51
|
Affiliation(s)
- Oana-Diana Persa
- Department of Dermatology, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Carien M Niessen
- Department of Dermatology, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
52
|
Yin N, Liu Y, Khoor A, Wang X, Thompson EA, Leitges M, Justilien V, Weems C, Murray NR, Fields AP. Protein Kinase Cι and Wnt/β-Catenin Signaling: Alternative Pathways to Kras/Trp53-Driven Lung Adenocarcinoma. Cancer Cell 2019; 36:156-167.e7. [PMID: 31378680 PMCID: PMC6693680 DOI: 10.1016/j.ccell.2019.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/19/2019] [Accepted: 07/02/2019] [Indexed: 11/19/2022]
Abstract
We report that mouse LSL-KrasG12D;Trp53fl/fl (KP)-mediated lung adenocarcinoma (LADC) tumorigenesis can proceed through both PKCι-dependent and PKCι-independent pathways. The predominant pathway involves PKCι-dependent transformation of bronchoalveolar stem cells (BASCs). However, KP mice harboring conditional knock out Prkci alleles (KPI mice) develop LADC tumors through PKCι-independent transformation of Axin2+ alveolar type 2 (AT2) stem cells. Transformed growth of KPI, but not KP, tumors is blocked by Wnt pathway inhibition in vitro and in vivo. Furthermore, a KPI-derived genomic signature predicts sensitivity of human LADC cells to Wnt inhibition, and identifies a distinct subset of primary LADC tumors exhibiting a KPI-like genotype. Thus, LADC can develop through both PKCι-dependent and PKCι-independent pathways, resulting in tumors exhibiting distinct oncogenic signaling and pharmacologic vulnerabilities.
Collapse
MESH Headings
- Adenocarcinoma of Lung/drug therapy
- Adenocarcinoma of Lung/enzymology
- Adenocarcinoma of Lung/genetics
- Adenocarcinoma of Lung/pathology
- Alveolar Epithelial Cells/metabolism
- Alveolar Epithelial Cells/pathology
- Animals
- Antineoplastic Agents/pharmacology
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Female
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- Genes, ras
- Humans
- Isoenzymes/deficiency
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Lung Neoplasms/drug therapy
- Lung Neoplasms/enzymology
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Protein Kinase C/deficiency
- Protein Kinase C/genetics
- Protein Kinase C/metabolism
- Protein Kinase Inhibitors/pharmacology
- Tumor Burden
- Tumor Cells, Cultured
- Tumor Suppressor Protein p53/antagonists & inhibitors
- Tumor Suppressor Protein p53/deficiency
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Wnt Signaling Pathway
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Ning Yin
- Department of Cancer Biology, Mayo Clinic Florida, 4500 San Pablo Road, Griffin Cancer Research Building, Room 212, Jacksonville, FL 32224, USA
| | - Yi Liu
- Department of Cancer Biology, Mayo Clinic Florida, 4500 San Pablo Road, Griffin Cancer Research Building, Room 212, Jacksonville, FL 32224, USA
| | - Andras Khoor
- Department of Pathology, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Xue Wang
- Department of Health Sciences Research, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - E Aubrey Thompson
- Department of Cancer Biology, Mayo Clinic Florida, 4500 San Pablo Road, Griffin Cancer Research Building, Room 212, Jacksonville, FL 32224, USA
| | - Michael Leitges
- Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Verline Justilien
- Department of Cancer Biology, Mayo Clinic Florida, 4500 San Pablo Road, Griffin Cancer Research Building, Room 212, Jacksonville, FL 32224, USA
| | - Capella Weems
- Department of Cancer Biology, Mayo Clinic Florida, 4500 San Pablo Road, Griffin Cancer Research Building, Room 212, Jacksonville, FL 32224, USA
| | - Nicole R Murray
- Department of Cancer Biology, Mayo Clinic Florida, 4500 San Pablo Road, Griffin Cancer Research Building, Room 212, Jacksonville, FL 32224, USA
| | - Alan P Fields
- Department of Cancer Biology, Mayo Clinic Florida, 4500 San Pablo Road, Griffin Cancer Research Building, Room 212, Jacksonville, FL 32224, USA.
| |
Collapse
|
53
|
Najafi M, Mortezaee K, Ahadi R. Cancer stem cell (a)symmetry & plasticity: Tumorigenesis and therapy relevance. Life Sci 2019; 231:116520. [DOI: 10.1016/j.lfs.2019.05.076] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 12/17/2022]
|
54
|
Xu W, Li J, Li L, Hou T, Cai X, Liu T, Yang X, Wei H, Jiang C, Xiao J. FOXD3 Suppresses Tumor-Initiating Features in Lung Cancer via Transcriptional Repression of WDR5. Stem Cells 2019; 37:582-592. [PMID: 30703266 DOI: 10.1002/stem.2984] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/13/2018] [Accepted: 12/19/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Wei Xu
- Department of Orthopedic Oncology; Changzheng Hospital, Second Military Medical University; Shanghai People's Republic of China
| | - Jialin Li
- Department of Orthopedic Oncology; Changzheng Hospital, Second Military Medical University; Shanghai People's Republic of China
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences; East China Normal University; Shanghai People's Republic of China
| | - Tianhui Hou
- Department of Orthopedic Oncology; Changzheng Hospital, Second Military Medical University; Shanghai People's Republic of China
- The School of Sports and Health; East China Normal University; Shanghai People's Republic of China
| | - Xiaopan Cai
- Department of Orthopedic Oncology; Changzheng Hospital, Second Military Medical University; Shanghai People's Republic of China
| | - Tielong Liu
- Department of Orthopedic Oncology; Changzheng Hospital, Second Military Medical University; Shanghai People's Republic of China
| | - Xinghai Yang
- Department of Orthopedic Oncology; Changzheng Hospital, Second Military Medical University; Shanghai People's Republic of China
| | - Haifeng Wei
- Department of Orthopedic Oncology; Changzheng Hospital, Second Military Medical University; Shanghai People's Republic of China
| | - Cong Jiang
- Department of Orthopedic Oncology; Changzheng Hospital, Second Military Medical University; Shanghai People's Republic of China
| | - Jianru Xiao
- Department of Orthopedic Oncology; Changzheng Hospital, Second Military Medical University; Shanghai People's Republic of China
| |
Collapse
|
55
|
Notch3 Targeting: A Novel Weapon against Ovarian Cancer Stem Cells. Stem Cells Int 2019; 2019:6264931. [PMID: 30723507 PMCID: PMC6339748 DOI: 10.1155/2019/6264931] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/09/2018] [Indexed: 12/14/2022] Open
Abstract
Notch signaling is frequently activated in ovarian cancer (OC) and contributes to the proliferation and survival of cultured OC cells as well as to tumor formation and angiogenesis in xenograft models. Several studies demonstrate that Notch3 expression renders cancer cells more resistant to carboplatin, contributing to chemoresistance and poor survival of OC-bearing patients. This suggests that Notch3 can represent both a biomarker and a target for therapeutic interventions in OC patients. Although it is still unclear how chemoresistance arises, different lines of evidence support a critical role of cancer stem cells (CSCs), suggesting that CSC targeting by innovative therapeutic approaches might represent a promising tool to efficiently reduce OC recurrence. To date, CSC-directed therapies in OC tumors are mainly targeted to the inhibition of CSC-related signaling pathways, including Notch. As it is increasingly evident the involvement of Notch signaling, and in particular of Notch3, in regulating stem-like cell maintenance and expansion in several tumors, here we provide an overview of the current knowledge of Notch3 role in CSC-mediated OC chemoresistance, finally exploring the potential design of innovative Notch3 inhibition-based therapies for OC treatment, aimed at eradicating tumor through the suppression of CSCs.
Collapse
|
56
|
Abstract
Protein kinase C (PKC) isozymes belong to a family of Ser/Thr kinases whose activity is governed by reversible release of an autoinhibitory pseudosubstrate. For conventional and novel isozymes, this is effected by binding the lipid second messenger, diacylglycerol, but for atypical PKC isozymes, this is effected by binding protein scaffolds. PKC shot into the limelight following the discovery in the 1980s that the diacylglycerol-sensitive isozymes are "receptors" for the potent tumor-promoting phorbol esters. This set in place a concept that PKC isozymes are oncoproteins. Yet three decades of cancer clinical trials targeting PKC with inhibitors failed and, in some cases, worsened patient outcome. Emerging evidence from cancer-associated mutations and protein expression levels provide a reason: PKC isozymes generally function as tumor suppressors and their activity should be restored, not inhibited, in cancer therapies. And whereas not enough activity is associated with cancer, variants with enhanced activity are associated with degenerative diseases such as Alzheimer's disease. This review describes the tightly controlled mechanisms that ensure PKC activity is perfectly balanced and what happens when these controls are deregulated. PKC isozymes serve as a paradigm for the wisdom of Confucius: "to go beyond is as wrong as to fall short."
Collapse
Affiliation(s)
- Alexandra C Newton
- a Department of Pharmacology , University of California at San Diego , La Jolla , CA , USA
| |
Collapse
|
57
|
Kajimoto T, Caliman AD, Tobias IS, Okada T, Pilo CA, Van AAN, Andrew McCammon J, Nakamura SI, Newton AC. Activation of atypical protein kinase C by sphingosine 1-phosphate revealed by an aPKC-specific activity reporter. Sci Signal 2019; 12:eaat6662. [PMID: 30600259 PMCID: PMC6657501 DOI: 10.1126/scisignal.aat6662] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Atypical protein kinase C (aPKC) isozymes are unique in the PKC superfamily in that they are not regulated by the lipid second messenger diacylglycerol, which has led to speculation about whether a different second messenger acutely controls their function. Here, using a genetically encoded reporter that we designed, aPKC-specific C kinase activity reporter (aCKAR), we found that the lipid mediator sphingosine 1-phosphate (S1P) promoted the cellular activity of aPKC. Intracellular S1P directly bound to the purified kinase domain of aPKC and relieved autoinhibitory constraints, thereby activating the kinase. In silico studies identified potential binding sites on the kinase domain, one of which was validated biochemically. In HeLa cells, S1P-dependent activation of aPKC suppressed apoptosis. Together, our findings identify a previously undescribed molecular mechanism of aPKC regulation, a molecular target for S1P in cell survival regulation, and a tool to further explore the biochemical and biological functions of aPKC.
Collapse
Affiliation(s)
- Taketoshi Kajimoto
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92037, USA.
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Alisha D Caliman
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92037, USA
| | - Irene S Tobias
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92037, USA
| | - Taro Okada
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Caila A Pilo
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92037, USA
| | - An-Angela N Van
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92037, USA
| | - J Andrew McCammon
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92037, USA
| | - Shun-Ichi Nakamura
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Alexandra C Newton
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
58
|
Prognostic impact of microscopic vessel invasion and visceral pleural invasion and their correlations with epithelial-mesenchymal transition, cancer stemness, and treatment failure in lung adenocarcinoma. Lung Cancer 2018; 128:13-19. [PMID: 30642445 DOI: 10.1016/j.lungcan.2018.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Microscopic vessel invasion (MVI) and visceral pleural invasion (VPI) have been recently reported as poor prognostic factors of non-small cell lung cancer. Epithelial-mesenchymal transition (EMT) and cancer stemness (CS) are known malignant phenotypes that induce resistance to cancer therapy. We aimed to assess the prognostic significance of MVI and the correlations among VPI/MVI, EMT, CS, and treatment failure for recurrent tumor. MATERIALS AND METHODS From 2002 to 2013, 1034 consecutive patients with pathological T1-4N0-2M0 lung adenocarcinoma underwent complete resection. Moreover, we established 206 tissue microarray (TMA) samples from 2002 to 2007. We then evaluated the prognostic impact of MVI, including conventional clinicopathological factors, and analyzed the VPI/MVI, EMT, CS, and treatment failure by TMA immunohistochemical staining. RESULTS Among the 1034 cases, the proportion of patients with a 5-year overall survival (OS) period was 63.9% and 88.2% (MVI: +/-; p < .001). Multivariate analysis revealed that both MVI and VPI were independent predictors of OS (HR 1.57 and 1.47, respectively). Significant separation of the OS rate curves was observed among the 3 groups [VPI/MVI: both positive (2), either positive (1), and both negative (0)]. Among the 206 TMA cases, these 3 groups of VPI/MVI were significantly correlated with EMT and CS. The median time to progression after recurrence were 3.8, 8.9, and 15.9 months, respectively (VPI/MVI: 2/1/0; p = 0.016). CONCLUSION MVI and VPI are significant prognostic factors of lung cancer, and they are correlated with EMT, CS, and treatment failure for recurrent tumor.
Collapse
|
59
|
Rosell R, Karachaliou N, Codony-Servat C, Ito M. Inhibition of MEK, a canonical KRAS pathway effector in KRAS mutant NSCLC. Transl Lung Cancer Res 2018; 7:S183-S186. [PMID: 30393596 DOI: 10.21037/tlcr.2018.03.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rafael Rosell
- Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Badalona, Spain
| | - Niki Karachaliou
- Instituto Oncológico Rosell (IOR), Hospital Sagrat Cor, Quironsalud, Barcelona, Spain
| | | | - Masaoki Ito
- Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Badalona, Spain.,Pangaea Oncology, Barcelona, Spain.,Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
60
|
Fields AP, Ali SA, Justilien V, Murray NR. Protein kinase C ι: A versatile oncogene in the lung. Mol Cell Oncol 2018; 5:e1190886. [PMID: 30263934 DOI: 10.1080/23723556.2016.1190886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
Abstract
We have recently demonstrated that protein kinase Cι (PKCι) promotes a stem-like, tumor-initiating cell phenotype in KRAS-driven lung adenocarcinoma by activating a novel ELF3-NOTCH3 signaling axis.1 Combined PKCι and NOTCH inhibition was identified as a novel strategy for the treatment of KRAS-driven lung adenocarcinoma.
Collapse
Affiliation(s)
- Alan P Fields
- Department of Cancer Biology, Mayo Clinic Florida Jacksonville, Florida
| | - Syed A Ali
- Department of Cancer Biology, Mayo Clinic Florida Jacksonville, Florida
| | - Verline Justilien
- Department of Cancer Biology, Mayo Clinic Florida Jacksonville, Florida
| | - Nicole R Murray
- Department of Cancer Biology, Mayo Clinic Florida Jacksonville, Florida
| |
Collapse
|
61
|
Aburjania Z, Jang S, Whitt J, Jaskula-Stzul R, Chen H, Rose JB. The Role of Notch3 in Cancer. Oncologist 2018; 23:900-911. [PMID: 29622701 PMCID: PMC6156186 DOI: 10.1634/theoncologist.2017-0677] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/19/2018] [Indexed: 12/15/2022] Open
Abstract
The Notch family is a highly conserved gene group that regulates cell-cell interaction, embryogenesis, and tissue commitment. This review article focuses on the third Notch family subtype, Notch3. Regulation via Notch3 signaling was first implicated in vasculogenesis. However, more recent findings suggest that Notch3 signaling may play an important role in oncogenesis, tumor maintenance, and resistance to chemotherapy. Its role is mainly oncogenic, although in some cancers it appears to be tumor suppressive. Despite the wealth of published literature, it remains relatively underexplored and requires further research to shed more light on its role in cancer development, determine its tissue-specific function, and elaborate novel treatment strategies. Herein we summarize the role of Notch3 in cancer, possible mechanisms of its action, and current cancer treatment strategies targeting Notch3 signaling. IMPLICATIONS FOR PRACTICE The Notch family is a highly conserved gene group that regulates cell-cell interaction, embryogenesis, and tissue commitment. This review summarizes the existing data on the third subtype of the Notch family, Notch3. The role of Notch3 in different types of cancers is discussed, as well as implications of its modification and new strategies to affect Notch3 signaling activity.
Collapse
Affiliation(s)
- Zviadi Aburjania
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samuel Jang
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jason Whitt
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Renata Jaskula-Stzul
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Herbert Chen
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - J Bart Rose
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
62
|
Wang J, Chen J, Jiang Y, Shi Y, Zhu J, Xie C, Geng S, Wu J, Zhang Q, Wang X, Meng Y, Li Y, Chen Y, Cao W, Wang X, Zhong C, Li X. Wnt/β-catenin modulates chronic tobacco smoke exposure-induced acquisition of pulmonary cancer stem cell properties and diallyl trisulfide intervention. Toxicol Lett 2018; 291:70-76. [PMID: 29626521 DOI: 10.1016/j.toxlet.2018.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 12/11/2022]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide; tobacco smoke (TS) constitutes the main causes of lung cancer. Acquisition of cancer stem cells (CSCs)-like properties is the essential progression for the initiation of lung cancer. However, the mechanisms for tobacco smoke-induced lung carcinogenesis remain elusive. In the present study, we demonstrated that long-term exposure of human bronchial epithelial (HBE) cells to TS resulted in malignant transformation and acquisition of CSC-like properties. Moreover, Wnt/β-catenin pathway was involved in acquisition of the CSC-like phenotype during neoplastic transformation of HBE cells induced by TS. Downregulation of β-catenin reduced the tumorsphere and decreased the protein expression of lung CSCs markers in TS-transformated HBE sphere-forming cells. Furthermore, Diallyl trisulfide (DATS) inhibited the CSCs activity of TS-transformed HBE cells, as well as Wnt/β-catenin suppression. Activation of Wnt/β-catenin diminished the inhibitory effects of DATS on TS-induced stemness of HBE cells. Together, the present investigation elucidates the modulation of Wnt/β-catenin in chronic TS exposure-triggered pulmonary acquisition of CSCs properties and DATS intervention, which may provide new insights into the interventional strategies against lung CSCs.
Collapse
Affiliation(s)
- Jiaye Wang
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jiaqi Chen
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Ye Jiang
- Department of Food and School Hygiene, Taizhou Municipal Center for Disease Control and Prevention, Taizhou, Zhejiang, 318000, China
| | - Yingying Shi
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jianyun Zhu
- Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, 215008, China
| | - Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Shanshan Geng
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jieshu Wu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Qi Zhang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xiaoqian Wang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yu Meng
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yuan Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yue Chen
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Wanshuang Cao
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xueqi Wang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Xiaoting Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
63
|
Kong L, Li J, Liu Y, Sun Z, Zhou S, Tang J, Ye T, Wang J, Rosie Xing H. Neuralized1a regulates asymmetric division in mouse Lewis lung carcinoma cells. Life Sci 2018; 206:70-76. [PMID: 29782871 DOI: 10.1016/j.lfs.2018.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/10/2018] [Accepted: 05/17/2018] [Indexed: 11/25/2022]
Abstract
Asymmetric division (ASD), the unique characteristic of normal stem cells, is regarded as a stemness marker when applied to the study of cancer stem cells (CSCs). However, the role of ASD in the self-renewal of CSCs and its regulation remain largely unknown. Here, we first established a mouse Lewis lung carcinoma CSC cell line that could undergo asymmetric division (LLC-ASD cells) derived from the parental mouse Lewis lung carcinoma cancer cells (LLC-Parental cells). In vitro assessment of stemness by RT-qPCR and western blot analysis of stem cell markers, clonogenic assay (p < 0.001), single cell spheroid formation assay (p < 0.05) and 96-well-plate single-cell cloning assay (p < 0.01) indicated that the LLC-ASD cells exhibited stronger stemness features in comparison to the LLC-Parental cells. In vivo, tumorigenicity of LLC-ASD cells, transplanted subcutaneously to the nude mice, was increased compared to that of LLC-parental cells (p < 0.05). Further, Neuralized1a, a regulator of ASD in normal stem cells, was highly expressed in the LLC-ASD cells. Silencing Neuralized1a expression in LLC-ASD cells by siRNA weakened the stemness features measured by the in vitro assays listed above (p < 0.05). The tumorigenic ability was also decreased in the nude mice upon Neuralized1a silencing (p < 0.05). Collectively, the present study suggests that Neuralized1a regulates the stemness of LLC-ASD cells which could be the new marker and therapeutic target of CSCs.
Collapse
Affiliation(s)
- Liangsheng Kong
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China; College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Jingyuan Li
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Yongli Liu
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Zhiwei Sun
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Shixia Zhou
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Junling Tang
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Ting Ye
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jianyu Wang
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China.
| | - H Rosie Xing
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China; State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Chongqing, China.
| |
Collapse
|
64
|
Roato I, Ferracini R. Cancer Stem Cells, Bone and Tumor Microenvironment: Key Players in Bone Metastases. Cancers (Basel) 2018; 10:cancers10020056. [PMID: 29461491 PMCID: PMC5836088 DOI: 10.3390/cancers10020056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/12/2018] [Accepted: 02/17/2018] [Indexed: 12/21/2022] Open
Abstract
Tumor mass is constituted by a heterogeneous group of cells, among which a key role is played by the cancer stem cells (CSCs), possessing high regenerative properties. CSCs directly metastasize to bone, since bone microenvironment represents a fertile environment that protects CSCs against the immune system, and maintains their properties and plasticity. CSCs can migrate from the primary tumor to the bone marrow (BM), due to their capacity to perform the epithelial-to-mesenchymal transition. Once in BM, they can also perform the mesenchymal-to-epithelial transition, allowing them to proliferate and initiate bone lesions. Another factor explaining the osteotropism of CSCs is their ability to recognize chemokine gradients toward BM, through the CXCL12–CXCR4 axis, also known to be involved in tumor metastasis to other organs. Moreover, the expression of CXCR4 is associated with the maintenance of CSCs’ stemness, and CXCL12 expression by osteoblasts attracts CSCs to the BM niches. CSCs localize in the pre-metastatic niches, which are anatomically distinct regions within the tumor microenvironment and govern the metastatic progression. According to the stimuli received in the niches, CSCs can remain dormant for long time or outgrow from dormancy and create bone lesions. This review resumes different aspects of the CSCs’ bone metastastic process and discusses available treatments to target CSCs.
Collapse
Affiliation(s)
- Ilaria Roato
- Center for Research and Medical Studies (CeRMS), A.O.U. Città della Salute e della Scienza, Turin 10126, Italy.
| | - Riccardo Ferracini
- Department of Surgical Sciences (DISC), Orthopaedic Clinic-IRCCS A.O.U. San Martino, Genoa 16132, Italy.
| |
Collapse
|
65
|
Del Re M, Arrigoni E, Restante G, Passaro A, Rofi E, Crucitta S, De Marinis F, Di Paolo A, Danesi R. Concise Review: Resistance to Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer: The Role of Cancer Stem Cells. Stem Cells 2018; 36:633-640. [PMID: 29352734 DOI: 10.1002/stem.2787] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 01/03/2018] [Accepted: 01/10/2018] [Indexed: 12/26/2022]
Abstract
Among the potential mechanisms involved in resistance to tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer, the manifestation of stem-like properties in cancer cells seems to have a crucial role. Alterations involved in the development of TKI resistance may be acquired in a very early phase of tumorigenesis, supporting the hypothesis that these aberrations may be present in cancer stem cells (CSCs). In this regard, the characterization of tumor subclones in the initial phase and the identification of the CSCs may be helpful in planning a specific treatment to target selected biomarkers, suppress tumor growth, and prevent drug resistance. The aim of this review is to elucidate the role of CSCs in the development of resistance to TKIs and its implication for the management of patients. Stem Cells 2018;36:633-640.
Collapse
Affiliation(s)
- Marzia Del Re
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elena Arrigoni
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giuliana Restante
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Antonio Passaro
- Division of Thoracic Oncology, European Institute of Oncology, Milan, Italy
| | - Eleonora Rofi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefania Crucitta
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Filippo De Marinis
- Division of Thoracic Oncology, European Institute of Oncology, Milan, Italy
| | - Antonello Di Paolo
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Romano Danesi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
66
|
Zhang Y, Zhang L, Li R, Chang DW, Ye Y, Minna JD, Roth JA, Han B, Wu X. Genetic variations in cancer-related significantly mutated genes and lung cancer susceptibility. Ann Oncol 2018; 28:1625-1630. [PMID: 28383694 DOI: 10.1093/annonc/mdx161] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Indexed: 12/13/2022] Open
Abstract
Background Cancer initiation and development are driven by key mutations in driver genes. Applying high-throughput sequencing technologies and bioinformatic analyses, The Cancer Genome Atlas (TCGA) project has identified panels of somatic mutations that contributed to the etiology of various cancers. However, there are few studies investigating the germline genetic variations in these significantly mutated genes (SMGs) and lung cancer susceptibility. Patients and methods We comprehensively evaluated 1655 tagged single nucleotide polymorphisms (SNPs) located in 127 SMGs identified by TCGA, and test their association with lung cancer risk in large-scale case-control study. Functional effect of the validated SNPs, gene mutation frequency and pathways were analyzed. Results We found 11 SNPs in 8 genes showed consistent association (P < 0.1) and 8 SNPs significantly associated with lung cancer risk (P < 0.05) in both discovery and validation phases. The most significant association was rs10412613 in PPP2R1A, with the minor G allele associated with a decreased risk of lung cancer [odds ratio = 0.91, 95% confidence interval (CI): 0.87-0.96, P = 2.3 × 10-4]. Cumulative analysis of risk score built as a weight sum of the 11 SNPs showed consistently elevated risk with increasing risk score (P for trend = 9.5 × 10-9). In stratified analyses, the association of PPP2R1A:rs10412613 and lung cancer risk appeared stronger among population of younger age at diagnosis and never smokers. The expression quantitative trait loci analysis indicated that rs10412613, rs10804682, rs635469 and rs6742399 genotypes significantly correlated with the expression of PPP2R1A, ATR, SETBP1 and ERBB4, respectively. From TCGA data, expression of the identified genes was significantly different in lung tumors compared with normal tissues, and the genes' highest mutation frequency was found in lung cancers. Integrative pathway analysis indicated the identified genes were mainly involved in AKT/NF-κB regulatory pathway suggesting the underlying biological processes. Conclusion This study revealed novel genetic variants in SMGs associated with lung cancer risk, which might contribute to elucidating the biological network involved in lung cancer development.
Collapse
Affiliation(s)
- Y Zhang
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, USA.,Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - L Zhang
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, USA
| | - R Li
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, USA.,Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - D W Chang
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Y Ye
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, USA
| | - J D Minna
- Harmon Center for Therapeutic Oncology, University of Texas Southwestern Medical Center, Dallas
| | - J A Roth
- Department of Thoracic & Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, USA
| | - B Han
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - X Wu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, USA
| |
Collapse
|
67
|
Del Re M, Rofi E, Restante G, Crucitta S, Arrigoni E, Fogli S, Di Maio M, Petrini I, Danesi R. Implications of KRAS mutations in acquired resistance to treatment in NSCLC. Oncotarget 2017; 9:6630-6643. [PMID: 29464099 PMCID: PMC5814239 DOI: 10.18632/oncotarget.23553] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/27/2017] [Indexed: 12/12/2022] Open
Abstract
Rationale KRAS is the most common and, simultaneously, the most ambiguous oncogene implicated in human cancer. Despite KRAS mutations were identified in Non Small Cell Lung Cancers (NSCLCs) more than 20 years ago, selective and specific inhibitors aimed at directly abrogating KRAS activity are not yet available. Nevertheless, many therapeutic approaches have been developed potentially useful to treat NSCLC patients mutated for KRAS and refractory to both standard chemotherapy and targeted therapies. The focus of this review will be to provide an overview of the network related to the intricate molecular KRAS pathways, stressing on preclinical and clinical studies that investigate the predictive value of KRAS mutations in NSCLC patients. Materials and Methods A bibliographic search of the Medline database was conducted for articles published in English, with the keywords KRAS, KRAS mutations in non-small cell lung cancer, KRAS and tumorigenesis, KRAS and TKIs, KRAS and chemotherapy, KRAS and monoclonal antibody, KRAS and immunotherapy, KRAS and drugs, KRAS and drug resistance.
Collapse
Affiliation(s)
- Marzia Del Re
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Rofi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giuliana Restante
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefania Crucitta
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elena Arrigoni
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefano Fogli
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Massimo Di Maio
- Department of Oncology, University of Turin, Ordine Mauriziano Hospital, Turin, Italy
| | - Iacopo Petrini
- General Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Romano Danesi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
68
|
IL6 blockade potentiates the anti-tumor effects of γ-secretase inhibitors in Notch3-expressing breast cancer. Cell Death Differ 2017; 25:330-339. [PMID: 29027990 DOI: 10.1038/cdd.2017.162] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/23/2017] [Accepted: 08/29/2017] [Indexed: 12/11/2022] Open
Abstract
Notch pathways have important roles in carcinogenesis including pathways involving the Notch1 and Notch2 oncogenes. Pan-Notch inhibitors, such as gamma secretase inhibitors (GSIs), have been used in the clinical trials, but the outcomes of these trials have been insufficient and have yielded unclear. In the present study, we demonstrated that GSIs, such as MK-0752 and RO4929097, inhibit breast tumor growth, but increase the breast cancer stem cell (BCSC) population in Notch3-expressing breast cancer cells, in a process that is coupled with IL6 induction and is blocked by the IL6R antagonist Tocilizumab (TCZ). IL6 induction results from inhibition of Notch3-Hey2 signaling through MK-0752. Furthermore, HIF1α upregulates Notch3 expression via direct binding to the Notch3 promoter and subsequently downregulates BCSCs by decreasing the IL6 levels in Notch3-expressing breast cancer cells. Utilizing both breast cancer cell line xenografts and patient-derived xenografts (PDX), we showed that the combination of MK-0752 and Tocilizumab significantly decreases BCSCs and inhibits tumor growth and thus might serve as a novel therapeutic strategy for treating women with Notch3-expressing breast cancers.
Collapse
|
69
|
Zhou Q, Dai J, Chen T, Dada LA, Zhang X, Zhang W, DeCamp MM, Winn RA, Sznajder JI, Zhou G. Downregulation of PKCζ/Pard3/Pard6b is responsible for lung adenocarcinoma cell EMT and invasion. Cell Signal 2017; 38:49-59. [PMID: 28652146 PMCID: PMC5555371 DOI: 10.1016/j.cellsig.2017.06.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/08/2017] [Accepted: 06/20/2017] [Indexed: 12/24/2022]
Abstract
Atypical protein kinase C ζ (PKCζ) forms an apico-basal polarity complex with Partitioning Defective (Pard) 3 and Pard6 to regulate normal epithelial cell apico-basolateral polarization. The dissociation of the PKCζ/Pard3/Pard6 complex is essential for the disassembly of the tight/adherens junction and epithelial-mesenchymal transition (EMT) that is critical for tumor spreading. Loss of cell polarity and epithelial organization is strongly correlated with malignancy and tumor progression in some other cancer types. However, it is unclear whether the PKCζ/Pard3/Pard6 complex plays a role in the progression of non-small-cell lung cancer (NSCLC). We found that hypoxia downregulated the PKCζ/Pard3/Pard6 complex, correlating with induction of lung cancer cell migration and invasion. Silencing of the PKCζ/Pard3/Pard6 polarity complex components induced lung cancer cell EMT, invasion, and colonization in vivo. Suppression of Pard3 was associated with altered expression of genes regulating wound healing, cell apoptosis/death and cell motility, and particularly upregulation of MAP3K1 and fibronectin which are known to contribute to lung cancer progression. Human lung adenocarcinoma tissues expressed less Pard6b and PKCζ than the adjacent normal tissues and in experimental mouse lung adenocarcinoma, the levels of Pard3 and PKCζ were also decreased. In addition, we showed that a methylation locus in the gene body of Pard3 is positively associated with the expression of Pard3 and that methylation of the Pard3 gene increased cellular sensitivity to carboplatin, a common chemotherapy drug. Suppression of Pard3 increased chemoresistance in lung cancer cells. Together, these results suggest that reduced expression of PKCζ/Pard3/Pard6 contributes to NSCLC EMT, invasion, and chemoresistance.
Collapse
Affiliation(s)
- Qiyuan Zhou
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA
| | - Jingbo Dai
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA
| | - Tianji Chen
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA
| | - Laura A Dada
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xu Zhang
- Division of Hematology and Oncology, University of Illinois at Chicago, Chicago, IL, USA
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Malcolm M DeCamp
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Division of Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Robert A Winn
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Guofei Zhou
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA; Cancer Center, University of Illinois at Chicago, Chicago, IL, USA; State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
70
|
Inder S, O'Rourke S, McDermott N, Manecksha R, Finn S, Lynch T, Marignol L. The Notch-3 receptor: A molecular switch to tumorigenesis? Cancer Treat Rev 2017; 60:69-76. [PMID: 28889086 DOI: 10.1016/j.ctrv.2017.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/25/2017] [Accepted: 08/26/2017] [Indexed: 01/03/2023]
Abstract
The Notch pathway is a highly conserved pathway increasingly implicated with the progression of human cancers. Of the four existing receptors associated with the pathway, the deregulation in the expression of the Notch-3 receptor is associated with more aggressive disease and poor prognosis. Selective targeting of this receptor has the potential to enhance current anti-cancer treatments. Molecular profiling strategies are increasingly incorporated into clinical decision making. This review aims to evaluate the clinical potential of Notch-3 within this new era of personalised medicine.
Collapse
Affiliation(s)
- Shakeel Inder
- Translational Radiobiology and Molecular Oncology, Applied Radiation Therapy Trinity, Trinity College Dublin, Dublin, Ireland; Department of Urology, St James's Hospital, Dublin, Ireland
| | - Sinead O'Rourke
- Translational Radiobiology and Molecular Oncology, Applied Radiation Therapy Trinity, Trinity College Dublin, Dublin, Ireland
| | - Niamh McDermott
- Translational Radiobiology and Molecular Oncology, Applied Radiation Therapy Trinity, Trinity College Dublin, Dublin, Ireland
| | | | - Stephen Finn
- Department of Histopathology, St James's Hospital, Dublin, Ireland
| | - Thomas Lynch
- Department of Urology, St James's Hospital, Dublin, Ireland
| | - Laure Marignol
- Translational Radiobiology and Molecular Oncology, Applied Radiation Therapy Trinity, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
71
|
Wang J, Sun Z, Liu Y, Kong L, Zhou S, Tang J, Xing HR. Comparison of tumor biology of two distinct cell sub-populations in lung cancer stem cells. Oncotarget 2017; 8:96852-96864. [PMID: 29228576 PMCID: PMC5722528 DOI: 10.18632/oncotarget.18451] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/22/2017] [Indexed: 12/20/2022] Open
Abstract
Characterization of the stem-like properties of cancer stem cells (CSCs) remain indirect and qualitative, especially the ability of CSCs to undergo asymmetric cell division for self renewal and differentiation, a unique property of cells of stem origin. It is partly due to the lack of stable cellular models of CSCs. In this study, we developed a new approach for CSC isolation and purification to derive a CSC-enriched cell line (LLC-SE). By conducting five consecutive rounds of single cell cloning using the LLC-SE cell line, we obtained two distinct sub-population of cells within the Lewis lung cancer CSCs that employed largely symmetric division for self-renewal (LLC-SD) or underwent asymmetric division for differentiation (LLC-ASD). LLC-SD and LLC-ASD cell lines could be stably passaged in culture and be distinguished by cell morphology, stem cell marker, spheroid formation and subcutaneous tumor initiation efficiency, as well as orthotopic lung tumor growth, progression and survival. The ability LLC-ASD cells to undergo asymmetric division was visualized and quantified by the asymmetric segregation of labeled BrdU and NUMB to one of the two daughter cells in anaphase cell division. The more stem-like LLC-SD cells exhibited higher capacity for tumorigenesis and progression and shorter survival. As few as 10 LLC-SD could initiate subcutaneous tumor growth when transplanted to the athymic mice. Collectively, these observations suggest that the SD-type of cells appear to be on the top of the hierarchical order of the CSCs. Furthermore, they have lead to generated cellular models of CSC self-renewal for future mechanistic investigations.
Collapse
Affiliation(s)
- Jianyu Wang
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chong Qing Medical University, Chongqing, China
| | - Zhiwei Sun
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chong Qing Medical University, Chongqing, China
| | - Yongli Liu
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chong Qing Medical University, Chongqing, China
| | - Liangsheng Kong
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chong Qing Medical University, Chongqing, China
| | - Shixia Zhou
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chong Qing Medical University, Chongqing, China
| | - Junlin Tang
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chong Qing Medical University, Chongqing, China
| | - Hongmei Rosie Xing
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chong Qing Medical University, Chongqing, China
| |
Collapse
|
72
|
Protein kinase C as a tumor suppressor. Semin Cancer Biol 2017; 48:18-26. [PMID: 28476658 DOI: 10.1016/j.semcancer.2017.04.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 03/31/2017] [Accepted: 04/28/2017] [Indexed: 01/01/2023]
Abstract
Protein kinase C (PKC) has historically been considered an oncoprotein. This stems in large part from the discovery in the early 1980s that PKC is directly activated by tumor-promoting phorbol esters. Yet three decades of clinical trials using PKC inhibitors in cancer therapies not only failed, but in some cases worsened patient outcome. Why has targeting PKC in cancer eluded successful therapies? Recent studies looking at the disease for insight provide an explanation: cancer-associated mutations in PKC are generally loss-of-function (LOF), supporting an unexpected function as tumor suppressors. And, contrasting with LOF mutations in cancer, germline mutations that enhance the activity of some PKC isozymes are associated with degenerative diseases such as Alzheimer's disease. This review provides a background on the diverse mechanisms that ensure PKC is only active when, where, and for the appropriate duration needed and summarizes recent findings converging on a paradigm reversal: PKC family members generally function by suppressing, rather than promoting, survival signaling.
Collapse
|
73
|
Newton AC, Brognard J. Reversing the Paradigm: Protein Kinase C as a Tumor Suppressor. Trends Pharmacol Sci 2017; 38:438-447. [PMID: 28283201 PMCID: PMC5403564 DOI: 10.1016/j.tips.2017.02.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 12/20/2022]
Abstract
The discovery in the 1980s that protein kinase C (PKC) is a receptor for the tumor-promoting phorbol esters fueled the dogma that PKC is an oncoprotein. Yet 30+ years of clinical trials for cancer using PKC inhibitors not only failed, but in some instances worsened patient outcome. The recent analysis of cancer-associated mutations, from diverse cancers and throughout the PKC family, revealed that PKC isozymes are generally inactivated in cancer, supporting a tumor suppressive function. In keeping with a bona fide tumor suppressive role, germline causal loss-of-function (LOF) mutations in one isozyme have recently been identified in lymphoproliferative disorders. Thus, strategies in cancer treatment should focus on restoring rather than inhibiting PKC.
Collapse
Affiliation(s)
- Alexandra C Newton
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0721, USA.
| | - John Brognard
- Laboratory of Cell and Developmental Signaling, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Cancer Research UK Manchester Institute, Manchester, UK.
| |
Collapse
|
74
|
Guo T, Kong J, Liu Y, Li Z, Xia J, Zhang Y, Zhao S, Li F, Li J, Gu C. Transcriptional activation of NANOG by YBX1 promotes lung cancer stem-like properties and metastasis. Biochem Biophys Res Commun 2017; 487:153-159. [PMID: 28400280 DOI: 10.1016/j.bbrc.2017.04.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 01/11/2023]
Abstract
Aberrant overexpression of the transcription/translation factor Y-box-binding protein-1 (YBX1) is associated with non-small cell lung cancer (NSCLC) aggressiveness. Cancer stem cells (CSCs) contribute to the tumorigenesis and metastasis of NSCLC. Hitherto, the mechanism by which YBX1 regulates CSCs and metastasis in NSCLC remains unclear. Here, we demonstrated that YBX1 levels were elevated in NSCLC tissues and cell lines. Enforced expression of YBX1 promoted NSCLC cells invasion, sphere forming ability and ALDH1+ population. Conversely, reduced YBX1 impaired CSC properties of NSCLC cells in vitro and tumor-initiating frequencies, as well as metastasis in vivo. Importantly, we described a mechanism whereby YBX1 directly promoted NANOG, a transcription factor, transcriptional activation. Depletion of NANOG abolished the enhanced ability of invasion and sphere formation in YBX1 elevated-A549 cells. Collectively, these findings demonstrate a novel role of YBX1 in maintaining the stemness of CSCs and metastasis, unveiling YBX1 as promising therapeutic target for NSCLC treatments.
Collapse
Affiliation(s)
- Tao Guo
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China; Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Jing Kong
- College of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Yang Liu
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Zhuoshi Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China; Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Jianglong Xia
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Yan Zhang
- Department of Radiation Oncology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, 250000, China
| | - Shilei Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China; Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Fengzhou Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China; Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Jinxiu Li
- Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Chundong Gu
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China; Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
75
|
Justilien V, Ali SA, Jamieson L, Yin N, Cox AD, Der CJ, Murray NR, Fields AP. Ect2-Dependent rRNA Synthesis Is Required for KRAS-TRP53-Driven Lung Adenocarcinoma. Cancer Cell 2017; 31:256-269. [PMID: 28110998 PMCID: PMC5310966 DOI: 10.1016/j.ccell.2016.12.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 10/07/2016] [Accepted: 12/21/2016] [Indexed: 11/16/2022]
Abstract
The guanine nucleotide exchange factor (GEF) epithelial cell transforming sequence 2 (Ect2) has been implicated in cancer. However, it is not clear how Ect2 causes transformation and whether Ect2 is necessary for tumorigenesis in vivo. Here, we demonstrate that nuclear Ect2 GEF activity is required for Kras-Trp53 lung tumorigenesis in vivo and that Ect2-mediated transformation requires Ect2-dependent rDNA transcription. Ect2 activates rRNA synthesis by binding the nucleolar transcription factor upstream binding factor 1 (UBF1) on rDNA promoters and recruiting Rac1 and its downstream effector nucleophosmin (NPM) to rDNA. Protein kinase Cι (PKCι)-mediated Ect2 phosphorylation stimulates Ect2-dependent rDNA transcription. Thus, Ect2 regulates rRNA synthesis through a PKCι-Ect2-Rac1-NPM signaling axis that is required for lung tumorigenesis.
Collapse
Affiliation(s)
- Verline Justilien
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Griffin Cancer Research Building, Room 212, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Syed A Ali
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Griffin Cancer Research Building, Room 212, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Lee Jamieson
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Griffin Cancer Research Building, Room 212, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Ning Yin
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Griffin Cancer Research Building, Room 212, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Adrienne D Cox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Channing J Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nicole R Murray
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Griffin Cancer Research Building, Room 212, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Alan P Fields
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Griffin Cancer Research Building, Room 212, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
76
|
Abstract
Atypical protein kinase Cι (PKCι) is an oncogene in lung and ovarian cancer. The PKCι gene PRKCI is targeted for frequent tumor-specific copy number gain (CNG) in both lung squamous cell carcinoma (LSCC) and ovarian serous carcinoma (OSC). We recently demonstrated that in LSCC cells PRKCI CNG functions to drive transformed growth and tumorigenicity by activating PKCι-dependent cell autonomous Hedgehog (Hh) signaling. Here, we assessed whether OSC cells harboring PRKCI CNG exhibit similar PKCι-dependent Hh signaling. Surprisingly, we find that whereas PKCι is required for the transformed growth of OSC cells harboring PRKCI CNG, these cells do not exhibit PKCι-dependent Hh signaling or Hh-dependent proliferation. Rather, transformed growth of OSC cells is regulated by PKCι-dependent nuclear localization of the oncogenic transcription factor, YAP1. Lentiviral shRNA-mediated knockdown (KD) of PKCι leads to decreased nuclear YAP1 and increased YAP1 binding to angiomotin (AMOT), which sequesters YAP1 in the cytoplasm. Biochemical analysis reveals that PKCι directly phosphorylates AMOT at a unique site, Thr750, whose phosphorylation inhibits YAP1 binding. Pharmacologic inhibition of PKCι decreases YAP1 nuclear localization and blocks OSC tumor growth in vitro and in vivo. Immunohistochemical analysis reveals a strong positive correlation between tumor PKCι expression and nuclear YAP1 in primary OSC tumor samples, indicating the clinical relevance of PKCι-YAP1 signaling. Our results uncover a novel PKCι-AMOT-YAP1 signaling axis that promotes OSC tumor growth, and provide a rationale for therapeutic targeting of this pathway for treatment of OSC.
Collapse
|
77
|
Shao X, Lin S, Peng Q, Shi S, Wei X, Zhang T, Lin Y. Tetrahedral DNA Nanostructure: A Potential Promoter for Cartilage Tissue Regeneration via Regulating Chondrocyte Phenotype and Proliferation. SMALL 2017; 13. [PMID: 28112870 DOI: 10.1002/smll.201602770] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/15/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Xiaoru Shao
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 P. R. China
| | - Shiyu Lin
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 P. R. China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 P. R. China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 P. R. China
| | - Xueqin Wei
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 P. R. China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 P. R. China
| |
Collapse
|
78
|
Fields AP, Ali SA, Murray NR. Oncogenic PKCι decides tumor-initiating cell fate. Cell Cycle 2016; 15:2383-4. [PMID: 27315374 DOI: 10.1080/15384101.2016.1194624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Alan P Fields
- a Department of Cancer Biology , Mayo Clinic , Jacksonville , FL , USA
| | - Syed A Ali
- a Department of Cancer Biology , Mayo Clinic , Jacksonville , FL , USA
| | - Nicole R Murray
- a Department of Cancer Biology , Mayo Clinic , Jacksonville , FL , USA
| |
Collapse
|
79
|
Wang Y, Justilien V, Brennan KI, Jamieson L, Murray NR, Fields AP. PKCι regulates nuclear YAP1 localization and ovarian cancer tumorigenesis. Oncogene 2016; 36:534-545. [PMID: 27321186 PMCID: PMC5173453 DOI: 10.1038/onc.2016.224] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/06/2016] [Accepted: 05/15/2016] [Indexed: 01/08/2023]
Abstract
Atypical protein kinase Cι (PKCι) is an oncogene in lung and ovarian cancer. The PKCι gene PRKCI is targeted for frequent tumor-specific copy number gain (CNG) in both lung squamous cell carcinoma (LSCC) and ovarian serous carcinoma (OSC). We recently demonstrated that in LSCC cells PRKCI CNG functions to drive transformed growth and tumorigenicity by activating PKCι-dependent cell autonomous Hedgehog (Hh) signaling. Here, we assessed whether OSC cells harboring PRKCI CNG exhibit similar PKCι-dependent Hh signaling. Surprisingly, we find that whereas PKCι is required for the transformed growth for OSC cells harboring PRKCI CNG, these cells do not exhibit PKCι-dependent Hh signaling or Hh-dependent proliferation. Rather, transformed growth of OSC cells is regulated by PKCι-dependent nuclear localization of the oncogenic transcription factor, YAP1. Lentiviral shRNA-mediated knock down (KD) of PKCι leads to decreased nuclear YAP1 and increased YAP1 binding to angiomotin (AMOT), which sequesters YAP1 in the cytoplasm. Biochemical analysis reveals that PKCι directly phosphorylates AMOT at a unique site, Thr750, whose phosphorylation inhibits YAP1 binding. Pharmacologic inhibition of PKCι decreases YAP1 nuclear localization and blocks OSC tumor growth in vitro and in vivo. Immunohistochemical analysis reveals a strong positive correlation between tumor PKCι expression and nuclear YAP1 in primary OSC tumor samples, indicating the clinical relevance of PKCι-YAP1 signaling. Our results uncover a novel PKCι-AMOT-YAP1 signaling axis that promotes OSC tumor growth, and provide a rationale for therapeutic targeting of this pathway for treatment of OSC.
Collapse
Affiliation(s)
- Y Wang
- Department of Cancer Biology, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | - V Justilien
- Department of Cancer Biology, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | - K I Brennan
- Department of Cancer Biology, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | - L Jamieson
- Department of Cancer Biology, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | - N R Murray
- Department of Cancer Biology, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | - A P Fields
- Department of Cancer Biology, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| |
Collapse
|
80
|
Fields AP, Ali SA, Justilien V, Murray NR. Targeting oncogenic protein kinase Cι for treatment of mutant KRAS LADC. Small GTPases 2016; 8:58-64. [PMID: 27245608 DOI: 10.1080/21541248.2016.1194953] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Lung cancer is the leading cause of cancer death in the US with ∼124,000 new cases annually, and a 5 y survival rate of ∼16%. Mutant KRAS-driven lung adenocarcinoma (KRAS LADC) is a particularly prevalent and deadly form of lung cancer. Protein kinase Cι (PKCι) is an oncogenic effector of KRAS that activates multiple signaling pathways that stimulate transformed growth and invasion, and maintain a KRAS LADC tumor-initiating cell (TIC) phenotype. PKCι inhibitors used alone and in strategic combination show promise as new therapeutic approaches to treatment of KRAS LADC. These novel drug combinations may improve clinical management of KRAS LADC.
Collapse
Affiliation(s)
- Alan P Fields
- a Department of Cancer Biology , Mayo Clinic , Jacksonville , FL , USA
| | - Syed A Ali
- a Department of Cancer Biology , Mayo Clinic , Jacksonville , FL , USA
| | - Verline Justilien
- a Department of Cancer Biology , Mayo Clinic , Jacksonville , FL , USA
| | - Nicole R Murray
- a Department of Cancer Biology , Mayo Clinic , Jacksonville , FL , USA
| |
Collapse
|