51
|
Wang L, Cheng R, Sun X, Zhao Y, Yang Y, Gao Y, Ding Z, Ge W, Liu J, Wang S, Zhang J. Safety assessment of functional oligooctasaccharide riclinoctaose: A pilot study of genotoxicity, acute toxicity, and subchronic toxicity. J Food Sci 2022; 87:1306-1318. [DOI: 10.1111/1750-3841.16039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Lei Wang
- Center for Molecular Metabolism Nanjing University of Science and Technology, 200 Xiaolingwei Nanjing 210094 China
| | - Rui Cheng
- Center for Molecular Metabolism Nanjing University of Science and Technology, 200 Xiaolingwei Nanjing 210094 China
| | - Xiaqing Sun
- Center for Molecular Metabolism Nanjing University of Science and Technology, 200 Xiaolingwei Nanjing 210094 China
| | - Yang Zhao
- Center for Molecular Metabolism Nanjing University of Science and Technology, 200 Xiaolingwei Nanjing 210094 China
| | - Yunxia Yang
- Center for Molecular Metabolism Nanjing University of Science and Technology, 200 Xiaolingwei Nanjing 210094 China
| | - Yan Gao
- Center for Molecular Metabolism Nanjing University of Science and Technology, 200 Xiaolingwei Nanjing 210094 China
| | - Zhao Ding
- Center for Molecular Metabolism Nanjing University of Science and Technology, 200 Xiaolingwei Nanjing 210094 China
| | - Wenhao Ge
- Center for Molecular Metabolism Nanjing University of Science and Technology, 200 Xiaolingwei Nanjing 210094 China
| | - Junhao Liu
- Center for Molecular Metabolism Nanjing University of Science and Technology, 200 Xiaolingwei Nanjing 210094 China
| | - Shiming Wang
- Center for Molecular Metabolism Nanjing University of Science and Technology, 200 Xiaolingwei Nanjing 210094 China
| | - Jianfa Zhang
- Center for Molecular Metabolism Nanjing University of Science and Technology, 200 Xiaolingwei Nanjing 210094 China
| |
Collapse
|
52
|
Zhang T, Jin X, Zhang N, Jiao X, Ma Y, Liu R, Liu B, Li Z. Targeted drug delivery vehicles mediated by nanocarriers and aptamers for posterior eye disease therapeutics: barriers, recent advances and potential opportunities. NANOTECHNOLOGY 2022; 33:162001. [PMID: 34965522 DOI: 10.1088/1361-6528/ac46d5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Nanomedicine and aptamer have excellent potential in giving play to passive and active targeting respectively, which are considered to be effective strategies in the retro-ocular drug delivery system. The presence of closely adjoined tissue structures in the eye makes it difficult to administer the drug in the posterior segment of the eye. The application of nanomedicine could represent a new avenue for the treatment, since it could improve penetration, achieve targeted release, and improve bioavailability. Additionally, a novel type of targeted molecule aptamer with identical objective was proposed. As an emerging molecule, aptamer shows the advantages of penetration, non-toxicity, and high biocompatibility, which make it suitable for ocular drug administration. The purpose of this paper is to summarize the recent studies on the effectiveness of nanoparticles as a drug delivery to the posterior segment of the eye. This paper also creatively looks forward to the possibility of the combined application of nanocarriers and aptamers as a new method of targeted drug delivery system in the field of post-ophthalmic therapy.
Collapse
Affiliation(s)
- Tingting Zhang
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, People's Republic of China
| | - Xin Jin
- Military Medicine Section, Logistics University of Chinese People's Armed Police Force, 1 Huizhihuan Road, Dongli District, Tianjin 300309, People's Republic of China
| | - Nan Zhang
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, People's Republic of China
| | - Xinyi Jiao
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, People's Republic of China
| | - Yuanyuan Ma
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, People's Republic of China
| | - Rui Liu
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, People's Republic of China
| | - Boshi Liu
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, People's Republic of China
| | - Zheng Li
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, People's Republic of China
| |
Collapse
|
53
|
Li Y, Zhou L, Zhang M, Li R, Di G, Liu H, Wu X. Micelles based on polyvinylpyrrolidone VA64: A potential nanoplatform for the ocular delivery of apocynin. Int J Pharm 2022; 615:121451. [PMID: 35051535 DOI: 10.1016/j.ijpharm.2022.121451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 11/24/2022]
Abstract
Purpose of this work was to determine the feasibility of a nano-ophthalmic solution consisting of the nanocarrier polyvinylpyrrolidone VA64 (VA64) and encapsulated apocynin (APO) as treatment for ocular inflammatory diseases. Results showed the solution, termed APO-VA64 ophthalmic solution, could be fabricated via a simple process. This solution was clear, colorless, and possessed valuable characteristics, such as small micelle size (14.12 ± 1.24 nm), narrow micelle size distribution, and high APO encapsulation efficiency. Encapsulated APO was also found to have high aqueous solubility and in vitro release and antioxidant activities. APO-VA64 ophthalmic solution showed good ocular tolerance and demonstrated improved corneal permeation ability in mouse eyes. In an in vivo mice model, topically administered APO-VA64 ophthalmic solution was found to be significantly more effective against benzalkonium chloride-induced ocular damage than APO, VA64, and a mix of APO and VA64. Blockage of high mobility group box 1 signaling and its related proinflammatory cytokines were involved in this therapeutic effect. In conclusion, these in vitro and in vivo findings demonstrate that VA64 micelles are a potential nanoplatform for ocular drug delivery, and that the nanoformulation APO-VA64 ophthalmic solution may be a promising candidate for the efficacious treatment of ocular inflammatory diseases.
Collapse
Affiliation(s)
- Yaru Li
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Lei Zhou
- Department of Pathology, Qingdao Municipal Hospital, Qingdao, China
| | - Mengmeng Zhang
- Department of Pathology, Qingdao Municipal Hospital, Qingdao, China
| | - Runzhi Li
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Guohu Di
- 3Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hongyun Liu
- Department of Pathology, Qingdao Municipal Hospital, Qingdao, China.
| | - Xianggen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.
| |
Collapse
|
54
|
Sun X, Sheng Y, Li K, Sai S, Feng J, Li Y, Zhang J, Han J, Tian B. Mucoadhesive phenylboronic acid conjugated chitosan oligosaccharide-vitamin E copolymer for topical ocular delivery of voriconazole: Synthesis, in vitro/vivo evaluation, and mechanism. Acta Biomater 2022; 138:193-207. [PMID: 34757228 DOI: 10.1016/j.actbio.2021.10.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/01/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022]
Abstract
Topical eye drops still face challenges of low-drug treatment effects and frequent dosing in ophthalmic applications due to the low preocular retention rate and low transcorneal permeability. Thus, we designed and synthesized a phenylboronic acid conjugated chitosan oligosaccharide-vitamin E copolymer (PBA-CS-VE) for use in mucoadhesive voriconazole (VRC)-loaded nanomicelles for fungal keratitis. In vitro mucin binding and ex vivo eyeball adhesion tests show that the copolymer has strong mucoadhesion. The transportation of coumarin-6 (C6) across a monolayer of HCE-T cells and 3D cell spheroids confirm the strong corneal penetration ability of PBA-CS-VE. The mechanism of promoting corneal penetration was studied in terms of intracellular calcium-ion concentration, cell membrane potential, cell membrane fluidity, and the tight junctions of cells. The pharmacokinetics in the aqueous humor were examined to evaluate the ability of nanomicelles in promoting corneal penetration and prolonging ocular retention. VRC-loaded PBA-CS-VE nanomicelles (PBA-CS-VE-VRC) yielded a very favorable therapeutic effect on a rabbit model of fungal keratitis in vivo as compared to the free drug. Overall, the results indicate that PBA-CS-VE nanomicelles are a mucoadhesive candidate with enhanced transcorneal permeability and prolonged preocular retention for efficient delivery of topical ocular drugs. STATEMENT OF SIGNIFICANCE: Although eye drops are widely used in ocular drug delivery, the disadvantages such as short retention time and weak corneal penetrating ability still seriously affect the therapeutic effect of the drug. Therefore, the mucoadhesive carrier seems to be an interesting strategy for ocular drug delivery. Herein, a novel phenylboronic acid conjugated chitosan oligosaccharide-vitamin E copolymer was designed and constructed as mucoadhesive nanomicelles loaded with voriconazole for fungal keratitis. These nanomicelles were able to improve the in vitro mucin binding and to prolong the residence time of the drug on the surface of the eyeball. Moreover, the nanomicelles exhibited an enhanced drug permeability in cell monolayer models and 3D cell culture models. This work provides a promising ocular drug delivery system.
Collapse
|
55
|
Niculescu AG, Grumezescu AM. Applications of Chitosan-Alginate-Based Nanoparticles-An Up-to-Date Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:186. [PMID: 35055206 PMCID: PMC8778629 DOI: 10.3390/nano12020186] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
Chitosan and alginate are two of the most studied natural polymers that have attracted interest for multiple uses in their nano form. The biomedical field is one of the domains benefiting the most from the development of nanotechnology, as increasing research interest has been oriented to developing chitosan-alginate biocompatible delivery vehicles, antimicrobial agents, and vaccine adjuvants. Moreover, these nanomaterials of natural origin have also become appealing for environmental protection (e.g., water treatment, environmental-friendly fertilizers, herbicides, and pesticides) and the food industry. In this respect, the present paper aims to discuss some of the newest applications of chitosan-alginate-based nanomaterials and serve as an inception point for further research in the field.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| |
Collapse
|
56
|
Löscher M, Seiz C, Hurst J, Schnichels S. Topical Drug Delivery to the Posterior Segment of the Eye. Pharmaceutics 2022; 14:pharmaceutics14010134. [PMID: 35057030 PMCID: PMC8779621 DOI: 10.3390/pharmaceutics14010134] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023] Open
Abstract
Topical drug delivery to the posterior segment of the eye is a very complex challenge. However, topical delivery is highly desired, to achieve an easy-to-use treatment option for retinal diseases. In this review, we focus on the drug characteristics that are relevant to succeed in this challenge. An overview on the ocular barriers that need to be overcome and some relevant animal models to study ocular pharmacokinetics are given. Furthermore, a summary of substances that were able to reach the posterior segment after eye drop application is provided, as well as an outline of investigated delivery systems to improve ocular drug delivery. Some promising results of substances delivered to the retina suggest that topical treatment of retinal diseases might be possible in the future, which warrants further research.
Collapse
|
57
|
How liposomes pave the way for ocular drug delivery after topical administration. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
58
|
Li Q, Xin M, Wu X, Lei B. A nano-phytochemical ophthalmic solution for marked improvement of corneal wound healing in healthy or diabetic mice. Nanomedicine (Lond) 2021; 17:151-165. [PMID: 34927467 DOI: 10.2217/nnm-2021-0417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Aim: To formulate a novel nano-phytochemical ophthalmic solution to promote corneal wound healing. Methods: Dipotassium glycyrrhizinate (DG) and palmatine (PAL) were used to formulate this formulation marked as DG-PAL, and its efficacy and mechanisms for promoting corneal wound healing were evaluated in mice. Results: DG-PAL was easily fabricated with excellent physical profiles. In in vivo efficiency evaluations, DG-PAL demonstrated an excellent promoting effect on corneal epithelial/nerve wound healing in both healthy and diabetic mice. These effects were involved in the DG-PAL-induced decreased expression levels of HMGB1 and its signaling-related factors in the corneas and trigeminal neurons of the healthy or diabetic mice. Conclusion: DG-PAL possibly represents a promising ophthalmic solution for promoting corneal wound healing.
Collapse
Affiliation(s)
- Qiqi Li
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China.,College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, China
| | - Meng Xin
- Department of Ophthalmology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Xianggen Wu
- College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, China
| | - Bo Lei
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
59
|
Li Q, Wu X, Xin M. Strengthened rebamipide ocular nanoformulation to effectively treat corneal alkali burns in mice through the HMGB1 signaling pathway. Exp Eye Res 2021; 213:108824. [PMID: 34742693 DOI: 10.1016/j.exer.2021.108824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 01/12/2023]
Abstract
Corneal alkali burns are a major ophthalmic emergency, as current therapeutic treatments are limited. Novel treatment targets and new potential agents are required to combat this severe ocular injury. Glycyrrhizin and rebamipide (RBM) are both FDA-approved drugs with potential effects against corneal alkali burns, but RBM is limited by its low aqueous solubility and low bioavailability. This study aimed to utilize dipotassium glycyrrhizinate (DG, a dipotassium salt of glycyrrhizin) as a nanocarrier encapsulating RBM to formulate an ophthalmic solution (marked DG-RBM) with strengthened activities to treat corneal alkali burns. Results showed that an easy DG-RBM preparative process generated particles with high encapsulation efficacy and ultra-small micellar size. The solubility of RBM in DG-RBM in aqueous solution was 3.1 × 105-fold enhanced than its free solution. DG-RBM exhibited excellent storage stability. In vitro cytotoxicity, ex vivo conjunctival responses, and rabbit eye tolerance tests showed that DG-RBM possessed good ocular safety profiles. DG-RBM exhibited improved in vivo corneal permeation profiles and demonstrated a strong effect against H2O2-induced oxidative damage, with a significant effect on promoting epithelial wound healing in corneal cells in vitro. As expected, in a mouse model of corneal alkali burns, the topical administration of DG-RBM achieved a strengthened efficacy against alkali burn damages. The mechanism of this therapeutic effect involved regulating high-mobility group box 1 (HMGB1) signaling and its related angiogenic and proinflammatory cytokines. These findings demonstrate the ease of preparing DG-RBM and its great potential as a novel ocular topical formulation to treat corneal alkali burns by regulating HMGB1 signaling.
Collapse
Affiliation(s)
- Qiqi Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China; Department of Ophthalmology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Xianggen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.
| | - Meng Xin
- Department of Ophthalmology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China.
| |
Collapse
|
60
|
Mukhtar M, Fényes E, Bartos C, Zeeshan M, Ambrus R. Chitosan biopolymer, its derivatives and potential applications in nano-therapeutics: A comprehensive review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
61
|
Mijanović O, Pylaev T, Nikitkina A, Artyukhova M, Branković A, Peshkova M, Bikmulina P, Turk B, Bolevich S, Avetisov S, Timashev P. Tissue Engineering Meets Nanotechnology: Molecular Mechanism Modulations in Cornea Regeneration. MICROMACHINES 2021; 12:mi12111336. [PMID: 34832752 PMCID: PMC8618371 DOI: 10.3390/mi12111336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/23/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
Nowadays, tissue engineering is one of the most promising approaches for the regeneration of various tissues and organs, including the cornea. However, the inability of biomaterial scaffolds to successfully integrate into the environment of surrounding tissues is one of the main challenges that sufficiently limits the restoration of damaged corneal tissues. Thus, the modulation of molecular and cellular mechanisms is important and necessary for successful graft integration and long-term survival. The dynamics of molecular interactions affecting the site of injury will determine the corneal transplantation efficacy and the post-surgery clinical outcome. The interactions between biomaterial surfaces, cells and their microenvironment can regulate cell behavior and alter their physiology and signaling pathways. Nanotechnology is an advantageous tool for the current understanding, coordination, and directed regulation of molecular cell-transplant interactions on behalf of the healing of corneal wounds. Therefore, the use of various nanotechnological strategies will provide new solutions to the problem of corneal allograft rejection, by modulating and regulating host-graft interaction dynamics towards proper integration and long-term functionality of the transplant.
Collapse
Affiliation(s)
- Olja Mijanović
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia; (A.N.); (M.A.); (M.P.); (P.B.); (B.T.); (P.T.)
- Correspondence:
| | - Timofey Pylaev
- Saratov Medical State University N.A. V.I. Razumovsky, 112 Bolshaya Kazachya St., 410012 Saratov, Russia;
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia
| | - Angelina Nikitkina
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia; (A.N.); (M.A.); (M.P.); (P.B.); (B.T.); (P.T.)
| | - Margarita Artyukhova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia; (A.N.); (M.A.); (M.P.); (P.B.); (B.T.); (P.T.)
| | - Ana Branković
- Department of Forensic Engineering, University of Criminal Investigation and Police Studies, 196 Cara Dušana St., Belgrade 11000, Serbia;
| | - Maria Peshkova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia; (A.N.); (M.A.); (M.P.); (P.B.); (B.T.); (P.T.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia
| | - Polina Bikmulina
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia; (A.N.); (M.A.); (M.P.); (P.B.); (B.T.); (P.T.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia
| | - Boris Turk
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia; (A.N.); (M.A.); (M.P.); (P.B.); (B.T.); (P.T.)
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Sergey Bolevich
- Department of Human Pathology, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia;
| | - Sergei Avetisov
- Department of Eye Diseases, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia;
- Research Institute of Eye Diseases, 11 Rossolimo St., 119021 Moscow, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia; (A.N.); (M.A.); (M.P.); (P.B.); (B.T.); (P.T.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1-3, 119991 Moscow, Russia
| |
Collapse
|
62
|
Burhan AM, Klahan B, Cummins W, Andrés-Guerrero V, Byrne ME, O’Reilly NJ, Chauhan A, Fitzhenry L, Hughes H. Posterior Segment Ophthalmic Drug Delivery: Role of Muco-Adhesion with a Special Focus on Chitosan. Pharmaceutics 2021; 13:1685. [PMID: 34683978 PMCID: PMC8539343 DOI: 10.3390/pharmaceutics13101685] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 01/04/2023] Open
Abstract
Posterior segment eye diseases (PSEDs) including age macular degeneration (AMD) and diabetic retinopathy (DR) are amongst the major causes of irreversible blindness worldwide. Due to the numerous barriers encountered, highly invasive intravitreal (IVT) injections represent the primary route to deliver drugs to the posterior eye tissues. Thus, the potential of a more patient friendly topical route has been widely investigated. Mucoadhesive formulations can decrease precorneal clearance while prolonging precorneal residence. Thus, they are expected to enhance the chances of adherence to corneal and conjunctival surfaces and as such, enable increased delivery to the posterior eye segment. Among the mucoadhesive polymers available, chitosan is the most widely explored due to its outstanding mucoadhesive characteristics. In this review, the major PSEDs, their treatments, barriers to topical delivery, and routes of topical drug absorption to the posterior eye are presented. To enable the successful design of mucoadhesive ophthalmic drug delivery systems (DDSs), an overview of mucoadhesion, its theory, characterization, and considerations for ocular mucoadhesion is given. Furthermore, chitosan-based DDs that have been explored to promote topical drug delivery to the posterior eye segment are reviewed. Finally, challenges of successful preclinical to clinical translation of these DDSs for posterior eye drug delivery are discussed.
Collapse
Affiliation(s)
- Ayah Mohammad Burhan
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (W.C.); (N.J.O.); (L.F.); (H.H.)
| | - Butsabarat Klahan
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (W.C.); (N.J.O.); (L.F.); (H.H.)
| | - Wayne Cummins
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (W.C.); (N.J.O.); (L.F.); (H.H.)
| | - Vanessa Andrés-Guerrero
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Complutense University of Madrid, 28040 Madrid, Spain;
| | - Mark E. Byrne
- Biomimetic & Biohybrid Materials, Biomedical Devices & Drug Delivery Laboratories, Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA;
| | - Niall J. O’Reilly
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (W.C.); (N.J.O.); (L.F.); (H.H.)
| | - Anuj Chauhan
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO 80401, USA;
| | - Laurence Fitzhenry
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (W.C.); (N.J.O.); (L.F.); (H.H.)
| | - Helen Hughes
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (W.C.); (N.J.O.); (L.F.); (H.H.)
| |
Collapse
|
63
|
Mofidfar M, Abdi B, Ahadian S, Mostafavi E, Desai TA, Abbasi F, Sun Y, Manche EE, Ta CN, Flowers CW. Drug delivery to the anterior segment of the eye: A review of current and future treatment strategies. Int J Pharm 2021; 607:120924. [PMID: 34324989 PMCID: PMC8579814 DOI: 10.1016/j.ijpharm.2021.120924] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 01/03/2023]
Abstract
Research in the development of ophthalmic drug formulations and innovative technologies over the past few decades has been directed at improving the penetration of medications delivered to the eye. Currently, approximately 90% of all ophthalmic drug formulations (e.g. liposomes, micelles) are applied as eye drops. The major challenge of topical eye drops is low bioavailability, need for frequent instillation due to the short half-life, poor drug solubility, and potential side effects. Recent research has been focused on improving topical drug delivery devices by increasing ocular residence time, overcoming physiological and anatomical barriers, and developing medical devices and drug formulations to increase the duration of action of the active drugs. Researchers have developed innovative technologies and formulations ranging from sub-micron to macroscopic size such as prodrugs, enhancers, mucus-penetrating particles (MPPs), therapeutic contact lenses, and collagen corneal shields. Another approach towards the development of effective topical drug delivery is embedding therapeutic formulations in microdevices designed for sustained release of the active drugs. The goal is to optimize the delivery of ophthalmic medications by achieving high drug concentration with prolonged duration of action that is convenient for patients to administer.
Collapse
Affiliation(s)
| | - Behnam Abdi
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, USA
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, CA, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Farhang Abbasi
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | - Yang Sun
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Edward E Manche
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Christopher N Ta
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Charles W Flowers
- USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
64
|
Li Z, Liu M, Ke L, Wang LJ, Wu C, Li C, Li Z, Wu YL. Flexible polymeric nanosized micelles for ophthalmic drug delivery: research progress in the last three years. NANOSCALE ADVANCES 2021; 3:5240-5254. [PMID: 36132623 PMCID: PMC9417891 DOI: 10.1039/d1na00596k] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/08/2021] [Indexed: 05/17/2023]
Abstract
The eye is a complex structure with a variety of anatomical barriers and clearance mechanisms, so the provision of safe and effective ophthalmic drug delivery technology is a major challenge. In the past few decades, a number of reports have shown that nano-delivery platforms based on polymeric micelles are of great interest, because of their hydrophobic core that encapsulates lipid-soluble drugs and small size with high penetration, allowing long-term drug retention and posterior penetration in the eye. Furthermore, as an ocular delivery platform, polymeric micelles not only cover the single micellar drug delivery system formed by poloxamer, chitosan or other polymers, but also include composite drug delivery systems like micelle-encapsulated hydrogels and micelle-embedded contact lenses. In this review, a number of ophthalmic micelles that have emerged in the last three years will be systematically reviewed, with a summary of and discussion on their unique advantages or unique drug delivery performance. Last but not least, the current challenges of polymeric micelle formulations in potential clinical ophthalmic therapeutic applications will also be proposed, which might be helpful for future design of ocular drug delivery formulations.
Collapse
Affiliation(s)
- Zhiguo Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Minting Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Lingjie Ke
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Li-Juan Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Cheng Li
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University Xiamen 361102 China
| | - Zibiao Li
- Department of Materials Science and Engineering, National University of Singapore 9 Engineering Drive 1 Singapore 117576 Singapore
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| |
Collapse
|
65
|
Inulin-Based Polymeric Micelles Functionalized with Ocular Permeation Enhancers: Improvement of Dexamethasone Permeation/Penetration through Bovine Corneas. Pharmaceutics 2021; 13:pharmaceutics13091431. [PMID: 34575507 PMCID: PMC8472490 DOI: 10.3390/pharmaceutics13091431] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/28/2022] Open
Abstract
Ophthalmic drug delivery is still a challenge due to the protective barriers of the eye. A common strategy to promote drug absorption is the use of ocular permeation enhancers, while an innovative approach is the use of polymeric micelles. In the present work, the two mentioned approaches were coupled by conjugating ocular permeation enhancers (PEG2000, carnitine, creatine, taurine) to an inulin-based co-polymer (INU-EDA-RA) in order to obtain self-assembling biopolymers with permeation enhancer properties for the hydrophobic drug dexamethasone (DEX). Inulin derivatives were properly synthetized, were found to expose about 2% mol/mol of enhancer molecules in the side chain, and resulted able to self-assemble at various concentrations by varying the pH and the ionic strength of the medium. Moreover, the ability of polymeric micelles to load dexamethasone was demonstrated, and size, mucoadhesiveness, and cytocompatibility against HCE cells were evaluated. Furthermore, the efficacy of the permeation enhancer was evaluated by ex vivo permeation studies to determine the performance of the used enhancers, which resulted in PEG2000 > CAR > TAU > CRE, while entrapment ability studies resulted in CAR > TAU > PEG2000 > CRE, both for fluorescent-labelled and DEX-loaded micelles. Finally, an increase in terms of calculated Kp and Ac parameters was demonstrated, compared with the values calculated for DEX suspension.
Collapse
|
66
|
Narayana S, Ahmed MG, Gowda BHJ, Shetty PK, Nasrine A, Thriveni M, Noushida N, Sanjana A. Recent advances in ocular drug delivery systems and targeting VEGF receptors for management of ocular angiogenesis: A comprehensive review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00331-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
Background
Angiogenic ocular diseases address the main source of vision impairment or irreversible vision loss. The angiogenesis process depends on the balance between the pro-angiogenic and anti-angiogenic factors. An imbalance between these factors leads to pathological conditions in the body. The vascular endothelial growth factor is the main cause of pathological conditions in the ocular region. Intravitreal injections of anti-angiogenic drugs are selective, safe, specific and revolutionized treatment for ocular angiogenesis. But intravitreal injections are invasive techniques with other severe complications. The area of targeting vascular endothelial growth factor receptors progresses with novel approaches and therapeutically based hope for best clinical outcomes for patients through the developments in anti-angiogenic therapy.
Main text
The present review article gathers prior knowledge about the vascular endothelial growth factor and associated receptors with other angiogenic and anti-angiogenic factors involved in ocular angiogenesis. A focus on the brief mechanism of vascular endothelial growth factor inhibitors in the treatment of ocular angiogenesis is elaborated. The review also covers various recent novel approaches available for ocular drug delivery by comprising a substantial amount of research works. Besides this, we have also discussed in detail the adoption of nanotechnology-based drug delivery systems in ocular angiogenesis by comprising literature having recent advancements. The clinical applications of nanotechnology in terms of ocular drug delivery, risk analysis and future perspectives relating to the treatment approaches for ocular angiogenesis have also been presented.
Conclusion
The novel ocular drug delivery systems involving nanotechnologies are of great importance in the ophthalmological sector to overcome traditional treatments with many drawbacks. This article gives a detailed insight into the various approaches that are currently available to be a road map for future research in the field of ocular angiogenesis disease management.
Collapse
|
67
|
In vitro-in vivo evaluation of olopatadine incorporated chitosan nanoparticles for the treatment of ocular allergy. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
68
|
Koutsoviti M, Siamidi A, Pavlou P, Vlachou M. Recent Advances in the Excipients Used for Modified Ocular Drug Delivery. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4290. [PMID: 34361483 PMCID: PMC8347600 DOI: 10.3390/ma14154290] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/04/2022]
Abstract
In ocular drug delivery, maintaining an efficient concentration of the drug in the target area for a sufficient period of time is a challenging task. There is a pressing need for the development of effective strategies for drug delivery to the eye using recent advances in material sciences and novel approaches to drug delivery. This review summarizes the important aspects of ocular drug delivery and the factors affecting drug absorption in the eye including encapsulating excipients (chitosan, hyaluronic acid, poloxamer, PLGA, PVCL-PVA-PEG, cetalkonium chloride, and gelatin) for modified drug delivery.
Collapse
Affiliation(s)
- Melitini Koutsoviti
- Department of Pharmacy, Division of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (M.K.); (A.S.)
| | - Angeliki Siamidi
- Department of Pharmacy, Division of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (M.K.); (A.S.)
| | - Panagoula Pavlou
- Department of Biomedical Sciences, Division of Aesthetics and Cosmetic Science, University of West Attica, 28 Ag. Spyridonos Str., 12243 Egaleo, Greece;
| | - Marilena Vlachou
- Department of Pharmacy, Division of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (M.K.); (A.S.)
| |
Collapse
|
69
|
Silva B, São Braz B, Delgado E, Gonçalves L. Colloidal nanosystems with mucoadhesive properties designed for ocular topical delivery. Int J Pharm 2021; 606:120873. [PMID: 34246741 DOI: 10.1016/j.ijpharm.2021.120873] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/26/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
Over the last years, the scientific interest about topical ocular delivery targeting the posterior segment of the eye has been increasing. This is probably due to the fact that this is a non-invasive administration route, well tolerated by patients and with fewer local and systemic side effects. However, it is a challenging task due to the external ocular barriers, tear film clearance, blood flow in the conjunctiva and choriocapillaris and due to the blood-retinal barriers, amongst other features. An enhanced intraocular bioavailability of drugs can be achieved by either improving corneal permeability or by improving precorneal retention time. Regarding this last option, increasing residence time in the precorneal area can be achieved using mucoadhesive polymers such as xyloglucan, poly(acrylate), hyaluronic acid, chitosan, and carbomers. On the other hand, colloidal particles can interact with the ocular mucosa and enhance corneal and conjunctival permeability. These nanosystems are able to deliver a wide range of drugs, including macromolecules, providing stability and improving ocular bioavailability. New pharmaceutical approaches based on nanotechnology associated to bioadhesive compounds have emerged as strategies for a more efficient treatment of ocular diseases. Bearing this in mind, this review provides an overview of the current mucoadhesive colloidal nanosystems developed for ocular topical administration, focusing on their advantages and limitations.
Collapse
Affiliation(s)
- Beatriz Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Portugal.
| | - Berta São Braz
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Portugal.
| | - Esmeralda Delgado
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Portugal.
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal.
| |
Collapse
|
70
|
Xu C, Lu J, Zhou L, Liang J, Fang L, Cao F. Multifunctional nanocomposite eye drops of cyclodextrin complex@layered double hydroxides for relay drug delivery to the posterior segment of the eye. Carbohydr Polym 2021; 260:117800. [PMID: 33712148 DOI: 10.1016/j.carbpol.2021.117800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/21/2021] [Accepted: 02/06/2021] [Indexed: 12/26/2022]
Abstract
Topical drug delivery system to the posterior segment of the eye is facing many challenges, such as rapid drug elimination, low permeability, and low concentration at the targeted sites. To overcome these challenges, Multifunctional nanocomposite eye drops of dexamethasone-carboxymethyl-β-cyclodextrin@layered double hydroxides-glycylsarcosine (DEX-CM-β-CD@LDH-GS) were developed for relay drug delivery. Herein, our studies demonstrated that DEX-CM-β-CD@LDH-GS could penetrate through human conjunctival epithelial cells with an intact structure and exhibited integrity in the sclera of rabbits' eyes with in vivo fluorescence resonance energy transfer imaging. Consequently, tissue distribution indicated that DEX-CM-β-CD@LDH-GS nanocomposite eye drops could maintain the effective therapeutic concentration of DEX in choroid-retina within 3 h. As a relay drug delivery system, drug-CD@LDH nanocomposites offer an efficient strategy for drug delivery from ocular surface to the posterior segment.
Collapse
Affiliation(s)
- Chen Xu
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, China; WuXi Clinical Development Services Co., Ltd, 666 Gaoxin Road, Wuhan, 430075, China
| | - Jinhui Lu
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, China
| | - Li Zhou
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, China
| | - Jie Liang
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, China
| | - Lei Fang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Feng Cao
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, China.
| |
Collapse
|
71
|
Navarro-Partida J, Castro-Castaneda CR, Santa Cruz-Pavlovich FJ, Aceves-Franco LA, Guy TO, Santos A. Lipid-Based Nanocarriers as Topical Drug Delivery Systems for Intraocular Diseases. Pharmaceutics 2021; 13:pharmaceutics13050678. [PMID: 34065059 PMCID: PMC8151015 DOI: 10.3390/pharmaceutics13050678] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Effective drug delivery to intraocular tissues remains a great challenge due to complex anatomical and physiological barriers that selectively limit the entry of drugs into the eye. To overcome these challenges, frequent topical application and regular intravitreal injections are currently used to achieve the desired drug concentrations into the eye. However, the repetitive installation or recurrent injections may result in several side effects. Recent advancements in the field of nanoparticle-based drug delivery have demonstrated promising results for topical ophthalmic nanotherapies in the treatment of intraocular diseases. Studies have revealed that nanocarriers enhance the intraocular half-life and bioavailability of several therapies including proteins, peptides and genetic material. Amongst the array of nanoparticles available nowadays, lipid-based nanosystems have shown an increased efficiency and feasibility in topical formulations, making them an important target for constant and thorough research in both preclinical and clinical practice. In this review, we will cover the promising lipid-based nanocarriers used in topical ophthalmic formulations for intraocular drug delivery.
Collapse
Affiliation(s)
- Jose Navarro-Partida
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
- Centro de Retina Medica y Quirurgica, S.C., Centro Medico Puerta de Hierro, P.C., Zapopan 45116, Mexico
| | - Carlos Rodrigo Castro-Castaneda
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
| | - Francisco J. Santa Cruz-Pavlovich
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
| | - Luis Abraham Aceves-Franco
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
- Centro de Retina Medica y Quirurgica, S.C., Centro Medico Puerta de Hierro, P.C., Zapopan 45116, Mexico
| | - Tomer Ori Guy
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
- Centro de Retina Medica y Quirurgica, S.C., Centro Medico Puerta de Hierro, P.C., Zapopan 45116, Mexico
- Correspondence: ; Tel.: +52-(33)-36-69-30-00 (ext. 2540)
| |
Collapse
|
72
|
Dubashynskaya NV, Bokatyi AN, Skorik YA. Dexamethasone Conjugates: Synthetic Approaches and Medical Prospects. Biomedicines 2021; 9:341. [PMID: 33801776 PMCID: PMC8067246 DOI: 10.3390/biomedicines9040341] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Dexamethasone (DEX) is the most commonly prescribed glucocorticoid (GC) and has a wide spectrum of pharmacological activity. However, steroid drugs like DEX can have severe side effects on non-target organs. One strategy to reduce these side effects is to develop targeted systems with the controlled release by conjugation to polymeric carriers. This review describes the methods available for the synthesis of DEX conjugates (carbodiimide chemistry, solid-phase synthesis, reversible addition fragmentation-chain transfer [RAFT] polymerization, click reactions, and 2-iminothiolane chemistry) and perspectives for their medical application as GC drug or gene delivery systems for anti-tumor therapy. Additionally, the review focuses on the development of DEX conjugates with different physical-chemical properties as successful delivery systems in the target organs such as eye, joint, kidney, and others. Finally, polymer conjugates with improved transfection activity in which DEX is used as a vector for gene delivery in the cell nucleus have been described.
Collapse
Affiliation(s)
| | | | - Yury A. Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St. Petersburg, Russia; (N.V.D.); (A.N.B.)
| |
Collapse
|
73
|
da Silva NS, Araújo NK, Daniele-Silva A, Oliveira JWDF, de Medeiros JM, Araújo RM, Ferreira LDS, Rocha HAO, Silva-Junior AA, Silva MS, Fernandes-Pedrosa MDF. Antimicrobial Activity of Chitosan Oligosaccharides with Special Attention to Antiparasitic Potential. Mar Drugs 2021; 19:md19020110. [PMID: 33673266 PMCID: PMC7917997 DOI: 10.3390/md19020110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
The global rise of infectious disease outbreaks and the progression of microbial resistance reinforce the importance of researching new biomolecules. Obtained from the hydrolysis of chitosan, chitooligosaccharides (COSs) have demonstrated several biological properties, including antimicrobial, and greater advantage over chitosan due to their higher solubility and lower viscosity. Despite the evidence of the biotechnological potential of COSs, their effects on trypanosomatids are still scarce. The objectives of this study were the enzymatic production, characterization, and in vitro evaluation of the cytotoxic, antibacterial, antifungal, and antiparasitic effects of COSs. NMR and mass spectrometry analyses indicated the presence of a mixture with 81% deacetylated COS and acetylated hexamers. COSs demonstrated no evidence of cytotoxicity upon 2 mg/mL. In addition, COSs showed interesting activity against bacteria and yeasts and a time-dependent parasitic inhibition. Scanning electron microscopy images indicated a parasite aggregation ability of COSs. Thus, the broad biological effect of COSs makes them a promising molecule for the biomedical industry.
Collapse
Affiliation(s)
- Nayara Sousa da Silva
- Postgraduate Program in Pharmacy, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil;
| | - Nathália Kelly Araújo
- Department of Pharmacy, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (N.K.A.); (L.D.S.F.); (A.A.S.-J.)
| | - Alessandra Daniele-Silva
- Postgraduate Program in Development and Technological Innovation in Medicines, Bioscience Center, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil;
| | | | - Júlia Maria de Medeiros
- Postgraduate Program in Chemical Engineering, Technology Center, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil;
| | - Renata Mendonça Araújo
- Chemistry Institute, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil;
| | - Leandro De Santis Ferreira
- Department of Pharmacy, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (N.K.A.); (L.D.S.F.); (A.A.S.-J.)
| | | | - Arnóbio Antônio Silva-Junior
- Department of Pharmacy, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (N.K.A.); (L.D.S.F.); (A.A.S.-J.)
| | - Marcelo Sousa Silva
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil;
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, University of Nova Lisboa, 1099-085 Lisbon, Portugal
| | - Matheus de Freitas Fernandes-Pedrosa
- Department of Pharmacy, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (N.K.A.); (L.D.S.F.); (A.A.S.-J.)
- Correspondence: ; Tel.: +55-84-3342-9820
| |
Collapse
|
74
|
Kumara BN, Shambhu R, Prasad KS. Why chitosan could be apt candidate for glaucoma drug delivery - An overview. Int J Biol Macromol 2021; 176:47-65. [PMID: 33581206 DOI: 10.1016/j.ijbiomac.2021.02.057] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 12/15/2022]
Abstract
Most of the people in the world are affected by glaucoma, which leads to irreversible blindness. Several patient friendly treatments are available, nevertheless medications lack an easy and efficient way of sustained delivery. To make the delivery with enhanced bioavailability, biodegradable and non-biodegradable polymers-based drug carriers are explored. However, ocular drug delivery issues have not been resolved yet due to less adhesiveness, poor penetration ability, pH, and temperature dependent burst releases. Chitosan is found to be effective for ocular drug delivery due to excellent physio-chemical properties in terms of overcoming the existing issues. In this review, we aim to highlight why it has been chosen and the holy grail for ocular drug delivery. Besides, we have comprehensively reviewed recent patents on chitosan as a platform for ocular drug delivery and future perspectives on factors, lacunae and challenges that need to be addressed for better ocular delivery methods for glaucoma management.
Collapse
Affiliation(s)
- B N Kumara
- Nanomaterial Research Laboratory [NMRL], Nano Division, Yenepoya Research Centre, Yenepoya [Deemed to be University], Deralakatte, Mangalore 575 018, India
| | - Rashmi Shambhu
- Department of Ophthalmology, Yenepoya Medical College, Yenepoya [Deemed to be University], Deralakatte, Mangalore 575 018, India
| | - K Sudhakara Prasad
- Nanomaterial Research Laboratory [NMRL], Nano Division, Yenepoya Research Centre, Yenepoya [Deemed to be University], Deralakatte, Mangalore 575 018, India; Centre for Nutrition Studies, Yenepoya [Deemed to be University], Deralakatte, Mangalore 575 018, India.
| |
Collapse
|
75
|
Sripetch S, Loftsson T. Topical drug delivery to the posterior segment of the eye: Thermodynamic considerations. Int J Pharm 2021; 597:120332. [PMID: 33540025 DOI: 10.1016/j.ijpharm.2021.120332] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/16/2022]
Abstract
Almost all studies on non-invasive topical drug delivery to the eye have emphasized the importance of biological barriers, static membrane barriers such as the cornea and the conjunctiva/sclera and dynamic barriers such as the lacrimal drainage. Hardly any have discussed the importance of the thermodynamic activity of the permeating drug molecules. Most drugs permeate from the eye surface into the eye by passive diffusion where, according to Fick's first law, the drug concentration gradient over the various permeation barriers (e.g., the tear fluid and the lipophilic membrane barriers) is the driving force. At the barrier interphases the dissolved drug molecules must partition from one barrier to another. For example, at the tear-cornea interphase the drug molecules must partition from the aqueous exterior into the lipophilic membrane. The drug partition coefficient between two phases is commonly defined as the equilibrium concentration ratio. However, these are only approximations. The actual driving force in Fick's first law is the gradient of the chemical potential and the equilibrium between two phases is attained when the chemical potential of the drug in one phase is equal to that in the other phase. Here the importance of thermodynamic considerations in topical drug delivery to the eye is reviewed.
Collapse
Affiliation(s)
- Suppakan Sripetch
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland.
| |
Collapse
|
76
|
Wang R, Gao Y, Liu A, Zhai G. A review of nanocarrier-mediated drug delivery systems for posterior segment eye disease: challenges analysis and recent advances. J Drug Target 2021; 29:687-702. [PMID: 33474998 DOI: 10.1080/1061186x.2021.1878366] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Posterior segment eye disease is a leading cause of irreversible vision impairment and blindness. As the unique organ for vision, eyes are protected by various protective barriers. The existence of physiological barriers and elimination mechanisms makes it challenging to treat the posterior segment eye diseases. To achieve efficient drug delivery to the posterior segment of eyes, different drug delivery systems have been proposed. Due to their abilities to enhance ocular tissue permeability, make controlled drug release and target retina, nanocarriers, such as lipid nanoparticles, liposomes and polymeric nanomicelles, have been widely studied for posterior segment drug delivery. However, clinical applications of nanocarrier mediated drug delivery systems as non-invasive ocular drops is still not ready. The delivery of nanocarrier-mediated drug for posterior segment disease still faces the choice of being more effective or more invasive for long-term treatment. Therefore, it is necessary to have a clear understanding of the barriers and the routes of ocular drug delivery while developing the delivery systems. In this review, types of ocular barriers and drug administration routes are categorised in a more intuitive way. Recent advances in nanocarrier mediated drug delivery systems with focus on posterior segment are reviewed with illustrative examples.
Collapse
Affiliation(s)
- Rui Wang
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan, China
| | - Yuan Gao
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan, China
| | - Anchang Liu
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, China
| | - Guangxi Zhai
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan, China
| |
Collapse
|
77
|
Pramanik S, Sali V. Connecting the dots in drug delivery: A tour d'horizon of chitosan-based nanocarriers system. Int J Biol Macromol 2020; 169:103-121. [PMID: 33338522 DOI: 10.1016/j.ijbiomac.2020.12.083] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/26/2020] [Accepted: 12/11/2020] [Indexed: 01/09/2023]
Abstract
One of the most promising pharmaceutical research areas is developing advanced delivery systems for controlled and sustained drug release. The drug delivery system (DDS) can be designed to strengthen the pharmacological and therapeutic characteristics of different medicines. Natural polymers have resolved numerous commencing hurdles, which hindered the clinical implementation of traditional DDS. The naturally derived polymers furnish various advantages such as biodegradability, biocompatibility, inexpensiveness, easy availability, and biologically identifiable moieties, which endorse cellular activity in contrast to synthetic polymers. Among them, chitosan has recently been in the spotlight for devising safe and efficient DDSs due to its superior properties such as minimal toxicity, bio-adhesion, stability, biodegradability, and biocompatibility. The primary amino group in chitosan shows exceptional qualities such as the rate of drug release, anti-microbial properties, the ability to cross-link with various polymers, and macrophage activation. This review intends to provide a glimpse into different practical utilization of chitosan as a drug carrier. The first segment of the review will give cognizance into the source of extraction and chitosan's remarkable properties. Further, we have endeavored to provide recent literature pertaining to chitosan applications in various drug delivery systems via different administration routes along with current patented chitosan formulations.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India; Department of Polymeric Medical Devices, Medical Devices Engineering, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala 695011, India.
| | - Vaishnavi Sali
- C.U. Shah College of Pharmacy, SNDT Women's University, Sir Vithaldas Thakersay, Santacruz West, Juhu, Mumbai, Maharashtra 400049, India
| |
Collapse
|
78
|
Kou L, Yao Q, Zhang H, Chu M, Bhutia YD, Chen R, Ganapathy V. Transporter-Targeted Nano-Sized Vehicles for Enhanced and Site-Specific Drug Delivery. Cancers (Basel) 2020; 12:E2837. [PMID: 33019627 PMCID: PMC7599460 DOI: 10.3390/cancers12102837] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Nano-devices are recognized as increasingly attractive to deliver therapeutics to target cells. The specificity of this approach can be improved by modifying the surface of the delivery vehicles such that they are recognized by the target cells. In the past, cell-surface receptors were exploited for this purpose, but plasma membrane transporters also hold similar potential. Selective transporters are often highly expressed in biological barriers (e.g., intestinal barrier, blood-brain barrier, and blood-retinal barrier) in a site-specific manner, and play a key role in the vectorial transfer of nutrients. Similarly, selective transporters are also overexpressed in the plasma membrane of specific cell types under pathological states to meet the biological needs demanded by such conditions. Nano-drug delivery systems could be strategically modified to make them recognizable by these transporters to enhance the transfer of drugs across the biological barriers or to selectively expose specific cell types to therapeutic drugs. Here, we provide a comprehensive review and detailed evaluation of the recent advances in the field of transporter-targeted nano-drug delivery systems. We specifically focus on areas related to intestinal absorption, transfer across blood-brain barrier, tumor-cell selective targeting, ocular drug delivery, identification of the transporters appropriate for this purpose, and details of the rationale for the approach.
Collapse
Affiliation(s)
- Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang 325027, China;
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Zhejiang 325027, China; (Q.Y.); (H.Z.); (M.C.)
| | - Qing Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Zhejiang 325027, China; (Q.Y.); (H.Z.); (M.C.)
- Department of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Hailin Zhang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Zhejiang 325027, China; (Q.Y.); (H.Z.); (M.C.)
- Department of Children’s Respiration Disease, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang 325027, China
| | - Maoping Chu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Zhejiang 325027, China; (Q.Y.); (H.Z.); (M.C.)
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang 325027, China
| | - Yangzom D. Bhutia
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang 325027, China;
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Zhejiang 325027, China; (Q.Y.); (H.Z.); (M.C.)
| | - Vadivel Ganapathy
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang 325027, China;
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Zhejiang 325027, China; (Q.Y.); (H.Z.); (M.C.)
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| |
Collapse
|
79
|
Shahab MS, Rizwanullah M, Alshehri S, Imam SS. Optimization to development of chitosan decorated polycaprolactone nanoparticles for improved ocular delivery of dorzolamide: In vitro, ex vivo and toxicity assessments. Int J Biol Macromol 2020; 163:2392-2404. [PMID: 32979440 DOI: 10.1016/j.ijbiomac.2020.09.185] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
The present research work was designed to develop dorzolamide-loaded chitosan-coated polycaprolactone nanoparticles (DRZ-CS-PCL-NPs) for improved ocular delivery. The nanoparticles were prepared by single-step emulsification technique and optimized using the three-factor three-level Box-Behnken design. The optimized DRZ-CS-PCL-NPs prepared with the composition of polycaprolactone (60 mg), chitosan (0.6%) and polyvinyl alcohol (1.5%). The particle size, polydispersity index, zeta potential and encapsulation efficiency of optimized DRZ-CS-PCL-NPs were found to be 192.38 ± 6.42 nm, 0.18 ± 0.04, +5.21 ± 1.24 mV, and 72.48 ± 5.62%, respectively. The dependent and independent response variables showed excellent correlation and signifying the rationality of the optimized DRZ-CS-PCL-NPs. The DRZ release from CS-PCL-NPs showed biphasic behaviour with initial burst release for 2 h after that sustained-release up to 12 h of study. The corneal flux experiment showed many fold enhancement in permeation across goat cornea. DRZ-CS-PCL-NPs exhibited 3.7 fold higher mucoadhesive strength compared to the control. Furthermore, the histopathological assessment and HET-CAM study revealed that the DRZ-CS-PCL-NPs were non-irritant and safe for ocular administration. Therefore, from the present study, it can be concluded that the optimized DRZ-CS-PCL-NPs are safe and have the potential for successful ocular delivery and improved therapeutic efficacy.
Collapse
Affiliation(s)
- Mohammed Shadab Shahab
- Department of Pharmaceutics, Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - Md Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Syed Sarim Imam
- Department of Pharmaceutics, Glocal School of Pharmacy, Glocal University, Saharanpur, India; Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
80
|
Gote V, Ansong M, Pal D. Prodrugs and nanomicelles to overcome ocular barriers for drug penetration. Expert Opin Drug Metab Toxicol 2020; 16:885-906. [PMID: 32729364 DOI: 10.1080/17425255.2020.1803278] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Ocular barriers hinder drug delivery and reduce drug bioavailability. This article focuses on enhancing drug absorption across the corneal and conjunctival epithelium. Both, transporter targeted prodrug formulations and nanomicellar strategy is proven to enhance the drug permeation of therapeutic agents across various ocular barriers. These strategies can increase aqueous drug solubility and stability of many hydrophobic drugs for topical ophthalmic formulations. AREAS COVERED The article discusses various ocular barriers, ocular influx, and efflux transporters. It elaborates various prodrug strategies used for enhancing drug absorption. Along with this, the article also describes nanomicellar formulation, its characteristic and advantages, and applications in for anterior and posterior segment drug delivery. EXPERT OPINION Prodrugs and nanomicellar formulations provide an effective strategy for improving drug absorption and drug bioavailability across various ocular barriers. It will be exciting to see the efficacy of nanomicelles for treating back of the eye disorders after their topical application. This is considered as a holy grail of ocular drug delivery due to the dynamic and static ocular barriers, restricting posterior entry of topically applied drug formulations.
Collapse
Affiliation(s)
- Vrinda Gote
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , Kansas City, MO, USA
| | - Michael Ansong
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , Kansas City, MO, USA
| | - Dhananjay Pal
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , Kansas City, MO, USA
| |
Collapse
|
81
|
Polymeric Nanoparticles for Drug Delivery: Recent Developments and Future Prospects. NANOMATERIALS 2020; 10:nano10071403. [PMID: 32707641 PMCID: PMC7408012 DOI: 10.3390/nano10071403] [Citation(s) in RCA: 425] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
The complexity of some diseases—as well as the inherent toxicity of certain drugs—has led to an increasing interest in the development and optimization of drug-delivery systems. Polymeric nanoparticles stand out as a key tool to improve drug bioavailability or specific delivery at the site of action. The versatility of polymers makes them potentially ideal for fulfilling the requirements of each particular drug-delivery system. In this review, a summary of the state-of-the-art panorama of polymeric nanoparticles as drug-delivery systems has been conducted, focusing mainly on those applications in which the corresponding disease involves an important morbidity, a considerable reduction in the life quality of patients—or even a high mortality. A revision of the use of polymeric nanoparticles for ocular drug delivery, for cancer diagnosis and treatment, as well as nutraceutical delivery, was carried out, and a short discussion about future prospects of these systems is included.
Collapse
|
82
|
Zamboulis A, Nanaki S, Michailidou G, Koumentakou I, Lazaridou M, Ainali NM, Xanthopoulou E, Bikiaris DN. Chitosan and its Derivatives for Ocular Delivery Formulations: Recent Advances and Developments. Polymers (Basel) 2020; 12:E1519. [PMID: 32650536 PMCID: PMC7407599 DOI: 10.3390/polym12071519] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Chitosan (CS) is a hemi-synthetic cationic linear polysaccharide produced by the deacetylation of chitin. CS is non-toxic, highly biocompatible, and biodegradable, and it has a low immunogenicity. Additionally, CS has inherent antibacterial properties and a mucoadhesive character and can disrupt epithelial tight junctions, thus acting as a permeability enhancer. As such, CS and its derivatives are well-suited for the challenging field of ocular drug delivery. In the present review article, we will discuss the properties of CS that contribute to its successful application in ocular delivery before reviewing the latest advances in the use of CS for the development of novel ophthalmic delivery systems. Colloidal nanocarriers (nanoparticles, micelles, liposomes) will be presented, followed by CS gels and lenses and ocular inserts. Finally, instances of CS coatings, aiming at conferring mucoadhesiveness to other matrixes, will be presented.
Collapse
Affiliation(s)
- Alexandra Zamboulis
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.N.); (G.M.); (I.K.); (M.L.); (N.M.A.); (E.X.)
| | | | | | | | | | | | | | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.N.); (G.M.); (I.K.); (M.L.); (N.M.A.); (E.X.)
| |
Collapse
|
83
|
Karava A, Lazaridou M, Nanaki S, Michailidou G, Christodoulou E, Kostoglou M, Iatrou H, Bikiaris DN. Chitosan Derivatives with Mucoadhesive and Antimicrobial Properties for Simultaneous Nanoencapsulation and Extended Ocular Release Formulations of Dexamethasone and Chloramphenicol Drugs. Pharmaceutics 2020; 12:594. [PMID: 32604758 PMCID: PMC7356116 DOI: 10.3390/pharmaceutics12060594] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/31/2023] Open
Abstract
The aim of this work was to evaluate the effectiveness of neat chitosan (CS) and its derivatives with 2-acrylamido-2-methyl-1-propanesulfonic acid (AAMPS) and [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (MEDSP) as appropriate nanocarriers for the simultaneous ocular administration of dexamethasone sodium phosphate (DxP) and chloramphenicol (CHL). The derivatives CS-AAMPS and CS-MEDSP have been synthesized by free-radical polymerization and their structure has been proved by Fourier-Transformed Infrared Spectroscopy (FT-IR) spectroscopy. Both derivatives exhibited low cytotoxicity, enhanced mucoadhesive properties and antimicrobial activity against Staphylococcus aureus (S.aureus) and Escherichia coli (E. coli). Encapsulation was performed via ionic crosslinking gelation using sodium tripolyphosphate (TPP) as the crosslinking agent. Dynamic light scattering measurements (DLS) showed that the prepared nanoparticles had bimodal distribution and sizes ranging from 50-200 nm and 300-800 nm. Drugs were encapsulated in their crystalline (CHL) or amorphous (DexSP) form inside nanoparticles and their release rate was dependent on the used polymer. The CHL dissolution rate was substantially enhanced compared to the neat drug and the release time was extended up to 7 days. The release rate of DexSP was much faster than that of CHL and was prolonged up to 3 days. Drug release modeling unveiled that diffusion is the main release mechanism for both drugs. Both prepared derivatives and their drug-loaded nanoparticles could be used for extended and simultaneous ocular release formulations of DexSP and CHL drugs.
Collapse
Affiliation(s)
- Aikaterini Karava
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece;
| | - Maria Lazaridou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece; (M.L.); (S.N.); (G.M.); (E.C.)
| | - Stavroula Nanaki
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece; (M.L.); (S.N.); (G.M.); (E.C.)
| | - Georgia Michailidou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece; (M.L.); (S.N.); (G.M.); (E.C.)
| | - Evi Christodoulou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece; (M.L.); (S.N.); (G.M.); (E.C.)
| | - Margaritis Kostoglou
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| | - Hermis Iatrou
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece;
| | - Dimitrios N. Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece; (M.L.); (S.N.); (G.M.); (E.C.)
| |
Collapse
|
84
|
Han H, Yin Q, Tang X, Yu X, Gao Q, Tang Y, Grzybowski A, Yao K, Ji J, Shentu X. Development of mucoadhesive cationic polypeptide micelles for sustained cabozantinib release and inhibition of corneal neovascularization. J Mater Chem B 2020; 8:5143-5154. [PMID: 32420566 DOI: 10.1039/d0tb00874e] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Corneal neovascularization (CNV) is one of the leading risk factors for vision loss. Anti-angiogenic drugs can theoretically be extended to the treatment of CNV. However, the application of these drugs is often hindered by traditional administration methods, e.g., eye drops, which is ascribed to the unique structure of the cornea and tear film. In this study, cationic polypeptide nanoparticles with mucoadhesive ability that carry lipophilic cabozantinib (a tyrosine kinase inhibitor), called Cabo-NPs, were developed for sustained cabozantinib release and inhibition of CNV. The polypeptides were synthesized via N-carboxyanhydride ring-opening polymerization and could self-assemble into micelles with cabozantinib in aqueous solution. The Cabo-NPs possessed good biocompatibility both in corneal epithelial cells and mouse corneas. More importantly, in vitro angiogenesis assays demonstrated the strong inhibitory effect of Cabo-NPs on cell migration and tube formation. Furthermore, the Cabo-NPs exerted superior anti-angiogenic effects with remarkable reductions in the neovascular area, which were as effective as the clinical dexamethasone but without apparent side effects. The therapeutic mechanism of the Cabo-NPs is closely related to the significant decrease in proangiogenic and proinflammatory factors, suppressing neovascularization and inflammation. Overall, cationic Cabo-NPs offer a new prospect for safe and effective CNV treatment via enhancing the bioavailability of lipophilic cabozantinib.
Collapse
Affiliation(s)
- Haijie Han
- Zhejiang Provincial Key Lab of Ophthalmology, Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Meza-Rios A, Navarro-Partida J, Armendariz-Borunda J, Santos A. Therapies Based on Nanoparticles for Eye Drug Delivery. Ophthalmol Ther 2020; 9:1-14. [PMID: 32383107 PMCID: PMC7406616 DOI: 10.1007/s40123-020-00257-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
Eye drug delivery, particularly to the retina, is a technical hurdle that needs to be solved and represents an ongoing current important medical field. Posterior segment eye diseases are a major cause of visual impairment worldwide. Age-related macular degeneration, glaucoma, and diabetic retinopathy are the major causes of blindness. To achieve efficient drug delivery and drug retention time in the posterior segment of the eye, novel delivery systems based on nanoparticles have been developed in the last few years. Nowadays, liposomes represent the most utilized nanoparticles for eye drug delivery and, recently, a broad spectrum of diverse nanoparticles continue to emerge with special characteristics representing ideal candidates for eye drug delivery.
Collapse
Affiliation(s)
- Alejandra Meza-Rios
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan, Jalisco, Mexico
| | - Jose Navarro-Partida
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan, Jalisco, Mexico
| | - Juan Armendariz-Borunda
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan, Jalisco, Mexico
- Institute of Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan, Jalisco, Mexico.
- Centro de Retina Medica y Quirurgica, S.C., Centro Medico Puerta de Hierro, Zapopan, Mexico.
| |
Collapse
|
86
|
Tsanaktsidou E, Karavasili C, Zacharis CK, Fatouros DG, Markopoulou CK. Partial Least Square Model (PLS) as a Tool to Predict the Diffusion of Steroids Across Artificial Membranes. Molecules 2020; 25:molecules25061387. [PMID: 32197506 PMCID: PMC7144563 DOI: 10.3390/molecules25061387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 11/17/2022] Open
Abstract
One of the most challenging goals in modern pharmaceutical research is to develop models that can predict drugs’ behavior, particularly permeability in human tissues. Since the permeability is closely related to the molecular properties, numerous characteristics are necessary in order to develop a reliable predictive tool. The present study attempts to decode the permeability by correlating the apparent permeability coefficient (Papp) of 33 steroids with their properties (physicochemical and structural). The Papp of the molecules was determined by in vitro experiments and the results were plotted as Y variable on a Partial Least Squares (PLS) model, while 37 pharmacokinetic and structural properties were used as X descriptors. The developed model was subjected to internal validation and it tends to be robust with good predictive potential (R2Y = 0.902, RMSEE = 0.00265379, Q2Y = 0.722, RMSEP = 0.0077). Based on the results specific properties (logS, logP, logD, PSA and VDss) were proved to be more important than others in terms of drugs Papp. The models can be utilized to predict the permeability of a new candidate drug avoiding needless animal experiments, as well as time and material consuming experiments.
Collapse
Affiliation(s)
- Eleni Tsanaktsidou
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.T.); (C.K.Z.)
| | - Christina Karavasili
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.K.); (D.G.F.)
| | - Constantinos K. Zacharis
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.T.); (C.K.Z.)
| | - Dimitrios G. Fatouros
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.K.); (D.G.F.)
| | - Catherine K. Markopoulou
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.T.); (C.K.Z.)
- Correspondence: ; Tel.: +30-231-099-7665
| |
Collapse
|
87
|
Terreni E, Chetoni P, Tampucci S, Burgalassi S, Al-kinani AA, Alany RG, Monti D. Assembling Surfactants-Mucoadhesive Polymer Nanomicelles (ASMP-Nano) for Ocular Delivery of Cyclosporine-A. Pharmaceutics 2020; 12:E253. [PMID: 32168973 PMCID: PMC7150936 DOI: 10.3390/pharmaceutics12030253] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
The physiological protective mechanisms of the eye reduce the bioavailability of topically administered drugs above all for those with high molecular weight and /or lipophilic characteristics, such as Cyclosporine A (CyA). The combined strategy based on the association of nanomicelles and mucoadhesive polymer seems promising since a limited number of commercial products containing CyA have been recently approved. The scope of this investigation was the design of Assembling Surfactants-Mucoadhesive Polymer Nanomicelles (ASMP-Nano), based on a binary system of two surfactants in combination with hyaluronic acid, and their biopharmaceutical evaluation. The optimisation of the ASMP-Nano in term of the amount of surfactants, CyA-loading and size determined the selection of the clear and stable Nano1HAB-CyA formulation containing 0.105% w/w CyA loaded-nanomicelles with a size of 14.41 nm. The nanostructured system had a protective effect towards epithelial corneal cells with a cell viability of more than 80%. It interacted with cellular barriers favouring the uptake and the accumulation of CyA into the cells as evidenced by fluorescent probe distribution, by hindering CyA permeation through reconstituted corneal epithelial tissue. In pharmacokinetics study on rabbits, the nanomicellar carrier prolonged the CyA retention time in the precorneal area mainly in presence of hyaluronic acid (HA), a mucoadhesive polymer.
Collapse
Affiliation(s)
- Eleonora Terreni
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.T.); (P.C.); (S.T.); (S.B.)
| | - Patrizia Chetoni
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.T.); (P.C.); (S.T.); (S.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56126 Pisa, Italy
| | - Silvia Tampucci
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.T.); (P.C.); (S.T.); (S.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56126 Pisa, Italy
| | - Susi Burgalassi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.T.); (P.C.); (S.T.); (S.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56126 Pisa, Italy
| | - Ali Athab Al-kinani
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, London KT1 2EE, UK; (A.A.A.-k.); (R.G.A.)
| | - Raid G. Alany
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, London KT1 2EE, UK; (A.A.A.-k.); (R.G.A.)
- School of Pharmacy, The University of Auckland, Auckland 1010, New Zealand
| | - Daniela Monti
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.T.); (P.C.); (S.T.); (S.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56126 Pisa, Italy
| |
Collapse
|
88
|
Nayak K, Misra M. PEGylated microemulsion for dexamethasone delivery to posterior segment of eye. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1071-1090. [PMID: 32149562 DOI: 10.1080/09205063.2020.1740964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Dexamethasone (Dex) is one of the most commonly used anti-vascular endothelial growth factor (anti-VEGF) drugs being used in ocular diseases whether it is associated with anterior segment or posterior segment. For diseases of posterior segment of eye, Dex is delivered as intravitreal implant but the route used for the same is very invasive and poses several hazards on long term use. Thus, topical formulation with ability to outreach retina from ocular surface was intended. Thus, polyethylene glycolylated (PEGylated) microemulsion (ME) was attempted as it can cross the membranous barrier of eye (cornea, conjunctiva, and sclera) and remain afloat in fluidic barrier (aqueous humor, choroid, etc.) as well. Present investigation involved development of Dex-loaded PEGylated ME which was stable, non-toxic to ocular surface, capable to cross cornea and enhanced residence as well as availability of loaded drug in retina. The developed PEGylated ME had physicochemical properties like size (15.98 ± 3.05 nm), polydispersity index (0.25 ± 0.04), zeta potential (-0.04 ± 0.47 mV), percentage transmittance (99.84 ± 1.17%), and drug content (99.32 ± 3.21%). It showed sustained Dex release in in vitro conditions. It also displayed efficiency in enhancing retention of drugs in retina in in vivo pharmacokinetic study on Sprague-Dawley rats. PEGylated ME can retain the drug in retina of rats longer than simple eye drop solution via topical ocular route.
Collapse
Affiliation(s)
- Kritika Nayak
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Gandhinagar, Gujarat, India
| | - Manju Misra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Gandhinagar, Gujarat, India.,Scientist B, B V Patel PERD Centre, Ahmedabad, Gujarat, India
| |
Collapse
|