51
|
Xie Y, Wang N, Sun X, Chu H, Wang Y, Hu X. Triple-signaling amplification strategy based electrochemical sensor design: boosting synergistic catalysis in metal-metalloporphyrin-covalent organic frameworks for sensitive bisphenol A detection. Analyst 2021; 146:4585-4594. [PMID: 34159957 DOI: 10.1039/d1an00665g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A covalent organic framework (COF) is a promising type of porous material with customizable surface characteristics. Confining multiple catalytic units within a mesoporous COF can generate abundant active sites and improve the catalytic performance. In this work, a COF with both metalloporphyrin and a metal nanoparticle complex denoted as hemin/TAPB-DMTP-COF/AuNPs (TAPB: 1,3,5-tris(4-amino-phenyl)benzene, DMTP: 2,5-dimethoxyterephaldehyde, AuNPs: Au nanoparticles) has been successfully fabricated through a hierarchical encapsulation method. The as-synthesized composite was then employed to construct an electrochemical sensing platform for the efficient detection of bisphenol A (BPA). Under the optimal conditions, the hemin/TAPB-DMTP-COF/AuNP sensor presented a linear range of 0.01-3 μmol L-1 and a low detection limit of 3.5 nmol L-1. The satisfactory signal amplification is based on a triple-signaling amplification strategy due to the abundant Fe3+ sites of Fe-porphyrin, high conductivity of AuNPs and a large specific surface area of the TAPB-DMTP-COF. The proposed method was used to measure the content of BPA in different water samples with a satisfactory recovery from 95.5 to 104.0%, suggesting the great potential of the sensor in practical applications.
Collapse
Affiliation(s)
- Yao Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| | - Na Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University, 200240, China
| | - Xin Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| | - Huacong Chu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| |
Collapse
|
52
|
Cheng W, Tang X, Zhang Y, Wu D, Yang W. Applications of metal-organic framework (MOF)-based sensors for food safety: Enhancing mechanisms and recent advances. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
53
|
Khan R, Radoi A, Rashid S, Hayat A, Vasilescu A, Andreescu S. Two-Dimensional Nanostructures for Electrochemical Biosensor. SENSORS (BASEL, SWITZERLAND) 2021; 21:3369. [PMID: 34066272 PMCID: PMC8152006 DOI: 10.3390/s21103369] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022]
Abstract
Current advancements in the development of functional nanomaterials and precisely designed nanostructures have created new opportunities for the fabrication of practical biosensors for field analysis. Two-dimensional (2D) and three-dimensional (3D) nanomaterials provide unique hierarchical structures, high surface area, and layered configurations with multiple length scales and porosity, and the possibility to create functionalities for targeted recognition at their surface. Such hierarchical structures offer prospects to tune the characteristics of materials-e.g., the electronic properties, performance, and mechanical flexibility-and they provide additional functions such as structural color, organized morphological features, and the ability to recognize and respond to external stimuli. Combining these unique features of the different types of nanostructures and using them as support for bimolecular assemblies can provide biosensing platforms with targeted recognition and transduction properties, and increased robustness, sensitivity, and selectivity for detection of a variety of analytes that can positively impact many fields. Herein, we first provide an overview of the recently developed 2D nanostructures focusing on the characteristics that are most relevant for the design of practical biosensors. Then, we discuss the integration of these materials with bio-elements such as bacteriophages, antibodies, nucleic acids, enzymes, and proteins, and we provide examples of applications in the environmental, food, and clinical fields. We conclude with a discussion of the manufacturing challenges of these devices and opportunities for the future development and exploration of these nanomaterials to design field-deployable biosensors.
Collapse
Affiliation(s)
- Reem Khan
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA;
| | - Antonio Radoi
- National Institute for Research and Development in Microtechnology—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Voluntari, Romania;
| | - Sidra Rashid
- IRCBM, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan; (S.R.); (A.H.)
| | - Akhtar Hayat
- IRCBM, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan; (S.R.); (A.H.)
| | - Alina Vasilescu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania;
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA;
| |
Collapse
|
54
|
Xiang Y, Yan H, Zheng B, Faheem A, Chen W, Hu Y. E. coli@UiO-67 composites as a recyclable adsorbent for bisphenol A removal. CHEMOSPHERE 2021; 270:128672. [PMID: 33109363 DOI: 10.1016/j.chemosphere.2020.128672] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/11/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
E. coli@UiO-67 composites were obtained using an effective and simple self-assembly method. The composites showed unique properties as a remarkable and recyclable adsorbent for the efficient removal of bisphenol A (BPA) from water with a high adsorption capacity (402.930 mg g-1). The increase in pore size is a key factor why E. coli@UiO-67 composites maintained high capacity. The reason might be due to that the composites with large pore sizes and defects could effectively improve mass transport and active molecular metal sites. The adsorption of BPA is a chemisorption process due to the Zr-OH groups in UiO-67 exhibit affinity toward BPA molecules, π-π interaction, and electrostatic attraction. The adsorption efficiency remained at 82.5% after 15 cycles without any remarkable changes in the PXRD patterns of E. coli@UiO-67. Moreover, the use of microorganism-loading MOFs could reduce the cost to at least 50% and minimize secondary pollution through nanoscale MOFs usage reduction. The developed composites have advantages, including low-cost, high adsorption capacity, easy to be separated and regenerated from aqueous solution, a large number of cycles, short adsorption equilibrium time, and stability, showing excellent application prospects. The presented strategy would be a potentially promising way to produce novel MOFs-based adsorbents with high-performance to control environmental pollution from wastewater.
Collapse
Affiliation(s)
- Yuqiang Xiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huaduo Yan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bingjie Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aroosha Faheem
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yonggang Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
55
|
Sun P, Liu X, Zhang M, Li Z, Cao C, Shi H, Yang Y, Zhao Y. Sorption and leaching behaviors between aged MPs and BPA in water: The role of BPA binding modes within plastic matrix. WATER RESEARCH 2021; 195:116956. [PMID: 33676178 DOI: 10.1016/j.watres.2021.116956] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Due to the hydrophobicity and large specific surface area microplastics (MPs) have become the vector for the migration of environmental organic pollutants. Environmental aging process affects the physiochemical structure of MPs and their corresponding environmental behaviors, in which the effect of bisphenol A (BPA) binding mode within plastic matrix on aging behaviors of MPs is not reported. In this work, the structural properties and BPA sorption behaviors of low density polyethylene (LDPE) MPs with BPA additives and polycarbonate (PC) MPs with BPA monomers exposed to three types of artificial accelerated aging processes including UV/H2O, UV/H2O2, and UV/Cl2 systems were comparatively investigated. Virgin LDPE and PC exhibited obvious leakage of BPA additives or monomers. Aged LDPE had stronger sorption ability towards BPA in water environment with no observed leakage of BPA additives. While, aged PC had extremely high leakage of BPA monomers, which is similar to virgin PCs and was proved to be a persistent source of BPA release. The BPA sorption on aged LDPE or leaching from aged PC was influenced by aging processes, water pH, salinity, co-existing estradiol (E2), and water sources. This study reveals the potential ecological and environmental risks of MPs containing toxic additives/monomers during aging processes from a new perspective.
Collapse
Affiliation(s)
- Peipei Sun
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, and Institute of Eco-Chongming, Shanghai 200241, China
| | - Xuemin Liu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, and Institute of Eco-Chongming, Shanghai 200241, China
| | - Minghui Zhang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, and Institute of Eco-Chongming, Shanghai 200241, China
| | - Zhongchen Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, and Institute of Eco-Chongming, Shanghai 200241, China
| | - Chengjin Cao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, and Institute of Eco-Chongming, Shanghai 200241, China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Yi Yang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, Shanghai 200241, China
| | - Yaping Zhao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, and Institute of Eco-Chongming, Shanghai 200241, China.
| |
Collapse
|
56
|
|
57
|
Metal-organic frameworks for food applications: A review. Food Chem 2021; 354:129533. [PMID: 33743447 DOI: 10.1016/j.foodchem.2021.129533] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/24/2022]
Abstract
Metal-organic frameworks (MOFs) are high surface-to-volume ratio crystalline hybrid porous coordination materials composed of metal ions as nodes and organic linkers. The goal of this paper was to provide an updated and comprehensive state-of-the-art review of MOFs for different food applications such as active food contact materials, antimicrobial nanocarriers, controlled release nanosystems for active compounds, nanofillers for food packaging materials, food nanoreactors, food substance nanosensors, stabilizers and immobilizers for active compounds and enzymes, and extractors of food contaminants. Extraction and sensing of several food contaminants have been the main food applications of MOFs. The other applications listed above require further investigation, as they are at an early stage. However, interesting results are being reported for these other fields. Finally, an important limitation of MOFs has been the use of non-renewable feedstocks for their synthesis, but this has recently been solved through the manufacture and use of γ-cyclodextrin-based MOFs.
Collapse
|
58
|
Yu L, Cheng J, Yang H, Lv J, Wang P, Li JR, Su X. Simultaneous adsorption and determination of bisphenol compounds in water medium with a Zr(IV)-based metal-organic framework. Mikrochim Acta 2021; 188:83. [PMID: 33585953 DOI: 10.1007/s00604-021-04742-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/30/2021] [Indexed: 12/21/2022]
Abstract
A chemically stable Zr(IV)-based metal-organic framework (BUT-17) has been explored for simultaneous adsorption and determination of bisphenol compounds (BPs) in aqueous medium. The prepared BUT-17 possesses a large surface area (2936 m2 g-1) and excellent fluorescent performance. An adsorption capacity of 111 mg g-1 for bisphenol A (BPA) with a rapid adsorption rate (1.76 g mg-1 min-1) is achieved by BUT-17. The excellent adsorption performance could be attributed to the hydrogen bond interaction between BPs and BUT-17. Furthermore, the fluorescent intensity of BUT-17 was quenched up to 92% due to the formation of complexes between BPs and BUT-17. Thus, a BUT-17-based fluorescent sensing method for the rapid determination of BPs has been established with the limit of detection of 10.0 ng mL-1 for BPA and a linear range from 2.0 to 23.0 μg mL-1. These results indicate that as an outstanding multifunctional platform, BUT-17 is promising for the simultaneous removal and determination of BPs in water medium. Simultaneous removal and detection of BPs with BUT-17.
Collapse
Affiliation(s)
- Liming Yu
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jie Cheng
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Haosen Yang
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jie Lv
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Peilong Wang
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Xiaoou Su
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| |
Collapse
|
59
|
Moloto W, Mbule P, Nxumalo E, Ntsendwana B. Stabilizing effects of zinc(II)-benzene-1,3,5-tricarboxylate metal organic frameworks on the performance of TiO2 photoanodes for use in dye-sensitized solar cells. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
60
|
Electrochemical Detection of Bisphenol A by Tyrosinase Immobilized on Electrospun Nanofibers Decorated with Gold Nanoparticles. ELECTROCHEM 2021. [DOI: 10.3390/electrochem2010004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) employed in industrial processes that causes adverse effects on the environment and human health. Sensitive and inexpensive methods to detect BPA are therefore needed. In this paper, we describe an electrochemical biosensor for detecting low levels of BPA using polymeric electrospun nanofibers of polyamide 6 (PA6) and poly(allylamine hydrochloride) (PAH) decorated with gold nanoparticles (AuNPs), namely, PA6/PAH@AuNPs, which were deposited onto a fluorine-doped tin oxide (FTO) substrate. The hybrid layer was excellent for the immobilization of tyrosinase (Tyr), which allowed an amperometric detection of BPA with a limit of detection of 0.011 μM in the concentration range from 0.05 to 20 μM. Detection was also possible in real water samples with recoveries in the range of 92–105%. The improved sensing performance is attributed to the combined effect of the large surface area and porosity of PA6/PAH nanofibers, the catalytic activity of AuNPs, and oxidoreductase ability of Tyr. These results provide a route for novel biosensing architectures to monitor BPA and other EDCs in water resources.
Collapse
|
61
|
Liang W, Wied P, Carraro F, Sumby CJ, Nidetzky B, Tsung CK, Falcaro P, Doonan CJ. Metal–Organic Framework-Based Enzyme Biocomposites. Chem Rev 2021; 121:1077-1129. [DOI: 10.1021/acs.chemrev.0c01029] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Weibin Liang
- Department of Chemistry and Centre for Advanced Nanomaterials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Peter Wied
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Francesco Carraro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Christopher J. Sumby
- Department of Chemistry and Centre for Advanced Nanomaterials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/1, 8010 Graz, Austria
| | - Chia-Kuang Tsung
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Christian J. Doonan
- Department of Chemistry and Centre for Advanced Nanomaterials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
62
|
Wu JY, Hu ZJ, Sung HL. A water-stable molecular cadmium phosphonate bearing 2-(2-pyridyl)benzimidazole as a highly sensitive luminescence sensor for the selective detection of bisphenol AF and bisphenol B. CrystEngComm 2021. [DOI: 10.1039/d0ce01740j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A highly water-stable molecular cadmium phosphonate bearing 2-(2-pyridyl)benzimidazole has been used as a sensor platform for the luminescence detection of bisphenol AF (BPAF) and bisphenol B (BPB) in water with good sensitivity and selectivity.
Collapse
Affiliation(s)
- Jing-Yun Wu
- Department of Applied Chemistry
- National Chi Nan University
- Taiwan
| | - Zhi-Jia Hu
- Department of Applied Chemistry
- National Chi Nan University
- Taiwan
| | - Hui-Ling Sung
- Division of Preparatory Programs for Overseas Chinese Students
- National Taiwan Normal University
- New Taipei City 244
- Taiwan
| |
Collapse
|
63
|
Liu S, Lai C, Liu X, Li B, Zhang C, Qin L, Huang D, Yi H, Zhang M, Li L, Wang W, Zhou X, Chen L. Metal-organic frameworks and their derivatives as signal amplification elements for electrochemical sensing. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213520] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
64
|
Bensana A, Achi F. Analytical performance of functional nanostructured biointerfaces for sensing phenolic compounds. Colloids Surf B Biointerfaces 2020; 196:111344. [PMID: 32877829 DOI: 10.1016/j.colsurfb.2020.111344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/09/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022]
Abstract
Electrochemical biointerfaces are constructed with a wide range of nanomaterials and conducting polymers that strongly affect the analytical performance of biosensors. The analysis of progress toward electrochemical sensing platforms offers opportunities to provide devices for commercial use. The investigation of different methods for the synthesis of phenol biointerfaces leads to design challenges in the field of monitoring phenolic compounds. This paper review the innovative strategies and feature techniques in the construction of phenolic compound biosensors. The focus was made on the preparation methods of nanostructures and nanomaterials design for catalytic improvements of sensing interfaces. The paper also provides a comprehensive overview in the field of enzyme immobilization approaches at solid supports and technical formation of polymer nanocomposites, as well as applications of hybrid organic-inorganic nanocomposites in phenolic biosensors. This review also highlights the recent progress in the electrochemical detection of phenolic compounds and summarizes analytical performance parameters including sensitivity, storage stability, limit of detection, linear range, and Michaelis-Menten kinetic analysis. It also emphasizes advances from the past decade including technical challenges for the construction of suitable biointerfaces for monitoring phenolic compounds.
Collapse
Affiliation(s)
- Amira Bensana
- Departement of Process Engineering, Laboratoire de Génie des Procédés Chimiques (LGPC), Faculty of Technology, Ferhat Abbas University Sétif-1-, Setif, 19000, Algeria
| | - Fethi Achi
- Laboratory of Valorisation and Promotion of Saharian Ressources (VPSR), Kasdi Merbah University, Ouargla, 30000, Algeria.
| |
Collapse
|
65
|
Kong W, Xiang MH, Xia L, Zhang M, Kong RM, Qu F. In-situ synthesis of 3D Cu2O@Cu-based MOF nanobelt arrays with improved conductivity for sensitive photoelectrochemical detection of vascular endothelial growth factor 165. Biosens Bioelectron 2020; 167:112481. [DOI: 10.1016/j.bios.2020.112481] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/08/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022]
|
66
|
Tyrosinase nanocapsule based nano-biosensor for ultrasensitive and rapid detection of bisphenol A with excellent stability in different application scenarios. Biosens Bioelectron 2020; 165:112407. [DOI: 10.1016/j.bios.2020.112407] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/02/2020] [Accepted: 06/21/2020] [Indexed: 12/23/2022]
|
67
|
Rodriguez-Abetxuko A, Sánchez-deAlcázar D, Muñumer P, Beloqui A. Tunable Polymeric Scaffolds for Enzyme Immobilization. Front Bioeng Biotechnol 2020; 8:830. [PMID: 32850710 PMCID: PMC7406678 DOI: 10.3389/fbioe.2020.00830] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
The number of methodologies for the immobilization of enzymes using polymeric supports is continuously growing due to the developments in the fields of biotechnology, polymer chemistry, and nanotechnology in the last years. Despite being excellent catalysts, enzymes are very sensitive molecules and can undergo denaturation beyond their natural environment. For overcoming this issue, polymer chemistry offers a wealth of opportunities for the successful combination of enzymes with versatile natural or synthetic polymers. The fabrication of functional, stable, and robust biocatalytic hybrid materials (nanoparticles, capsules, hydrogels, or films) has been proven advantageous for several applications such as biomedicine, organic synthesis, biosensing, and bioremediation. In this review, supported with recent examples of enzyme-protein hybrids, we provide an overview of the methods used to combine both macromolecules, as well as the future directions and the main challenges that are currently being tackled in this field.
Collapse
Affiliation(s)
| | | | - Pablo Muñumer
- PolyZymes group, POLYMAT and Department of Applied Chemistry (UPV/EHU), San Sebastián, Spain
| | - Ana Beloqui
- PolyZymes group, POLYMAT and Department of Applied Chemistry (UPV/EHU), San Sebastián, Spain
- Department of Applied Chemistry, University of the Basque Country, San Sebastián, Spain
- IKERBASQUE, Bilbao, Spain
| |
Collapse
|
68
|
Raymundo-Pereira PA, Silva TA, Caetano FR, Ribovski L, Zapp E, Brondani D, Bergamini MF, Marcolino LH, Banks CE, Oliveira ON, Janegitz BC, Fatibello-Filho O. Polyphenol oxidase-based electrochemical biosensors: A review. Anal Chim Acta 2020; 1139:198-221. [PMID: 33190704 DOI: 10.1016/j.aca.2020.07.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
The detection of phenolic compounds is relevant not only for their possible benefits to human health but also for their role as chemical pollutants, including as endocrine disruptors. The required monitoring of such compounds on-site or in field analysis can be performed with electrochemical biosensors made with polyphenol oxidases (PPO). In this review, we describe biosensors containing the oxidases tyrosinase and laccase, in addition to crude extracts and tissues from plants as enzyme sources. From the survey in the literature, we found that significant advances to obtain sensitive, robust biosensors arise from the synergy reached with a diversity of nanomaterials employed in the matrix. These nanomaterials are mostly metallic nanoparticles and carbon nanostructures, which offer a suitable environment to preserve the activity of the enzymes and enhance electron transport. Besides presenting a summary of contributions to electrochemical biosensors containing PPOs in the last five years, we discuss the trends and challenges to take these biosensors to the market, especially for biomedical applications.
Collapse
Affiliation(s)
| | - Tiago A Silva
- Departamento de Metalurgia e Química, Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), 35180-008, Timóteo, MG, Brazil
| | - Fábio R Caetano
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal Do Paraná (UFPR), 81.531-980, Curitiba, PR, Brazil
| | - Laís Ribovski
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Eduardo Zapp
- Department of Exact Sciences and Education, Federal University of Santa Catarina, 89036-256, Brazil
| | - Daniela Brondani
- Department of Exact Sciences and Education, Federal University of Santa Catarina, 89036-256, Brazil
| | - Marcio F Bergamini
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal Do Paraná (UFPR), 81.531-980, Curitiba, PR, Brazil
| | - Luiz H Marcolino
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal Do Paraná (UFPR), 81.531-980, Curitiba, PR, Brazil
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Bruno C Janegitz
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970, Araras, SP, Brazil.
| | - Orlando Fatibello-Filho
- Department of Chemistry, Federal University of São Carlos, 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|
69
|
Wen Y, Li R, Liu J, Zhang X, Wang P, Zhang X, Zhou B, Li H, Wang J, Li Z, Sun B. Promotion effect of Zn on 2D bimetallic NiZn metal organic framework nanosheets for tyrosinase immobilization and ultrasensitive detection of phenol. Anal Chim Acta 2020; 1127:131-139. [PMID: 32800116 DOI: 10.1016/j.aca.2020.06.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/11/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022]
Abstract
Environmental monitoring of pollutants is essential to guarantee the human health and maintain the ecosystem. The exploration of both simple and sensitive detection method has aroused widespread attentions. Herein, 2D bimetallic metal organic framework nanosheets (NiZn-MOF NSs) with tunable Ni/Zn ratios were synthesized, and for the first time employed to construct a tyrosinase biosensor. It is revealed that Zn element not only tuned the porosity structure and electronic structure of MOF NSs, but also modified their electrochemical activity. As a result, enzyme immobilization and electrochemical sensing performance of the NiZn-MOF NSs based biosensor were significantly enhanced by a suitable Zn addition. The fabricated tyrosinase biosensor exhibited excellent analytical detections, with a wide linear range from 0.08 μM to 58.2 μM, a high sensitivity of 159.3 mA M-1, and an ultralow detection limit of 6.5 nM. In addition, the proposed biosensing approach also demonstrated good repeatability, superior selectivity, long-term stability, and high recovery for phenol detection in the real tap water samples.
Collapse
Affiliation(s)
- Yangyang Wen
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048, China
| | - Rui Li
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Jiahao Liu
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Xin Zhang
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Ping Wang
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Xiang Zhang
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Bin Zhou
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Hongyan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048, China.
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048, China.
| | - Zhenxing Li
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China.
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048, China
| |
Collapse
|
70
|
Fartas FM, Abdullah J, Yusof NA, Sulaiman Y, Saiman MI, Zaid MH. Laccase Electrochemical Biosensor Based on Graphene-Gold/Chitosan Nanocomposite Film for Bisphenol A Detection. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411015666190117114804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background:
Bisphenol A (BPA) is considered one of the most common chemicals that
could cause environmental endocrine disrupting. Therefore, there is an increasing demand for simple,
rapid and sensitive methods for BPA detection that result from BPA leaching into foods and beverages
from storage containers. Herein, a simple laccase electrochemical biosensor was developed for
the determination of BPA based on Screen-Printed Carbon Electrode (SPCE) modified graphenegold/
chitosan. The synergic effect of graphene-gold/chitosan nanocomposite as electrode modifier
greatly facilitates electron-transfer processes between the electrolyte and laccase enzyme, thus leads
to a remarkably improved sensitivity for bisphenol A detection.
Methods:
In this study, laccase enzyme is immobilized onto the Screen-Printed Carbon Electrode
(SPCE) modified Graphene-Decorated Gold Nanoparticles (Gr-AuNPs) with Chitosan (Chit). The
surface structure of nanocomposite was studied using different techniques including Field Emission
Scanning Microscopy (FESEM), TRANSMISSION Electron Microscopy (TEM), Raman spectroscopy
and Energy Dispersive X-ray (EDX). Meanwhile, the electrochemical performances of the modified
electrodes were studied using Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV).
Results:
The developed laccase biosensor offered excellent analytical performance for the detection of
BPA with a sensitivity of 0.271 μA/μM and Limit of Detection (LOD) of 0.023 μM, respectively.
Moreover, the constructed biosensor showed good reproducibility, selectivity and stability towards
BPA. The sensor has been used to detect BPA in a different type of commercial plastic products as a
real sample and satisfactory result was obtained when compared with the HPLC method.
Conclusion:
The proposed electrochemical laccase biosensor exhibits good result which is
considered as a promising candidate for a simple, rapid and sensitive method especially in the resource-
limited condition.
Collapse
Affiliation(s)
- Fuzi M. Fartas
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E., Malaysia
| | - Jaafar Abdullah
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E., Malaysia
| | - Nor A. Yusof
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E., Malaysia
| | - Yusran Sulaiman
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E., Malaysia
| | - Mohd I. Saiman
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E., Malaysia
| | - Mohd H.M. Zaid
- Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E., Malaysia
| |
Collapse
|
71
|
Xia H, Li N, Zhong X, Jiang Y. Metal-Organic Frameworks: A Potential Platform for Enzyme Immobilization and Related Applications. Front Bioeng Biotechnol 2020; 8:695. [PMID: 32695766 PMCID: PMC7338372 DOI: 10.3389/fbioe.2020.00695] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/03/2020] [Indexed: 12/21/2022] Open
Abstract
Enzymes, as natural catalysts with remarkable catalytic activity and high region-selectivities, hold great promise in industrial catalysis. However, applications of enzymatic transformation are hampered by the fragility of enzymes in harsh conditions. Recently, metal-organic frameworks (MOFs), due to their high stability and available structural properties, have emerged as a promising platform for enzyme immobilization. Synthetic strategies of enzyme-MOF composites mainly including surface immobilization, covalent linkage, pore entrapment and in situ synthesis. Compared with free enzymes, most immobilized enzymes exhibit enhanced resistance against solvents and high temperatures. Besides, MOFs serving as matrixes for enzyme immobilization show extraordinary superiority in many aspects compared with other supporting materials. The advantages of using MOFs to support enzymes are discussed. To obtain a high enzyme loading capacity and to reduce the diffusion resistance of reactants and products during the reaction, the mesoporous MOFs have been designed and constructed. This review also covers the applications of enzyme-MOF composites in bio-sensing and detection, bio-catalysis, and cancer therapy, which is concerned with interdisciplinary nano-chemistry, material science and medical chemistry. Finally, some perspectives on reservation or enhancement of bio-catalytic activity of enzyme-MOF composites and the future of enzyme immobilization strategies are discussed.
Collapse
Affiliation(s)
- Huan Xia
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, China
| | - Na Li
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, China
| | - Xue Zhong
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, China
| | - Yanbin Jiang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, China
| |
Collapse
|
72
|
Zhang D, Qiu J, Shi L, Liu Y, Pan B, Xing B. The mechanisms and environmental implications of engineered nanoparticles dispersion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137781. [PMID: 32199363 DOI: 10.1016/j.scitotenv.2020.137781] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
Dispersion of engineered nanoparticles (ENPs) has drawn special research attentions because the environmental behavior, risks, and applications of ENPs are greatly dependent on their dispersing status. This review summarizes the latest research progress of dispersion mechanisms, environmental applications in contaminants adsorption, and toxicity of ENPs dispersed in liquid and in solid matrix (3D-ENPs). Dispersion mechanisms of ENPs, including steric hindrance, electrostatic repulsion and "micelle wrapping" are well understood in single dispersing agent, however, the prediction of ENPs dispersion in real environments is not straightforward because of the diversity of structures, components, and properties of natural organic molecule mixtures. The adsorption characteristics, depending on the exposed surface areas in liquid, are significantly different between dispersed and aggregated ENPs. Comparing with the aggregated ENPs, the toxicity of dispersed ENPs is generally enhanced due to the increased uptake, released metal ions, carried contaminants, and induced ROS. 3D-ENPs not only inherit the excellent adsorption performance of ENPs dispersed in liquid, but also are beneficial to the separation and recycle from aqueous solutions due to their 3D rigid structures. However, the adsorption mechanisms as affected by environmental conditions are still unclear. Additionally, the potential risks of 3D-ENPs should be paid more attentions, with an emphasis on free radicals and stability of 3D structure.
Collapse
Affiliation(s)
- Di Zhang
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China; Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming 650500, China
| | - Junke Qiu
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China; Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming 650500, China
| | - Lin Shi
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China; Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming 650500, China
| | - Yang Liu
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China; Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming 650500, China
| | - Bo Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China; Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming 650500, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
73
|
Zheng W, Liu J, Yi D, Pan Y, Long Y, Zheng H. Ficin encapsulated in mesoporous metal-organic frameworks with enhanced peroxidase-like activity and colorimetric detection of glucose. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 233:118195. [PMID: 32135500 DOI: 10.1016/j.saa.2020.118195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 06/10/2023]
Abstract
Ficin has been reported to possess peroxidase activity, but its applications in some respects have been limited because of its relatively low activity. Herein, a mesoporous metal-organic framework, PCN-333(Fe), was synthesized, which was selected to encapsulate ficin to form ficin@PCN-333(Fe). Compared with ficin, the peroxidase-like activity of ficin@PCN-333(Fe) toward 3,3',5,5'-tetramethylbenzidine (TMB) oxidation was about 3 times increase in the presence of H2O2, and followed classical Michaelis-Menten model. The kinetic parameters showed that stronger affinity and higher catalytic constant (Kcat) of ficin@PCN-333(Fe) to both TMB and H2O2 compared with ficin, and Kcat of ficin@PCN-333(Fe) was increased by 3.65 folds and 3.59 folds for TMB and H2O2, respectively. Taking advantages of higher catalytic property of ficin@PCN-333(Fe), we developed a colorimetric method with high sensitivity and selectivity to detect glucose, which displayed a good linear response toward glucose in the range of 0.5-180 μM with a limit of detection of 97 nM. Furthermore, ficin@PCN-333(Fe) has been proven to successfully detect glucose in human serum, implying its great potentialities and wide applications as peroxidase mimics.
Collapse
Affiliation(s)
- Wen Zheng
- The Key Laboratory of Luminescent and Real-time Analysis (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jiahui Liu
- The Key Laboratory of Luminescent and Real-time Analysis (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Danyang Yi
- The Key Laboratory of Luminescent and Real-time Analysis (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yadi Pan
- The Key Laboratory of Luminescent and Real-time Analysis (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yijuan Long
- The Key Laboratory of Luminescent and Real-time Analysis (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Huzhi Zheng
- The Key Laboratory of Luminescent and Real-time Analysis (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
74
|
Co-immobilization of an Enzyme System on a Metal-Organic Framework to Produce a More Effective Biocatalyst. Catalysts 2020. [DOI: 10.3390/catal10050499] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In many respects, enzymes offer advantages over traditional chemical processes due to their decreased energy requirements for function and inherent greener processing. However, significant barriers exist for the utilization of enzymes in industrial processes due to their limited stabilities and inability to operate over larger temperature and pH ranges. Immobilization of enzymes onto solid supports has gained attention as an alternative to traditional chemical processes due to enhanced enzymatic performance and stability. This study demonstrates the co-immobilization of glucose oxidase (GOx) and horseradish peroxidase (HRP) as an enzyme system on Metal-Organic Frameworks (MOFs), UiO-66 and UiO-66-NH2, that produces a more effective biocatalyst as shown by the oxidation of pyrogallol. The two MOFs utilized as solid supports for immobilization were chosen to investigate how modifications of the MOF linker affect stability at the enzyme/MOF interface and subsequent activity of the enzyme system. The enzymes work in concert with activation of HRP through the addition of glucose as a substrate for GOx. Enzyme immobilization and leaching studies showed HRP/GOx@UiO-66-NH2 immobilized 6% more than HRP/GOx@UiO-66, and leached only 36% of the immobilized enzymes over three days in the solution. The enzyme/MOF composites also showed increased enzyme activity in comparison with the free enzyme system: the composite HRP/GOx@UiO-66-NH2 displayed 189 U/mg activity and HRP/GOx@UiO-66 showed 143 U/mg while the free enzyme showed 100 U/mg enzyme activity. This increase in stability and activity is due to the amine group of the MOF linker in HRP/GOx@UiO-66-NH2 enhancing electrostatic interactions at the enzyme/MOF interface, thereby producing the most stable biocatalyst material in solution. The HRP/GOx@UiO-66-NH2 also showed long-term stability in the solid state for over a month at room temperature.
Collapse
|
75
|
Liang S, Wu XL, Xiong J, Zong MH, Lou WY. Metal-organic frameworks as novel matrices for efficient enzyme immobilization: An update review. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213149] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
76
|
Rosari VA, Lestari WW, Firdaus M. Synthesis of aspirin-ligated cisplatin derivatives and its slow release study over MIL-101(Fe). CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01114-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
77
|
Cathodic electrodeposited Cu-BTC MOFs assembled from Cu(II) and trimesic acid for electrochemical determination of bisphenol A. Mikrochim Acta 2020; 187:145. [DOI: 10.1007/s00604-020-4124-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/12/2020] [Indexed: 12/17/2022]
|
78
|
Huang X, Huang D, Chen J, Ye R, Lin Q, Chen S. Fabrication of novel electrochemical sensor based on bimetallic Ce-Ni-MOF for sensitive detection of bisphenol A. Anal Bioanal Chem 2020; 412:849-860. [PMID: 31897561 DOI: 10.1007/s00216-019-02282-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/19/2019] [Accepted: 11/12/2019] [Indexed: 12/25/2022]
Abstract
In this paper, a novel bimetallic Ce-Ni metal-organic frameworks (Ce-Ni-MOF) are synthesized by hydrothermal reaction, using 1,3,5-benzenetricarboxylic acid as a ligand. In particular, the bimetallic Ce-Ni-MOF with the largest specific surface area and catalytic sites was synthesized when the molar ratio of Ce3+ to Ni2+ was 3:7. Bimetallic Ce-Ni-MOF is added to the traditional conductive material of multiwall carbon nanotubes (MWCNTs) to play their synergistic effect, improve the conductivity, specific surface area, and catalytic site of the MWCNTs. A novel bisphenol A (BPA) sensor was successfully prepared by a self-assembled multilayer strategy of Ce-Ni-MOF/MWCNTs modified glassy carbon electrodes (GCE). Field emission scanning electron microscopy, powder X-ray diffraction, and transmission electron microscope were carried out to characterize the Ce-Ni-MOF/MWCNTs. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used as a sensitive analytical method for the determination of BPA, and a wider linear dynamic range of BPA determination in 0.1 μmol·L-1 to 100 μmol·L-1 with a detection limit of 7.8 nmol·L-1 (S/N = 3). The proposed method was applied to measure the content of BPA in different brands of drinking water with satisfying recovery from 97.4 to 102.4%. Graphical abstract.
Collapse
Affiliation(s)
- Xiaozhou Huang
- Key Laboratory of Measurement and Control System for Coastal Basin Environment, School of Ocean Science And Biochemistry Engineering, Fuqing Branch of Fujian Normal University, Fuqing, 350300, Fujian, China
| | - Dihui Huang
- Key Laboratory of Measurement and Control System for Coastal Basin Environment, School of Ocean Science And Biochemistry Engineering, Fuqing Branch of Fujian Normal University, Fuqing, 350300, Fujian, China.
| | - JinYang Chen
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Ruihong Ye
- Key Laboratory of Measurement and Control System for Coastal Basin Environment, School of Ocean Science And Biochemistry Engineering, Fuqing Branch of Fujian Normal University, Fuqing, 350300, Fujian, China
| | - Qian Lin
- Key Laboratory of Measurement and Control System for Coastal Basin Environment, School of Ocean Science And Biochemistry Engineering, Fuqing Branch of Fujian Normal University, Fuqing, 350300, Fujian, China
| | - Sheng Chen
- Key Laboratory of Measurement and Control System for Coastal Basin Environment, School of Ocean Science And Biochemistry Engineering, Fuqing Branch of Fujian Normal University, Fuqing, 350300, Fujian, China
| |
Collapse
|
79
|
Yang N, Guo K, Zhang Y, Xu C. Engineering the valence state of ZIF-67 by Cu2O for efficient nonenzymatic glucose detection. J Mater Chem B 2020; 8:2856-2861. [DOI: 10.1039/d0tb00094a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The valence state regulation of Co-based electrocatalysts is extremely important and greatly challenging to enhance the electrochemical performance toward glucose oxidation.
Collapse
Affiliation(s)
- Nian Yang
- State Key Laboratory of Applied Organic Chemistry
- Laboratory of Special Function Materials and Structure Design of the Ministry of Education
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Kailu Guo
- State Key Laboratory of Applied Organic Chemistry
- Laboratory of Special Function Materials and Structure Design of the Ministry of Education
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Yanwen Zhang
- State Key Laboratory of Applied Organic Chemistry
- Laboratory of Special Function Materials and Structure Design of the Ministry of Education
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Cailing Xu
- State Key Laboratory of Applied Organic Chemistry
- Laboratory of Special Function Materials and Structure Design of the Ministry of Education
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| |
Collapse
|
80
|
Tang T, Hao Z, Yang H, Nie F, Zhang W. A highly enhanced electrochemiluminescence system based on a novel Cu-MOF and its application in the determination of ferrous ion. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
81
|
Kaykhaii M, Yavari E, Sargazi G, Ebrahimi AK. Highly Sensitive Determination of Bisphenol A in Bottled Water Samples by HPLC after Its Extraction by a Novel Th-MOF Pipette-Tip Micro-SPE. J Chromatogr Sci 2019; 58:373-382. [DOI: 10.1093/chromsci/bmz111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 09/30/2019] [Accepted: 10/31/2019] [Indexed: 11/14/2022]
Abstract
Abstract
In this study, a novel thorium metal organic framework was synthesized, characterized and used as a sorbent for very efficient pipette tip micro solid-phase extraction of bisphenol A in bottled drinking water samples using high-performance liquid chromatography as detecting instrument. Parameters which influence extraction efficiency such as pH, sample volume, amount of sorbent, type and volume of eluent, number of aspirating and dispensing cycles for extraction and elution, and volume of the sample solution were studied and optimized. A linear calibration curve was obtained in the range of 0.002–0.456 ng mL−1 (r2 = 0.996) with a detection limit of 0.0010 ng mL−1. Repeatability of batch-to-batch extraction was better than 5.0% and a reproducibility of 3.2% for real samples obtained.
Collapse
Affiliation(s)
- Massoud Kaykhaii
- Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, University Boulevard, Zahedan 98155-674, Iran
| | - Eilnaz Yavari
- Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, University Boulevard, Zahedan 98155-674, Iran
| | - Ghasem Sargazi
- Department of Nanotechnology, Graduate University of Advanced Technology, Kerman, Iran
| | | |
Collapse
|
82
|
Cunha-Silva H, Pires F, Dias-Cabral AC, Arcos-Martinez MJ. Inhibited enzymatic reaction of crosslinked lactate oxidase through a pH-dependent mechanism. Colloids Surf B Biointerfaces 2019; 184:110490. [PMID: 31536937 DOI: 10.1016/j.colsurfb.2019.110490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/12/2019] [Accepted: 09/04/2019] [Indexed: 12/01/2022]
Abstract
Lactate oxidase (LOx), recognized to selectively catalyze the lactate oxidation in complex matrices, has been highlighted as preferable biorecognition element for the development of lactate biosensors. In a previous work, we have demonstrated that LOx crosslinking on a modified screen-printed electrode results in a dual range lactate biosensor, with one of the analysis linear range (4 to 50 mM) compatible with lactate sweat levels. It was advanced that such behavior results from an atypical substrate inhibition process. To understand such inhibition phenomena, this work relies in the study of LOx structure when submitted to increased substrate concentrations. The results found by fluorescence spectroscopy and dynamic light scattering of LOx solutions, evidenced conformational changes of the enzyme, occurring in presence of inhibitory substrate concentrations. Therefore, the inhibition behavior found at the biosensor, is an outcome of LOx structural alterations as result of a pH-dependent mechanism promoted at high substrate concentrations.
Collapse
Affiliation(s)
- Hugo Cunha-Silva
- Departmento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - F Pires
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; Department of Chemistry, University of Beira Interior, 6200-001 Covilhã, Portugal
| | - A C Dias-Cabral
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; Department of Chemistry, University of Beira Interior, 6200-001 Covilhã, Portugal
| | - M Julia Arcos-Martinez
- Departmento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| |
Collapse
|
83
|
Wang PL, Xie LH, Joseph EA, Li JR, Su XO, Zhou HC. Metal-Organic Frameworks for Food Safety. Chem Rev 2019; 119:10638-10690. [PMID: 31361477 DOI: 10.1021/acs.chemrev.9b00257] [Citation(s) in RCA: 289] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Food safety is a prevalent concern around the world. As such, detection, removal, and control of risks and hazardous substances present from harvest to consumption will always be necessary. Metal-organic frameworks (MOFs), a class of functional materials, possess unique physical and chemical properties, demonstrating promise in food safety applications. In this review, the synthesis and porosity of MOFs are first introduced by some representative examples that pertain to the field of food safety. Following that, the application of MOFs and MOF-based materials in food safety monitoring, food processing, covering preservation, sanitation, and packaging is overviewed. Future perspectives, as well as potential opportunities and challenges faced by MOFs in this field will also be discussed. This review aims to promote the development and progress of MOF chemistry and application research in the field of food safety, potentially leading to novel solutions.
Collapse
Affiliation(s)
- Pei-Long Wang
- Institute of Quality Standards and Testing Technology for Agro-products , Chinese Academy of Agricultural Sciences , Beijing 100081 , P. R. China.,Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , P. R. China
| | - Lin-Hua Xie
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , P. R. China
| | - Elizabeth A Joseph
- Department of Chemistry , Texas A&M University , P.O. Box 30012, College Station , Texas 77842-3012 , United States
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , P. R. China
| | - Xiao-Ou Su
- Institute of Quality Standards and Testing Technology for Agro-products , Chinese Academy of Agricultural Sciences , Beijing 100081 , P. R. China
| | - Hong-Cai Zhou
- Department of Chemistry , Texas A&M University , P.O. Box 30012, College Station , Texas 77842-3012 , United States
| |
Collapse
|
84
|
Xu W, Jiao L, Yan H, Wu Y, Chen L, Gu W, Du D, Lin Y, Zhu C. Glucose Oxidase-Integrated Metal-Organic Framework Hybrids as Biomimetic Cascade Nanozymes for Ultrasensitive Glucose Biosensing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22096-22101. [PMID: 31134797 DOI: 10.1021/acsami.9b03004] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nanozyme/natural enzyme hybrid plays a vital role in biosensing, therapy, and catalysis owing to the integrated advantages in the selectivity of natural enzymes and controllable catalytic activity of nanozymes. Herein, Fe-MIL-88B-NH2 [(Fe-metal-organic framework (MOF)] with remarkable peroxidase-like activity, ultrahigh stability, and high biocompatibility was utilized for immobilization of glucose oxidase (GOx) via an amidation coupling reaction. On the basis of the excellent selectivity and catalytic activity of Fe-MOF-GOx, a cascade catalysis was performed for the colorimetric detection of glucose. The integrated Fe-MOF-GOx not only exhibited higher stability and reusability than their mixtures including Fe-MOF and free GOx system but also possessed a wide linear range (1-500 μM), with a low detection limit of 0.487 μM for glucose detection.
Collapse
Affiliation(s)
- Weiqing Xu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry , Central China Normal University , Wuhan 430079 , PR China
| | - Lei Jiao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry , Central China Normal University , Wuhan 430079 , PR China
| | - Hongye Yan
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry , Central China Normal University , Wuhan 430079 , PR China
| | - Yu Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry , Central China Normal University , Wuhan 430079 , PR China
| | - Lijuan Chen
- The Department of Radiology , Henan Key Laboratory of Neurological Imaging Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University , Zhengzhou , Henan 450003 , China
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry , Central China Normal University , Wuhan 430079 , PR China
| | - Dan Du
- School of Mechanical and Materials Engineering , Washington State University , Pullman , Washington 99164 , United States
| | - Yuehe Lin
- School of Mechanical and Materials Engineering , Washington State University , Pullman , Washington 99164 , United States
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry , Central China Normal University , Wuhan 430079 , PR China
| |
Collapse
|
85
|
Sher H, Ali H, Rashid MH, Iftikhar F, Saif-Ur-Rehman, Nawaz MS, Khan WS. Enzyme Immobilization on Metal-Organic Framework (MOF): Effects on Thermostability and Function. Protein Pept Lett 2019; 26:636-647. [PMID: 31208305 DOI: 10.2174/0929866526666190430120046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022]
Abstract
MOFs are porous materials with adjustable porosity ensuing a tenable surface area and stability. MOFs consist of metal containing joint where organic ligands are linked with coordination bonding rendering a unique architecture favouring the diverse applications in attachment of enzymes, Chemical catalysis, Gases storage and separation, biomedicals. In the past few years immobilization of soluble enzymes on/in MOF has been the topic of interest for scientists working in diverse field. The activity of enzyme, reusability, storage, chemical and thermal stability, affinity with substrate can be greatly improved by immobilizing of enzyme on MOFs. Along with improvement in enzymes properties, the high loading of enzyme is also observed while using MOFs as immobilization support. In this review a detail study of immobilization on/in Metalorganic Frameworks (MOFs) have been described. Furthermore, strategies for the enzyme immobilization on MOFs and resulting in improved catalytic performance of immobilized enzymes have been reported.
Collapse
Affiliation(s)
- Hassan Sher
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Hazrat Ali
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Muhammad H Rashid
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Fariha Iftikhar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Saif-Ur-Rehman
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Muhammad S Nawaz
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Waheed S Khan
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| |
Collapse
|
86
|
Qiu Q, Chen H, Wang Y, Ying Y. Recent advances in the rational synthesis and sensing applications of metal-organic framework biocomposites. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.02.009] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
87
|
Direct, selective and ultrasensitive electrochemical biosensing of methyl parathion in vegetables using Burkholderia cepacia lipase@MOF nanofibers-based biosensor. Talanta 2019; 197:356-362. [DOI: 10.1016/j.talanta.2019.01.052] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/10/2019] [Accepted: 01/13/2019] [Indexed: 12/17/2022]
|
88
|
Li X, Li C, Wu C, Wu K. Strategy for Highly Sensitive Electrochemical Sensing: In Situ Coupling of a Metal–Organic Framework with Ball-Mill-Exfoliated Graphene. Anal Chem 2019; 91:6043-6050. [DOI: 10.1021/acs.analchem.9b00556] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xiaoyu Li
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Caoling Li
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Can Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, China
| | - Kangbing Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
89
|
An H, Li M, Gao J, Zhang Z, Ma S, Chen Y. Incorporation of biomolecules in Metal-Organic Frameworks for advanced applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.01.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
90
|
Zhang K, Dai K, Bai R, Ma Y, Deng Y, Li D, Zhang X, Hu R, Yang Y. A competitive microcystin-LR immunosensor based on Au NPs@metal-organic framework (MIL-101). CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.10.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
91
|
Drout RJ, Robison L, Farha OK. Catalytic applications of enzymes encapsulated in metal–organic frameworks. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.11.009] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
92
|
Zhang H, Li G, Liao C, Cai Y, Jiang G. Bio-related applications of porous organic frameworks (POFs). J Mater Chem B 2019; 7:2398-2420. [PMID: 32255118 DOI: 10.1039/c8tb03192d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Porous organic frameworks (POFs) are promising candidates for bio-related applications. This review highlights the recent progress in POF-based bioapplications, including drug delivery, bioimaging, biosensing, therapeutics, and artificial shells. These encouraging performances suggest that POFs used for bioapplications deserve more attention in the future.
Collapse
Affiliation(s)
- He Zhang
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
- University of the Chinese Academy of Sciences
| | - Guoliang Li
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| | - Chunyang Liao
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
- University of the Chinese Academy of Sciences
| | - Yaqi Cai
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
- University of the Chinese Academy of Sciences
| | - Guibin Jiang
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
- University of the Chinese Academy of Sciences
| |
Collapse
|
93
|
A non-enzymatic voltammetric xanthine sensor based on the use of platinum nanoparticles loaded with a metal-organic framework of type MIL-101(Cr). Application to simultaneous detection of dopamine, uric acid, xanthine and hypoxanthine. Mikrochim Acta 2018; 186:9. [DOI: 10.1007/s00604-018-3128-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/27/2018] [Indexed: 12/21/2022]
|
94
|
Tang J, Jiang S, Liu Y, Zheng S, Bai L, Guo J, Wang J. Electrochemical determination of dopamine and uric acid using a glassy carbon electrode modified with a composite consisting of a Co(II)-based metalorganic framework (ZIF-67) and graphene oxide. Mikrochim Acta 2018; 185:486. [PMID: 30276484 DOI: 10.1007/s00604-018-3025-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/24/2018] [Indexed: 11/25/2022]
Abstract
A composite was prepared from a Co(II)-based zeolitic imidazolate framework (ZIF-67) and graphene oxide (GO) by an in situ growth method. The material was electrodeposited on a glassy carbon electrode (GCE). The modified GCE was used for the simultaneous voltammetric determination of dopamine (DA) and uric acid (UA), typically at working potentials of 0.11 and 0.25 V (vs. SCE). The morphology and structure of the nanocomposite were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction. The modified electrode exhibits excellent electroanalytical performance for DA and UA owing to the synergistic effect of the high electrical conductivity of GO and the porosity of ZIF-67. By applying differential pulse voltammetry, a linear response is found for DA in the 0.2 to 80 μM concentration range, and for UA between 0.8 and 200 μM, with detection limits of 50 and 100 nM (at S/N = 3), respectively. Further studies were performed on the effect of potential interferents, and on electrode stability and reproducibility. The modified GCE was applied to the simultaneous detection of DA and UA in spiked human urine and gave satisfying recoveries. Graphical abstract Schematic of the preparation procedure of GO-ZIF67 and electrochemical reaction mechanisms of UA and DA at the GO-ZIF67-modified glassy carbon electrode (GCE). GO: graphene oxide; ZIF-67: Co(II)-based zeolitic imidazolate framework.
Collapse
Affiliation(s)
- Jing Tang
- College of Chemistry and Material Engineering, Anhui Science and Technology University, 1501 Huangshan Road, Bengbu, 233000, Anhui Province, China.
| | - Sixun Jiang
- College of Chemistry and Material Engineering, Anhui Science and Technology University, 1501 Huangshan Road, Bengbu, 233000, Anhui Province, China
| | - Yu Liu
- College of Chemistry and Material Engineering, Anhui Science and Technology University, 1501 Huangshan Road, Bengbu, 233000, Anhui Province, China
| | - Shengbiao Zheng
- College of Chemistry and Material Engineering, Anhui Science and Technology University, 1501 Huangshan Road, Bengbu, 233000, Anhui Province, China
| | - Lei Bai
- College of Chemistry and Material Engineering, Anhui Science and Technology University, 1501 Huangshan Road, Bengbu, 233000, Anhui Province, China
| | - Jiahao Guo
- College of Chemistry and Material Engineering, Anhui Science and Technology University, 1501 Huangshan Road, Bengbu, 233000, Anhui Province, China
| | - Jianfei Wang
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, 233100, Anhui Province, China.
| |
Collapse
|
95
|
Lipase@ZIF-8 nanoparticles-based biosensor for direct and sensitive detection of methyl parathion. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.06.176] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
96
|
Biomineralization-mimetic preparation of robust metal-organic frameworks biocomposites film with high enzyme load for electrochemical biosensing. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.04.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
97
|
Bugada LF, Smith MR, Wen F. Engineering Spatially Organized Multienzyme Assemblies for Complex Chemical Transformation. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01883] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Luke F. Bugada
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mason R. Smith
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Fei Wen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
98
|
Hu Y, Wang S, Guo Z, Hu Y, Xie H. One-Step Constructed Electrochemiluminescence Sensor Coupled with Magnetic Enhanced Solid Phase Microextraction to Sensitively Detect Bisphenol-A. ChemElectroChem 2018. [DOI: 10.1002/celc.201800475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yunxia Hu
- Faculty of Materials Science and Chemical Engineering; State Key Laboratory Base of Novel Functional Materials and Preparation Science; Ningbo University; Ningbo 315211 People's Republic of China
| | - Sui Wang
- Faculty of Materials Science and Chemical Engineering; State Key Laboratory Base of Novel Functional Materials and Preparation Science; Ningbo University; Ningbo 315211 People's Republic of China
| | - Zhiyong Guo
- Faculty of Materials Science and Chemical Engineering; State Key Laboratory Base of Novel Functional Materials and Preparation Science; Ningbo University; Ningbo 315211 People's Republic of China
| | - Yufang Hu
- Faculty of Materials Science and Chemical Engineering; State Key Laboratory Base of Novel Functional Materials and Preparation Science; Ningbo University; Ningbo 315211 People's Republic of China
| | - Hongzhen Xie
- Faculty of Materials Science and Chemical Engineering; State Key Laboratory Base of Novel Functional Materials and Preparation Science; Ningbo University; Ningbo 315211 People's Republic of China
| |
Collapse
|
99
|
Cunha-Silva H, Arcos-Martinez MJ. Dual range lactate oxidase-based screen printed amperometric biosensor for analysis of lactate in diversified samples. Talanta 2018; 188:779-787. [PMID: 30029446 DOI: 10.1016/j.talanta.2018.06.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/12/2018] [Accepted: 06/16/2018] [Indexed: 01/15/2023]
Abstract
Lactate concentration is studied as an indicator of physical performance in sports activities, and is also analyzed in health care applications, as well as in the food and cosmetic industries. This organic acid is routinely determined in different concentration ranges, depending on the type of samples for analysis. This paper describes the development of a screen-printed lactate oxidase (LOx) based biosensor to determine lactate in broad concentration range. The Cu-MOF (copper metallic framework) crosslinking of 0.25U LOx in a chitosan layer, allows to determine the enzymatic product generated on a platinum modified working electrode, at 0.15 V (vs SPE Ag/AgCl). The biosensor responds linearly in two different concentration ranges: a first catalysis range of 14.65 µA mM-1, from 0.75 µM to 1 mM, followed by a saturation zone from 1 to 4 mM, after which a substrate enzymatic inhibition of 0.207 µA mM-1, is observed up to 50 mM. These two ranges of analysis would allow the biosensor to be used for the determination of lactate in different types of samples, with low and high content of lactate. The method reproducibility was kept below 7% and a limit of detection of 0.75 µM was obtained. The device was successfully used in the determination of lactate in sweat and saliva, as a low cost noninvasive analysis, and also in wine samples.
Collapse
Affiliation(s)
- Hugo Cunha-Silva
- Department of Chemistry, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - M Julia Arcos-Martinez
- Department of Chemistry, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| |
Collapse
|
100
|
Dong S, Peng L, Wei W, Huang T. Three MOF-Templated Carbon Nanocomposites for Potential Platforms of Enzyme Immobilization with Improved Electrochemical Performance. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14665-14672. [PMID: 29620852 DOI: 10.1021/acsami.8b00702] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
An efficient and facile metal-organic framework (MOF)-template strategy for preparing carbon nanocomposites has been developed. First of all, a series of metal ions, including Fe3+, Zr4+, and La3+, were respectively connected with 2-aminoterephthalate (H2ATA) to form three metal-organic frameworks (MOFs) and then three novel MOF-derived materials were obtained by annealing them at 550 °C under N2 atmosphere. The morphologies and microstructure results showed that they still retained the original structure of MOFs and formed carbon-supported metal oxide hybrid nanomaterials. Interestingly, it was found that La-MOF-NH2 and its derived materials were first reported, which had wool-ball-like structure formed by many streaky-shaped particles intertwining each other. Furthermore, these MOF-derived materials were all successfully used as effective immobilization matrixes of acetylcholinesterase (AChE) to construct biosensors for the detection of methyl parathion. Especially, [La-MOF-NH2]N2 with wool-ball-like structure not only provided more active sites of multicontents to increase AChE immobilization amount but also facilitated the accessibility of electron transfer and shorten their diffusion length on the surface of electrode. Under optimal conditions, the biosensor based on [La-MOF-NH2]N2 displayed the widest linear range of 1.0 × 10-13-5.0 × 10-9 g mL-1 and the lowest detection limit of 5.8 × 10-14 g mL-1 in three biosensors. This study illustrates the feasibility and the potential of a series of MOF-derived materials for biosensors with improved electrochemical performance.
Collapse
Affiliation(s)
| | - Lei Peng
- Institute of Environmental and Food Safety , Wuhan Academy of Agricultural Science and Technology , Wuhan 430207 , People's Republic of China
| | | | | |
Collapse
|