51
|
Characterization of hitherto unknown Valsartan photodegradation impurities. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
52
|
Melder FTI, Lindemann P, Welle A, Trouillet V, Heißler S, Nazaré M, Selbach M. Compound Interaction Screen on a Photoactivatable Cellulose Membrane (CISCM) Identifies Drug Targets. ChemMedChem 2022; 17:e202200346. [PMID: 35867055 PMCID: PMC9826412 DOI: 10.1002/cmdc.202200346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Indexed: 01/11/2023]
Abstract
Identifying the protein targets of drugs is an important but tedious process. Existing proteomic approaches enable unbiased target identification but lack the throughput needed to screen larger compound libraries. Here, we present a compound interaction screen on a photoactivatable cellulose membrane (CISCM) that enables target identification of several drugs in parallel. To this end, we use diazirine-based undirected photoaffinity labeling (PAL) to immobilize compounds on cellulose membranes. Functionalized membranes are then incubated with protein extract and specific targets are identified via quantitative affinity purification and mass spectrometry. CISCM reliably identifies known targets of natural products in less than three hours of analysis time per compound. In summary, we show that combining undirected photoimmobilization of compounds on cellulose with quantitative interaction proteomics provides an efficient means to identify the targets of natural products.
Collapse
Affiliation(s)
- F. Teresa I. Melder
- Proteome Dynamics LabMax Delbruck Center for Molecular Medicine in the Helmholtz AssociationRobert-Roessle-Str. 1013125BerlinGermany
| | - Peter Lindemann
- Medicinal ChemistryLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)13125BerlinGermany
| | - Alexander Welle
- Institute of Functional Interfaces and Karlsruhe Nano Micro Facility (KNMFi)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Vanessa Trouillet
- Institute for Applied Materials (IAM-ESS) and Karlsruhe Nano Micro Facility (KNMFi)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Stefan Heißler
- Institute of Functional Interfaces and Karlsruhe Nano Micro Facility (KNMFi)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Marc Nazaré
- Medicinal ChemistryLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)13125BerlinGermany
| | - Matthias Selbach
- Proteome Dynamics LabMax Delbruck Center for Molecular Medicine in the Helmholtz AssociationRobert-Roessle-Str. 1013125BerlinGermany
| |
Collapse
|
53
|
Wu X, Chen Y, Lu W, Jin R, Lu X. Quantitative Validation and Application of the Photo-Cross-Linking Selection for Double-Stranded DNA-Encoded Libraries. Bioconjug Chem 2022; 33:1818-1824. [PMID: 36197318 DOI: 10.1021/acs.bioconjchem.2c00421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The DNA-encoded compound library (DEL) technology has accelerated the target hits discovery in new drug development. While affinity-based DEL selection can distinguish high-affinity ligands, moderate-affinity ligands are also potential drug candidates with further modifications. Herein, we designed a photo-cross-linking selection method for DELs with double-stranded DNA (dsDELs) to screen moderate-affinity ligands. We constructed two photo-cross-linking libraries with linkers of different lengths that connect a diazirine group to the DNA encoded compound. The diazirine group can be activated by UV irradiation and thus bond with the target protein in a reachable distance. In the model selection, the feasibility of the photo-cross-linking screening system was verified by qPCR and NGS technology. Both high-affinity and moderate-affinity ligands were successfully selected from the libraries.
Collapse
Affiliation(s)
- Xinyuan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yujie Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Weiwei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Rui Jin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
54
|
Proteins through the eyes of an organic chemist. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
55
|
Yan C, Kinjo R. A Three‐Membered Diazo‐Aluminum Heterocycle to Access an Al=C π Bonding Species. Angew Chem Int Ed Engl 2022; 61:e202211800. [DOI: 10.1002/anie.202211800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Chenting Yan
- School of Chemistry Chemical Engineering and Biotechnology Nanyang Technological University Singapore 637371 Singapore
| | - Rei Kinjo
- School of Chemistry Chemical Engineering and Biotechnology Nanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
56
|
Yan C, Kinjo R. A Three‐membered Diazo‐Aluminum Heterocycle to Access an Al=C π Bonding Species. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chenting Yan
- Nanyang Technological University School of Chemistry, Chemical Engineering and Biotechnology SINGAPORE
| | - Rei Kinjo
- Nanyang Technological University Division of Chemistry and Biological Chemistry 21 Nanyang Link 637371 Singapore SINGAPORE
| |
Collapse
|
57
|
Lougee MG, Pagar VV, Kim HJ, Pancoe SX, Chia WK, Mach RH, Garcia BA, Petersson EJ. Harnessing the intrinsic photochemistry of isoxazoles for the development of chemoproteomic crosslinking methods. Chem Commun (Camb) 2022; 58:9116-9119. [PMID: 35880535 PMCID: PMC9922157 DOI: 10.1039/d2cc02263j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The intrinsic photochemistry of the isoxazole, a common heterocycle in medicinal chemistry, can be applied to offer an alternative to existing strategies using more perturbing, extrinsic photo-crosslinkers. The utility of isoxazole photo-crosslinking is demonstrated in a wide range of biologically relevant experiments, including common proteomics workflows.
Collapse
Affiliation(s)
- Marshall G. Lougee
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Vinayak Vishnu Pagar
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA. .,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Hee Jong Kim
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Samantha X. Pancoe
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - W. Kit Chia
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Robert H. Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - E. James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
58
|
Schultz C, Farley SE, Tafesse FG. "Flash & Click": Multifunctionalized Lipid Derivatives as Tools To Study Viral Infections. J Am Chem Soc 2022; 144:13987-13995. [PMID: 35900117 PMCID: PMC9377334 DOI: 10.1021/jacs.2c02705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this perspective article, we describe the current status of lipid tools for studying host lipid-virus interactions at the cellular level. We discuss the potential lipidomic changes that viral infections impose on host cells and then outline the tools available and the resulting options to investigate the host cell lipid interactome. The future outcome will reveal new targets for treating virus infections.
Collapse
Affiliation(s)
- Carsten Schultz
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University; 3181 S.W. Sam Jackson Park Road, Portland, Oregon 97239-3098, United States
| | - Scotland E Farley
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University; 3181 S.W. Sam Jackson Park Road, Portland, Oregon 97239-3098, United States.,Department of Molecular Microbiology and Immunology, Oregon Health & Science University; 3181 S.W. Sam Jackson Park Road, Portland, Oregon 97239-3098, United States
| | - Fikadu G Tafesse
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University; 3181 S.W. Sam Jackson Park Road, Portland, Oregon 97239-3098, United States
| |
Collapse
|
59
|
de Bus IA, America AHP, de Ruijter NCA, Lam M, van de Sande JW, Poland M, Witkamp RF, Zuilhof H, Balvers MGJ, Albada B. PUFA-Derived N-Acylethanolamide Probes Identify Peroxiredoxins and Small GTPases as Molecular Targets in LPS-Stimulated RAW264.7 Macrophages. ACS Chem Biol 2022; 17:2054-2064. [PMID: 35867905 PMCID: PMC9396616 DOI: 10.1021/acschembio.1c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We studied the mechanistic and biological origins of anti-inflammatory poly-unsaturated fatty acid-derived N-acylethanolamines using synthetic bifunctional chemical probes of docosahexaenoyl ethanolamide (DHEA) and arachidonoyl ethanolamide (AEA) in RAW264.7 macrophages stimulated with 1.0 μg mL-1 lipopolysaccharide. Using a photoreactive diazirine, probes were covalently attached to their target proteins, which were further studied by introducing a fluorescent probe or biotin-based affinity purification. Fluorescence confocal microscopy showed DHEA and AEA probes localized in cytosol, specifically in structures that point toward the endoplasmic reticulum and in membrane vesicles. Affinity purification followed by proteomic analysis revealed peroxiredoxin-1 (Prdx1) as the most significant binding interactor of both DHEA and AEA probes. In addition, Prdx4, endosomal related proteins, small GTPase signaling proteins, and prostaglandin synthase 2 (Ptgs2, also known as cyclooxygenase 2 or COX-2) were identified. Lastly, confocal fluorescence microscopy revealed the colocalization of Ptgs2 and Rac1 with DHEA and AEA probes. These data identified new molecular targets suggesting that DHEA and AEA may be involved in reactive oxidation species regulation, cell migration, cytoskeletal remodeling, and endosomal trafficking and support endocytosis as an uptake mechanism.
Collapse
Affiliation(s)
- Ian-Arris de Bus
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.,Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Antoine H P America
- Wageningen Plant Research, Business Unit Bioscience, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Norbert C A de Ruijter
- Laboratory of Cell Biology, Wageningen Light Microscopy Centre, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Milena Lam
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Jasper W van de Sande
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Mieke Poland
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Renger F Witkamp
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.,School of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, 300072 Tianjin, People's Republic of China.,Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Michiel G J Balvers
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
60
|
Park H, Wang Q. State-of-the-art accounts of hyperpolarized 15N-labeled molecular imaging probes for magnetic resonance spectroscopy and imaging. Chem Sci 2022; 13:7378-7391. [PMID: 35872812 PMCID: PMC9241963 DOI: 10.1039/d2sc01264b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022] Open
Abstract
Hyperpolarized isotope-labeled agents have significantly advanced nuclear magnetic resonance spectroscopy and imaging (MRS/MRI) of physicochemical activities at molecular levels. An emerging advance in this area is exciting developments of 15N-labeled hyperpolarized MR agents to enable acquisition of highly valuable information that was previously inaccessible and expand the applications of MRS/MRI beyond commonly studied 13C nuclei. This review will present recent developments of these hyperpolarized 15N-labeled molecular imaging probes, ranging from endogenous and drug molecules, and chemical sensors, to various 15N-tagged biomolecules. Through these examples, this review will provide insights into the target selection and probe design rationale and inherent challenges of HP imaging in hopes of facilitating future developments of 15N-based biomedical imaging agents and their applications.
Collapse
Affiliation(s)
- Hyejin Park
- Department of Chemistry, Duke University Durham NC 27708 USA
| | - Qiu Wang
- Department of Chemistry, Duke University Durham NC 27708 USA
| |
Collapse
|
61
|
Mullapudi VB, Craig KC, Guo Z. Design and Synthesis of a Doubly Functionalized Core Structure of a Glycosylphosphatidylinositol Anchor Containing Photoreactive and Clickable Functional Groups. J Org Chem 2022; 87:9419-9425. [PMID: 35766889 DOI: 10.1021/acs.joc.2c00901] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A bifunctional derivative of the core structure of glycosylphosphatidylinositol (GPI) anchors having a clickable alkynyl group and a photoreactive diazirine group attached to the GPI glucosamine and lipid moieties, respectively, was synthesized from myo-inositol, d-glucosamine, and (R)-1,2-O-acetonized glycerol. The target molecule should be useful for the investigation of GPI-interacting components in the cell membrane that play a key role in the signal transduction and other biological functions of GPI-anchored proteins.
Collapse
Affiliation(s)
- Venkanna Babu Mullapudi
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| | - Kendall C Craig
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| |
Collapse
|
62
|
Li P, Kawade SK, Adak AK, Shen Y, Fan C, Hsieh Y, Angata T, Chen Y, Lin C. Ligand‐assisted imprinting‐probe‐labeling
strategy reveals Siglec‐7 ‐ glycoprotein interactions. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pei‐Jhen Li
- Department of Chemistry and Biochemistry National Chung Cheng University Chiayi Taiwan
| | | | - Avijit K. Adak
- Department of Chemistry National Tsing Hua University Hsinchu Taiwan
| | - Yu‐Ju Shen
- Department of Chemistry National Tsing Hua University Hsinchu Taiwan
| | - Chen‐Yo Fan
- Department of Chemistry National Tsing Hua University Hsinchu Taiwan
| | - Yu‐Heng Hsieh
- Institute of Chemistry, Academia Sinica Taipei Taiwan
| | - Takashi Angata
- Institute of Biological Chemistry, Academia Sinica Taipei Taiwan
| | - Yu‐Ju Chen
- Institute of Chemistry, Academia Sinica Taipei Taiwan
| | - Chun‐Cheng Lin
- Department of Chemistry National Tsing Hua University Hsinchu Taiwan
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung Taiwan
| |
Collapse
|
63
|
Abstract
Biocatalytic carbene transfer from diazo compounds is a versatile strategy in asymmetric synthesis. However, the limited pool of stable diazo compounds constrains the variety of accessible products. To overcome this restriction, we have engineered variants of Aeropyrum pernix protoglobin (ApePgb) that use diazirines as carbene precursors. While the enhanced stability of diazirines relative to their diazo isomers enables access to a diverse array of carbenes, they have previously resisted catalytic activation. Our engineered ApePgb variants represent the first example of catalysts for selective carbene transfer from these species at room temperature. The structure of an ApePgb variant, determined by microcrystal electron diffraction (MicroED), reveals that evolution has enhanced access to the heme active site to facilitate this new-to-nature catalysis. Using readily prepared aryl diazirines as model substrates, we demonstrate the application of these highly stable carbene precursors in biocatalytic cyclopropanation, N-H insertion, and Si-H insertion reactions.
Collapse
Affiliation(s)
- Nicholas J. Porter
- Division of Chemistry and Chemical Engineering, Division of Biology and Bioengineering, California Institute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, California 91125, United States
| | - Emma Danelius
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, California 90095, United States
- Department of Biological Chemistry, University of California Los Angeles, 615 Charles E. Young Drive South, Los Angeles, California 90095, United States
| | - Tamir Gonen
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, California 90095, United States
- Department of Biological Chemistry, University of California Los Angeles, 615 Charles E. Young Drive South, Los Angeles, California 90095, United States
- Department of Physiology, University of California Los Angeles, 615 Charles E. Young Drive South, Los Angeles, California 90095, United States
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering, Division of Biology and Bioengineering, California Institute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, California 91125, United States
| |
Collapse
|
64
|
Peters M, Bockfeld D, Tamm M. Cationic Iridium(I) NHC‐Phosphinidene Complexes and Their Application in Hydrogen Isotope Exchange Reactions. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marius Peters
- Technische Universität Braunschweig: Technische Universitat Braunschweig Institut für Anorganische und Analytische Chemie GERMANY
| | - Dirk Bockfeld
- Technische Universität Braunschweig: Technische Universitat Braunschweig Institut für Anorganische und Analytische Chemie GERMANY
| | - Matthias Tamm
- Technische Universität Braunschweig Institut für Anorganische und Analytische Chemie Hagenring 30 38106 Braunschweig GERMANY
| |
Collapse
|
65
|
Abstract
Herein, we described an efficient method for the construction of highly functionalized diazirines from the carbohydrazide and diazo-substituted hypervalent iodine reagents. Unambiguous transformation has been designed with user applicable and easy practicable conditions. Remarkably, d-glucose, menthol, aspirin, proline, and lithocholic acid were efficiently diazirinated. Furthermore, the method is mild, robust, and highly selective, which successfully converted a variety of aryl, alkyl, benzyl, and heterocyclic hydrazides into the corresponding diazirine derivatives.
Collapse
Affiliation(s)
- Monish Arbaz Ansari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Ganesh Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Maya Shankar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| |
Collapse
|
66
|
The emerging role of mass spectrometry-based proteomics in drug discovery. Nat Rev Drug Discov 2022; 21:637-654. [PMID: 35351998 DOI: 10.1038/s41573-022-00409-3] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
Proteins are the main targets of most drugs; however, system-wide methods to monitor protein activity and function are still underused in drug discovery. Novel biochemical approaches, in combination with recent developments in mass spectrometry-based proteomics instrumentation and data analysis pipelines, have now enabled the dissection of disease phenotypes and their modulation by bioactive molecules at unprecedented resolution and dimensionality. In this Review, we describe proteomics and chemoproteomics approaches for target identification and validation, as well as for identification of safety hazards. We discuss innovative strategies in early-stage drug discovery in which proteomics approaches generate unique insights, such as targeted protein degradation and the use of reactive fragments, and provide guidance for experimental strategies crucial for success.
Collapse
|
67
|
Earley D, Guillou A, Klingler S, Fay R, Gut M, d’Orchymont F, Behmaneshfar S, Reichert L, Holland JP. Charting the Chemical and Mechanistic Scope of Light-Triggered Protein Ligation. JACS AU 2022; 2:646-664. [PMID: 35373206 PMCID: PMC8970001 DOI: 10.1021/jacsau.1c00530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Indexed: 05/04/2023]
Abstract
The creation of discrete, covalent bonds between a protein and a functional molecule like a drug, fluorophore, or radiolabeled complex is essential for making state-of-the-art tools that find applications in basic science and clinical medicine. Photochemistry offers a unique set of reactive groups that hold potential for the synthesis of protein conjugates. Previous studies have demonstrated that photoactivatable desferrioxamine B (DFO) derivatives featuring a para-substituted aryl azide (ArN3) can be used to produce viable zirconium-89-radiolabeled monoclonal antibodies (89Zr-mAbs) for applications in noninvasive diagnostic positron emission tomography (PET) imaging of cancers. Here, we report on the synthesis, 89Zr-radiochemistry, and light-triggered photoradiosynthesis of 89Zr-labeled human serum albumin (HSA) using a series of 14 different photoactivatable DFO derivatives. The photoactive groups explore a range of substituted, and isomeric ArN3 reagents, as well as derivatives of benzophenone, a para-substituted trifluoromethyl phenyl diazirine, and a tetrazole species. For the compounds studied, efficient photochemical activation occurs inside the UVA-to-visible region of the electromagnetic spectrum (∼365-450 nm) and the photochemical reactions with HSA in water were complete within 15 min under ambient conditions. Under standardized experimental conditions, photoradiosynthesis with compounds 1-14 produced the corresponding 89ZrDFO-PEG3-HSA conjugates with decay-corrected isolated radiochemical yields between 18.1 ± 1.8% and 62.3 ± 3.6%. Extensive density functional theory (DFT) calculations were used to explore the reaction mechanisms and chemoselectivity of the light-induced bimolecular conjugation of compounds 1-14 to protein. The photoactivatable DFO-derivatives operate by at least five distinct mechanisms, each producing a different type of bioconjugate bond. Overall, the experimental and computational work presented here confirms that photochemistry is a viable option for making diverse, functionalized protein conjugates.
Collapse
|
68
|
Hui C, Wang S, Xu C. Dinitrogen extrusion from diazene in organic synthesis. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
69
|
Singh J, Steele TWJ, Lim S. Fibrillated bacterial cellulose liquid carbene bioadhesives for mimicking and bonding oral cavity surfaces. J Mater Chem B 2022; 10:2570-2583. [PMID: 34981107 DOI: 10.1039/d1tb02044g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Topical treatments for oral wounds and infections exhibit weak adhesion to wet surfaces which results in short retention duration (6-8 hours), frequent dosing requirement and patient incompatibility. To address these limitations, aqueous composites made of fibrillated bacterial cellulose and photoactive bioadhesives are designed for soft epithelial surfaces. The aqueous composites crosslink upon photocuring within a minute and exhibit a transition from viscous to elastic adhesive hydrogels. The light-cured composites have shear moduli mimicking oral mucosa and other soft tissues. The tunable adhesion strength ranges from 3 to 35 kPa on hydrated tissue-mimicking surfaces (collagen film). The results support the application of bacterial cellulose hydrogel systems for potential treatment of mucosal wounds.
Collapse
Affiliation(s)
- Juhi Singh
- NTU Institute for Health Technologies, Interdisciplinary Graduate Program, Nanyang Technological University, 61 Nanyang Drive, 637335, Singapore. .,School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Block N1.3, 637457, Singapore.
| | - Terry W J Steele
- School of Materials Science and Engineering (MSE), Division of Materials Technology, Nanyang Technological University (NTU), 639798, Singapore.
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Block N1.3, 637457, Singapore.
| |
Collapse
|
70
|
Fallon DJ, Lehmann S, Chung CW, Phillipou A, Eberl C, Fantom KGM, Zappacosta F, Patel VK, Bantscheff M, Schofield CJ, Tomkinson NCO, Bush JT. One-Step Synthesis of Photoaffinity Probes for Live-Cell MS-Based Proteomics. Chemistry 2021; 27:17880-17888. [PMID: 34328642 DOI: 10.1002/chem.202102036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 11/06/2022]
Abstract
We present a one-step Ugi reaction protocol for the expedient synthesis of photoaffinity probes for live-cell MS-based proteomics. The reaction couples an amine affinity function with commonly used photoreactive groups, and a variety of handle functionalities. Using this technology, a series of pan-BET (BET: bromodomain and extra-terminal domain) selective bromodomain photoaffinity probes were obtained by parallel synthesis. Studies on the effects of photoreactive group, linker length and irradiation wavelength on photocrosslinking efficiency provide valuable insights into photoaffinity probe design. Optimal probes were progressed to MS-based proteomics to capture the BET family of proteins from live cells and reveal their potential on- and off-target profiles.
Collapse
Affiliation(s)
- David J Fallon
- GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Stephanie Lehmann
- Cellzome GmbH, a GSK company, Meyerhofstraße 1, Heidelberg, 69117, Germany
| | - Chun-Wa Chung
- GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Alex Phillipou
- GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Christian Eberl
- Cellzome GmbH, a GSK company, Meyerhofstraße 1, Heidelberg, 69117, Germany
| | - Ken G M Fantom
- GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | | | | | - Marcus Bantscheff
- Cellzome GmbH, a GSK company, Meyerhofstraße 1, Heidelberg, 69117, Germany
| | | | - Nicholas C O Tomkinson
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Jacob T Bush
- GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| |
Collapse
|
71
|
McKenna SM, Fay EM, McGouran JF. Flipping the Switch: Innovations in Inducible Probes for Protein Profiling. ACS Chem Biol 2021; 16:2719-2730. [PMID: 34779621 PMCID: PMC8689647 DOI: 10.1021/acschembio.1c00572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Over the past two
decades, activity-based probes have enabled a
range of discoveries, including the characterization of new enzymes
and drug targets. However, their suitability in some labeling experiments
can be limited by nonspecific reactivity, poor membrane permeability,
or high toxicity. One method for overcoming these issues is through
the development of “inducible” activity-based probes.
These probes are added to samples in an unreactive state and require in situ transformation to their active form before labeling
can occur. In this Review, we discuss a variety of approaches to inducible
activity-based probe design, different means of probe activation,
and the advancements that have resulted from these applications. Additionally,
we highlight recent developments which may provide opportunities for
future inducible activity-based probe innovations.
Collapse
Affiliation(s)
- Sean M. McKenna
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, Limerick V94 T9PX, Ireland
| | - Ellen M. Fay
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland
| | - Joanna F. McGouran
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, Limerick V94 T9PX, Ireland
| |
Collapse
|
72
|
Singh J, Tan NCS, Mahadevaswamy UR, Chanchareonsook N, Steele TWJ, Lim S. Bacterial cellulose adhesive composites for oral cavity applications. Carbohydr Polym 2021; 274:118403. [PMID: 34702445 DOI: 10.1016/j.carbpol.2021.118403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/22/2021] [Accepted: 07/04/2021] [Indexed: 11/19/2022]
Abstract
Topical approaches to oral diseases require frequent dosing due to limited retention time. A mucoadhesive drug delivery platform with extended soft tissue adhesion capability of up to 7 days is proposed for on-site management of oral wound. Bacterial cellulose (BC) and photoactivated carbene-based bioadhesives (PDz) are combined to yield flexible film platform for interfacing soft tissues in dynamic, wet environments. Structure-activity relationships evaluate UV dose and hydration state with respect to adhesive strength on soft tissue mimics. The bioadhesive composite has an adhesion strength ranging from 7 to 17 kPa and duration exceeding 48 h in wet conditions under sustained shear forces, while other mucoadhesives based on hydrophilic macromolecules exhibit adhesion strength of 0.5-5 kPa and last only a few hours. The work highlights the first evaluation of BC composites for mucoadhesive treatments in the buccal cavity.
Collapse
Affiliation(s)
- Juhi Singh
- NTU Institute for Health Technologies, Interdisciplinary Graduate Program, Nanyang Technological University, 61 Nanyang Drive, Singapore 637335, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Block N1.3, Singapore 637457, Singapore.
| | - Nigel C S Tan
- School of Materials Science and Engineering, Division of Materials Technology, Nanyang Technological University, 50 Nanyang Avenue, Block N4.1, Singapore 639798, Singapore.
| | - Usha Rani Mahadevaswamy
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Block N1.3, Singapore 637457, Singapore.
| | - Nattharee Chanchareonsook
- Department of Oral and Maxillofacial Surgery, National Dental Centre Singapore (NDCS), 5 Second Hospital Avenue, Singapore 16893, Singapore
| | - Terry W J Steele
- School of Materials Science and Engineering, Division of Materials Technology, Nanyang Technological University, 50 Nanyang Avenue, Block N4.1, Singapore 639798, Singapore.
| | - Sierin Lim
- NTU Institute for Health Technologies, Interdisciplinary Graduate Program, Nanyang Technological University, 61 Nanyang Drive, Singapore 637335, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Block N1.3, Singapore 637457, Singapore.
| |
Collapse
|
73
|
Lin J, Bao X, Li XD. Chemoproteomic approach for mapping binding sites of post-translational-modification-mediated protein-protein interactions. Trends Biochem Sci 2021; 46:1030-1031. [PMID: 34642109 DOI: 10.1016/j.tibs.2021.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Jianwei Lin
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xiucong Bao
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China; School of Biomedical Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Xiang D Li
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
74
|
Garifo S, Stanicki D, Boutry S, Larbanoix L, Ternad I, Muller RN, Laurent S. Functionalized silica nanoplatform as a bimodal contrast agent for MRI and optical imaging. NANOSCALE 2021; 13:16509-16524. [PMID: 34590110 DOI: 10.1039/d1nr04972k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The preparation of an efficient bimodal single probe for magnetic resonance (MRI) and optical imaging (OI) is reported. Paramagnetic properties have been obtained by the non-covalent encapsulation of the clinically used Gd3+ chelate (i.e., Gd-HP-DO3A) within silica nanoparticles through a water-in-oil microemulsion process. To ensure colloidal stability, the surface of the particles was modified by means of treatment using PEG-silane, and further functionalized photochemically using a diazirine linker bearing carboxylic functions. Optical properties were obtained by the covalent grafting of a near-infrared emitting probe (NIR) on the resulting surface. The confinement of Gd complexes within the permeable matrix resulted in a significant increase in longitudinal relaxivities (>500% at 20 MHz) in comparison with the relaxivities of free chelate, while the post-functionalization process of PEG with fluorescent compounds appeared promising for the derivatization procedure. Several physico-chemical properties attested to the efficient surface modification and confirmed covalent grafting. Preliminary imaging experiments complete this study and confirm the potential of the presented system for preclinical imaging experiments.
Collapse
Affiliation(s)
- Sarah Garifo
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 19 avenue Maistriau, 7000 Mons, Belgium.
| | - Dimitri Stanicki
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 19 avenue Maistriau, 7000 Mons, Belgium.
| | - Sébastien Boutry
- Center for Microscopy and Molecular Imaging (CMMI), 8 rue Adrienne Bolland, 6041 Gosselies, Belgium
| | - Lionel Larbanoix
- Center for Microscopy and Molecular Imaging (CMMI), 8 rue Adrienne Bolland, 6041 Gosselies, Belgium
| | - Indiana Ternad
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 19 avenue Maistriau, 7000 Mons, Belgium.
| | - Robert N Muller
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 19 avenue Maistriau, 7000 Mons, Belgium.
- Center for Microscopy and Molecular Imaging (CMMI), 8 rue Adrienne Bolland, 6041 Gosselies, Belgium
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 19 avenue Maistriau, 7000 Mons, Belgium.
- Center for Microscopy and Molecular Imaging (CMMI), 8 rue Adrienne Bolland, 6041 Gosselies, Belgium
| |
Collapse
|
75
|
Balaratnam S, Rhodes C, Bume DD, Connelly C, Lai CC, Kelley JA, Yazdani K, Homan PJ, Incarnato D, Numata T, Schneekloth Jr JS. A chemical probe based on the PreQ 1 metabolite enables transcriptome-wide mapping of binding sites. Nat Commun 2021; 12:5856. [PMID: 34615874 PMCID: PMC8494917 DOI: 10.1038/s41467-021-25973-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023] Open
Abstract
The role of metabolite-responsive riboswitches in regulating gene expression in bacteria is well known and makes them useful systems for the study of RNA-small molecule interactions. Here, we study the PreQ1 riboswitch system, assessing sixteen diverse PreQ1-derived probes for their ability to selectively modify the class-I PreQ1 riboswitch aptamer covalently. For the most active probe (11), a diazirine-based photocrosslinking analog of PreQ1, X-ray crystallography and gel-based competition assays demonstrated the mode of binding of the ligand to the aptamer, and functional assays demonstrated that the probe retains activity against the full riboswitch. Transcriptome-wide mapping using Chem-CLIP revealed a highly selective interaction between the bacterial aptamer and the probe. In addition, a small number of RNA targets in endogenous human transcripts were found to bind specifically to 11, providing evidence for candidate PreQ1 aptamers in human RNA. This work demonstrates a stark influence of linker chemistry and structure on the ability of molecules to crosslink RNA, reveals that the PreQ1 aptamer/ligand pair are broadly useful for chemical biology applications, and provides insights into how PreQ1, which is similar in structure to guanine, interacts with human RNAs.
Collapse
Affiliation(s)
- Sumirtha Balaratnam
- grid.48336.3a0000 0004 1936 8075Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702 USA
| | - Curran Rhodes
- grid.48336.3a0000 0004 1936 8075Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702 USA
| | - Desta Doro Bume
- grid.48336.3a0000 0004 1936 8075Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702 USA
| | - Colleen Connelly
- grid.48336.3a0000 0004 1936 8075Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702 USA
| | - Christopher C. Lai
- grid.48336.3a0000 0004 1936 8075Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702 USA
| | - James A. Kelley
- grid.48336.3a0000 0004 1936 8075Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702 USA
| | - Kamyar Yazdani
- grid.48336.3a0000 0004 1936 8075Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702 USA
| | - Philip J. Homan
- grid.48336.3a0000 0004 1936 8075Center for Cancer Research Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA ,grid.418021.e0000 0004 0535 8394Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
| | - Danny Incarnato
- grid.4830.f0000 0004 0407 1981Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | - Tomoyuki Numata
- grid.177174.30000 0001 2242 4849Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi Fukuoka, 812-8582 Japan ,grid.208504.b0000 0001 2230 7538Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba-shi, Ibaraki, 305-8566 Japan
| | - John S. Schneekloth Jr
- grid.48336.3a0000 0004 1936 8075Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702 USA
| |
Collapse
|
76
|
Krüger L, Albrecht CJ, Schammann HK, Stumpf FM, Niedermeier ML, Yuan Y, Stuber K, Wimmer J, Stengel F, Scheffner M, Marx A. Chemical proteomic profiling reveals protein interactors of the alarmones diadenosine triphosphate and tetraphosphate. Nat Commun 2021; 12:5808. [PMID: 34608152 PMCID: PMC8490401 DOI: 10.1038/s41467-021-26075-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/10/2021] [Indexed: 01/14/2023] Open
Abstract
The nucleotides diadenosine triphosphate (Ap3A) and diadenosine tetraphosphate (Ap4A) are formed in prokaryotic and eukaryotic cells. Since their concentrations increase significantly upon cellular stress, they are considered to be alarmones triggering stress adaptive processes. However, their cellular roles remain elusive. To elucidate the proteome-wide interactome of Ap3A and Ap4A and thereby gain insights into their cellular roles, we herein report the development of photoaffinity-labeling probes and their employment in chemical proteomics. We demonstrate that the identified ApnA interactors are involved in many fundamental cellular processes including carboxylic acid and nucleotide metabolism, gene expression, various regulatory processes and cellular response mechanisms and only around half of them are known nucleotide interactors. Our results highlight common functions of these ApnAs across the domains of life, but also identify those that are different for Ap3A or Ap4A. This study provides a rich source for further functional studies of these nucleotides and depicts useful tools for characterization of their regulatory mechanisms in cells. Diadenosine polyphosphates (ApAs) are involved in cellular stress signaling but only a few molecular targets have been characterized so far. Here, the authors develop ApnA-based photoaffinity-labeling probes and use them to identify Ap3A and Ap4A binding proteins in human cell lysates.
Collapse
Affiliation(s)
- Lena Krüger
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Christoph J Albrecht
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany
| | | | - Florian M Stumpf
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Marie L Niedermeier
- Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Yizhi Yuan
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Katrin Stuber
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Josua Wimmer
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Florian Stengel
- Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Martin Scheffner
- Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry, University of Konstanz, Konstanz, Germany. .,Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
77
|
Thomas RP, Heap RE, Zappacosta F, Grant EK, Pogány P, Besley S, Fallon DJ, Hann MM, House D, Tomkinson NCO, Bush JT. A direct-to-biology high-throughput chemistry approach to reactive fragment screening. Chem Sci 2021; 12:12098-12106. [PMID: 34667575 PMCID: PMC8457371 DOI: 10.1039/d1sc03551g] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/05/2021] [Indexed: 11/21/2022] Open
Abstract
Methods for rapid identification of chemical tools are essential for the validation of emerging targets and to provide medicinal chemistry starting points for the development of new medicines. Here, we report a screening platform that combines 'direct-to-biology' high-throughput chemistry (D2B-HTC) with photoreactive fragments. The platform enabled the rapid synthesis of >1000 PhotoAffinity Bits (HTC-PhABits) in 384-well plates in 24 h and their subsequent screening as crude reaction products with a protein target without purification. Screening the HTC-PhABit library with carbonic anhydrase I (CAI) afforded 7 hits (0.7% hit rate), which were found to covalently crosslink in the Zn2+ binding pocket. A powerful advantage of the D2B-HTC screening platform is the ability to rapidly perform iterative design-make-test cycles, accelerating the development and optimisation of chemical tools and medicinal chemistry starting points with little investment of resource.
Collapse
Affiliation(s)
- Ross P Thomas
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
- Department of Pure and Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | - Rachel E Heap
- GlaxoSmithKline South Collegeville Road Collegeville PA 19426 USA
| | | | - Emma K Grant
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Peter Pogány
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Stephen Besley
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - David J Fallon
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Michael M Hann
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - David House
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Nicholas C O Tomkinson
- Department of Pure and Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | - Jacob T Bush
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| |
Collapse
|
78
|
Musolino SF, Pei Z, Bi L, DiLabio GA, Wulff JE. Structure-function relationships in aryl diazirines reveal optimal design features to maximize C-H insertion. Chem Sci 2021; 12:12138-12148. [PMID: 34667579 PMCID: PMC8457397 DOI: 10.1039/d1sc03631a] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/10/2021] [Indexed: 12/19/2022] Open
Abstract
Diazirine reagents allow for the ready generation of carbenes upon photochemical, thermal, or electrical stimulation. Because carbenes formed in this way can undergo rapid insertion into any nearby C-H, O-H or N-H bond, molecules that encode diazirine functions have emerged as privileged tools in applications ranging from biological target identification and proteomics through to polymer crosslinking and adhesion. Here we use a combination of experimental and computational methods to complete the first comprehensive survey of diazirine structure-function relationships, with a particular focus on thermal activation methods. We reveal a striking ability to vary the activation energy and activation temperature of aryl diazirines through the rational manipulation of electronic properties. Significantly, we show that electron-rich diazirines have greatly enhanced efficacy toward C-H insertion, under both thermal and photochemical activation conditions. We expect these results to lead to significant improvements in diazirine-based chemical probes and polymer crosslinkers.
Collapse
Affiliation(s)
| | - Zhipeng Pei
- Department of Chemistry, University of British Columbia Kelowna BC V1V-1V7 Canada
| | - Liting Bi
- Department of Chemistry, University of Victoria Victoria BC V8W-3V6 Canada
| | - Gino A DiLabio
- Department of Chemistry, University of British Columbia Kelowna BC V1V-1V7 Canada
| | - Jeremy E Wulff
- Department of Chemistry, University of Victoria Victoria BC V8W-3V6 Canada
| |
Collapse
|
79
|
Lechner VM, Nappi M, Deneny PJ, Folliet S, Chu JCK, Gaunt MJ. Visible-Light-Mediated Modification and Manipulation of Biomacromolecules. Chem Rev 2021; 122:1752-1829. [PMID: 34546740 DOI: 10.1021/acs.chemrev.1c00357] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemically modified biomacromolecules-i.e., proteins, nucleic acids, glycans, and lipids-have become crucial tools in chemical biology. They are extensively used not only to elucidate cellular processes but also in industrial applications, particularly in the context of biopharmaceuticals. In order to enable maximum scope for optimization, it is pivotal to have a diverse array of biomacromolecule modification methods at one's disposal. Chemistry has driven many significant advances in this area, and especially recently, numerous novel visible-light-induced photochemical approaches have emerged. In these reactions, light serves as an external source of energy, enabling access to highly reactive intermediates under exceedingly mild conditions and with exquisite spatiotemporal control. While UV-induced transformations on biomacromolecules date back decades, visible light has the unmistakable advantage of being considerably more biocompatible, and a spectrum of visible-light-driven methods is now available, chiefly for proteins and nucleic acids. This review will discuss modifications of native functional groups (FGs), including functionalization, labeling, and cross-linking techniques as well as the utility of oxidative degradation mediated by photochemically generated reactive oxygen species. Furthermore, transformations at non-native, bioorthogonal FGs on biomacromolecules will be addressed, including photoclick chemistry and DNA-encoded library synthesis as well as methods that allow manipulation of the activity of a biomacromolecule.
Collapse
Affiliation(s)
- Vivian M Lechner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Manuel Nappi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Patrick J Deneny
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sarah Folliet
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - John C K Chu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
80
|
Wu C, Li C, Yu X, Chen L, Gao C, Zhang X, Zhang G, Zhang D. An Efficient Diazirine-Based Four-Armed Cross-linker for Photo-patterning of Polymeric Semiconductors. Angew Chem Int Ed Engl 2021; 60:21521-21528. [PMID: 34346153 DOI: 10.1002/anie.202108421] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/02/2021] [Indexed: 12/12/2022]
Abstract
A diazirine-based four-armed cross-linker (4CNN) with a tetrahedron geometry is presented for efficient patterning of polymeric semiconductors by photo-induced carbene insertion. After blending of 4CNN with no more than 3 % (w/w), photo-patterning of p-, n-, and ambipolar semiconducting polymers with side alkyl chains was achieved; regular patterns with size as small as 5 μm were prepared with appropriate photomasks after 365 nm irradiation for just 40 s. The interchain packing order and the thin film morphology were nearly unaltered after the cross-linking and the semiconducting properties of the patterned thin films were mostly retained. A complementary-like inverter with a gain value of 112 was constructed easily by two steps of photo-patterning of the p-type and n-type semiconducting polymers. The results show that 4CNN is a new generation of cross-linker for the photo-patterning of polymeric semiconductors for all-solution-processible flexible electronic devices.
Collapse
Affiliation(s)
- Changchun Wu
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaobo Yu
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangliang Chen
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenying Gao
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xisha Zhang
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
81
|
Wu C, Li C, Yu X, Chen L, Gao C, Zhang X, Zhang G, Zhang D. An Efficient Diazirine‐Based Four‐Armed Cross‐linker for Photo‐patterning of Polymeric Semiconductors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Changchun Wu
- Beijing National Laboratory for Molecular Sciences Organic Solids Laboratory Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences Organic Solids Laboratory Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Xiaobo Yu
- Beijing National Laboratory for Molecular Sciences Organic Solids Laboratory Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Liangliang Chen
- Beijing National Laboratory for Molecular Sciences Organic Solids Laboratory Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Chenying Gao
- Beijing National Laboratory for Molecular Sciences Organic Solids Laboratory Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Xisha Zhang
- Beijing National Laboratory for Molecular Sciences Organic Solids Laboratory Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences Organic Solids Laboratory Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences Organic Solids Laboratory Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
82
|
Tachrim ZP, Wang L, Murai Y, Hashimoto M. New Trends in Diaziridine Formation and Transformation (a Review). Molecules 2021; 26:4496. [PMID: 34361648 PMCID: PMC8348119 DOI: 10.3390/molecules26154496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 01/18/2023] Open
Abstract
This review focuses on diaziridine, a high strained three-membered heterocycle with two nitrogen atoms that plays an important role as one of the most important precursors of diazirine photoaffinity probes, as well as their formation and transformation. Recent research trends can be grouped into three categories, based on whether they have examined non-substituted, N-monosubstituted, or N,N-disubstituted diaziridines. The discussion expands on the conventional methods for recent applications, the current spread of studies, and the unconventional synthesis approaches arising over the last decade of publications.
Collapse
Affiliation(s)
- Zetryana Puteri Tachrim
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan; (L.W.); (Y.M.)
- Research Center for Chemistry, Indonesian Institute of Sciences, Kawasan Puspiptek, Serpong, South Tangerang 15314, Banten, Indonesia
| | - Lei Wang
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan; (L.W.); (Y.M.)
- State Key Laboratory of Fine Chemicals, Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yuta Murai
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan; (L.W.); (Y.M.)
- Frontier Research Center for Post-Genome Science and Technology, Faculty of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Kita-ku, Sapporo 001-0021, Japan
| | - Makoto Hashimoto
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan; (L.W.); (Y.M.)
| |
Collapse
|
83
|
Capota E, Wu H, Kohler JJ. Photocrosslinking O-GlcNAcylated Proteins to Neighboring Biomolecules. Curr Protoc 2021; 1:e201. [PMID: 34288588 DOI: 10.1002/cpz1.201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This protocol enables identification of the interaction partners of O-GlcNAcylated proteins. The method involves the introduction of the diazirine photocrosslinker onto the O-GlcNAc modification within living cells. The photocrosslinker is activated by UV light to yield covalent crosslinking between O-GlcNAcylated proteins and neighboring molecules. The binding partners can be further characterized by immunoblot or proteomics mass spectrometry methods. The benefits of using the photocrosslinker include the capacity to trap low-affinity binding interactions and the ability to selectively target the interaction partners of the O-GlcNAcylated form of the protein of interest. © 2021 Wiley Periodicals LLC. Basic Protocol 1: In-cell production and crosslinking of O-GlcNDAzylated proteins Basic Protocol 2: Immunoblot analysis to assess O-GlcNDAz crosslinking Support Protocol: Detection of UDP-GlcNDAz from cell lysates.
Collapse
Affiliation(s)
- Emanuela Capota
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas
| | - Han Wu
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas
| | - Jennifer J Kohler
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
84
|
Saathoff J, Green J, Jiang Y, Xu Y, Kellogg GE, Zhang S. Structural understanding of 5-(4-hydroxy-phenyl)-N-(2-(5-methoxy-1H-indol-3-yl)-ethyl)-3-oxopentanamide as a neuroprotectant for Alzheimer's disease. Bioorg Med Chem Lett 2021; 43:128081. [PMID: 33964442 PMCID: PMC8187328 DOI: 10.1016/j.bmcl.2021.128081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
In our continuing efforts to develop novel neuroprotectants for Alzheimer's disease (AD), a series of analogs based on a lead compound that was recently shown to target the mitochondrial complex I were designed, synthesized and biologically characterized to understand the structure features that are important for neuroprotective activities. The results from a cellular AD model highlighted the important roles of the 4-OH on the phenyl ring and the 5-OCH3 on the indole ring of the lead compound. The results also demonstrated that the β-keto moiety can be modified to retain or improve the neuroprotective activity. Docking studies of selected analogs to the FMN site of mitochondrial complex I also supported the observed neuroprotective activities. Collectively, the results provide further information to guide optimization and development of analogs based on this chemical scaffold as neuroprotectants with a novel mechanism of action for AD.
Collapse
Affiliation(s)
- John Saathoff
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Jakob Green
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Yuqi Jiang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Yiming Xu
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Glen E Kellogg
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Shijun Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
85
|
Ondrus AE, Zhang T. Structure, Bonding, and Photoaffinity Labeling Applications of Dialkyldiazirines. Synlett 2021. [DOI: 10.1055/a-1437-8202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractDialkyldiazirine photoaffinity probes are unparalleled tools for the study of small molecule–protein interactions. Here we summarize the basic principles of structure, bonding, and photoreactivity of dialkyldiazirines, current methods for their synthesis, and their practical application in photoaffinity labeling experiments. We demonstrate the unique utility of dialkyldiazirine probes in the context of our recent photoaffinity crosslinking-mass spectrometry analysis to reveal a hidden cholesterol binding site in the Hedgehog morphogen proteins.1 Introduction2 Structure, Bonding, and Spectral Properties3 Photoreactivity4 Synthesis5 Application in Photoaffinity Labeling6 Discovery of a Cholesterol–Hedgehog Protein Interface7 Conclusions and Outlook
Collapse
|
86
|
Zhang X, Spiegel J, Martínez Cuesta S, Adhikari S, Balasubramanian S. Chemical profiling of DNA G-quadruplex-interacting proteins in live cells. Nat Chem 2021; 13:626-633. [PMID: 34183817 PMCID: PMC8245323 DOI: 10.1038/s41557-021-00736-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/18/2021] [Indexed: 12/17/2022]
Abstract
DNA-protein interactions regulate critical biological processes. Identifying proteins that bind to specific, functional genomic loci is essential to understand the underlying regulatory mechanisms on a molecular level. Here we describe a co-binding-mediated protein profiling (CMPP) strategy to investigate the interactome of DNA G-quadruplexes (G4s) in native chromatin. CMPP involves cell-permeable, functionalized G4-ligand probes that bind endogenous G4s and subsequently crosslink to co-binding G4-interacting proteins in situ. We first showed the robustness of CMPP by proximity labelling of a G4 binding protein in vitro. Employing this approach in live cells, we then identified hundreds of putative G4-interacting proteins from various functional classes. Next, we confirmed a high G4-binding affinity and selectivity for several newly discovered G4 interactors in vitro, and we validated direct G4 interactions for a functionally important candidate in cellular chromatin using an independent approach. Our studies provide a chemical strategy to map protein interactions of specific nucleic acid features in living cells.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Jochen Spiegel
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Sergio Martínez Cuesta
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Data Sciences and Quantitative Biology, Discovery Sciences, AstraZeneca, Cambridge, UK
| | | | - Shankar Balasubramanian
- Department of Chemistry, University of Cambridge, Cambridge, UK.
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK.
- School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
87
|
Shieh P, Hill MR, Zhang W, Kristufek SL, Johnson JA. Clip Chemistry: Diverse (Bio)(macro)molecular and Material Function through Breaking Covalent Bonds. Chem Rev 2021; 121:7059-7121. [PMID: 33823111 DOI: 10.1021/acs.chemrev.0c01282] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the two decades since the introduction of the "click chemistry" concept, the toolbox of "click reactions" has continually expanded, enabling chemists, materials scientists, and biologists to rapidly and selectively build complexity for their applications of interest. Similarly, selective and efficient covalent bond breaking reactions have provided and will continue to provide transformative advances. Here, we review key examples and applications of efficient, selective covalent bond cleavage reactions, which we refer to herein as "clip reactions." The strategic application of clip reactions offers opportunities to tailor the compositions and structures of complex (bio)(macro)molecular systems with exquisite control. Working in concert, click chemistry and clip chemistry offer scientists and engineers powerful methods to address next-generation challenges across the chemical sciences.
Collapse
Affiliation(s)
- Peyton Shieh
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Megan R Hill
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Wenxu Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Samantha L Kristufek
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
88
|
Conway LP, Jadhav AM, Homan RA, Li W, Rubiano JS, Hawkins R, Lawrence RM, Parker CG. Evaluation of fully-functionalized diazirine tags for chemical proteomic applications. Chem Sci 2021; 12:7839-7847. [PMID: 34168837 PMCID: PMC8188597 DOI: 10.1039/d1sc01360b] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
The use of photo-affinity reagents for the mapping of noncovalent small molecule-protein interactions has become widespread. Recently, several 'fully-functionalized' (FF) chemical tags have been developed wherein a photoactivatable capture group, an enrichment handle, and a functional group for synthetic conjugation to a molecule of interest are integrated into a single modular tag. Diazirine-based FF tags in particular are increasingly employed in chemical proteomic investigations; however, despite routine usage, their relative utility has not been established. Here, we systematically evaluate several diazirine-containing FF tags, including a terminal diazirine analog developed herein, for chemical proteomic investigations. Specifically, we compared the general reactivity of five diazirine tags and assessed their impact on the profiles of various small molecules, including fragments and known inhibitors revealing that such tags can have profound effects on the proteomic profiles of chemical probes. Our findings should be informative for chemical probe design, photo-affinity reagent development, and chemical proteomic investigations.
Collapse
Affiliation(s)
- Louis P Conway
- Department of Chemistry, The Scripps Research Institute Jupiter FL USA
| | - Appaso M Jadhav
- Department of Chemistry, The Scripps Research Institute Jupiter FL USA
| | - Rick A Homan
- Department of Chemistry, The Scripps Research Institute Jupiter FL USA
| | - Weichao Li
- Department of Chemistry, The Scripps Research Institute Jupiter FL USA
| | | | - Richard Hawkins
- Department of Chemistry, The Scripps Research Institute Jupiter FL USA
| | | | | |
Collapse
|
89
|
Schwickert K, Andrzejewski M, Grabowsky S, Schirmeister T. Synthesis, X-ray Structure Determination, and Comprehensive Photochemical Characterization of (Trifluoromethyl)diazirine-Containing TRPML1 Ligands. J Org Chem 2021; 86:6169-6183. [PMID: 33835801 DOI: 10.1021/acs.joc.0c02993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Potential (trifluoromethyl)diazirine-based TRPML1 ion channel ligands were designed and synthesized, and their structures were determined by single-crystal X-ray diffraction analysis. Photoactivation studies via 19F NMR spectroscopy and HPLC-MS analysis revealed distinct kinetical characteristics in selected solvents and favorable photochemical properties in an aqueous buffer. These photoactivatable TRPML activators represent useful and valuable tools for TRPML photoaffinity labeling combined with mass spectrometry.
Collapse
Affiliation(s)
- Kevin Schwickert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Michał Andrzejewski
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Simon Grabowsky
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| |
Collapse
|
90
|
Skinner KA, Wzorek JS, Kahne D, Gaudet R. Efficient and flexible synthesis of new photoactivatable propofol analogs. Bioorg Med Chem Lett 2021; 39:127927. [PMID: 33705906 DOI: 10.1016/j.bmcl.2021.127927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 10/22/2022]
Abstract
Propofol is a widely used general anesthetic, which acts by binding to and modulating several neuronal ion channels. We describe the synthesis of photoactivatable propofol analogs functionalized with an alkyne handle for bioorthogonal chemistry. Such tools are useful for detecting and isolating photolabeled proteins. We designed expedient and flexible synthetic routes to three new diazirine-based crosslinkable propofol derivatives, two of which have alkyne handles. As a proof of principle, we show that these compounds activate heterologously expressed Transient Receptor Potential Ankyrin 1 (TRPA1), a key ion channel of the pain pathway, with a similar potency as propofol in fluorescence-based functional assays. This work demonstrates that installation of the crosslinkable and clickable group on a short nonpolar spacer at the para position of propofol does not affect TRPA1 activation, supporting the utility of these chemical tools in identifying and characterizing potentially druggable binding sites in propofol-interacting proteins.
Collapse
Affiliation(s)
- Kenneth A Skinner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, United States
| | - Joseph S Wzorek
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Daniel Kahne
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, United States; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, United States.
| |
Collapse
|
91
|
Huang M, Wang Y. GLOBAL AND TARGETED PROFILING OF GTP-BINDING PROTEINS IN BIOLOGICAL SAMPLES BY MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2021; 40:215-235. [PMID: 32519381 PMCID: PMC7725852 DOI: 10.1002/mas.21637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/04/2020] [Accepted: 05/15/2020] [Indexed: 05/05/2023]
Abstract
GTP-binding proteins are among the most important enzyme families that are involved in a plethora of biological processes. However, owing to the enormous diversity of the nucleotide-binding protein family, comprehensive analyses of the expression level, structure, activity, and regulatory mechanisms of GTP-binding proteins remain challenging with the use of conventional approaches. The many advances in mass spectrometry (MS) instrumentation and data acquisition methods, together with a variety of enrichment approaches in sample preparation, render MS a powerful tool for the comprehensive characterizations of the activities and expression levels of various GTP-binding proteins. We review herein the recent developments in the application of MS-based techniques, together with general and widely used affinity enrichment approaches, for the proteome-wide and targeted capture, identification, and quantification of GTP-binding proteins. The working principles, advantages, and limitations of various strategies for profiling the expression level, activity, posttranslational modifications, and interactome of GTP-binding proteins are discussed. It can be envisaged that future applications of MS-based proteomics will lead to a better understanding about the roles of GTP-binding proteins in different biological processes and human diseases. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Ming Huang
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA 92521, USA
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA 92521, USA
- Department of Chemistry, University of California Riverside, Riverside, CA 92521, USA
- Correspondence author: Yinsheng Wang. Telephone: (951)827-2700;
| |
Collapse
|
92
|
A tri-functional amino acid enables mapping of binding sites for posttranslational-modification-mediated protein-protein interactions. Mol Cell 2021; 81:2669-2681.e9. [PMID: 33894155 DOI: 10.1016/j.molcel.2021.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/01/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022]
Abstract
Posttranslational modification (PTM), through the recruitment of effector proteins (i.e., "readers") that signal downstream events, plays key roles in regulating a variety of cellular processes. To understand how a PTM is recognized, it is necessary to find its readers and, importantly, the location of the binding pockets responsible for PTM recognition. Although various methods have been developed to identify PTM readers, it remains a challenge to directly map the PTM-binding regions, especially for intrinsically disordered domains. Here, we demonstrate a photo-crosslinkable, clickable, and cleavable tri-functional amino acid, ADdis-Cys, that when coupled with mass spectrometry (ADdis-Cys-MS) can not only identify PTM readers from complex proteomes but also simultaneously map their PTM-recognition modules. Using ADdis-Cys-MS, we successfully identify the binding sites of several reader-PTM interactions, among which we discover human C1QBP as a histone chaperone. This robust method should find wide applications in examining other histone or non-histone PTM-mediated protein-protein interactions.
Collapse
|
93
|
Saidjalolov S, Braud E, Edoo Z, Iannazzo L, Rusconi F, Riomet M, Sallustrau A, Taran F, Arthur M, Fonvielle M, Etheve-Quelquejeu M. Click and Release Chemistry for Activity-Based Purification of β-Lactam Targets. Chemistry 2021; 27:7687-7695. [PMID: 33792096 DOI: 10.1002/chem.202100653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Indexed: 12/30/2022]
Abstract
β-Lactams, the cornerstone of antibiotherapy, inhibit multiple and partially redundant targets referred to as transpeptidases or penicillin-binding proteins. These enzymes catalyze the essential cross-linking step of the polymerization of cell wall peptidoglycan. The understanding of the mechanisms of action of β-lactams and of resistance to these drugs requires the development of reliable methods to characterize their targets. Here, we describe an activity-based purification method of β-lactam targets based on click and release chemistry. We synthesized alkyne-carbapenems with suitable properties with respect to the kinetics of acylation of a model target, the Ldtfm L,D-transpeptidase, the stability of the resulting acylenzyme, and the reactivity of the alkyne for the cycloaddition of an azido probe containing a biotin moiety for affinity purification and a bioorthogonal cleavable linker. The probe provided access to the fluorescent target in a single click and release step.
Collapse
Affiliation(s)
- Saidbakhrom Saidjalolov
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université de Paris, 45, rue des saints-pères, Paris, 75006, France
| | - Emmanuelle Braud
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université de Paris, 45, rue des saints-pères, Paris, 75006, France
| | - Zainab Edoo
- INSERM UMRS 1138, Sorbonne Universités, UPMC Univ Paris 06, Sorbonne Paris Cité, Université de Paris, Centre de recherche des Cordeliers, Paris, 75006, France
| | - Laura Iannazzo
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université de Paris, 45, rue des saints-pères, Paris, 75006, France
| | - Filippo Rusconi
- PAPPSO, Université Paris-Saclay, INRAE, CNRS, AgroParisTech GQE - Le Moulon, Gif-sur-Yvette, 91190, France
| | - Margaux Riomet
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Gif-sur-Yvette, 91191, France
| | - Antoine Sallustrau
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Gif-sur-Yvette, 91191, France
| | - Frédéric Taran
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Gif-sur-Yvette, 91191, France
| | - Michel Arthur
- INSERM UMRS 1138, Sorbonne Universités, UPMC Univ Paris 06, Sorbonne Paris Cité, Université de Paris, Centre de recherche des Cordeliers, Paris, 75006, France
| | - Matthieu Fonvielle
- INSERM UMRS 1138, Sorbonne Universités, UPMC Univ Paris 06, Sorbonne Paris Cité, Université de Paris, Centre de recherche des Cordeliers, Paris, 75006, France
| | - Mélanie Etheve-Quelquejeu
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université de Paris, 45, rue des saints-pères, Paris, 75006, France
| |
Collapse
|
94
|
Liu Y, Liu Y, Nytka M, Huang SR, Lemr K, Tureček F. Probing d- and l-Adrenaline Binding to β 2-Adrenoreceptor Peptide Motifs by Gas-Phase Photodissociation Cross-Linking and Ion Mobility Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1041-1052. [PMID: 33655750 DOI: 10.1021/jasms.1c00019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Diazirine-tagged d- and l-adrenaline derivatives formed abundant noncovalent gas-phase ion complexes with peptides N-Ac-SSIVSFY-NH2 (peptide S) and N-Ac-VYILLNWIGY-NH2 (peptide V) upon electrospray ionization. These peptide sequences represent the binding motifs in the β2-adrenoreceptor. The structures of the gas-phase complexes were investigated by selective laser photodissociation of the diazirine chromophore at 354 nm, which resulted in a loss of N2 and formation of a transient carbene intermediate in the adrenaline ligand without causing its expulsion. The photolyzed complexes were analyzed by collision-induced dissociation (CID-MS3 and CID-MS4) in an attempt to detect cross-links and establish the binding sites. However, no cross-linking was detected in the complexes regardless of the peptide and d- or l-configuration in adrenaline. Cyclic ion mobility measurements were used to obtain collision cross sections (CCS) in N2 for the peptide S complexes. These showed identical values, 334 ± 0.9 Å2, for complexes of the l- and d-adrenaline derivatives, respectively. Identical CCS were also obtained for peptide S complexes with natural l- and d-adrenaline, 317 ± 1.2 Å2, respectively. Born-Oppenheimer molecular dynamics (BOMD) in combination with full geometry optimization by density functional theory calculations provided structures for the complexes that were used to calculate theoretical CCS with the ion trajectory method. A close match (337 Å2) was found for a single low Gibbs energy structure that displayed a binding pocket with Ser 2 and Ser 5 residues forming hydrogen bonds to the adrenaline catechol hydroxyls. Analysis of the BOMD trajectories revealed a small number of contacts between the incipient carbene carbon atom in the ligand and X-H bonds in the peptide, which was consistent with the lack of cross-linking. Temperature dependence of the internal dynamics of peptide S-adrenaline complexes as well as the specifics of the adrenaline carbene reactions are discussed. In particular, peptide amide hydrogen transfer to the carbene carbon atom was calculated to require crossing a potential energy barrier, which may hamper cross-linking in competition with carbene internal rearrangements.
Collapse
Affiliation(s)
- Yang Liu
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 98195-1700, United States
| | - Yue Liu
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 98195-1700, United States
| | - Marianna Nytka
- Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. listopadu 1192/12, 779 00 Olomouc, Czech Republic
| | - Shu R Huang
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 98195-1700, United States
| | - Karel Lemr
- Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. listopadu 1192/12, 779 00 Olomouc, Czech Republic
| | - František Tureček
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
95
|
Elskens J, Madder A. Crosslinker-modified nucleic acid probes for improved target identification and biomarker detection. RSC Chem Biol 2021; 2:410-422. [PMID: 34458792 PMCID: PMC8341421 DOI: 10.1039/d0cb00236d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/11/2021] [Indexed: 01/02/2023] Open
Abstract
Understanding the intricate interaction pattern of nucleic acids with other molecules is essential to gain further insight in biological processes and disease mechanisms. To this end, a multitude of hybridization-based assays have been designed that rely on the non-covalent recognition between complementary nucleic acid sequences. However, the ephemeral nature of these interactions complicates straightforward analysis as low efficiency and specificity are rule rather than exception. By covalently locking nucleic acid interactions by means of a crosslinking agent, the overall efficiency, specificity and selectivity of hybridization-based assays could be increased. In this mini-review we highlight methodologies that exploit the use of crosslinker-modified nucleic acid probes for interstrand nucleic acid crosslinking with the objective to study, detect and identify important targets as well as nucleic acid sequences that can be considered relevant biomarkers. We emphasize on the usefulness and advantages of crosslinking agents and elaborate on the chemistry behind the crosslinking reactions they induce.
Collapse
Affiliation(s)
- Joke Elskens
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University Krijgslaan 281 Building S4 9000 Ghent Belgium +32-9-264-49-98 +32-9-264-44-72
| | - Annemieke Madder
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University Krijgslaan 281 Building S4 9000 Ghent Belgium +32-9-264-49-98 +32-9-264-44-72
| |
Collapse
|
96
|
Yuan T, Werman JM, Sampson NS. The pursuit of mechanism of action: uncovering drug complexity in TB drug discovery. RSC Chem Biol 2021; 2:423-440. [PMID: 33928253 PMCID: PMC8081351 DOI: 10.1039/d0cb00226g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022] Open
Abstract
Whole cell-based phenotypic screens have become the primary mode of hit generation in tuberculosis (TB) drug discovery during the last two decades. Different drug screening models have been developed to mirror the complexity of TB disease in the laboratory. As these culture conditions are becoming more and more sophisticated, unraveling the drug target and the identification of the mechanism of action (MOA) of compounds of interest have additionally become more challenging. A good understanding of MOA is essential for the successful delivery of drug candidates for TB treatment due to the high level of complexity in the interactions between Mycobacterium tuberculosis (Mtb) and the TB drug used to treat the disease. There is no single "standard" protocol to follow and no single approach that is sufficient to fully investigate how a drug restrains Mtb. However, with the recent advancements in -omics technologies, there are multiple strategies that have been developed generally in the field of drug discovery that have been adapted to comprehensively characterize the MOAs of TB drugs in the laboratory. These approaches have led to the successful development of preclinical TB drug candidates, and to a better understanding of the pathogenesis of Mtb infection. In this review, we describe a plethora of efforts based upon genetic, metabolomic, biochemical, and computational approaches to investigate TB drug MOAs. We assess these different platforms for their strengths and limitations in TB drug MOA elucidation in the context of Mtb pathogenesis. With an emphasis on the essentiality of MOA identification, we outline the unmet needs in delivering TB drug candidates and provide direction for further TB drug discovery.
Collapse
Affiliation(s)
- Tianao Yuan
- Department of Chemistry, Stony Brook UniversityStony BrookNY 11794-3400USA+1-631-632-5738+1-631-632-7952
| | - Joshua M. Werman
- Department of Chemistry, Stony Brook UniversityStony BrookNY 11794-3400USA+1-631-632-5738+1-631-632-7952
| | - Nicole S. Sampson
- Department of Chemistry, Stony Brook UniversityStony BrookNY 11794-3400USA+1-631-632-5738+1-631-632-7952
| |
Collapse
|
97
|
Kelly LA, Roll M, Joseph J, Seenisamy J, Barrett J, Kauser K, Warner KS. Solvent-Dependent Photophysics and Reactivity of Monomeric and Dimeric 4-Amino-1,8-Naphthalimides. J Phys Chem A 2021; 125:2294-2307. [DOI: 10.1021/acs.jpca.0c11639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lisa A. Kelly
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250 United States
| | - Melissa Roll
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250 United States
| | - Jayan Joseph
- Syngene International Ltd., Biocon Park, 560099 Bengaluru, India
| | | | - Justin Barrett
- Alucent Biomedical Inc., 675 Arapeen Drive, Suite 102, Salt Lake City, Utah 84108, United States
| | - Katalin Kauser
- Alucent Biomedical Inc., 675 Arapeen Drive, Suite 102, Salt Lake City, Utah 84108, United States
| | - Kevin S. Warner
- Alucent Biomedical Inc., 675 Arapeen Drive, Suite 102, Salt Lake City, Utah 84108, United States
| |
Collapse
|
98
|
Mattay J, Dittmar M, Rentmeister A. Chemoenzymatic strategies for RNA modification and labeling. Curr Opin Chem Biol 2021; 63:46-56. [PMID: 33690011 DOI: 10.1016/j.cbpa.2021.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/20/2021] [Accepted: 01/31/2021] [Indexed: 12/17/2022]
Abstract
RNA is a central molecule in numerous cellular processes, including transcription, translation, and regulation of gene expression. To reveal the numerous facets of RNA function and metabolism in cells, labeling has become indispensable and enables the visualization, isolation, characterization, and even quantification of certain RNA species. In this review, we will cover chemoenzymatic approaches for covalent RNA labeling. These approaches rely on an enzymatic step to introduce an RNA modification before conjugation with a label for detection or isolation. We start with in vitro manipulation of RNA, sorted according to the enzymatic reaction exploited. Then, metabolic approaches for co- and post-transcriptional RNA labeling will be treated. We focus on recent advances in the field and highlight the most relevant applications for cellular imaging, RNA isolation and sequencing.
Collapse
Affiliation(s)
- Johanna Mattay
- Department of Chemistry, Institute of Biochemistry, University of Münster, Correnstr. 36, 48149, Münster, Germany
| | - Maria Dittmar
- Department of Chemistry, Institute of Biochemistry, University of Münster, Correnstr. 36, 48149, Münster, Germany
| | - Andrea Rentmeister
- Department of Chemistry, Institute of Biochemistry, University of Münster, Correnstr. 36, 48149, Münster, Germany; Cells in Motion Interfaculty Center, University of Münster, 48149, Münster, Germany.
| |
Collapse
|
99
|
Zhang H, Wang W, Wei L, Wu D, Cheng J, Gao F. Fabrication of PAMAM antimicrobial monolayer via UV induced grafting on the surface of polyethylene terephthalate. Colloids Surf B Biointerfaces 2021; 201:111601. [PMID: 33618083 DOI: 10.1016/j.colsurfb.2021.111601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 11/18/2022]
Abstract
Poly (amidoamine) (PAMAM) with 3rd and 5th generation was covalently grafted as the contact active biocidal agent on the surface of polyethylene terephthalate (PET) with the help of UV induced carbene chemistry (PAMAM-g-PET). The graft density and the surface roughness were controlled by turning UV irradiation time and the PAMAM generation. The PAMAM graft monolayer was characterized via the contact angle, XPS, nanoIR, SEM and AFM. The antibacterial ability of PAMAM-g-PET was evaluated ex-vivo with the help of laser scanning confocal microscope (CLSM), and the results indicated that the decorated PET was able to kill both S. aureus and E. coli in the aqueous environment. Increasing the surface graft concentration and using the dendrimer with higher generation enhanced the lethality towards the bacterial. The decorated film was still able to kill the contact bacterial strain when the cationic primary amine groups were shielded by acetyl chloride, however, the bacterial in the suspension was hardly affected in this case. The un-selectivity and instantaneity of carbene chemistry endowed this grafting strategy the potential to be extended to other organic substances.
Collapse
Affiliation(s)
- Haobo Zhang
- School of Material Science and Engineering, Beijing University of Chemistry Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China.
| | - Weihan Wang
- School of Material Science and Engineering, Beijing University of Chemistry Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China.
| | - Lilong Wei
- China-Japan Friendship Hospital, Yinghuayuan North Street 2, Chaoyang District, Beijing, 100029, China.
| | - Dezhen Wu
- School of Material Science and Engineering, Beijing University of Chemistry Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China.
| | - Jue Cheng
- School of Material Science and Engineering, Beijing University of Chemistry Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China.
| | - Feng Gao
- School of Material Science and Engineering, Beijing University of Chemistry Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
100
|
Conway LP, Li W, Parker CG. Chemoproteomic-enabled phenotypic screening. Cell Chem Biol 2021; 28:371-393. [PMID: 33577749 DOI: 10.1016/j.chembiol.2021.01.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/26/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
The ID of disease-modifying, chemically accessible targets remains a central priority of modern therapeutic discovery. The phenotypic screening of small-molecule libraries not only represents an attractive approach to identify compounds that may serve as drug leads but also serves as an opportunity to uncover compounds with novel mechanisms of action (MoAs). However, a major bottleneck of phenotypic screens continues to be the ID of pharmacologically relevant target(s) for compounds of interest. The field of chemoproteomics aims to map proteome-wide small-molecule interactions in complex, native systems, and has proved a key technology to unravel the protein targets of pharmacological modulators. In this review, we discuss the application of modern chemoproteomic methods to identify protein targets of phenotypic screening hits and investigate MoAs, with a specific focus on the development of chemoproteomic-enabled compound libraries to streamline target discovery.
Collapse
Affiliation(s)
- Louis P Conway
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Weichao Li
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Christopher G Parker
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|