51
|
Mukherjee A, Kakati RT, Van Alsten S, Laws T, Ebbs AL, Hollern DP, Spanheimer PM, Hoadley KA, Troester MA, Simon JM, Baldwin AS. DAB2IP loss in luminal a breast cancer leads to NF-κB-associated aggressive oncogenic phenotypes. JCI Insight 2024; 9:e171705. [PMID: 39418101 PMCID: PMC11623953 DOI: 10.1172/jci.insight.171705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/11/2024] [Indexed: 10/19/2024] Open
Abstract
Despite proven therapy options for estrogen receptor-positive (ER+) breast tumors, a substantial number of patients with ER+ breast cancer exhibit relapse with associated metastasis. Loss of expression of RasGAPs leads to poor outcomes in several cancers, including breast cancer. Mining the The Cancer Genome Atlas (TCGA) breast cancer RNA-Seq dataset revealed that low expression of the RasGAP DAB2IP was associated with a significant decrease in relapse-free survival in patients with Luminal A breast cancer. Immunostaining demonstrated that DAB2IP loss occurred in grade 2 tumors and higher. Consistent with this, genes upregulated in DAB2IP-low Luminal A tumors were shared with more aggressive tumor subtypes and were associated with proliferation, metastasis, and altered ER signaling. Low DAB2IP expression in ER+ breast cancer cells was associated with increased proliferation, enhanced stemness phenotypes, and activation of IKK, the upstream regulator of the transcription factor NF-κB. Integrating cell-based ChIP-Seq with motif analysis and TCGA RNA-Seq data, we identified a set of candidate NF-κB target genes upregulated with loss of DAB2IP linked with several oncogenic phenotypes, including altered RNA processing. This study provides insight into mechanisms associated with aggressiveness and recurrence within a subset of the typically less aggressive Luminal A breast cancer intrinsic subtype.
Collapse
Affiliation(s)
- Angana Mukherjee
- UNC Lineberger Comprehensive Cancer, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pathology and Laboratory Medicine and
| | - Rasha T. Kakati
- Division of Surgical Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Sarah Van Alsten
- UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tyler Laws
- UNC Lineberger Comprehensive Cancer, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Aaron L. Ebbs
- UNC Lineberger Comprehensive Cancer, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Philip M. Spanheimer
- Division of Surgical Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | | | - Melissa A. Troester
- UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jeremy M. Simon
- Department of Genetics and
- UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Data Science, Dana-Farber Cancer Institute and Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Albert S. Baldwin
- UNC Lineberger Comprehensive Cancer, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina, USA
| |
Collapse
|
52
|
Sui J, Guo D, Wen X, Zhou L, Huang Y, Yu H, Chen J, Liu Z. Systematic Characterization of Splicing Dysregulation in Pan Solid Tumor Transcriptome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2405626. [PMID: 39639731 DOI: 10.1002/advs.202405626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 11/22/2024] [Indexed: 12/07/2024]
Abstract
Splicing dysregulation arising from spliceosomal mutations contributes to disease progression and treatment resistance, mostly in hematologic malignancy. Whereas spliceosomal mutations are less common in solid tumors, splicing disorders are pervasive and proven to promote tumorigenesis. However, there is a lack of systematic understanding of the overall splicing dysregulation patterns and how widespread different patterns occur within or across solid tumor lineage. To address these questions, a computational method called SMNPLS (Sparse Multi-Network Regularized Partial Least Squares) is developed to uncover the pan-cancer splicing dysregulation landscape by extracting joint modular patterns from paired matrices of splicing factors (SFs) expressions and alternative splicing events (ASEs). Six unique patterns illustrated by ASE-SF co-modules are summarized, which involve 1,570 ASEs and altered expression of 170 SFs, covering 40% of TCGA solid tumors. Cross-cancer commonalities of splicing dysregulation are observed among digestive system neoplasms, renal-associated tumors, and urogenital tumors. By contrast, brain tumors demonstrate a distinct splicing pattern with the highest ASE-SF correlation. In addition, some new splicing regulatory relationships are identified that are potentially oncogenic. Overall, the study characterizes the full spectrum of splicing dysregulation patterns, indicating the similarity and specificity of splicing-derived pathogenesis across 31 human solid tumors.
Collapse
Affiliation(s)
- Jingru Sui
- China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Guo
- China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao Wen
- China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Zhou
- China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Huang
- China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haoyu Yu
- School of Life Science, Inner Mongolia University, Hohhot, 010021, China
| | - Jinyu Chen
- School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing, 100124, China
| | - Zhaoqi Liu
- China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
53
|
Debeljak M, Cho S, Downs BM, Considine M, Avin-McKelvey B, Wang Y, Perez PN, Grizzle WE, Hoadley KA, Lynch CF, Hernandez BY, van Diest PJ, Cozen W, Hamilton AS, Hawes D, Gabrielson E, Cimino-Mathews A, Florea LD, Cope L, Umbricht CB. Multimodal genome-wide survey of progressing and non-progressing breast ductal carcinoma in-situ. Breast Cancer Res 2024; 26:178. [PMID: 39633428 PMCID: PMC11616160 DOI: 10.1186/s13058-024-01927-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Ductal carcinoma in-situ (DCIS) is a pre-invasive form of invasive breast cancer (IBC). Due to improved breast cancer screening, it now accounts for ~ 25% of all breast cancers. While the treatment success rates are over 90%, this comes at the cost of considerable morbidity, considering that the majority of DCIS never become invasive and our understanding of the molecular changes occurring in DCIS that predispose to invasive disease is limited. The aim of this study is to characterize molecular changes that occur in DCIS, with the goal of improving DCIS risk stratification. METHODS We identified and obtained a total of 197 breast tissue samples from 5 institutions (93 DCIS progressors, 93 DCIS non-progressors, and 11 adjacent normal breast tissues) that had at least 10-year follow-up. We isolated DNA and RNA from archival tissue blocks and characterized genome-wide mRNA expression, DNA methylation, DNA copy number variation, and RNA splicing variation. RESULTS We obtained all four genomic data sets in 122 of the 197 samples. Our intrinsic expression subtype-stratified analyses identified multiple molecular differences both between DCIS subtypes and between DCIS and IBC. While there was heterogeneity in molecular signatures and outcomes within intrinsic subtypes, several gene sets that differed significantly between progressing and non-progressing DCIS were identified by Gene Set Enrichment Analysis. CONCLUSION DCIS is a molecularly highly heterogenous disease with variable outcomes, and the molecular events determining DCIS disease progression remain poorly defined. Our genome-wide multi-omic survey documents DCIS-associated alterations and reveals molecular heterogeneity within the intrinsic DCIS subtypes. Further studies investigating intrinsic subtype-stratified characteristics and molecular signatures are needed to determine if these may be exploitable for risk assessment and mitigation of DCIS progression. The highly significant associations of specific gene sets with IBC progression revealed by our Gene Set Enrichment Analysis may lend themselves to the development of a prognostic molecular score, to be validated on independent DCIS cohorts.
Collapse
Affiliation(s)
- Marija Debeljak
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Soonweng Cho
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bradley M Downs
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Considine
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Yongchun Wang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Phillip N Perez
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William E Grizzle
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Katherine A Hoadley
- Department of Genetics, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Charles F Lynch
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Brenda Y Hernandez
- Population Sciences in the Pacific-Program, University of Hawaii Cancer Research Center, Honolulu, HI, USA
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wendy Cozen
- Department of Medicine, School of Medicine, Susan and Henry Samueli College of Health Sciences, University of California at Irvine, Irvine, CA, USA
| | - Ann S Hamilton
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Debra Hawes
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Edward Gabrielson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ashley Cimino-Mathews
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Liliana D Florea
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Leslie Cope
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher B Umbricht
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- The Johns Hopkins University School of Medicine, Ross Building, Room 743, 720 Rutland Ave, Baltimore, MD, 21205, USA.
| |
Collapse
|
54
|
Song B, Wu P, Wan C, Sun Q, Kong G. Integrating single cell and bulk RNA sequencing data identifies RBM17 as a novel response biomarker for immunotherapy in bladder cancer. Virchows Arch 2024; 485:1133-1150. [PMID: 39453457 DOI: 10.1007/s00428-024-03952-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/12/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
Checkpoint inhibitors (CPIs) have been widely applied in the treatment of patients with bladder cancer (BLCA). However, there is still unmet need to dissect response predict biomarkers. To uncover CPI response-related marker genes in cancer cells, we utilized SCISSOR, integrating single-cell RNA and bulk RNA sequencing data. Transcriptomic and clinical data from IMvigor210, UNC-108, and BCAN/HCRN datasets were collected to evaluate and validate the identified biomarkers and signatures. Additionally, we analyzed TCGA-BLCA and local-BLCA RNA-seq data to investigate alternative splicing events (ASEs). Cell viability was assessed in T24 and UMUC3 cells with RBM17 upregulation or downregulation. Through SCISSOR analysis, we discovered that the expression levels of RBM17, TAP1, and PSMB8 were significantly associated with CPI response. Since PSMB8 displayed a highly positive correlation with TAP1, we developed a CPI response score (CRS) signature based on the expression profiles of RBM17 and TAP1. The CRS demonstrated robust predictive capacity in IMvigor210, UNC-108, and BCAN/HCRN datasets and was associated with higher tumor mutational burden (TMB), PD-L1 expression, and unique genomic features. Notably, RBM17 was not linked to the clinical outcomes of BLCA patients but positively correlated with BLCA cell proliferation in vitro. In the meantime, RBM17 was correlated with higher activity in core biological pathways, including antigen processing machinery, CD8 + T effector cells, cell cycle, DNA damage repair, epithelial-mesenchymal transition, histone regulation, and immune checkpoints. Moreover, the high-RBM17 group showed enrichment of LumU/Ba/sq subtypes but fewer FGFR3 alterations. Lastly, RBM17 significantly upregulated ASEs in BLCA samples, leading to higher neoantigen levels, a more inflamed tumor microenvironment, and improved CPI response. RBM17 is associated with higher ASEs and neoantigen levels, thereby potentiating the efficacy of CPI in BLCA. The established predictive signature, utilizing only two genes, has the potential to streamline clinical applications, providing a cost-effective alternative to expensive genomic, transcriptomic, and biological feature tests.
Collapse
Affiliation(s)
- Bo Song
- Department of Urology, Beijing Luhe Hospital, Capital Medical University, No. 82 Xinhua South Road, Tongzhou District, Beijing, 101149, China
| | - Peishan Wu
- Department of Urology, Beijing Luhe Hospital, Capital Medical University, No. 82 Xinhua South Road, Tongzhou District, Beijing, 101149, China.
| | - Chong Wan
- Precision Medicine Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, 314001, Zhejiang, China
| | - Qiangqiang Sun
- Department of Precision Medicine, Accb Co. Ltd., Jiaxing, 314001, China
| | - Guangqi Kong
- Department of Urology, Beijing Luhe Hospital, Capital Medical University, No. 82 Xinhua South Road, Tongzhou District, Beijing, 101149, China
| |
Collapse
|
55
|
Palmer T, Kessler MD, Shao XM, Balan A, Yarchoan M, Zaidi N, Lopez-Vidal TY, Saeed AM, Gore J, Azad NS, Jaffee EM, Favorov AV, Anagnostou V, Karchin R, Gaykalova DA, Fertig EJ, Danilova L. SpliceMutr Enables Pan-Cancer Analysis of Splicing-Derived Neoantigen Burden in Tumors. CANCER RESEARCH COMMUNICATIONS 2024; 4:3137-3150. [PMID: 39470352 PMCID: PMC11648103 DOI: 10.1158/2767-9764.crc-23-0309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 07/05/2024] [Accepted: 10/25/2024] [Indexed: 10/30/2024]
Abstract
SIGNIFICANCE SpliceMutr shows that splicing antigenicity changes in response to ICI therapies and that native modulation of the splicing machinery through mutations increases the contribution of splicing to the neoantigen load of some The Cancer Genome Atlas cancer subtypes. Future studies of the relationship between splicing antigenicity and immune checkpoint inhibitor response pan-cancer are essential to establish the interplay between antigen heterogeneity and immunotherapy regimen on patient response.
Collapse
Affiliation(s)
- Theron Palmer
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University, Baltimore, Maryland
| | - Michael D. Kessler
- Convergence Institute, Johns Hopkins University, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Xiaoshan M. Shao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Archana Balan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Mark Yarchoan
- Convergence Institute, Johns Hopkins University, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Neeha Zaidi
- Convergence Institute, Johns Hopkins University, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Tamara Y. Lopez-Vidal
- Convergence Institute, Johns Hopkins University, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ali M. Saeed
- Convergence Institute, Johns Hopkins University, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Jessica Gore
- Department of Otorhinolaryngology-Head and Neck Surgery, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Nilofer S. Azad
- Convergence Institute, Johns Hopkins University, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Elizabeth M. Jaffee
- Convergence Institute, Johns Hopkins University, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Alexander V. Favorov
- Convergence Institute, Johns Hopkins University, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
- Laboratory of Systems Biology and Computational Genetics, Vavilov Institute of General Genetics, Moscow, Russia
| | - Valsamo Anagnostou
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Rachel Karchin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Daria A. Gaykalova
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
- Department of Otorhinolaryngology-Head and Neck Surgery, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Elana J. Fertig
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, Maryland
| | - Ludmila Danilova
- Convergence Institute, Johns Hopkins University, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
56
|
Tian B, Bian Y, Pang Y, Gao Y, Yu C, Zhang X, Zhou S, Li Z, Xin L, Lin H, Wang L. Dysregulated inclusion of BOLA3 exon 3 promoted by HNRNPC accelerates the progression of esophageal squamous cell carcinoma. Front Med 2024; 18:1035-1053. [PMID: 39455467 DOI: 10.1007/s11684-024-1068-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/31/2024] [Indexed: 10/28/2024]
Abstract
Dysregulated RNA splicing events produce transcripts that facilitate esophageal squamous cell carcinoma (ESCC) progression, but how this splicing process is abnormally regulated remains elusive. Here, we unveiled a novel alternative splicing axis of BOLA3 transcripts and its regulator HNRNPC in ESCC. The long-form BOLA3 (BOLA3-L) containing exon 3 exhibited high expression levels in ESCC and was associated with poor prognosis. Functional assays demonstrated the protumorigenic function of BOLA3-L in ESCC cells. Additionally, HNRNPC bound to BOLA3 mRNA and promoted BOLA3 exon 3 inclusion forming BOLA3-L. High HNRNPC expression was positively correlated with the presence of BOLA3-L and associated with an unfavorable prognosis. HNRNPC knockdown effectively suppressed the malignant biological behavior of ESCC cells, which were significantly rescued by BOLA3-L overexpression. Moreover, BOLA3-L played a significant role in mitochondrial structural and functional stability. E2F7 acted as a key transcription factor that promoted the upregulation of HNRNPC and inclusion of BOLA3 exon 3. Our findings provided novel insights into how alternative splicing contributes to ESCC progression.
Collapse
Affiliation(s)
- Bo Tian
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yan Bian
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yanan Pang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Ye Gao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Chuting Yu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xun Zhang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Siwei Zhou
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Lei Xin
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Han Lin
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Luowei Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
57
|
Anczukow O, Allain FHT, Angarola BL, Black DL, Brooks AN, Cheng C, Conesa A, Crosse EI, Eyras E, Guccione E, Lu SX, Neugebauer KM, Sehgal P, Song X, Tothova Z, Valcárcel J, Weeks KM, Yeo GW, Thomas-Tikhonenko A. Steering research on mRNA splicing in cancer towards clinical translation. Nat Rev Cancer 2024; 24:887-905. [PMID: 39384951 DOI: 10.1038/s41568-024-00750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/11/2024]
Abstract
Splicing factors are affected by recurrent somatic mutations and copy number variations in several types of haematologic and solid malignancies, which is often seen as prima facie evidence that splicing aberrations can drive cancer initiation and progression. However, numerous spliceosome components also 'moonlight' in DNA repair and other cellular processes, making their precise role in cancer difficult to pinpoint. Still, few would deny that dysregulated mRNA splicing is a pervasive feature of most cancers. Correctly interpreting these molecular fingerprints can reveal novel tumour vulnerabilities and untapped therapeutic opportunities. Yet multiple technological challenges, lingering misconceptions, and outstanding questions hinder clinical translation. To start with, the general landscape of splicing aberrations in cancer is not well defined, due to limitations of short-read RNA sequencing not adept at resolving complete mRNA isoforms, as well as the shallow read depth inherent in long-read RNA-sequencing, especially at single-cell level. Although individual cancer-associated isoforms are known to contribute to cancer progression, widespread splicing alterations could be an equally important and, perhaps, more readily actionable feature of human cancers. This is to say that in addition to 'repairing' mis-spliced transcripts, possible therapeutic avenues include exacerbating splicing aberration with small-molecule spliceosome inhibitors, targeting recurrent splicing aberrations with synthetic lethal approaches, and training the immune system to recognize splicing-derived neoantigens.
Collapse
Affiliation(s)
- Olga Anczukow
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
| | - Frédéric H-T Allain
- Department of Biology, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | | | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Angela N Brooks
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Chonghui Cheng
- Department of Molecular and Human Genetics, Lester & Sue Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Ana Conesa
- Institute for Integrative Systems Biology, Spanish National Research Council, Paterna, Spain
| | - Edie I Crosse
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Eduardo Eyras
- Shine-Dalgarno Centre for RNA Innovation, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ernesto Guccione
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | - Sydney X Lu
- Department of Medicine, Stanford Medical School, Palo Alto, CA, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | - Priyanka Sehgal
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xiao Song
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Zuzana Tothova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Juan Valcárcel
- Centre for Genomic Regulation, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
58
|
Li Q, Li Z, Chen B, Zhao J, Yu H, Hu J, Lai H, Zhang H, Li Y, Meng Z, Hu Z, Huang S. RNA splicing junction landscape reveals abundant tumor-specific transcripts in human cancer. Cell Rep 2024; 43:114893. [PMID: 39446586 DOI: 10.1016/j.celrep.2024.114893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/08/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
RNA splicing is a critical process governing gene expression and transcriptomic diversity. Despite its importance, a detailed examination of transcript variation at the splicing junction level remains scarce. Here, we perform a thorough analysis of RNA splicing junctions in 34,775 samples across multiple sample types. We identified 29,051 tumor-specific transcripts (TSTs) in pan-cancer, with a majority of these TSTs being unannotated. Our findings show that TSTs are positively correlated with tumor stemness and linked to unfavorable outcomes in cancer patients. Additionally, TSTs display mutual exclusivity with somatic mutations and are overrepresented in transposable-element-derived transcripts possessing oncogenic functions. Importantly, TSTs can generate putative neoantigens for immunotherapy. Moreover, TSTs can be detected in blood extracellular vesicles from cancer patients. Our results shed light on the intricacies of RNA splicing and offer promising avenues for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Qin Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Pathology, Fudan University Shanghai Cancer Center, and Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Ziteng Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Bing Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jingjing Zhao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hongwu Yu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jia Hu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hongyan Lai
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hena Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yan Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Zhixiang Hu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Shenglin Huang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
59
|
Hu H, Tang J, Wang H, Guo X, Tu C, Li Z. The crosstalk between alternative splicing and circular RNA in cancer: pathogenic insights and therapeutic implications. Cell Mol Biol Lett 2024; 29:142. [PMID: 39550559 PMCID: PMC11568689 DOI: 10.1186/s11658-024-00662-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
RNA splicing is a fundamental step of gene expression. While constitutive splicing removes introns and joins exons unbiasedly, alternative splicing (AS) selectively determines the assembly of exons and introns to generate RNA variants corresponding to the same transcript. The biogenesis of circular RNAs (circRNAs) is inextricably associated with AS. Back-splicing, the biogenic process of circRNA, is a special form of AS. In cancer, both AS and circRNA deviate from the original track. In the present review, we delve into the intricate interplay between AS and circRNAs in the context of cancer. The relationship between AS and circRNAs is intricate, where AS modulates the biogenesis of circRNAs and circRNAs in return regulate AS events. Beyond that, epigenetic and posttranscriptional modifications concurrently regulate AS and circRNAs. On the basis of this modality, we summarize current knowledge on how splicing factors and other RNA binding proteins regulate circRNA biogenesis, and how circRNAs interact with splicing factors to influence AS events. Specifically, the feedback loop regulation between circRNAs and AS events contributes greatly to oncogenesis and cancer progression. In summary, resolving the crosstalk between AS and circRNA will not only provide better insight into cancer biology but also provoke novel strategies to combat cancer.
Collapse
Affiliation(s)
- Hongkun Hu
- Department of Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Jinxin Tang
- Department of Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Hua Wang
- Department of Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Xiaoning Guo
- Department of Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| | - Chao Tu
- Department of Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Zhihong Li
- Department of Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
60
|
Rodriguez JM, Maquedano M, Cerdan-Velez D, Calvo E, Vazquez J, Tress ML. A deep audit of the PeptideAtlas database uncovers evidence for unannotated coding genes and aberrant translation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623419. [PMID: 39605392 PMCID: PMC11601488 DOI: 10.1101/2024.11.14.623419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The human genome has been the subject of intense scrutiny by experimental and manual curation projects for more than two decades. Novel coding genes have been proposed from large-scale RNASeq, ribosome profiling and proteomics experiments. Here we carry out an in-depth analysis of an entire proteomics database. We analysed the proteins, peptides and spectra housed in the human build of the PeptideAtlas proteomics database to identify coding regions that are not yet annotated in the GENCODE reference gene set. We find support for hundreds of missing alternative protein isoforms and unannotated upstream translations, and evidence of cross-contamination from other species. There was reliable peptide evidence for 34 novel unannotated open reading frames (ORFs) in PeptideAtlas. We find that almost half belong to coding genes that are missing from GENCODE and other reference sets. Most of the remaining ORFs were not conserved beyond human, however, and their peptide confirmation was restricted to cancer cell lines. We show that this is strong evidence for aberrant translation, raising important questions about the extent of aberrant translation and how these ORFs should be annotated in reference genomes.
Collapse
Affiliation(s)
- Jose Manuel Rodriguez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Miguel Maquedano
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Daniel Cerdan-Velez
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Enrique Calvo
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Jesús Vazquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Michael L Tress
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| |
Collapse
|
61
|
Szelest M, Giannopoulos K. Targeting splicing for hematological malignancies therapy. BMC Genomics 2024; 25:1067. [PMID: 39528914 PMCID: PMC11552377 DOI: 10.1186/s12864-024-10975-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Alterations in splicing patterns of leukemic cells have a functional impact and influence most cellular processes since aberrantly spliced isoforms can provide a proliferative advantage, enable to evade apoptosis, induce metabolic reprogramming, change cell signaling and antitumor immune response, or develop drug resistance. In this Review, we first characterize the general mechanism of mRNA processing regulation with a focus on the role of splicing factors, which are commonly mutated in blood neoplasms. Next, we provide a comprehensive summary on the current understanding of alternative splicing events, which confer resistance to targeted treatment strategies and immunotherapy. We introduce the functional consequences of mis-spliced variants (CD19-∆ex2, CD22-∆ex2, CD22-∆ex5-6, CD33-∆ex2, PIK3CD-S, BCR-ABL35INS, BIM-γ, FPGS-8PR, dCK-∆ex2-3, and SLC29A1-∆ex13) production in leukemic cells. Of therapeutic relevance, we summarize novel strategies focused on pharmacological correction of aberrant splicing, including small-molecule splicing modulators and splice-switching oligonucleotides. We also include the findings of recent preclinical investigation of the antisense strategies based on modified oligonucleotides. Finally, we discuss the potential of emerging combination therapies for the treatment of hematological disorders with disrupted splicing.
Collapse
Affiliation(s)
- Monika Szelest
- Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, Lublin, 20-093, Poland.
| | - Krzysztof Giannopoulos
- Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, Lublin, 20-093, Poland
| |
Collapse
|
62
|
López I, Valdivia IL, Vojtesek B, Fåhraeus R, Coates P. Re-appraising the evidence for the source, regulation and function of p53-family isoforms. Nucleic Acids Res 2024; 52:12112-12129. [PMID: 39404067 PMCID: PMC11551734 DOI: 10.1093/nar/gkae855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 11/12/2024] Open
Abstract
The p53 family of proteins evolved from a common ancestor into three separate genes encoding proteins that act as transcription factors with distinct cellular roles. Isoforms of each member that lack specific regions or domains are suggested to result from alternative transcription start sites, alternative splicing or alternative translation initiation, and have the potential to exponentially increase the functional repertoire of each gene. However, evidence supporting the presence of individual protein variants at functional levels is often limited and is inferred by mRNA detection using highly sensitive amplification techniques. We provide a critical appraisal of the current evidence for the origins, expression, functions and regulation of p53-family isoforms. We conclude that despite the wealth of publications, several putative isoforms remain poorly established. Future research with improved technical approaches and the generation of isoform-specific protein detection reagents is required to establish the physiological relevance of p53-family isoforms in health and disease. In addition, our analyses suggest that p53-family variants evolved partly through convergent rather than divergent evolution from the ancestral gene.
Collapse
Affiliation(s)
- Ignacio López
- Biochemistry, Faculty of Science, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| | - Irene Larghero Valdivia
- Biochemistry, Faculty of Science, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Borivoj Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 65653, Czech Republic
| | - Robin Fåhraeus
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 65653, Czech Republic
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris Cité, 27 rue Juliette Dodu, Hôpital St. Louis, Paris F-75010, France
- Department of Medical Biosciences, Building 6M, Umeå University, Umeå 90185, Sweden
| | - Philip J Coates
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 65653, Czech Republic
| |
Collapse
|
63
|
Biswas J, Boussi L, Stein E, Abdel-Wahab O. Aberrant pre-mRNA processing in cancer. J Exp Med 2024; 221:e20230891. [PMID: 39316554 PMCID: PMC11448470 DOI: 10.1084/jem.20230891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/29/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Dysregulation of the flow of information from genomic DNA to RNA to protein occurs within all cancer types. In this review, we described the current state of understanding of how RNA processing is dysregulated in cancer with a focus on mutations in the RNA splicing factor machinery that are highly prevalent in hematologic malignancies. We discuss the downstream effects of these mutations highlighting both individual genes as well as common pathways that they perturb. We highlight examples of how alterations in RNA processing have been harnessed for therapeutic intent as well as to promote the selective toxicity of cancer cells.
Collapse
Affiliation(s)
- Jeetayu Biswas
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Leora Boussi
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eytan Stein
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
64
|
Cho N, Kim SY, Lee SG, Park C, Choi S, Kim EM, Kim KK. Alternative splicing of PBRM1 mediates resistance to PD-1 blockade therapy in renal cancer. EMBO J 2024; 43:5421-5444. [PMID: 39375538 PMCID: PMC11574163 DOI: 10.1038/s44318-024-00262-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
Alternative pre-mRNA splicing (AS) is a biological process that results in proteomic diversity. However, implications of AS alterations in cancer remain poorly understood. Herein, we performed a comprehensive AS analysis in cancer driver gene transcripts across fifteen cancer types and found global alterations in inclusion rates of the PBAF SWI/SNF chromatin remodeling complex subunit Polybromo 1 (PBRM1) exon 27 (E27) in most types of cancer tissues compared with those in normal tissues. Further analysis confirmed that PBRM1 E27 is excluded by the direct binding of RBFOX2 to intronic UGCAUG elements. In addition, the E27-included PBRM1 isoform upregulated PD-L1 expression via enhanced PBAF complex recruitment to the PD-L1 promoter. PBRM1 wild-type patients with clear cell renal cell carcinoma were resistant to PD-1 blockade therapy when they expressed low RBFOX2 mRNA levels. Overall, our study suggests targeting of RBFOX2-mediated AS of PBRM1 as a potential therapeutic strategy for immune checkpoint blockade.
Collapse
Affiliation(s)
- Namjoon Cho
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seung-Yeon Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sung-Gwon Lee
- School of Biological Science and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Chungoo Park
- School of Biological Science and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sunkyung Choi
- Department of Biological Sciences, College of Natural Sciences, Keimyung University, Daegu, 42601, Republic of Korea.
| | - Eun-Mi Kim
- Department of Bio & Environmental Technology, College of Science and Convergence Technology, Seoul Women's University, Seoul, 01797, Republic of Korea.
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
65
|
He H, Zhou Q, Zhang Y, Li Y, Ding L, Shen T, Liu S, Peng S, Huang M, Zhou H, Cheng L, Xie R, Zhang Q, Lu J, Li L, Yang J, Bai S, Lin T, Chen X. PTBP1 Regulates DNMT3B Alternative Splicing by Interacting With RALY to Enhance the Radioresistance of Prostate Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405997. [PMID: 39287090 PMCID: PMC11558147 DOI: 10.1002/advs.202405997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/17/2024] [Indexed: 09/19/2024]
Abstract
Radiotherapy is a curative arsenal for prostate cancer (PCa), but radioresistance seriously compromises its effectiveness. Dysregulated RNA splicing factors are extensively involved in tumor progression. Nonetheless, the role of splicing factors in radioresistance remains largely unexplored in PCa. Here, 23 splicing factors that are differentially expressed between PCa and adjacent normal tissues across multiple public PCa databases are identified. Among those genes, polypyrimidine tract binding protein 1 (PTBP1) is significantly upregulated in PCa and is positively associated with advanced clinicopathological features and poor prognosis. Gain- and loss-of-function experiments demonstrate that PTBP1 markedly reinforces genomic DNA stability to desensitize PCa cells to irradiation in vitro and in vivo. Mechanistically, PTBP1 interacts with the heterogeneous nuclear ribonucleoproteins (hnRNP) associated with lethal yellow protein homolog (RALY) and regulates exon 5 splicing of DNA methyltransferase 3b (DNMT3B) from DNMT3B-S to DNMT3B-L. Furthermore, upregulation of DNMT3B-L induces promoter methylation of dual-specificity phosphatase-2 (DUSP2) and subsequently inhibits DUSP2 expression, thereby increasing radioresistance in PCa. The findings highlight the role of splicing factors in inducing aberrant splicing events in response to radiotherapy and the potential role of PTBP1 and DNMT3B-L in reversing radioresistance in PCa.
Collapse
Affiliation(s)
- Haixia He
- Department of Radiation OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Qianghua Zhou
- Department of UrologySun Yat‐sen University Cancer CenterGuangzhou510060China
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center of Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Yangjie Zhang
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Yi Li
- Department of Radiation OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Lin Ding
- Department of Radiation OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Ting Shen
- Department of Radiation OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Sen Liu
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Shengmeng Peng
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Ming Huang
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Hua Zhou
- Department of UrologyPu'er People's Hospital of Yunnan ProvincePu'er665000China
| | - Liang Cheng
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Ruihui Xie
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Qiang Zhang
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Junlin Lu
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Liting Li
- Department of Radiation OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Jing Yang
- Department of Radiation OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Shoumin Bai
- Department of Radiation OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Tianxin Lin
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Xu Chen
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| |
Collapse
|
66
|
Temaj G, Chichiarelli S, Saha S, Telkoparan-Akillilar P, Nuhii N, Hadziselimovic R, Saso L. Alternative Splicing: A Potential Therapeutic Target in Hematological Malignancies. Hematol Rep 2024; 16:682-697. [PMID: 39584923 PMCID: PMC11587037 DOI: 10.3390/hematolrep16040066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/07/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
Leukemia represents the most prevalent malignancy in children, constituting 30% of childhood cancer cases, with acute lymphoblastic leukemia (ALL) being particularly heterogeneous. This paper explores the role of alternative splicing in leukemia, highlighting its significance in cancer development and progression. Aberrant splicing is often driven by mutations in splicing-factor genes, which can lead to the production of variant proteins that contribute to oncogenesis. The spliceosome, a complex of small nuclear RNAs and proteins, facilitates RNA splicing, a process critical for generating diverse mRNA and protein products from single genes. Mutations in splicing factors, such as U2AF1, SF3B1, SRSF2, ZRSR2, and HNRNPH1, are frequently observed across various hematological malignancies and are associated with poor prognosis and treatment resistance. This research underscores the necessity of understanding the mechanisms of RNA splicing dysregulation in order to develop targeted therapies to correct these aberrant processes, thereby improving outcomes for patients with leukemia and related disorders.
Collapse
Affiliation(s)
- Gazmend Temaj
- Faculty of Pharmacy, College UBT, 10000 Prishtina, Kosovo;
| | - Silvia Chichiarelli
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Sarmistha Saha
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 00185, Uttar Pradesh, India
| | | | - Nexhibe Nuhii
- Department of Pharmacy, Faculty of Medical Sciences, State University of Tetovo, 1200 Tetovo, North Macedonia;
| | - Rifat Hadziselimovic
- Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, La Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
67
|
He X, Feng G, Gao X, Liu J. Comprehensive analysis of clinical features, mRNA splicing, and immunological role of REEP5 in esophageal squamous cell carcinoma. Sci Rep 2024; 14:25675. [PMID: 39463444 PMCID: PMC11514286 DOI: 10.1038/s41598-024-77631-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent malignancy within the digestive system, characterized by high incidence and mortality rates. The biological role of REEP5 in ESCC progression remains poorly understood, despite its associations with various diseases, potentially accelerating tumor malignancy. We retrieved RNA-seq data and clinical information from 179 ESCC patients from the Gene Expression Omnibus (GEO) and 93 patients from The Cancer Genome Atlas (TCGA) databases. Bioinformatics analyses were conducted to explore the biological functions of REEP5 in ESCC, its role in the tumor microenvironment, and its prognostic value. Additionally, utilizing single-cell RNA-seq (scRNA-seq) data from 3 ESCC patients in the GEO database, we performed cluster analyses to investigate cell-specific expression differences of REEP5 between cancerous and adjacent non-cancerous tissues. Molecular biology experiments were also conducted to validate REEP5 expression disparities between tumor and non-tumor tissues. Compared to normal tissues, REEP5 was significantly enriched in ESCC tissues. High REEP5 expression was closely associated with poor prognosis in ESCC patients. Gene Ontology (GO) analysis revealed strong correlations between REEP5 and processes such as mRNA splicing and protein stabilization. Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) indicated positive correlations between REEP5 and mRNA spliceosome assembly and disassembly. Pearson correlation analysis demonstrated positive associations between REEP5 and cancer-inhibitory immune checkpoints CTLA-4, TIM-3, and HVEM. Single-cell clustering and CIBERSORT analysis showed that REEP5 expression was closely related to T-cell infiltration in ESCC, with significant enrichment effects observed in CD8+ T-cell infiltration. REEP5 expression is closely correlated with the pathological and molecular pathology of ESCC, potentially playing a crucial role in Mast cell or T-cell-mediated immune responses in ESCC. Therefore, REEP5 holds promise as a novel therapeutic target for ESCC.
Collapse
Affiliation(s)
- Xu He
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
- Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Guiyu Feng
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
- Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xiang Gao
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jun Liu
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China.
| |
Collapse
|
68
|
Luvhengo TE, Moeng MS, Sishuba NT, Makgoka M, Jonas L, Mamathuntsha TG, Mbambo T, Kagodora SB, Dlamini Z. Holomics and Artificial Intelligence-Driven Precision Oncology for Medullary Thyroid Carcinoma: Addressing Challenges of a Rare and Aggressive Disease. Cancers (Basel) 2024; 16:3469. [PMID: 39456563 PMCID: PMC11505703 DOI: 10.3390/cancers16203469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objective: Medullary thyroid carcinoma (MTC) is a rare yet aggressive form of thyroid cancer comprising a disproportionate share of thyroid cancer-related mortalities, despite its low prevalence. MTC differs from other differentiated thyroid malignancies due to its heterogeneous nature, presenting complexities in both hereditary and sporadic cases. Traditional management guidelines, which are designed primarily for papillary thyroid carcinoma (PTC), fall short in providing the individualized care required for patients with MTC. In recent years, the sheer volume of data generated from clinical evaluations, radiological imaging, pathological assessments, genetic mutations, and immunological profiles has made it humanly impossible for clinicians to simultaneously analyze and integrate these diverse data streams effectively. This data deluge necessitates the adoption of advanced technologies to assist in decision-making processes. Holomics, which is an integrated approach that combines various omics technologies, along with artificial intelligence (AI), emerges as a powerful solution to address these challenges. Methods: This article reviews how AI-driven precision oncology can enhance the diagnostic workup, staging, risk stratification, management, and follow-up care of patients with MTC by processing vast amounts of complex data quickly and accurately. Articles published in English language and indexed in Pubmed were searched. Results: AI algorithms can identify patterns and correlations that may not be apparent to human clinicians, thereby improving the precision of personalized treatment plans. Moreover, the implementation of AI in the management of MTC enables the collation and synthesis of clinical experiences from across the globe, facilitating a more comprehensive understanding of the disease and its treatment outcomes. Conclusions: The integration of holomics and AI in the management of patients with MTC represents a significant advancement in precision oncology. This innovative approach not only addresses the complexities of a rare and aggressive disease but also paves the way for global collaboration and equitable healthcare solutions, ultimately transforming the landscape of treatment and care of patients with MTC. By leveraging AI and holomics, we can strive toward making personalized healthcare accessible to every individual, regardless of their economic status, thereby improving overall survival rates and quality of life for MTC patients worldwide. This global approach aligns with the United Nations Sustainable Development Goal 3, which aims to ensure healthy lives and promote well-being at all ages.
Collapse
Affiliation(s)
| | - Maeyane Stephens Moeng
- Department of Surgery, University of the Witwatersrand, Johannesburg 2193, South Africa; (M.S.M.); (N.T.S.)
| | - Nosisa Thabile Sishuba
- Department of Surgery, University of the Witwatersrand, Johannesburg 2193, South Africa; (M.S.M.); (N.T.S.)
| | - Malose Makgoka
- Department of Surgery, University of Pretoria, Pretoria 0002, South Africa;
| | - Lusanda Jonas
- Department of Surgery, University of Limpopo, Mankweng 4062, South Africa; (L.J.); (T.G.M.)
| | | | - Thandanani Mbambo
- Department of Surgery, University of KwaZulu-Natal, Durban 2025, South Africa;
| | | | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI, Precision Oncology and Cancer Prevention (POCP), University of Pretoria, Pretoria 0028, South Africa;
| |
Collapse
|
69
|
Chi WY, Hu Y, Huang HC, Kuo HH, Lin SH, Kuo CTJ, Tao J, Fan D, Huang YM, Wu AA, Hung CF, Wu TC. Molecular targets and strategies in the development of nucleic acid cancer vaccines: from shared to personalized antigens. J Biomed Sci 2024; 31:94. [PMID: 39379923 PMCID: PMC11463125 DOI: 10.1186/s12929-024-01082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/01/2024] [Indexed: 10/10/2024] Open
Abstract
Recent breakthroughs in cancer immunotherapies have emphasized the importance of harnessing the immune system for treating cancer. Vaccines, which have traditionally been used to promote protective immunity against pathogens, are now being explored as a method to target cancer neoantigens. Over the past few years, extensive preclinical research and more than a hundred clinical trials have been dedicated to investigating various approaches to neoantigen discovery and vaccine formulations, encouraging development of personalized medicine. Nucleic acids (DNA and mRNA) have become particularly promising platform for the development of these cancer immunotherapies. This shift towards nucleic acid-based personalized vaccines has been facilitated by advancements in molecular techniques for identifying neoantigens, antigen prediction methodologies, and the development of new vaccine platforms. Generating these personalized vaccines involves a comprehensive pipeline that includes sequencing of patient tumor samples, data analysis for antigen prediction, and tailored vaccine manufacturing. In this review, we will discuss the various shared and personalized antigens used for cancer vaccine development and introduce strategies for identifying neoantigens through the characterization of gene mutation, transcription, translation and post translational modifications associated with oncogenesis. In addition, we will focus on the most up-to-date nucleic acid vaccine platforms, discuss the limitations of cancer vaccines as well as provide potential solutions, and raise key clinical and technical considerations in vaccine development.
Collapse
Affiliation(s)
- Wei-Yu Chi
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Yingying Hu
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hsin-Che Huang
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hui-Hsuan Kuo
- Pharmacology PhD Program, Weill Cornell Medicine, New York, NY, USA
| | - Shu-Hong Lin
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston and MD Anderson Cancer Center, Houston, TX, USA
| | - Chun-Tien Jimmy Kuo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Julia Tao
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
| | - Darrell Fan
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
| | - Yi-Min Huang
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
| | - Annie A Wu
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Obstetrics and Gynecology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - T-C Wu
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA.
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Obstetrics and Gynecology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
70
|
Wu L, Yi W, Yao S, Xie S, Peng R, Zhang J, Tan W. mRNA-Based Cancer Vaccines: Advancements and Prospects. NANO LETTERS 2024. [PMID: 39375146 DOI: 10.1021/acs.nanolett.4c03296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The success of mRNA COVID-19 vaccines has reinvigorated research and interest in mRNA-based cancer vaccines. Despite promising results in clinical trials, therapeutic mRNA-based cancer vaccines have not yet been approved for human use. These vaccines are designed to trigger tumor regression, establish enduring antitumor memory, and mitigate adverse reactions. However, challenges such as tumor-induced immunosuppression and immunoresistance significantly hinder their application. Here, we provide an overview of the recent advances of neoantigen discovery and delivery systems for mRNA vaccines, focusing on improving clinical efficacy. Additionally, we summarize the recent clinical advances involving mRNA cancer vaccines and discuss prospective strategies for overcoming immuneresistance.
Collapse
Affiliation(s)
- Lijin Wu
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing 100049, China
| | - Weicheng Yi
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Shiyu Yao
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Sitao Xie
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ruizi Peng
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jing Zhang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Weihong Tan
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
71
|
Cui C, Ott PA, Wu CJ. Advances in Vaccines for Melanoma. Hematol Oncol Clin North Am 2024; 38:1045-1060. [PMID: 39079791 PMCID: PMC11524149 DOI: 10.1016/j.hoc.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2024]
Abstract
Personalized neoantigen vaccines have achieved major advancements in recent years, with studies in melanoma leading progress in the field. Early clinical trials have demonstrated their feasibility, safety, immunogenicity, and potential efficacy. Advances in sequencing technologies and neoantigen prediction algorithms have substantively improved the identification and prioritization of neoantigens. Innovative delivery platforms now support the rapid and flexible production of vaccines. Several ongoing efforts in the field are aimed at improving the integration of large datasets, refining the training of prediction models, and ensuring the functional validation of vaccine immunogenicity.
Collapse
Affiliation(s)
- Can Cui
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Patrick A Ott
- Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Catherine J Wu
- Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
72
|
Kjer-Hansen P, Phan TG, Weatheritt RJ. Protein isoform-centric therapeutics: expanding targets and increasing specificity. Nat Rev Drug Discov 2024; 23:759-779. [PMID: 39232238 DOI: 10.1038/s41573-024-01025-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
Most protein-coding genes produce multiple protein isoforms; however, these isoforms are commonly neglected in drug discovery. The expression of protein isoforms can be specific to a disease, tissue and/or developmental stage, and this specific expression can be harnessed to achieve greater drug specificity than pan-targeting of all gene products and to enable improved treatments for diseases caused by aberrant protein isoform production. In recent years, several protein isoform-centric therapeutics have been developed. Here, we collate these studies and clinical trials to highlight three distinct but overlapping modes of action for protein isoform-centric drugs: isoform switching, isoform introduction or depletion, and modulation of isoform activity. In addition, we discuss how protein isoforms can be used clinically as targets for cell type-specific drug delivery and immunotherapy, diagnostic biomarkers and sources of cancer neoantigens. Collectively, we emphasize the value of a focus on isoforms as a route to discovering drugs with greater specificity and fewer adverse effects. This approach could enable the targeting of proteins for which pan-inhibition of all isoforms is toxic and poorly tolerated.
Collapse
Affiliation(s)
- Peter Kjer-Hansen
- EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
- St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Darlinghurst, New South Wales, Australia.
| | - Tri Giang Phan
- St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Darlinghurst, New South Wales, Australia
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Robert J Weatheritt
- EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
73
|
Matsumaru T, Iwamatsu T, Ishigami K, Inai M, Kanto W, Ishigaki A, Toyoda A, Shuto S, Maenaka K, Nakagawa S, Maita H. Identification of BAY61-3606 Derivatives With Improved Activity in Splicing Modulation That Induces Inclusion of Cassette Exons Similar to the Splicing Factor 3B Subunit 1 Mutation. Chem Biol Drug Des 2024; 104:e70002. [PMID: 39438141 DOI: 10.1111/cbdd.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Splicing modulation by a small compound offers therapeutic potential for diseases caused by splicing abnormality. However, only a few classes of compounds that can modulate splicing have been identified. We previously identified BAY61-3606, a multiple kinase inhibitor, as a compound that relaxes the splicing fidelity at the 3' splice site recognition. We have also reported the synthesis of derivatives of BAY61-3606. In this study, we tested those compounds for their splicing modulation capabilities and identified two contrasting compounds. These compounds were further investigated for their effects on the whole transcriptome, and analysis of changes in transcription and splicing revealed that the highly active derivative in the splicing reporter assay also showed significantly higher activity in modulating the splicing of endogenously expressed genes. Particularly, cassette exon inclusion was highly upregulated by this compound, and clustering analysis revealed that these effects resembled those in splicing factor 3b subunit 1 (SF3B1) K700E mutant cells but contrasted with those of the splicing inhibitor H3B-8800. Additionally, a group of serine/arginine-rich (SR) protein genes was identified as representatively affected, likely via modulation of poison exon inclusion. This finding could guide further analysis of the mode of action of these compounds on splicing, which could be valuable for developing drugs for diseases associated with splicing abnormalities.
Collapse
Affiliation(s)
| | - Toshiki Iwamatsu
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kana Ishigami
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Makoto Inai
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Wataru Kanto
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Ayumi Ishigaki
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Katsumi Maenaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Shinichi Nakagawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hiroshi Maita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
74
|
Yong Liu, Huang Y, Zhao C, Zhou X, Lu J, Fang S. The roles of genetic mutation and cytokines/chemokines in immune response and their association with uveal melanoma patient outcome. Heliyon 2024; 10:e37852. [PMID: 39328513 PMCID: PMC11425128 DOI: 10.1016/j.heliyon.2024.e37852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
The impact of tumor mutations and the interplay of cytokines and chemokines on the immune response and clinical outcomes in uveal melanoma (UM) warrants further exploration. In our study, we delved into the correlation between genetic alterations and survival rates in a cohort of 188 UM patients, utilizing data from cBioPortal. We assessed the composition of immune cell populations within 80 UM tumors by examining RNA sequence-based gene expression data from The Cancer Genome Atlas (TCGA). Furthermore, we scrutinized the relationship between genetic mutations and the expression of cytokines and chemokines, as well as their influence on various immune cell subsets. Our investigation revealed a significant association between the presence of mutated GNAQ or SF3B1 genes and improved progression-free survival (PFS), disease-specific survival (DSS), and overall survival (OS) when compared to patients with non-mutated counterparts. In contrast, the presence of immune response gene mutations was associated with a detrimental effect on PFS, DSS, and OS. We also observed that the expression levels of cytokines and chemokines were positively linked to the infiltration of immune killer cells and inversely related to the populations of B cells and dendritic cells. Elevated expression levels of PDCD1, TNF, IL6, CXCL9, and CXCL10 were found to be correlated with reduced OS. Intriguingly, an increase in CD8+ T cell populations was associated with a poorer OS, a finding that warrants further investigation. These findings underscore the potential utility of cytokines/chemokines expression levels, immune cell subsets, and mutation status as critical biomarkers for the selection of patients who are most likely to benefit from immunotherapeutic interventions. Our research provides valuable insights that could guide the development of more targeted and effective treatment strategies for UM patients.
Collapse
Affiliation(s)
- Yong Liu
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
- Department of ICU, Shenzhen Hospital, Southern Medical University, China
| | - Yeen Huang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
| | - Chengzhi Zhao
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
| | - Xinke Zhou
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510700, China
| | - Jiachun Lu
- The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Shenying Fang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
75
|
Yang K, Islas N, Jewell S, Jha A, Radens CM, Pleiss JA, Lynch KW, Barash Y, Choi PS. Machine learning-optimized targeted detection of alternative splicing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614162. [PMID: 39386495 PMCID: PMC11463589 DOI: 10.1101/2024.09.20.614162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
RNA-sequencing (RNA-seq) is widely adopted for transcriptome analysis but has inherent biases which hinder the comprehensive detection and quantification of alternative splicing. To address this, we present an efficient targeted RNA-seq method that greatly enriches for splicing-informative junction-spanning reads. Local Splicing Variation sequencing (LSV-seq) utilizes multiplexed reverse transcription from highly scalable pools of primers anchored near splicing events of interest. Primers are designed using Optimal Prime, a novel machine learning algorithm trained on the performance of thousands of primer sequences. In experimental benchmarks, LSV-seq achieves high on-target capture rates and concordance with RNA-seq, while requiring significantly lower sequencing depth. Leveraging deep learning splicing code predictions, we used LSV-seq to target events with low coverage in GTEx RNA-seq data and newly discover hundreds of tissue-specific splicing events. Our results demonstrate the ability of LSV-seq to quantify splicing of events of interest at high-throughput and with exceptional sensitivity.
Collapse
Affiliation(s)
- Kevin Yang
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology & Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Cancer Pathobiology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nathaniel Islas
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, USA
| | - San Jewell
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Anupama Jha
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Caleb M. Radens
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey A. Pleiss
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Kristen W. Lynch
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Yoseph Barash
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter S. Choi
- Department of Pathology & Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Cancer Pathobiology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
76
|
Ji M, Yu Q, Yang XZ, Yu X, Wang J, Xiao C, An NA, Han C, Li CY, Ding W. Long-range alternative splicing contributes to neoantigen specificity in glioblastoma. Brief Bioinform 2024; 25:bbae503. [PMID: 39401143 PMCID: PMC11472750 DOI: 10.1093/bib/bbae503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/14/2024] [Indexed: 10/17/2024] Open
Abstract
Recent advances in neoantigen research have accelerated the development of immunotherapies for cancers, such as glioblastoma (GBM). Neoantigens resulting from genomic mutations and dysregulated alternative splicing have been studied in GBM. However, these studies have primarily focused on annotated alternatively-spliced transcripts, leaving non-annotated transcripts largely unexplored. Circular ribonucleic acids (circRNAs), abnormally regulated in tumors, are correlated with the presence of non-annotated linear transcripts with exon skipping events. But the extent to which these linear transcripts truly exist and their functions in cancer immunotherapies remain unknown. Here, we found the ubiquitous co-occurrence of circRNA biogenesis and alternative splicing across various tumor types, resulting in large amounts of long-range alternatively-spliced transcripts (LRs). By comparing tumor and healthy tissues, we identified tumor-specific LRs more abundant in GBM than in normal tissues and other tumor types. This may be attributable to the upregulation of the protein quaking in GBM, which is reported to promote circRNA biogenesis. In total, we identified 1057 specific and recurrent LRs in GBM. Through in silico translation prediction and MS-based immunopeptidome analysis, 16 major histocompatibility complex class I-associated peptides were identified as potential immunotherapy targets in GBM. This study revealed long-range alternatively-spliced transcripts specifically upregulated in GBM may serve as recurrent, immunogenic tumor-specific antigens.
Collapse
Affiliation(s)
- Mingjun Ji
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Qing Yu
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Xin-Zhuang Yang
- Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Dongcheng District, Beijing 100730, China
| | - Xianhong Yu
- Academic Department, Shanghai MobiDrop Co., Ltd., Room 308, Building 1, No. 351 Guoshoujing Road, Shanghai Free Trade Pilot Zone, Shanghai 200000, China
| | - Jiaxin Wang
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Chunfu Xiao
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Ni A An
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Chuanhui Han
- School of Basic Medical Sciences, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Chuan-Yun Li
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
- Chinese Institute for Brain Research, No. 26 Science Park Road, Changping District, Beijing 102206, China
- Southwest United Graduate School, 121 Dajie, Wuhua District, Kunming 650092, China
| | - Wanqiu Ding
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
- Bioinformatics Core Facility, Institute of Molecular Medicine, College of Future Technology, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| |
Collapse
|
77
|
Yang W, Hong L, Guo L, Wang Y, Han X, Han B, Xing Z, Zhang G, Zhou H, Chen C, Ling H, Shao Z, Hu X. Targeting SNRNP200-induced splicing dysregulation offers an immunotherapy opportunity for glycolytic triple-negative breast cancer. Cell Discov 2024; 10:96. [PMID: 39285160 PMCID: PMC11405407 DOI: 10.1038/s41421-024-00715-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/17/2024] [Indexed: 09/22/2024] Open
Abstract
Metabolic dysregulation is prominent in triple-negative breast cancer (TNBC), yet therapeutic strategies targeting cancer metabolism are limited. Here, utilizing multiomics data from our TNBC cohort (n = 465), we demonstrated widespread splicing deregulation and increased spliceosome abundance in the glycolytic TNBC subtype. We identified SNRNP200 as a crucial mediator of glucose-driven metabolic reprogramming. Mechanistically, glucose induces acetylation at SNRNP200 K1610, preventing its proteasomal degradation. Augmented SNRNP200 then facilitates splicing key metabolic enzyme-encoding genes (GAPDH, ALDOA, and GSS), leading to increased lactic acid and glutathione production. Targeting SNRNP200 with antisense oligonucleotide therapy impedes tumor metabolism and enhances the efficacy of anti-PD-1 therapy by activating intratumoral CD8+ T cells while suppressing regulatory T cells. Clinically, higher SNRNP200 levels indicate an inferior response to immunotherapy in glycolytic TNBCs. Overall, our study revealed the intricate interplay between RNA splicing and metabolic dysregulation, suggesting an innovative combination strategy for immunotherapy in glycolytic TNBCs.
Collapse
Affiliation(s)
- Wenxiao Yang
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Luo Hong
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Linwei Guo
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yunjin Wang
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiangchen Han
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Boyue Han
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zheng Xing
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guoliang Zhang
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hongxia Zhou
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Chao Chen
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hong Ling
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhimin Shao
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xin Hu
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
| |
Collapse
|
78
|
Li Z, Zhang B, Chan JJ, Tabatabaeian H, Tong QY, Chew XH, Fan X, Driguez P, Chan C, Cheong F, Wang S, Siew BE, Tan IJW, Lee KY, Lieske B, Cheong WK, Kappei D, Tan KK, Gao X, Tay Y. An isoform-resolution transcriptomic atlas of colorectal cancer from long-read single-cell sequencing. CELL GENOMICS 2024; 4:100641. [PMID: 39216476 PMCID: PMC11480860 DOI: 10.1016/j.xgen.2024.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 06/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Colorectal cancer (CRC) ranks as the second leading cause of cancer deaths globally. In recent years, short-read single-cell RNA sequencing (scRNA-seq) has been instrumental in deciphering tumor heterogeneities. However, these studies only enable gene-level quantification but neglect alterations in transcript structures arising from alternative end processing or splicing. In this study, we integrated short- and long-read scRNA-seq of CRC samples to build an isoform-resolution CRC transcriptomic atlas. We identified 394 dysregulated transcript structures in tumor epithelial cells, including 299 resulting from various combinations of splicing events. Second, we characterized genes and isoforms associated with epithelial lineages and subpopulations exhibiting distinct prognoses. Among 31,935 isoforms with novel junctions, 330 were supported by The Cancer Genome Atlas RNA-seq and mass spectrometry data. Finally, we built an algorithm that integrated novel peptides derived from open reading frames of recurrent tumor-specific transcripts with mass spectrometry data and identified recurring neoepitopes that may aid the development of cancer vaccines.
Collapse
Affiliation(s)
- Zhongxiao Li
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence for Smart Health (KCSH), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence on Generative AI, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Bin Zhang
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence for Smart Health (KCSH), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence on Generative AI, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Jia Jia Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Hossein Tabatabaeian
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Qing Yun Tong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Xiao Hong Chew
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Xiaonan Fan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Patrick Driguez
- Core Labs, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Charlene Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Faith Cheong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Shi Wang
- Department of Pathology, National University Health System, Singapore 119228, Singapore
| | - Bei En Siew
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Ian Jse-Wei Tan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Kai-Yin Lee
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Bettina Lieske
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Wai-Kit Cheong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Ker-Kan Tan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Xin Gao
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence for Smart Health (KCSH), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence on Generative AI, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Yvonne Tay
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
79
|
Anderson GSF, Chapman MA. T cell-redirecting therapies in hematological malignancies: Current developments and novel strategies for improved targeting. Mol Ther 2024; 32:2856-2891. [PMID: 39095991 PMCID: PMC11403239 DOI: 10.1016/j.ymthe.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
T cell-redirecting therapies (TCRTs), such as chimeric antigen receptor (CAR) or T cell receptor (TCR) T cells and T cell engagers, have emerged as a highly effective treatment modality, particularly in the B and plasma cell-malignancy setting. However, many patients fail to achieve deep and durable responses; while the lack of truly unique tumor antigens, and concurrent on-target/off-tumor toxicities, have hindered the development of TCRTs for many other cancers. In this review, we discuss the recent developments in TCRT targets for hematological malignancies, as well as novel targeting strategies that aim to address these, and other, challenges.
Collapse
Affiliation(s)
| | - Michael A Chapman
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QR, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK; Addenbrooke's Hospital, Cambridge Universities Foundation Trust, Cambridge CB2 0QQ, UK.
| |
Collapse
|
80
|
Naskar S, Sriraman N, Sarkar A, Mahajan N, Sarkar K. Tumor antigen presentation and the associated signal transduction during carcinogenesis. Pathol Res Pract 2024; 261:155485. [PMID: 39088877 DOI: 10.1016/j.prp.2024.155485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
Numerous developments have been achieved in the study and treatment of cancer throughout the decades that it has been common. After decades of research, about 100 different kinds of cancer have been found, each with unique subgroups within certain organs. This has significantly expanded our understanding of the illness. A mix of genetic, environmental, and behavioral variables contribute to the complicated and diverse process of cancer formation. Mutations, or changes in the DNA sequence, are crucial to the development of cancer. These mutations have the ability to downregulate the expression and function of Major Histocompatibility Complex class I (MHC I) and MHCII receptors, as well as activate oncogenes and inactivate tumor suppressor genes. Cancer cells use this tactic to avoid being recognized by cytotoxic CD8+T lymphocytes, which causes issues with antigen presentation and processing. This review goes into great length into the PI3K pathway, changes to MHC I, and positive impacts of tsMHC-II on disease-free survival and overall survival and the involvement of dendritic cells (DCs) in different tumor microenvironments. The vital functions that the PI3K pathway and its link to the mTOR pathway are highlighted and difficulties in developing effective cancer targeted therapies and feedback systems has also been mentioned, where resistance mechanisms include RAS-mediated oncogenic changes and active PI3K signalling.
Collapse
Affiliation(s)
- Sohom Naskar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nawaneetan Sriraman
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ankita Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nitika Mahajan
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
81
|
Zhang J, Xu X, Deng H, Liu L, Xiang Y, Feng J. Overcoming cancer drug-resistance calls for novel strategies targeting abnormal alternative splicing. Pharmacol Ther 2024; 261:108697. [PMID: 39025436 DOI: 10.1016/j.pharmthera.2024.108697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Abnormal gene alternative splicing (AS) events are strongly associated with cancer progression. Here, we summarize AS events that contribute to the development of drug resistance and classify them into three categories: alternative cis-splicing (ACS), alternative trans-splicing (ATS), and alternative back-splicing (ABS). The regulatory mechanisms underlying AS processes through cis-acting regulatory elements and trans-acting factors are comprehensively described, and the distinct functions of spliced variants, including linear spliced variants derived from ACS, chimeric spliced variants arising from ATS, and circRNAs generated through ABS, are discussed. The identification of dysregulated spliced variants, which contribute to drug resistance and hinder effective cancer treatment, suggests that abnormal AS processes may together serve as a precise regulatory mechanism enabling drug-resistant cancer cell survival or, alternatively, represent an evolutionary pathway for cancer cells to adapt to changes in the external environment. Moreover, this review summarizes recent advancements in treatment approaches targeting AS-associated drug resistance, focusing on cis-acting regulatory elements, trans-acting factors, and specific spliced variants. Collectively, gaining an in-depth understanding of the mechanisms underlying aberrant alternative splicing events and developing strategies to target this process hold great promise for overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Xinyu Xu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Hongwei Deng
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yuancai Xiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou city, Sichuan 646000, China.
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
82
|
Rodrigues AM, Paula Zen Petisco Fiore A, Guardia GDA, Tomasin R, Azevedo Reis Teixeira A, Giordano RJ, Schechtman D, Pagano M, Galante PAF, Bruni-Cardoso A. Identification of a novel alternative splicing isoform of the Hippo kinase STK3/MST2 with impaired kinase and cell growth suppressing activities. Oncogene 2024; 43:2938-2950. [PMID: 39174858 DOI: 10.1038/s41388-024-03104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 08/24/2024]
Abstract
Mammalian Ste-20-like Kinases 1 and 2 (MST1/2) are core serine-threonine kinases of the Hippo pathway regulating several cellular processes, including cell cycle arrest and cell death. Here, we discovered a novel alternative splicing variant of the MST2 encoding gene, STK3, in malignant cells and tumor datasets. This variant, named STK3∆7 or MST2∆7 (for mRNA or protein, respectively), resulted from the skipping of exon 7. MST2∆7 exhibited increased ubiquitylation and interaction with the E3 ubiquitin-protein ligase CHIP compared to the full-length protein (MST2FL). Exon 7 in STK3 encodes a segment within the kinase domain, and its exclusion compromised MST2 interaction with and phosphorylation of MOB, a major MST1/2 substrate. Nevertheless, MST2∆7 was capable of interacting with MST1 and MST2FL. Unlike MST2FL, overexpression of MST2∆7 did not lead to increased cell death and growth arrest. Strikingly, we observed the exclusion of STK3 exon 7 in 3.2-15% of tumor samples from patients of several types of cancer, while STK3∆7 was seldomly found in healthy tissues. Our study identified a novel STK3 splicing variant with loss of function and the potential to disturb tissue homeostasis by impacting on MST2 activities in the regulation of cell death and quiescence.
Collapse
Affiliation(s)
- Ana Maria Rodrigues
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Paula Zen Petisco Fiore
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Department of Biology, New York University, New York, NY, USA
| | | | - Rebeka Tomasin
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | - Ricardo Jose Giordano
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Deborah Schechtman
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Alexandre Bruni-Cardoso
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
83
|
Li K, Cheng C, Piao Q, Zhao Q, Yi J, Bao Y, Liu L, Sun L. Genome-wide identification of pan-cancer common and cancer-specific alternative splicing events in 9 types of cancer. Genomics 2024; 116:110917. [PMID: 39147335 DOI: 10.1016/j.ygeno.2024.110917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/04/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024]
Abstract
Alternative splicing (AS) has significant clinical relevance with cancers and is a potential source of neoepitopes. In this study, RNA-seq data of 94 solid tumor and matched adjacent normal tissues from 47 clinical patients covering nine cancer types were comprehensively analyzed using SUVA developed by ourselves. The results identified highly conserved pan-cancer differential alternative splicing (DAS) events and cancer-specific DAS events in a series of tumor samples, which in turn revealed the heterogeneity of AS post-transcriptional regulation across different cancers. The co-disturbed network between spliceosome factors (SFs) and common cancer-associated DAS was further constructed, suggesting the potential possibility of the regulation of differentially expressed SFs on DAS. Finally, the common cancer-associated DAS events were fully validated using the TCGA dataset, confirming the significant correlation between cancer-associated DAS and prognosis. Briefly, our study elucidates new insights into conservatived and specific DAS in cancer, providing valuable resources for cancer therapeutic targets.
Collapse
Affiliation(s)
- Kun Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Chao Cheng
- ABLife BioBigData Institute, Wuhan, China; Center for Genome Analysis, Wuhan Ruixing Biotechnology Co., Ltd., Wuhan, China
| | - Qianling Piao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Qi Zhao
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun, China
| | - Jingwen Yi
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun, China
| | - Yongli Bao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Lei Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China.
| | - Luguo Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China; NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun, China.
| |
Collapse
|
84
|
Hassan M, Tutar L, Sari-Ak D, Rasul A, Basheer E, Tutar Y. Non-genetic heterogeneity and immune subtyping in breast cancer: Implications for immunotherapy and targeted therapeutics. Transl Oncol 2024; 47:102055. [PMID: 39002207 PMCID: PMC11299575 DOI: 10.1016/j.tranon.2024.102055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/25/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024] Open
Abstract
Breast cancer (BC) is a complex and multifactorial disease, driven by genetic alterations that promote tumor growth and progression. However, recent research has highlighted the importance of non-genetic factors in shaping cancer evolution and influencing therapeutic outcomes. Non-genetic heterogeneity refers to diverse subpopulations of cancer cells within breast tumors, exhibiting distinct phenotypic and functional properties. These subpopulations can arise through various mechanisms, including clonal evolution, genetic changes, epigenetic changes, and reversible phenotypic transitions. Although genetic and epigenetic changes are important points of the pathology of breast cancer yet, the immune system also plays a crucial role in its progression. In clinical management, histologic and molecular classification of BC are used. Immunological subtyping of BC has gained attention in recent years as compared to traditional techniques. Intratumoral heterogeneity revealed by immunological microenvironment (IME) has opened novel opportunities for immunotherapy research. This systematic review is focused on non-genetic variability to identify and interlink immunological subgroups in breast cancer. This review provides a deep understanding of adaptive methods adopted by tumor cells to withstand changes in the tumor microenvironment and selective pressure imposed by medications. These adaptive methods include alterations in drug targets, immune system evasion, activation of survival pathways, and alterations in metabolism. Understanding non-genetic heterogeneity is essential for the development of targeted therapies.
Collapse
Affiliation(s)
- Mudassir Hassan
- Department of Zoology, Government College University Faisalabad, Faisalabad, Punjab 38000, Pakistan
| | - Lütfi Tutar
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Kırsehir Ahi Evran University, Kırsehir, Turkey
| | - Duygu Sari-Ak
- Department of Medical Biology, Hamidiye International School of Medicine, University of Health Sciences, Istanbul 34668, Turkey
| | - Azhar Rasul
- Department of Zoology, Government College University Faisalabad, Faisalabad, Punjab 38000, Pakistan
| | - Ejaz Basheer
- Department of Pharmacognosy, Faculty of Pharmaceutical, Sciences Government College University Faisalabad, Pakistan
| | - Yusuf Tutar
- Faculty of Medicine, Division of Biochemistry, Recep Tayyip Erdogan University, Rize, Turkey.
| |
Collapse
|
85
|
Weinstein HNW, Hu K, Fish L, Chen YA, Allegakoen P, Pham JH, Hui KSF, Chang CH, Tutar M, Benitez-Rivera L, Baco MB, Song H, Giacomelli AO, Vazquez F, Ghandi M, Goodarzi H, Huang FW. RPL22 is a tumor suppressor in MSI-high cancers and a splicing regulator of MDM4. Cell Rep 2024; 43:114622. [PMID: 39146182 DOI: 10.1016/j.celrep.2024.114622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/16/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024] Open
Abstract
Microsatellite instability-high (MSI-H) tumors are malignant tumors that, despite harboring a high mutational burden, often have intact TP53. One of the most frequent mutations in MSI-H tumors is a frameshift mutation in RPL22, a ribosomal protein. Here, we identified RPL22 as a modulator of MDM4 splicing through an alternative splicing switch in exon 6. RPL22 loss increases MDM4 exon 6 inclusion and cell proliferation and augments resistance to the MDM inhibitor Nutlin-3a. RPL22 represses the expression of its paralog, RPL22L1, by mediating the splicing of a cryptic exon corresponding to a truncated transcript. Therefore, damaging mutations in RPL22 drive oncogenic MDM4 induction and reveal a common splicing circuit in MSI-H tumors that may inform therapeutic targeting of the MDM4-p53 axis and oncogenic RPL22L1 induction.
Collapse
Affiliation(s)
- Hannah N W Weinstein
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Kevin Hu
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Lisa Fish
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Yih-An Chen
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Paul Allegakoen
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Julia H Pham
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Keliana S F Hui
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Chih-Hao Chang
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Meltem Tutar
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Lorena Benitez-Rivera
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Maria B Baco
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hanbing Song
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew O Giacomelli
- Tumor Immunotherapy Program, Princess Margaret Cancer Center, Toronto, ON, Canada
| | | | | | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Franklin W Huang
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA; San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA.
| |
Collapse
|
86
|
Yang M, Feng Y, Liu J, Wang H, Wu S, Zhao W, Kim P, Zhou X. SexAnnoDB, a knowledgebase of sex-specific regulations from multi-omics data of human cancers. Biol Sex Differ 2024; 15:64. [PMID: 39175079 PMCID: PMC11342657 DOI: 10.1186/s13293-024-00638-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/30/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Sexual differences across molecular levels profoundly impact cancer biology and outcomes. Patient gender significantly influences drug responses, with divergent reactions between men and women to the same drugs. Despite databases on sex differences in human tissues, understanding regulations of sex disparities in cancer is limited. These resources lack detailed mechanistic studies on sex-biased molecules. METHODS In this study, we conducted a comprehensive examination of molecular distinctions and regulatory networks across 27 cancer types, delving into sex-biased effects. Our analyses encompassed sex-biased competitive endogenous RNA networks, regulatory networks involving sex-biased RNA binding protein-exon skipping events, sex-biased transcription factor-gene regulatory networks, as well as sex-biased expression quantitative trait loci, sex-biased expression quantitative trait methylation, sex-biased splicing quantitative trait loci, and the identification of sex-biased cancer therapeutic drug target genes. All findings from these analyses are accessible on SexAnnoDB ( https://ccsm.uth.edu/SexAnnoDB/ ). RESULTS From these analyses, we defined 126 cancer therapeutic target sex-associated genes. Among them, 9 genes showed sex-biased at both the mRNA and protein levels. Specifically, S100A9 was the target of five drugs, of which calcium has been approved by the FDA for the treatment of colon and rectal cancers. Transcription factor (TF)-gene regulatory network analysis suggested that four TFs in the SARC male group targeted S100A9 and upregulated the expression of S100A9 in these patients. Promoter region methylation status was only associated with S100A9 expression in KIRP female patients. Hypermethylation inhibited S100A9 expression and was responsible for the downregulation of S100A9 in these female patients. CONCLUSIONS Comprehensive network and association analyses indicated that the sex differences at the transcriptome level were partially the result of corresponding sex-biased epigenetic and genetic molecules. Overall, SexAnnoDB offers a discipline-specific search platform that could potentially assist basic experimental researchers or physicians in developing personalized treatment plans.
Collapse
Affiliation(s)
- Mengyuan Yang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yuzhou Feng
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Shihezi University School of Medicine, Shihezi University, Shihezi , 832003, China
| | - Jiajia Liu
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, 77030, USA
| | - Hong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Sijia Wu
- School of Life Sciences and Technology, Xidian University, Xi'an, 710126, China
| | - Weiling Zhao
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, 77030, USA
| | - Pora Kim
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, 77030, USA.
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, 77030, USA.
| |
Collapse
|
87
|
Zhuo Z, Wang J, Zhang Y, Meng G. Integrative alternative splicing analysis reveals new prognosis signature in B-cell acute lymphoblastic leukemia. Int J Biol Sci 2024; 20:4496-4512. [PMID: 39247833 PMCID: PMC11380455 DOI: 10.7150/ijbs.98899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
The dysregulation of alternative splicing (AS) is increasingly recognized as a pivotal player in the pathogenesis, progression, and treatment resistance of B-cell acute lymphoblastic leukemia (B-ALL). Despite its significance, the clinical implications of AS events in B-ALL remain largely unexplored. This study developed a prognostic model based on 18 AS events (18-AS), derived from a meticulous integration of bioinformatics methodologies and advanced machine learning algorithms. The 18-AS signature observed in B-ALL distinctly categorized patients into different groups with significant differences in immune infiltration, V(D)J rearrangement, drug sensitivity, and immunotherapy outcomes. Patients classified within the high 18-AS group exhibited lower immune infiltration scores, poorer chemo- and immune-therapy responses, and worse overall survival, underscoring the model's potential in refining therapeutic strategies. To validate the clinical applicability of the 18-AS, we established an SF-AS regulatory network and identified candidate drugs. More importantly, we conducted in vitro cell proliferation assays to confirm our analysis, demonstrating that the High-18AS cell line (SUP-B15) exhibited significantly enhanced sensitivity to Dasatinib, Dovitinib, and Midostaurin compared to the Low-18AS cell line (REH). These findings reveal AS events as novel prognostic biomarkers and therapeutic targets, advancing personalized treatment strategies in B-ALL management.
Collapse
Affiliation(s)
- Zhiyi Zhuo
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 197 Ruijin Er Road, Shanghai 200025, P. R. China
- Department of Geriatrics and Medical Center on Aging, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, P. R. China
| | - Junfei Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 197 Ruijin Er Road, Shanghai 200025, P. R. China
- Department of Geriatrics and Medical Center on Aging, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, P. R. China
| | - Yonglei Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 197 Ruijin Er Road, Shanghai 200025, P. R. China
- Department of Geriatrics and Medical Center on Aging, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, P. R. China
| | - Guoyu Meng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 197 Ruijin Er Road, Shanghai 200025, P. R. China
- Department of Geriatrics and Medical Center on Aging, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, P. R. China
| |
Collapse
|
88
|
Xu X, Yang X, Tang J, Wu X, He X. Identification of Regulatory RNA-Binding Proteins Associated with Immune Infiltration in Laryngeal Squamous Cell Carcinoma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:394-402. [PMID: 38912837 DOI: 10.4049/jimmunol.2300498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/27/2024] [Indexed: 06/25/2024]
Abstract
We analyzed bulk RNA sequencing and single-cell RNA sequencing (scRNA-seq) data to identify alternative splicing (AS) events and regulatory RNA-binding proteins (RBPs) associated with immune infiltration in human laryngeal squamous cell carcinoma (LSCC). Whole-transcriptome sequencing data of 20 human laryngeal cancer and paracancerous tissues were downloaded from the Gene Expression Omnibus public database, using newly published splicing-site usage variation analysis software to obtain highly conserved regulated AS (RAS) events, and scientific reverse convolution algorithm analysis was used to identify significantly different immune cells and perform a correlation analysis between the two. The software package edgeR was used to identify differentially expressed RBPs and the immune infiltration-related LSCC-RAS they may regulate. Finally, we present the expression profiles and survival curves of 117 human laryngeal cancer samples from The Cancer Genome Atlas dataset for the identified RBPs and LSCC-RAS. We also downloaded the gene set enrichment 150321 scRNA-seq data for two human LSCC tissue samples. The RBP expression pattern and the expression of prophase RBP genes were analyzed in different LSCC cell populations. RNA-binding motif protein 47 (RBM47) and filamin A, as well as the RBP-RAS events that were screened in both the fibulin 2 and fibronectin 1 genes, were all significantly associated with the prognosis, and the RBM47 gene was upregulated in myeloid cells. Because the prognosis was significantly associated with two RBP regulators and two LSCC-RAS events, they may be critical regulators of immune cell survival during laryngeal cancer progression, and RBM47 may regulate macrophage-associated AS and affect immunity.
Collapse
Affiliation(s)
- Xin Xu
- Department of Otolaryngology, Kunming Medical University, Kunming, China
| | - Xi Yang
- Department of Otolaryngology, Kunming Medical University, Kunming, China
| | - Jv Tang
- The Second Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaoguang Wu
- The Second Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaoguang He
- The Second Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
89
|
Long G, Li Z, Gao Y, Zhang X, Cheng X, Daniel IE, Zhang L, Wang D, Li Z. Ferroptosis-related alternative splicing signatures as potential biomarkers for predicting prognosis and therapy response in gastric cancer. Heliyon 2024; 10:e34381. [PMID: 39816333 PMCID: PMC11734151 DOI: 10.1016/j.heliyon.2024.e34381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 01/18/2025] Open
Abstract
Ferroptosis is linked to various tumor biological traits, and alternative splicing (AS), a crucial step in mRNA processing, plays a role in the post-transcriptional regulation of ferroptosis-related genes (FRGs). A least absolute shrinkage and selection operator (LASSO) penalized Cox regression analysis was utilized to build a prognostic signature based on 12 AS events (p < 0.05), which was validated in gastric cancer (GC) patients. The high-risk group (n = 203) showed enrichment in cancer and metastasis pathways (p < 0.05). Significant differences existed between the high- and low-risk groups in terms of tumor microenvironment (TME) cell infiltration and immune activities (p < 0.05). The low-risk group (n = 203) was characterized by immune activation and improved prognosis (p < 0.001). Additionally, targeted treatment and immunotherapy were more likely to benefit the low-risk group (p < 0.05). Correlation analysis was performed to detect related splicing factors (SF) (Cor>0.4, FDR<0.05). Furthermore, our functional assay results suggested that high SF3A2 expression might increase ferroptosis resistance and promote cell proliferation. In conclusion, the FRAs model we built has an advantage in predicting GC prognosis. The model's demonstration of variations in the immune microenvironment and drug response could potentially inform decisions regarding treatment strategies.
Collapse
Affiliation(s)
- Gang Long
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, No.23 Post Street, Nangang district, Harbin, 150007, China
| | - Zhiyong Li
- Department of General Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Yue Gao
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, No.23 Post Street, Nangang district, Harbin, 150007, China
| | - Xu Zhang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, No.23 Post Street, Nangang district, Harbin, 150007, China
| | - Xiyang Cheng
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, No.23 Post Street, Nangang district, Harbin, 150007, China
| | - Irankunda Eric Daniel
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, No.23 Post Street, Nangang district, Harbin, 150007, China
| | - Lisha Zhang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, No.23 Post Street, Nangang district, Harbin, 150007, China
| | - Dawei Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, No.23 Post Street, Nangang district, Harbin, 150007, China
| | - Zhengtian Li
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, No.23 Post Street, Nangang district, Harbin, 150007, China
| |
Collapse
|
90
|
Liu T, Yao W, Sun W, Yuan Y, Liu C, Liu X, Wang X, Jiang H. Components, Formulations, Deliveries, and Combinations of Tumor Vaccines. ACS NANO 2024; 18:18801-18833. [PMID: 38979917 DOI: 10.1021/acsnano.4c05065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Tumor vaccines, an important part of immunotherapy, prevent cancer or kill existing tumor cells by activating or restoring the body's own immune system. Currently, various formulations of tumor vaccines have been developed, including cell vaccines, tumor cell membrane vaccines, tumor DNA vaccines, tumor mRNA vaccines, tumor polypeptide vaccines, virus-vectored tumor vaccines, and tumor-in-situ vaccines. There are also multiple delivery systems for tumor vaccines, such as liposomes, cell membrane vesicles, viruses, exosomes, and emulsions. In addition, to decrease the risk of tumor immune escape and immune tolerance that may exist with a single tumor vaccine, combination therapy of tumor vaccines with radiotherapy, chemotherapy, immune checkpoint inhibitors, cytokines, CAR-T therapy, or photoimmunotherapy is an effective strategy. Given the critical role of tumor vaccines in immunotherapy, here, we look back to the history of tumor vaccines, and we discuss the antigens, adjuvants, formulations, delivery systems, mechanisms, combination therapy, and future directions of tumor vaccines.
Collapse
Affiliation(s)
- Tengfei Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Wenyan Yao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Wenyu Sun
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yihan Yuan
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Chen Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
91
|
Lee YF, Phua CZJ, Yuan J, Zhang B, Lee MY, Kannan S, Chiu YHJ, Koh CWQ, Yap CK, Lim EKH, Chen J, Lim Y, Lee JJH, Skanderup AJ, Wang Z, Zhai W, Tan NS, Verma CS, Tay Y, Tan DSW, Tam WL. PARP4 interacts with hnRNPM to regulate splicing during lung cancer progression. Genome Med 2024; 16:91. [PMID: 39034402 PMCID: PMC11265163 DOI: 10.1186/s13073-024-01328-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/02/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND The identification of cancer driver genes from sequencing data has been crucial in deepening our understanding of tumor biology and expanding targeted therapy options. However, apart from the most commonly altered genes, the mechanisms underlying the contribution of other mutations to cancer acquisition remain understudied. Leveraging on our whole-exome sequencing of the largest Asian lung adenocarcinoma (LUAD) cohort (n = 302), we now functionally assess the mechanistic role of a novel driver, PARP4. METHODS In vitro and in vivo tumorigenicity assays were used to study the functional effects of PARP4 loss and mutation in multiple lung cancer cell lines. Interactomics analysis by quantitative mass spectrometry was conducted to identify PARP4's interaction partners. Transcriptomic data from cell lines and patient tumors were used to investigate splicing alterations. RESULTS PARP4 depletion or mutation (I1039T) promotes the tumorigenicity of KRAS- or EGFR-driven lung cancer cells. Disruption of the vault complex, with which PARP4 is commonly associated, did not alter tumorigenicity, indicating that PARP4's tumor suppressive activity is mediated independently. The splicing regulator hnRNPM is a potentially novel PARP4 interaction partner, the loss of which likewise promotes tumor formation. hnRNPM loss results in splicing perturbations, with a propensity for dysregulated intronic splicing that was similarly observed in PARP4 knockdown cells and in LUAD cohort patients with PARP4 copy number loss. CONCLUSIONS PARP4 is a novel modulator of lung adenocarcinoma, where its tumor suppressive activity is mediated not through the vault complex-unlike conventionally thought, but in association with its novel interaction partner hnRNPM, thus suggesting a role for splicing dysregulation in LUAD tumorigenesis.
Collapse
Affiliation(s)
- Yi Fei Lee
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Cheryl Zi Jin Phua
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Ju Yuan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Bin Zhang
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - May Yin Lee
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Srinivasaraghavan Kannan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix, Singapore, 138671, Singapore
| | - Yui Hei Jasper Chiu
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Casslynn Wei Qian Koh
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Choon Kong Yap
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Edwin Kok Hao Lim
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Jianbin Chen
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Yuhua Lim
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Jane Jia Hui Lee
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Anders Jacobsen Skanderup
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Zhenxun Wang
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
- Centre for Vision Research, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Weiwei Zhai
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Chandra S Verma
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix, Singapore, 138671, Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Yvonne Tay
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Singapore
| | - Daniel Shao Weng Tan
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore
| | - Wai Leong Tam
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Singapore.
| |
Collapse
|
92
|
Zheng Y, Zhong G, Song Q, Zhang H, Wang S, Lin C, He C, Li M. Mapping alternative splicing events in colorectal cancer. Discov Oncol 2024; 15:280. [PMID: 39004679 PMCID: PMC11247070 DOI: 10.1007/s12672-024-01149-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024] Open
Abstract
Although aberrant splicing events of genes are closely related to the development and progression of colorectal cancer (CRC), the mapping of abnormal splicing events, especially alternative splicing (AS) event types and the underlying effects, remain investigational. In the present study, we analyzed a public RNA-seq database (GSE138202) and identified 14,314 significant AS events in CRC patients compared to healthy individuals. Most of the key genes such as oncogenes involved in the development of CRC have different AS event types. Moreover, the results demonstrate that certain AS events may play a significant role in the functioning of key genes involved in splicing factors and microRNAs. Furthermore, we observed that the oncogene CDK4 in CRC tends to undergo exon 2 skipping AS events, resulting in a stronger tendency for protein expression to form complexes with CCND1, thereby inhibiting the cell cycle and weakening cell proliferation, while enhancing cell migration capability. These findings not only provide new insights into the mechanism of AS in regulating CRC, but also offers a theoretical basis for targeted splicing therapy in CRC.
Collapse
Affiliation(s)
- Yifeng Zheng
- Department of Gastroenterology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guoqiang Zhong
- Department of Gastroenterology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiuyu Song
- Department of Gastroenterology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haonan Zhang
- Department of Gastroenterology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shanping Wang
- Department of Gastroenterology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chuangzhen Lin
- Department of Gastroenterology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chengcheng He
- Department of Gastroenterology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Mingsong Li
- Department of Gastroenterology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
93
|
Krishnamoorthy GP, Glover AR, Untch BR, Sigcha-Coello N, Xu B, Vukel D, Liu Y, Tiedje V, Berman K, Tamarapu PP, Acuña-Ruiz A, Saqcena M, de Stanchina E, Boucai L, Ghossein RA, Knauf JA, Abdel-Wahab O, Bradley RK, Fagin JA. RBM10 loss induces aberrant splicing of cytoskeletal and extracellular matrix mRNAs and promotes metastatic fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602730. [PMID: 39026820 PMCID: PMC11257529 DOI: 10.1101/2024.07.09.602730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
RBM10 modulates transcriptome-wide cassette exon splicing. Loss-of-function RBM10 mutations are enriched in thyroid cancers with distant metastases. Analysis of transcriptomes and genes mis-spliced by RBM10 loss showed pro-migratory and RHO/RAC signaling signatures. RBM10 loss increases cell velocity. Cytoskeletal and ECM transcripts subject to exon-inclusion events included vinculin (VCL), tenascin C (TNC) and CD44. Knockdown of the VCL exon inclusion transcript in RBM10-null cells reduced cell velocity, whereas knockdown of TNC and CD44 exon-inclusion isoforms reduced invasiveness. RAC1-GTP levels were increased in RBM10-null cells. Mouse Hras G12V /Rbm1O KO thyrocytes develop metastases that are reversed by RBM10 or by combined knockdown of VCL, CD44 and TNC inclusion isoforms. Thus, RBM10 loss generates exon inclusions in transcripts regulating ECM-cytoskeletal interactions, leading to RAC1 activation and metastatic competency. Moreover, a CRISPR-Cas9 screen for synthetic lethality with RBM10 loss identified NFkB effectors as central to viability, providing a therapeutic target for these lethal thyroid cancers.
Collapse
Affiliation(s)
- Gnana P. Krishnamoorthy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anthony R. Glover
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brian R. Untch
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nickole Sigcha-Coello
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bin Xu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dina Vukel
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yi Liu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vera Tiedje
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katherine Berman
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Prasanna P. Tamarapu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adrian Acuña-Ruiz
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mahesh Saqcena
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laura Boucai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronald A. Ghossein
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert K. Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - James A. Fagin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
94
|
Guasp P, Reiche C, Sethna Z, Balachandran VP. RNA vaccines for cancer: Principles to practice. Cancer Cell 2024; 42:1163-1184. [PMID: 38848720 DOI: 10.1016/j.ccell.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024]
Abstract
Vaccines are the most impactful medicines to improve health. Though potent against pathogens, vaccines for cancer remain an unfulfilled promise. However, recent advances in RNA technology coupled with scientific and clinical breakthroughs have spurred rapid discovery and potent delivery of tumor antigens at speed and scale, transforming cancer vaccines into a tantalizing prospect. Yet, despite being at a pivotal juncture, with several randomized clinical trials maturing in upcoming years, several critical questions remain: which antigens, tumors, platforms, and hosts can trigger potent immunity with clinical impact? Here, we address these questions with a principled framework of cancer vaccination from antigen detection to delivery. With this framework, we outline features of emergent RNA technology that enable rapid, robust, real-time vaccination with somatic mutation-derived neoantigens-an emerging "ideal" antigen class-and highlight latent features that have sparked the belief that RNA could realize the enduring vision for vaccines against cancer.
Collapse
Affiliation(s)
- Pablo Guasp
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charlotte Reiche
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zachary Sethna
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vinod P Balachandran
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
95
|
Villagra UMM, da Cunha BR, Polachini GM, Henrique T, Stefanini ACB, de Castro TB, da Silva CHTP, Feitosa OA, Fukuyama EE, López RVM, Dias-Neto E, Nunes FD, Severino P, Tajara EH. Expression of Truncated Products at the 5'-Terminal Region of RIPK2 and Evolutive Aspects that Support Their Biological Importance. Genome Biol Evol 2024; 16:evae106. [PMID: 38752399 PMCID: PMC11221433 DOI: 10.1093/gbe/evae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 07/04/2024] Open
Abstract
Alternative splicing is the process of generating different mRNAs from the same primary transcript, which contributes to increase the transcriptome and proteome diversity. Abnormal splicing has been associated with the development of several diseases including cancer. Given that mutations and abnormal levels of the RIPK2 transcript and RIP-2 protein are frequent in tumors, and that RIP-2 modulates immune and inflammatory responses, we investigated alternative splicing events that result in partial deletions of the kinase domain at the N-terminus of RIP-2. We also investigated the structure and expression of the RIPK2 truncated variants and isoforms in different environments. In addition, we searched data throughout Supraprimates evolution that could support the biological importance of RIPK2 alternatively spliced products. We observed that human variants and isoforms were differentially regulated following temperature stress, and that the truncated transcript was more expressed than the long transcript in tumor samples. The inverse was found for the longer protein isoform. The truncated variant was also detected in chimpanzee, gorilla, hare, pika, mouse, rat, and tree shrew. The fact that the same variant has been preserved in mammals with divergence times up to 70 million years raises the hypothesis that it may have a functional significance.
Collapse
Affiliation(s)
- Ulises M M Villagra
- Faculty of Exact Sciences, Biotechnology and Molecular Biology Institute (IBBM), National University of La Plata-CCT, CONICET, La Plata, Argentina
| | - Bianca R da Cunha
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo/USP, São Paulo, SP, Brazil
| | - Giovana M Polachini
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Tiago Henrique
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Ana Carolina Buzzo Stefanini
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo/USP, São Paulo, SP, Brazil
| | - Tialfi Bergamin de Castro
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Microbial Pathogenesis Department, University of Maryland Baltimore, School of Dentistry, Baltimore, MD, USA
| | - Carlos H T P da Silva
- Computational Laboratory of Pharmaceutical Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo/USP, Ribeirão Preto, SP, Brazil
| | - Olavo A Feitosa
- Computational Laboratory of Pharmaceutical Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo/USP, Ribeirão Preto, SP, Brazil
| | - Erica E Fukuyama
- Head and Neck Surgery Department, Arnaldo Vieira de Carvalho Cancer Institute, São Paulo, SP, Brazil
| | - Rossana V M López
- Comprehensive Center for Precision Oncology, Center for Translational Research in Oncology, State of São Paulo Cancer Institute—ICESP, Clinics Hospital, Sao Paulo University Medical School, São Paulo, SP, Brazil
| | - Emmanuel Dias-Neto
- Laboratory of Medical Genomics, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Fabio D Nunes
- Department of Stomatology, School of Dentistry, University of São Paulo/USP, São Paulo, SP, Brazil
| | - Patricia Severino
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo/USP, São Paulo, SP, Brazil
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Eloiza H Tajara
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo/USP, São Paulo, SP, Brazil
| |
Collapse
|
96
|
Peng T, Liu Z, Zhang Y, Liu X, Zhao L, Ma Y, Fan J, Song X, Wang L. The systematic identification of survival-related alternative splicing events and splicing factors in glioblastoma. Ann Hum Genet 2024; 88:320-335. [PMID: 38369937 DOI: 10.1111/ahg.12550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/21/2023] [Accepted: 12/30/2023] [Indexed: 02/20/2024]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor, making it one of the most life-threatening human cancers. Nevertheless, research on the mechanism of action between alternative splicing (AS) and splicing factor (SF) or biomarkers in GBM is limited. AS is a crucial post-transcriptional regulatory mechanism. More than 95% of human genes undergo AS events. AS can diversify the expression patterns of genes, thereby increasing the diversity of proteins and playing a significant role in the occurrence and development of tumors. In this study, we downloaded 599 clinical data and 169 transcriptome analysis data from The Cancer Genome Atlas (TCGA) database. Besides, we collected AS data about GBM from TCGA-SpliceSeq. The overall survival (OS) related AS events in GBM were determined through least absolute shrinkage and selection operator (Lasso) and Cox analysis. Subsequently, the association of these 1825 OS-related AS events with patient survival was validated using the Kaplan-Meier survival analysis, receiver operating characteristic curve, risk curve analysis, and independent prognostic analysis. Finally, we depicted the AS-SF regulatory network, illustrating the interactions between splicing factors and various AS events in GBM. Additionally, we identified three splicing factors (RNU4-1, SEC31B, and CLK1) associated with patient survival. In conclusion, based on AS occurrences, we developed a predictive risk model and constructed an interaction network between GBM-related AS events and SFs, aiming to shed light on the underlying mechanisms of GBM pathogenesis and progression.
Collapse
Affiliation(s)
- Tao Peng
- College of Medicine, Xinyang Normal University, Xinyang, China
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Zhe Liu
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Yu Zhang
- College of Medicine, Xinyang Normal University, Xinyang, China
- School of medical, Southeast University, Nanjing, China
| | - Xudong Liu
- School of Medicine, Chongqing University, Chongqing, China
| | - Lijun Zhao
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Ying Ma
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Jinke Fan
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Xinqiang Song
- College of Medicine, Xinyang Normal University, Xinyang, China
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Lei Wang
- College of Medicine, Xinyang Normal University, Xinyang, China
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| |
Collapse
|
97
|
Ye G, Wang J, Xia J, Zhu C, Gu C, Li X, Li J, Ye M, Jin X. Low protein expression of LZTR1 in hepatocellular carcinoma triggers tumorigenesis via activating the RAS/RAF/MEK/ERK signaling. Heliyon 2024; 10:e32855. [PMID: 38994114 PMCID: PMC11237970 DOI: 10.1016/j.heliyon.2024.e32855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
LZTR1 is a substrate specific adaptor for E3 ligase involved in the ubiquitination and degradation of RAS GTPases, which inhibits the RAS/RAF/MEK/ERK signaling to suppress the pathogenesis of Noonan syndrome and glioblastoma. However, it's still unknown whether LZTR1 destabilizes RAS GTPases to suppress HCC progression by inhibiting these signaling pathway. Lenvatinib is the first-line drug for the treatment of advanced HCC, however, it has high drug resistance. To explore the roles of LZTR1 in HCC progression and the underlying mechanisms of lenvatinib resistance, techniques such as bioinformatics analysis, immunohistochemical staining, RT-qPCR, Western blot, cell functional experiments, small interfering RNA transfection and cycloheximide chase assay were applied in our study. Among these, bioinformatics analysis and immunohistochemical staining results indicated that LZTR1 protein was aberrantly expressed at low levels in HCC tissues, and low protein expression of LZTR1 was associated with poor prognosis of HCC patients. In vitro functional experiments confirmed that low expression of LZTR1 promoted HCC cell proliferation and migration via the aberrant activation of the RAS/RAF/MEK/ERK signaling due to the dysregulation of LZTR1-induced KRAS ubiquitination and degradation. Transwell assays revealed that blocking of LZTR1-mediated KRAS degradation could induce lenvatinib resistance in HCC cells. In conclusion, our study revealed that LZTR1 knockdown promoted HCC cell proliferation and migration, and induced lenvatinib resistance via activating the RAS/RAF/MEK/ERK signaling, which may provide new ideas for HCC treatment.
Collapse
Affiliation(s)
- Ganghui Ye
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, 315211, China
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Jie Wang
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, 315211, China
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Jingyi Xia
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo, 315211, China
| | - Chenlu Zhu
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo, 315211, China
| | - Chaoyu Gu
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Xinming Li
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Jingyun Li
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, 315211, China
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Meng Ye
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, 315211, China
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, 315211, China
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
| |
Collapse
|
98
|
Hao Q, Long Y, Yang Y, Deng Y, Ding Z, Yang L, Shu Y, Xu H. Development and Clinical Applications of Therapeutic Cancer Vaccines with Individualized and Shared Neoantigens. Vaccines (Basel) 2024; 12:717. [PMID: 39066355 PMCID: PMC11281709 DOI: 10.3390/vaccines12070717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Neoantigens, presented as peptides on the surfaces of cancer cells, have recently been proposed as optimal targets for immunotherapy in clinical practice. The promising outcomes of neoantigen-based cancer vaccines have inspired enthusiasm for their broader clinical applications. However, the individualized tumor-specific antigens (TSA) entail considerable costs and time due to the variable immunogenicity and response rates of these neoantigens-based vaccines, influenced by factors such as neoantigen response, vaccine types, and combination therapy. Given the crucial role of neoantigen efficacy, a number of bioinformatics algorithms and pipelines have been developed to improve the accuracy rate of prediction through considering a series of factors involving in HLA-peptide-TCR complex formation, including peptide presentation, HLA-peptide affinity, and TCR recognition. On the other hand, shared neoantigens, originating from driver mutations at hot mutation spots (e.g., KRASG12D), offer a promising and ideal target for the development of therapeutic cancer vaccines. A series of clinical practices have established the efficacy of these vaccines in patients with distinct HLA haplotypes. Moreover, increasing evidence demonstrated that a combination of tumor associated antigens (TAAs) and neoantigens can also improve the prognosis, thus expand the repertoire of shared neoantigens for cancer vaccines. In this review, we provide an overview of the complex process involved in identifying personalized neoantigens, their clinical applications, advances in vaccine technology, and explore the therapeutic potential of shared neoantigen strategies.
Collapse
Affiliation(s)
- Qing Hao
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
| | - Yuhang Long
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
| | - Yi Yang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
| | - Yiqi Deng
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhenyu Ding
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
| | - Yang Shu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
- Gastric Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Heng Xu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
- Institute of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Center of Clinical Laboratory Medicine, Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
99
|
Yang M, Liu J, Kim P, Zhou X. Study of prognostic splicing factors in cancer using machine learning approaches. Hum Mol Genet 2024; 33:1131-1141. [PMID: 38538560 PMCID: PMC11190612 DOI: 10.1093/hmg/ddae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/11/2024] [Accepted: 03/07/2024] [Indexed: 04/12/2024] Open
Abstract
Splicing factors (SFs) are the major RNA-binding proteins (RBPs) and key molecules that regulate the splicing of mRNA molecules through binding to mRNAs. The expression of splicing factors is frequently deregulated in different cancer types, causing the generation of oncogenic proteins involved in cancer hallmarks. In this study, we investigated the genes that encode RNA-binding proteins and identified potential splicing factors that contribute to the aberrant splicing applying a random forest classification model. The result suggested 56 splicing factors were related to the prognosis of 13 cancers, two SF complexes in liver hepatocellular carcinoma, and one SF complex in esophageal carcinoma. Further systematic bioinformatics studies on these cancer prognostic splicing factors and their related alternative splicing events revealed the potential regulations in a cancer-specific manner. Our analysis found high ILF2-ILF3 expression correlates with poor prognosis in LIHC through alternative splicing. These findings emphasize the importance of SFs as potential indicators for prognosis or targets for therapeutic interventions. Their roles in cancer exhibit complexity and are contingent upon the specific context in which they operate. This recognition further underscores the need for a comprehensive understanding and exploration of the role of SFs in different types of cancer, paving the way for their potential utilization in prognostic assessments and the development of targeted therapies.
Collapse
Affiliation(s)
- Mengyuan Yang
- School of Life Sciences, Zhengzhou University, No. 100, Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Jiajia Liu
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St Suite 600, Houston, Texas 77030, United States
| | - Pora Kim
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St Suite 600, Houston, Texas 77030, United States
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St Suite 600, Houston, Texas 77030, United States
- McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, Texas 77030, United States
- School of Dentistry, The University of Texas Health Science Center at Houston, 7500 Cambridge St, Houston, Texas 77054, United States
| |
Collapse
|
100
|
Deguchi Y, Kikutake C, Suyama M. Subtype-specific alternative splicing events in breast cancer identified by large-scale data analysis. Sci Rep 2024; 14:14158. [PMID: 38898123 PMCID: PMC11187070 DOI: 10.1038/s41598-024-65035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024] Open
Abstract
Genome analysis in cancer has focused mainly on elucidating the function and regulatory mechanisms of genes that exhibit differential expression or mutation in cancer samples compared to normal samples. Recently, transcriptome analysis revealed that abnormal splicing events in cancer samples could contribute to cancer pathogenesis. Moreover, splicing variants in cancer reportedly generate diverse cancer antigens. Although abnormal splicing events are expected to be potential targets in cancer immunotherapy, the exploration of such targets and their biological significance in cancer have not been fully understood. In this study, to explore subtype-specific alternative splicing events, we conducted a comprehensive analysis of splicing events for each breast cancer subtype using large-scale splicing data derived from The Cancer Genome Atlas and found subtype-specific alternative splicing patterns. Analyses indicated that genes that produce subtype-specific alternative splicing events are potential novel targets for immunotherapy against breast cancer. The subtype-specific alternative splicing events identified in this study, which were not identified by mutation or differential expression analysis, bring new significance to previously overlooked splicing events.
Collapse
Affiliation(s)
- Yui Deguchi
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Chie Kikutake
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|