51
|
Lu J, Zhang S, Ma X, Jia C, Liu Z, Huang C, Liu C, Li D. Structural basis of the interplay between α-synuclein and Tau in regulating pathological amyloid aggregation. J Biol Chem 2020; 295:7470-7480. [PMID: 32291284 PMCID: PMC7247300 DOI: 10.1074/jbc.ra119.012284] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/04/2020] [Indexed: 12/27/2022] Open
Abstract
Amyloid aggregation of pathological proteins is closely associated with a variety of neurodegenerative diseases, and α-synuclein (α-syn) deposition and Tau tangles are considered hallmarks of Parkinson's disease and Alzheimer's disease, respectively. Intriguingly, α-syn and Tau have been found to co-deposit in the brains of individuals with dementia and parkinsonism, suggesting a potential role of cross-talk between these two proteins in neurodegenerative pathologies. Here we show that monomeric α-syn and the two variants of Tau, Tau23 and K19, synergistically promote amyloid fibrillation, leading to their co-aggregation in vitro NMR spectroscopy experiments revealed that α-syn uses its highly negatively charged C terminus to directly interact with Tau23 and K19. Deletion of the C terminus effectively abolished its binding to Tau23 and K19 as well as its synergistic effect on promoting their fibrillation. Moreover, an S129D substitution of α-syn, mimicking C-terminal phosphorylation of Ser129 in α-syn, which is commonly observed in the brains of Parkinson's disease patients with elevated α-syn phosphorylation levels, significantly enhanced the activity of α-syn in facilitating Tau23 and K19 aggregation. These results reveal the molecular basis underlying the direct interaction between α-syn and Tau. We proposed that this interplay might contribute to pathological aggregation of α-syn and Tau in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jinxia Lu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Shanghai 201210, China
| | - Xiaojuan Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Shanghai 201210, China; University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Chunyu Jia
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Shanghai 201210, China; University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Zhenying Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Shanghai 201210, China; University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Chengan Huang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Shanghai 201210, China.
| | - Dan Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
52
|
Prigent A, Chapelet G, De Guilhem de Lataillade A, Oullier T, Durieu E, Bourreille A, Duchalais E, Hardonnière K, Neunlist M, Noble W, Kerdine-Römer S, Derkinderen P, Rolli-Derkinderen M. Tau accumulates in Crohn's disease gut. FASEB J 2020; 34:9285-9296. [PMID: 32436623 DOI: 10.1096/fj.202000414r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/09/2020] [Accepted: 04/26/2020] [Indexed: 11/11/2022]
Abstract
A sizeable body of evidence has recently emerged to suggest that gastrointestinal (GI) inflammation might be involved in the development of Parkinson's disease (PD). There is now strong epidemiological and genetical evidence linking PD to inflammatory bowel diseases and we recently demonstrated that the neuronal protein alpha-synuclein, which is critically involved in PD pathophysiology, is upregulated in inflamed segments of Crohn's colon. The microtubule associated protein tau is another neuronal protein critically involved in neurodegenerative disorders but, in contrast to alpha-synuclein, no data are available about its expression and phosphorylation patterns in inflammatory bowel diseases. Here, we examined the expression levels of tau isoforms, their phosphorylation profile and truncation in colon biopsy specimens from 16 Crohn's disease (CD) and 6 ulcerative colitis (UC) patients and compared them to samples from 16 controls. Additional experiments were performed in full thickness segments of colon of five CD and five control subjects, in primary cultures of rat enteric neurons and in nuclear factor erythroid 2-related factor (Nrf2) knockout mice. Our results show the upregulation of two main human tau isoforms in the enteric nervous system (ENS) in CD but not in UC. This upregulation was not transcriptionally regulated but instead likely resulted from a decrease in protein clearance via an Nrf2 pathway. Our findings, which provide the first detailed characterization of tau in CD, suggest that the key proteins involved in neurodegenerative disorders such as alpha-synuclein and tau, might also play a role in CD.
Collapse
Affiliation(s)
- Alice Prigent
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Guillaume Chapelet
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France.,Clinical Gerontology Department, CHU Nantes, Nantes, France
| | - Adrien De Guilhem de Lataillade
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France.,Department of Neurology, CHU Nantes, Nantes, France
| | - Thibauld Oullier
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Emilie Durieu
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Arnaud Bourreille
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Emilie Duchalais
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Kévin Hardonnière
- Inserm, Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, Châtenay-Malabry, France
| | - Michel Neunlist
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Wendy Noble
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Saadia Kerdine-Römer
- Inserm, Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, Châtenay-Malabry, France
| | - Pascal Derkinderen
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France.,Department of Neurology, CHU Nantes, Nantes, France
| | - Malvyne Rolli-Derkinderen
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| |
Collapse
|
53
|
Antonyová V, Kejík Z, Brogyányi T, Kaplánek R, Pajková M, Talianová V, Hromádka R, Masařík M, Sýkora D, Mikšátková L, Martásek P, Jakubek M. Role of mtDNA disturbances in the pathogenesis of Alzheimer's and Parkinson's disease. DNA Repair (Amst) 2020; 91-92:102871. [PMID: 32502755 DOI: 10.1016/j.dnarep.2020.102871] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases (e.g. Alzheimer's and Parkinson's disease) are becoming increasingly problematic to healthcare systems. Therefore, their underlying mechanisms are trending topics of study in medicinal research. Numerous studies have evidenced a strong association between mitochondrial DNA disturbances (e.g. oxidative damage, mutations, and methylation shifts) and the initiation and progression of neurodegenerative diseases. Therefore, this review discusses the risk and development of neurodegenerative diseases in terms of disturbances in mitochondrial DNA and as a part of a complex ecosystem that includes other important mechanisms (e.g. neuroinflammation and the misfolding and aggregation of amyloid-β peptides, α-synuclein, and tau proteins). In addition, the influence of individual mitochondrial DNA haplogroups on the risk and development of neurodegenerative diseases is also described and discussed.
Collapse
Affiliation(s)
- Veronika Antonyová
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Zdeněk Kejík
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Dejvice, Czech Republic
| | - Tereza Brogyányi
- Depertment of Pathological Physiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 121 00 Prague 2, Czech Republic
| | - Robert Kaplánek
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Dejvice, Czech Republic
| | - Martina Pajková
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Veronika Talianová
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Róbert Hromádka
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Michal Masařík
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - David Sýkora
- BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Dejvice, Czech Republic
| | - Lucie Mikšátková
- BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Dejvice, Czech Republic
| | - Pavel Martásek
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic.
| | - Milan Jakubek
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Dejvice, Czech Republic.
| |
Collapse
|
54
|
Puangmalai N, Bhatt N, Montalbano M, Sengupta U, Gaikwad S, Ventura F, McAllen S, Ellsworth A, Garcia S, Kayed R. Internalization mechanisms of brain-derived tau oligomers from patients with Alzheimer's disease, progressive supranuclear palsy and dementia with Lewy bodies. Cell Death Dis 2020; 11:314. [PMID: 32366836 PMCID: PMC7198578 DOI: 10.1038/s41419-020-2503-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 01/26/2023]
Abstract
Tau aggregates propagate in brain cells and transmit to neighboring cells as well as anatomically connected brain regions by prion-like mechanisms. Soluble tau aggregates (tau oligomers) are the most toxic species that initiate neurodegeneration in tauopathies, such as Alzheimer's disease (AD), progressive supranuclear palsy (PSP), and dementia with Lewy bodies (DLB). Exogenous tau aggregates have been shown to be internalized by brain cells; however, the precise cellular and molecular mechanisms that underlie the internalization of tau oligomers (TauO) remain elusive. Using brain-derived tau oligomers (BDTOs) from AD, PSP, and DLB patients, we investigated neuronal internalization mechanisms of BDTOs, including the heparan sulfate proteoglycan (HSPG)-mediated pathway, clathrin-mediated pathway, and caveolae-mediated pathway. Here, we demonstrated that the HSPG-mediated pathway regulates internalization of BDTOs from AD and DLB, while HSPG-mediated and other alternative pathways are involved in the internalization of PSP-derived tau oligomers. HSPG antagonism significantly reduced the internalization of TauO, prevented tau translocation to the endosomal-lysosomal system, and decreased levels of hyperphosphorylated tau in neurons, the well-known contributor for neurofibrillary tangles (NFT) accumulation, degeneration of neurons, and cognitive decline. Furthermore, siRNA-mediated silencing of heparan sulfate (HS)-synthesizing enzyme, exostosin-2, leads to decreased internalization of BDTOs, prevented tau-induced autophagy-lysosomal pathway impairment, and decreased hyperphosphorylated tau levels. Collectively, these findings suggest that HSPG-mediated endocytosis and exostsin-2 are involved in neuronal internalization of TauO and subsequent tau-dependent neuropathology in AD and DLB.
Collapse
Affiliation(s)
- Nicha Puangmalai
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Nemil Bhatt
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Mauro Montalbano
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Sagar Gaikwad
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Frank Ventura
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Salome McAllen
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Anna Ellsworth
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Stephanie Garcia
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
55
|
Sengupta U, Puangmalai N, Bhatt N, Garcia S, Zhao Y, Kayed R. Polymorphic α-Synuclein Strains Modified by Dopamine and Docosahexaenoic Acid Interact Differentially with Tau Protein. Mol Neurobiol 2020; 57:2741-2765. [PMID: 32350746 PMCID: PMC7253398 DOI: 10.1007/s12035-020-01913-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/30/2020] [Indexed: 12/22/2022]
Abstract
The pathological hallmark of synucleinopathies, including Parkinson’s disease (PD), is the aggregation of α-synuclein (α-Syn) protein. Even so, tau protein pathology is abundantly found in these diseases. Both α-Syn and tau can exist as polymorphic aggregates, a phenomenon that has been widely studied, mostly in their fibrillar assemblies. We have previously discovered that in addition to α-Syn oligomers, oligomeric tau is also present in the brain tissues of patients with PD and dementia with Lewy bodies (DLB). However, the effect of interaction between polymorphic α-Syn oligomers and tau has not been scrupulously studied. Here, we have explored the structural and functional diversity of distinct α-Syn oligomers, prepared by modifying the protein with dopamine (DA) and docosahexaenoic acid (DHA). The two α-Syn oligomers differed in aggregate size, conformation, sensitivity to proteinase K digestion, tryptic digestion, and toxicity, suggesting them as distinct α-Syn oligomeric strains. We examined their internalization mechanisms in primary neurons and seeding propensity in inducing α-Syn aggregation. Using a combined approach of molecular and cellular techniques, we observed that the tau aggregates cross-seeded with the individual α-Syn oligomeric strains differed in their biochemical and biological properties, suggesting two distinct tau strains. The tau aggregate cross-seeded with the DA-modified α-Syn oligomeric strain possessed a potent intracellular tau seeding propensity. This study provides a comprehensive analysis of unique strain-specific interaction between oligomeric α-Syn and tau. Furthermore, this study allows us to speculate that distinct α-Syn-tau interactions inducing tau aggregation might be an underlying mechanism of neurodegeneration in PD.
Collapse
Affiliation(s)
- Urmi Sengupta
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, USA
| | - Nicha Puangmalai
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, USA
| | - Nemil Bhatt
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, USA
| | - Stephanie Garcia
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, USA
| | - Yingxin Zhao
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, USA
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, USA.
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, USA.
| |
Collapse
|
56
|
Delic V, Beck KD, Pang KCH, Citron BA. Biological links between traumatic brain injury and Parkinson's disease. Acta Neuropathol Commun 2020; 8:45. [PMID: 32264976 PMCID: PMC7137235 DOI: 10.1186/s40478-020-00924-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/26/2020] [Indexed: 12/19/2022] Open
Abstract
Parkinson's Disease (PD) is a progressive neurodegenerative disorder with no cure. Clinical presentation is characterized by postural instability, resting tremors, and gait problems that result from progressive loss of A9 dopaminergic neurons in the substantia nigra pars compacta. Traumatic brain injury (TBI) has been implicated as a risk factor for several neurodegenerative diseases, but the strongest evidence is linked to development of PD. Mild TBI (mTBI), is the most common and is defined by minimal, if any, loss of consciousness and the absence of significant observable damage to the brain tissue. mTBI is responsible for a 56% higher risk of developing PD in U.S. Veterans and the risk increases with severity of injury. While the mounting evidence from human studies suggests a link between TBI and PD, fundamental questions as to whether TBI nucleates PD pathology or accelerates PD pathology in vulnerable populations remains unanswered. Several promising lines of research point to inflammation, metabolic dysregulation, and protein accumulation as potential mechanisms through which TBI can initiate or accelerate PD. Amyloid precursor protein (APP), alpha synuclein (α-syn), hyper-phosphorylated Tau, and TAR DNA-binding protein 43 (TDP-43), are some of the most frequently reported proteins upregulated following a TBI and are also closely linked to PD. Recently, upregulation of Leucine Rich Repeat Kinase 2 (LRRK2), has been found in the brain of mice following a TBI. Subset of Rab proteins were identified as biological substrates of LRRK2, a protein also extensively linked to late onset PD. Inhibition of LRRK2 was found to be neuroprotective in PD and TBI models. The goal of this review is to survey current literature concerning the mechanistic overlap between TBI and PD with a particular focus on inflammation, metabolic dysregulation, and aforementioned proteins. This review will also cover the application of rodent TBI models to further our understanding of the relationship between TBI and PD.
Collapse
Affiliation(s)
- Vedad Delic
- Laboratory of Molecular Biology, VA New Jersey Health Care System, Research and Development (Mailstop 15), 385 Tremont Ave, East Orange, NJ, 07018, USA.
- NeuroBehavioral Research Laboratory, VA New Jersey Health Care System, Research and Development (Mailstop 15), 385 Tremont Ave, East Orange, NJ, 07018, USA.
| | - Kevin D Beck
- NeuroBehavioral Research Laboratory, VA New Jersey Health Care System, Research and Development (Mailstop 15), 385 Tremont Ave, East Orange, NJ, 07018, USA
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers- New Jersey Medical School, Newark, NJ, 07103, USA
| | - Kevin C H Pang
- NeuroBehavioral Research Laboratory, VA New Jersey Health Care System, Research and Development (Mailstop 15), 385 Tremont Ave, East Orange, NJ, 07018, USA
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers- New Jersey Medical School, Newark, NJ, 07103, USA
| | - Bruce A Citron
- Laboratory of Molecular Biology, VA New Jersey Health Care System, Research and Development (Mailstop 15), 385 Tremont Ave, East Orange, NJ, 07018, USA
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers- New Jersey Medical School, Newark, NJ, 07103, USA
| |
Collapse
|
57
|
Feng ST, Wang ZZ, Yuan YH, Sun HM, Chen NH, Zhang Y. Update on the association between alpha-synuclein and tau with mitochondrial dysfunction: Implications for Parkinson's disease. Eur J Neurosci 2020; 53:2946-2959. [PMID: 32031280 DOI: 10.1111/ejn.14699] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 12/26/2022]
Abstract
The critical role of mitochondrial dysfunction in the pathological mechanisms of neurodegenerative disorders, particularly Parkinson's disease (PD), is well established. Compelling evidence indicates that Parkinson's proteins (e.g., α-synuclein, Parkin, PINK1, DJ-1, and LRRK2) are associated with mitochondrial dysfunction and oxidative stress in PD. Significantly, there is a possible central role of alpha-synuclein (α-Syn) in the occurrence of mitochondrial dysfunction and oxidative stress by the mediation of different signaling pathways. Also, tau, traditionally considered as the main component of neurofibrillary tangles, aggregates and amplifies the neurotoxic effects on mitochondria by interacting with α-Syn. Moreover, oxidative stress caused by mitochondrial dysfunction favors assembly of both α-Syn and tau and also plays a key role in the formation of protein aggregates. In this review, we provide an overview of the relationship between these two pathological proteins and mitochondrial dysfunction in PD, and also summarize the underlying mechanisms in the interplay of α-Syn aggregation and phosphorylated tau targeting the mitochondria, to find new strategies to prevent PD processing.
Collapse
Affiliation(s)
- Si-Tong Feng
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong-Mei Sun
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
58
|
Ding J, Lian Y, Meng Y, He Y, Fan H, Li C, Qiu P. The effect of α-synuclein and Tau in methamphetamine induced neurotoxicity in vivo and in vitro. Toxicol Lett 2020; 319:213-224. [DOI: 10.1016/j.toxlet.2019.11.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
|
59
|
Bassil F, Brown HJ, Pattabhiraman S, Iwasyk JE, Maghames CM, Meymand ES, Cox TO, Riddle DM, Zhang B, Trojanowski JQ, Lee VMY. Amyloid-Beta (Aβ) Plaques Promote Seeding and Spreading of Alpha-Synuclein and Tau in a Mouse Model of Lewy Body Disorders with Aβ Pathology. Neuron 2020; 105:260-275.e6. [PMID: 31759806 PMCID: PMC6981053 DOI: 10.1016/j.neuron.2019.10.010] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/12/2019] [Accepted: 10/03/2019] [Indexed: 12/17/2022]
Abstract
Studies have shown an overlap of Aβ plaques, tau tangles, and α-synuclein (α-syn) pathologies in the brains of Alzheimer's disease (AD) and Parkinson's disease (PD) with dementia (PDD) patients, with increased pathological burden correlating with severity of cognitive and motor symptoms. Despite the observed co-pathology and concomitance of motor and cognitive phenotypes, the consequences of the primary amyloidogenic protein on the secondary pathologies remain poorly understood. To better define the relationship between α-syn and Aβ plaques, we injected α-syn preformed fibrils (α-syn mpffs) into mice with abundant Aβ plaques. Aβ deposits dramatically accelerated α-syn pathogenesis and spread throughout the brain. Remarkably, hyperphosphorylated tau (p-tau) was induced in α-syn mpff-injected 5xFAD mice. Finally, α-syn mpff-injected 5xFAD mice showed neuron loss that correlated with the progressive decline of cognitive and motor performance. Our findings suggest a "feed-forward" mechanism whereby Aβ plaques enhance endogenous α-syn seeding and spreading over time post-injection with mpffs.
Collapse
Affiliation(s)
- Fares Bassil
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hannah J Brown
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shankar Pattabhiraman
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joe E Iwasyk
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chantal M Maghames
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emily S Meymand
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timothy O Cox
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dawn M Riddle
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bin Zhang
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Q Trojanowski
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Virginia M-Y Lee
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
60
|
Mamun AA, Uddin MS, Mathew B, Ashraf GM. Toxic tau: structural origins of tau aggregation in Alzheimer's disease. Neural Regen Res 2020; 15:1417-1420. [PMID: 31997800 PMCID: PMC7059584 DOI: 10.4103/1673-5374.274329] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Alzheimer’s disease is characterized by the extracellular accumulation of the amyloid β in the form of amyloid plaques and the intracellular deposition of the microtubule-associated protein tau in the form of neurofibrillary tangles. Most of the Alzheimer’s drugs targeting amyloid β have been failed in clinical trials. Particularly, tau pathology connects greatly in the pathogenesis of Alzheimer’s disease. Tau protein enhances the stabilization of microtubules that leads to the appropriate function of the neuron. Changes in the quantity or the conformation of tau protein could affect its function as a microtubules stabilizer and some of the processes wherein it is involved. The molecular mechanisms leading to the accumulation of tau are principally signified by numerous posttranslational modifications that change its conformation and structural state. Therefore, aberrant phosphorylation, as well as truncation of tau protein, has come into focus as significant mechanisms that make tau protein in a pathological entity. Furthermore, the shape-shifting nature of tau advocates to comprehend the progression of Alzheimer’s disease precisely. In this review, we emphasize the recent studies about the toxic and shape-shifting nature of tau in the pathogenesis of Alzheimer’s disease.
Collapse
Affiliation(s)
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
61
|
Castillo-Carranza DL. A toxic subset of soluble α-synuclein species in dementia with Lewy body. Brain Commun 2020; 2:fcaa016. [PMID: 32954281 PMCID: PMC7425380 DOI: 10.1093/braincomms/fcaa016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
62
|
Lo Cascio F, Puangmalai N, Ellsworth A, Bucchieri F, Pace A, Palumbo Piccionello A, Kayed R. Toxic Tau Oligomers Modulated by Novel Curcumin Derivatives. Sci Rep 2019; 9:19011. [PMID: 31831807 PMCID: PMC6908736 DOI: 10.1038/s41598-019-55419-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/22/2019] [Indexed: 01/05/2023] Open
Abstract
The pathological aggregation and accumulation of tau, a microtubule-associated protein, is a common feature amongst more than 18 different neurodegenerative diseases that are collectively known as tauopathies. Recently, it has been demonstrated that the soluble and hydrophobic tau oligomers are highly toxic in vitro due to their capacity towards seeding tau misfolding, thereby propagating the tau pathology seen across different neurodegenerative diseases. Modulating the aggregation state of tau oligomers through the use of small molecules could be a useful therapeutic strategy to target their toxicity, regardless of other factors involved in their formation. In this study, we screened and tested a small library of newly synthesized curcumin derivatives against preformed recombinant tau oligomers. Our results show that the curcumin derivatives affect and modulate the tau oligomer aggregation pathways, converting to a more aggregated non-toxic state as assessed in the human neuroblastoma SH-SY5Y cell line and primary cortical neuron cultures. These results provide insight into tau aggregation and may become a basis for the discovery of new therapeutic agents, as well as advance the diagnostic field for the detection of toxic tau oligomers.
Collapse
Affiliation(s)
- Filippa Lo Cascio
- 0000 0001 1547 9964grid.176731.5Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555 USA ,0000 0001 1547 9964grid.176731.5Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Nicha Puangmalai
- 0000 0001 1547 9964grid.176731.5Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555 USA ,0000 0001 1547 9964grid.176731.5Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Anna Ellsworth
- 0000 0001 1547 9964grid.176731.5Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555 USA ,0000 0001 1547 9964grid.176731.5Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Fabio Bucchieri
- 0000 0004 1762 5517grid.10776.37Department of Biomedicine, Neurosciences and Advanced Diagnostic (BiND), University of Palermo, Palermo, 90127 Italy
| | - Andrea Pace
- 0000 0004 1762 5517grid.10776.37Department of Biological, Chemical and Pharmaceutical Sciences and Technologies - STEBICEF, University of Palermo, Palermo, 90128 Italy
| | - Antonio Palumbo Piccionello
- 0000 0004 1762 5517grid.10776.37Department of Biological, Chemical and Pharmaceutical Sciences and Technologies - STEBICEF, University of Palermo, Palermo, 90128 Italy
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA. .,Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
63
|
Hayakawa H, Nakatani R, Ikenaka K, Aguirre C, Choong CJ, Tsuda H, Nagano S, Koike M, Ikeuchi T, Hasegawa M, Papa SM, Nagai Y, Mochizuki H, Baba K. Structurally distinct α-synuclein fibrils induce robust parkinsonian pathology. Mov Disord 2019; 35:256-267. [PMID: 31643109 DOI: 10.1002/mds.27887] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/24/2019] [Accepted: 08/26/2019] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Alpha-synuclein (α-syn) is a major component of Lewy bodies, which are the pathological hallmark in Parkinson's disease, and its genetic mutations cause familial forms of Parkinson's disease. Patients with α-syn G51D mutation exhibit severe clinical symptoms. However, in vitro studies showed low propensity for α-syn with the G51D mutation. We studied the mechanisms associated with severe neurotoxicity of α-syn G51D mutation using a murine model generated by G51D α-syn fibril injection into the brain. METHODS Structural analysis of wild-type and G51D α-syn-fibrils were performed using Fourier transform infrared spectroscopy. The ability of α-syn fibrils forming aggregates was first assessed in in vitro mammalian cells. An in vivo mouse model with an intranigral injection of α-syn fibrils was then used to evaluate the propagation pattern of α-syn and related cellular changes. RESULTS We found that G51D α-syn fibrils have higher β-sheet contents than wild-type α-syn fibrils. The addition of G51D α-syn fibrils to mammalian cells overexpressing α-syn resulted in the formation of phosphorylated α-syn inclusions at a higher rate. Similarly, an injection of G51D α-syn fibrils into the substantia nigra of a mouse brain induced more widespread phosphorylated α-syn pathology. Notably, the mice injected with G51D α-syn fibrils exhibited progressive nigral neuronal loss accompanied with mitochondrial abnormalities and motor impairment. CONCLUSION Our findings indicate that the structural difference of G51D α-syn fibrils plays an important role in the rapidly developed and more severe neurotoxicity of G51D mutation-linked Parkinson's disease. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Hideki Hayakawa
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Rie Nakatani
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kensuke Ikenaka
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Cesar Aguirre
- Institute of Protein Research, Osaka University, Osaka, Japan
| | - Chi-Jing Choong
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Tsuda
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Seiichi Nagano
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Bioresource Science Branch, Center for Bioresources, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masato Hasegawa
- Department of Neuropathology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Stella M Papa
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yoshitaka Nagai
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kousuke Baba
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
64
|
Singh B, Covelo A, Martell-Martínez H, Nanclares C, Sherman MA, Okematti E, Meints J, Teravskis PJ, Gallardo C, Savonenko AV, Benneyworth MA, Lesné SE, Liao D, Araque A, Lee MK. Tau is required for progressive synaptic and memory deficits in a transgenic mouse model of α-synucleinopathy. Acta Neuropathol 2019; 138:551-574. [PMID: 31168644 PMCID: PMC6778173 DOI: 10.1007/s00401-019-02032-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 01/01/2023]
Abstract
Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB) are clinically and neuropathologically highly related α-synucleinopathies that collectively constitute the second leading cause of neurodegenerative dementias. Genetic and neuropathological studies directly implicate α-synuclein (αS) abnormalities in PDD and DLB pathogenesis. However, it is currently unknown how αS abnormalities contribute to memory loss, particularly since forebrain neuronal loss in PDD and DLB is less severe than in Alzheimer's disease. Previously, we found that familial Parkinson's disease-linked human mutant A53T αS causes aberrant localization of the microtubule-associated protein tau to postsynaptic spines in neurons, leading to postsynaptic deficits. Thus, we directly tested if the synaptic and memory deficits in a mouse model of α-synucleinopathy (TgA53T) are mediated by tau. TgA53T mice exhibit progressive memory deficits associated with postsynaptic deficits in the absence of obvious neuropathological and neurodegenerative changes in the hippocampus. Significantly, removal of endogenous mouse tau expression in TgA53T mice (TgA53T/mTau-/-), achieved by mating TgA53T mice to mouse tau-knockout mice, completely ameliorates cognitive dysfunction and concurrent synaptic deficits without affecting αS expression or accumulation of selected toxic αS oligomers. Among the known tau-dependent effects, memory deficits in TgA53T mice were associated with hippocampal circuit remodeling linked to chronic network hyperexcitability. This remodeling was absent in TgA53T/mTau-/- mice, indicating that postsynaptic deficits, aberrant network hyperactivity, and memory deficits are mechanistically linked. Our results directly implicate tau as a mediator of specific human mutant A53T αS-mediated abnormalities related to deficits in hippocampal neurotransmission and suggest a mechanism for memory impairment that occurs as a consequence of synaptic dysfunction rather than synaptic or neuronal loss. We hypothesize that these initial synaptic deficits contribute to network hyperexcitability which, in turn, exacerbate cognitive dysfunction. Our results indicate that these synaptic changes present potential therapeutic targets for amelioration of memory deficits in α-synucleinopathies.
Collapse
Affiliation(s)
- Balvindar Singh
- Medical Scientist Training Program, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
- Graduate Program in Neuroscience, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Ana Covelo
- Department of Neuroscience, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Héctor Martell-Martínez
- Department of Neuroscience, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Carmen Nanclares
- Department of Neuroscience, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Mathew A Sherman
- Department of Neuroscience, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Emmanuel Okematti
- Department of Neuroscience, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Joyce Meints
- Department of Neuroscience, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Peter J Teravskis
- Department of Neuroscience, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Christopher Gallardo
- Graduate Program in Pharmacology, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Alena V Savonenko
- Department of Pathology, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, 21205, USA
| | - Michael A Benneyworth
- Department of Neuroscience, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
- Institute for Translational Neuroscience, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
- Mouse Behavior Core, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Sylvain E Lesné
- Department of Neuroscience, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
- Institute for Translational Neuroscience, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
- N. Budd Grossman Center for Memory Research and Care, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Dezhi Liao
- Department of Neuroscience, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
- Institute for Translational Neuroscience, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Alfonso Araque
- Department of Neuroscience, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
- Institute for Translational Neuroscience, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Michael K Lee
- Department of Neuroscience, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA.
- Institute for Translational Neuroscience, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA.
- Geriatric Research Education and Clinical Center, Minneapolis Veterans Affairs Health Care System, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
65
|
He J, Huang Y, Du G, Wang Z, Xiang Y, Wang Q. Lasting spatial learning and memory deficits following chronic cerebral hypoperfusion are associated with hippocampal mitochondrial aging in rats. Neuroscience 2019; 415:215-229. [DOI: 10.1016/j.neuroscience.2019.04.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/16/2022]
|
66
|
Mandler M, Rockenstein E, Overk C, Mante M, Florio J, Adame A, Kim C, Santic R, Schneeberger A, Mattner F, Schmidhuber S, Galabova G, Spencer B, Masliah E, Rissman RA. Effects of single and combined immunotherapy approach targeting amyloid β protein and α-synuclein in a dementia with Lewy bodies-like model. Alzheimers Dement 2019; 15:1133-1148. [PMID: 31378574 DOI: 10.1016/j.jalz.2019.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/22/2019] [Accepted: 02/25/2019] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Immunotherapeutic approaches targeting amyloid β (Aβ) protein and tau in Alzheimer's disease and α-synuclein (α-syn) in Parkinson's disease are being developed for treating dementia with Lewy bodies. However, it is unknown if single or combined immunotherapies targeting Aβ and/or α-syn may be effective. METHODS Amyloid precursor protein/α-syn tg mice were immunized with AFFITOPEs® (AFF) peptides specific to Aβ (AD02) or α-syn (PD-AFF1) and the combination. RESULTS AD02 more effectively reduced Aβ and pTau burden; however, the combination exhibited some additive effects. Both AD02 and PD-AFF1 effectively reduced α-syn, ameliorated degeneration of pyramidal neurons, and reduced neuroinflammation. PD-AFF1 more effectively ameliorated cholinergic and dopaminergic fiber loss; the combined immunization displayed additive effects. AD02 more effectively improved buried pellet test behavior, whereas PD-AFF1 more effectively improved horizontal beam test; the combined immunization displayed additive effects. DISCUSSION Specific active immunotherapy targeting Aβ and/or α-syn may be of potential interest for the treatment of dementia with Lewy bodies.
Collapse
Affiliation(s)
| | - Edward Rockenstein
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Cassia Overk
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Michael Mante
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Jazmin Florio
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Anthony Adame
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Changyoun Kim
- Division of Neuroscience and Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD, USA
| | | | | | | | | | | | - Brian Spencer
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Division of Neuroscience and Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD, USA; Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA.
| |
Collapse
|
67
|
Owen MC, Gnutt D, Gao M, Wärmländer SKTS, Jarvet J, Gräslund A, Winter R, Ebbinghaus S, Strodel B. Effects of in vivo conditions on amyloid aggregation. Chem Soc Rev 2019; 48:3946-3996. [PMID: 31192324 DOI: 10.1039/c8cs00034d] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the grand challenges of biophysical chemistry is to understand the principles that govern protein misfolding and aggregation, which is a highly complex process that is sensitive to initial conditions, operates on a huge range of length- and timescales, and has products that range from protein dimers to macroscopic amyloid fibrils. Aberrant aggregation is associated with more than 25 diseases, which include Alzheimer's, Parkinson's, Huntington's, and type II diabetes. Amyloid aggregation has been extensively studied in the test tube, therefore under conditions that are far from physiological relevance. Hence, there is dire need to extend these investigations to in vivo conditions where amyloid formation is affected by a myriad of biochemical interactions. As a hallmark of neurodegenerative diseases, these interactions need to be understood in detail to develop novel therapeutic interventions, as millions of people globally suffer from neurodegenerative disorders and type II diabetes. The aim of this review is to document the progress in the research on amyloid formation from a physicochemical perspective with a special focus on the physiological factors influencing the aggregation of the amyloid-β peptide, the islet amyloid polypeptide, α-synuclein, and the hungingtin protein.
Collapse
Affiliation(s)
- Michael C Owen
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - David Gnutt
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany and Lead Discovery Wuppertal, Bayer AG, 42096 Wuppertal, Germany
| | - Mimi Gao
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 4a, 44227 Dortmund, Germany and Sanofi-Aventis Deutschland GmbH, R&D, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Sebastian K T S Wärmländer
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Roland Winter
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 4a, 44227 Dortmund, Germany
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry, Forschungszentrum Jülich, 42525 Jülich, Germany. and Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
68
|
Lindestam Arlehamn CS, Pham J, Alcalay RN, Frazier A, Shorr E, Carpenter C, Sidney J, Dhanwani R, Agin-Liebes J, Garretti F, Amara AW, Standaert DG, Phillips EJ, Mallal SA, Peters B, Sulzer D, Sette A. Widespread Tau-Specific CD4 T Cell Reactivity in the General Population. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:84-92. [PMID: 31085590 PMCID: PMC6581570 DOI: 10.4049/jimmunol.1801506] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/20/2019] [Indexed: 12/11/2022]
Abstract
Tau protein is found to be aggregated and hyperphosphorylated (p-tau) in many neurologic disorders, including Parkinson disease (PD) and related parkinsonisms, Alzheimer disease, traumatic brain injury, and even in normal aging. Although not known to produce autoimmune responses, we hypothesized that the appearance of aggregated tau and p-tau with disease could activate the immune system. We thus compared T cell responses to tau and p-tau-derived peptides between PD patients, age-matched healthy controls, and young healthy controls (<35 y old; who are less likely to have high levels of tau aggregates). All groups exhibited CD4+ T cell responses to tau-derived peptides, which were associated with secretion of IFN-γ, IL-5, and/or IL-4. The PD and control participants exhibited a similar magnitude and breadth of responses. Some tau-derived epitopes, consisting of both unmodified and p-tau residues, were more highly represented in PD participants. These results were verified in an independent set of PD and control donors (either age-matched or young controls). Thus, T cells recognizing tau epitopes escape central and peripheral tolerance in relatively high numbers, and the magnitude and nature of these responses are not modulated by age or PD disease.
Collapse
Affiliation(s)
| | - John Pham
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Roy N Alcalay
- Department of Neurology, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY 10032
| | - April Frazier
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Evan Shorr
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY 10032
- Department of Pharmacology, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY 10032
| | - Chelsea Carpenter
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Rekha Dhanwani
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Julian Agin-Liebes
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY 10032
- Department of Pharmacology, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY 10032
| | - Francesca Garretti
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY 10032
- Department of Pharmacology, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY 10032
| | - Amy W Amara
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233
| | - David G Standaert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Elizabeth J Phillips
- Vanderbilt University School of Medicine, Nashville, TN 37235
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia 6150, Australia; and
| | - Simon A Mallal
- Vanderbilt University School of Medicine, Nashville, TN 37235
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia 6150, Australia; and
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - David Sulzer
- Department of Neurology, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY 10032
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY 10032
- Department of Pharmacology, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY 10032
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037;
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
69
|
Shirvan J, Clement N, Ye R, Katz S, Schultz A, Johnson KA, Gomez-Isla T, Frosch M, Growdon JH, Gomperts SN. Neuropathologic correlates of amyloid and dopamine transporter imaging in Lewy body disease. Neurology 2019; 93:e476-e484. [PMID: 31243072 DOI: 10.1212/wnl.0000000000007855] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/14/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To develop imaging biomarkers of diseases in the Lewy body spectrum and to validate these markers against postmortem neuropathologic findings. METHODS Four cognitively normal participants with Parkinson disease (PD), 4 with PD with cognitive impairments, and 10 with dementia with Lewy bodies underwent amyloid imaging with [11C]Pittsburgh compound B (PiB) and dopamine transporter (DAT) imaging with [11C]Altropane. All 18 had annual neurologic examinations. All cognitively normal participants with PD developed cognitive impairment before death. Neuropathologic examinations assessed and scored Braak Lewy bodies, Thal distribution of amyloid, Consortium to Establish a Registry for Alzheimer's Disease neuritic amyloid plaques, Braak neurofibrillary tangles, and cerebral amyloid angiopathy, as well as total amyloid plaque burden in the superior frontal, superior parietal, occipital, and inferior temporal cortical regions. PET data were expressed as the standardized uptake value ratio with cerebellar reference. Analyses accounted for the interval between imaging and autopsy. RESULTS All 18 patients met neuropathologic criteria for Lewy body disease; the DAT concentration was low in each case. All patients with elevated [11C]PiB retention measured in a neocortical aggregate had β-amyloid deposits at autopsy. [11C]PiB retention significantly correlated with neuritic plaque burden and with total plaque burden. [11C]PiB retention also significantly correlated with the severity of both Braak stages of neurofibrillary tangle and Lewy body scores. Neuritic plaque burden was significantly associated with neurofibrillary tangle pathology. CONCLUSION Antemortem [11C]Altropane PET is a sensitive measure of substantia nigra degeneration. [11C]PiB scans accurately reflect cortical amyloid deposits seen at autopsy. These findings support the use of molecular imaging in the evaluation of patients with Lewy body diseases.
Collapse
Affiliation(s)
- Julia Shirvan
- From the Departments of Neurology (J.S., R.Y., K.A.J., T.G.-I., J.H.G., S.N.G.), Pathology (N.C., M.F.), and Radiology (S.K., A.S., K.A.J.), Massachusetts General Hospital, Boston
| | - Nathan Clement
- From the Departments of Neurology (J.S., R.Y., K.A.J., T.G.-I., J.H.G., S.N.G.), Pathology (N.C., M.F.), and Radiology (S.K., A.S., K.A.J.), Massachusetts General Hospital, Boston
| | - Rong Ye
- From the Departments of Neurology (J.S., R.Y., K.A.J., T.G.-I., J.H.G., S.N.G.), Pathology (N.C., M.F.), and Radiology (S.K., A.S., K.A.J.), Massachusetts General Hospital, Boston
| | - Samantha Katz
- From the Departments of Neurology (J.S., R.Y., K.A.J., T.G.-I., J.H.G., S.N.G.), Pathology (N.C., M.F.), and Radiology (S.K., A.S., K.A.J.), Massachusetts General Hospital, Boston
| | - Aaron Schultz
- From the Departments of Neurology (J.S., R.Y., K.A.J., T.G.-I., J.H.G., S.N.G.), Pathology (N.C., M.F.), and Radiology (S.K., A.S., K.A.J.), Massachusetts General Hospital, Boston
| | - Keith A Johnson
- From the Departments of Neurology (J.S., R.Y., K.A.J., T.G.-I., J.H.G., S.N.G.), Pathology (N.C., M.F.), and Radiology (S.K., A.S., K.A.J.), Massachusetts General Hospital, Boston
| | - Teresa Gomez-Isla
- From the Departments of Neurology (J.S., R.Y., K.A.J., T.G.-I., J.H.G., S.N.G.), Pathology (N.C., M.F.), and Radiology (S.K., A.S., K.A.J.), Massachusetts General Hospital, Boston
| | - Matthew Frosch
- From the Departments of Neurology (J.S., R.Y., K.A.J., T.G.-I., J.H.G., S.N.G.), Pathology (N.C., M.F.), and Radiology (S.K., A.S., K.A.J.), Massachusetts General Hospital, Boston
| | - John H Growdon
- From the Departments of Neurology (J.S., R.Y., K.A.J., T.G.-I., J.H.G., S.N.G.), Pathology (N.C., M.F.), and Radiology (S.K., A.S., K.A.J.), Massachusetts General Hospital, Boston
| | - Stephen N Gomperts
- From the Departments of Neurology (J.S., R.Y., K.A.J., T.G.-I., J.H.G., S.N.G.), Pathology (N.C., M.F.), and Radiology (S.K., A.S., K.A.J.), Massachusetts General Hospital, Boston.
| |
Collapse
|
70
|
Cornel iridoid glycoside induces autophagy to protect against tau oligomer neurotoxicity induced by the activation of glycogen synthase kinase-3β. J Nat Med 2019; 73:717-726. [DOI: 10.1007/s11418-019-01318-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/07/2019] [Indexed: 12/20/2022]
|
71
|
High Levels of β-Amyloid, Tau, and Phospho-Tau in Red Blood Cells as Biomarkers of Neuropathology in Senescence-Accelerated Mouse. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5030475. [PMID: 31281579 PMCID: PMC6590616 DOI: 10.1155/2019/5030475] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/25/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
Alzheimer's Disease (AD) is the most common Neurodegenerative Disease (ND), primarily characterised by neuroinflammation, neuronal plaques of β-amyloid (Aβ), and neurofibrillary tangles of hyperphosphorylated tau. α-Synuclein (α-syn) and its heteroaggregates with Aβ and tau have been recently included among the neuropathological elements of NDs. These pathological traits are not restricted to the brain, but they reach peripheral fluids as well. In this sense, Red Blood Cells (RBCs) are emerging as a good model to investigate the biochemical alterations of aging and NDs. Herein, the levels of homo- and heteroaggregates of ND-related proteins were analysed at different stages of disease progression. In particular, a validated animal model of AD, the SAMP8 (Senescence-Accelerated Mouse-Prone) and its control strain SAMR1 (Senescence-Accelerated Mouse-Resistant) were used in parallel experiments. The levels of the aforementioned proteins and of the inflammatory marker interleukin-1β (IL-1β) were examined in both brain and RBCs of SAMP8 and SAMR1 at 6 and 8 months. Brain Aβ, tau, and phospho-tau (p-tau) were higher in SAMP8 mice than in control mice and increased with AD progression. Similar accumulation kinetics were found in RBCs, even if slower. By contrast, α-syn and its heterocomplexes (α-syn-Aβ and α-syn-tau) displayed different accumulation kinetics between brain tissue and RBCs. Both brain and peripheral IL-1β levels were higher in SAMP8 mice, but increased sooner in RBCs, suggesting that inflammation might initiate at a peripheral level before affecting the brain. In conclusion, these results confirm RBCs as a valuable model for monitoring neurodegeneration, suggesting peripheral Aβ, tau, and p-tau as potential early biomarkers of AD.
Collapse
|
72
|
Marvian AT, Koss DJ, Aliakbari F, Morshedi D, Outeiro TF. In vitro models of synucleinopathies: informing on molecular mechanisms and protective strategies. J Neurochem 2019; 150:535-565. [PMID: 31004503 DOI: 10.1111/jnc.14707] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/05/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023]
Abstract
Alpha-synuclein (α-Syn) is a central player in Parkinson's disease (PD) and in a spectrum of neurodegenerative diseases collectively known as synucleinopathies. The protein was first associated with PD just over 20 years ago, when it was found to (i) be a major component of Lewy bodies and (ii) to be also associated with familial forms of PD. The characterization of α-Syn pathology has been achieved through postmortem studies of human brains. However, the identification of toxic mechanisms associated with α-Syn was only achieved through the use of experimental models. In vitro models are highly accessible, enable relatively rapid studies, and have been extensively employed to address α-Syn-associated neurodegeneration. Given the diversity of models used and the outcomes of the studies, a cumulative and comprehensive perspective emerges as indispensable to pave the way for further investigations. Here, we subdivided in vitro models of α-Syn pathology into three major types: (i) models simulating α-Syn fibrillization and the formation of different aggregated structures in vitro, (ii) models based on the intracellular expression of α-Syn, reporting on pathogenic conditions and cellular dysfunctions induced, and (iii) models using extracellular treatment with α-Syn aggregated species, reporting on sites of interaction and their downstream consequences. In summary, we review the underlying molecular mechanisms discovered and categorize protective strategies, in order to pave the way for future studies and the identification of effective therapeutic strategies. This article is part of the Special Issue "Synuclein".
Collapse
Affiliation(s)
- Amir Tayaranian Marvian
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - David J Koss
- Institute of Neuroscience, The Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - Farhang Aliakbari
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.,Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Dina Morshedi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Tiago Fleming Outeiro
- Institute of Neuroscience, The Medical School, Newcastle University, Newcastle Upon Tyne, UK.,Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany.,University Medical Center Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
73
|
Wang Z, Gao G, Duan C, Yang H. Progress of immunotherapy of anti-α-synuclein in Parkinson's disease. Biomed Pharmacother 2019; 115:108843. [PMID: 31055236 DOI: 10.1016/j.biopha.2019.108843] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/14/2019] [Accepted: 03/31/2019] [Indexed: 12/12/2022] Open
Abstract
Many neurodegenerative diseases are characterized by progressive loss of neurons and abnormal protein accumulation, including amyloid (A)β and tau in Alzheimer's disease and Lewy bodies and α-synuclein (α-syn) in Parkinson's disease (PD). Recent evidence suggests that adaptive immunity plays an important role in PD, and that anti-α-syn antibodies can be used as therapy in neurodegenerative diseases; monoclonal antibodies were shown to inhibit α-syn propagation and aggregation in PD models and patients. In this review, we summarize the different pathological states of α-syn, including gene mutations, truncation, phosphorylation, and the high molecular weight form, and describe the specific antibodies that recognize the α-syn monomer or oligomer, some of which have been tested in clinic trials. We also discuss future research directions and potential targets in PD therapy.
Collapse
Affiliation(s)
- Zhipeng Wang
- Department of Neurobiology School of Basic Medical Sciences, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory for Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Ge Gao
- Department of Neurobiology School of Basic Medical Sciences, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory for Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Chunli Duan
- Department of Neurobiology School of Basic Medical Sciences, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory for Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Hui Yang
- Department of Neurobiology School of Basic Medical Sciences, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory for Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
74
|
Ho PWL, Leung CT, Liu H, Pang SYY, Lam CSC, Xian J, Li L, Kung MHW, Ramsden DB, Ho SL. Age-dependent accumulation of oligomeric SNCA/α-synuclein from impaired degradation in mutant LRRK2 knockin mouse model of Parkinson disease: role for therapeutic activation of chaperone-mediated autophagy (CMA). Autophagy 2019; 16:347-370. [PMID: 30983487 PMCID: PMC6984454 DOI: 10.1080/15548627.2019.1603545] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Parkinson disease (PD) is an age-related neurodegenerative disorder associated with misfolded SNCA/α-synuclein accumulation in brain. Impaired catabolism of SNCA potentiates formation of its toxic oligomers. LRRK2 (leucine-rich repeat kinase-2) mutations predispose to familial and sporadic PD. Mutant LRRK2 perturbs chaperone-mediated-autophagy (CMA) to degrade SNCA. We showed greater age-dependent accumulation of oligomeric SNCA in striatum and cortex of aged LRRK2R1441G knockin (KI) mice, compared to age-matched wildtype (WT) by 53% and 31%, respectively. Lysosomal clustering and accumulation of CMA-specific LAMP2A and HSPA8/HSC70 proteins were observed in aged mutant striatum along with increased GAPDH (CMA substrate) by immunohistochemistry of dorsal striatum and flow cytometry of ventral midbrain cells. Using our new reporter protein clearance assay, mutant mouse embryonic fibroblasts (MEFs) expressing either SNCA or CMA recognition ‘KFERQ’-like motif conjugated with photoactivated-PAmCherry showed slower cellular clearance compared to WT by 28% and 34%, respectively. However, such difference was not observed after the ‘KFERQ’-motif was mutated. LRRK2 mutant MEFs exhibited lower lysosomal degradation than WT indicating lysosomal dysfunction. LAMP2A-knockdown reduced total lysosomal activity and clearance of ‘KFERQ’-substrate in WT but not in mutant MEFs, indicating impaired CMA in the latter. A CMA-specific activator, AR7, induced neuronal LAMP2A transcription and lysosomal activity in MEFs. AR7 also attenuated the progressive accumulation of both intracellular and extracellular SNCA oligomers in prolonged cultures of mutant cortical neurons (DIV21), indicating that oligomer accumulation can be suppressed by CMA activation. Activation of autophagic pathways to reduce aged-related accumulation of pathogenic SNCA oligomers is a viable disease-modifying therapeutic strategy for PD. Abbreviations: 3-MA: 3-methyladenine; AR7: 7-chloro-3-(4-methylphenyl)-2H-1,4-benzoxazine; CMA: chaperone-mediated autophagy; CQ: chloroquine; CSF: cerebrospinal fluid; DDM: n-dodecyl β-D-maltoside; DIV: days in vitro; ELISA: enzyme-linked immunosorbent assay; FACS: fluorescence-activated cell sorting; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GWAS: genome-wide association studies; HSPA8/HSC70: heat shock protein 8; KFERQ: CMA recognition pentapeptide; KI: knockin; LAMP1: lysosomal-associated membrane protein 1; LAMP2A: lysosomal-associated membrane protein 2A; LDH: lactate dehydrogenase; LRRK2: leucine-rich repeat kinase 2; MEF: mouse embryonic fibroblast; NDUFS4: NADH:ubiquinone oxidoreductase core subunit S4; NE: novel epitope; PD: Parkinson disease; RARA/RARα: retinoic acid receptor, alpha; SNCA: synuclein, alpha; TUBB3/TUJ1: tubulin, beta 3 class III; WT: wild-type
Collapse
Affiliation(s)
- Philip Wing-Lok Ho
- Division of Neurology, Department of Medicine, University of Hong Kong, Queen Mary Hospital , Hong Kong S.A.R., China
| | - Chi-Ting Leung
- Division of Neurology, Department of Medicine, University of Hong Kong, Queen Mary Hospital , Hong Kong S.A.R., China
| | - Huifang Liu
- Division of Neurology, Department of Medicine, University of Hong Kong, Queen Mary Hospital , Hong Kong S.A.R., China
| | - Shirley Yin-Yu Pang
- Division of Neurology, Department of Medicine, University of Hong Kong, Queen Mary Hospital , Hong Kong S.A.R., China
| | - Colin Siu-Chi Lam
- Division of Neurology, Department of Medicine, University of Hong Kong, Queen Mary Hospital , Hong Kong S.A.R., China
| | - Jiawen Xian
- Division of Neurology, Department of Medicine, University of Hong Kong, Queen Mary Hospital , Hong Kong S.A.R., China
| | - Lingfei Li
- Division of Neurology, Department of Medicine, University of Hong Kong, Queen Mary Hospital , Hong Kong S.A.R., China
| | - Michelle Hiu-Wai Kung
- Division of Neurology, Department of Medicine, University of Hong Kong, Queen Mary Hospital , Hong Kong S.A.R., China
| | - David Boyer Ramsden
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Shu-Leong Ho
- Division of Neurology, Department of Medicine, University of Hong Kong, Queen Mary Hospital , Hong Kong S.A.R., China
| |
Collapse
|
75
|
Grassi D, Diaz-Perez N, Volpicelli-Daley LA, Lasmézas CI. Pα-syn* mitotoxicity is linked to MAPK activation and involves tau phosphorylation and aggregation at the mitochondria. Neurobiol Dis 2019; 124:248-262. [DOI: 10.1016/j.nbd.2018.11.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/19/2018] [Indexed: 01/12/2023] Open
|
76
|
Potential Diagnostic Value of Red Blood Cells α-Synuclein Heteroaggregates in Alzheimer's Disease. Mol Neurobiol 2019; 56:6451-6459. [PMID: 30826968 DOI: 10.1007/s12035-019-1531-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/15/2019] [Indexed: 12/31/2022]
Abstract
A plethora of complex misfolded protein combinations have been found in Alzheimer disease (AD) brains besides the classical pathological hallmarks. Recently, α-synuclein (α-syn) and its heterocomplexes with amyloid-β (Aβ) and tau have been suggested to be involved in the pathophysiological processes of neurodegenerative diseases. These pathological features are not limited to the brain, but can be also found in peripheral fluids. In this respect, red blood cells (RBCs) have been suggested as a good model to investigate the biochemical alterations of neurodegeneration. Our aim is to find whether RBC concentrations of α-syn and its heterocomplexes (i.e., α-syn/Aβ and α-syn/tau) were different in AD patients compared with healthy controls (HC). The levels of homo- and heteroaggregates of α-syn, Aβ and tau, were analyzed in a cohort of AD patients at early stage either with dementia or prodromal symptoms (N = 39) and age-matched healthy controls (N = 39). All AD patients received a biomarker-based diagnosis (low cerebrospinal fluid levels of Aβ peptide combined with high cerebrospinal fluid concentrations of total tau and/or phospho-tau proteins; alternatively, a positivity to cerebral amyloid-PET scan). Our results showed lower concentrations of α-syn and its heterocomplexes (i.e., α-syn/Aβ and α-syn/tau) in RBCs of AD patients with respect to HC. RBC α-syn/Aβ as well as RBC α-syn/tau heterodimers discriminated AD participants from HC with fair accuracy, whereas RBC α-syn concentrations differentiated poorly the two groups. Although additional investigations are required, these data suggest α-syn heteroaggregates in RBCs as potential tool in the diagnostic work-up of early AD diagnosis.
Collapse
|
77
|
You Y, Perkins A, Cisternas P, Muñoz B, Taylor X, You Y, Garringer HJ, Oblak AL, Atwood BK, Vidal R, Lasagna-Reeves CA. Tau as a mediator of neurotoxicity associated to cerebral amyloid angiopathy. Acta Neuropathol Commun 2019; 7:26. [PMID: 30808415 PMCID: PMC6390363 DOI: 10.1186/s40478-019-0680-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 02/17/2019] [Indexed: 12/20/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is typified by the cerebrovascular deposition of amyloid. Currently, there is no clear understanding of the mechanisms underlying the contribution of CAA to neurodegeneration. Despite the fact that CAA is highly associated with accumulation of Aβ, other types of amyloids have been shown to associate with the vasculature. Interestingly, in many cases, vascular amyloidosis is accompanied by significant tau pathology. However, the contribution of tau to neurodegeneration associated to CAA remains to be determined. We used a mouse model of Familial Danish Dementia (FDD), a neurodegenerative disease characterized by the accumulation of Danish amyloid (ADan) in the vasculature, to characterize the contribution of tau to neurodegeneration associated to CAA. We performed histological and biochemical assays to establish tau modifications associated with CAA in conjunction with cell-based and electrophysiological assays to determine the role of tau in the synaptic dysfunction associated with ADan. We demonstrated that ADan aggregates induced hyperphosphorylation and misfolding of tau. Moreover, in a mouse model for CAA, we observed tau oligomers closely associated to astrocytes in the vicinity of vascular amyloid deposits. We finally determined that the absence of tau prevents synaptic dysfunction induced by ADan oligomers. In addition to demonstrating the effect of ADan amyloid on tau misfolding, our results provide compelling evidence of the role of tau in neurodegeneration associated with ADan-CAA and suggest that decreasing tau levels could be a feasible approach for the treatment of CAA.
Collapse
|
78
|
Relationship Between Tau, β Amyloid and α-Synuclein Pathologies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1184:169-176. [PMID: 32096037 DOI: 10.1007/978-981-32-9358-8_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
It is becoming increasing clear that multiple pathological lesions co-exist in the brains of the demented and non-demented elderly, and with putative interactions revealed at the molecular level in addition to the cumulative effects on brain damage, mounting evidence suggests manifestation of multiple protein aggregates will have implications for the clinical course of many neurodegenerative diseases associated with dementia. In this section we will discuss how the presence of multiple pathological lesions can affect the pathological and clinical phenotype of neurodegenerative disorders.
Collapse
|
79
|
Qiao HH, Zhu LN, Wang Y, Hui JL, Xie WB, Liu C, Chen L, Qiu PM. Implications of alpha-synuclein nitration at tyrosine 39 in methamphetamine-induced neurotoxicity in vitro and in vivo. Neural Regen Res 2019; 14:319-327. [PMID: 30531016 PMCID: PMC6301162 DOI: 10.4103/1673-5374.244795] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Methamphetamine is an amphetamine-type psychostimulant that can damage dopaminergic neurons and cause characteristic pathological changes similar to neurodegenerative diseases such as Parkinson’s disease. However, its specific mechanism of action is still unclear. In the present study, we established a Parkinson’s disease pathology model by exposing SH-SY5Y cells and C57BL/6J mice to methamphetamine. In vitro experiments were performed with 0, 0.5, 1.0, 1.5, 2.0 or 2.5 mM methamphetamine for 24 hours or 2.0 mM methamphetamine for 0-, 2-, 4-, 8-, 16-, and 24-hour culture of SH-SY5Y cells. Additional experimental groups of SH-SY5Y cells were administered a nitric oxide inhibitor, 0.1 mM N-nitro-L-arginine, 1 hour before exposure to 2.0 mM methamphetamine for 24 hours. In vivo experiments: C57BL/6J mice were intraperitoneally injected with N-nitro-L-arginine (8 mg/kg), eight times, at intervals of 12 hours. Methamphetamine 15 mg/kg was intraperitoneally injected eight times, at intervals of 12 hours, but 0.5-hour after each N-nitro-L-arginine injection in the combined group. Western blot assay was used to determine the expression of nitric oxide synthase, α-synuclein (α-Syn), 5G4, nitrated α-synuclein at the residue Tyr39 (nT39 α-Syn), cleaved caspase-3, and cleaved poly ADP-ribose polymerase (PARP) in cells and mouse brain tissue. Immunofluorescence staining was conducted to measure the positive reaction of NeuN, nT39 α-Syn and 5G4. Enzyme linked immunosorbent assay was performed to determine the dopamine levels in the mouse brain. After methamphetamine exposure, α-Syn expression increased; the aggregation of α-Syn 5G4 increased; nT39 α-Syn, nitric oxide synthase, cleaved caspase-3, and cleaved PARP expression increased in the cultures of SH-SY5Y cells and in the brains of C57BL/6J mice; and dopamine levels were reduced in the mouse brain. These changes were markedly reduced when N-nitro-L-arginine was administered with methamphetamine in both SH-SY5Y cells and C57BL/6J mice. These results suggest that nT39 α-Syn aggregation is involved in methamphetamine neurotoxicity.
Collapse
Affiliation(s)
- Hong-Hua Qiao
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lin-Nan Zhu
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yue Wang
- Kingmed Institute for Forensic Science, Guangzhou, Guangdong Province, China
| | - Jia-Liang Hui
- First Clinical Medicine College, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Wei-Bing Xie
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chao Liu
- Guangzhou Forensic Science Institute, Guangdong Province Key Laboratory of Forensic Genetics, Guangzhou, Guangdong Province, China
| | - Ling Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ping-Ming Qiu
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
80
|
Sengupta U, Kayed R. Amyloid oligomer interactions and polymorphisms: disease-relevant distinct assembly of α-synuclein and tau. Neuropsychopharmacology 2019; 44:222-223. [PMID: 30206420 PMCID: PMC6235868 DOI: 10.1038/s41386-018-0204-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Urmi Sengupta
- 0000 0001 1547 9964grid.176731.5Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX USA ,0000 0001 1547 9964grid.176731.5Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA. .,Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
81
|
Zheng C, Chen G, Tan Y, Zeng W, Peng Q, Wang J, Cheng C, Yang X, Nie S, Xu Y, Zhang Z, Papa SM, Ye K, Cao X. TRH Analog, Taltirelin Protects Dopaminergic Neurons From Neurotoxicity of MPTP and Rotenone. Front Cell Neurosci 2018; 12:485. [PMID: 30618632 PMCID: PMC6306470 DOI: 10.3389/fncel.2018.00485] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 11/28/2018] [Indexed: 01/06/2023] Open
Abstract
Dopaminergic neurons loss is one of the main pathological characters of Parkinson’s disease (PD), while no suitable neuroprotective agents have been in clinical use. Thyrotropin-releasing hormone (TRH) and its analogs protect neurons from ischemia and various cytotoxins, but whether the effect also applies in PD models remain unclear. Here, we showed that Taltirelin, a long-acting TRH analog, exhibited the neuroprotective effect in both cellular and animal models of PD. The in vitro study demonstrated that Taltirelin (5 μM) reduced the generation of reactive oxygen species (ROS) induced by MPP+ or rotenone, alleviated apoptosis and rescued the viability of SH-SY5Y cells and rat primary midbrain neurons. Interestingly, SH-SY5Y cells treated with Taltirelin also displayed lower level of p-tau (S396) and asparagine endopeptidase (AEP) cleavage products, tau N368 and α-synuclein N103 fragments, accompanied by a lower intracellular monoamine oxidase-B (MAO-B) activity. In the subacute MPTP-induced and chronic rotenone-induced PD mice models, we found Taltirelin (1 mg/kg) significantly improved the locomotor function and preserved dopaminergic neurons in the substantia nigra (SN). In accordance with the in vitro study, Taltirelin down-regulated the levels of p-tau (S396), p-α-synuclein (S129) tau N368 and α-synuclein N103 fragments in SN and striatum. Together, this study demonstrates that Taltirelin may exert neuroprotective effect via inhibiting MAO-B and reducing the oxidative stress and apoptosis, preventing AEP activation and its subsequent pathological cleavage of tau and α-synuclein, thus provides evidence for Taltirelin in protective treatment of PD.
Collapse
Affiliation(s)
- Cong Zheng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guiqin Chen
- Department of Neurology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Yang Tan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiqi Zeng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiwei Peng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chi Cheng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoman Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuke Nie
- Department of Neurology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Stella M Papa
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA, United States.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
82
|
Iljina M, Dear AJ, Garcia GA, De S, Tosatto L, Flagmeier P, Whiten DR, Michaels TCT, Frenkel D, Dobson CM, Knowles TPJ, Klenerman D. Quantifying Co-Oligomer Formation by α-Synuclein. ACS NANO 2018; 12:10855-10866. [PMID: 30371053 PMCID: PMC6262461 DOI: 10.1021/acsnano.8b03575] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Small oligomers of the protein α-synuclein (αS) are highly cytotoxic species associated with Parkinson's disease (PD). In addition, αS can form co-aggregates with its mutational variants and with other proteins such as amyloid-β (Aβ) and tau, which are implicated in Alzheimer's disease. The processes of self-oligomerization and co-oligomerization of αS are, however, challenging to study quantitatively. Here, we have utilized single-molecule techniques to measure the equilibrium populations of oligomers formed in vitro by mixtures of wild-type αS with its mutational variants and with Aβ40, Aβ42, and a fragment of tau. Using a statistical mechanical model, we find that co-oligomer formation is generally more favorable than self-oligomer formation at equilibrium. Furthermore, self-oligomers more potently disrupt lipid membranes than do co-oligomers. However, this difference is sometimes outweighed by the greater formation propensity of co-oligomers when multiple proteins coexist. Our results suggest that co-oligomer formation may be important in PD and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Marija Iljina
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Alexander J. Dear
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- Department
of Chemistry, Centre for Misfolding Diseases, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Gonzalo A. Garcia
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Suman De
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Laura Tosatto
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Patrick Flagmeier
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- Department
of Chemistry, Centre for Misfolding Diseases, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Daniel R. Whiten
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Thomas C. T. Michaels
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Daan Frenkel
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Christopher M. Dobson
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- Department
of Chemistry, Centre for Misfolding Diseases, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Tuomas P. J. Knowles
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- Department
of Chemistry, Centre for Misfolding Diseases, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- E-mail:
| | - David Klenerman
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- UK
Dementia Research Institute, University of Cambridge, Cambridge CB2 0XY, United Kingdom
- E-mail:
| |
Collapse
|
83
|
Ghag G, Bhatt N, Cantu DV, Guerrero‐Munoz MJ, Ellsworth A, Sengupta U, Kayed R. Soluble tau aggregates, not large fibrils, are the toxic species that display seeding and cross-seeding behavior. Protein Sci 2018; 27:1901-1909. [PMID: 30125425 PMCID: PMC6201727 DOI: 10.1002/pro.3499] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/16/2018] [Accepted: 08/16/2018] [Indexed: 11/08/2022]
Abstract
Several studies have proposed that fibrillary aggregates of tau and other amyloidogenic proteins are neurotoxic and result in numerous neurodegenerative diseases. However, these studies usually involve sonication or extrusion through needles before experimentation. As a consequence, these methods may fragment large aggregates producing a mixture of aggregated species rather than intact fibrils. Therefore, the results of these experiments may be reflective of other amyloidogenic species, such as oligomers and/or protofibrils/short fibrils. To investigate the effects of sonication on the aggregation of tau and other amyloidogenic proteins, fibrils were prepared and well characterized, then sonicated and evaluated by various biochemical and biophysical methods to identify the aggregated species present. We found that indeed a mixture of aggregated species was present along with short fibrils indicating that sonication leads to impure fibril samples and should be analyzed with caution. Our results corroborate the previous studies showing that sonication of prion and Aβ fibrils leads to the formation of toxic, soluble aggregates. We also show that the oligomeric forms are the most toxic species although it is unclear how sonication causes oligomer formation. Recent results suggest that these small toxic oligomers produced by sonication, rather than the stable fibrillar structures, are prion-like in nature displaying seeding and cross-seeding behavior.
Collapse
Affiliation(s)
- Gaurav Ghag
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexas 77555
- Department of NeurologyUniversity of Texas Medical BranchGalvestonTexas 77555
| | - Nemil Bhatt
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexas 77555
- Department of NeurologyUniversity of Texas Medical BranchGalvestonTexas 77555
| | - Daniel V. Cantu
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexas 77555
- Department of NeurologyUniversity of Texas Medical BranchGalvestonTexas 77555
| | - Marcos J. Guerrero‐Munoz
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexas 77555
- Department of NeurologyUniversity of Texas Medical BranchGalvestonTexas 77555
| | - Anna Ellsworth
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexas 77555
- Department of NeurologyUniversity of Texas Medical BranchGalvestonTexas 77555
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexas 77555
- Department of NeurologyUniversity of Texas Medical BranchGalvestonTexas 77555
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexas 77555
- Department of NeurologyUniversity of Texas Medical BranchGalvestonTexas 77555
| |
Collapse
|
84
|
Noyce A, Bandopadhyay R. Parkinson's Disease: Basic Pathomechanisms and a Clinical Overview. ADVANCES IN NEUROBIOLOGY 2018; 15:55-92. [PMID: 28674978 DOI: 10.1007/978-3-319-57193-5_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PD is a common and a debilitating degenerative movement disorder. The number of patients is increasing worldwide and as yet there is no cure for the disease. The majority of existing treatments target motor symptom control. Over the last two decades the impact of the genetic contribution to PD has been appreciated. Significant discoveries have been made, which have advanced our understanding of the pathophysiological and molecular basis of PD. In this chapter we outline current knowledge of the clinical aspects of PD and the basic mechanistic understanding.
Collapse
Affiliation(s)
- Alastair Noyce
- Department of Molecular Neuroscience, Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, 1, Wakefield Street, London, WC1N 1PJ, UK
| | - Rina Bandopadhyay
- Department of Molecular Neuroscience, Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, 1, Wakefield Street, London, WC1N 1PJ, UK.
| |
Collapse
|
85
|
CSF α-synuclein inversely correlates with non-motor symptoms in a cohort of PD patients. Parkinsonism Relat Disord 2018; 61:203-206. [PMID: 30348495 DOI: 10.1016/j.parkreldis.2018.10.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 10/02/2018] [Accepted: 10/15/2018] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Although non-motor symptoms are early and disabling features of PD, reliable predictors and effective therapies are not yet available. Measurement of CSF proteins mirroring brain pathology is currently utilized for diagnostic and prognostic clustering of patients with neurodegenerative diseases but the association with non-motor symptoms in PD has not been evaluated. Here we performed a cross-sectional correlation study, aimed at identifying potential fluid biomarkers for non-motor symptoms in PD. METHODS CSF levels of 42-amyloid-β, total and phosphorylated tau, α-synuclein and reciprocal ratios were measured in a group of 46 PD patients compared to 37 gender/age-matched controls and correlated with standard clinical scores for motor and non-motor features. RESULTS We observed that α-synuclein levels were reduced in PD (p < 0.05, AUC = 0.8; p < 0.05) and inversely correlated with non-motor symptoms scale total score and items 3 and 9, even independently from age, disease duration, motor impairment severity and dopaminergic treatment (T = -2,9, p < 0.014; T = -3.6, p < 0.05; item 9: T = -2.1, p < 0.05, respectively). CONCLUSIONS Our findings suggest that the reduction of CSF α-synuclein may parallel degeneration of non-dopaminergic systems. Although confirmatory studies are necessary, CSF α-synuclein reduction might represent a potential biomarker to monitor non-motor symptoms burden.
Collapse
|
86
|
Zhang X, Gao F, Wang D, Li C, Fu Y, He W, Zhang J. Tau Pathology in Parkinson's Disease. Front Neurol 2018; 9:809. [PMID: 30333786 PMCID: PMC6176019 DOI: 10.3389/fneur.2018.00809] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 09/07/2018] [Indexed: 02/03/2023] Open
Abstract
Tau protein—a member of the microtubule-associated protein family—is a key protein involved in many neurodegenerative diseases. Tau pathology in neurodegenerative diseases is characterized by pathological tau aggregation in neurofibrillary tangles (NFTs). Diseases with this typical pathological feature are called tauopathies. Parkinson's disease (PD) was not initially considered to be a typical tauopathy. However, recent studies have demonstrated increasing evidence of tau pathology in PD. A genome-wide association (GWA) study indicated a potential association between tauopathy and sporadic PD. The aggregation and deposition of tau were also observed in ~50% of PD brains, and it seems to be transported from neuron to neuron. The aggregation of NFTs, the abnormal hyperphosphorylation of tau protein, and the interaction between tau and alpha-synuclein may all contribute to the cell death and poor axonal transport observed in PD and Parkinsonism.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Fei Gao
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Dongdong Wang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Chao Li
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Yi Fu
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Wei He
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Jianmin Zhang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| |
Collapse
|
87
|
Jackson GR. Lifestyles of a Toxic Twosome: A Novel Tau Strain Induced by α-Synuclein Oligomers. Biol Psychiatry 2018; 84:472-473. [PMID: 30176989 DOI: 10.1016/j.biopsych.2018.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 10/28/2022]
Affiliation(s)
- George R Jackson
- Department of Neurology, Baylor College of Medicine, and the Parkinson's Disease Research, Education, and Clinical Center, Veterans Health Administration, Houston, Texas.
| |
Collapse
|
88
|
Castillo-Carranza DL, Guerrero-Muñoz MJ, Sengupta U, Gerson JE, Kayed R. α-Synuclein Oligomers Induce a Unique Toxic Tau Strain. Biol Psychiatry 2018; 84:499-508. [PMID: 29478699 PMCID: PMC6201292 DOI: 10.1016/j.biopsych.2017.12.018] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND The coexistence of α-synuclein and tau aggregates in several neurodegenerative disorders, including Parkinson's disease and Alzheimer's disease, raises the possibility that a seeding mechanism is involved in disease progression. METHODS To further investigate the role of α-synuclein in the tau aggregation pathway, we performed a set of experiments using both recombinant and brain-derived tau and α-synuclein oligomers to seed monomeric tau aggregation in vitro and in vivo. Brain-derived tau oligomers were isolated from well-characterized cases of progressive supranuclear palsy (n = 4) and complexes of brain-derived α-synuclein/tau oligomers isolated from patients with Parkinson's disease (n = 4). The isolated structures were purified and characterized by standard biochemical methods, then injected into Htau mice (n = 24) to assess their toxicity and role in tau aggregation. RESULTS We found that α-synuclein induced a distinct toxic tau oligomeric strain that avoids fibril formation. In vivo, Parkinson's disease brain-derived α-synuclein/tau oligomers administered into Htau mouse brains accelerated endogenous tau oligomer formation concurrent with increasing cell loss. CONCLUSIONS Our findings provide evidence, for the first time, that α-synuclein enhances the harmful effects of tau, thus contributing to disease progression.
Collapse
Affiliation(s)
| | | | | | | | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas.
| |
Collapse
|
89
|
Dolatshahi M, Pourmirbabaei S, Kamalian A, Ashraf-Ganjouei A, Yaseri M, Aarabi MH. Longitudinal Alterations of Alpha-Synuclein, Amyloid Beta, Total, and Phosphorylated Tau in Cerebrospinal Fluid and Correlations Between Their Changes in Parkinson's Disease. Front Neurol 2018; 9:560. [PMID: 30050494 PMCID: PMC6052894 DOI: 10.3389/fneur.2018.00560] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/21/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Parkinson's disease (PD) is characterized by proteinopathies and these proteinopathies seem to interact synergistically and lead to protein aggregations and changes in protein cerebrospinal fluid (CSF) levels. In this study, we aimed to explore the longitudinal changes of CSF a lpha-synuclein (α-syn), total tau (t-tau), phosphorylated tau (p-tau), and beta-amyloid (Aβ1-42) and their relationships with each other and with baseline clinical entities like REM sleep behavior disorder (RBD), cognitive impairment, motor symptoms, and olfaction dysfunction. Method: One hundred and twelve non-demented PD patients and 110 controls were recruited from Parkinson's Progression Markers Initiative (PPMI).We used a linear mixed model within groups to assess longitudinal protein changes over 6 and 12 months and a random regression coefficient within the linear mixed model to investigate the correlation between proteins and their baseline clinical characteristics. Results: P-tau was lower in PDs only at baseline, but during a year, p-tau increased more rapidly in PDs than controls. Aβ1-42 was not significantly different between groups at any separate timepoint; however, when assessed longitudinally, Aβ1-42 showed significant changes in both groups. Conversely, t-tau and α-syn differed significantly between groups, but their longitudinal changes were not significant in either of the groups. Moreover, all proteins' baseline levels, except p-tau, could determine estimated longitudinal tau changes. Baseline RBDSQ scores but not UPDRS III, MoCA, or UPSIT scores were predictive of longitudinal increase in α-syn levels. Conclusion: Longitudinal changes in levels of CSF proteins are related to each other and could help researchers further understand PD pathology. In addition, RBD seems to be a potential prognostic factor for PD progression. However, in order to reach a consensus, longer follow-up times are required.
Collapse
Affiliation(s)
- Mahsa Dolatshahi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Aida Kamalian
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mehdi Yaseri
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad H Aarabi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
90
|
Fathy YY, Jonker AJ, Oudejans E, de Jong FJJ, van Dam AMW, Rozemuller AJM, van de Berg WDJ. Differential insular cortex subregional vulnerability to α-synuclein pathology in Parkinson's disease and dementia with Lewy bodies. Neuropathol Appl Neurobiol 2018; 45:262-277. [PMID: 29797340 PMCID: PMC7380008 DOI: 10.1111/nan.12501] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/15/2018] [Indexed: 11/30/2022]
Abstract
Aim The insular cortex consists of a heterogenous cytoarchitecture and diverse connections and is thought to integrate autonomic, cognitive, emotional and interoceptive functions to guide behaviour. In Parkinson's disease (PD) and dementia with Lewy bodies (DLB), it reveals α‐synuclein pathology in advanced stages. The aim of this study is to assess the insular cortex cellular and subregional vulnerability to α‐synuclein pathology in well‐characterized PD and DLB subjects. Methods We analysed postmortem insular tissue from 24 donors with incidental Lewy body disease, PD, PD with dementia (PDD), DLB and age‐matched controls. The load and distribution of α‐synuclein pathology and tyrosine hydroxylase (TH) cells were studied throughout the insular subregions. The selective involvement of von Economo neurons (VENs) in the anterior insula and astroglia was assessed in all groups. Results A decreasing gradient of α‐synuclein pathology load from the anterior periallocortical agranular towards the intermediate dysgranular and posterior isocortical granular insular subregions was found. Few VENs revealed α‐synuclein inclusions while astroglial synucleinopathy was a predominant feature in PDD and DLB. TH neurons were predominant in the agranular and dysgranular subregions but did not reveal α‐synuclein inclusions or significant reduction in density in patient groups. Conclusions Our study highlights the vulnerability of the anterior agranular insula to α‐synuclein pathology in PD, PDD and DLB. Whereas VENs and astrocytes were affected in advanced disease stages, insular TH neurons were spared. Owing to the anterior insula's affective, cognitive and autonomic functions, its greater vulnerability to pathology indicates a potential contribution to nonmotor deficits in PD and DLB.
Collapse
Affiliation(s)
- Y Y Fathy
- Section Clinical Neuroanatomy, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - A J Jonker
- Section Clinical Neuroanatomy, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - E Oudejans
- Section Clinical Neuroanatomy, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - F J J de Jong
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - A-M W van Dam
- Section Clinical Neuroanatomy, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - A J M Rozemuller
- Department of Pathology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - W D J van de Berg
- Section Clinical Neuroanatomy, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
91
|
Aliakbari F, Mohammad-Beigi H, Rezaei-Ghaleh N, Becker S, Dehghani Esmatabad F, Eslampanah Seyedi HA, Bardania H, Tayaranian Marvian A, Collingwood JF, Christiansen G, Zweckstetter M, Otzen DE, Morshedi D. The potential of zwitterionic nanoliposomes against neurotoxic alpha-synuclein aggregates in Parkinson's Disease. NANOSCALE 2018; 10:9174-9185. [PMID: 29725687 DOI: 10.1039/c8nr00632f] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The protein α-synuclein (αSN) aggregates to form fibrils in neuronal cells of Parkinson's patients. Here we report on the effect of neutral (zwitterionic) nanoliposomes (NLPs), supplemented with cholesterol (NLP-Chol) and decorated with PEG (NLP-Chol-PEG), on αSN aggregation and neurotoxicity. Both NLPs retard αSN fibrillization in a concentration-independent fashion. They do so largely by increasing lag time (formation of fibrillization nuclei) rather than elongation (extension of existing nuclei). Interactions between neutral NLPs and αSN may locate to the N-terminus of the protein. This interaction can even perturb the interaction of αSN with negatively charged NLPs which induces an α-helical structure in αSN. This interaction was found to occur throughout the fibrillization process. Both NLP-Chol and NLP-Chol-PEG were shown to be biocompatible in vitro, and to reduce αSN neurotoxicity and reactive oxygen species (ROS) levels with no influence on intracellular calcium in neuronal cells, emphasizing a prospective role for NLPs in reducing αSN pathogenicity in vivo as well as utility as a vehicle for drug delivery.
Collapse
Affiliation(s)
- Farhang Aliakbari
- Bioprocess Engineering Research group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Salama M, Shalash A, Magdy A, Makar M, Roushdy T, Elbalkimy M, Elrassas H, Elkafrawy P, Mohamed W, Abou Donia MB. Tubulin and Tau: Possible targets for diagnosis of Parkinson's and Alzheimer's diseases. PLoS One 2018; 13:e0196436. [PMID: 29742117 PMCID: PMC5942772 DOI: 10.1371/journal.pone.0196436] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 04/12/2018] [Indexed: 11/29/2022] Open
Abstract
Neurodegenerative diseases including Alzheimer's disease (AD) and Parkinson's disease (PD) are characterized by progressive neuronal loss and pathological accumulation of some proteins. Developing new biomarkers for both diseases is highly important for the early diagnosis and possible development of neuro-protective strategies. Serum antibodies (AIAs) against neuronal proteins are potential biomarkers for AD and PD that may be formed in response to their release into systemic circulation after brain damage. In the present study, two AIAs (tubulin and tau) were measured in sera of patients of PD and AD, compared to healthy controls. Results showed that both antibodies were elevated in patients with PD and AD compared to match controls. Curiously, the profile of elevation of antibodies was different in both diseases. In PD cases, tubulin and tau AIAs levels were similar. On the other hand, AD patients showed more elevation of tau AIAs compared to tubulin. Our current results suggested that AIAs panel could be able to identify cases with neuro-degeneration when compared with healthy subjects. More interestingly, it is possible to differentiate between PD and AD cases through identifying specific AIAs profile for each neurodegenerative states.
Collapse
Affiliation(s)
- Mohamed Salama
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ali Shalash
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Alshimaa Magdy
- Biochemistry Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Marianne Makar
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Tamer Roushdy
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mahmoud Elbalkimy
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hanan Elrassas
- Okasha Institute of Psychiatry, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Wael Mohamed
- Department of Pharmacology, Faculty of Medicine, Menoufia University, Shebeen Elkoum, Egypt
- Basic Medical Science Department, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan Pahang, Malaysia
| | - Mohamed B. Abou Donia
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
93
|
Javidnia M, Hebron ML, Xin Y, Kinney NG, Moussa CEH. Pazopanib Reduces Phosphorylated Tau Levels and Alters Astrocytes in a Mouse Model of Tauopathy. J Alzheimers Dis 2018; 60:461-481. [PMID: 28869476 DOI: 10.3233/jad-170429] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hyperphosphorylation and aggregation of tau protein is a critical factor in many neurodegenerative diseases. These diseases are increasing in prevalence, and there are currently no cures. Previous work from our group and others has shown that tyrosine kinase inhibitors (TKIs) can stimulate autophagy, decrease pathological proteins, and improve symptoms in models of neurodegeneration. Here we examined the role of pazopanib in mouse models that express either human mutant P301L tau (TauP301L) or triple mutant amyloid precursor protein (3x-AβPP). The TauP301L mouse expresses P301L tau under the control of a prion promoter in both neurons and astrocytes, reminiscent of some human tauopathies. Pazopanib crosses the blood-brain barrier with no detectable peripheral off-side effects, and decreases p-tau in TauP301L mice. Pazopanib reaches a brain concentration sufficient for inhibition of several tyrosine kinases, including vascular endothelial growth factor receptors (VEGFRs). Further, pazopanib does not affect microglia but reduces astrocyte levels toward nontransgenic controls in TauP301L mice. Pazopanib does not alter amyloid beta levels or astrocytes in 3x-AβPP mice but modulates a number of inflammatory markers (IP-10, MIP-1α, MIP-1β, and RANTES). These data suggest that pazopanib may be involved in p-tau clearance and modulation of astrocytic activity in models of tauopathies.
Collapse
Affiliation(s)
- Monica Javidnia
- Department of Neurology, Laboratory for Dementiaand Parkinsonism, Translational Neurotherapeutics Program, Washington, DC, USA.,Department of Pharmacologyand Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - Michaeline L Hebron
- Department of Neurology, Laboratory for Dementiaand Parkinsonism, Translational Neurotherapeutics Program, Washington, DC, USA
| | - Yue Xin
- Department of Neurology, Laboratory for Dementiaand Parkinsonism, Translational Neurotherapeutics Program, Washington, DC, USA
| | - Nikolas G Kinney
- Department of Neurology, Laboratory for Dementiaand Parkinsonism, Translational Neurotherapeutics Program, Washington, DC, USA
| | - Charbel E-H Moussa
- Department of Neurology, Laboratory for Dementiaand Parkinsonism, Translational Neurotherapeutics Program, Washington, DC, USA
| |
Collapse
|
94
|
Gerson JE, Farmer KM, Henson N, Castillo-Carranza DL, Carretero Murillo M, Sengupta U, Barrett A, Kayed R. Tau oligomers mediate α-synuclein toxicity and can be targeted by immunotherapy. Mol Neurodegener 2018; 13:13. [PMID: 29544548 PMCID: PMC5856311 DOI: 10.1186/s13024-018-0245-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/07/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We have evaluated the efficacy of targeting the toxic, oligomeric form of tau protein by passive immunotherapy in a mouse model of synucleinopathy. Parkinson's disease and Lewy body dementia are two of the most common neurodegenerative disorders and are primarily characterized by the accumulation of α-synuclein in Lewy bodies. However, evidence shows that smaller, oligomeric aggregates are likely the most toxic form of the protein. Moreover, a large body of research suggests that α-synuclein interacts with tau in disease and may act in a synergistic mechanism, implicating tau oligomers as a potential therapeutic target. METHODS We treated seven-month-old mice overexpressing mutated α-synuclein (A53T mice) with tau oligomer-specific monoclonal antibody (TOMA) and a control antibody and assessed both behavioral and pathological phenotypes. RESULTS We found that A53T mice treated with TOMA were protected from cognitive and motor deficits two weeks after a single injection. Levels of toxic tau oligomers were specifically decreased in the brains of TOMA-treated mice. Tau oligomer depletion also protected against dopamine and synaptic protein loss. CONCLUSION These results indicate that targeting tau oligomers is beneficial for a mouse model of synucleinopathy and may be a viable therapeutic strategy for treating diseases in which tau and α-synuclein have a synergistic toxicity.
Collapse
Affiliation(s)
- Julia E Gerson
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.,Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Kathleen M Farmer
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Natalie Henson
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Diana L Castillo-Carranza
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Mariana Carretero Murillo
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Urmi Sengupta
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Alan Barrett
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Rakez Kayed
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA. .,Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
95
|
Daniele S, Frosini D, Pietrobono D, Petrozzi L, Lo Gerfo A, Baldacci F, Fusi J, Giacomelli C, Siciliano G, Trincavelli ML, Franzoni F, Ceravolo R, Martini C, Bonuccelli U. α-Synuclein Heterocomplexes with β-Amyloid Are Increased in Red Blood Cells of Parkinson's Disease Patients and Correlate with Disease Severity. Front Mol Neurosci 2018; 11:53. [PMID: 29520218 PMCID: PMC5827358 DOI: 10.3389/fnmol.2018.00053] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/07/2018] [Indexed: 02/02/2023] Open
Abstract
Neurodegenerative disorders (NDs) are characterized by abnormal accumulation/misfolding of specific proteins, primarily α-synuclein (α-syn), β-amyloid1-42 (Aβ1-42) and tau, in both brain and peripheral tissues. In addition to oligomers, the role of the interactions of α-syn with Aβ or tau has gradually emerged. Nevertheless, despite intensive research, NDs have no accepted peripheral markers for biochemical diagnosis. In this respect, Red Blood Cells (RBCs) are emerging as a valid peripheral model for the study of aging-related pathologies. Herein, a small cohort (N = 28) of patients affected by Parkinson's disease (PD) and age-matched controls were enrolled to detect the content of α-syn (total and oligomeric), Aβ1-42 and tau (total and phosphorylated) in RBCs. Moreover, the presence of α-syn association with tau and Aβ1-42 was explored by co-immunoprecipitation/western blotting in the same cells, and quantitatively confirmed by immunoenzymatic assays. For the first time, PD patients were demonstrated to exhibit α-syn heterocomplexes with Aβ1-42 and tau in peripheral tissues; interestingly, α-syn-Aβ1-42 concentrations were increased in PD subjects with respect to healthy controls (HC), and directly correlated with disease severity and motor deficits. Moreover, total-α-syn levels were decreased in PD subjects and inversely related to their motor deficits. Finally, an increase of oligomeric-α-syn and phosphorylated-tau was observed in RBCs of the enrolled patients. The combination of three parameters (total-α-syn, phosphorylated-tau and α-syn-Aβ1-42 concentrations) provided the best fitting predictive index for discriminating PD patients from controls. Nevertheless further investigations should be required, overall, these data suggest α-syn hetero-aggregates in RBCs as a putative tool for the diagnosis of PD.
Collapse
Affiliation(s)
| | - Daniela Frosini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Lucia Petrozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Annalisa Lo Gerfo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Jonathan Fusi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Ferdinando Franzoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Ubaldo Bonuccelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
96
|
Villar-Piqué A, Schmitz M, Candelise N, Ventura S, Llorens F, Zerr I. Molecular and Clinical Aspects of Protein Aggregation Assays in Neurodegenerative Diseases. Mol Neurobiol 2018; 55:7588-7605. [DOI: 10.1007/s12035-018-0926-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/24/2018] [Indexed: 12/20/2022]
|
97
|
Daniele S, Pietrobono D, Fusi J, Lo Gerfo A, Cerri E, Chico L, Iofrida C, Petrozzi L, Baldacci F, Giacomelli C, Galetta F, Siciliano G, Bonuccelli U, Trincavelli ML, Franzoni F, Martini C. α-Synuclein Aggregated with Tau and β-Amyloid in Human Platelets from Healthy Subjects: Correlation with Physical Exercise. Front Aging Neurosci 2018; 10:17. [PMID: 29441013 PMCID: PMC5797553 DOI: 10.3389/fnagi.2018.00017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/15/2018] [Indexed: 12/19/2022] Open
Abstract
The loss of protein homeostasis that has been associated with aging leads to altered levels and conformational instability of proteins, which tend to form toxic aggregates. In particular, brain aging presents characteristic patterns of misfolded oligomers, primarily constituted of β-amyloid (Aβ), tau, and α-synuclein (α-syn), which can accumulate in neuronal membranes or extracellular compartments. Such aging-related proteins can also reach peripheral compartments, thus suggesting the possibility to monitor their accumulation in more accessible fluids. In this respect, we have demonstrated that α-syn forms detectable hetero-aggregates with Aβ or tau in red blood cells (RBCs) of healthy subjects. In particular, α-syn levels and its heteromeric interactions are modulated by plasma antioxidant capability (AOC), which increases in turn with physical activity. In order to understand if a specific distribution of misfolded proteins can occur in other blood cells, a cohort of human subjects was enrolled to establish a correlation among AOC, the level of physical exercise and the concentrations of aging-related proteins in platelets. The healthy subjects were divided depending on their level of physical exercise (i.e., athletes and sedentary subjects) and their age (young and older subjects). Herein, aging-related proteins (i.e., α-syn, tau and Aβ) were confirmed to be present in human platelets. Among such proteins, platelet tau concentration was demonstrated to decrease in athletes, while α-syn and Aβ did not correlate with physical exercise. For the first time, α-syn was shown to directly interact with Aβ and tau in platelets, forming detectable hetero-complexes. Interestingly, α-syn interaction with tau was inversely related to plasma AOC and to the level of physical activity. These results suggested that α-syn heterocomplexes, particularly with tau, could represent novel indicators to monitor aging-related proteins in platelets.
Collapse
Affiliation(s)
| | | | - Jonathan Fusi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Annalisa Lo Gerfo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eugenio Cerri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lucia Chico
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Lucia Petrozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Fabio Galetta
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ubaldo Bonuccelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Ferdinando Franzoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | |
Collapse
|
98
|
Cisbani G, Maxan A, Kordower JH, Planel E, Freeman TB, Cicchetti F. Presence of tau pathology within foetal neural allografts in patients with Huntington's and Parkinson's disease. Brain 2017; 140:2982-2992. [PMID: 29069396 DOI: 10.1093/brain/awx255] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/05/2017] [Indexed: 11/12/2022] Open
Abstract
Cell replacement has been explored as a therapeutic strategy to repair the brain in patients with Huntington's and Parkinson's disease. Post-mortem evaluations of healthy grafted tissue in such cases have revealed the development of Huntington- or Parkinson-like pathology including mutant huntingtin aggregates and Lewy bodies. An outstanding question remains if tau pathology can also be seen in patients with Huntington's and Parkinson's disease who had received foetal neural allografts. This was addressed by immunohistochemical/immunofluorescent stainings performed on grafted tissue of two Huntington's disease patients, who came to autopsy 9 and 12 years post-transplantation, and two patients with Parkinson's disease who came to autopsy 18 months and 16 years post-transplantation. We show that grafts also contain tau pathology in both types of transplanted patients. In two patients with Huntington's disease, the grafted tissue showed the presence of hyperphosphorylated tau [both AT8 (phospho-tau Ser202 and Thr205) and CP13 (pSer202) immunohistochemical stainings] pathological inclusions, neurofibrillary tangles and neuropil threads. In patients with Parkinson's disease, the grafted tissue was characterized by hyperphosphorylated tau (AT8; immunofluorescent staining) pathological inclusions, neurofibrillary tangles and neuropil threads but only in the patient who came to autopsy 16 years post-transplantation. Abundant tau-related pathology was observed in the cortex and striatum of all cases studied. While the striatum of the grafted Huntington's disease patient revealed an equal amount of 3-repeat and 4-repeat isoforms of tau, the grafted tissue showed elevated 4-repeat isoforms by western blot. This suggests that transplants may have acquired tau pathology from the host brain, although another possibility is that this was due to acceleration of ageing. This finding not only adds to the recent reports that tau pathology is a feature of these neurodegenerative diseases, but also that tau pathology can manifest in healthy neural tissue transplanted into the brains of patients with two distinct neurodegenerative disorders.
Collapse
Affiliation(s)
- Giulia Cisbani
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC, Canada
| | - Alexander Maxan
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC, Canada
| | - Jeffrey H Kordower
- Department of Neurological Sciences and Center for Brain Repair, Rush University Medical Center, Chicago, IL 60612, USA
| | - Emmanuel Planel
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC, Canada.,Département de Psychiatrie and Neurosciences, Université Laval, Québec, QC, Canada
| | - Thomas B Freeman
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33606-3571, USA.,Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, FL 33606-3571, USA
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC, Canada.,Département de Psychiatrie and Neurosciences, Université Laval, Québec, QC, Canada
| |
Collapse
|
99
|
Spires-Jones TL, Attems J, Thal DR. Interactions of pathological proteins in neurodegenerative diseases. Acta Neuropathol 2017; 134:187-205. [PMID: 28401333 PMCID: PMC5508034 DOI: 10.1007/s00401-017-1709-7] [Citation(s) in RCA: 292] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/30/2017] [Accepted: 04/01/2017] [Indexed: 02/06/2023]
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), frontotemporal lobar degeneration (FTD), Lewy body disease (LBD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) have in common that protein aggregates represent pathological hallmark lesions. Amyloid β-protein, τ-protein, α-synuclein, and TDP-43 are the most frequently aggregated proteins in these disorders. Although they are assumed to form disease-characteristic aggregates, such as amyloid plaques and neurofibrillary tangles in AD or Lewy bodies in LBD/PD, they are not restricted to these clinical presentations. They also occur in non-diseased individuals and can co-exist in the same brain without or with a clinical picture of a distinct dementing or movement disorder. In this review, we discuss the co-existence of these pathologies and potential additive effects in the human brain as well as related functional findings on cross-seeding and molecular interactions between these aggregates/proteins. We conclude that there is evidence for interactions at the molecular level as well as for additive effects on brain damage by multiple pathologies occurring in different functionally important neurons. Based upon this information, we hypothesize a cascade of events that may explain general mechanisms in the development of neurodegenerative disorders: (1) distinct lesions are a prerequisite for the development of a distinct disease (e.g., primary age-related tauopathy for AD), (2) disease-specific pathogenic events further trigger the development of a specific disease (e.g., Aβ aggregation in AD that exaggerate further Aβ and AD-related τ pathology), (3) the symptomatic disease manifests, and (4) neurodegenerative co-pathologies may be either purely coincidental or (more likely) have influence on the disease development and/or its clinical presentation.
Collapse
Affiliation(s)
- Tara L Spires-Jones
- Centre for Dementia Prevention, and Euan MacDonald Centre for Motor Neurone Disease, The University of Edinburgh Centre for Cognitive and Neural Systems, 1 George Square, Edinburgh, EH8 9JZ, UK.
| | - Johannes Attems
- Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Dietmar Rudolf Thal
- Departement Neurowetenschappen, Katholieke Universiteit Leuven, Herestraat 49, 3000, Leuven, Belgium
- Departement Pathologische Ontleedkunde, UZ Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
100
|
Perez-Soriano A, Arena JE, Dinelle K, Miao Q, McKenzie J, Neilson N, Puschmann A, Schaffer P, Shinotoh H, Smith-Forrester J, Shahinfard E, Vafai N, Wile D, Wszolek Z, Higuchi M, Sossi V, Stoessl AJ. PBB3 imaging in Parkinsonian disorders: Evidence for binding to tau and other proteins. Mov Disord 2017; 32:1016-1024. [DOI: 10.1002/mds.27029] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/25/2017] [Accepted: 03/30/2017] [Indexed: 01/06/2023] Open
Affiliation(s)
- Alexandra Perez-Soriano
- Pacific Parkinson's Research Centre; Division of Neurology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia & Vancouver Coastal Health; Vancouver BC Canada
| | - Julieta E. Arena
- Pacific Parkinson's Research Centre; Division of Neurology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia & Vancouver Coastal Health; Vancouver BC Canada
| | - Katie Dinelle
- Pacific Parkinson's Research Centre; Division of Neurology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia & Vancouver Coastal Health; Vancouver BC Canada
- Department of Physics & Astronomy; University of British Columbia; Vancouver BC Canada
| | | | - Jessamyn McKenzie
- Pacific Parkinson's Research Centre; Division of Neurology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia & Vancouver Coastal Health; Vancouver BC Canada
| | - Nicole Neilson
- Pacific Parkinson's Research Centre; Division of Neurology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia & Vancouver Coastal Health; Vancouver BC Canada
| | - Andreas Puschmann
- Department of Clinical Sciences; Lund University, Skåne University Hospital; Lund Sweden
| | | | | | - Jenna Smith-Forrester
- Pacific Parkinson's Research Centre; Division of Neurology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia & Vancouver Coastal Health; Vancouver BC Canada
- Department of Physics & Astronomy; University of British Columbia; Vancouver BC Canada
| | - Elham Shahinfard
- Pacific Parkinson's Research Centre; Division of Neurology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia & Vancouver Coastal Health; Vancouver BC Canada
- Department of Physics & Astronomy; University of British Columbia; Vancouver BC Canada
| | - Nasim Vafai
- Pacific Parkinson's Research Centre; Division of Neurology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia & Vancouver Coastal Health; Vancouver BC Canada
- Department of Physics & Astronomy; University of British Columbia; Vancouver BC Canada
| | - Daryl Wile
- Pacific Parkinson's Research Centre; Division of Neurology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia & Vancouver Coastal Health; Vancouver BC Canada
| | | | - Makoto Higuchi
- National Institute of Radiological Sciences; Chiba Japan
| | - Vesna Sossi
- Pacific Parkinson's Research Centre; Division of Neurology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia & Vancouver Coastal Health; Vancouver BC Canada
- Department of Physics & Astronomy; University of British Columbia; Vancouver BC Canada
| | - A. Jon Stoessl
- Pacific Parkinson's Research Centre; Division of Neurology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia & Vancouver Coastal Health; Vancouver BC Canada
| |
Collapse
|