51
|
da Silva Leite R, Neves do Nascimento M, Hernandéz-Navarro S, Miguel Ruiz Potosme N, Karthikeyan S. Use of ATR-FTIR spectroscopy for analysis of water deficit tolerance in Physalis peruviana L. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121551. [PMID: 35779475 DOI: 10.1016/j.saa.2022.121551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Treatments that allow plants to better tolerate water deficit become essential, such as the application of chemical priming. In addition, it is essential to use analyses capable of measuring these effects at the biomolecular level, complementing the other physiological evaluations. In view of the above, this study aimed to evaluate the use of attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy for analyses of water deficit tolerance in Physalis peruviana plants. For this, samples of leaves, stems and roots of plants subjected to different pretreatments with proline (10 mM and 20 mM), sodium nitroprusside (SNP 25 μM and 50 μM) and H2O as control, aiming at increasing tolerance to water deficit, were evaluated. The chemical agents used attenuated water deficit in P. peruviana plants, influencing phenotypic characterization and spectral analyses. Analysis of FTIR spectra indicates that different functional groups present in leaves, stems and roots were influenced by water deficit and priming treatments. Changes in lipid levels contributed to reducing water losses by increasing the thickness of cuticular wax. Accumulation of proteins and carbohydrates promoted osmoregulation and maintenance of the water status of plants. Thus, water deficit causes changes in the functional groups present in the organs of P. peruviana, and the ATR-FTIR technique is able to detect these biomolecular changes, helping in the selection of priming treatments to increase tolerance to water deficit.
Collapse
Affiliation(s)
- Romeu da Silva Leite
- Biological Sciences Department, State University of Feira de Santana, 44036-900 Feira de Santana, Bahia, Brazil; Agriculture and Forestry Engineering Department, Universidad de Valladolid, 34004 Palencia, Castilla y Leon, Spain; Baiano Federal Institute of Science and Technology, Campus Xique-Xique, 47400-000 Xique-Xique, Brazil.
| | - Marilza Neves do Nascimento
- Biological Sciences Department, State University of Feira de Santana, 44036-900 Feira de Santana, Bahia, Brazil
| | - Salvador Hernandéz-Navarro
- Agriculture and Forestry Engineering Department, Universidad de Valladolid, 34004 Palencia, Castilla y Leon, Spain
| | - Norlan Miguel Ruiz Potosme
- Superior Polytechnic School, European University Miguel de Cervantes, 47012 Valladolid, Castilla y Leon, Spain
| | - Sivakumaran Karthikeyan
- Department of Physics, Dr. Ambedkar Government Arts College, 600039 Chennai, Tamil Nadu, India
| |
Collapse
|
52
|
Oztuna Taner O, Ekici L, Akyuz L. CMC-based edible coating composite films from Brewer's spent grain waste: a novel approach for the fresh strawberry package. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04490-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
53
|
Microalgae as a promising structure ingredient in food: Obtained by simple thermal and high-speed shearing homogenization. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
54
|
Lian Y, Zhu M, Yang B, Wang X, Zeng J, Yang Y, Guo S, Jia X, Feng L. Characterization of a novel polysaccharide from red ginseng and its ameliorative effect on oxidative stress injury in myocardial ischemia. Chin Med 2022; 17:111. [PMID: 36153627 PMCID: PMC9509600 DOI: 10.1186/s13020-022-00669-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Red ginseng (RG) was widely used as traditional Chinese medicine (TCM) or dietary supplement. However, few researches had been reported on the red ginseng polysaccharide (RGP). METHODS In this study, a novel heteropolysaccharide named RGP1-1 was fractionated sequentially by DEAE-52 column and Sephadex G-100 gel column. The primary structure of RGP1-1, including glycosyl linkages, molecular weight, monosaccharide composition, morphology and physicochemical property were conducted by nuclear magnetic resonance (NMR), gas chromatography-mass spectrometer (GC-MS), atomic force microscope (AFM), scanning electron microscope (SEM), differential scanning calorimetry-thermogravimetric analysis (DSC-TG) and so on. The effect of RGP1-1 in preventing and treating myocardial ischemia was evaluated by an animal model isoprenaline (ISO) induced mice. RESULTS RGP1-1, with a homogeneous molecular weight of 5655 Da, was composed of Glc and Gal in the ratio of 94.26:4.92. The methylation and NMR analysis indicated the backbone was composed of → 1)-Glcp-(4 → and → 1)-Galp-(4 →, branched partially at O-4 with α-D-Glcp-(1 → residue. Morphology and physicochemical property analysis revealed a triple-helical conformation, flaky and irregular spherical structure with molecule aggregations and stable thermal properties of RGP1-1. And it contained 6.82 mV zeta potential, 117.4 nm partical size and polymerization phenomenon. Furthermore, RGP1-1 possessed strong antioxidant activity in vitro and in vivo, RGP1-1 could decrease cardiomyocyte apoptosis and myocardium fibrosis of mice in histopathology and it could decrease significantly the serum levels of cardiac troponin (cTnI), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), malondialdehyde (MDA). Western blot analysis showed that RGP1-1 can increase the expression of main protein Nuclear factor E2-related factor 2(Nrf2), NAD(P)H:quinone oxidoreductase 1 (NQO1), heme oxygenase-1(HO-1) and kelch-like ECH-associated protein1(keap1) in oxidative stress injure progress, and therefore regulate the pathway of Nrf2/HO-1. CONCLUSION The above findings indicated that RGP1-1 had an improving effect on ISO-induced myocardial ischemia injury in mice, as novel natural antioxidant and heart-protecting drugs.
Collapse
Affiliation(s)
- Yuanpei Lian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
- Changzhou Affiliated Hospital of Nanjing University of Chinese Medicine, Changzhou, People's Republic of China, 213003
| | - Maomao Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Bing Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Xianfeng Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Jingqi Zeng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yanjun Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Shuchen Guo
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Liang Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
55
|
Beltrame G, Mattsson I, Damlin P, Han Z, Kvarnström C, Leino R, Yang B. Study of the sterile conk of Inonotus obliquus using 13C CPMAS NMR and FTIR spectroscopies coupled with multivariate analysis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
56
|
Yu Y, Li T, Wang X, Zhang M, Yu Q, Chen H, Zhang D, Yan C. Structural characterization and anti-osteoporosis activity of two polysaccharides extracted from the rhizome of Curculigo orchioides. Food Funct 2022; 13:6749-6761. [PMID: 35661847 DOI: 10.1039/d2fo00720g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Curculigo orchioides is widely used to treat osteoporosis in China. In this study, we identified the active substances in the crude polysaccharide (CO50) from C. orchioides that had anti-osteoporosis activity in vivo. Two polysaccharides, COP50-1 and COP50-4, were purified from CO50. Based on structural analysis, COP50-1 was composed of α-D-Glcp-(1→, β-D-Galp-(1→, →4)-α-D-Glcp-(1→, →3,4)-α-D-Glcp-(1→, →4,6)-α-D-Glcp-(1→, →4,6)-β-D-Manp-(1→, whereas COP50-4 was composed of α-L-Araf-(1→, →2)-α-L-Rhap-(1→, β-D-Manp-(1→, α-D-Galp-(1→, →2,4)-α-L-Rhap-(1→, →2)-β-D-Manp-(1→, →4)-α-D-GlcAp-(1→, →3)-α-D-GalAp-(1→, →4,6)-α-D-Galp-(1→, →2,3,6)-β-D-Manp-(1→, →2,3,5)-α-L-Araf-(1→, →2,5)-α-L-Araf-(1→, →4)-α-D-Glcp-(1→ and →3)-α-D-Galp-(1→. Pharmacological assessment revealed that COP50-1 had no obvious osteogenic activity. However, COP50-4 (0.5 μM) significantly enhanced the differentiation and mineralization of osteoblasts in vitro. Moreover, the effect of COP50-4 was greater than that of 17β-estradiol. Therefore, COP50-4 may be an effective component of CO50 that has great potential for development as an alternative drug for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Yongbo Yu
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Tianyu Li
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Xueqian Wang
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Mengliu Zhang
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Qian Yu
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Haiyun Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dawei Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chunyan Yan
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
57
|
Zhang H, Guan Q, Zeng P, Wu G, Hong Y, Yang W, Wang C. Ultrasensitive detection of pectin based on the decarboxylation reaction and surface-enhanced Raman spectroscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2266-2276. [PMID: 35621162 DOI: 10.1039/d2ay00463a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the present study, a novel simple and sensitive method was developed for the determination of pectin based on the decarboxylation derivatization reaction and surface-enhanced Raman scattering (SERS) without complicated separation steps. The derivatization reaction can be controlled by the experimental parameters such as reaction time, temperature and the amount of hydrochloric acid. Additionally, the method was used to accurately and reliably detect pectin added in honey or apple, which can be detected at levels as low as 0.5 or 0.01 ppm, respectively. Based on the conventional decarboxylation reaction, a simple and sensitive SERS method was proposed for the detection of pectin, which shows potential for practical application.
Collapse
Affiliation(s)
- Huan Zhang
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Qi Guan
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Pei Zeng
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Guoqiang Wu
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Yanping Hong
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Wuying Yang
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Chunrong Wang
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| |
Collapse
|
58
|
Liu XY, Yu HY, Liu YZ, Qin Z, Liu HM, Ma YX, Wang XD. Isolation and structural characterization of cell wall polysaccharides from sesame kernel. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
59
|
Zhang Y, Liu P, Wang C, Zhang F, Linhardt RJ, Eliezer D, Li Q, Zhao J. Homogalacturonan from squash: Characterization and tau-binding pattern of a sulfated derivative. Carbohydr Polym 2022; 285:119250. [PMID: 35287864 PMCID: PMC9482147 DOI: 10.1016/j.carbpol.2022.119250] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/02/2022]
Abstract
A pectic polysaccharide (WAP) was isolated from squash and identified as a homogalacturonan with a molecular mass of 83.2 kDa by GPC, monosaccharide composition analysis, FT-IR and NMR spectra. Sulfation modification of WAP was carried out and a sulfated derivative (SWAP) was obtained with a substitution degree of 1.81. The NMR spectrum indicated that the sulfation modification mainly occurred at the C-2 and C-3 positions of galacturonan residues. The binding pattern of SWAP to tau K18 protein was observed in 2D 1H15N HSQC spectra of tau, which resembled the tau-heparin interaction, with R2 domain as the major binding region. These results suggest that SWAP has the potential to act as a heparin mimic to inhibit the transcellular spread of tau; thus natural polysaccharide from squash may be developed into therapies for AD and related tauopathies.
Collapse
Affiliation(s)
- Yu Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Panhang Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Chunyu Wang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, United States of America; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States of America; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States of America
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States of America; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States of America
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, United States of America; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States of America; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States of America; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States of America; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States of America
| | - David Eliezer
- Department of Biochemistry, Program in Structural Biology, Weill Cornell Medical College, New York, United States of America
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China.
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China.
| |
Collapse
|
60
|
Lin Y, Yang J, Luo L, Zhang X, Deng S, Chen X, Li Y, Bekhit AEDA, Xu B, Huang R. Ferroptosis Related Immunomodulatory Effect of a Novel Extracellular Polysaccharides from Marine Fungus Aureobasidium melanogenum. Mar Drugs 2022; 20:332. [PMID: 35621983 PMCID: PMC9144548 DOI: 10.3390/md20050332] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Marine fungi represent an important and sustainable resource, from which the search for novel biological substances for application in the pharmacy or food industry offers great potential. In our research, novel polysaccharide (AUM-1) was obtained from marine Aureobasidium melanogenum SCAU-266 were obtained and the molecular weight of AUM-1 was determined to be 8000 Da with 97.30% of glucose, 1.9% of mannose, and 0.08% galactose, owing to a potential backbone of α-D-Glcp-(1→2)-α-D-Manp-(1→4)-α-D-Glcp-(1→6)-(SO3-)-4-α-D-Glcp-(1→6)-1-β-D-Glcp-1→2)-α-D-Glcp-(1→6)-β-D-Glcp-1→6)-α-D-Glcp-1→4)-α-D-Glcp-6→1)-[α-D-Glcp-4]26→1)-α-D-Glcp and two side chains that consisted of α-D-Glcp-1 and α-D-Glcp-(1→6)-α-D-Glcp residues. The immunomodulatory effect of AUM-1 was identified. Then, the potential molecular mechanism by which AUM-1 may be connected to ferroptosis was indicated by metabonomics, and the expression of COX2, SLC7A11, GPX4, ACSL4, FTH1, and ROS were further verified. Thus, we first speculated that AUM-1 has a potential effect on the ferroptosis-related immunomodulatory property in RAW 264.7 cells by adjusting the expression of GPX4, regulated glutathione (oxidative), directly causing lipid peroxidation owing to the higher ROS level through the glutamate metabolism and TCA cycle. Thus, the ferroptosis related immunomodulatory effect of AUM-1 was obtained.
Collapse
Affiliation(s)
- Yuqi Lin
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (J.Y.); (S.D.); (X.C.)
| | - Jiajia Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (J.Y.); (S.D.); (X.C.)
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China;
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Xiaoyong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (Y.L.)
| | - Shengyu Deng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (J.Y.); (S.D.); (X.C.)
| | - Xiaodan Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (J.Y.); (S.D.); (X.C.)
| | - Yiyang Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (Y.L.)
| | - Alaa El-Din A. Bekhit
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University−Hong Kong Baptist University−United International College, Zhuhai 519087, China;
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (J.Y.); (S.D.); (X.C.)
| |
Collapse
|
61
|
Long H, Xia X, Liao S, Wu T, Wang L, Chen Q, Wei S, Gu X, Zhu Z. Physicochemical Characterization and Antioxidant and Hypolipidaemic Activities of a Polysaccharide From the Fruit of Kadsura coccinea (Lem.) A. C. Smith. Front Nutr 2022; 9:903218. [PMID: 35662931 PMCID: PMC9158746 DOI: 10.3389/fnut.2022.903218] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/28/2022] [Indexed: 01/24/2023] Open
Abstract
Kadsura coccinea fruit, a novel fruit resource, has attracted wide interest, but the physicochemical characteristics and biological activities of its polysaccharides remain unclear. This study investigated the physicochemical properties of a polysaccharide extracted from K. coccinea fruit polysaccharide (KCFP) and evaluated its antioxidant and hypolipidaemic activities in vitro and in vivo. KCFP is an amorphous, thermally stable pectin heteropolysaccharide with an average molecular weight of 204.6 kDa that is mainly composed of mannose, rhamnose, glucose, galactose, xylose, arabinose, galacturonic acid (molar percentage >70%) and glucuronic acid. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radical scavenging assays and an iron reducing antioxidant power assay showed that KCFP has strong antioxidant capacity, while the bile acid binding assay showed that KCFP has hypolipidaemic potential in vitro. The antioxidant and hypolipidaemic activities of KCFP were further evaluated in high-fat diet-induced hyperlipidaemic mice. KCFP significantly increased the activities of superoxide dismutase, glutathione peroxidase and catalase, decreased the malondialdehyde content, significantly reduced the total cholesterol (TC), triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C) levels, and increased the amount of high-density lipoprotein cholesterol (HDL-C). These findings suggest that KCFP could be used as a functional food to remedy oxidative damage and hyperlipidaemia.
Collapse
Affiliation(s)
- Hairong Long
- Guangxi Botanical Garden of Medicinal Plants, No. 189, Nanning, China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China
| | - Xianghua Xia
- Guangxi Botanical Garden of Medicinal Plants, No. 189, Nanning, China
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Suqi Liao
- Guangxi Botanical Garden of Medicinal Plants, No. 189, Nanning, China
| | - Tao Wu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China
| | - Lijun Wang
- Guangxi Botanical Garden of Medicinal Plants, No. 189, Nanning, China
| | - Qianping Chen
- Guangxi Botanical Garden of Medicinal Plants, No. 189, Nanning, China
| | - Shugen Wei
- Guangxi Botanical Garden of Medicinal Plants, No. 189, Nanning, China
| | - Xiaoyu Gu
- Guangxi Botanical Garden of Medicinal Plants, No. 189, Nanning, China
- *Correspondence: Xiaoyu Gu,
| | - Zhenjun Zhu
- Department of Food Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou, China
- Zhenjun Zhu,
| |
Collapse
|
62
|
Lobo RE, Orrillo PA, Ribotta SB, de Valdez GF, García MS, Cabello JCR, Torino MI. Structural characterization of a homopolysaccharide produced by Weissella cibaria FMy 2-21-1 and its potential application as a green corrosion inhibiting film. Int J Biol Macromol 2022; 212:193-201. [PMID: 35594939 DOI: 10.1016/j.ijbiomac.2022.05.105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 05/09/2022] [Accepted: 05/14/2022] [Indexed: 11/26/2022]
Abstract
Steel corrosion is a global issue that affects safety and the economy. Currently, the homopolysaccharide (HoPS) structure of a novel lactic acid bacterium (LAB) is under study, as well as its application as a green corrosion inhibitor. Weissella cibaria FMy 2-21-1 is a LAB strain capable of producing HoPS in sucrose enriched media. The isolated and purified HoPS was characterized by different spectroscopic analyses as a linear α-1,6 dextran adopting a random coil conformation, with high molecular weight and extended size in water. The polysaccharide showed a semi-crystalline organization, which is a requirement for film formation. Its biocoating showed a grainy network structure, with a slightly lesser hydrophobic role in the aqueous environment than in the ionic one. The electrochemical measurements of the steel-HoPS coating showed that the biopolymer layer acts as an anodic-type corrosion inhibitor, with high resistance to corrosion by water and with chloride ions which prevent pitting, a corrosion process typical of bare steel. Few reports have cited the application of LAB HoPS as corrosive coating inhibitors. This work is the first to explore the influence of a structurally characterized dextran from Weissella cibaria strain as a potential steel corrosion inhibitor in ionic environments.
Collapse
Affiliation(s)
- René Emanuel Lobo
- Centro de Referencia para Lactobacilos (CERELA)-CCT CONICET NOA Sur, Batalla de Chacabuco 145, San Miguel de Tucumán 4000, Tucumán, Argentina.
| | - Patricio Andrés Orrillo
- Instituto de Química del Noroeste Argentino (INQUINOA) - Universidad Nacional de Tucumán (UNT) - CCT CONICET NOA Sur, Instituto de Química Física, Facultad de Bioquímica, Química y Farmacia, UNT, Batalla de Ayacucho 471, San Miguel de Tucumán 4000, Tucumán, Argentina.
| | - Susana Beatriz Ribotta
- Instituto de Química del Noroeste Argentino (INQUINOA) - Universidad Nacional de Tucumán (UNT) - CCT CONICET NOA Sur, Instituto de Química Física, Facultad de Bioquímica, Química y Farmacia, UNT, Batalla de Ayacucho 471, San Miguel de Tucumán 4000, Tucumán, Argentina.
| | - Graciela Font de Valdez
- Centro de Referencia para Lactobacilos (CERELA)-CCT CONICET NOA Sur, Batalla de Chacabuco 145, San Miguel de Tucumán 4000, Tucumán, Argentina.
| | - Mercedes Santos García
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), University of Valladolid, CIBER-BBN, 47011 Valladolid, Spain.
| | - José Carlos Rodríguez Cabello
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), University of Valladolid, CIBER-BBN, 47011 Valladolid, Spain.
| | - María Inés Torino
- Centro de Referencia para Lactobacilos (CERELA)-CCT CONICET NOA Sur, Batalla de Chacabuco 145, San Miguel de Tucumán 4000, Tucumán, Argentina.
| |
Collapse
|
63
|
Ahmadi S, Yu C, Zaeim D, Wu D, Hu X, Ye X, Chen S. Increasing RG-I content and lipase inhibitory activity of pectic polysaccharides extracted from goji berry and raspberry by high-pressure processing. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107477] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
64
|
Su W, Wu L, Liang Q, Lin X, Xu X, Yu S, Lin Y, Zhou J, Fu Y, Gao X, Zhang B, Li L, Li D, Yin Y, Song G. Extraction Optimization, Structural Characterization, and Anti-Hepatoma Activity of Acidic Polysaccharides From Scutellaria barbata D. Don. Front Pharmacol 2022; 13:827782. [PMID: 35444545 PMCID: PMC9014130 DOI: 10.3389/fphar.2022.827782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
The Chinese medicinal herb Scutellaria barbata D. Don has antitumour effects and is used to treat liver cancer in the clinic. S. barbata polysaccharide (SBP), one of the main active components extracted from S. barbata D. Don, exhibits antitumour activity. However, there is still a lack of research on the extraction optimization, structural characterization, and anti-hepatoma activity of acidic polysaccharides from S. barbata D. Don. In this study, the optimal extraction conditions for SBP were determined by response surface methodology (RSM): the material-liquid ratio was 1:25, the extraction time was 2 h, and the extraction temperature was 90°C. Under these conditions, the average extraction efficiency was 3.85 ± 0.13%. Two water-soluble polysaccharides were isolated from S. barbata D. Don, namely, SBP-1A and SBP-2A, these homogeneous acidic polysaccharide components with average molecular weights of 1.15 × 105 Da and 1.4 × 105 Da, respectively, were obtained at high purity. The results showed that the monosaccharide constituents of the two components were fucose, galactosamine hydrochloride, rhamnose, arabinose, glucosamine hydrochloride, galactose, glucose, xylose, and mannose; the molar ratio of these constituents in SBP-1A was 0.6:0.3:0.6:30.6:3.3:38.4:16.1:8:1.4, and that in SBP-2A was 0.6:0.5:0.8:36.3:4.4:42.7:9.2:3.6:0.7. In addition, SBP-1A and SBP-2A contained uronic acid and β-glucan, and the residue on the polysaccharide was mainly pyranose. The in vitro results showed that the anti-hepatoma activity of SBP-2A was better than that of SBP-1A and SBP. In addition, SBP-2A significantly enhanced HepG2 cell death, as cell viability was decreased, and SBP-2A induced HepG2 cell apoptosis and blocked the G1 phase. This phenomenon was coupled with the upregulated expression of P53 and Bax/Bcl-2 ratio, as well as the downregulated expression of the cell cycle-regulating protein cyclinD1, CDK4, and Bcl-2 in this study. Further analysis showed that 50 mg/kg SBP-2A inhibited the tumour growth in H22 tumour-bearing mice, with an average inhibition rate of 40.33%. Taken together, SBP-2A, isolated and purified from S. barbata showed good antitumour activity in vivo and in vitro, and SBP-2A may be a candidate drug for further evaluation in cancer prevention. This study provides insight for further research on the molecular mechanism of the anti-hepatoma activity of S. barbata polysaccharide.
Collapse
Affiliation(s)
- Wenwen Su
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, China
| | - Leilei Wu
- Collage of Pharmacology, Mudanjiang Medical University, Mudanjiang, China
| | - Qichao Liang
- Collage of Pharmacology, Mudanjiang Medical University, Mudanjiang, China
| | - Xiaoyue Lin
- The First Clinical College of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoyi Xu
- The First Clinical College of Medicine, Mudanjiang Medical University, Mudanjiang, China
| | - Shikai Yu
- Collage of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yitong Lin
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, China
| | - Jiadong Zhou
- Collage of Basic Medicine, Mudanjiang Medical University, Mudanjiang, China
| | - Yang Fu
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, China
| | - Xiaoyan Gao
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, China
| | - Bo Zhang
- Department of Oncology, Mudanjiang Cancer Hospital, Mudanjiang, China
| | - Li Li
- Collage of Basic Medicine, Mudanjiang Medical University, Mudanjiang, China
| | - Dan Li
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, China
| | - Yongkui Yin
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Gaochen Song
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
65
|
Zhang W, Xu S, Gao M, Peng S, Chen L, Lao F, Liao X, Wu J. Profiling the water soluble pectin in clear red raspberry (Rubus idaeus L. cv. Heritage) juice: Impact of high hydrostatic pressure and high-temperature short-time processing on the pectin properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
66
|
Structure and antiviral activity of a pectic polysaccharide from the root of Sanguisorba officinalis against enterovirus 71 in vitro/vivo. Carbohydr Polym 2022; 281:119057. [DOI: 10.1016/j.carbpol.2021.119057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 12/22/2022]
|
67
|
Han J, Zhang Q, Luo W, Wang Z, Pang Y, Shen X. In vitro
digestion of whole chia seeds (
Salvia hispanica
L.): Nutrient bioaccessibility, structural and functional changes. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jieyu Han
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 China
- International Joint Laboratory on Food Safety Jiangnan University Wuxi 214122 China
- Institute of Analytical Food Safety School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Qiufang Zhang
- Zibo Institute for Inspection Testing and Metrology Zibo 255086 China
| | - Wentao Luo
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 China
- International Joint Laboratory on Food Safety Jiangnan University Wuxi 214122 China
- Institute of Analytical Food Safety School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Ziyi Wang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 China
- International Joint Laboratory on Food Safety Jiangnan University Wuxi 214122 China
- Institute of Analytical Food Safety School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Yuehong Pang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 China
- International Joint Laboratory on Food Safety Jiangnan University Wuxi 214122 China
- Institute of Analytical Food Safety School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Xiaofang Shen
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 China
- International Joint Laboratory on Food Safety Jiangnan University Wuxi 214122 China
- Institute of Analytical Food Safety School of Food Science and Technology Jiangnan University Wuxi 214122 China
| |
Collapse
|
68
|
Yu Q, Chen W, Zhong J, Huang D, Shi W, Chen H, Yan C. Purification, structural characterization, and bioactivities of a polysaccharide from
Coreopsis tinctoria. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Qian Yu
- School of Clinical Pharmacy Guangdong Pharmaceutical University Guangzhou China
| | - Wei Chen
- School of Clinical Pharmacy Guangdong Pharmaceutical University Guangzhou China
| | - Jing Zhong
- School of Clinical Pharmacy Guangdong Pharmaceutical University Guangzhou China
| | - Dong Huang
- School of Clinical Pharmacy Guangdong Pharmaceutical University Guangzhou China
| | - Wenting Shi
- School of Clinical Pharmacy Guangdong Pharmaceutical University Guangzhou China
| | - Haiyun Chen
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou China
| | - Chunyan Yan
- School of Clinical Pharmacy Guangdong Pharmaceutical University Guangzhou China
| |
Collapse
|
69
|
Fu X, Song M, Lu M, Xie M, Shi L. Hypoglycemic and hypolipidemic effects of polysaccharide isolated from Sphacelotheca sorghi in diet-streptozotocin-induced T2D mice. J Food Sci 2022; 87:1882-1894. [PMID: 35275401 DOI: 10.1111/1750-3841.16091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 01/16/2023]
Abstract
Edible fungus has attracted great interest with many health benefits, and polysaccharides from them have shown great potentials. In this study, polysaccharides were extracted from Sphacelotheca sorghi (Link) Clint. Monosaccharide composition of S. sorghi polysaccharides (SSP) was detected by high-performance anion exchange chromatography (HPAEC) and mainly consists of glucose (70.5%), galactose (15.6%), mannose (7.2%), arabinose (5.8%), and rhamnose (0.9%). Type 2 diabetes (T2D) was induced by a high-fat, high-sugar diet-fed (HFSD) diet with streptozotocin (STZ) injection in mice, and hypoglycemic and hypolipidemic regulations of SSP were evaluated. After oral treatment of high dose of SSP (200 mg/kg/day), the fasting blood glucose (FBG) was reduced by 39.3%, the insulin resistance of T2D mice was relieved, the lipids metabolism disorder caused by diabetes was improved, and the levels of liver glycogen was increased by 34.1%, compared with the model control. Histopathological examination showed that SSP relieved liver damage. Furthermore, SSP regulated glucose and lipid metabolism by activating phosphoinositide 3-kinase/Akt signaling pathway. Overall, SPP is promising to be used as a functional food for the improvement of metabolic disorders. PRACTICAL APPLICATION: For enhancing the utilization rate and economic value of an edible fungi Sphacelotheca sorghi (Link) Clint., the total polysaccharides were isolated and used to investigate the effect of fungi in terms of balancing the levels of blood glucose and lipids. The S. sorghi polysaccharide treatment resolved the symptoms and insulin resistance in mice with diabetes, signifying its potential application in producing different functional foods for preventing or controlling diabetes.
Collapse
Affiliation(s)
- Xin Fu
- Food and Processing Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Mengxue Song
- Food and Processing Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, China.,College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Ming Lu
- Food and Processing Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, China.,College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Mengxi Xie
- Food and Processing Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Lin Shi
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
70
|
Liu C, Dai KY, Ji HY, Jia XY, Liu AJ. Structural characterization of a low molecular weight Bletilla striata polysaccharide and antitumor activity on H22 tumor-bearing mice. Int J Biol Macromol 2022; 205:553-562. [PMID: 35202634 DOI: 10.1016/j.ijbiomac.2022.02.073] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/30/2021] [Accepted: 02/13/2022] [Indexed: 01/04/2023]
Abstract
In this study, a novel low molecular weight polysaccharide (named LMW-BSP) was extracted from Bletilla striata at 4 °C. The results of structural characteristics analysis showed that LMW-BSP was a 23 kDa neutral polysaccharide contained glucose and mannose at a molar ratio of 1.00:1.26. Structural investigations of the periodate oxidation studies, Smith-degradation as well as methylation were performed, and combined with 1D and 2D NMR spectroscopy, the main chain residues sequence of LMW-BSP was concluded to be: α-D-Manp-(1 → 3)-β-D-Manp-(1 → [4)-β-D-Glcp-(1]2 → 4)-β-D-Manp-(1 → 3)-β-D-Manp-(1→. Moreover, the antitumor activity of LMW-BSP was evaluated in H22 tumor-bearing mice. And the results suggested that LMW-BSP could effectively improve immune cells activities and lymphocytes subsets proportions dose-dependently in tumor-bearing mice, leading to the apoptosis of H22 cells via G1 phase arrested. LMW-BSP inhibited tumor growth and exhibited antitumor effects in vivo. And it supported considering the novel polysaccharide as a potential drug component in hepatocellular carcinoma treatment.
Collapse
Affiliation(s)
- Chao Liu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ke-Yao Dai
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hai-Yu Ji
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiao-Yu Jia
- National Engineering Technology Research Center for Preservation of Agricultural Products, Key Laboratory of Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Tianjin 300384, China
| | - An-Jun Liu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
71
|
Zhang L, Wang X, He Y, Cao J, Wang K, Lin H, Qu C, Miao J. Regulatory Effects of Functional Soluble Dietary Fiber from Saccharina japonica Byproduct on the Liver of Obese Mice with Type 2 Diabetes Mellitus. Mar Drugs 2022; 20:91. [PMID: 35200621 PMCID: PMC8877147 DOI: 10.3390/md20020091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Though the relationship between dietary fiber and physical health has been investigated widely, the use of dietary fiber from marine plants has been investigated relatively rarely. The Saccharina japonica byproducts after the production of algin contain a large amount of insoluble polysaccharide, which will cause a waste of resources if ignored. Soluble dietary fiber (SDF)prepared from waste byproducts of Saccharina japonica by alkaline hydrolysis method for the first time had a wrinkled microscopic surface and low crystallinity, which not only significantly reduced liver index, serum levels of aspartate aminotransferase (AST) and alanine amiotransferase (ALT), and liver fat accumulation damage to the livers of obese diabetic mice, but also activated the PI3K/AKT signaling pathway to increase liver glycogen synthesis and glycolysis. By LC-MS/MS employing a Nexera UPLC tandem QE high-resolution mass spectrometer, the 6 potential biomarker metabolites were screened, namely glycerophosphocholine (GPC), phosphocholine (PCho), pantothenic acid, glutathione (GSH), oxidized glutathione (GSSG), and betaine; several pathways of these metabolites were associated with lipid metabolism, glycogen metabolism, and amino acid metabolism in the liver were observed. This study further provided a detailed insight into the mechanisms of SDF from Saccharina japonica byproducts in regulating the livers of obese mice with type 2 diabetes and laid a reliable foundation for the further development and utilization of Saccharina japonica.
Collapse
Affiliation(s)
- Liping Zhang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China;
| | - Xixi Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China; (X.W.); (Y.H.); (J.C.); (K.W.); (H.L.)
| | - Yingying He
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China; (X.W.); (Y.H.); (J.C.); (K.W.); (H.L.)
| | - Junhan Cao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China; (X.W.); (Y.H.); (J.C.); (K.W.); (H.L.)
| | - Kai Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China; (X.W.); (Y.H.); (J.C.); (K.W.); (H.L.)
| | - Huan Lin
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China; (X.W.); (Y.H.); (J.C.); (K.W.); (H.L.)
| | - Changfeng Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China; (X.W.); (Y.H.); (J.C.); (K.W.); (H.L.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jinlai Miao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China; (X.W.); (Y.H.); (J.C.); (K.W.); (H.L.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
72
|
Chen Z, Tan L, Yang B, Wu J, Li T, Wu H, Wu H, Xiang W. A mutant of seawater Arthrospira platensis with high polysaccharides production induced by space environment and its application potential. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
73
|
Geng XQ, Pan LC, Sun HQ, Ren YY, Zhu ZY. Structural characterization of a polysaccharide from Abelmoschus esculentus L. Moench (okra) and its hypoglycemic effect and mechanism on type 2 diabetes mellitus. Food Funct 2022; 13:11973-11985. [DOI: 10.1039/d2fo02575b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A novel acidic polysaccharide named AeP-P-1 was prepared from Abelmoschus esculentus L. Moench (okra).
Collapse
Affiliation(s)
- Xue-Qing Geng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, P.R. China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| | - Li-Chao Pan
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Hui-Qing Sun
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, P.R. China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| | - Yuan-Yuan Ren
- College of Life Science, Yangtze University, Jingzhou, Hubei, 434023, PR China
| | - Zhen-Yuan Zhu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, P.R. China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| |
Collapse
|
74
|
Hong T, Yin JY, Nie SP, Xie MY. Applications of infrared spectroscopy in polysaccharide structural analysis: Progress, challenge and perspective. Food Chem X 2021; 12:100168. [PMID: 34877528 PMCID: PMC8633561 DOI: 10.1016/j.fochx.2021.100168] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/31/2022] Open
Abstract
Functional properties of polysaccharides depend on their structural features. IR spectroscopy is widely used in polysaccharide structural analysis. Classical applications of IR spectroscopy in polysaccharide are reviewed. IR integrating techniques can considerably expand its application scope.
Polysaccharides are important biomacromolecules with numerous beneficial functions and a wide range of industrial applications. Functions and properties of polysaccharides are closely related to their structural features. Infrared (IR) spectroscopy is a well-established technique which has been widely applied in polysaccharide structural analysis. In this paper, the principle of IR and interpretation of polysaccharide IR spectrum are briefly introduced. Classical applications of IR spectroscopy in polysaccharide structural elucidation are reviewed from qualitative and quantitative aspects. Some advanced IR techniques including integrating with mass spectrometry (MS), microscopy and computational chemistry are introduced and their applications are emphasized. These emerging techniques can considerably expand application scope of IR, thus exert a more important effect on carbohydrate characterization. Overall, this review seeks to provide a comprehensive insight to applications of IR spectroscopy in polysaccharide structural analysis and highlights the importance of advanced IR-integrating techniques.
Collapse
Affiliation(s)
- Tao Hong
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| |
Collapse
|
75
|
Green Husk of Walnuts (Juglans regia L.) from Southern Italy as a Valuable Source for the Recovery of Glucans and Pectins. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Walnut green husk is an agricultural waste produced during the walnut (Juglans regia L.) harvest, that could be valued as a source of high-value compounds. In this respect, walnut green husks from two areas of Southern Italy (Montalto Uffugo and Zumpano), with different soil conditions, were investigated. Glucans and pectins were isolated from dry walnut husks by carrying out alkaline and acidic extractions, respectively, and then they were characterized by FT-IR, scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The colorimetric method for the enzymatic measurement of α- and β-glucans was performed. The maximum total glucan yield was recovered from Montalto walnut husks (4.6 ± 0.2 g/100 g DM) with a β-glucan percentage (6.3 ± 0.4) higher than that calculated for Zumpano walnut husks (3.6 ± 0.5). Thermal analysis (DSC) confirmed the higher degree of crystallinity of glucans from Zumpano. The pectin content for Montalto husks was found to be 2.6 times that of Zumpano husks, and the esterification degree was more than 65%. The results suggested that J. regia L. green husks could be a source of glucans and pectins, whose content and morphological and thermal characteristics were influenced by different soil and climate conditions.
Collapse
|
76
|
Ramirez CSV, Temelli F, Saldaña MD. Production of pea hull soluble fiber-derived oligosaccharides using subcritical water with carboxylic acids. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
77
|
Cieśla J, Koczańska M, Pieczywek P, Szymańska-Chargot M, Cybulska J, Zdunek A. Structural properties of diluted alkali-soluble pectin from Pyrus communis L. in water and salt solutions. Carbohydr Polym 2021; 273:118598. [PMID: 34560998 DOI: 10.1016/j.carbpol.2021.118598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
The self-assembly and gelation of low-methoxyl diluted alkali-soluble pectin (LM DASP) from pear fruit (Pyrus communis L. cv. Conference) was studied in water and salt solutions (NaCl and CaCl2, constant ionic strength) without pH adjustment at 20 °C. The samples at different LM DASP concentrations were characterized using rheological tests, Fourier-transform infrared spectroscopy, dual-angle dynamic light scattering and atomic force microscopy. LM DASP from pear fruit (Pyrus communis L.) showed gelling ability. The indices (aggregation index and shape factor) based on light scattering may be useful for the characterization of structural changes in polysaccharide suspension, particularly for the determination of a gel point. The results obtained may be important for the food, cosmetic and pharmaceutical industries where pectin is used as a texturizer, an encapsulating agent, a carrier of bioactive substances or a gelling agent.
Collapse
Affiliation(s)
- Jolanta Cieśla
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Magdalena Koczańska
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Piotr Pieczywek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | | | - Justyna Cybulska
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| |
Collapse
|
78
|
Wu HQ, Ma ZL, Zhang DX, Wu P, Guo YH, Yang F, Li DY. Sequential Extraction, Characterization, and Analysis of Pumpkin Polysaccharides for Their Hypoglycemic Activities and Effects on Gut Microbiota in Mice. Front Nutr 2021; 8:769181. [PMID: 34805250 PMCID: PMC8596442 DOI: 10.3389/fnut.2021.769181] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/30/2021] [Indexed: 01/04/2023] Open
Abstract
This study aimed to extract polysaccharides from pumpkin, characterize the structures of four of them, and evaluate their in vitro antioxidant and hypoglycemic activities. Additionally, an animal model of type 2 diabetes mellitus (T2DM) was established and used to determine their hypoglycemic and hypolipidemic effects in vivo, and the underlying mechanisms related to the regulation of gut microbiota. Water-extracted crude pumpkin polysaccharides (W-CPPs), water extraction and alcohol precipitation crude pumpkin polysaccharides (WA-CPPs), deproteinized pumpkin polysaccharides (DPPs), and refined pumpkin polysaccharides (RPPs) were sequentially extracted and purified from pumpkin powder by hot water extraction, water extraction, and alcohol precipitation, deproteinization and DEAE-52 cellulose gel column, respectively. The extraction and purification methods had significant influence on the extraction yield, physicochemical properties, and in vitro antioxidant and hypoglycemic activities. W-CCP and RPPs had a significant positive free radical-scavenging capacities and inhibitory activities on α-glucosidase and α-amylase. RPP-3 not only inhibited the uptake of glucose in Caco-2 monolayer but also promoted the excretion of glucose, while RPP-2 had no inhibitory effect. Animal experiment results showed that W-CPP treatment significantly improved the T2DM symptoms in mice, which included lowering of fasting blood glucose (FBG), reducing insulin resistance (IR), and lowering of blood lipid levels. It increased the diversity of intestinal flora and reduced the harmful flora of model mice, which included Clostridium, Thermoanaerobe, Symbiotic bacteria, Deinococcus, Vibrio haematococcus, Proteus gamma, and Corio. At the family level, W-CPP (1,200 mg/kg) treatment significantly reduced the abundance of Erysipelotrichaceae, and the Akkermanaceae of Verrucobacterium became a biomarker. Pumpkin polysaccharides reshaped the intestinal flora by reducing Erysipelotrichaceae and increasing Akkermansia abundance, thereby improving blood glucose and lipid metabolism in the T2DM mice. Our results suggest that W-CCP and RPP-3 possess strong antioxidant and hypoglycemic activities, and are potential candidates for food additives or natural medicines.
Collapse
Affiliation(s)
- Hui-Qing Wu
- Wuhan Functional Food Engineering and Technology Research Center, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhi-Li Ma
- Wuhan Functional Food Engineering and Technology Research Center, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - De-Xin Zhang
- Wuhan Functional Food Engineering and Technology Research Center, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Ping Wu
- Wuhan Functional Food Engineering and Technology Research Center, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yuan-Hua Guo
- Wuhan Functional Food Engineering and Technology Research Center, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Fang Yang
- Wuhan Functional Food Engineering and Technology Research Center, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - De-Yuan Li
- Wuhan Functional Food Engineering and Technology Research Center, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
79
|
Montero O, Velasco M, Miñón J, Marks EAN, Sanz-Arranz A, Rad C. Differential Membrane Lipid Profiles and Vibrational Spectra of Three Edaphic Algae and One Cyanobacterium. Int J Mol Sci 2021; 22:11277. [PMID: 34681936 PMCID: PMC8538821 DOI: 10.3390/ijms222011277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 11/25/2022] Open
Abstract
The membrane glycerolipids of four phototrophs that were isolated from an edaphic assemblage were determined by UPLC-MS after cultivation in a laboratory growth chamber. Identification was carried out by 18S and 16S rDNA sequencing. The algal species were Klebsormidium flaccidum (Charophyta), Oocystis sp. (Chlorophyta), and Haslea spicula (Bacillariophyta), and the cyanobacterium was Microcoleus vaginatus (Cyanobacteria). The glycerolipid profile of Oocystis sp. was dominated by monogalactosyldiacylglycerol (MGDG) species, with MGDG(18:3/16:4) accounting for 68.6%, whereas MGDG(18:3/16:3) was the most abundant glycerolipid in K. flaccidum (50.1%). A ratio of digalactosyldiacylglycerol (DGDG) species to MGDG species (DGDG/MGDG) was shown to be higher in K. flaccidum (0.26) than in Oocystis sp. (0.14). This ratio increased under high light (HL) as compared to low light (LL) in all the organisms, with its highest value being shown in cyanobacterium (0.38-0.58, LL-HL). High contents of eicosapentaenoic acid (EPA, C20:5) and hexadecenoic acid were observed in the glycerolipids of H. spicula. Similar Fourier transform infrared (FTIR) and Raman spectra were found for K. flaccidum and Oocystis sp. Specific bands at 1629.06 and 1582.78 cm-1 were shown by M. vaginatus in the Raman spectra. Conversely, specific bands in the FTIR spectrum were observed for H. spicula at 1143 and 1744 cm-1. The results of this study point out differences in the membrane lipid composition between species, which likely reflects their different morphology and evolutionary patterns.
Collapse
Affiliation(s)
- Olimpio Montero
- Institute of Biology and Molecular Genetics (IBGM), Spanish Council for Scientific Research (CSIC), Sanz y Forés Str. 3, 47003 Valladolid, Spain;
| | - Marta Velasco
- Institute of Biology and Molecular Genetics (IBGM), Spanish Council for Scientific Research (CSIC), Sanz y Forés Str. 3, 47003 Valladolid, Spain;
| | - Jorge Miñón
- Composting Research Group UBUCOMP, Faculty of Sciences, University of Burgos, 09001 Burgos, Spain; (J.M.); (C.R.)
| | - Evan A. N. Marks
- BETA Technological Center, University of Vic-University of Central Catalonia, Edifici Can Baumann, Crta. de Roda 70, 08500 Vic, Spain;
| | - Aurelio Sanz-Arranz
- Department of Fisica de la Materia Condensada, University of Valladolid, 47002 Valladolid, Spain;
| | - Carlos Rad
- Composting Research Group UBUCOMP, Faculty of Sciences, University of Burgos, 09001 Burgos, Spain; (J.M.); (C.R.)
| |
Collapse
|
80
|
Structural Characterization of a Neutral Polysaccharide from Cucurbia moschata and Its Uptake Behaviors in Caco-2 Cells. Foods 2021; 10:foods10102357. [PMID: 34681406 PMCID: PMC8535365 DOI: 10.3390/foods10102357] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/13/2021] [Accepted: 09/24/2021] [Indexed: 01/08/2023] Open
Abstract
A neutral pumpkin polysaccharide (NPPc) was extracted from Cucurbia moschata and its structural characterization is performed. Moreover, uptake behaviors of an NPPC were investigated at the cellular level. The results showed that NPPc, an average molecular weight (Mw) of 9.023 kDa, was linear (1→4)-α-D-Glcp residues in the backbone, which branched point at O-6 position of (1→4,6)-α-D-Glcp. The side chain contained (1→6)-α-D-Glcp and terminal glucose. The cellular uptake kinetics results showed that the uptake of fluorescent-labeled NPPc was in time- and dose-dependent manners in Caco-2 cells. For subcellular localization of NPPc, it was accumulated in endoplasmic reticulum and mitochondrion. This study illustrates the characteristics on the uptake of NPPc and provides a rational basis for the exploration of polysaccharides absorption in intestinal epithelium.
Collapse
|
81
|
Physicochemical Characterization of an Exopolysaccharide Produced by Lipomyces sp. and Investigation of Rheological and Interfacial Behavior. Gels 2021; 7:gels7040156. [PMID: 34698141 PMCID: PMC8544488 DOI: 10.3390/gels7040156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to evaluate the rheological and interfacial behaviors of a novel microbial exopolysaccharide fermented by L. starkeyi (LSEP). The structure of LSEP was measured by LC-MS, 1H and 13C NMR spectra, and FT-IR. Results showed that the monosaccharide composition of LSEP was D-mannose (8.53%), D-glucose (79.25%), D-galactose (7.15%), and L-arabinose (5.07%); there existed the anomeric proton of α-configuration and the anomeric carbon of α- and β-configuration; there appeared the characteristic absorption peak of the phosphate ester bond. The molecular weight of LSEP was 401.8 kDa. The water holding capacity (WHC, 2.10 g/g) and oil holding capacity (OHC, 12.89 g/g) were also evaluated. The results of rheological properties showed that the aqueous solution of LSEP was a non-Newtonian fluid, exhibiting the shear-thinning characteristics. The adsorption of LSEP can reduce the interfacial tension (11.64 mN/m) well and form an elastic interface layer at the MCT–water interface. Such functional properties make LSEP a good candidate for use as thickener, gelling agent, and emulsifier to form long-term emulsions for food, pharmaceutical, and cosmetic products.
Collapse
|
82
|
Ramirez CSV, Temelli F, Saldaña MD. Carboxylic acid-catalyzed hydrolysis of rhamnogalacturonan in subcritical water media. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
83
|
Jiang WX, Qi JR, Liao JS, Yang XQ. Acid/ethanol induced pectin gelling and its application in emulsion gel. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106774] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
84
|
Modification and Properties of Cellulose Nonwoven Fabric-Multifunctional Mulching Material for Agricultural Applications. MATERIALS 2021; 14:ma14154335. [PMID: 34361528 PMCID: PMC8348988 DOI: 10.3390/ma14154335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 01/06/2023]
Abstract
The paper describes a method of modifying a commercial viscose nonwoven fabric and its use as a modern mulching material in agriculture. The conducted research confirmed that the proposed modification of the viscose nonwoven fabric could be successfully used as a multipurpose and, above all, completely biodegradable nonwoven crop cover, which will eliminate the problem of disposal after the harvest period. Modified cellulose nonwoven fabric was obtained by staining with NB—BT helion brown, then padding with potassium nitrate (KNO3) solution (used as a fertilizer) and finally coating with polylactide (PLA) solution. The characterisation of the nonwoven fabric included structural analysis, physicochemical properties and mechanical tests. The modified cellulose nonwovens were used in the tunnel cultivation of tomatoes as a heat-retardant, water-absorbing, antiweed mulching material that prevents soil infestation and slowly releases fertilizers.
Collapse
|
85
|
Stefanowicz K, Szymanska-Chargot M, Truman W, Walerowski P, Olszak M, Augustyniak A, Kosmala A, Zdunek A, Malinowski R. Plasmodiophora brassicae-Triggered Cell Enlargement and Loss of Cellular Integrity in Root Systems Are Mediated by Pectin Demethylation. FRONTIERS IN PLANT SCIENCE 2021; 12:711838. [PMID: 34394168 PMCID: PMC8359924 DOI: 10.3389/fpls.2021.711838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/05/2021] [Indexed: 05/24/2023]
Abstract
Gall formation on the belowground parts of plants infected with Plasmodiophora brassicae is the result of extensive host cellular reprogramming. The development of these structures is a consequence of increased cell proliferation followed by massive enlargement of cells colonized with the pathogen. Drastic changes in cellular growth patterns create local deformities in the roots and hypocotyl giving rise to mechanical tensions within the tissue of these organs. Host cell wall extensibility and recomposition accompany the growth of the gall and influence pathogen spread and also pathogen life cycle progression. Demethylation of pectin within the extracellular matrix may play an important role in P. brassicae-driven hypertrophy of host underground organs. Through proteomic analysis of the cell wall, we identified proteins accumulating in the galls developing on the underground parts of Arabidopsis thaliana plants infected with P. brassicae. One of the key proteins identified was the pectin methylesterase (PME18); we further characterized its expression and conducted functional and anatomic studies in the knockout mutant and used Raman spectroscopy to study the status of pectin in P. brassicae-infected galls. We found that late stages of gall formation are accompanied with increased levels of PME18. We have also shown that the massive enlargement of cells colonized with P. brassicae coincides with decreases in pectin methylation. In pme18-2 knockout mutants, P. brassicae could still induce demethylation; however, the galls in this line were smaller and cellular expansion was less pronounced. Alteration in pectin demethylation in the host resulted in changes in pathogen distribution and slowed down disease progression. To conclude, P. brassicae-driven host organ hypertrophy observed during clubroot disease is accompanied by pectin demethylation in the extracellular matrix. The pathogen hijacks endogenous host mechanisms involved in cell wall loosening to create an optimal cellular environment for completion of its life cycle and eventual release of resting spores facilitated by degradation of demethylated pectin polymers.
Collapse
Affiliation(s)
| | | | - William Truman
- Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Piotr Walerowski
- Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Marcin Olszak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Adam Augustyniak
- Centre for Advanced Technology, Adam Mickiewicz University, Poznan, Poland
| | - Arkadiusz Kosmala
- Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - Robert Malinowski
- Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
86
|
Guo Z, Ge X, Yang L, Gou Q, Han L, Yu QL. Utilization of watermelon peel as a pectin source and the effect of ultrasound treatment on pectin film properties. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111569] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
87
|
Qu D, Wang S, Zhao H, Liu H, Zhu D, Jiang L. Structure and interfacial adsorption behavior of soy hull polysaccharide at the oil/water interface as influenced by pH. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106638] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
88
|
Wu CY, Zhou J, Long F, Zhang W, Shen H, Zhu H, Xu JD, Li SL. Similar hypoglycemic effects of glucomannan and its enzyme degraded products from Amorphophallus albus on type 2 diabetes mellitus in mice and potential mechanisms. Food Funct 2021; 11:9740-9751. [PMID: 33064121 DOI: 10.1039/d0fo02434a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the present study, the hypoglycemic effects of glucomannan (AGM) and its enzyme-degraded products from Amorphophallus albus were investigated. Four degraded products were prepared through ultrafiltration of β-glucanase-degraded products of AGM. The hypoglycemic activities were evaluated in HFD-STZ-induced type 2 diabetes mellitus (T2DM) mice, and the diversity of gut bacteria was analyzed by 16S rRNA gene sequencing; the fecal short chain fatty acids (SCFAs) and endogenous metabolites were determined by UPLC-QTOF-MS/MS. It was found that AGM and its enzyme-degraded products, though with different molecular weights, had similar β-glycosidic bonds and monosaccharide compositions, exerted similar strength of hypoglycemic effects, and reinstated with a similar extent the disordered gut microbiota and the contents of SCFAs and endogenous metabolites. It was speculated that the hypoglycemic activity of AGM is decided by not the molecular weight but the glycosidic bonds/monosaccharide composition of AGM, which might be structurally specific to the gut bacteria, and thus certain SCFAs and endogenous metabolites that are related to the occurrence and therapy of T2DM. This study provides a scientific basis for using AGM as potential prebiotics beneficial for prevention or therapeutic treatment of T2DM.
Collapse
Affiliation(s)
- Cheng-Ying Wu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, China.
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Hu N, Li L. Optimization of chestnut starch acetate synthesis by response surface methodology and its effect on dough properties. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Na Hu
- Asset and Laboratory Management Office Hebei University of Science and Technology Shijiazhuang PR China
| | - Luning Li
- Assets Equipment Management Office Shijiazhuang University Shijiazhuang PR China
| |
Collapse
|
90
|
Hellebois T, Gaiani C, Planchon S, Renaut J, Soukoulis C. Impact of heat treatment on the acid induced gelation of brewers’ spent grain protein isolate. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
91
|
Liu X, Renard CMGC, Bureau S, Le Bourvellec C. Revisiting the contribution of ATR-FTIR spectroscopy to characterize plant cell wall polysaccharides. Carbohydr Polym 2021; 262:117935. [PMID: 33838812 DOI: 10.1016/j.carbpol.2021.117935] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 12/23/2022]
Abstract
The contribution of ATR-FTIR spectroscopy to study cell wall polysaccharides (CWPs) was carefully investigated. The region 1800-800 cm-1 was exploited using principal component analysis and hierarchical clustering on a large range of different powders of CWPs based on their precise chemical characterization. Relevant wavenumbers were highlighted for each CWP: 1035 cm-1 was attributed to xylose-containing hemicelluloses, 1065 and 807 cm-1 to mannose-containing hemicelluloses, 988 cm-1 to cellulose, 1740 and 1600 cm-1 to homogalacturonans according to the degree of methylation. Some band positions were affected by macromolecular arrangements (especially hemicellulose-cellulose interactions). However, as arabinan and galactan did not reveal distinctive absorption bands, ATR-FTIR spectroscopy did not allow the discrimination of cell walls differing by the abundance of these polysaccharides, e.g., those extracted from apple and beet. Therefore, the application of ATR-FTIR could remain sometimes limited due to the complexity of overlapping spectra bands and vibrational coupling from the large diversity of CWP chemical bonds.
Collapse
Affiliation(s)
- Xuwei Liu
- INRAE, Avignon University, UMR SQPOV, F-84000, Avignon, France.
| | - Catherine M G C Renard
- INRAE, Avignon University, UMR SQPOV, F-84000, Avignon, France; INRAE, TRANSFORM, F-44000, Nantes, France.
| | - Sylvie Bureau
- INRAE, Avignon University, UMR SQPOV, F-84000, Avignon, France.
| | | |
Collapse
|
92
|
A Four-Level Maturity Index for Hot Peppers (Capsicum annum) Using Non-Invasive Automated Mobile Raman Spectroscopy for On-Site Testing. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A handheld Raman spectrometer was used to determine the ripeness of peppers. Raman spectra were recorded non-invasively on the fruit surface. The spectroscopic data were transformed into a classification scheme referred to as the maturity index which allowed for attribution of the fruit stadium to four levels from immature to fully mature. Hot pepper and tomato ripening includes pectic polysaccharide depolymerization, chlorophyll degradation and carotenoid formation, among others. The latter were followed non-invasively by Raman spectroscopy. Two portable systems and one benchtop system were compared for their applicability and robustness to establish a suitable maturity index. Spectral acquisition, data treatment and multivariate data analysis were automated using a Matlab script on a laptop computer. The automated workflow provided a graphic visualization of the relevant parameters and results on-site in real time. In terms of reliability and applicability, the chemometric model to determine the maturity of fruits was compared to a univariate procedure based on the average intensity and ratio of three characteristic signals. Portable Raman spectrometers in combination with the maturity index or a chemometric model should be suitable to assess the stage of maturing for carotenoid-containing fruits and thus to determine ripeness on-site or during a sorting process in an automated manner.
Collapse
|
93
|
Różyło R, Szymańska-Chargot M, Gawlik-Dziki U, Dziki D. Spectroscopic, mineral, and antioxidant characteristics of blue colored powders prepared from cornflower aqueous extracts. Food Chem 2020; 346:128889. [PMID: 33388668 DOI: 10.1016/j.foodchem.2020.128889] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/14/2020] [Accepted: 12/11/2020] [Indexed: 01/16/2023]
Abstract
The present study aimed to prepare blue colored powders from an aqueous extract of cornflower petals. Low temperature (4 °C) aqueous extraction (1:20) and microencapsulation by freeze-drying were performed. A mixture of stabilizers (maltodextrin, guar gum, and lecithin) in a proportion of 10% to the amount of extract was used. The results indicated that the addition of 2% and 4% guar gum to maltodextrin (8-6%) significantly increased the efficiency of the process, but 4% guar gum caused the formation of amorphous particles; therefore, 2% guar gum addition was found to be the most optimal. The FT-IR and FT-Raman band characteristics for guar gum, lecithin, and maltodextrin dominated over those for anthocyanins contained in the powders made from cornflower petals. The blue powders had total phenolic content of 19.5-26.6 mg GAE/g DW. The antioxidant activity of the prepared powders measured by ABTS, CHEL, OH, and RED was high.
Collapse
Affiliation(s)
- Renata Różyło
- University of Life Sciences in Lublin, Department of Food Engineering and Machines, 28 Głęboka Str., 20-612 Lublin, Poland.
| | | | - Urszula Gawlik-Dziki
- University of Life Sciences in Lublin, Department of Biochemistry and Food Chemistry, Skromna Street 8, Lublin 20-704. Poland
| | - Dariusz Dziki
- University of Life Sciences in Lublin, Department of Thermal Technology and Food Process Engineering, 31 Głęboka Str., 20-612 Lublin, Poland
| |
Collapse
|
94
|
Liu X, Ren Z, Yu R, Chen S, Zhang J, Xu Y, Meng Z, Luo Y, Zhang W, Huang Y, Qin T. Structural characterization of enzymatic modification of Hericium erinaceus polysaccharide and its immune-enhancement activity. Int J Biol Macromol 2020; 166:1396-1408. [PMID: 33166554 DOI: 10.1016/j.ijbiomac.2020.11.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/02/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022]
Abstract
In this study, the enzyme degradation of Hericium erinaceus polysaccharide (HEP) was successfully modified with endo-rhamnosidase to obtain the enzymatic hydrolysis of Hericium erinaceus polysaccharide product (EHEP). The gas chromatography-mass spectrometry (GC-MS), high performance gel permeation chromatography (HPGPC), Fourier transformed infrared spectrometry (FT-IR), scanning electron microscopy (SEM), atomic particle microscopy (AFM), nuclear magnetic resonance (NMR) and particle size distribution were used to characterize polysaccharides. In vitro, EHEP significantly enhanced the phagocytosis, NO, CD40 and CD86 by macrophage than HEP. In vivo, female Balb/c mice were injected respectively with EHEP and HEP after administrated with cyclophosphamide, once a day for 7 days. On days 11, the morphology and structure of jejunal sections, immunofluorescence of spleen and peritoneal macrophages were determined. These results indicated that the enzymatic hydrolysis product could enhance the activation of peritoneal macrophages, and enhance the immunomodulation function of HEP. This study demonstrated that enzymatic modification was an effective method to improve the activities of HEP, and could be developed as a potential technology for use in pharmaceutical and cosmeceutical industry.
Collapse
Affiliation(s)
- Xiaopan Liu
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zhe Ren
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Ruihong Yu
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Shixiong Chen
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Junwen Zhang
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yongde Xu
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zhen Meng
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yang Luo
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Weini Zhang
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yifan Huang
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Tao Qin
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
95
|
Thermal degradation of citrus pectin in low-moisture environment – Investigation of backbone depolymerisation. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105937] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
96
|
Presentato A, Piacenza E, Scurria A, Albanese L, Zabini F, Meneguzzo F, Nuzzo D, Pagliaro M, Martino DC, Alduina R, Ciriminna R. A New Water-Soluble Bactericidal Agent for the Treatment of Infections Caused by Gram-Positive and Gram-Negative Bacterial Strains. Antibiotics (Basel) 2020; 9:antibiotics9090586. [PMID: 32911640 PMCID: PMC7558503 DOI: 10.3390/antibiotics9090586] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/27/2020] [Accepted: 09/07/2020] [Indexed: 01/31/2023] Open
Abstract
Grapefruit and lemon pectin obtained from the respective waste citrus peels via hydrodynamic cavitation in water only are powerful, broad-scope antimicrobials against Gram-negative and -positive bacteria. Dubbed IntegroPectin, these pectic polymers functionalized with citrus flavonoids and terpenes show superior antimicrobial activity when compared to commercial citrus pectin. Similar to commercial pectin, lemon IntegroPectin determined ca. 3-log reduction in Staphylococcus aureus cells, while an enhanced activity of commercial citrus pectin was detected in the case of Pseudomonas aeruginosa cells with a minimal bactericidal concentration (MBC) of 15 mg mL−1. Although grapefruit and lemon IntegroPectin share equal MBC in the case of P. aeruginosa cells, grapefruit IntegroPectin shows boosted activity upon exposure of S. aureus cells with a 40 mg mL−1 biopolymer concentration affording complete killing of the bacterial cells. Insights into the mechanism of action of these biocompatible antimicrobials and their effect on bacterial cells, at the morphological level, were obtained indirectly through Fourier Transform Infrared spectroscopy and directly through scanning electron microscopy. In the era of antimicrobial resistance, these results are of great societal and sanitary relevance since citrus IntegroPectin biomaterials are also devoid of cytotoxic activity, as already shown for lemon IntegroPectin, opening the route to the development of new medical treatments of polymicrobial infections unlikely to develop drug resistance.
Collapse
Affiliation(s)
- Alessandro Presentato
- Department of Biological, Chemical, and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.P.); (E.P.); (D.C.M.)
| | - Elena Piacenza
- Department of Biological, Chemical, and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.P.); (E.P.); (D.C.M.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| | - Antonino Scurria
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146 Palermo, Italy; (A.S.); (R.C.)
| | - Lorenzo Albanese
- Istituto per la Bioeconomia, CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy; (L.A.); (F.Z.); (F.M.)
| | - Federica Zabini
- Istituto per la Bioeconomia, CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy; (L.A.); (F.Z.); (F.M.)
| | - Francesco Meneguzzo
- Istituto per la Bioeconomia, CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy; (L.A.); (F.Z.); (F.M.)
| | - Domenico Nuzzo
- Istituto per la Ricerca e l’Innovazione Biomedica, CNR, via U. La Malfa 153, 90146 Palermo, Italy;
| | - Mario Pagliaro
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146 Palermo, Italy; (A.S.); (R.C.)
- Correspondence: (M.P.); (R.A.)
| | - Delia Chillura Martino
- Department of Biological, Chemical, and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.P.); (E.P.); (D.C.M.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| | - Rosa Alduina
- Department of Biological, Chemical, and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.P.); (E.P.); (D.C.M.)
- Correspondence: (M.P.); (R.A.)
| | - Rosaria Ciriminna
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146 Palermo, Italy; (A.S.); (R.C.)
| |
Collapse
|
97
|
Bai Y, Zhang M, Chandra Atluri S, Chen J, Gilbert RG. Relations between digestibility and structures of pumpkin starches and pectins. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105894] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
98
|
An ultrasonic-extracted arabinoglucan from Tamarindus indica L. pulp: A study on molecular and structural characterizations. Int J Biol Macromol 2020; 164:3687-3697. [PMID: 32882273 DOI: 10.1016/j.ijbiomac.2020.08.206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/30/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
In this study, an ultrasonic-extracted polysaccharide (nCPTP-55) was obtained with the highest yield (61.08%, w/w) from tamarind pulp, which consisted chiefly of total sugar (85.98%, w/w) with few protein (2.10%, w/w). Monosaccharide analysis showed nCPTP-55 was mainly composed of arabinose (39.19 mol%) and glucose (50.48 mol%) with negligible GlcA (2.05 mol%), indicating the neutral nature of nCPTP-55, which was further elucidated structurally via GC-MS and NMR, i.e., an arabinoglucan composed of →3)-β-D-Glcp-(1→ backbone with only T-α-L-Araf-(1→ branched at O-4 (27.82%) and O-6 (39.99%), resulting in relatively high A/G ratio (0.68-0.70). Based on MM2 minimized energy, the 3D schematic structures of nCPTP-55 could be considered as structural basis for its conformational behavior, which was preliminarily estimated via HPSEC-MALLS as between compact sphere and loosely hyper-branched chain (ρ = 0.84). Therefore, the relationship between molecular structure and conformational behavior was basically established for nCPTP-55, which was in a bid to have a better knowledge of its structure-property and structure-bioactivity relationships potentially required for more applications in food, cosmetic and pharmaceutical fields.
Collapse
|
99
|
Oh GW, Nam SY, Heo SJ, Kang DH, Jung WK. Characterization of ionic cross-linked composite foams with different blend ratios of alginate/pectin on the synergistic effects for wound dressing application. Int J Biol Macromol 2020; 156:1565-1573. [DOI: 10.1016/j.ijbiomac.2019.11.206] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/19/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022]
|
100
|
Li Q, Xu R, Fang Q, Yuan Y, Cao J, Jiang W. Analyses of microstructure and cell wall polysaccharides of flesh tissues provide insights into cultivar difference in mealy patterns developed in apple fruit. Food Chem 2020; 321:126707. [DOI: 10.1016/j.foodchem.2020.126707] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/01/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022]
|