51
|
Yang L, Wang Z, Wang H, Jin B, Meng C, Chen X, Li R, Wang H, Xin M, Zhao Z, Guo S, Wu J, Cheng H. Self-Healing, Reconfigurable, Thermal-Switching, Transformative Electronics for Health Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207742. [PMID: 36719993 PMCID: PMC10391699 DOI: 10.1002/adma.202207742] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Soft, deformable electronic devices provide the means to monitor physiological information and health conditions for disease diagnostics. However, their practical utility is limited due to the lack of intrinsical thermal switching for mechanically transformative adaptability and self-healing capability against mechanical damages. Here, the design concepts, materials and physics, manufacturing approaches, and application opportunities of self-healing, reconfigurable, thermal-switching device platforms based on hyperbranched polymers and biphasic liquid metal are reported. The former provides excellent self-healing performance and unique tunable stiffness and adhesion regulated by temperature for the on-skin switch, whereas the latter results in liquid metal circuits with extreme stretchability (>900%) and high conductivity (3.40 × 104 S cm-1 ), as well as simple recycling capability. Triggered by the increased temperature from the skin surface, a multifunctional device platform can conveniently conform and strongly adhere to the hierarchically textured skin surface for non-invasive, continuous, comfortable health monitoring. Additionally, the self-healing and adhesive characteristics allow multiple multifunctional circuit components to assemble and completely wrap on 3D curvilinear surfaces. Together, the design, manufacturing, and proof-of-concept demonstration of the self-healing, transformative, and self-assembled electronics open up new opportunities for robust soft deformable devices, smart robotics, prosthetics, and Internet-of-Things, and human-machine interfaces on irregular surfaces.
Collapse
Affiliation(s)
- Li Yang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Zihan Wang
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Hao Wang
- State Key Laboratory of Polymer Material Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Biqiang Jin
- State Key Laboratory of Polymer Material Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Chuizhou Meng
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Xue Chen
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Key Laboratory of Bioelectromagnetics and Neuroengineering of Hebei Province, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Runze Li
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Key Laboratory of Bioelectromagnetics and Neuroengineering of Hebei Province, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - He Wang
- State Key Laboratory of Polymer Material Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Mingyang Xin
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Zeshang Zhao
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Shijie Guo
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jinrong Wu
- State Key Laboratory of Polymer Material Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park 16802, USA
| |
Collapse
|
52
|
Nanocellulose-based sensors in medical/clinical applications: The state-of-the-art review. Carbohydr Polym 2023; 304:120509. [PMID: 36641173 DOI: 10.1016/j.carbpol.2022.120509] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022]
Abstract
In recent years, the considerable importance of healthcare and the indispensable appeal of curative issues, particularly the diagnosis of diseases, have propelled the invention of sensing platforms. With the development of nanotechnology, the integration of nanomaterials in such platforms has been much focused on, boosting their functionality in many fields. In this direction, there has been rapid growth in the utilisation of nanocellulose in sensors with medical applications. Indeed, this natural nanomaterial benefits from striking features, such as biocompatibility, cytocompatibility and low toxicity, as well as unprecedented physical and chemical properties. In this review, different classifications of nanocellulose-based sensors (biosensors, chemical and physical sensors), alongside some subcategories manufactured for health monitoring, stand out. Moreover, the types of nanocellulose and their roles in such sensors are discussed.
Collapse
|
53
|
Solhi L, Guccini V, Heise K, Solala I, Niinivaara E, Xu W, Mihhels K, Kröger M, Meng Z, Wohlert J, Tao H, Cranston ED, Kontturi E. Understanding Nanocellulose-Water Interactions: Turning a Detriment into an Asset. Chem Rev 2023; 123:1925-2015. [PMID: 36724185 PMCID: PMC9999435 DOI: 10.1021/acs.chemrev.2c00611] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Modern technology has enabled the isolation of nanocellulose from plant-based fibers, and the current trend focuses on utilizing nanocellulose in a broad range of sustainable materials applications. Water is generally seen as a detrimental component when in contact with nanocellulose-based materials, just like it is harmful for traditional cellulosic materials such as paper or cardboard. However, water is an integral component in plants, and many applications of nanocellulose already accept the presence of water or make use of it. This review gives a comprehensive account of nanocellulose-water interactions and their repercussions in all key areas of contemporary research: fundamental physical chemistry, chemical modification of nanocellulose, materials applications, and analytical methods to map the water interactions and the effect of water on a nanocellulose matrix.
Collapse
Affiliation(s)
- Laleh Solhi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Valentina Guccini
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Katja Heise
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Iina Solala
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Elina Niinivaara
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada
| | - Wenyang Xu
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Laboratory of Natural Materials Technology, Åbo Akademi University, TurkuFI-20500, Finland
| | - Karl Mihhels
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Marcel Kröger
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Zhuojun Meng
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, China
| | - Jakob Wohlert
- Wallenberg Wood Science Centre (WWSC), Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044Stockholm, Sweden
| | - Han Tao
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Emily D Cranston
- Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada.,Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British ColumbiaV6T 1Z3, Canada
| | - Eero Kontturi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| |
Collapse
|
54
|
Patel DK, Ganguly K, Dutta SD, Patil TV, Randhawa A, Lim KT. Highly stretchable, adhesive, and biocompatible hydrogel platforms of tannic acid functionalized spherical nanocellulose for strain sensors. Int J Biol Macromol 2023; 229:105-122. [PMID: 36587632 DOI: 10.1016/j.ijbiomac.2022.12.286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/16/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022]
Abstract
The development of multifunctional wearable electronic devices has received considerable attention because of their attractive applications. However, integrating multifunctional abilities into one component remains a challenge. To address this, we have developed a tannic acid-functionalized spherical nanocellulose/polyvinyl alcohol composite hydrogel using borax as a crosslinking agent for strain-sensing applications. The hydrogel demonstrates improved mechanical and recovery strengths and maintains its mechanical strength under freezing conditions. The hydrogels show ultra-stretching, adhesive, self-healing, and conductive properties, making them ideal candidates for developing strain-based wearable devices. The hydrogel exhibits good sensitivity with a 4.75 gauge factor. The cytotoxicity of the developed hydrogels was monitored with human dermal fibroblast cells by WST-8 assay in vitro. The antibacterial potential of the hydrogels was evaluated using Escherichia coli. The hydrogels demonstrate enhanced antibacterial ability than the control. Therefore, the developed multifunctional hydrogels with desirable properties are promising platforms for strain sensor devices.
Collapse
Affiliation(s)
- Dinesh K Patel
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Tejal V Patil
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Aayushi Randhawa
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
55
|
Andriukonis E, Butkevicius M, Simonis P, Ramanavicius A. Development of a Disposable Polyacrylamide Hydrogel-Based Semipermeable Membrane for Micro Ag/AgCl Reference Electrode. SENSORS (BASEL, SWITZERLAND) 2023; 23:2510. [PMID: 36904713 PMCID: PMC10007609 DOI: 10.3390/s23052510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Currently, Ag/AgCl-based reference electrodes are used in most electrochemical biosensors and other bioelectrochemical devices. However, standard reference electrodes are rather large and do not always fit within electrochemical cells designed for the determination of analytes in low-volume aliquots. Therefore, various designs and improvements in reference electrodes are critical for the future development of electrochemical biosensors and other bioelectrochemical devices. In this study, we explain a procedure to apply common laboratory polyacrylamide hydrogel in a semipermeable junction membrane between the Ag/AgCl reference electrode and the electrochemical cell. During this research, we have created disposable, easily scalable, and reproducible membranes suitable for the design of reference electrodes. Thus, we came up with castable semipermeable membranes for reference electrodes. Performed experiments highlighted the most suitable gel formation conditions to achieve optimal porosity. Here, Cl- ion diffusion through the designed polymeric junctions was evaluated. The designed reference electrode was also tested in a three-electrode flow system. The results show that home-built electrodes can compete with commercial products due to low reference electrode potential deviation (~3 mV), long shelf-life (up to six months), good stability, low cost, and disposability. The results show a high response rate, which makes in-house formed polyacrylamide gel junctions good membrane alternatives in the design of reference electrodes, especially for these applications where high-intensity dyes or toxic compounds are used and therefore disposable electrodes are required.
Collapse
Affiliation(s)
- Eivydas Andriukonis
- State Research Institute Center for Physical and Technological Sciences, Sauletekio Ave. 3, 10257 Vilnius, Lithuania
| | - Marius Butkevicius
- Department of Bioanalysis, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, 10257 Vilnius, Lithuania
| | - Povilas Simonis
- State Research Institute Center for Physical and Technological Sciences, Sauletekio Ave. 3, 10257 Vilnius, Lithuania
| | - Arunas Ramanavicius
- State Research Institute Center for Physical and Technological Sciences, Sauletekio Ave. 3, 10257 Vilnius, Lithuania
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, 03225 Vilnius, Lithuania
| |
Collapse
|
56
|
Xie Y, Gao S, Jian J, Shi X, Lai C, Wang C, Xu F, Chu F, Zhang D. Skin-mimicking strategy to fabricate strong and highly conductive anti-freezing cellulose-based hydrogels as strain sensors. Int J Biol Macromol 2023; 227:462-471. [PMID: 36521712 DOI: 10.1016/j.ijbiomac.2022.12.079] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/17/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Conductive hydrogels have attracted increasing attention for applications in wearable and flexible strain sensors. However, owing to their relatively weak strength, poor elasticity, and lack of anti-freezing ability, their applications have been limited. Herein, we present a skin-mimicking strategy to fabricate cellulose-enhanced, strong, elastic, highly conductive, and anti-freezing hydrogels. Self-assembly of cellulose to fabricate a cellulose skeleton is essential for realizing a skin-mimicking design. Furthermore, two methods, in situ polymerization and solvent replacement, were compared and investigated to incorporate conductive and anti-freezing components into hydrogels. Consequently, when the same ratio of glycerol and lithium chloride was used, the anti-freezing hydrogels prepared by in situ polymerization showed relatively higher strength (1.0 MPa), while the solvent-replaced hydrogels exhibited higher elastic recovery properties (94.6 %) and conductivity (4.5 S/m). In addition, their potential as strain sensors for monitoring human behavior was analyzed. Both hydrogels produced reliable signals and exhibited high sensitivity. This study provides a new horizon for the fabrication of strain sensors that can be applied in various environments.
Collapse
Affiliation(s)
- Yitong Xie
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; National Engineering Laboratory for Biomass Chemical Utilization; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; Key Laboratory of Biomass Energy and Material; Nanjing 210042, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shishuai Gao
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; National Engineering Laboratory for Biomass Chemical Utilization; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; Key Laboratory of Biomass Energy and Material; Nanjing 210042, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Junyu Jian
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; National Engineering Laboratory for Biomass Chemical Utilization; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; Key Laboratory of Biomass Energy and Material; Nanjing 210042, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Xiaoyu Shi
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; National Engineering Laboratory for Biomass Chemical Utilization; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; Key Laboratory of Biomass Energy and Material; Nanjing 210042, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Chenhuan Lai
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Chunpeng Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; National Engineering Laboratory for Biomass Chemical Utilization; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; Key Laboratory of Biomass Energy and Material; Nanjing 210042, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Feng Xu
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Fuxiang Chu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; National Engineering Laboratory for Biomass Chemical Utilization; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; Key Laboratory of Biomass Energy and Material; Nanjing 210042, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Daihui Zhang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; National Engineering Laboratory for Biomass Chemical Utilization; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; Key Laboratory of Biomass Energy and Material; Nanjing 210042, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| |
Collapse
|
57
|
Huang H, Dong Z, Ren X, Jia B, Li G, Zhou S, Zhao X, Wang W. High-strength hydrogels: Fabrication, reinforcement mechanisms, and applications. NANO RESEARCH 2023; 16:3475-3515. [DOI: 10.1007/s12274-022-5129-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 01/06/2025]
|
58
|
Wang Y, Yuan K, Shang Z, Tan G, Zhong Q, He Y, Miao G, Lai K, Li Y, Wang X. Construction of nanohydrogels for enhanced delivery of hydrophilic and hydrophobic drugs and improving chemotherapy efficacy. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
59
|
Wang F, Chen C, Xu Z, Shi F, Chen N. Facile preparation of PHEMA hydrogel induced via Tannic Acid-Ferric ions for wearable strain sensing. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
60
|
Zhao C, Chen Y, Guo M, Wu Y, Li Y, Xiang D, Li H, Wang L, Sun Z. Flexible, adhesive, strain‐sensitive, and skin‐matchable hydrogel strain sensors for human motion and handwritten signal monitoring. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chunxia Zhao
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application Southwest Petroleum University Chengdu China
| | - Yunxin Chen
- School of New Energy and Materials Southwest Petroleum University Chengdu China
| | - Min Guo
- School of New Energy and Materials Southwest Petroleum University Chengdu China
| | - Yuanpeng Wu
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application Southwest Petroleum University Chengdu China
| | - Yuntao Li
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- State Key Laboratory Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
| | - Dong Xiang
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application Southwest Petroleum University Chengdu China
| | - Hui Li
- School of New Energy and Materials Southwest Petroleum University Chengdu China
| | - Li Wang
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application Southwest Petroleum University Chengdu China
| | - Zhe Sun
- Shenzhen Key Laboratory of Cardiovascular Disease Fuwai Hospital Chinese Academy of Medical Sciences Shenzhen China
| |
Collapse
|
61
|
Sun Z, Hu Y, Wei C, Hao R, Hao C, Liu W, Liu H, Huang M, He S, Yang M. Transparent, photothermal and stretchable alginate-based hydrogels for remote actuation and human motion sensing. Carbohydr Polym 2022; 293:119727. [DOI: 10.1016/j.carbpol.2022.119727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022]
|
62
|
Song Y, Kim B, Park JD, Lee D. Probing metal-carboxylate interactions in cellulose nanofibrils-based hydrogels using nonlinear oscillatory rheology. Carbohydr Polym 2022; 300:120262. [DOI: 10.1016/j.carbpol.2022.120262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/29/2022] [Accepted: 10/21/2022] [Indexed: 11/28/2022]
|
63
|
High-strength amphoteric hydrogel that can realize self-repairing of cement microcracks triggered by CO2 gas. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
64
|
Lu CH, Yeh YC. Synthesis and Processing of Dynamic Covalently Crosslinked Polydextran/Carbon Dot Nanocomposite Hydrogels with Tailorable Microstructures and Properties. ACS Biomater Sci Eng 2022; 8:4289-4300. [PMID: 36075100 DOI: 10.1021/acsbiomaterials.2c00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using functionalized nanoparticles to crosslink hydrophilic polymers is a growing theme of directly constructing nanocomposite (NC) hydrogels. Employing dynamic covalent chemistry at the nanoparticle-polymer interface is particularly attractive due to the spontaneous formation and reversible manner of dynamic covalent bonds. However, the structure and property modulation of the dynamic covalently crosslinked NC hydrogels has not been thoroughly discussed. Here, we fabricated NC hydrogels by using amine-functionalized carbon dots (CDs) to crosslink polydextran aldehyde (PDA) polymers through imine bond formation. The role of PDA with different oxidation degrees (i.e., PDA10, PDA30, and PDA50) in affecting the microstructures and properties of PDA@CD hydrogels was systematically investigated, showing that the PDA50@CD hydrogel presented the densest structure and the highest mechanical strength among the three PDA@CD hydrogels. The pH-responsiveness, 3D printing, electrospinning, and biocompatibility of PDA@CD hydrogels were also demonstrated, showing the great promise of using PDA@CD hydrogels for applications in biomedicine and biofabrication.
Collapse
Affiliation(s)
- Cheng-Hsun Lu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
65
|
Zhang J, Wang Y, Wei Q, Wang Y, Li M, Li D, Zhang L. A 3D printable, highly stretchable, self-healing hydrogel-based sensor based on polyvinyl alcohol/sodium tetraborate/sodium alginate for human motion monitoring. Int J Biol Macromol 2022; 219:1216-1226. [PMID: 36058388 DOI: 10.1016/j.ijbiomac.2022.08.175] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022]
Abstract
Self-healing hydrogels have great application potential in the field of bio-sensors due to their self-healing, flexibility and excellent tensile properties. However, most hydrogel-based sensors are processed by template method, which is unable to fabricate complex three-dimensional (3D) structures, and limits the development of hydrogel-based sensor devices. A simple yet efficient one-pot method was proposed to fabricate polyvinyl alcohol/sodium tetraborate/sodium alginate hydrogel inks (SPB), also a fabricating process of self-healing hydrogel based on 3D printing technology has been proposed. The SPB hydrogel rapidly healed (<30 s) at room temperature, while its mechanical properties and conductivity also recovered quickly after healing. Besides, it could be used as wearable strain sensors, whose high stretchability (>2800 % strain) and sensitivity (gauge factor: 18.56 at 2000 % strain) could not only detect very large stretch deformations, but also detect the tiny pressure changes in the human body, such as finger flexion, knee flexion, and respiration. This study provides a method for the rapid fabrication of complex-structured hydrogel-based sensors, which is helpful for the hydrogel-based sensor applications in human motion detection and wearable devices.
Collapse
Affiliation(s)
- Juan Zhang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China; Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yanen Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China; Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Qinghua Wei
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China; Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Yanmei Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China; Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Mingyang Li
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China; Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Dinghao Li
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China; Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Longyu Zhang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China; Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
66
|
Jin X, Wang S, Sang C, Yue Y, Xu X, Mei C, Xiao H, Lou Z, Han J. Patternable Nanocellulose/Ti 3C 2T x Flexible Films with Tunable Photoresponsive and Electromagnetic Interference Shielding Performances. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35040-35052. [PMID: 35861436 DOI: 10.1021/acsami.2c11567] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanocellulose-mediated MXene composites have attracted widespread attention in the fields of sustainable energy, wearable sensors, and electromagnetic interference (EMI) shielding. However, the effects of different nanocelluloses on the multifunctional properties of nanocellulose/Ti3C2Tx composites still need further exploration. Herein, we use three types of nanocelluloses, including bacterial cellulose (BC), cellulose nanocrystals (CNCs), and 2,2,6,6-tetramethylpiperidin-1-yloxy (TEMPO)-oxidized cellulose nanofibers (TOCNs), as intercalation to link Ti3C2Tx nanosheets via a self-assembly process, improving the dispersibility, film-forming ability, mechanical properties, and multifunctional performances of nanocelluloses/Ti3C2Tx hybrids through electrostatic forces and hydrogen bonding. The optimized ultrathin (∼40 μm) TOCN/Ti3C2Tx film integrates excellent tensile strength (∼98.89 MPa), long-term stability (during deformation and water erosion), favorable photoelectric response (photosensitivity up to 2620%), and temperature response (reaching 163 °C in only 12 s). Laser-cutting patterned TOCN/Ti3C2Tx films are assembled into flexible multifunctional electronics, exhibiting splendid photoresponse performances and tunable electromagnetic energy shielding capability (>96.4%) related to the variation of water content at the film-gel electrolyte interface. Multifunctional patterned devices based on TOCN/Ti3C2Tx composite films provide a novel pathway to rationally design wearable EMI devices with photoelectric response and photothermal conversion.
Collapse
Affiliation(s)
- Xiaoyue Jin
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shaowei Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chenyu Sang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yiying Yue
- College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Xinwu Xu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Changtong Mei
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, 15 Dineen Drive, Fredericton, New Brunswick E3B 5A3, Canada
| | - Zhichao Lou
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
- College of Engineering, University of Georgia, Athens, Georgia 30605, United States
| | - Jingquan Han
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
67
|
Sun Z, Ahmad M, Wang S. Ion transport property, structural features, and applications of cellulose-based nanofluidic platforms — A review. Carbohydr Polym 2022; 289:119406. [DOI: 10.1016/j.carbpol.2022.119406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/02/2022]
|
68
|
Contemporary nanocellulose-composites: A new paradigm for sensing applications. Carbohydr Polym 2022; 298:120052. [DOI: 10.1016/j.carbpol.2022.120052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 01/21/2023]
|
69
|
Tie L, Ke Y, Gong Y, Zhang WX, Deng Z. Nanocellulose fine-tuned poly(acrylic acid) hydrogel for enhanced diclofenac removal. Int J Biol Macromol 2022; 213:1029-1036. [PMID: 35700844 DOI: 10.1016/j.ijbiomac.2022.06.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 12/22/2022]
Abstract
Hydrogel was recognized as one of the most promising materials for adsorption of pharmaceuticals and personal care products (PPCPs). The highly efficient bio-based nanocelluloses fine-tuned poly(acrylic acid) hydrogel (PAA/NC) adsorbent was constructed by adjusting aspect ratio, surface charge and crystallinity of NC. The cross-linked networks were fabricated through a single-step free-radical polymerization via steric effect and hydrogen bonds. The uniform three-dimensional structures with abundant macropores and mesopores were in-situ visualized by the cryogenic-scanning electron microscopy (Cryo-SEM). The diclofenac adsorption capacity of TEMPO oxidized cellulose nanofibers (TCNF) incorporated PAA hydrogel (PAA/TCNF, 559.8 mg·g-1) was circa 2.1 times higher than pristine PAA (293.5 mg·g-1) due to the elevated specific surface area, favorable spatial structure with unimpeded channels and abundant surface-charged carboxylic groups. Moreover, PAA/NC hydrogel exhibited a wide-pH applicability and high salinity tolerance. The adsorption was predominantly determined by hydrogen bonds, validated by XPS and FT-IR analysis. It was demonstrated developed PAA/NC hydrogel with unique porous structure significantly enhanced adsorption capacity for potential application in the purification of refractory organic pollutants-containing wastewater.
Collapse
Affiliation(s)
- Luna Tie
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinuo Ke
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yuxiu Gong
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Wei-Xian Zhang
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zilong Deng
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
70
|
Li S, Dong Q, Peng X, Chen Y, Yang H, Xu W, Zhao Y, Xiao P, Zhou Y. Self-Healing Hyaluronic Acid Nanocomposite Hydrogels with Platelet-Rich Plasma Impregnated for Skin Regeneration. ACS NANO 2022; 16:11346-11359. [PMID: 35848721 DOI: 10.1021/acsnano.2c05069] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of natural hydrogels with sufficient strength and self-healing capacity to accelerate skin wound healing is still challenging. Herein, a hyaluronic acid nanocomposite hydrogel was developed based on aldehyde-modified sodium hyaluronate (AHA), hydrazide-modified sodium hyaluronate (ADA), and aldehyde-modified cellulose nanocrystals (oxi-CNC). This hydrogel was formed in situ using dynamic acylhydrazone bonds via a double-barreled syringe. This hydrogel exhibited improved strength and excellent self-healing ability. Furthermore, platelet-rich plasma (PRP) can be loaded in the hyaluronic acid nanocomposite hydrogels (ADAC) via imine bonds formed between amino groups on PRP (e.g., fibrinogen) and aldehyde groups on AHA or oxi-CNC to promote skin wound healing synergistically. As expected, ADAC hydrogel could protect and release PRP sustainably. In animal experiments, ADAC@PRP hydrogel significantly promoted full-thickness skin wound healing through enhancing the formation of granulation tissue, facilitating collagen deposition, and accelerating re-epithelialization and neovascularization. This self-healing nanocomposite hydrogel with PRP loading appears to be a promising candidate for wound therapy.
Collapse
Affiliation(s)
- Shangzhi Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Qi Dong
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Disease, TaiKang Medical School (School of Basic Medicine Sciences), Wuhan University, Wuhan 430071, People's Republic of China
| | - Xiaotong Peng
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Yun Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Disease, TaiKang Medical School (School of Basic Medicine Sciences), Wuhan University, Wuhan 430071, People's Republic of China
| | - Hongjun Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Yanteng Zhao
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Pu Xiao
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Yingshan Zhou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, People's Republic of China
| |
Collapse
|
71
|
Huang F, Wei W, Fan Q, Li L, Zhao M, Zhou Z. Super-stretchable and adhesive cellulose Nanofiber-reinforced conductive nanocomposite hydrogel for wearable Motion-monitoring sensor. J Colloid Interface Sci 2022; 615:215-226. [DOI: 10.1016/j.jcis.2022.01.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/21/2022]
|
72
|
Chen Y, Hao Y, Mensah A, Lv P, Wei Q. Bio-inspired hydrogels with fibrous structure: A review on design and biomedical applications. BIOMATERIALS ADVANCES 2022; 136:212799. [PMID: 35929334 DOI: 10.1016/j.bioadv.2022.212799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
Numerous tissues in the human body have fibrous structures, including the extracellular matrix, muscles, and heart, which perform critical biological functions and have exceptional mechanical strength. Due to their high-water content, softness, biocompatibility and elastic nature, hydrogels resemble biological tissues. Traditional hydrogels, on the other hand, have weak mechanical properties and lack tissue-like fibrous structures, limiting their potential applications. Thus, bio-inspired hydrogels with fibrous architectures have piqued the curiosity of biomedical researchers. Here, we review fabrication strategies for fibrous hydrogels and their recent progress in the biomedical fields of wound dressings, drug delivery, tissue engineering scaffolds and bioadhesives. Challenges and future perspectives are also discussed.
Collapse
Affiliation(s)
- Yajun Chen
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Yi Hao
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Alfred Mensah
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Pengfei Lv
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Qufu Wei
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China.
| |
Collapse
|
73
|
Guo X, Li J, Wang F, Zhang J, Zhang J, Shi Y, Pan L. Application of conductive polymer hydrogels in flexible electronics. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xin Guo
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Jiean Li
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Fanyu Wang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Jia‐Han Zhang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Jing Zhang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Yi Shi
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| |
Collapse
|
74
|
Yang G, Kong H, Chen Y, Liu B, Zhu D, Guo L, Wei G. Recent advances in the hybridization of cellulose and carbon nanomaterials: Interactions, structural design, functional tailoring, and applications. Carbohydr Polym 2022; 279:118947. [PMID: 34980360 DOI: 10.1016/j.carbpol.2021.118947] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Accepted: 11/26/2021] [Indexed: 01/13/2023]
Abstract
Due to the good biocompatibility and flexibility of cellulose and the excellent optical, electronic, as well as mechanical properties of carbon nanomaterials (CNMs), cellulose/CNM hybrid materials have been widely synthesized and used in energy storage, sensors, adsorption, biomedicine, and many other fields. In this review, we present recent advances (2016-current) in the design, structural design, functional tailoring and various applications of cellulose/CNM hybrid materials. For this aim, first the interactions between cellulose and CNMs for promoting the formation of cellulose/CNM materials are analyzed, and then the hybridization between cellulose with various CNMs for tailoring the structures and functions of hybrid materials is introduced. Further, abundant applications of cellulose/CNM hybrid materials in various fields are presented and discussed. This comprehensive review will be helpful for readers to understand the functional design and facile synthesis of cellulose-based nanocomposites, and to promote the high-performance utilization and sustainability of biomass materials in the future.
Collapse
Affiliation(s)
- Guozheng Yang
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Hao Kong
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Yun Chen
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Bin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Lei Guo
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, 266071 Qingdao, PR China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China.
| |
Collapse
|
75
|
Zong S, Wen H, Lv H, Li T, Tang R, Liu L, Jiang J, Wang S, Duan J. Intelligent hydrogel with both redox and thermo-response based on cellulose nanofiber for controlled drug delivery. Carbohydr Polym 2022; 278:118943. [PMID: 34973761 DOI: 10.1016/j.carbpol.2021.118943] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 01/14/2023]
Abstract
The purpose of this study is to develop a hydrogel with temperature and redox response to control drug delivery. However, the strength of temperature sensitive N-isopropylacrylamide (NIPAM) hydrogel is weak. Therefore, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) oxidized cellulose nanofiber (CNF) is introduced to improve this problem. The compressive strength of hydrogels increased by 360% after CNF addition. Meanwhile, N,N'-bis(acryloyl)cystamine (BACy) is introduced into the hydrogels as a cross-linker, imparting redox responsive properties to the hydrogels. Tumor therapeutic drugs are used as model drugs for in vitro release studies. The drug release rate of hydrogel is regulated by temperature and reducing environment. The maximum cumulative release rate of doxorubicin (DOX) is 39.56%, and the Berberine (BBR) is 99.50% after 60 h. The swelling and transparency of hydrogels showed dramatic changes in the range of 30-40 °C. Cytotoxicity experiments demonstrated that the hydrogel had almost no cytotoxicity.
Collapse
Affiliation(s)
- Shiyu Zong
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Hankang Wen
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Hui Lv
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Tong Li
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Ruilin Tang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Liujun Liu
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jiufang Duan
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
76
|
Li G, Li C, Li G, Yu D, Song Z, Wang H, Liu X, Liu H, Liu W. Development of Conductive Hydrogels for Fabricating Flexible Strain Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2101518. [PMID: 34658130 DOI: 10.1002/smll.202101518] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Conductive hydrogels can be prepared by incorporating various conductive materials into polymeric network hydrogels. In recent years, conductive hydrogels have been developed and applied in the field of strain sensors owing to their unique properties, such as electrical conductivity, mechanical properties, self-healing, and anti-freezing properties. These remarkable properties allow conductive hydrogel-based strain sensors to show excellent performance for identifying external stimuli and detecting human body movement, even at subzero temperatures. This review summarizes the properties of conductive hydrogels and their application in the fabrication of strain sensors working in different modes. Finally, a brief prospectus for the development of conductive hydrogels in the future is provided.
Collapse
Affiliation(s)
- Gang Li
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, Shandong, 250353, China
| | - Chenglong Li
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, Shandong, 250353, China
| | - Guodong Li
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, Shandong, 250353, China
| | - Dehai Yu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, Shandong, 250353, China
| | - Zhaoping Song
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, Shandong, 250353, China
| | - Huili Wang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, Shandong, 250353, China
| | - Xiaona Liu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, Shandong, 250353, China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research, University of Jinan (iAIR), Jinan, 250022, China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Wenxia Liu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, Shandong, 250353, China
| |
Collapse
|
77
|
Guo Z, Liu W, Tang A. Stretchable, adhesive, antifreezing and 3D printable double-network hydrogel for flexible strain sensors. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
78
|
Nanocellulose-enhanced organohydrogel with high-strength, conductivity, and anti-freezing properties for wearable strain sensors. Carbohydr Polym 2022; 277:118872. [PMID: 34893277 DOI: 10.1016/j.carbpol.2021.118872] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/17/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022]
Abstract
The use of ion-conductive hydrogels in strain sensors with high mechanical properties, conductivity, and anti-freezing properties is challenging. Here, high-strength, transparent, conductive, and anti-freezing organohydrogels were fabricated through the radical polymerization of polyacrylamide (PAM)/sodium alginate (SA)/TEMPO-oxidized cellulose nanofibrils (TOCNs) in a dimethyl sulfoxide (DMSO)/water solution, followed by soaking in a CaCl2 solution. The resulting organohydrogels demonstrated a high strength (tensile strength of 1.04 MPa), stretchability (681%), transparency (>84% transmittance), and ionic conductivity (1.25 S m-1). The organohydrogel-based strain sensor showed a high strain sensitivity (GF = 2.1). In addition, due to a synergistic effect between the DMSO/H2O binary solvent and CaCl2, the organohydrogel remained flexible (could bend 180°) and conductive (1.01 S m-1) at -20 °C. Interestingly, the TOCNs exerted a reinforcing effect on both the mechanical properties and ionic conductivity. This research provides a novel strategy to prepare ion-conductive organohydrogels with good mechanical properties, conductivity, and anti-freezing properties for use as flexible electronic materials.
Collapse
|
79
|
Miao H, Hao W, Liu H, Liu Y, Fu X, Huang H, Ge M, Qian Y. Highly Flexibility, Powder Self-Healing, and Recyclable Natural Polymer Hydrogels. Gels 2022; 8:gels8020089. [PMID: 35200470 PMCID: PMC8871090 DOI: 10.3390/gels8020089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Based on the good self-healing ability to repair mechanical damage, self-healing hydrogels have aroused great interest and been extensively applied as functional materials. However, when partial failure of hydrogels caused by breaking or dryness occurs, leading to recycling problems, self-healing hydrogels cannot solve the mentioned defects and have to be abandoned. In this work, a novel recyclable and self-healing natural polymer hydrogel (Chitosan/polymethylacrylic acid-: CMA) was prepared. The CMA hydrogel not only exhibited controlled mechanical properties from 26 kPa to 125 kPa with tensile strain from 1357% to 3012%, but also had good water retaining property, stability and fast self-healing properties in 1 min. More importantly, the CMA hydrogel displayed attractive powder self-healing performance. After drying–powdering treatment, the mentioned abandoned hydrogels could easily rebuild their frame structure to recover their original state and performance in 1 min only by adding a small amount of water, which could significantly prolong their service life. These advantages guarantee the hydrogel can effectively defend against reversible mechanical damage, water loss and partial hydrogel failure, suggesting great potential applications as a recyclable functional hydrogel for biomaterials and electronic materials.
Collapse
Affiliation(s)
- Haiyue Miao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China; (H.M.); (W.H.)
- Key Laboratory of Interfacial Physics and Technology, Department of Molten Salt Chemistry and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (H.L.); (Y.L.); (M.G.)
| | - Weiju Hao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China; (H.M.); (W.H.)
| | - Hongtao Liu
- Key Laboratory of Interfacial Physics and Technology, Department of Molten Salt Chemistry and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (H.L.); (Y.L.); (M.G.)
| | - Yiyang Liu
- Key Laboratory of Interfacial Physics and Technology, Department of Molten Salt Chemistry and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (H.L.); (Y.L.); (M.G.)
| | - Xiaobin Fu
- Key Laboratory of Interfacial Physics and Technology, Department of Molten Salt Chemistry and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (H.L.); (Y.L.); (M.G.)
- Correspondence: (X.F.); (H.H.); (Y.Q.)
| | - Hailong Huang
- Key Laboratory of Interfacial Physics and Technology, Department of Molten Salt Chemistry and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (H.L.); (Y.L.); (M.G.)
- Correspondence: (X.F.); (H.H.); (Y.Q.)
| | - Min Ge
- Key Laboratory of Interfacial Physics and Technology, Department of Molten Salt Chemistry and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (H.L.); (Y.L.); (M.G.)
| | - Yuan Qian
- Key Laboratory of Interfacial Physics and Technology, Department of Molten Salt Chemistry and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (H.L.); (Y.L.); (M.G.)
- Correspondence: (X.F.); (H.H.); (Y.Q.)
| |
Collapse
|
80
|
Qin T, Liao W, Yu L, Zhu J, Wu M, Peng Q, Han L, Zeng H. Recent progress in conductive self‐healing hydrogels for flexible sensors. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tao Qin
- College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen China
| | - Wenchao Liao
- College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen China
| | - Li Yu
- College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen China
| | - Junhui Zhu
- College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen China
| | - Meng Wu
- Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada
| | - Qiongyao Peng
- Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada
| | - Linbo Han
- College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen China
- Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada
| | - Hongbo Zeng
- Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada
| |
Collapse
|
81
|
Hu S, Zhi Y, Shan S, Ni Y. Research progress of smart response composite hydrogels based on nanocellulose. Carbohydr Polym 2022; 275:118741. [PMID: 34742444 DOI: 10.1016/j.carbpol.2021.118741] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022]
Abstract
In recent years, smart-responsive nanocellulose composite hydrogels have attracted extensive attention due to their unique porous substrate, hydrophilic properties, biocompatibility and stimulus responsiveness. At present, the research on smart response nanocellulose composite hydrogel mainly focuses on the selection of composite materials and the construction of internal chemical bonds. The common composite materials and connection methods used for preparation of smart response nanocellulose composite hydrogels are compared according to the different types of response sources such as temperature, pH and so on. The response mechanisms and the application prospects of different response types of nanocellulose composite hydrogels are summarized, and the transformation of internal ions, functional groups and chemical bonds, as well as the changes in mechanical properties such as modulus and strength are discussed. Finally, the shortcomings and application prospects of nanocellulose smart response composite hydrogels are summarized and prospected.
Collapse
Affiliation(s)
- Shuai Hu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Yunfei Zhi
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China.
| | - Shaoyun Shan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China.
| | - Yonghao Ni
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China; Limerick Pulp and Paper Centre, University of New Brunswick, Fredericton E3B 5A3, Canada
| |
Collapse
|
82
|
One-pot freezing-thawing preparation of cellulose nanofibrils reinforced polyvinyl alcohol based ionic hydrogel strain sensor for human motion monitoring. Carbohydr Polym 2022; 275:118697. [PMID: 34742424 DOI: 10.1016/j.carbpol.2021.118697] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/30/2022]
Abstract
Ionic conductive hydrogels have been widely applied in sensors, energy storage and soft electronics recently. However, most of the polyvinyl alcohol (PVA) based ionic hydrogels are mainly fabricated by soaking the hydrogels in high concentration electrolyte solution which can induce the waste of electrolyte and solvent. Herein, we have designed cellulose nanofibrils (CNF) and ZnSO4 reinforced PVA based hydrogels through a one-pot simple freezing-thawing method at low ZnSO4 concentration without any soaking process. Furthermore, the hydrogel with 0.4% CNF exhibited stress up to 0.79 MPa (242% strain) and high ionic conductivity of 0.32 S m-1 (0.07 M ZnSO4). Moreover, hydrogel sensor displayed high linear gauge factor 1.70 (0-200% strain), excellent stability, durability and reliability. The integrated hydrogel sensor also showed excellent sensor performance for human motion monitoring. This work provides a new prospect for the design of cellulose reinforced conductive hydrogels via a facile method.
Collapse
|
83
|
Rahmani P, Shojaei A. A review on the features, performance and potential applications of hydrogel-based wearable strain/pressure sensors. Adv Colloid Interface Sci 2021; 298:102553. [PMID: 34768136 DOI: 10.1016/j.cis.2021.102553] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/09/2021] [Accepted: 10/23/2021] [Indexed: 01/11/2023]
Abstract
Over the past few years, development of wearable devices has gained increasing momentum. Notably, the demand for stretchable strain sensors has significantly increased due to many potential and emerging applications such as human motion monitoring, prosthetics, robotic systems, and touch panels. Recently, hydrogels have been developed to overcome the drawbacks of the elastomer-based wearable strain sensors, caused by insufficient biocompatibility, brittle mechanical properties, complicated fabrication process, as the hydrogels can provide a combination of various exciting properties such as intrinsic electrical conductivity, suitable mechanical properties, and biocompatibility. There are numerous research works reported in the literature which consider various aspects as preparation approaches, design strategies, properties control, and applications of hydrogel-based strain sensors. This article aims to present a review on this exciting topic with a new insight on the hydrogel-based wearable strain sensors in terms of their features, strain sensory performance, and prospective applications. In this respect, we first briefly review recent advances related to designing the materials and the methods for promoting hydrogels' intrinsic features. Then, strain (both tensile and pressure) sensing performance of prepared hydrogels is critically studied, and alternative approaches for their high-performance sensing are proposed. Subsequently, this review provides several promising applications of hydrogel-based strain sensors, including bioapplications and human-machine interface devices. Finally, challenges and future outlooks of conductive and stretchable hydrogels employed in the wearable strain sensors are discussed.
Collapse
|
84
|
Tie J, Chai H, Mao Z, Zhang L, Zhong Y, Sui X, Xu H. Nanocellulose-mediated transparent high strength conductive hydrogel based on in-situ formed polypyrrole nanofibrils as a multimodal sensor. Carbohydr Polym 2021; 273:118600. [PMID: 34561000 DOI: 10.1016/j.carbpol.2021.118600] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022]
Abstract
A simple method was provided to prepare a transparent, highly conductive, mechanically reinforced, stretchable, and compressible hydrogel. In this system, pyrrole (Py) monomers were gently polymerized and uniformly deposited on the surface of cellulose nanofiber (CNF) via the improved in-situ polymerization. In the opaque PPy@CNF suspension, acrylamide monomers (AM) were dissolved and radical-polymerized to construct the PPy@CNF-PAM hydrogel with the in-situ formation of PPy nanofibrils in the presence of excess ammonium persulfate (APS). The in-situ formed PPy nanofibrils were well intertwined with the CNF and PAM chains, and a highly conductive path was established and permitted visible light to pass through. The amphipathic CNF took along and dispersed PPy aggregates well, and reinforced the hydrogel after formation of PPy nanofibrils. In view of the improved mechanical compressive, stretchable properties and excellent electrical conductivity (4.5 S/m), the resulting hydrogels could serve as a potential electrical device in a range of applications.
Collapse
Affiliation(s)
- Jianfei Tie
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, People's Republic of China; Innovation Center for Textile Science and Technology of DHU, Donghua University, Shanghai 201620, People's Republic of China
| | - Hongbin Chai
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, People's Republic of China; Innovation Center for Textile Science and Technology of DHU, Donghua University, Shanghai 201620, People's Republic of China
| | - Zhiping Mao
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, People's Republic of China; Innovation Center for Textile Science and Technology of DHU, Donghua University, Shanghai 201620, People's Republic of China; National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Taian City, Shandong Province 271000, People's Republic of China.
| | - Linping Zhang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, People's Republic of China; Innovation Center for Textile Science and Technology of DHU, Donghua University, Shanghai 201620, People's Republic of China
| | - Yi Zhong
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, People's Republic of China; Innovation Center for Textile Science and Technology of DHU, Donghua University, Shanghai 201620, People's Republic of China
| | - Xiaofeng Sui
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, People's Republic of China
| | - Hong Xu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, People's Republic of China; Innovation Center for Textile Science and Technology of DHU, Donghua University, Shanghai 201620, People's Republic of China.
| |
Collapse
|
85
|
Zhang J, Wang Y, Wei Q, Wang Y, Lei M, Li M, Li D, Zhang L, Wu Y. Self-Healing Mechanism and Conductivity of the Hydrogel Flexible Sensors: A Review. Gels 2021; 7:216. [PMID: 34842713 PMCID: PMC8628684 DOI: 10.3390/gels7040216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
Sensors are devices that can capture changes in environmental parameters and convert them into electrical signals to output, which are widely used in all aspects of life. Flexible sensors, sensors made of flexible materials, not only overcome the limitations of the environment on detection devices but also expand the application of sensors in human health and biomedicine. Conductivity and flexibility are the most important parameters for flexible sensors, and hydrogels are currently considered to be an ideal matrix material due to their excellent flexibility and biocompatibility. In particular, compared with flexible sensors based on elastomers with a high modulus, the hydrogel sensor has better stretchability and can be tightly attached to the surface of objects. However, for hydrogel sensors, a poor mechanical lifetime is always an issue. To address this challenge, a self-healing hydrogel has been proposed. Currently, a large number of studies on the self-healing property have been performed, and numerous exciting results have been obtained, but there are few detailed reviews focusing on the self-healing mechanism and conductivity of hydrogel flexible sensors. This paper presents an overview of self-healing hydrogel flexible sensors, focusing on their self-healing mechanism and conductivity. Moreover, the advantages and disadvantages of different types of sensors have been summarized and discussed. Finally, the key issues and challenges for self-healing flexible sensors are also identified and discussed along with recommendations for the future.
Collapse
Affiliation(s)
- Juan Zhang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yanen Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Qinghua Wei
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yanmei Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Mingju Lei
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Mingyang Li
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Dinghao Li
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Longyu Zhang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yu Wu
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
86
|
Lu Y, Yue Y, Ding Q, Mei C, Xu X, Wu Q, Xiao H, Han J. Self-Recovery, Fatigue-Resistant, and Multifunctional Sensor Assembled by a Nanocellulose/Carbon Nanotube Nanocomplex-Mediated Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50281-50297. [PMID: 34637615 DOI: 10.1021/acsami.1c16828] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Flexible sensors have attracted great research interest due to their applications in artificial intelligence, wearable electronics, and personal health management. However, due to the inherent brittleness of common hydrogels, preparing a hydrogel-based sensor integrated with excellent flexibility, self-recovery, and antifatigue properties still remains a challenge to date. In this study, a type of physically and chemically dual-cross-linked conductive hydrogels based on 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofiber (TOCN)-carrying carbon nanotubes (CNTs) and polyacrylamide (PAAM) matrix via a facial one-pot free-radical polymerization is developed for multifunctional wearable sensing application. Inside the hierarchical gel network, TOCNs not only serve as the nanoreinforcement with a toughening effect but also efficiently assist the homogeneous distribution of CNTs in the hydrogel matrix. The optimized TOCN-CNT/PAAM hydrogel integrates high compressive (∼2.55 MPa at 60% strain) and tensile (∼0.15 MPa) strength, excellent intrinsic self-recovery property (recovery efficiency >92%), and antifatigue capacity under both cyclic stretching and pressing. The multifunctional sensors assembled by the hydrogel exhibit both high strain sensitivity (gauge factor ≈11.8 at 100-200% strain) and good pressure sensing ability over a large pressure range (0-140 kPa), which can effectively detect the subtle and large-scale human motions through repeatable and stable electrical signals even after 100 loading-unloading cycles. The comprehensive performance of the TOCN-CNT/PAAM hydrogel-based sensor is superior to those of most gel-based sensors previously reported, indicating its potential applications in multifunctional sensing devices for healthcare systems and human motion monitoring.
Collapse
Affiliation(s)
- Ya Lu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yiying Yue
- College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Qinqin Ding
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Changtong Mei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xinwu Xu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qinglin Wu
- School of Renewable Natural Resources, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Huining Xiao
- Chemical Engineering Department, New Brunswick University, Fredericton, New Brunswick E3B 5A3, Canada
| | - Jingquan Han
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
87
|
Yu Q, Zheng Z, Dong X, Cao R, Zhang S, Wu X, Zhang X. Mussel-inspired hydrogels as tough, self-adhesive and conductive bioelectronics: a review. SOFT MATTER 2021; 17:8786-8804. [PMID: 34596200 DOI: 10.1039/d1sm00997d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To overcome the wearable sensor's defects and achieve the goal of robust mechanical properties, long-term adhesion, sensitive electrical conductivity, the multifunctional hydrogels were inspired by various mussels on the base of catechol and its analogues. In this review, we review the strategies for improving the mechanical strength, adhesion, conductivity and antibacterial properties of mussel-inspired hydrogels as bioelectronics. Double network structures, nanocomposites, supramolecular block polymers and other strategies were utilized for achieving tough hydrogels to prevent tensile fractures under high deformation. Many mussel-inspired chemistries were incorporated for constructing skin-attachable hydrogel strain sensors and some strategies for controlling the oxidation of catechol were employed to achieve long-term adhesion. In addition, electrolytes, conductive fillers, conductive polymers and their relevant hydrophilic modifications were introduced for fabricating the conductive hydrogel bioelectronics to enhance the conductivity properties. Finally, the challenges and outlooks in this promising field are featured from the perspective of materials chemistry.
Collapse
Affiliation(s)
- Qin Yu
- South China University of Technology, Chemistry and Chemical Engineering, Guangzhou, 510006, China
- Northeast Petroleum University, Chemistry and Chemical Engineering, Daqing, 163318, China
| | - Zirong Zheng
- Northeast Petroleum University, Chemistry and Chemical Engineering, Daqing, 163318, China
| | - Xinhao Dong
- Northeast Petroleum University, Chemistry and Chemical Engineering, Daqing, 163318, China
| | - Rui Cao
- Northeast Petroleum University, Chemistry and Chemical Engineering, Daqing, 163318, China
| | - Shuheng Zhang
- Northeast Petroleum University, Chemistry and Chemical Engineering, Daqing, 163318, China
| | - Xiaolin Wu
- Daqing Research Institute of Exploration and Development, Daqing Oilfield Co., Ltd, 163318, China
| | - Xinya Zhang
- South China University of Technology, Chemistry and Chemical Engineering, Guangzhou, 510006, China
| |
Collapse
|
88
|
Sharma AK, Priya, Kaith BS, Bhagya Shree, Simran, Saiyam. Borax mediated synthesis of a biocompatible self-healing hydrogel using dialdehyde carboxymethyl cellulose-dextrin and gelatin. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104977] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
89
|
Zheng H, Lin N, He Y, Zuo B. Self-Healing, Self-Adhesive Silk Fibroin Conductive Hydrogel as a Flexible Strain Sensor. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40013-40031. [PMID: 34375080 DOI: 10.1021/acsami.1c08395] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Flexible and wearable hydrogel strain sensors have attracted tremendous attention for applications in human motion and physiological signal monitoring. However, it is still a great challenge to develop a hydrogel strain sensor with certain mechanical properties and tensile deformation capabilities, which can be in conformal contact with the target organ and also have self-healing properties, self-adhesive capability, biocompatibility, antibacterial properties, high strain sensitivity, and stable electrical performance. In this paper, an ionic conductive hydrogel (named PBST) is rationally designed by proportionally mixing polyvinyl alcohol (PVA), borax, silk fibroin (SF), and tannic acid (TA). SF can not only be a reinforcement to introduce an energy dissipation mechanism into the dynamically cross-linked hydrogel network to stabilize the non-Newtonian behavior of PVA and borax but it can also act as a cross-linking agent to combine with TA to reduce the dissociation of TA on the hydrogel network, improving the mechanical properties and viscoelasticity of the hydrogel. The combination of SF and TA can improve the self-healing ability of the hydrogel and realize the adjustable viscoelasticity of the hydrogel without sacrificing other properties. The obtained hydrogel has excellent stretchability (strain > 1000%) and shows good conformal contact with human skin. When the hydrogel is damaged by external strain, it can rapidly self-repair (mechanical and electrical properties) without external stimuli. It shows adhesiveness and repeatable adhesiveness to different materials (steel, wood, PTFE, glass, iron, and cotton fabric) and biological tissues (pigskin) and is easy to peel off without residue. The obtained PBST conductive hydrogel also has a wide strain-sensing range (>650%) and reliable stability. The hydrogel adhered to the skin surface can monitor large strain movements such as in finger joints, wrist joints, knee joints, and so on and detect swallowing, smiling, facial bulging and calming, and other micro-deformation behaviors. It can also distinguish physical signals such as light smile, big laugh, fast and slow breathing, and deep and shallow breathing. Therefore, the PBST conductive hydrogel material with multiple synergistic functions has great potential as a flexible wearable strain sensor. The PBST hydrogel has antibacterial properties and good biocompatibility at the same time, which provides a safety guarantee for it as a flexible wearable strain sensor. This work is expected to provide a new way for people to develop ideal wearable strain sensors.
Collapse
Affiliation(s)
- Haiyan Zheng
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215100, China
| | - Nan Lin
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215100, China
| | - Yanyi He
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215100, China
| | - Baoqi Zuo
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215100, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| |
Collapse
|
90
|
Peymanfar R, Selseleh-Zakerin E, Ahmadi A, Saeidi A, Tavassoli SH. Preparation of self-healing hydrogel toward improving electromagnetic interference shielding and energy efficiency. Sci Rep 2021; 11:16161. [PMID: 34373565 PMCID: PMC8352865 DOI: 10.1038/s41598-021-95683-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
In this study, a self-healing hydrogel was prepared that is transparent to visible (Vis) light while absorbing ultraviolet (UV), infrared (IR), and microwave. The optothermal features of the hydrogel were explored by monitoring temperature using an IR thermometer under an IR source. The hydrogel was synthesized using sodium tetraborate decahydrate (borax) and polyvinyl alcohol (PVA) as raw materials based on a facile thermal route. More significantly, graphene oxide (GO) and graphite-like carbon nitride (g-C3N4) nanostructures as well as carbon microsphere (CMS) were applied as guests to more dissect their influence on the microwave and optical characteristics. The morphology of the fillers was evaluated using field emission scanning electron microscopy (FE-SEM). Fourier transform infrared (FTIR) attested that the chemical functional groups of the hydrogel have been formed and the result of diffuse reflection spectroscopy (DRS) confirmed that the hydrogel absorbs UV while is transparent in Vis light. The achieved result implied that the hydrogel acts as an essential IR absorber due to its functional groups desirable for energy efficiency and harvesting. Interestingly, the achieved results have testified that the self-healing hydrogels had the proper self-healing efficiency and self-healing time. Eventually, microwave absorbing properties and shielding efficiency of the hydrogel, hydrogel/GO, g-C3N4, or CMS were investigated, demonstrating the salient microwave characteristics, originated from the established ionic conductive networks and dipole polarizations. The efficient bandwidth of the hydrogel was as wide as 3.5 GHz with a thickness of 0.65 mm meanwhile its maximum reflection loss was 75.10 dB at 14.50 GHz with 4.55 mm in thickness. Particularly, the hydrogel illustrated total shielding efficiency (SET) > 10 dB from 1.19 to 18 and > 20 dB from 4.37 to 18 GHz with 10.00 mm in thickness. The results open new windows toward improving the shielding and energy efficiency using practical ways.
Collapse
Affiliation(s)
- Reza Peymanfar
- Laser and Plasma Research Institute, Shahid Beheshti University, G. C., Evin, 19839, Tehran, Iran.
- Department of Chemical Engineering, Energy Institute of Higher Education, Saveh, Iran.
| | - Elnaz Selseleh-Zakerin
- Department of Polymer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Ahmadi
- Department of Chemical Engineering, Energy Institute of Higher Education, Saveh, Iran
| | - Ardeshir Saeidi
- Department of Polymer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Hassan Tavassoli
- Laser and Plasma Research Institute, Shahid Beheshti University, G. C., Evin, 19839, Tehran, Iran.
| |
Collapse
|
91
|
Heidarian P, Kaynak A, Paulino M, Zolfagharian A, Varley RJ, Kouzani AZ. Dynamic nanocellulose hydrogels: Recent advancements and future outlook. Carbohydr Polym 2021; 270:118357. [PMID: 34364602 DOI: 10.1016/j.carbpol.2021.118357] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/25/2021] [Accepted: 06/15/2021] [Indexed: 12/15/2022]
Abstract
Nanocellulose is of great interest in material science nowadays mainly because of its hydrophilic, renewable, biodegradable, and biocompatible nature, as well as its excellent mechanical strength and tailorable surface ready for modification. Currently, nanocellulose is attracting attention to overcome the current challenges of dynamic hydrogels: robustness, autonomous self-healing, and self-recovery (SELF) properties simultaneously occurring in one system. In this regard, this review aims to explore current advances in design and fabrication of dynamic nanocellulose hydrogels and elucidate how incorporating nanocellulose with dynamic motifs simultaneously improves both SELF and robustness of hydrogels. Finally, current challenges and prospects of dynamic nanocellulose hydrogels are discussed.
Collapse
Affiliation(s)
- Pejman Heidarian
- School of Engineering, Deakin University, Geelong, Victoria 3216, Australia
| | - Akif Kaynak
- School of Engineering, Deakin University, Geelong, Victoria 3216, Australia
| | - Mariana Paulino
- School of Engineering, Deakin University, Geelong, Victoria 3216, Australia
| | - Ali Zolfagharian
- School of Engineering, Deakin University, Geelong, Victoria 3216, Australia
| | - Russell J Varley
- Carbon Nexus at the Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Abbas Z Kouzani
- School of Engineering, Deakin University, Geelong, Victoria 3216, Australia.
| |
Collapse
|
92
|
Xiong J, Gong Z, Ding J, Chen Y. A conductive rubber with self‐healing ability enabled by metal‐ligand coordination. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jianxiang Xiong
- Lab of Advanced Elastomer South China University of Technology Guangzhou China
| | - Zhou Gong
- Lab of Advanced Elastomer South China University of Technology Guangzhou China
| | - Jianping Ding
- College of Material Science and Engineering South China University of Technology Guangzhou China
| | - Yukun Chen
- Lab of Advanced Elastomer South China University of Technology Guangzhou China
| |
Collapse
|
93
|
Ma C, Pang H, Liu H, Yan Q, Li J, Zhang S. A tough, adhesive, self-healable, and antibacterial plant-inspired hydrogel based on pyrogallol-borax dynamic cross-linking. J Mater Chem B 2021; 9:4230-4240. [PMID: 33998631 DOI: 10.1039/d1tb00763g] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Multifunctional hydrogels that integrate stretchability, adhesion, self-healing, and antibacterial properties may find use in a variety of fields including electronic skin, wound dressings, and wearable devices; however, traditional hydrogels often exhibit short-term adhesiveness, poor mechanical properties, and a lack of antibacterial activity. Herein, a plant-inspired polyacrylamide-soybean protein isolate-pyrogallol/borax (PAM-SPI-P/B) hydrogel has been developed using a facile green method based on dynamic coordination cross-linking between pyrogallol (PG) and borax. The PG-borax dynamic bonds adjusted the network structure of the hydrogels to provide greater structural integrity to the PAM-SPI double network. This hydrogel possessed a high mechanical strength (large elongation up to 760% and compressive strength up to 1.25 MPa at 80% strain), low swelling ratio, and self-healing properties. Inspired by natural polyphenols that contain adhesive molecules, the addition of pyrogallol provided the hydrogel excellent adhesion to various hydrophilic and hydrophobic substrates. And with the inhibition of pyrogallol autoxidation due to the borax protection, the hydrogel showed repeatable and durable adhesion over 20 cycles. The obtained hydrogels also exhibited good antibacterial activities against Escherichia coli and Staphylococcus aureus because they were based on pyrogallol and borax, which have antibacterial properties. Accordingly, we envision that the PAM-SPI-P/B hydrogels have great potential for use in biomimetic tissues and biosensors.
Collapse
Affiliation(s)
- Chao Ma
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, P. R. China. and MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, P. R. China
| | - Huiwen Pang
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, P. R. China. and MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, P. R. China
| | - Hongguang Liu
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, P. R. China. and MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, P. R. China
| | - Qian Yan
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, P. R. China. and MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, P. R. China
| | - Jianzhang Li
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, P. R. China. and MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, P. R. China
| | - Shifeng Zhang
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, P. R. China. and MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, P. R. China
| |
Collapse
|
94
|
Arndt C, Hauck M, Wacker I, Zeller-Plumhoff B, Rasch F, Taale M, Nia AS, Feng X, Adelung R, Schröder RR, Schütt F, Selhuber-Unkel C. Microengineered Hollow Graphene Tube Systems Generate Conductive Hydrogels with Extremely Low Filler Concentration. NANO LETTERS 2021; 21:3690-3697. [PMID: 33724848 PMCID: PMC8155331 DOI: 10.1021/acs.nanolett.0c04375] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/11/2021] [Indexed: 05/05/2023]
Abstract
The fabrication of electrically conductive hydrogels is challenging as the introduction of an electrically conductive filler often changes mechanical hydrogel matrix properties. Here, we present an approach for the preparation of hydrogel composites with outstanding electrical conductivity at extremely low filler loadings (0.34 S m-1, 0.16 vol %). Exfoliated graphene and polyacrylamide are microengineered to 3D composites such that conductive graphene pathways pervade the hydrogel matrix similar to an artificial nervous system. This makes it possible to combine both the exceptional conductivity of exfoliated graphene and the adaptable mechanical properties of polyacrylamide. The demonstrated approach is highly versatile regarding porosity, filler material, as well as hydrogel system. The important difference to other approaches is that we keep the original properties of the matrix, while ensuring conductivity through graphene-coated microchannels. This novel approach of generating conductive hydrogels is very promising, with particular applications in the fields of bioelectronics and biohybrid robotics.
Collapse
Affiliation(s)
- Christine Arndt
- Biocompatible
Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
- Institute
for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Margarethe Hauck
- Functional
Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Irene Wacker
- Cryo
Electron Microscopy, Centre for Advanced Materials (CAM), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Berit Zeller-Plumhoff
- Institute
of Metallic Biomaterials, Helmholtz-Zentrum
Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Florian Rasch
- Functional
Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Mohammadreza Taale
- Institute
for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Ali Shaygan Nia
- Department
of Chemistry and Food Chemistry, Center for Advancing Electronics
Dresden (cfaed), Technische Universität
Dresden, 01062 Dresden, Germany
| | - Xinliang Feng
- Department
of Chemistry and Food Chemistry, Center for Advancing Electronics
Dresden (cfaed), Technische Universität
Dresden, 01062 Dresden, Germany
| | - Rainer Adelung
- Functional
Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Rasmus R. Schröder
- Cryo
Electron Microscopy, Centre for Advanced Materials (CAM), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Fabian Schütt
- Functional
Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Christine Selhuber-Unkel
- Institute
for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
- Max
Planck School Matter to Life, Jahnstraße 29, 69120 Heidelberg, Germany
| |
Collapse
|
95
|
Zhang Q, Pan S, Ji C, Song J, Zhang R, Zhang W, Sang S. A shapeable, ultra-stretchable rubber strain sensor based on carbon nanotubes and Ag flakes via melt-mixing process. J Mater Chem B 2021; 9:3502-3508. [PMID: 33909735 DOI: 10.1039/d1tb00199j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Promoting the detection range, durability, and shapeable manufacturing of flexible strain sensors is essential to broaden their applications. Therefore, in this study, styrene ethylene butylene styrene (SEBS) rubber as a flexible material and a melt-mixing molding method are adopted to design an ultra-flexible strain sensor. Carbon nanotubes (CNTs) are added to form a conductive network, and the effect of Ag flakes on improving the sensor performance is studied. The experiment results exhibit good strain-resistance dependent characteristics of the obtained sensor, which demonstrates an excellent sensing range of about 540% with a gauge factor (GF) of 5.197. The good hydrophobicity (water contact angle ≈120.4°), repeatable characteristics at different rates, strain-dependence and long-term recycling of the sensor are demonstrated as well. Finally, the fabricated round bracelet sensor is applied to detect different cross-sections, the movement of human joints, balloon inflation, bottle cap sealing and numerous other aspects.
Collapse
Affiliation(s)
- Qiang Zhang
- MicroNano System Research Center, College of Information and Computer & Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, 030024, China.
| | | | | | | | | | | | | |
Collapse
|
96
|
Jiao Y, Lu Y, Lu K, Yue Y, Xu X, Xiao H, Li J, Han J. Highly stretchable and self-healing cellulose nanofiber-mediated conductive hydrogel towards strain sensing application. J Colloid Interface Sci 2021; 597:171-181. [PMID: 33866209 DOI: 10.1016/j.jcis.2021.04.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/08/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022]
Abstract
HYPOTHESIS Hydrogel-based sensors have attracted considerable attention due to potential opportunities in human health monitoring when both mechanical flexibility and sensing ability are required. Therefore, the integration of excellent mechanical properties, electrical conductivity and self-healing properties into hydrogels may improve the application range and durability of hydrogel-based sensors. EXPERIMENTS A novel composite hydrogel composed of polyaniline (PANI), polyacrylic acid (PAA) and 2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO)-oxidized cellulose nanofibrils (TOCNFs) was designed. The viscoelastic, mechanical, conductive, self-healing and sensing properties of hydrogels were studied. FINDINGS The TOCNF/PANI/PAA hydrogel exhibits a fracture strain of 982%, tensile strength of 74.98 kPa and electrical conductivity of 3.95 S m-1, as well as good mechanical and electrical self-healing properties within 6 h at ambient temperature without applying any stimuli. Furthermore, owing to the high sensitivity of the TOCNF/PANI/PAA-0.6 hydrogel-based strain sensor (gauge factor, GF = 8.0), the sensor can accurately and rapidly detect large-scale motion and subtle localized activity. The proposed composite hydrogel is as a promising material for use as soft wearable sensors for health monitoring and smart robotics applications.
Collapse
Affiliation(s)
- Yue Jiao
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Ya Lu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Kaiyue Lu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yiying Yue
- Biology and Environment College, Nanjing Forestry University, Nanjing 210037, China
| | - Xinwu Xu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Chemical Engineering Department, New Brunswick University, Fredericton, New Brunswick E3B 5A3, Canada
| | - Jian Li
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Jingquan Han
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
97
|
A Stretchable, Self-Healable Triboelectric Nanogenerator as Electronic Skin for Energy Harvesting and Tactile Sensing. MATERIALS 2021; 14:ma14071689. [PMID: 33808195 PMCID: PMC8036526 DOI: 10.3390/ma14071689] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 01/23/2023]
Abstract
Electronic skin that is deformable, self-healable, and self-powered has high competitiveness for next-generation energy/sense/robotic applications. Herein, we fabricated a stretchable, self-healable triboelectric nanogenerator (SH-TENG) as electronic skin for energy harvesting and tactile sensing. The elongation of SH-TENG can achieve 800% (uniaxial strain) and the SH-TENG can self-heal within 2.5 min. The SH-TENG is based on the single-electrode mode, which is constructed from ion hydrogels with an area of 2 cm × 3 cm, the output of short-circuit transferred charge (Qsc), open-circuit voltage (Voc), and short-circuit current (Isc) reaches ~6 nC, ~22 V, and ~400 nA, and the corresponding output power density is ~2.9 μW × cm−2 when the matching resistance was ~140 MΩ. As a biomechanical energy harvesting device, the SH-TENG also can drive red light-emitting diodes (LEDs) bulbs. Meanwhile, SH-TENG has shown good sensitivity to low-frequency human touch and can be used as an artificial electronic skin for touch/pressure sensing. This work provides a suitable candidate for the material selection of the hydrogel-based self-powered electronic skin.
Collapse
|
98
|
Shi YF, Jiang YP, Sun PP, Wang K, Zhang ZQ, Zhu NJ, Guo R, Zhang YY, Wang XZ, Liu YY, Huo JZ, Wang XR, Ding B. Solvothermal preparation of luminescent zinc(II) and cadmium(II) coordination complexes based on the new bi-functional building block and photo-luminescent sensing for Cu 2+, Al 3+ and L-lysine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119214. [PMID: 33257240 DOI: 10.1016/j.saa.2020.119214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
In industry, over usage of Cu2+ and Al3+ will lead to toxic wastewater, which further to give serious pollution for the environment. On the other hand, L-lysine can enhance serotonin release in the amygdala, with subsequent changes in psychobehavioral responses to stress. Therefore it is the urgent problem to design a method for detecting the amount of Cu2+, Al3+, and L-lysine. In this work, through the solvothermal synthesis method, two new coordination complexes based on the new bifunctional building block 4'-(1H-1,2,4-triazole-1-yl)- [1,1'-biphenyl]-4-carboxylic acid (HL) have been synthesized, namely, [Zn(L)2·4H2O] (complex 1) and [Cd(L)2·4H2O] (complex 2). X-ray single-crystal diffractometer was used to analyze its structure, powder X-ray diffraction (PXRD) patterns confirmed that 1 and 2 powder's purity and 1 can keep stable during the detection process of Cu2+, Al3+, and L-lysine, respectively. Elemental analysis, thermogravimetric analysis, infrared analysis, ultraviolet analysis and fluorescent spectrum have been used to characterize these complexes. The photo-luminescent test showed that 1 can accurately recognize Al3+ and Cu2+ among various cations. On the other hand, 1 can distinguish L-lysine among amino acid molecules. Therefore, 1 can be utilized as a multifunctional fluorescent probe for Al3+(Ksv = 1.5570 × 104 [M]-1), Cu2+(Ksv = 1.4948 × 104 [M]-1) and L-lysine (Ksv = 4.9118 × 104 [M]-1) with low detection limits (17.5 μM, 18.2 μM, 5.6 μM) respectively.
Collapse
Affiliation(s)
- Yang Fan Shi
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Yu Peng Jiang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Ping Ping Sun
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Kuo Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Zi Qing Zhang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Na Jia Zhu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Rui Guo
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Yi Yun Zhang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Xing Ze Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Yuan Yuan Liu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Jian Zhong Huo
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Xin Rui Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| | - Bin Ding
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
99
|
Cellulose nanocrystal reinforced conductive nanocomposite hydrogel with fast self-healing and self-adhesive properties for human motion sensing. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126076] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
100
|
Cellulose nanocomposite modified conductive self-healing hydrogel with enhanced mechanical property. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110258] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|