 25:426-440. [PMID: 37460789 DOI: 10.1007/s12017-023-08747-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/14/2023] [Indexed: 09/22/2023]
Abstract
Exposure to cadmium, a heavy metal distributed in the environment is a cause of concern due to associated health effects in population around the world. Continuing with the leads demonstrating alterations in brain cholinergic signalling in cadmium induced cognitive deficits by us; the study is focussed to understand involvement of N-Methyl-D-aspartate receptor (NMDA-R) and its postsynaptic signalling and Nrf2-ARE pathways in hippocampus. Also, the protective potential of quercetin, a polyphenolic bioflavonoid, was assessed in cadmium induced alterations. Cadmium treatment (5 mg/kg, body weight, p.o., 28 days) decreased mRNA expression and protein levels of NMDA receptor subunits (NR1, NR2A) in rat hippocampus, compared to controls. Cadmium treated rats also exhibited decrease in levels of NMDA-R associated downstream signalling proteins (CaMKIIα, PSD-95, TrkB, BDNF, PI3K, AKT, Erk1/2, GSK3β, and CREB) and increase in levels of SynGap in hippocampus. Further, decrease in protein levels of Nrf2 and HO1 associated with increase in levels of Keap1 exhibits alterations in Nrf2/ARE signalling in hippocampus of cadmium treated rats. Degeneration of pyramidal neurons in hippocampus was also evident on cadmium treatment. Simultaneous treatment with quercetin (25 mg/kg body weight p.o., 28 days) was found to attenuate cadmium induced changes in hippocampus. The results provide novel evidence that cadmium exposure may disrupt integrity of NMDA receptors and its downstream signaling targets by affecting the Nrf2/ARE signaling pathway in hippocampus and these could contribute in cognitive deficits. It is further interesting that quercetin has the potential to protect cadmium induced changes by modulating Nrf2/ARE signaling which was effective to control NMDA-R and PI3K/AKT cell signaling pathways.
Collapse
Affiliation(s)
- Anugya Srivastava
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Area, CSIR- Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Anima Kumari
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Area, CSIR- Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Pankaj Jagdale
- Central Pathology Laboratory, Regulatory Toxicology Area, CSIR- Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
| | - Anjaneya Ayanur
- Central Pathology Laboratory, Regulatory Toxicology Area, CSIR- Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
| | - Aditya Bhushan Pant
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Area, CSIR- Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Vinay Kumar Khanna
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Area, CSIR- Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
81
|
Abbiati F, Garagnani SA, Orlandi I, Vai M. Sir2 and Glycerol Underlie the Pro-Longevity Effect of Quercetin during Yeast Chronological Aging. Int J Mol Sci 2023; 24:12223. [PMID: 37569599 PMCID: PMC10419316 DOI: 10.3390/ijms241512223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Quercetin (QUER) is a natural polyphenolic compound endowed with beneficial properties for human health, with anti-aging effects. However, although this flavonoid is commercially available as a nutraceutical, target molecules/pathways underlying its pro-longevity potential have yet to be fully clarified. Here, we investigated QUER activity in yeast chronological aging, the established model for simulating the aging of postmitotic quiescent mammalian cells. We found that QUER supplementation at the onset of chronological aging, namely at the diauxic shift, significantly increases chronological lifespan (CLS). Consistent with the antioxidant properties of QUER, this extension takes place in concert with a decrease in oxidative stress. In addition, QUER triggers substantial changes in carbon metabolism. Specifically, it promotes an enhancement of a pro-longevity anabolic metabolism toward gluconeogenesis due to improved catabolism of C2 by-products of yeast fermentation and glycerol. The former is attributable to the Sir2-dependent activity of phosphoenolpyruvate carboxykinase and the latter to the L-glycerol 3-phosphate pathway. Such a combined increased supply of gluconeogenesis leads to an increase in the reserve carbohydrate trehalose, ensuring CLS extension. Moreover, QUER supplementation to chronologically aging cells in water alone amplifies their long-lived phenotype. This is associated with intracellular glycerol catabolism and trehalose increase, further indicating a QUER-specific influence on carbon metabolism that results in CLS extension.
Collapse
Affiliation(s)
- Francesco Abbiati
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (F.A.); (S.A.G.); (I.O.)
| | - Stefano Angelo Garagnani
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (F.A.); (S.A.G.); (I.O.)
| | - Ivan Orlandi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (F.A.); (S.A.G.); (I.O.)
- SYSBIO Centre for Systems Biology, 20126 Milano, Italy
| | - Marina Vai
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (F.A.); (S.A.G.); (I.O.)
- SYSBIO Centre for Systems Biology, 20126 Milano, Italy
| |
Collapse
|
82
|
Rarinca V, Nicoara MN, Ureche D, Ciobica A. Exploitation of Quercetin's Antioxidative Properties in Potential Alternative Therapeutic Options for Neurodegenerative Diseases. Antioxidants (Basel) 2023; 12:1418. [PMID: 37507955 PMCID: PMC10376113 DOI: 10.3390/antiox12071418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Oxidative stress (OS) is a condition in which there is an excess of reactive oxygen species (ROS) in the body, which can lead to cell and tissue damage. This occurs when there is an overproduction of ROS or when the body's antioxidant defense systems are overwhelmed. Quercetin (Que) is part of a group of compounds called flavonoids. It is found in high concentrations in vegetables, fruits, and other foods. Over the past decade, a growing number of studies have highlighted the therapeutic potential of flavonoids to modulate neuronal function and prevent age-related neurodegeneration. Therefore, Que has been shown to have antioxidant, anticancer, and anti-inflammatory properties, both in vitro and in vivo. Due to its antioxidant character, Que alleviates oxidative stress, thus improving cognitive function, reducing the risk of neurodegenerative diseases. On the other hand, Que can also help support the body's natural antioxidant defense systems, thus being a potentially practical supplement for managing OS. This review focuses on experimental studies supporting the neuroprotective effects of Que in Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and epilepsy.
Collapse
Affiliation(s)
- Viorica Rarinca
- Doctoral School of Geosciences, Faculty of Geography and Geology, Alexandru Ioan Cuza University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania
- Doctoral School of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, No 20A, Carol I Avenue, 700506 Iasi, Romania
| | - Mircea Nicusor Nicoara
- Doctoral School of Geosciences, Faculty of Geography and Geology, Alexandru Ioan Cuza University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania
| | - Dorel Ureche
- Department of Biology, Ecology and Environmental Protection, Faculty of Sciences, University Vasile Alecsandri of Bacau, Calea Marasesti Street, No 157, 600115 Bacau, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania
- Center of Biomedical Research, Romanian Academy, No 8, Carol I Avenue, 700506 Iasi, Romania
- Academy of Romanian Scientists, No 54, Independence Street, Sector 5, 050094 Bucharest, Romania
| |
Collapse
|
83
|
Ye Y, Jiang M, Hong X, Fu Y, Chen Y, Wu H, Sun Y, Wang X, Zhou E, Wang J, Yang Z. Quercetin Alleviates Deoxynivalenol-Induced Intestinal Damage by Suppressing Inflammation and Ferroptosis in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37392437 DOI: 10.1021/acs.jafc.3c02027] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
Deoxynivalenol (DON), one of the most prevalent mycotoxins found in food and feed, can cause gastrointestinal inflammation and systemic immunosuppression, presenting a serious hazard to human and animal health. Quercetin (QUE) is a plant polyphenol with anti-inflammatory and antioxidant properties. In this research, we investigated the potential function of QUE as a treatment for DON-induced intestinal damage. Thirty male specific-pathogen-free BALB/c mice were randomly allocated to treatment with QUE (50 mg/kg) and/or DON (0, 0.5, 1, and 2 mg/kg). We found that QUE attenuated DON-induced intestinal damage in mice by improving jejunal structural injury and changing tight junction proteins (claudin-1, claudin-3, ZO-1, and occludin) levels. QUE also suppressed DON-triggered intestinal inflammation by inhibiting the TLR4/NF-κB signaling pathway. Meanwhile, QUE decreased the oxidative stress caused by DON by enhancing the concentrations of SOD and GSH, while diminishing the contents of MDA. In particular, QUE reduced DON-induced intestinal ferroptosis. DON-induced intestinal damage elevated TfR and 4HNE levels, along with transcription levels of ferroptosis-related genes (PTGS2, ACSL4, and HAMP1) while diminishing mRNA levels of FTH1, SLC7A11, GPX4, FPN1, and FSP1, all of which were reversed by QUE treatment. Our findings imply that QUE alleviates DON-induced intestinal injury in mice by inhibiting the TLR4/NF-κB signaling pathway and ferroptosis. In this study, we elucidate the toxicological mechanism of DON, provide a basic foundation or theory for future DON prevention and treatment, and explore strategies to prevent and alleviate DON's hazardous effects.
Collapse
Affiliation(s)
- Yingrong Ye
- College of Life Science and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Mingzhen Jiang
- College of Life Science and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Xinyao Hong
- College of Life Science and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Yiwu Fu
- College of Life Science and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Yichun Chen
- College of Life Science and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Hanpeng Wu
- College of Life Science and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Youpeng Sun
- College of Life Science and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Xia Wang
- College of Life Science and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Ershun Zhou
- College of Life Science and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Jingjing Wang
- College of Life Science and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Zhengtao Yang
- College of Life Science and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| |
Collapse
|
84
|
Xia CX, Gao AX, Dong TTX, Tsim KWK. Flavonoids from Seabuckthorn (Hippophae rhamnoides L.) mimic neurotrophic functions in inducing neurite outgrowth in cultured neurons: Signaling via PI3K/Akt and ERK pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154832. [PMID: 37121059 DOI: 10.1016/j.phymed.2023.154832] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/30/2023] [Accepted: 04/16/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Various brain disorders, including neurodegenerative diseases and major depressive disorders, threaten an increasing number of patients. Seabuckthorn, a fruit from Hippophae rhamnoides L., is an example of "medicine food homology". The fruit has enriched flavonoids that reported to have benefits in treating cognitive disorders. However, the studies on potential functions of Seabuckthorn and/or its flavonoid-enriched fraction in treating neurodegenerative disorders are limited. PURPOSE This study aimed to determine the ability and mechanism of the flavonoid-enriched fraction of Seabuckthorn (named as SBF) in mimicking the neurotrophic functions in inducing neurite outgrowth of cultured neurons. METHODS Cultured PC12 cell line, SH-SY5Y cell line and primary neurons (cortical and hippocampal neurons isolated from E17-19 SD rat embryos) were the employed models to evaluate SBF in inducing neurite outgrowth by comparing to the effects of NGF and BDNF. Immuno-fluorescence staining was applied to identify the morphological change during the neuronal differentiation. Luciferase assay was utilized for analyzing the transcriptional regulation of neurofilaments and cAMP/CREB-mediated gene. Western blot assay was conducted to demonstrate the expressions of neurofilaments and phosphorylated proteins. RESULTS The application of SBF induced neuronal cell differentiation, and this differentiating activation was blocked by the inhibitors of PI3K/Akt and ERK pathways. Additionally, SBF showed synergy with neurotrophic factors in stimulating the neurite outgrowth of cultured neurons. Moreover, the major flavonoids within SBF, i.e., isorhamnetin, quercetin and kaempferol, could account for the neurotrophic activities of SBF. CONCLUSION Seabuckthorn flavonoids mimicked neurotrophic functions in inducing neuronal cell differentiation via activating PI3K/Akt and ERK pathways. The results suggest the beneficial functions of Seabuckthorn as a potential health food supplement in treating various brain disorders, e.g., neurodegenerative diseases.
Collapse
Affiliation(s)
- Chen-Xi Xia
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518000, China; Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Alex Xiong Gao
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518000, China; Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Tina Ting-Xia Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518000, China; Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Karl Wah-Keung Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518000, China; Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
85
|
Jurcau A, Jurcau CM. Mitochondria in Huntington's disease: implications in pathogenesis and mitochondrial-targeted therapeutic strategies. Neural Regen Res 2023; 18:1472-1477. [PMID: 36571344 PMCID: PMC10075114 DOI: 10.4103/1673-5374.360289] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Huntington's disease is a genetic disease caused by expanded CAG repeats on exon 1 of the huntingtin gene located on chromosome 4. Compelling evidence implicates impaired mitochondrial energetics, altered mitochondrial biogenesis and quality control, disturbed mitochondrial trafficking, oxidative stress and mitochondrial calcium dyshomeostasis in the pathogenesis of the disorder. Unfortunately, conventional mitochondrial-targeted molecules, such as cysteamine, creatine, coenzyme Q10, or triheptanoin, yielded negative or inconclusive results. However, future therapeutic strategies, aiming to restore mitochondrial biogenesis, improving the fission/fusion balance, and improving mitochondrial trafficking, could prove useful tools in improving the phenotype of Huntington's disease and, used in combination with genome-editing methods, could lead to a cure for the disease.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea; Neurology 3 Ward, Clinical Emergency Hospital, Oradea, Romania
| | | |
Collapse
|
86
|
Wang W, Yuan X, Mu J, Zou Y, Xu L, Chen J, Zhu X, Li B, Zeng Z, Wu X, Yin Z, Wang Q. Quercetin induces MGMT + glioblastoma cells apoptosis via dual inhibition of Wnt3a/β-Catenin and Akt/NF-κB signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154933. [PMID: 37451151 DOI: 10.1016/j.phymed.2023.154933] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/24/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Surgical resection combined with radiotherapy and chemotherapy remains a common clinical treatment for glioblastoma multiforme (GBM). However, the therapeutic outcomes have not been satisfying due to drug resistance and other factors. Quercetin, a phytoingredient capable of crossing the blood-brain barrier, has shown effectiveness in the treatment of various solid tumors. Nevertheless, the potential of quercetin in GBM treatment has not been adequately explored. PURPOSE This study aims to investigate the effects and mechanisms of quercetin on MGMT+GBM cells. METHODS The potential targets and mechanisms of quercetin in glioma treatment were predicted based on network pharmacology and molecular docking. The effects of quercetin on cell inhibition rate, cell migration ability, cell cycle arrest, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), Mitochondrial superoxide formation and apoptosis were measured by the CCK8 assay, wound healing assay, PI/RNase staining, JC-1 assay, DCFH-DA assay, MitoSOX staining and Annexin V-FITC/PI double staining, respectively. The methylation status of the MGMT promoter was assessed through methylation-specific polymerase chain reaction (MS-PCR). DNA damage was quantified by alkaline/neutral comet assay and TUNEL assay. The intracellular localization and expression of NF-κB and MGMT were revealed by immunofluorescence. The expression of migration-related proteins, matrix metalloproteinases, apoptosis-related proteins, cyclins, DNA damage/repair enzymes and related pathway proteins was detected by Western blot. RESULTS Network pharmacology identified 96 targets and potential molecular mechanisms of quercetin in glioma treatment. Subsequent experiments confirmed the synergistic effect of quercetin in combination with temozolomide (TMZ) on T98G cells. Quercetin significantly suppressed the growth and migration of human GBM T98G cells, induced apoptosis, and arrested cells in the S-phase cell cycle. The collapse of mitochondrial membrane potential, ROS generation, enhanced Bax/Bcl-2 ratio, and strengthened cleaved-Caspase 9 and cleaved-Caspase 3 suggested the involvement of ROS-mediated mitochondria-dependent apoptosis in the process of quercetin-induced apoptosis. In addition, quercetin-induced apoptosis was accompanied by intense DNA double-strand breaks (DSBs), γH2AX foci formation, methylation of MGMT promoter, increased cleaved-PARP, and reduced MGMT expression. Quercetin may influence the expression of the key DNA repair enzyme, MGMT, by dual suppression of the Wnt3a/β-Catenin and the Akt/NF-κB signaling pathways, thereby promoting apoptosis. Inhibition of Wnt3a and Akt using specific inhibitors hindered MGMT expression. CONCLUSION Our study provides the first evidence that quercetin may induce apoptosis in MGMT+GBM cells via dual inhibition of the Wnt3a/β-Catenin pathway and the Akt/NF-κB signaling pathway. These findings suggest that quercetin could be a novel agent for improving GBM treatment, especially in TMZ-resistant GBM with high MGMT expression.
Collapse
Affiliation(s)
- Wanyu Wang
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China; Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaopeng Yuan
- Department of Clinical Laboratory, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
| | - Jiasheng Mu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yuheng Zou
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lanyang Xu
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiali Chen
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiao Zhu
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Biaoping Li
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhiyun Zeng
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xianghui Wu
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhixin Yin
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qirui Wang
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China; Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
87
|
Yi YS. Regulatory Roles of Flavonoids in Caspase-11 Non-Canonical Inflammasome-Mediated Inflammatory Responses and Diseases. Int J Mol Sci 2023; 24:10402. [PMID: 37373549 DOI: 10.3390/ijms241210402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Inflammasomes are multiprotein complexes that activate inflammatory responses by inducing pyroptosis and secretion of pro-inflammatory cytokines. Along with many previous studies on inflammatory responses and diseases induced by canonical inflammasomes, an increasing number of studies have demonstrated that non-canonical inflammasomes, such as mouse caspase-11 and human caspase-4 inflammasomes, are emerging key players in inflammatory responses and various diseases. Flavonoids are natural bioactive compounds found in plants, fruits, vegetables, and teas and have pharmacological properties in a wide range of human diseases. Many studies have successfully demonstrated that flavonoids play an anti-inflammatory role and ameliorate many inflammatory diseases by inhibiting canonical inflammasomes. Others have demonstrated the anti-inflammatory roles of flavonoids in inflammatory responses and various diseases, with a new mechanism by which flavonoids inhibit non-canonical inflammasomes. This review discusses recent studies that have investigated the anti-inflammatory roles and pharmacological properties of flavonoids in inflammatory responses and diseases induced by non-canonical inflammasomes and further provides insight into developing flavonoid-based therapeutics as potential nutraceuticals against human inflammatory diseases.
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Life Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| |
Collapse
|
88
|
Mayor E. Neurotrophic effects of intermittent fasting, calorie restriction and exercise: a review and annotated bibliography. FRONTIERS IN AGING 2023; 4:1161814. [PMID: 37334045 PMCID: PMC10273285 DOI: 10.3389/fragi.2023.1161814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023]
Abstract
In the last decades, important progress has been achieved in the understanding of the neurotrophic effects of intermittent fasting (IF), calorie restriction (CR) and exercise. Improved neuroprotection, synaptic plasticity and adult neurogenesis (NSPAN) are essential examples of these neurotrophic effects. The importance in this respect of the metabolic switch from glucose to ketone bodies as cellular fuel has been highlighted. More recently, calorie restriction mimetics (CRMs; resveratrol and other polyphenols in particular) have been investigated thoroughly in relation to NSPAN. In the narrative review sections of this manuscript, recent findings on these essential functions are synthesized and the most important molecules involved are presented. The most researched signaling pathways (PI3K, Akt, mTOR, AMPK, GSK3β, ULK, MAPK, PGC-1α, NF-κB, sirtuins, Notch, Sonic hedgehog and Wnt) and processes (e.g., anti-inflammation, autophagy, apoptosis) that support or thwart neuroprotection, synaptic plasticity and neurogenesis are then briefly presented. This provides an accessible entry point to the literature. In the annotated bibliography section of this contribution, brief summaries are provided of about 30 literature reviews relating to the neurotrophic effects of interest in relation to IF, CR, CRMs and exercise. Most of the selected reviews address these essential functions from the perspective of healthier aging (sometimes discussing epigenetic factors) and the reduction of the risk for neurodegenerative diseases (Alzheimer's disease, Huntington's disease, Parkinson's disease) and depression or the improvement of cognitive function.
Collapse
|
89
|
Kooshki L, Zarneshan SN, Fakhri S, Moradi SZ, Echeverria J. The pivotal role of JAK/STAT and IRS/PI3K signaling pathways in neurodegenerative diseases: Mechanistic approaches to polyphenols and alkaloids. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154686. [PMID: 36804755 DOI: 10.1016/j.phymed.2023.154686] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/10/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Neurodegenerative diseases (NDDs) are characterized by progressive neuronal dysfunctionality which results in disability and human life-threatening events. In recent decades, NDDs are on the rise. Besides, conventional drugs have not shown potential effectiveness to attenuate the complications of NDDs. So, exploring novel therapeutic agents is an urgent need to combat such disorders. Accordingly, growing evidence indicates that polyphenols and alkaloids are promising natural candidates, possessing several beneficial pharmacological effects against diseases. Considering the complex pathophysiological mechanisms behind NDDs, Janus kinase (JAK), insulin receptor substrate (IRS), phosphoinositide 3-kinase (PI3K), and signal transducer and activator of transcription (STAT) seem to play critical roles during neurodegeneration/neuroregeneration. In this line, modulation of the JAK/STAT and IRS/PI3K signaling pathways and their interconnected mediators by polyphenols/alkaloids could play pivotal roles in combating NDDs, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), stroke, aging, multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), depression and other neurological disorders. PURPOSE Thus, the present study aimed to investigate the neuroprotective roles of polyphenols/alkaloids as multi-target natural products against NDDs which are critically passing through the modulation of the JAK/STAT and IRS/PI3K signaling pathways. STUDY DESIGN AND METHODS A systematic and comprehensive review was performed to highlight the modulatory roles of polyphenols and alkaloids on the JAK/STAT and IRS/PI3K signaling pathways in NDDs, according to the PRISMA guideline, using scholarly electronic databases, including Scopus, PubMed, ScienceDirect, and associated reference lists. RESULTS In the present study 141 articles were included from a total of 1267 results. The results showed that phenolic compounds such as curcumin, epigallocatechin-3-gallate, and quercetin, and alkaloids such as berberine could be introduced as new strategies in combating NDDs through JAK/STAT and IRS/PI3K signaling pathways. This is the first systematic review that reveals the correlation between the JAK/STAT and IRS/PI3K axis which is targeted by phytochemicals in NDDs. Hence, this review highlighted promising insights into the neuroprotective potential of polyphenols and alkaloids through the JAK/STAT and IRS/PI3K signaling pathway and interconnected mediators toward neuroprotection. CONCLUSION Amongst natural products, phenolic compounds and alkaloids are multi-targeting agents with the most antioxidants and anti-inflammatory effects possessing the potential of combating NDDs with high efficacy and lower toxicity. However, additional reports are needed to prove the efficacy and possible side effects of natural products.
Collapse
Affiliation(s)
- Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Javier Echeverria
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
90
|
Chiang MC, Tsai TY, Wang CJ. The Potential Benefits of Quercetin for Brain Health: A Review of Anti-Inflammatory and Neuroprotective Mechanisms. Int J Mol Sci 2023; 24:6328. [PMID: 37047299 PMCID: PMC10094159 DOI: 10.3390/ijms24076328] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Neuroinflammation is a critical factor in developing and progressing numerous brain diseases, including neurodegenerative diseases. Chronic or excessive neuroinflammation can lead to neurotoxicity, causing brain damage and contributing to the onset and progression of various brain diseases. Therefore, understanding neuroinflammation mechanisms and developing strategies to control them is crucial for treating brain diseases. Studies have shown that neuroinflammation plays a vital role in the progression of neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's (PD), and stroke. Additionally, the effects of PM2.5 pollution on the brain, including neuroinflammation and neurotoxicity, are well-documented. Quercetin is a flavonoid, a plant pigment in many fruits, vegetables, and grains. Quercetin has been studied for its potential health benefits, including its anti-inflammatory, antioxidant, and anti-cancer properties. Quercetin may also have a positive impact on immune function and allergy symptoms. In addition, quercetin has been shown to have anti-inflammatory and neuroprotective properties and can activate AMP-activated protein kinase (AMPK), a cellular energy sensor that modulates inflammation and oxidative stress. By reducing inflammation and protecting against neuroinflammatory toxicity, quercetin holds promise as a safe and effective adjunctive therapy for treating neurodegenerative diseases and other brain disorders. Understanding and controlling the mechanisms of NF-κB and NLRP3 inflammasome pathways are crucial for preventing and treating conditions, and quercetin may be a promising tool in this effort. This review article aims to discuss the role of neuroinflammation in the development and progression of various brain disorders, including neurodegenerative diseases and stroke, and the impact of PM2.5 pollution on the brain. The paper also highlights quercetin's potential health benefits and anti-inflammatory and neuroprotective properties.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Tsung-Yu Tsai
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Chieh-Ju Wang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| |
Collapse
|
91
|
Makarov M, Korkotian E. Differential Role of Active Compounds in Mitophagy and Related Neurodegenerative Diseases. Toxins (Basel) 2023; 15:202. [PMID: 36977093 PMCID: PMC10058020 DOI: 10.3390/toxins15030202] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease or Parkinson's disease, significantly reduce the quality of life of patients and eventually result in complete maladjustment. Disruption of the synapses leads to a deterioration in the communication of nerve cells and decreased plasticity, which is associated with a loss of cognitive functions and neurodegeneration. Maintaining proper synaptic activity depends on the qualitative composition of mitochondria, because synaptic processes require sufficient energy supply and fine calcium regulation. The maintenance of the qualitative composition of mitochondria occurs due to mitophagy. The regulation of mitophagy is usually based on several internal mechanisms, as well as on signals and substances coming from outside the cell. These substances may directly or indirectly enhance or weaken mitophagy. In this review, we have considered the role of some compounds in process of mitophagy and neurodegeneration. Some of them have a beneficial effect on the functions of mitochondria and enhance mitophagy, showing promise as novel drugs for the treatment of neurodegenerative pathologies, while others contribute to a decrease in mitophagy.
Collapse
Affiliation(s)
| | - Eduard Korkotian
- Department of Brain Sciences, The Weizmann Institute of Science, Rehovot 7630031, Israel
| |
Collapse
|
92
|
Arora S, Tagde P, Alam S, Akram W, Naved T, Gupta S. Influence of toll-like receptor-4 antagonist on bacterial load of asthma in Swiss albino mice: targeting TLR4/MD2 complex pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32854-32865. [PMID: 36472742 DOI: 10.1007/s11356-022-24521-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Air pollution and environmental issues significantly impact life, resulting in the emergence and exacerbation of allergic asthma and other chronic respiratory infections. The main objective of this study is to suppress allergic asthma by TAK-242 from lipopolysaccharide-induced airway inflammation primarily stimulating toll-like receptor-4, and also to determine the potential mechanism of asthma eradication. The TAK-242 anti-allergic action was assured through the ovalbumin murine model of asthma via bronchial hyperresponsiveness and inflammation of the respiration tract in a pre-existing allergic inflammation paradigm. Swiss albino mice were sensitized and then challenged by ovalbumin and lipopolysaccharide for 5 days straight. TAK-242 reaction was assessed by inflammatory cytokines, and inflammatory cell count was determined from blood serum and bronchoalveolar lavage fluid, as well as group-wise regular weight assessments. After ovalbumin, lipopolysaccharide infusion, toll-like receptor-4 agonists caused a substantial increase in airway hyperresponsiveness, specific cellular inflammation, histological alterations, and immune mediator synthesis, as well as dose-related body-weight variations. A decrease in lipopolysaccharide-induced leukocyte count and Th1/Th17 related cytokines, TNF-α, and IL-6 expression through the ELISA study was particularly noticeable. Finally in treated groups, TAK-242, a TLR4/MD2 complex inhibitor, reduced airway inflammation and histopathological changes, cytokine expression, and body-weight management. TAK-242 has been found in an ovalbumin allergic asthma model to be a potential inhibitor of lipopolysaccharide-induced respiratory infection.
Collapse
Affiliation(s)
- Swamita Arora
- Amity Institute of Pharmacy, Amity University, Noida, U.P. 201303, India
| | - Priti Tagde
- Amity Institute of Pharmacy, Amity University, Noida, U.P. 201303, India.
| | - Sanjar Alam
- R.V. Northland Institute of Pharmacy, Gautam Buddh Nagar, Ghaziabad, U.P. 203207, India
| | - Wasim Akram
- R.V. Northland Institute of Pharmacy, Gautam Buddh Nagar, Ghaziabad, U.P. 203207, India
| | - Tanveer Naved
- Amity Institute of Pharmacy, Amity University, Noida, U.P. 201303, India
| | - Sangeetha Gupta
- Amity Institute of Pharmacy, Amity University, Noida, U.P. 201303, India.
| |
Collapse
|
93
|
Acero N, Ortega T, Villagrasa V, Leon G, Muñoz-Mingarro D, Castillo E, González-Rosende ME, Borrás S, Rios JL, Bosch-Morell F, Martínez-Solís I. Phytotherapeutic alternatives for neurodegenerative dementias: Scientific review, discussion and therapeutic proposal. Phytother Res 2023; 37:1176-1211. [PMID: 36690605 DOI: 10.1002/ptr.7727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/16/2022] [Accepted: 12/27/2022] [Indexed: 01/25/2023]
Abstract
The incidence and prevalence of age-related neurodegenerative dementias have been increasing. There is no curative therapy and conventional drug treatment can cause problems for patients. Medicinal plants traditionally used for problems associated with ageing are emerging as a therapeutic resource. The main aim is to give a proposal for use and future research based on scientific knowledge and tradition. A literature search was conducted in several searchable databases. The keywords used were related to neurodegenerative dementias, ageing and medicinal plants. Boolean operators and filters were used to focus the search. As a result, there is current clinical and preclinical scientific information on 49 species used in traditional medicine for ageing-related problems, including neurodegenerative dementias. There are preclinical and clinical scientific evidences on their properties against protein aggregates in the central nervous system and their effects on neuroinflammation, apoptosis dysregulation, mitochondrial dysfunction, gabaergic, glutamatergic and dopaminergic systems alterations, monoamine oxidase alterations, serotonin depletion and oestrogenic protection. In conclusion, the potential therapeutic effect of the different medicinal plants depends on the type of neurodegenerative dementia and its stage of development, but more clinical and preclinical research is needed to find better, safer and more effective treatments.
Collapse
Affiliation(s)
- Nuria Acero
- Pharmaceutical and Health Sciences Department, Pharmacy Faculty, San Pablo-CEU University, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Teresa Ortega
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy Faculty, Complutense University of Madrid, Madrid, Spain
| | - Victoria Villagrasa
- Department of Pharmacy, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain
| | - Gemma Leon
- Department of Pharmacy, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain
| | - Dolores Muñoz-Mingarro
- Chemistry and Biochemistry Department, Pharmacy Faculty, San Pablo-CEU University, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Encarna Castillo
- Department of Pharmacy, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain
| | - M Eugenia González-Rosende
- Department of Pharmacy, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain
| | - Silvia Borrás
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Burjassot, Valencia, Spain
| | - Jose Luis Rios
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Burjassot, Valencia, Spain
| | - Francisco Bosch-Morell
- Biomedical Sciences Institute, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain.,Department of Biomedical Sciences, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain
| | - Isabel Martínez-Solís
- Department of Pharmacy, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain.,ICBiBE-Botanical Garden, University of Valencia, Valencia, Valencia, Spain
| |
Collapse
|
94
|
Sun Y, Ho CT, Zhang X. Neuroprotection of Food Bioactives in Neurodegenerative Diseases: Role of the Gut Microbiota and Innate Immune Receptors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2718-2733. [PMID: 36700657 DOI: 10.1021/acs.jafc.2c07742] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Gut-brain connections may be mediated by an assortment of microbial molecules, which can subsequently traverse intestinal and blood-brain barriers and impact neurological function. Pattern recognition receptors (PRRs) are important innate immune proteins in the gut. Gut microbiota act in concert with the PRRs is a novel target for regulating host-microbe signaling and immune homeostasis, which may involve the pathogenesis of neurodegenerative diseases. Natural food bioactives bestow a protective advantage on neurodegenerative diseases through immunomodulatory effects of the modified gut microbiota or alterations in the landscape of microbiota-produced metabolites via PRRs modulation. In this review, we discuss the effect of natural food bioactives on the gut microbiota and the role of PRRs in the gut-brain crosstalk. We focused on the neuroprotective mechanisms of natural bioactive compounds behind the action of the gut microbiota and PRRs. Research advances in natural food bioactives as antineurodegeneration agents were also presented.
Collapse
Affiliation(s)
- Ying Sun
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, P.R. China
| |
Collapse
|
95
|
Zhang Y, Zhou Q, Lu L, Su Y, Shi W, Zhang H, Liu R, Pu Y, Yin L. Copper Induces Cognitive Impairment in Mice via Modulation of Cuproptosis and CREB Signaling. Nutrients 2023; 15:nu15040972. [PMID: 36839332 PMCID: PMC9958748 DOI: 10.3390/nu15040972] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
It has been reported that disordered Cu metabolism is associated with several neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). However, the underlying mechanism is still unclear. In this study, 4-week-old male mice were exposed to Cu by free-drinking water for three months. Then, the effects of Cu on cognitive functions in mice were tested by Morris water maze tests, and the potential mechanisms were investigated by the ELISA, immunochemistry, TUNEL, and Western blot tests. It was found that Cu exacerbates learning and memory impairment, and leads to Cu-overload in the brain and urine of mice. The results showed that Cu induces neuronal degeneration and oxidative damage, promotes the expression of apoptosis-related protein Bax, cuproptosis-related proteins FDX1 and DLAT and the proteotoxic stress marker HSP70, and decreases Fe-S cluster proteins. In addition, Cu affects the pre-synaptic and post-synaptic regulatory mechanisms through inhibiting the expression of PSD-95 and SYP. Cu also suppresses phosphorylation levels in CREB and decreases the expression of BDNF and TrkB in the mouse hippocampus. In conclusion, Cu might mediate cuproptosis, damage synaptic plasticity and inhibit the CREB/BDNF pathway to cause cognitive dysfunction in mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lihong Yin
- Correspondence: ; Tel.: +86-025-8327-2583; Fax: +86-025-8327-2583
| |
Collapse
|
96
|
Lokman MS, Althagafi HA, Alharthi F, Habotta OA, Hassan AA, Elhefny MA, Al Sberi H, Theyab A, Mufti AH, Alhazmi A, Hawsawi YM, Khafaga AF, Gewaily MS, Alsharif KF, Albrakati A, Kassab RB. Protective effect of quercetin against 5-fluorouracil-induced cardiac impairments through activating Nrf2 and inhibiting NF-κB and caspase-3 activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17657-17669. [PMID: 36197616 DOI: 10.1007/s11356-022-23314-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
5-Fluorouracil (5-FU) is a chemotherapy used to treat many types of cancer. Cardiotoxicity is one of the common drawbacks of 5-FU therapy. Quercetin (Qu) is a bioflavonoid with striking biological activities. This research aimed to assess the ameliorative effect of Qu against 5-FU-mediated cardiotoxicity. Thirty-five rats were allocated into five groups: control group (normal saline), 5-FU group (30 mg/kg, intraperitoneally), Qu group (50 mg/kg, oral), 25 mg/kg Qu+5-FU group, and 50 mg/kg Qu+5-FU. The experimental animals were received the above-mentioned drugs for 21 days. Results showed that 5-FU significantly elevated creatine kinase, lactate dehydrogenase, serum cholesterol and triglyceride, and upregulated troponin and renin mRNA expression. Additionally, cardiac oxidant/antioxidant imbalance was evident in elevated oxidants (malondialdehyde and nitric oxide) and depleted antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione). 5-FU also downregulated the gene expression of nuclear factor erythroid 2-related factor 2. Furthermore, 5-FU significantly increased cardiac pro-inflammatory cytokines (tumor necrosis factor-alpha and interleukin-1 beta) and upregulated gene expression of nuclear factor kappa-B. 5-FU significantly enhanced cardiac apoptosis through upregulating caspase-3 expression and downregulating B-cell lymphoma 2. Immunohistochemical and histopathological examinations verified the above-mentioned findings. However, all these changes were significantly ameliorated in Qu pre-administered rats. Conclusively, Qu counteracted 5-FU-mediated cardiotoxicity through potent antioxidant, anti-inflammatory, and anti-apoptotic effects.
Collapse
Affiliation(s)
- Maha S Lokman
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia.
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, 11795, Egypt.
| | - Hussam A Althagafi
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
| | - Fahad Alharthi
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Arwa A Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Industries, Sinai University, El Arish, Egypt
| | - Mohamed A Elhefny
- Department of Cancer and Molecular Biology, National Cancer Institute, Cairo University, Cairo, Egypt
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Alqunfudah, Saudi Arabia
| | - Hassan Al Sberi
- Basic Medical Science, Histopathology Department, National Organization for Drug Control and Research, Giza, Egypt
- Department of Biology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Abdulrahman Theyab
- Department of Laboratory & Blood Bank, Security Forces Hospital, P.O. Box 14799, Mecca, 21955, Saudi Arabia
- College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh, 11533, Saudi Arabia
| | - Ahmad Hasan Mufti
- Medical Genetics Department, Faculty of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Alaa Alhazmi
- Medical Laboratory Technology Department, Jazan University, Jazan, Saudi Arabia
- SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Yousef M Hawsawi
- Research Center, King Faisal Specialist Hospital and Research Center, MBC-J04, PO Box 40047, Jeddah, 21499, Saudi Arabia
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Mahmoud S Gewaily
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, PO Box 11099, Taif, 21944, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, PO Box 11099, Taif, 21944, Saudi Arabia
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, 11795, Egypt
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
| |
Collapse
|
97
|
Albrakati A. Monosodium glutamate induces cortical oxidative, apoptotic, and inflammatory challenges in rats: the potential neuroprotective role of apigenin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:24143-24153. [PMID: 36334201 DOI: 10.1007/s11356-022-23954-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Monosodium glutamate (MSG) is used as a flavor, and a taste enhancer was reported to evoke marked neuronal impairments. This study investigated the neuroprotective ability of flavonoid apigenin against neural damage in MSG-administered rats. Adult male rats were allocated into four groups: control, apigenin (20 mg/kg b.wt, orally), MSG (4 g/kg b.wt, orally), and apigenin + MSG at the aforementioned doses for 30 days. Regarding the levels of neurotransmitters, our results revealed that apigenin augmented the activity of acetylcholinesterase (AChE) markedly, and levels of brain monoamines (dopamine, norepinephrine, and serotonin) accompanied by lessening the activity of monoamine oxidase (MAO) as compared to MSG treatment. Moreover, apigenin counteracted the MSG-mediated oxidative stress by decreasing the malondialdehyde (MDA) levels together with elevating the glutathione (GSH) levels. In addition, pretreatment with apigenin induced notable increases in the activities of cortical superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR). Furthermore, apigenin attenuated the cortical inflammatory stress as indicated by lower levels of pro-inflammatory mediators such as interleukin-1 b (IL-1b), tumor necrosis factor-α (TNF-α), and nitric oxide (NO) as well as downregulated inducible nitric oxide synthase (iNOS) expression levels. Histopathological screening validated the abovementioned results and revealed that apigenin restored the distorted cytoarchitecture of the brain cortex. Thus, the present findings collectively suggest that apigenin exerted significant protection against MSG-induced neurotoxicity by enhancing the cellular antioxidant response and attenuating inflammatory machineries in the rat brain cortex.
Collapse
Affiliation(s)
- Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| |
Collapse
|
98
|
Bellavite P. Neuroprotective Potentials of Flavonoids: Experimental Studies and Mechanisms of Action. Antioxidants (Basel) 2023; 12:antiox12020280. [PMID: 36829840 PMCID: PMC9951959 DOI: 10.3390/antiox12020280] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Neurological and neurodegenerative diseases, particularly those related to aging, are on the rise, but drug therapies are rarely curative. Functional disorders and the organic degeneration of nervous tissue often have complex causes, in which phenomena of oxidative stress, inflammation and cytotoxicity are intertwined. For these reasons, the search for natural substances that can slow down or counteract these pathologies has increased rapidly over the last two decades. In this paper, studies on the neuroprotective effects of flavonoids (especially the two most widely used, hesperidin and quercetin) on animal models of depression, neurotoxicity, Alzheimer's disease (AD) and Parkinson's disease are reviewed. The literature on these topics amounts to a few hundred publications on in vitro and in vivo models (notably in rodents) and provides us with a very detailed picture of the action mechanisms and targets of these substances. These include the decrease in enzymes that produce reactive oxygen and ferroptosis, the inhibition of mono-amine oxidases, the stimulation of the Nrf2/ARE system, the induction of brain-derived neurotrophic factor production and, in the case of AD, the prevention of amyloid-beta aggregation. The inhibition of neuroinflammatory processes has been documented as a decrease in cytokine formation (mainly TNF-alpha and IL-1beta) by microglia and astrocytes, by modulating a number of regulatory proteins such as Nf-kB and NLRP3/inflammasome. Although clinical trials on humans are still scarce, preclinical studies allow us to consider hesperidin, quercetin, and other flavonoids as very interesting and safe dietary molecules to be further investigated as complementary treatments in order to prevent neurodegenerative diseases or to moderate their deleterious effects.
Collapse
|
99
|
Nalika N, Waseem M, Kaushik P, Salman M, Andrabi SS, Parvez S. Role of melatonin and quercetin as countermeasures to the mitochondrial dysfunction induced by titanium dioxide nanoparticles. Life Sci 2023:121403. [PMID: 36669677 DOI: 10.1016/j.lfs.2023.121403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/29/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
AIM Due to the growing commercialization of titanium dioxide nanoparticles (TNPs), it is necessary to use these particles in a manner that is safe, healthy and environmental friendly. Through reactive oxygen species (ROS) generation, it has been discovered that TNPs have a harmful effect on the brain. The aim of this study is to provide valuable insights into the possible mechanisms of TNPs induced mitochondrial dysfunction in brain and its amelioration by nutraceuticals, quercetin (QR) and melatonin (Mel) in in vitro and in vivo conditions. MATERIALS AND METHODS Whole brain mitochondrial sample was used for in-vitro evaluation. Pre-treatment of QR (30 μM) and Mel (100 μM) at 25 °C for 1 h was given prior to TNPs (50 μg/ml) exposure. For in-vivo study, male Wistar rats were divided into four groups. Group I was control and group II was exposed to TNPs (5 mg/kg b.wt., i.v.). QR (5 mg/kg b.wt.) and Mel (5 mg/kg b.wt.) were given orally as pre-treatment in groups III and IV, respectively. Biochemical parameters, neurobehavioural paradigms, mitochondrial respiration, neuronal architecture assessment were assessed. KEY FINDINGS QR and Mel restored the mitochondrial oxidative stress biomarkers in both the studies. Additionally, these nutraceuticals resuscitated the neurobehavioural alterations and restored the neuronal architecture alterations in TNPs exposed rats. The mitochondrial dysfunction induced by TNPs was also ameliorated by QR and Mel by protecting the mitochondrial complex activity and mitochondrial respiration rate. SIGNIFICANCE Results of the study demonstrated that QR and Mel ameliorated mitochondrial mediated neurotoxic effects induced by TNPs exposure.
Collapse
Affiliation(s)
- Nandini Nalika
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Mohammad Waseem
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Pooja Kaushik
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Mohd Salman
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Syed Suhail Andrabi
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Suhel Parvez
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India.
| |
Collapse
|
100
|
Eid RA, Abadi AM, El-Kott AF, Zaki MSA, Abd-Ella EM. The antioxidant effects of coenzyme Q10 on albino rat testicular toxicity and apoptosis triggered by bisphenol A. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:42339-42350. [PMID: 36648721 DOI: 10.1007/s11356-022-24920-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/19/2022] [Indexed: 01/18/2023]
Abstract
Polycarbonate plastics for packaging and epoxy resins are both made with the industrial chemical bisphenol A (BPA). This investigation looked at the histological structure, antioxidant enzymes, and albino rats' testis to determine how coenzyme Q10 (CoQ10) impacts BPA toxicity. For the experiments, three sets of 18 male adult rats were created: group 1 received no therapy, group 2 acquired BPA, and group 3 got the daily BPA treatment accompanied by coenzyme Q10, 1 h apart. The experimental period ran for 14 days. The biochemical biomarkers catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA) were altered as a result of BPA exposure. The testicular histological architecture, which is made up of apoptosis, was also exaggerated. Furthermore, rats given BPA and CoQ10 treatment may experience a diminution in these negative BPA effects. These protective properties of CoQ10 may be correlated with the ability to eliminate oxidizing substances that can harm living species. The outcomes might support the hypothesis that CoQ10 prevented oxidative damage and boosted rats' stress responses when BPA was introduced. Thus, by shielding mammals from oxidative stress, CoQ10 aids in the growth and development of the animals. BPA is extremely hazardous to humans and can persist in tissues. Human reproductive functions are a worry due to human exposure to BPA, especially for occupational workers who are typically exposed to higher doses of BPA. As a result, in order to reduce the health risks, BPA usage must be minimized across a diverse range of industries, and improper plastic container handling must be prohibited. By giving CoQ10 to patients, BPA's harmful effects on reproductive structures and functions may be avoided.
Collapse
Affiliation(s)
- Refaat A Eid
- Department of Pathology, College of Medicine, King Khalid University, P.O. 641, Abha, Saudi Arabia.
| | - Alsaleem Mohammed Abadi
- Department of Family and Community Medicine, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Saudi Arabia.,Department of Zoology, College of Science, Damanhour University, Damanhour, 22511, Egypt
| | - Mohamed Samir A Zaki
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Histology and Cell Biology, College of Medicine, Zagazig University, Zagazig, Egypt
| | - Eman M Abd-Ella
- Department of Zoology, College of Science, Fayoum University, Fayoum, Egypt.,Department of Biology, College of Science and Art, Al-Baha University, Al-Mandaq, Al-Baha, Saudi Arabia
| |
Collapse
|