51
|
Maruszewska-Cheruiyot M, Stear MJ, Machcińska M, Donskow-Łysoniewska K. Importance of TGFβ in Cancer and Nematode Infection and Their Interaction-Opinion. Biomolecules 2022; 12:1572. [PMID: 36358922 PMCID: PMC9687433 DOI: 10.3390/biom12111572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 09/29/2023] Open
Abstract
Historically, there has been little interaction between parasitologists and oncologists, although some helminth infections predispose to the development of tumours. In addition, both parasites and tumours need to survive immune attack. Recent research suggests that both tumours and parasites suppress the immune response to increase their chances of survival. They both co-opt the transforming growth factor beta (TGFβ) signalling pathway to modulate the immune response to their benefit. In particular, there is concern that suppression of the immune response by nematodes and their products could enhance susceptibility to tumours in both natural and artificial infections.
Collapse
Affiliation(s)
| | - Michael James Stear
- Department of Animal, Plant and Soil Science, Agribio, La Trobe University, Bundoora 3086, Australia
| | - Maja Machcińska
- Department of Experimental Immunotherapy, Faculty of Medicine, Lazarski University, 02-662 Warsaw, Poland
| | | |
Collapse
|
52
|
Development of the Novel Bifunctional Fusion Protein BR102 That Simultaneously Targets PD-L1 and TGF-β for Anticancer Immunotherapy. Cancers (Basel) 2022; 14:cancers14194964. [PMID: 36230887 PMCID: PMC9562016 DOI: 10.3390/cancers14194964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Immune checkpoint inhibitors (ICIs), such as anti-PD-1/PD-L1 antibodies, have revolutionized the therapy landscape of cancer immunotherapy. However, poor clinical response to ICIs and drug resistance are the main challenges for ICIs immunotherapy. TGF-β produced in the TME was found to confer resistance to PD-1/PD-L1-targeted immunotherapy. The independent and complementary immunosuppressive role of PD-L1 and TGF-β in cancer progression provides a rationale for simultaneously targeting TGF-β and PD-L1 to improve anti-PD-L1 therapy. Consequently, we develop and characterize a novel anti-PD-L1/TGF-β bifunctional fusion protein termed BR102. The data suggest that BR102 could simultaneously disrupt TGF-β- and PD-L1-mediated signals and display high antitumor efficacy and safety. The data support further clinical advancement of BR102 as a promising approach to cancer immunotherapy. Abstract Immune checkpoint inhibitors (ICIs) are remarkable breakthroughs in treating various types of cancer, but many patients still do not derive long-term clinical benefits. Increasing evidence shows that TGF-β can promote cancer progression and confer resistance to ICI therapies. Consequently, dual blocking of TGF-β and immune checkpoint may provide an effective approach to enhance the effectiveness of ICI therapies. Here, we reported the development and preclinical characterization of a novel bifunctional anti-PD-L1/TGF-β fusion protein, BR102. BR102 comprises an anti-PD-L1 antibody fused to the extracellular domain (ECD) of human TGF-βRII. BR102 is capable of simultaneously binding to TGF-β and PD-L1. Incorporating TGF-βRII into BR102 does not alter the PD-L1 blocking activity of BR102. In vitro characterization further demonstrated that BR102 could disrupt TGF-β-induced signaling. Moreover, BR102 significantly inhibits tumor growth in vivo and exerts a superior antitumor effect compared to anti-PD-L1. Administration of BR102 to cynomolgus monkeys is well-tolerated, with only minimal to moderate and reversing red cell changes noted. The data demonstrated the efficacy and safety of the novel anti-PD-L1/TGF-β fusion protein and supported the further clinical development of BR102 for anticancer therapy.
Collapse
|
53
|
Marles H, Biddle A. Cancer stem cell plasticity and its implications in the development of new clinical approaches for oral squamous cell carcinoma. Biochem Pharmacol 2022; 204:115212. [PMID: 35985402 DOI: 10.1016/j.bcp.2022.115212] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022]
Abstract
Oral squamous cell carcinoma (SCC) represents a major worldwide disease burden, with high rates of recurrence and metastatic spread following existing treatment methods. Populations of treatment resistant cancer stem cells (CSCs) are well characterised in oral SCC. These populations of CSCs engage the cellular programme known as epithelial mesenchymal transition (EMT) to enhance metastatic spread and therapeutic resistance. EMT is characterised by specific morphological changes and the expression of certain cell surface markers that represent a transition from an epithelial phenotype to a mesenchymal phenotype. This process is regulated by several cellular pathways that interact both horizontally and hierarchically. The cellular changes in EMT occur along a spectrum, with sub-populations of cells displaying both epithelial and mesenchymal features. The unique features of these CSCs in terms of their EMT state, cell surface markers and metabolism may offer new druggable targets. In addition, these features could be used to identify more aggressive disease states and the opportunity to personalise therapy depending on the presence of certain CSC sub-populations.
Collapse
Affiliation(s)
- Henry Marles
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Adrian Biddle
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London E1 2AT, UK.
| |
Collapse
|
54
|
Zhang S, Jin K, Li T, Zhou M, Yang W. Comprehensive analysis of INHBA: A biomarker for anti-TGFβ treatment in head and neck cancer. Exp Biol Med (Maywood) 2022; 247:1317-1329. [PMID: 35521936 PMCID: PMC9442453 DOI: 10.1177/15353702221085203] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Inhibin subunit βA (INHBA) is a protein-coding gene belonging to the transforming growth factor β (TGFβ) superfamily, which is associated with the development of a variety of cancers. However, the role of INHBA in head and neck squamous cell carcinoma (HNSC) remains unclear. The expression profile and prognostic significance of INHBA in HNSC were assessed using a variety of informatics methods. The level of INHBA expression was significantly higher in patients with HNSC, and it was correlated with sex, tumor-node-metastasis (TNM) stage, histological grade, and human papillomavirus (HPV) status. Kaplan-Meier (K-M) analysis indicated that poor overall survival (OS) and disease-free survival (DFS) were significantly associated with INHBA upregulation in HNSC. INHBA overexpression was validated as an independent poor prognostic factor by multivariate Cox regression, and including INHBA expression level in the prognostic model could increase prediction accuracy. In addition, copy number alterations (CNAs) of INHBA and miR-217-5p downregulation are potential mechanisms for elevated INHBA expression in HNSC. In conclusion, INHBA may represent a promising predictive biomarker and candidate target for anti-TGFβ therapy in HNSC.
Collapse
Affiliation(s)
- Shunhao Zhang
- State Key Laboratory of Oral Diseases,
National Clinical Research Center for Oral Diseases, West China Hospital of
Stomatology, Sichuan University, Chengdu 610041, China
| | - Keyu Jin
- State Key Laboratory of Oral Diseases,
National Clinical Research Center for Oral Diseases, West China Hospital of
Stomatology, Sichuan University, Chengdu 610041, China
| | - Tianle Li
- State Key Laboratory of Oral Diseases,
National Clinical Research Center for Oral Diseases, West China Hospital of
Stomatology, Sichuan University, Chengdu 610041, China
| | - Maolin Zhou
- State Key Laboratory of Oral Diseases,
National Clinical Research Center for Oral Diseases, West China Hospital of
Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenbin Yang
- State Key Laboratory of Oral Diseases,
National Clinical Research Center for Oral Diseases, Department of Oral and
Maxillofacial Surgery, Department of Medical Affairs, West China Hospital of
Stomatology, Sichuan University, Chengdu 610041, China,Wenbin Yang.
| |
Collapse
|
55
|
Lai YJ, Tsai FC, Chang GJ, Chang SH, Huang CC, Chen WJ, Yeh YH. miR-181b targets semaphorin 3A to mediate TGF-β-induced endothelial-mesenchymal transition related to atrial fibrillation. J Clin Invest 2022; 132:142548. [PMID: 35775491 PMCID: PMC9246393 DOI: 10.1172/jci142548] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
Atrial fibrosis is an essential contributor to atrial fibrillation (AF). It remains unclear whether atrial endocardial endothelial cells (AEECs) that undergo endothelial-mesenchymal transition (EndMT) are among the sources of atrial fibroblasts. We studied human atria, TGF-β-treated human AEECs, cardiac-specific TGF-β-transgenic mice, and heart failure rabbits to identify the underlying mechanism of EndMT in atrial fibrosis. Using isolated AEECs, we found that miR-181b was induced in TGF-β-treated AEECs, which decreased semaphorin 3A (Sema3A) and increased EndMT markers, and these effects could be reversed by a miR-181b antagomir. Experiments in which Sema3A was increased by a peptide or decreased by a siRNA in AEECs revealed a mechanistic link between Sema3A and LIM-kinase 1/phosphorylated cofilin (LIMK/p-cofilin) signaling and suggested that Sema3A is upstream of LIMK in regulating actin remodeling through p-cofilin. Administration of the miR-181b antagomir or recombinant Sema3A to TGF-β-transgenic mice evoked increased Sema3A, reduced EndMT markers, and significantly decreased atrial fibrosis and AF vulnerability. Our study provides a mechanistic link between the induction of EndMT by TGF-β via miR-181b/Sema3A/LIMK/p-cofilin signaling to atrial fibrosis. Blocking miR-181b and increasing Sema3A are potential strategies for AF therapeutic intervention.
Collapse
Affiliation(s)
- Ying-Ju Lai
- Cardiovascular Department, Chang Gung Memorial Hospital, Tao Yuan, Taiwan.,Department of Respiratory Therapy, Chang Gung University College of Medicine, Tao Yuan, Taiwan.,Department of Respiratory Care, Chang Gung University of Science and Technology, Chia Yi, Taiwan
| | - Feng-Chun Tsai
- Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Tao Yuan, Taiwan.,Department of Medicine and
| | - Gwo-Jyh Chang
- Cardiovascular Department, Chang Gung Memorial Hospital, Tao Yuan, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Tao Yuan, Taiwan
| | - Shang-Hung Chang
- Cardiovascular Department, Chang Gung Memorial Hospital, Tao Yuan, Taiwan.,Department of Medicine and
| | - Chung-Chi Huang
- Department of Respiratory Therapy, Chang Gung University College of Medicine, Tao Yuan, Taiwan.,Department of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Tao Yuan, Taiwan
| | - Wei-Jan Chen
- Cardiovascular Department, Chang Gung Memorial Hospital, Tao Yuan, Taiwan.,Department of Medicine and
| | - Yung-Hsin Yeh
- Cardiovascular Department, Chang Gung Memorial Hospital, Tao Yuan, Taiwan.,Department of Medicine and
| |
Collapse
|
56
|
EZH2 endorses cell plasticity to non-small cell lung cancer cells facilitating mesenchymal to epithelial transition and tumour colonization. Oncogene 2022; 41:3611-3624. [PMID: 35680984 DOI: 10.1038/s41388-022-02375-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 11/08/2022]
Abstract
Reversible transition between the epithelial and mesenchymal states are key aspects of carcinoma cell dissemination and the metastatic disease, and thus, characterizing the molecular basis of the epithelial to mesenchymal transition (EMT) is crucial to find druggable targets and more effective therapeutic approaches in cancer. Emerging studies suggest that epigenetic regulators might endorse cancer cells with the cell plasticity required to conduct dynamic changes in cell state during EMT. However, epigenetic mechanisms involved remain mostly unknown. Polycomb Repressive Complexes (PRCs) proteins are well-established epigenetic regulators of development and stem cell differentiation, but their role in different cancer systems is inconsistent and sometimes paradoxical. In this study, we have analysed the role of the PRC2 protein EZH2 in lung carcinoma cells. We found that besides its described role in CDKN2A-dependent cell proliferation, EZH2 upholds the epithelial state of cancer cells by repressing the transcription of hundreds of mesenchymal genes. Chemical inhibition or genetic removal of EZH2 promotes the residence of cancer cells in the mesenchymal state during reversible epithelial-mesenchymal transition. In fitting, analysis of human patient samples and tumour xenograft models indicate that EZH2 is required to efficiently repress mesenchymal genes and facilitate tumour colonization in vivo. Overall, this study discloses a novel role of PRC2 as a master regulator of EMT in carcinoma cells. This finding has important implications for the design of therapies based on EZH2 inhibitors in human cancer patients.
Collapse
|
57
|
Zheng J, Shi Z, Yang P, Zhao Y, Tang W, Ye S, Xuan Z, Chen C, Shao C, Wu Q, Sun H. ERK-Smurf1-RhoA signaling is critical for TGFβ-drived EMT and tumor metastasis. Life Sci Alliance 2022; 5:5/10/e202101330. [PMID: 35654587 PMCID: PMC9163791 DOI: 10.26508/lsa.202101330] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
The research uncovers a non-canonical role of ERK in TGF-beta-induced EMT, revealing ERK-mediated phosphorylation of Smurf1 is required for its sufficient binding to RhoA and the subsequent RhoA turnover. Epithelial-mesenchymal transition (EMT) has fundamental roles in various biological processes. However, there are still questions pending in this fast-moving field. Here we report that in TGFβ-induced EMT, ERK-mediated Smurf1 phosphorylation is a prerequisite step for RhoA degradation and the consequent mesenchymal state achievement. Upon TGFβ treatment, activated ERK phosphorylates Thr223 of Smurf1, a member of HECT family E3 ligase, to promote Smurf1-mediated polyubiquitination and degradation of RhoA, thereby leading to cell skeleton rearrangement and EMT. Blockade of phosphorylation of Smurf1 inhibits TGFβ-induced EMT, and accordingly, dramatically blocks lung metastasis of murine breast cancer in mice. Hence, our study reveals an unknown role of ERK in TGFβ-induced EMT and points out a potential strategy in therapeutic intervention.
Collapse
Affiliation(s)
- Jianzhong Zheng
- School of Medicine, Xiamen University, Xiamen, China.,Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhiyuan Shi
- School of Medicine, Xiamen University, Xiamen, China.,Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Pengbo Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yue Zhao
- School of Medicine, Xiamen University, Xiamen, China.,Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wenbin Tang
- School of Medicine, Xiamen University, Xiamen, China.,Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shaopei Ye
- School of Medicine, Xiamen University, Xiamen, China.,Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zuodong Xuan
- School of Medicine, Xiamen University, Xiamen, China.,Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Chen Chen
- School of Medicine, Xiamen University, Xiamen, China.,Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Chen Shao
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qingang Wu
- School of Medicine, Xiamen University, Xiamen, China .,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Huimin Sun
- The Central Lab of Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China .,The Key Laboratory for Endocrine Related Cancer Precision Medicine Of Xiamen, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
58
|
Thymidylate Synthase Overexpression Drives the Invasive Phenotype in Colon Cancer Cells. Biomedicines 2022; 10:biomedicines10061267. [PMID: 35740289 PMCID: PMC9219882 DOI: 10.3390/biomedicines10061267] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/12/2022] Open
Abstract
Thymidylate synthase (TYMS) is the crucial enzymatic precursor for DNA biosynthesis and, therefore, the critical target for numerous types of chemotherapy, including the most frequently applied agent in colon cancer treatment 5-fluorouracil (5-FU). TYMS also seems to be associated with cancer metastasis and acquiring mesenchymal character by tumor cells during epithelial–mesenchymal transition (EMT). Based on that knowledge, we decided to investigate the role of TYMS in the modulation of invasive ability in colon cancer cells, where its effect on cancer metastasis has not been studied in detail before. We employed colon cancer cells isolated from different stages of tumor development, cells undergoing EMT, and TYMS overexpressing cells. The elongation ratio, cell migration, invasion assay, and MMP-7 secretion were applied to analyze the cell behavior. Important epithelial and mesenchymal markers characteristic of EMT were examined at the protein level by Western blot assay. Overall, our study showed a correlation between TYMS level and invasion ability in colon cancer cells and, above all, a crucial role of TYMS in the EMT regulation. We postulate that chemotherapeutics that decrease or inhibit TYMS expression could increase the effectiveness of the therapy in patients with colon cancer, especially in the metastatic stage.
Collapse
|
59
|
Ogata FT, Simões Sato AY, Coppo L, Arai RJ, Stern AI, Pequeno Monteiro H. Thiol-Based Antioxidants and the Epithelial/Mesenchymal Transition in Cancer. Antioxid Redox Signal 2022; 36:1037-1050. [PMID: 34541904 DOI: 10.1089/ars.2021.0199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: The epithelial/mesenchymal transition (EMT) is commonly associated with tumor metastasis. Oxidative and nitrosative stress is maintained in cancer cells and is involved in the EMT. Cancer cells are endowed with high levels of enzymatic and nonenzymatic antioxidants, which counteract the effects of oxidative and nitrosative stress. Thiol-based antioxidant systems such as the thioredoxin/thioredoxin reductase (Trx/TrxR) and glutathione/glutaredoxin (GSH/Grx) are continually active in cancer cells, while the thioredoxin-interacting protein (Txnip), the negative regulator of the Trx/TrxR system, is downregulated. Recent Advances: Trx/TrxR and GSH/Grx systems play a major role in maintaining EMT signaling and cancer cell progression. Critical Issues: Enhanced stress conditions stimulated in cancer cells inhibit EMT signaling. The elevated expression levels of the Trx/TrxR and GSH/Grx systems in these cells provide the antioxidant protection necessary to guarantee the occurrence of the EMT. Future Directions: Elevation of the intracellular reactive oxygen species and nitric oxide concentrations in cancer cells has been viewed as a promising strategy for elimination of these cells. The development of inhibitors of GSH synthesis and of the Trx/TrxR system together with genetic-based strategies to enhance Txnip levels may provide the necessary means to achieve this goal. Antioxid. Redox Signal. 36, 1037-1050.
Collapse
Affiliation(s)
- Fernando Toshio Ogata
- Department of Biochemistry, Center for Cellular and Molecular Therapy-CTCMol, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Alex Yuri Simões Sato
- Department of Biochemistry, Center for Cellular and Molecular Therapy-CTCMol, Universidade Federal de São Paulo, São Paulo, Brazil.,Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Lucia Coppo
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Roberto Jun Arai
- Department of Oncology and Radiology, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina-Universidade de São Paulo, São Paulo, Brazil
| | - Arnold Ira Stern
- Grossman School of Medicine, New York University, New York, New York, USA
| | - Hugo Pequeno Monteiro
- Department of Biochemistry, Center for Cellular and Molecular Therapy-CTCMol, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
60
|
Tseng PC, Chen CL, Lee KY, Feng PH, Wang YC, Satria RD, Lin CF. Epithelial-to-mesenchymal transition hinders interferon-γ-dependent immunosurveillance in lung cancer cells. Cancer Lett 2022; 539:215712. [PMID: 35490920 DOI: 10.1016/j.canlet.2022.215712] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/23/2022]
Abstract
The epithelial-to-mesenchymal transition (EMT) is involved in cancer metastasis; nevertheless, interferon (IFN)-γ induces anticancer activities by causing cell growth suppression, cytotoxicity, and migration inhibition. Regarding the poor response to exogenously administered IFN-γ as anticancer therapy, it was hypothesized that malignant cells may acquire a means of escaping from IFN-γ immunosurveillance, likely through an EMT-related process. A genomic analysis of human lung cancers revealed a negative link between the EMT and IFN-γ signaling, while compared to human lung adenocarcinoma A549 cells, IFN-γ-hyporesponsive AS2 cells exhibited mesenchymal characteristics. Chemically, physically, and genetically engineered EMT attenuated IFN-γ-induced IFN regulatory factor 1 transactivation. Poststimulation of transforming growth factor-β induced the EMT and also selectively retarded IFN-γ-responsive gene expression as well as IFN-γ-induced signal transducer and activator of transcription 1 activation, major histocompatibility complex I, and CD54 expression, cell migration/invasion inhibition, and direct/indirect cytotoxicity. Without changes in IFN-γ receptors, excessive oxidative activation of Src homology-2 containing phosphatase 2 (SHP2) in cells undergoing the EMT primarily caused cellular hyporesponsiveness to IFN-γ signaling and cytotoxicity, while combining an SHP2 inhibitor or antioxidant sensitized EMT-associated AS2 and mesenchymal A549 cells to IFN-γ-induced priming effects on tumor necrosis factor-related apoptosis-inducing ligand cytotoxicity. In cell line-derived xenograft models, combined treatment with IFN-γ and an SHP2 inhibitor induced enhanced anticancer activities. These results imply that EMT-associated SHP2 activation inhibits IFN-γ signaling, facilitating lung cancer cell escape from IFN-γ immunosurveillance.
Collapse
Affiliation(s)
- Po-Chun Tseng
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Core Laboratory of Immune Monitoring, Office of Research & Development, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chia-Ling Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Kang-Yuan Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, 11031, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, 11031, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yu-Chih Wang
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Rahmat Dani Satria
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Department of Clinical Pathology and Laboratory Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia; Clinical Laboratory Installation, Dr. Sardjito Central General Hospital, Yogyakarta, 55281, Indonesia
| | - Chiou-Feng Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Core Laboratory of Immune Monitoring, Office of Research & Development, Taipei Medical University, Taipei, 11031, Taiwan; International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
61
|
SMAD3 and FTO are involved in miR-5581-3p-mediated inhibition of cell migration and proliferation in bladder cancer. Cell Death Dis 2022; 8:199. [PMID: 35418191 PMCID: PMC9007965 DOI: 10.1038/s41420-022-01010-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 01/17/2023]
Abstract
Previous research evidence suggests that microRNAs (miRNAs) play an indispensable role in onset and progression of bladder cancer (BCa). Here, we explored the functions and mechanisms of miR-5581-3p in BCa. miR-5581-3p, as a tumor suppressor in BCa, was detected at a lower expression level in BCa tissue and cells in contrast with the non-malignant bladder tissue and cells. Over-expression of miR-5581-3p remarkably dampened the migration and proliferation of BCa in vitro and in vivo. SMAD3 and FTO were identified as the direct targets of miR-5581-3p by online databases prediction and mRNA-seq, which were further verified. SMAD3 as a star molecule in modulating EMT progress of BCa had been formulated in former studies. Meanwhile, FTO proved as an N6-methyladenosine (m6A) demethylase in decreasing m6A modification was confirmed to regulate the migration and proliferation in BCa. In addition, we conducted rescue experiments and confirmed overexpressing miR-5581-3p partially rescued the effects of the overexpressing SMAD3 and FTO in BCa cells. In conclusion, our studies exhibit that miR-5581-3p is a novel tumor inhibitor of BCa.
Collapse
|
62
|
Xiao L, Chen A, Gao Q, Xu B, Guo X, Guan T. Pentosan polysulfate ameliorates fibrosis and inflammation markers in SV40 MES13 cells by suppressing activation of PI3K/AKT pathway via miR-446a-3p. BMC Nephrol 2022; 23:105. [PMID: 35291969 PMCID: PMC8925175 DOI: 10.1186/s12882-022-02732-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Renal fibrosis is a common outcome of various renal damage, including diabetic nephropathy (DN), the leading cause of end-stage renal disease. Currently, there are no effective therapies for renal fibrosis. The present study aimed to determine whether pentosan polysulphate sodium (PPS), a FDA approved medication for interstitial cystitis, protects diabetic renal fibrosis. METHODS Cell viability and apoptosis were evaluated in mouse mesangial cells (SV40-MES13) after incubating with the advanced glycation end products (AGEs), which play important roles in the pathogenesis of DN. Western blot and ELISA were performed to determine the expression of transforming growth factor-beta1 (TGF-β1) and fibronectin (FN), two biomarkers of renal fibrosis, as well as interleukin-6 (IL-6) and tumor necrosis factor alpha (TNFα), two biomarkers of inflammation. The miRNA-mRNA regulatory network involved in the phosphatidylinositol 3-kinase (PI3K)/Ser and Thr Kinase (AKT) signalling was investigated by miRNA deep sequencing and validated by RT-PCR and miRNA transfection. RESULTS AGEs significantly inhibited cell proliferation and promoted cell apoptosis, which was associated with the overexpression of TGF-β1, FN, IL-6, and TNFα. PPS almost completely reversed AGEs-induced biomarkers of fibrosis and inflammation, and significantly altered the miRNA expression profile in AGEs-treated cells. Notably, the PI3K/AKT signalling was one of the most significantly enriched pathways targeted by PPS-related differentially expressed miRNAs. PPS significantly up-regulated miR-466a-3p, which was shown to target PIK3CA, and mediated the inhibitory effect of PPS on AGEs-induced activation of PI3K/AKT pathway. CONCLUSIONS The treatment of PPS protected against AGEs-induced toxicity in SV40 MES13 cells via miR-466a-3p-mediated inhibition of PI3K/AKT pathway.
Collapse
Affiliation(s)
- Liangxiang Xiao
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xamen University, No 203, Hubin South Road, Siming district, Xiamen, 361004, Fujian, China
| | - Anqun Chen
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xamen University, No 203, Hubin South Road, Siming district, Xiamen, 361004, Fujian, China
| | - Qing Gao
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xamen University, No 203, Hubin South Road, Siming district, Xiamen, 361004, Fujian, China
| | - Bo Xu
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xamen University, No 203, Hubin South Road, Siming district, Xiamen, 361004, Fujian, China
| | - Xiaodan Guo
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xamen University, No 203, Hubin South Road, Siming district, Xiamen, 361004, Fujian, China
| | - Tianjun Guan
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xamen University, No 203, Hubin South Road, Siming district, Xiamen, 361004, Fujian, China.
| |
Collapse
|
63
|
Loss of function of BRCA1 promotes EMT in mammary tumors through activation of TGFβR2 signaling pathway. Cell Death Dis 2022; 13:195. [PMID: 35236825 PMCID: PMC8891277 DOI: 10.1038/s41419-022-04646-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 12/15/2022]
Abstract
BRCA1 deficient breast cancers are aggressive and chemoresistant due, in part, to their enrichment of cancer stem cells that can be generated from carcinoma cells by an epithelial-mesenchymal transition (EMT). We previously discovered that BRCA1 deficiency activates EMT in mammary tumorigenesis. How BRCA1 controls EMT and how to effectively target BRCA1-deficient cancers remain elusive. We analyzed murine and human tumors and identified a role for Tgfβr2 in governing the molecular aspects of EMT that occur with Brca1 loss. We utilized CRISPR to delete Tgfβr2 and specific inhibitors to block Tgfβr2 activity and followed up with the molecular analysis of assays for tumor growth and metastasis. We discovered that heterozygous germline deletion, or epithelia-specific deletion of Brca1 in mice, activates Tgfβr2 signaling pathways in mammary tumors. BRCA1 depletion promotes TGFβ-mediated EMT activation in cancer cells. BRCA1 binds to the TGFβR2 locus to repress its transcription. Targeted deletion or pharmaceutical inhibition of Tgfβr2 in Brca1-deficient tumor cells reduces EMT and suppresses tumorigenesis and metastasis. BRCA1 and TGFβR2 expression levels are inversely related in human breast cancers. This study reveals for the first time that a targetable TGFβR signaling pathway is directly activated by BRCA1-deficiency in the induction of EMT in breast cancer progression.
Collapse
|
64
|
de Assis JV, Coutinho LA, Oyeyemi IT, Oyeyemi OT, Grenfell RFEQ. Diagnostic and therapeutic biomarkers in colorectal cancer: a review. Am J Cancer Res 2022; 12:661-680. [PMID: 35261794 PMCID: PMC8900002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023] Open
Abstract
Colorectal cancer (CRC) is a public health concern and the second most common type of cancer among men and women causing a significant mortality. Biomarkers closely linked to the disease morbidity could holds potential as diagnostic and/or prognostic biomarker for the disease. This review provides an overview of recent advances in the search for colorectal cancer biomarkers through genomics and proteomics according to clinical function and application. Specifically, a number of biomarkers were identified and discussed. Emphasis was placed on their clinical applications relative to the diagnosis and prognosis of CRC. The discovery of more sensitive and specific markers for CRC is an urgent need, and the study of molecular targets is extremely important in this process, as they will allow for a better understanding of colorectal carcinogenesis, identification and validation of potential genetic signatures.
Collapse
Affiliation(s)
- Jéssica Vieira de Assis
- Diagnosis and Therapy of Infectious Diseases and Cancer, René Rachou Institute, Oswaldo Cruz Foundation (Fiocruz)Belo Horizonte, Minas Gerais, Brazil
| | - Lucélia Antunes Coutinho
- Diagnosis and Therapy of Infectious Diseases and Cancer, René Rachou Institute, Oswaldo Cruz Foundation (Fiocruz)Belo Horizonte, Minas Gerais, Brazil
| | | | - Oyetunde Timothy Oyeyemi
- Diagnosis and Therapy of Infectious Diseases and Cancer, René Rachou Institute, Oswaldo Cruz Foundation (Fiocruz)Belo Horizonte, Minas Gerais, Brazil
- Department of Biological Sciences, University of Medical SciencesOndo, Ondo State, Nigeria
| | - Rafaella Fortini e Queiroz Grenfell
- Diagnosis and Therapy of Infectious Diseases and Cancer, René Rachou Institute, Oswaldo Cruz Foundation (Fiocruz)Belo Horizonte, Minas Gerais, Brazil
- Department of Infectious Diseases, College of Veterinary Medicine, University of GeorgiaAthens, Georgia, United States of America
| |
Collapse
|
65
|
The Bright and the Dark Side of TGF-β Signaling in Hepatocellular Carcinoma: Mechanisms, Dysregulation, and Therapeutic Implications. Cancers (Basel) 2022; 14:cancers14040940. [PMID: 35205692 PMCID: PMC8870127 DOI: 10.3390/cancers14040940] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Transforming growth factor β (TGF-β) signaling is a preeminent regulator of diverse cellular and physiological processes. Frequent dysregulation of TGF-β signaling has been implicated in cancer. In hepatocellular carcinoma (HCC), the most prevalent form of primary liver cancer, the autocrine and paracrine effects of TGF-β have paradoxical implications. While acting as a potent tumor suppressor pathway in the early stages of malignancy, TGF-β diverts to a promoter of tumor progression in the late stages, reflecting its bright and dark natures, respectively. Within this context, targeting TGF-β represents a promising therapeutic option for HCC treatment. We discuss here the molecular properties of TGF-β signaling in HCC, attempting to provide an overview of its effects on tumor cells and the stroma. We also seek to evaluate the dysregulation mechanisms that mediate the functional switch of TGF-β from a tumor suppressor to a pro-tumorigenic signal. Finally, we reconcile its biphasic nature with the therapeutic implications. Abstract Hepatocellular carcinoma (HCC) is associated with genetic and nongenetic aberrations that impact multiple genes and pathways, including the frequently dysregulated transforming growth factor β (TGF-β) signaling pathway. The regulatory cytokine TGF-β and its signaling effectors govern a broad spectrum of spatiotemporally regulated molecular and cellular responses, yet paradoxically have dual and opposing roles in HCC progression. In the early stages of tumorigenesis, TGF-β signaling enforces profound tumor-suppressive effects, primarily by inducing cell cycle arrest, cellular senescence, autophagy, and apoptosis. However, as the tumor advances in malignant progression, TGF-β functionally switches to a pro-tumorigenic signal, eliciting aggressive tumor traits, such as epithelial–mesenchymal transition, tumor microenvironment remodeling, and immune evasion of cancer cells. On this account, the inhibition of TGF-β signaling is recognized as a promising therapeutic strategy for advanced HCC. In this review, we evaluate the functions and mechanisms of TGF-β signaling and relate its complex and pleiotropic biology to HCC pathophysiology, attempting to provide a detailed perspective on the molecular determinants underlying its functional diversion. We also address the therapeutic implications of the dichotomous nature of TGF-β signaling and highlight the rationale for targeting this pathway for HCC treatment, alone or in combination with other agents.
Collapse
|
66
|
Mirlekar B. Tumor promoting roles of IL-10, TGF-β, IL-4, and IL-35: Its implications in cancer immunotherapy. SAGE Open Med 2022; 10:20503121211069012. [PMID: 35096390 PMCID: PMC8793114 DOI: 10.1177/20503121211069012] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/07/2021] [Indexed: 12/23/2022] Open
Abstract
Cytokines play a critical role in regulating host immune response toward cancer and determining the overall fate of tumorigenesis. The tumor microenvironment is dominated mainly by immune-suppressive cytokines that control effector antitumor immunity and promote survival and the proliferation of cancer cells, which ultimately leads to enhanced tumor growth. In addition to tumor cells, the heterogeneous immune cells present within the tumor milieu are the significant source of immune-suppressive cytokines. These cytokines are classified into a broad range; however, in most tumor types, the interleukin-10, transforming growth factor-β, interleukin-4, and interleukin-35 are consistently reported as immune-suppressive cytokines that help tumor growth and metastasis. The most emerging concern in cancer treatment is hijacking and restraining the activity of antitumor immune cells in the tumor niche due to a highly immune-suppressive environment. This review summarizes the role and precise functions of interleukin-10, transforming growth factor-β, interleukin-4, and interleukin-35 in modulating tumor immune contexture and its implication in developing effective immune-therapeutic approaches. CONCISE CONCLUSION Recent effort geared toward developing novel immune-therapeutic approaches faces significant challenges due to sustained mutations in tumor cells and a highly immune-suppressive microenvironment present within the tumor milieu. The cytokines play a crucial role in developing an immune-suppressive environment that ultimately dictates the fate of tumorigenesis. This review critically covers the novel aspects of predominant immune-suppressive cytokines such as interleukin-10, transforming growth factor-β, interleukin-4, and interleukin-35 in dictating the fate of tumorigenesis and how targeting these cytokines can help the development of better immune-therapeutic drug regimens for the treatment of cancer.
Collapse
Affiliation(s)
- Bhalchandra Mirlekar
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
67
|
Huang C, Jing X, Wu Q, Ding K. Novel pectin-like polysaccharide from Panax notoginseng attenuates renal tubular cells fibrogenesis induced by TGF-β. Carbohydr Polym 2022; 276:118772. [PMID: 34823789 DOI: 10.1016/j.carbpol.2021.118772] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023]
Abstract
Renal fibrosis is the final common result of a variety of progressive injuries leading to chronic renal failure. However, there are no effective clinical available drugs for the treatment. Notoginsenoside from Panax notoginseng could ameliorate renal fibrosis. We hypothesized that polysaccharide from this herb might have similar bioactivity. Here, we elucidated structure of a novel pectin-like polysaccharide designed SQD4S2 with a netty antenna backbone of glucogalacturonan substituted by glucoarabinan, glucurogalactan and galactose residues from this herb. Interestingly, SQD4S2 could reverse the morphological changes of human renal tubular HK-2 cells induced by TGF-β. Mechanism study suggested that this bioactivity might associate with N-cadherin (CDH2), Snail (SNAI1), Slug (SNAI2) depression and E-cadherin (CDH1) enhancement. In addition, SQD4S2 could impede critical fibrogenesis associated molecules such as α-SMA, fibronectin, vimentin, COL1A1, COL3A1, FN1 and ACTA2 expression induced by TGF-β in HK-2 cells. Current findings outline a novel leading polysaccharide for against renal fibrosis new drug development.
Collapse
Affiliation(s)
- Chunfan Huang
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu Province 210029, China; Glycochemistry and Glycobiology Lab, Carbohydrate-based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; Zhenjiang the Third People's Hospital, 300 Daijiamen Avenue, Zhenjiang, Jiangsu Province 212021, China
| | - Xiaoqi Jing
- Glycochemistry and Glycobiology Lab, Carbohydrate-based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qianhu Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu Province 210029, China; Zhenjiang the Third People's Hospital, 300 Daijiamen Avenue, Zhenjiang, Jiangsu Province 212021, China.
| | - Kan Ding
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu Province 210029, China; Glycochemistry and Glycobiology Lab, Carbohydrate-based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Science, No.19A Yuquan Road, Beijing 100049, China; Henan Polysaccharide Research Center, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, Guangdong, China.
| |
Collapse
|
68
|
Zhang G, Li Z, Dong J, Zhou W, Zhang Z, Que Z, Zhu X, Xu Y, Cao N, Zhao A. Acacetin inhibits invasion, migration and TGF-β1-induced EMT of gastric cancer cells through the PI3K/Akt/Snail pathway. BMC Complement Med Ther 2022; 22:10. [PMID: 35000605 PMCID: PMC8744305 DOI: 10.1186/s12906-021-03494-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT) is a pivotal cellular phenomenon involved in tumour metastasis and progression. In gastric cancer (GC), EMT is the main reason for recurrence and metastasis in postoperative patients. Acacetin exhibits various biological activities. However, the inhibitory effect of acacetin on EMT in GC is still unknown. Herein, we explored the possible mechanism of acacetin on EMT in GC in vitro and in vivo. METHODS In vitro, MKN45 and MGC803 cells were treated with acacetin, after which cell viability was detected by CCK-8 assays, cell migration and invasion were detected by using Transwell and wound healing assays, and protein expression was analysed by western blots and immunofluorescence staining. In vivo, a peritoneal metastasis model of MKN45 GC cells was used to investigate the effects of acacetin. RESULTS Acacetin inhibited the proliferation, invasion and migration of MKN45 and MGC803 human GC cells by regulating the expression of EMT-related proteins. In TGF-β1-induced EMT models, acacetin reversed the morphological changes from epithelial to mesenchymal cells, and invasion and migration were limited by regulating EMT. In addition, acacetin suppressed the activation of PI3K/Akt signalling and decreased the phosphorylation levels of TGF-β1-treated GC cells. The in vivo experiments demonstrated that acacetin delayed the development of peritoneal metastasis of GC in nude mice. Liver metastasis was restricted by altering the expression of EMT-related proteins. CONCLUSION Our study showed that the invasion, metastasis and TGF-β1-induced EMT of GC are inhibited by acacetin, and the mechanism may involve the suppression of the PI3K/Akt/Snail signalling pathway. Therefore, acacetin is a potential therapeutic reagent for the treatment of GC patients with recurrence and metastasis.
Collapse
Affiliation(s)
- Guangtao Zhang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zhaoyan Li
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Department of Oncology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiahuan Dong
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Weili Zhou
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zhanxia Zhang
- Institute of Traditional Chinese Medicine Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zujun Que
- Institute of Traditional Chinese Medicine Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Oncology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaohong Zhu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yan Xu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Nida Cao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Aiguang Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
69
|
Natani S, Sruthi KK, Asha SM, Khilar P, Lakshmi PSV, Ummanni R. Activation of TGF-β - SMAD2 signaling by IL-6 drives neuroendocrine differentiation of prostate cancer through p38MAPK. Cell Signal 2022; 91:110240. [PMID: 34986386 DOI: 10.1016/j.cellsig.2021.110240] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 02/08/2023]
Abstract
Neuroendocrine prostate cancer (NEPC) is an aggressive, androgen independent PCa and it is detected in patients undergoing androgen deprivation therapy (ADT). Interleukin-6 (IL-6) is a pleiotropic cytokine elevated in PCa patients promotes neuroendocrine differentiation (NED). In this study, PCa cells were differentiated with IL-6 in in-vitro to identify novel targets or signaling pathways associated with emergence of NEPC on deprivation of androgens. From the results, we observed an activation of TGF-β signaling pathway is altered through multiple proteins in differentiated LNCaP cells. Hence, we investigated the role of TGF-β axis in PCa cells differentiation. LNCaP cells treated with IL-6 in androgens deprived media release excess TGF-β ligand and this as conditioned media added to cells stimulated NED of PCa cells. TGF-β released by IL-6 stimulated cells activate p38MAPK through SMAD2 thereby promote NED. Inhibition of TGF-βRI and TGF-βRII signaling activation in LNCaP cells treated with IL-6 did not reversed the NED of cells, possibly due to the reason that the inhibition of TGF-β axis is further activating p38MAPK through SMAD independent manner in PCa cells. However, siRNA mediated knock down or inhibition p38MAPK inactivated TGF-β - SMAD axis in differentiating cells and attenuated NED of LNCaP cells. This result suggests that p38MAPK is the central node for receiving IL-6 signals and promotes NED of LNCaP cells in androgens free media. Remarkably, downregulation or inhibition of p38MAPK in NCI-H660 reversed NED characteristics as well as markers along with inactivation of SMAD2 whereas no effect observed in WPMY-1 normal prostate cells. Taken together these findings unveil that p38MAPK and its upstream regulators are potential targets to overcome the progression of NED of PCa and develop novel therapeutic measures along ADT for effective treatment of PCa.
Collapse
Affiliation(s)
- Sirisha Natani
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - K K Sruthi
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sakkarai Mohamed Asha
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priyanka Khilar
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pampana Sandhya Venkata Lakshmi
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ramesh Ummanni
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
70
|
Ciszewski WM, Włodarczyk J, Chmielewska-Kassassir M, Fichna J, Wozniak LA, Sobierajska K. Evening primrose seed extract rich in polyphenols modulates the invasiveness of colon cancer cells by regulating the TYMS expression. Food Funct 2022; 13:10994-11007. [DOI: 10.1039/d2fo01737g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Natural polyphenols are plant metabolites exhibiting a broad range of biological activities.
Collapse
Affiliation(s)
- Wojciech M. Ciszewski
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Jakub Włodarczyk
- Department of Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | | | - Jakub Fichna
- Department of Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Lucyna A. Wozniak
- Department of Structural Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Katarzyna Sobierajska
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| |
Collapse
|
71
|
Phosphate Toxicity and Epithelial to Mesenchymal Transition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1362:73-84. [DOI: 10.1007/978-3-030-91623-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
72
|
Ma X, Gao Y, Chen Y, Liu J, Yang C, Bao C, Wang Y, Feng Y, Song X, Qiao S. M2-Type Macrophages Induce Tregs Generation by Activating the TGF-β/Smad Signalling Pathway to Promote Colorectal Cancer Development. Onco Targets Ther 2021; 14:5391-5402. [PMID: 34908844 PMCID: PMC8665883 DOI: 10.2147/ott.s336548] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose The increase of both M2-type macrophages and Tregs is closely associated with the development of colorectal cancer. However, the mechanism of their interaction is still unclear. In this study, we investigated the correlation of M2-type macrophages with Tregs and the possible mechanisms between them. Methods Using immunohistochemistry, we analysed Smad3 (a key protein in the TGF-β/Smad signalling pathway) expression in colorectal cells, as well as infiltrating numbers of CD163 (a marker for M2-type macrophages), Foxp3 (a marker for Tregs) in 250 surgically resected colorectal cancer tissues, matched normal and paracancerous tissues. The relation of CD163 and Foxp3 was investigated in CRC with clinicopathological characteristics and preoperative tumour markers. Results CD163, Foxp3 and Smad3 were upregulated in CRC tissues compared to matched normal and paracancerous tissues. Interestingly, CD163 and Foxp3 were significantly positively correlated in CRC, and both were significantly positively correlated with Smad3. Both CD163 and Foxp3 were upregulated with increasing tumour TNM staging, increasing number of lymph node metastases and increasing vascular invasion. Additionally, CD163 was upregulated with increasing depth of infiltration. The number of M2-type macrophages and the expression levels of preoperative CEA, CA19-9 and CA72-4 were significantly positively correlated. The number of Tregs was significantly positively correlated with the expression levels of preoperative CEA and CA19-9. Conclusion M2-type macrophages may induce Tregs generation through activation of the TGF-β/Smad signalling pathway, which can promote the development of colorectal cancer.
Collapse
Affiliation(s)
- Xueqian Ma
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, People's Republic of China
| | - Yu Gao
- Computer Teaching and Research Section, Jinzhou Medical University, Jinzhou, 121000, Liaoning, People's Republic of China
| | - Yanlei Chen
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, People's Republic of China
| | - Jinhao Liu
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, People's Republic of China
| | - Chunyu Yang
- Department of Pathology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, People's Republic of China
| | - Cuifen Bao
- Basic Medical Experimental Teaching Center, Jinzhou Medical University, Jinzhou, 121000, Liaoning, People's Republic of China
| | - Yanping Wang
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, People's Republic of China
| | - Yang Feng
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, People's Republic of China
| | - Xiaoyu Song
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, People's Republic of China
| | - Shifeng Qiao
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, People's Republic of China
| |
Collapse
|
73
|
LASP1 Induces Epithelial-Mesenchymal Transition in Lung Cancer through the TGF-β1/Smad/Snail Pathway. Can Respir J 2021; 2021:5277409. [PMID: 34912481 PMCID: PMC8668282 DOI: 10.1155/2021/5277409] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 02/08/2023] Open
Abstract
Background. LIM and SH3 domain protein 1 (LASP1), highly expressed in a variety of tumors, is considered as a novel tumor metastasis biomarker. However, it is unknown which signaling pathway works and how the signal transduces into cell nucleus to drive tumor progression by LASP1. The aim of this study is to explore the essential role of LASP1 in TGF-β1-induced epithelial-mesenchymal transition (EMT) in lung cancer cells. Methods. The gene and protein levels of LASP-1 were successfully silenced or overexpressed by LASP-1 shRNA lentivirus or pcDNA in TGF-β1-treated lung cancer cell lines, respectively. Then, the cells were developed EMT by TGF-β1. The cell abilities of invasion, migration, and proliferation were measured using Transwell invasion assay, wound healing assay, and MTT assay, respectively. Western blotting was used to observe the protein levels of EMT-associated molecules, including N-cadherin, vimentin, and E-cadherin, and the key molecules in the TGF-β1/Smad/Snail signaling pathway, including pSmad2 and Smad2, pSmad3 and Smad3, and Smad7 in cell lysates, as well as Snail1, pSmad2, and pSmad3 in the nucleus. Results. TGF-β1 induced higher LASP1 expression. LASP1 silence and overexpression blunted or promoted cell invasion, migration, and proliferation upon TGF-β1 stimulation. LASP1 also regulated the expression of vimentin, N-cadherin, and E-cadherin in TGF-β1-treated cells. Activity of key Smad proteins (pSmad2 and pSmad3) and protein level of Smad7 were markedly regulated through LASP1. Furthermore, LASP1 affected the nuclear localizations of pSmad2, pSmad3, and Snail1. Conclusion. This study reveals that LASP1 regulates the TGF-β1/Smad/Snail signaling pathway and EMT markers and features, involving in key signal molecules and their nuclear levels. Therefore, LASP1 might be a drug target in lung cancer.
Collapse
|
74
|
Fan J, Zhang X, Jiang Y, Chen L, Sheng M, Chen Y. SPARC knockdown attenuated TGF-β1-induced fibrotic effects through Smad2/3 pathways in human pterygium fibroblasts. Arch Biochem Biophys 2021; 713:109049. [PMID: 34624278 DOI: 10.1016/j.abb.2021.109049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Secreted protein acidic and rich in cysteine (SPARC), a matricellular glycoprotein, has been found to regulate processes involved in fibrotic diseases. The aim of this study was to investigate the anti-fibrotic effects of SPARC in primary human pterygium fibroblasts (HPFs) and elucidate the underlying mechanisms. METHODS The expression of SPARC in HPFs was knocked down by RNA interference-based approach. Subsequently, we examined the expression of profibrotic markers induced by transforming growth factor-β1 (TGF-β1), including type 1 collagen (COL1), α-smooth muscle actin (α-SMA), and fibronectin (FN). The changes in signaling pathways and matrix metalloproteinases (MMPs) were also detected by western blotting. The cellular migration ability, proliferation ability, apoptosis, and contractile phenotype were detected using the wound healing assay, Cell Counting Kit-8 assay, flow cytometry, and collagen gel contraction assay, respectively. The interaction between SPARC and TGF-β RII was detected by Co-IP RESULTS: Silencing of SPARC inhibited the basal and TGF-β1-induced expression of COL1, α-SMA, and FN in HPFs, and suppressed the expression of p-Smad2, p-Smad3, Smad4 and MMP2, MMP9. The downregulation of SPARC also attenuated the cell migration and contractile phenotype of HPFs. SPARC could bind to TGF-βRII under TGF-β1 treatment. However, knockdown of SPARC did not affect the proliferation and apoptosis of HPFs. CONCLUSION SPARC knockdown attenuated the fibrotic effect induced by TGF-β1 at least in part by inactivating the Smad2/3 pathways in HPFs. Therefore, SPARC may be a promising therapeutic target for the treatment of pterygium.
Collapse
Affiliation(s)
- Jianwu Fan
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China; Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China
| | - Xin Zhang
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China
| | - Yaping Jiang
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China
| | - Li Chen
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China
| | - Minjie Sheng
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China.
| | - Yihui Chen
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China.
| |
Collapse
|
75
|
Benjamin DJ, Lyou Y. Advances in Immunotherapy and the TGF-β Resistance Pathway in Metastatic Bladder Cancer. Cancers (Basel) 2021; 13:cancers13225724. [PMID: 34830879 PMCID: PMC8616345 DOI: 10.3390/cancers13225724] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Bladder cancer accounts for a significant burden to global public health. Despite advances in therapeutics with the advent of immunotherapy, only a small subset of patients benefit from immunotherapy. In this review, we examine the evidence that suggests that the TGF-β pathway may present a resistance mechanism to immunotherapy. In addition, we present possible therapies that may overcome the TGF-β resistance pathway in the treatment of bladder cancer. Abstract Bladder cancer accounts for nearly 200,000 deaths worldwide yearly. Urothelial carcinoma (UC) accounts for nearly 90% of cases of bladder cancer. Cisplatin-based chemotherapy has remained the mainstay of treatment in the first-line setting for locally advanced or metastatic UC. More recently, the treatment paradigm in the second-line setting was drastically altered with the approval of several immune checkpoint inhibitors (ICIs). Given that only a small subset of patients respond to ICI, further studies have been undertaken to understand potential resistance mechanisms to ICI. One potential resistance mechanism that has been identified in the setting of metastatic UC is the TGF-β signaling pathway. Several pre-clinical and ongoing clinical trials in multiple advanced tumor types have evaluated several therapies that target the TGF-β pathway. In addition, there are ongoing and planned clinical trials combining TGF-β inhibition with ICI, which may provide a promising therapeutic approach for patients with advanced and metastatic UC.
Collapse
Affiliation(s)
- David J. Benjamin
- Chao Family Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Medicine, UC Irvine Medical Center, Orange, CA 92868, USA;
| | - Yung Lyou
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Correspondence: ; Tel.: +1-626-256-2805; Fax: +1-625-301-8233
| |
Collapse
|
76
|
Lv X, Xu G. Regulatory role of the transforming growth factor-β signaling pathway in the drug resistance of gastrointestinal cancers. World J Gastrointest Oncol 2021; 13:1648-1667. [PMID: 34853641 PMCID: PMC8603464 DOI: 10.4251/wjgo.v13.i11.1648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/28/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) cancer, including esophageal, gastric, and colorectal cancer, is one of the most prevalent types of malignant carcinoma and the leading cause of cancer-related deaths. Despite significant advances in therapeutic strategies for GI cancers in recent decades, drug resistance with various mechanisms remains the prevailing cause of therapy failure in GI cancers. Accumulating evidence has demonstrated that the transforming growth factor (TGF)-β signaling pathway has crucial, complex roles in many cellular functions related to drug resistance. This review summarizes current knowledge regarding the role of the TGF-β signaling pathway in the resistance of GI cancers to conventional chemotherapy, targeted therapy, immunotherapy, and traditional medicine. Various processes, including epithelial-mesenchymal transition, cancer stem cell development, tumor microenvironment alteration, and microRNA biogenesis, are proposed as the main mechanisms of TGF-β-mediated drug resistance in GI cancers. Several studies have already indicated the benefit of combining antitumor drugs with agents that suppress the TGF-β signaling pathway, but this approach needs to be verified in additional clinical studies. Moreover, the identification of potential biological markers that can be used to predict the response to TGF-β signaling pathway inhibitors during anticancer treatments will have important clinical implications in the future.
Collapse
Affiliation(s)
- Xiaoqun Lv
- Department of Pharmacy, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
77
|
Avila-Carrasco L, García-Mayorga EA, Díaz-Avila DL, Garza-Veloz I, Martinez-Fierro ML, González-Mateo GT. Potential Therapeutic Effects of Natural Plant Compounds in Kidney Disease. Molecules 2021; 26:molecules26206096. [PMID: 34684678 PMCID: PMC8541433 DOI: 10.3390/molecules26206096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Background: The blockade of the progression or onset of pathological events is essential for the homeostasis of an organism. Some common pathological mechanisms involving a wide range of diseases are the uncontrolled inflammatory reactions that promote fibrosis, oxidative reactions, and other alterations. Natural plant compounds (NPCs) are bioactive elements obtained from natural sources that can regulate physiological processes. Inflammation is recognized as an important factor in the development and evolution of chronic renal damage. Consequently, any compound able to modulate inflammation or inflammation-related processes can be thought of as a renal protective agent and/or a potential treatment tool for controlling renal damage. The objective of this research was to review the beneficial effects of bioactive natural compounds on kidney damage to reveal their efficacy as demonstrated in clinical studies. Methods: This systematic review is based on relevant studies focused on the impact of NPCs with therapeutic potential for kidney disease treatment in humans. Results: Clinical studies have evaluated NPCs as a different way to treat or prevent renal damage and appear to show some benefits in improving OS, inflammation, and antioxidant capacity, therefore making them promising therapeutic tools to reduce or prevent the onset and progression of KD pathogenesis. Conclusions: This review shows the promising clinical properties of NPC in KD therapy. However, more robust clinical trials are needed to establish their safety and therapeutic effects in the area of renal damage.
Collapse
Affiliation(s)
- Lorena Avila-Carrasco
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Carretera Zacatecas-Guadalajara Km.6, Ejido la Escondida, Zacatecas 98160, Mexico; (I.G.-V.); (M.L.M.-F.)
- Academic Unit of Human Medicine and Health Sciences, Therapeutic and Pharmacology Department, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (E.A.G.-M.); (D.L.D.-A.)
- Correspondence: ; Tel.: +52-492-8926556
| | - Elda Araceli García-Mayorga
- Academic Unit of Human Medicine and Health Sciences, Therapeutic and Pharmacology Department, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (E.A.G.-M.); (D.L.D.-A.)
| | - Daisy L. Díaz-Avila
- Academic Unit of Human Medicine and Health Sciences, Therapeutic and Pharmacology Department, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (E.A.G.-M.); (D.L.D.-A.)
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Carretera Zacatecas-Guadalajara Km.6, Ejido la Escondida, Zacatecas 98160, Mexico; (I.G.-V.); (M.L.M.-F.)
| | - Margarita L Martinez-Fierro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Carretera Zacatecas-Guadalajara Km.6, Ejido la Escondida, Zacatecas 98160, Mexico; (I.G.-V.); (M.L.M.-F.)
| | - Guadalupe T González-Mateo
- Research Institute of La Paz (IdiPAZ), University Hospital La Paz, 28046 Madrid, Spain;
- Molecular Biology Research, Centre Severo Ochoa, Spanish Council for Scientific Research (CSIC), 28049 Madrid, Spain
| |
Collapse
|
78
|
Lee S, Byeon S, Ko J, Hyung S, Lee I, Jeon NL, Hong JY, Kim ST, Park SH, Lee J. Reducing tumor invasiveness by ramucirumab and TGF-β receptor kinase inhibitor in a diffuse-type gastric cancer patient-derived cell model. Cancer Med 2021; 10:7253-7262. [PMID: 34542244 PMCID: PMC8525100 DOI: 10.1002/cam4.4259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/19/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Diffuse-type gastric cancer (GC) is known to be more aggressive and relatively resistant to conventional chemotherapy. Hence, more optimized treatment strategy is urgently needed in diffuse-type GC. METHODS Using a panel of 10 GC cell lines and 3 GC patient-derived cells (PDCs), we identified cell lines with high EMTness which is a distinct feature for diffuse-type GC. We treated GC cells with high EMTness with ramucirumab alone, TGF-β receptor kinase inhibitor (TEW-7197) alone, or in combination to investigate the drug's effects on invasiveness, spheroid formation, EMT marker expression, and tumor-induced angiogenesis using a spheroid-on-a-chip model. RESULTS Both TEW-7197 and ramucirumab treatments profoundly decreased invasiveness of EMT-high cell lines and PDCs. With a 3D tumor spheroid-on-a-chip, we identified versatile influence of co-treatment on cancer cell-induced blood vessel formation as well as on EMT progression in tumor spheroids. The 3D tumor spheroid-on-a-chip demonstrated that TEW-7197 + ramucirumab combination significantly decreased PDC-induced vessel formation. CONCLUSIONS In this study, we showed TEW-7197 and ramucirumab considerably decreased invasiveness, thus EMTness in a panel of diffuse-type GC cell lines including GC PDCs. Taken together, we confirmed that combination of TEW-7197 and ramucirumab reduced tumor spheroid and GC PDC-induced blood vessel formation concomitantly in the spheroid-on-a-chip model.
Collapse
Affiliation(s)
- Song‐Yi Lee
- Division of Hematology‐OncologyDepartment of MedicineSamsung Medical CenterSungkyunkwan UniversitySeoulKorea
| | - Seonggyu Byeon
- Department of Internal MedicineChungbuk National University HospitalChungbuk National University College of MedicineCheongjuKorea
| | - Jihoon Ko
- Division of Hematology‐OncologyDepartment of MedicineSamsung Medical CenterSungkyunkwan UniversitySeoulKorea
- Department of Mechanical EngineeringSeoul National UniversitySeoulKorea
| | - Sujin Hyung
- Division of Hematology‐OncologyDepartment of MedicineSamsung Medical CenterSungkyunkwan UniversitySeoulKorea
| | - In‐Kyoung Lee
- Division of Hematology‐OncologyDepartment of MedicineSamsung Medical CenterSungkyunkwan UniversitySeoulKorea
| | - Noo Li Jeon
- Department of Mechanical EngineeringSeoul National UniversitySeoulKorea
| | - Jung Yong Hong
- Division of Hematology‐OncologyDepartment of MedicineSamsung Medical CenterSungkyunkwan UniversitySeoulKorea
| | - Seung Tae Kim
- Division of Hematology‐OncologyDepartment of MedicineSamsung Medical CenterSungkyunkwan UniversitySeoulKorea
| | - Se Hoon Park
- Division of Hematology‐OncologyDepartment of MedicineSamsung Medical CenterSungkyunkwan UniversitySeoulKorea
| | - Jeeyun Lee
- Division of Hematology‐OncologyDepartment of MedicineSamsung Medical CenterSungkyunkwan UniversitySeoulKorea
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan UniversitySuwonKorea
| |
Collapse
|
79
|
Chen L, Alam A, Pac-Soo A, Chen Q, Shang Y, Zhao H, Yao S, Ma D. Pretreatment with valproic acid alleviates pulmonary fibrosis through epithelial-mesenchymal transition inhibition in vitro and in vivo. J Transl Med 2021; 101:1166-1175. [PMID: 34168289 PMCID: PMC8367813 DOI: 10.1038/s41374-021-00617-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) plays a crucial role in the development of pulmonary fibrosis. This study aims to investigate the effects of valproic acid (VPA) on EMT in vitro and in vivo. In vitro, EMT was induced by the administration of transforming growth factor-β1 (TGF-β1) in a human alveolar epithelial cell line (A549). The dose effects of VPA (0.1-3 mM) on EMT were subsequently evaluated at different timepoints. VPA (1 mM) was applied prior to the administration of TGF-β1 and the expression of E-cadherin, vimentin, p-Smad2/3 and p-Akt was assessed. In addition, the effects of a TGF-β type I receptor inhibitor (A8301) and PI3K-Akt inhibitor (LY294002) on EMT were evaluated. In vivo, the effects of VPA on bleomycin-induced lung fibrosis were evaluated by assessing variables such as survival rate, body weight and histopathological changes, whilst the expression of E-cadherin and vimentin in lung tissue was also evaluated. A8301 and LY294002 were used to ascertain the cellular signaling pathways involved in this model. The administration of VPA prior to TGF-β1 in A549 cells prevented EMT in both a time- and concentration-dependent manner. Pretreatment with VPA downregulated the expression of both p-Smad2/3 and p-Akt. A8301 administration increased the expression of E-cadherin and reduced the expression of vimentin. LY294002 inhibited Akt phosphorylation induced by TGF-β1 but failed to prevent EMT. Pretreatment with VPA both increased the survival rate and prevented the loss of body weight in mice with pulmonary fibrosis. Interestingly, both VPA and A8301 prevented EMT and facilitated an improvement in lung structure. Overall, pretreatment with VPA attenuated the development of pulmonary fibrosis by inhibiting EMT in mice, which was associated with Smad2/3 deactivation but without Akt cellular signal involvement.
Collapse
Affiliation(s)
- Lin Chen
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Azeem Alam
- Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Aurelie Pac-Soo
- Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Qian Chen
- Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - You Shang
- Department of Critical Care Medicine, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hailin Zhao
- Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK.
| | - Shanglong Yao
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Daqing Ma
- Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| |
Collapse
|
80
|
Epithelial plasticity, epithelial-mesenchymal transition, and the TGF-β family. Dev Cell 2021; 56:726-746. [PMID: 33756119 DOI: 10.1016/j.devcel.2021.02.028] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/04/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022]
Abstract
Epithelial cells repress epithelial characteristics and elaborate mesenchymal characteristics to migrate to other locations and acquire new properties. Epithelial plasticity responses are directed through cooperation of signaling pathways, with TGF-β and TGF-β-related proteins playing prominent instructive roles. Epithelial-mesenchymal transitions (EMTs) directed by activin-like molecules, bone morphogenetic proteins, or TGF-β regulate metazoan development and wound healing and drive fibrosis and cancer progression. In carcinomas, diverse EMTs enable stem cell generation, anti-cancer drug resistance, genomic instability, and localized immunosuppression. This review discusses roles of TGF-β and TGF-β-related proteins, and underlying molecular mechanisms, in epithelial plasticity in development and wound healing, fibrosis, and cancer.
Collapse
|
81
|
Zhang X, Feng C, Li Y, Su C, Zhao S, Su S, Yu F, Li J. An investigation on nephrotoxicity of Aristolactam I induced epithelial-mesenchymal transition on HK-2 cells. Toxicon 2021; 201:21-26. [PMID: 34391786 DOI: 10.1016/j.toxicon.2021.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/01/2022]
Abstract
Aristolactam I (AL-I) is the main active ingredient in the Aristolochia plant species, which have been associated with severe nephrotoxicity. In order to investigate the mechanism of AL-I induced renal epithelial-mesenchymal transition (EMT), we established an AL-I induced EMT model in human proximal tubular epithelial cells (HK-2 cells). Biochemical analysis experiment including Morphological examination, 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide assay, and Western blot analysis were performed. The results showed that AL-I accumulates in the cytosol causing cytotoxicity and inhibition of proliferation in a concentration- and time-dependent manner. Morphological examination showed that with the increasing concentration of AL-I, the tendency of HK-2 cells transform form epithelial cell to fibroblast cells was stronger. In the Western blot analysis, the expression of α-Smooth muscle actin (α-SMA) and Transforming Growth Factor β1 (TGF-β1) were significantly up-regulated, the expression of E-cadherin was significantly down-regulated after administrating. The ratio of the expression of P-Smad2/3 and Smad2/3 was significantly up-regulated, suggested that TGF-β/Smad-dependent signaling pathway was activated in this process. With presence of TGF-β receptor inhibitor (LY364947), we found that the expressions of three EMT related proteins (E-cadherin, α-SMA and TGF-β1) were obviously reversed. In conclusion, we acknowledge that AL-I can induce renal EMT process in HK-2 cell, which is triggered by the activation of TGF-β/Smad-dependent signaling pathway.
Collapse
Affiliation(s)
- Xiong Zhang
- Department of Clinical Pharmacy, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, No.639 Longmian Avenue, Jiangning District, Jiangsu Province, 211198, PR China
| | - Chen Feng
- Department of Clinical Pharmacy, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, No.639 Longmian Avenue, Jiangning District, Jiangsu Province, 211198, PR China
| | - Yimao Li
- Department of Clinical Pharmacy, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, No.639 Longmian Avenue, Jiangning District, Jiangsu Province, 211198, PR China
| | - Chenlin Su
- Department of Clinical Pharmacy, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, No.639 Longmian Avenue, Jiangning District, Jiangsu Province, 211198, PR China
| | - Shuxin Zhao
- Department of Clinical Pharmacy, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, No.639 Longmian Avenue, Jiangning District, Jiangsu Province, 211198, PR China
| | - Shengdi Su
- Department of Clinical Pharmacy, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, No.639 Longmian Avenue, Jiangning District, Jiangsu Province, 211198, PR China
| | - Feng Yu
- Department of Clinical Pharmacy, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, No.639 Longmian Avenue, Jiangning District, Jiangsu Province, 211198, PR China.
| | - Ji Li
- Department of Clinical Pharmacy, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, No.639 Longmian Avenue, Jiangning District, Jiangsu Province, 211198, PR China.
| |
Collapse
|
82
|
Liu W, Li T, Hu W, Ji Q, Hu F, Wang Q, Yang X, Qi D, Chen H, Zhang X. Hematopoietic cell kinase enhances osteosarcoma development via the MEK/ERK pathway. J Cell Mol Med 2021; 25:8789-8795. [PMID: 34363435 PMCID: PMC8435456 DOI: 10.1111/jcmm.16836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 01/13/2023] Open
Abstract
Osteosarcoma (OS) is a sarcoma with high rates of pulmonary metastases and mortality. The mechanisms underlying tumour generation and development in OS are not well‐understood. Haematopoietic cell kinase (HCK), a vital member of the Src family of kinase proteins, plays crucial roles in cancer progression and may act as an anticancer target; however, the mechanism by which HCK enhances OS development remains unexplored. Therefore, we investigated the role of HCK in OS development in vitro and in vivo. Downregulation of HCK attenuated OS cell proliferation, migration and invasion and increased OS cell apoptosis, whereas overexpression of HCK enhanced these processes. Mechanistically, HCK expression enhanced OS tumorigenesis via the mitogen‐activated protein kinase (MEK)/extracellular signal‐regulated kinase (ERK) pathway; HCK upregulation increased the phosphorylation of MEK and ERK and promoted epithelial‐mesenchymal transition, with a reduction in E‐cadherin in vitro. Furthermore, HCK downregulation decreased the tumour volume and weight in mice transplanted with OS cells. In conclusion, HCK plays a crucial role in OS tumorigenesis, progression and metastasis via the MEK/ERK pathway, suggesting that HCK is a potential target for developing treatments for OS.
Collapse
Affiliation(s)
- Weibo Liu
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Teng Li
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Wenhao Hu
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Quanbo Ji
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Fanqi Hu
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Qi Wang
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiaoqing Yang
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Dengbin Qi
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Hui Chen
- College of Life Sciences, East China Normal University, Shanghai, China
| | - Xuesong Zhang
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
83
|
Bolourani S, Sari E, Brenner M, Wang P. Extracellular CIRP Induces an Inflammatory Phenotype in Pulmonary Fibroblasts via TLR4. Front Immunol 2021; 12:721970. [PMID: 34367191 PMCID: PMC8342891 DOI: 10.3389/fimmu.2021.721970] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/09/2021] [Indexed: 12/24/2022] Open
Abstract
Extracellular cold-inducible RNA-binding protein (eCIRP), a new damage-associated molecular pattern (DAMP), has been recently shown to play a critical role in promoting the development of bleomycin-induced pulmonary fibrosis. Although fibroblast activation is a critical component of the fibrotic process, the direct effects of eCIRP on fibroblasts have never been examined. We studied eCIRP’s role in the induction of inflammatory phenotype in pulmonary fibroblasts and its connection to bleomycin-induced pulmonary fibrosis in mice. We found that eCIRP causes the induction of proinflammatory cytokines and differentially expression-related pathways in a TLR4-dependent manner in pulmonary fibroblasts. Our analysis further showed that the accessory pathways MD2 and Myd88 are involved in the induction of inflammatory phenotype. In order to study the connection of the enrichment of these pathways in priming the microenvironment for pulmonary fibrosis, we investigated the gene expression profile of lung tissues from mice subjected to bleomycin-induced pulmonary fibrosis collected at various time points. We found that at day 14, which corresponds to the inflammatory-to-fibrotic transition phase after bleomycin injection, TLR4, MD2, and Myd88 were induced, and the transcriptome was differentially enriched for genes in those pathways. Furthermore, we also found that inflammatory cytokines gene expressions were induced, and the cellular responses to these inflammatory cytokines were differentially enriched on day 14. Overall, our results show that eCIRP induces inflammatory phenotype in pulmonary fibroblasts in a TLR4 dependent manner. This study sheds light on the mechanism by which eCIRP induced inflammatory fibroblasts, contributing to pulmonary fibrosis.
Collapse
Affiliation(s)
- Siavash Bolourani
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ezgi Sari
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Max Brenner
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States.,Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States.,Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
84
|
Tao C, Luo H, Chen L, Li J, Zhu X, Huang K. Identification of an epithelial-mesenchymal transition related long non-coding RNA (LncRNA) signature in Glioma. Bioengineered 2021; 12:4016-4031. [PMID: 34288803 PMCID: PMC8806607 DOI: 10.1080/21655979.2021.1951927] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT)-related long non-coding RNAs (lncRNAs) may be exploited as potential therapeutic targets in gliomas. However, the prognostic value of EMT-related lncRNAs in gliomas is unclear. We obtained lncRNAs from The Cancer Genome Atlas and constructed EMT-related lncRNA co-expression networks to identify EMT-related lncRNAs. The Chinese Glioma Genome Atlas (CGGA) was used for validation. Gene set enrichment and principal component analyses were used for functional annotation. The EMT–lncRNA co-expression networks were constructed. A real-time quantitative polymerase chain reaction assay was performed to validate the bioinformatics results. A nine-EMT-related lncRNAs (HAR1A, LINC00641, LINC00900, MIR210HG, MIR22HG, PVT1, SLC25A21-AS1, SNAI3-AS1, and SNHG18) signature was identified in patients with glioma. Patients in the low-risk group had a longer overall survival (OS) than those in the high-risk group (P < 0.0001). Additionally, patients in the high-risk group showed no deletion of chromosomal arms 1p and/or 19q, isocitrate dehydrogenase wild type, and higher World Health Organization grade. Moreover, the signature was identified as an independent factor and was significantly associated with OS (P = 0.041, hazard ratio = 1.806). These findings were further validated using the CGGA dataset. The low- and high-risk groups showed different EMT statuses based on principal component analysis. To study the regulatory function of lncRNAs, a lncRNA-mediated ceRNA network was constructed, which showed that complex interactions of lncRNA–miRNA–mRNA may be a potential cause of EMT progression in gliomas. This study showed that the nine-EMT-related lncRNA signature has a prognostic value in gliomas.
Collapse
Affiliation(s)
- Chuming Tao
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Scientific Research Center, East China Institute of Digital Medical Engineering, Shangrao, China
| | - Haitao Luo
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Scientific Research Center, East China Institute of Digital Medical Engineering, Shangrao, China
| | - Luyue Chen
- Department of Neurosurgery, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Jingying Li
- Department of Comprehensive Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Neuroscience, Nanchang University, Nanchang, China
| |
Collapse
|
85
|
Ortiz MA, Mikhailova T, Li X, Porter BA, Bah A, Kotula L. Src family kinases, adaptor proteins and the actin cytoskeleton in epithelial-to-mesenchymal transition. Cell Commun Signal 2021; 19:67. [PMID: 34193161 PMCID: PMC8247114 DOI: 10.1186/s12964-021-00750-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/14/2021] [Indexed: 12/20/2022] Open
Abstract
Over a century of scientific inquiry since the discovery of v-SRC but still no final judgement on SRC function. However, a significant body of work has defined Src family kinases as key players in tumor progression, invasion and metastasis in human cancer. With the ever-growing evidence supporting the role of epithelial-mesenchymal transition (EMT) in invasion and metastasis, so does our understanding of the role SFKs play in mediating these processes. Here we describe some key mechanisms through which Src family kinases play critical role in epithelial homeostasis and how their function is essential for the propagation of invasive signals. Video abstract.
Collapse
Affiliation(s)
- Maria A. Ortiz
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, USA
| | - Tatiana Mikhailova
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
| | - Xiang Li
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, USA
| | - Baylee A. Porter
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, USA
| | - Alaji Bah
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
| | - Leszek Kotula
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, USA
| |
Collapse
|
86
|
Fultang N, Chakraborty M, Peethambaran B. Regulation of cancer stem cells in triple negative breast cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:321-342. [PMID: 35582030 PMCID: PMC9019272 DOI: 10.20517/cdr.2020.106] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Triple Negative Breast Cancer (TNBC) is the most lethal subtype of breast cancer. Despite the successes of emerging targeted therapies, relapse, recurrence, and therapy failure rates in TNBC significantly outpace other subtypes of breast cancer. Mounting evidence suggests accumulation of therapy resistant Cancer Stem Cell (CSC) populations within TNBCs contributes to poor clinical outcomes. These CSCs are enriched in TNBC compared to non-TNBC breast cancers. The mechanisms underlying CSC accumulation have been well-characterized and discussed in other reviews. In this review, we focus on TNBC-specific mechanisms that allow the expansion and activity of self-renewing CSCs. We highlight cellular signaling pathways and transcription factors, specifically enriched in TNBC over non-TNBC breast cancer, contributing to stemness. We also analyze publicly available single-cell RNA-seq data from basal breast cancer tumors to highlight the potential of emerging bioinformatic approaches in identifying novel drivers of stemness in TNBC and other cancers.
Collapse
Affiliation(s)
- Norman Fultang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19140, USA
| | - Madhuparna Chakraborty
- Department of Biological Sciences, The University of the Sciences, Philadelphia, PA 19140, USA
| | - Bela Peethambaran
- Department of Biological Sciences, The University of the Sciences, Philadelphia, PA 19140, USA
| |
Collapse
|
87
|
Khan RIN, Malla WA. m 6A modification of RNA and its role in cancer, with a special focus on lung cancer. Genomics 2021; 113:2860-2869. [PMID: 34118382 DOI: 10.1016/j.ygeno.2021.06.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/12/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023]
Abstract
Epitranscriptomics involves functionally relevant biochemical modifications of RNA taking place at the transcriptome level without a change in the sequence of ribonucleotides. Several types of modifications that affect the processing and function of differentRNA types have been reported. Methylation at N6 of Adenosine called m6A is one such modification, quite widespread in occurrence and reported in snRNAs, lncRNAs, circRNAs, rRNAs, miRNAs, and most abundantly, in mRNAs. The significant implications of m6A in various types of cancers are being widely recognized. Here, we give a brief about the enzymes that install the m6A modification (= m6A writers), that remove it (= m6A erasers) and certain RNA binding proteins (= m6A readers) which affect the fate of the m6A-containing RNA by recruiting various proteins. We also discuss the relevance of m6A in ncRNAs in various cancer types, followed by a discussion on the role of m6A of mRNA and ncRNA in lung cancer.
Collapse
|
88
|
Kopenhaver J, Crutcher M, Waldman SA, Snook AE. The shifting paradigm of colorectal cancer treatment: a look into emerging cancer stem cell-directed therapeutics to lead the charge toward complete remission. Expert Opin Biol Ther 2021; 21:1335-1345. [PMID: 33977849 DOI: 10.1080/14712598.2021.1929167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Colorectal cancer (CRC) is one of the most common forms of cancer worldwide and is the second leading cause of cancer-related death in the United States. Despite advances in early detection, ~25% of patients are late stage, and treated patients have <12% chance of survival after five years. Tumor relapse and metastasis are the main causes of patient death. Cancer stem cells (CSCs) are a rare population of cancer cells characterized by properties of self-renewal, chemo- and radio-resistance, tumorigenicity, and high plasticity. These qualities make CSCs particularly important for metastasic seeding, DNA-damage resistance, and tumor repopulating.Areas Covered: The following review article focuses on the role of CRC-SCs in tumor initiation, metastasis, drug resistance, and tumor relapse, as well as on potential therapeutic options for targeting CSCs.Expert Opinion: Current studies are underway to better isolate and discriminate CSCs from normal stem cells and to produce CSC-targeted therapeutics. The intestinal receptor, guanylate cyclase C (GUCY2C) could potentially provide a unique therapeutic target for both non-stem cells and CSCs alike in colorectal cancer through immunotherapies. Indeed, immunotherapies targeting CSCs have the potential to break the treatment-recurrence cycle in the management of advanced malignancies.
Collapse
Affiliation(s)
- Jessica Kopenhaver
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, United States
| | - Madison Crutcher
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, United States.,Department of Surgery, Thomas Jefferson University, Philadelphia, United States
| | - Scott A Waldman
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, United States
| | - Adam E Snook
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, United States
| |
Collapse
|
89
|
Shahin HI, Radnaa E, Tantengco OAG, Kechichian T, Kammala AK, Sheller-Miller S, Taylor BD, Menon R. Microvesicles and exosomes released by amnion epithelial cells under oxidative stress cause inflammatory changes in uterine cells†. Biol Reprod 2021; 105:464-480. [PMID: 33962471 DOI: 10.1093/biolre/ioab088] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/01/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles play a crucial role in feto-maternal communication and provide an important paracrine signaling mechanism in pregnancy. We hypothesized that fetal cells-derived exosomes and microvesicles (MVs) under oxidative stress (OS) carry unique cargo and traffic through feto-maternal interface, which cause inflammation in uterine cells associated with parturition. Exosomes and MVs, from primary amnion epithelial cell (AEC) culture media under normal or OS-induced conditions, were isolated by optimized differential centrifugation method followed by characterization for size (nanoparticle tracking analyzer), shape (transmission electron microscopy), and protein markers (western blot and immunofluorescence). Cargo and canonical pathways were identified by mass spectroscopy and ingenuity pathway analysis. Myometrial, decidual, and cervical cells were treated with 1 × 107 control/OS-derived exosomes/MVs. Pro-inflammatory cytokines were measured using a Luminex assay. Statistical significance was determined by paired T-test (P < 0.05). AEC produced cup-shaped exosomes of 90-150 nm and circular MVs of 160-400 nm. CD9, heat shock protein 70, and Nanog were detected in exosomes, whereas OCT-4, human leukocyte antigen G, and calnexin were found in MVs. MVs, but not exosomes, were stained for phosphatidylserine. The protein profiles for control versus OS-derived exosomes and MVs were significantly different. Several inflammatory pathways related to OS were upregulated that were distinct between exosomes and MVs. Both OS-derived exosomes and MVs significantly increased pro-inflammatory cytokines (granulocyte-macrophage colony-stimulating factor, interleukin 6 (IL-6), and IL-8) in maternal cells compared with control (P < 0.05). Our findings suggest that fetal-derived exosomes and MVs under OS exhibited distinct characteristics and a synergistic inflammatory role in uterine cells associated with the initiation of parturition.
Collapse
Affiliation(s)
- Hend I Shahin
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Enkhtuya Radnaa
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Ourlad Alzeus G Tantengco
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.,Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, 1000, Philippines
| | - Talar Kechichian
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Ananth Kumar Kammala
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Samantha Sheller-Miller
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Brandie D Taylor
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, Pennsylvania
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
90
|
Sun C, Liu R, Xia M, Hou Y, Wang X, Lu JJ, Liu B, Chen X. Nannocystin Ax, a natural elongation factor 1α inhibitor from Nannocystis sp., suppresses epithelial-mesenchymal transition, adhesion and migration in lung cancer cells. Toxicol Appl Pharmacol 2021; 420:115535. [PMID: 33848516 DOI: 10.1016/j.taap.2021.115535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 11/17/2022]
Abstract
Epithelial-mesenchymal transition (EMT), the epithelial cells transdifferentiation into the mesenchymal cells, has been involved in cancer metastasis. Nannocystin ax (NAN) is a cyclodepsipeptide initially isolated from Myxobacterial genus, Nannocystis sp. with anticancer activities. This study was designed to explore the effect of NAN on TGF-β1-induced EMT in lung cancer cells. The morphological alteration was observed with a microscope. Western blotting and immunofluorescence assays were used to detect the protein expression and the localization. The adhesion and migration were evaluated by adhesion assay and wound healing assay. The mRNA expression of TGF-β receptor type I (TβRI) was determined by real-time PCR. NAN significantly restrained TGF-β1-induced EMT morphological changes, the protein expression of E-cadherin, N-cadherin, and Vimentin, etc. TGF-β1 activated phosphorylation and nuclear translocation of Smad2/3 were inhibited by NAN. Furthermore, NAN suppressed adhesion and migration triggered by TGF-β1. In addition, NAN significantly down-regulated TβRI on the transcriptional level directly. In summary, these results showed that NAN restrained TGF-β1-induced epithelial-mesenchymal transition, migration, and adhesion in human lung cancer cells. The underlying mechanism involved the inhibition of Smad2/3 and the TβRI signaling pathway. This study reveals the new anticancer effect and mechanism of NAN.
Collapse
Affiliation(s)
- Chong Sun
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Rong Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Mengwei Xia
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Ying Hou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xumei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China.
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
91
|
Menju T, Date H. Lung cancer and epithelial-mesenchymal transition. Gen Thorac Cardiovasc Surg 2021; 69:781-789. [PMID: 33754237 DOI: 10.1007/s11748-021-01595-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
Lung cancer (LC) is a leading cause of cancer-related death worldwide. Epithelial-mesenchymal transition (EMT) is a well-known phenomenon that promotes the invasive and metastatic capabilities of LC. Especially, EMT is assumed to be a pivotal mechanism for tumor cell invasion and metastasis, thereby limiting the efficacy of surgery and medical treatments, resulting in poor patient prognoses. Thus, the elucidation and reversal of EMT could provide changes in therapeutic strategies for LC. To overcome the limitations of currents treatment regimens for LC, it is important for surgeons to be familiar with this complex tumor characteristic. In this review, the activating signaling pathways underlying EMT and the associated tumor phenotypes are briefly described.
Collapse
Affiliation(s)
- Toshi Menju
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, 54, Shogoin Kawara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Hiroshi Date
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, 54, Shogoin Kawara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
92
|
Abolfathi H, Sheikhpour M, Shahraeini SS, Khatami S, Nojoumi SA. Studies in lung cancer cytokine proteomics: a review. Expert Rev Proteomics 2021; 18:49-64. [PMID: 33612047 DOI: 10.1080/14789450.2021.1892491] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Proteins are molecules that have role in the progression of the diseases. Proteomics is a tool that can play an effective role in identifying diagnostic and therapeutic biomarkers for lung cancer. Cytokines are proteins that play a decisive role in activating body's immune system in lung cancer. They can increase the growth of the tumor (oncogenic cytokines) or limit tumor growth (anti-tumor cytokines) by regulating related signaling pathways such as proliferation, growth, metastasis, and apoptosis. AREAS COVERED In the present study, a total of 223 papers including 196 research papers and 27 review papers, extracted from PubMed and Scopus and published from 1997 to present, are reviewed. The most important involved-cytokines in lung cancer including TNF-α, IFN- γ, TGF-β, VEGF and interleukins such as IL-6, IL-17, IL-8, IL-10, IL-22, IL-1β and IL-18 are introduced. Also, the pathological and biological role of such cytokines in cancer signaling pathways is explained. EXPERT OPINION In lung cancer, the cytokine expression changes under the physiological conditions of the immune system, and inflammatory cytokines are associated with the progression of lung cancer. Therefore, the cytokine expression profile can be used in the diagnosis, prognosis, prediction of therapeutic responses, and survival of patients with lung cancer.
Collapse
Affiliation(s)
- Hanie Abolfathi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Sadegh Shahraeini
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Shohreh Khatami
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Ali Nojoumi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
93
|
Zeng W, Gu S, Yu Y, Feng Y, Xiao M, Feng XH. ZNF451 stabilizes TWIST2 through SUMOylation and promotes epithelial-mesenchymal transition. Am J Cancer Res 2021; 11:898-915. [PMID: 33791162 PMCID: PMC7994150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) is the process by which epithelial cells lose their tightly packed polarized characteristics and acquire a migratory mesenchymal phenotype. EMT plays a pivotal role in embryonic development, wound healing, tissue regeneration, organ fibrosis and cancer progression. The basic helix-loop-helix (bHLH) transcription factors TWIST1/2 are key EMT-inducing transcription factors that govern transcription of EMT-associated genes. Although regulation of TWIST1 activity and stability has been well studied, little is known about how TWIST2 is post-translationally regulated. Here we have identified ZNF451, a SUMO2/3 specific E3 ligase, as a novel regulator of TWIST2 in promoting its stability. ZNF451 directly binds to and SUMOylates TWIST2 at K129 residue, and consequently blocks ubiquitination and proteasome-dependent degradation of TWIST2. Ectopic expression of ZNF451 increases the protein level of TWIST2 in mammary epithelial cells, leading to increased expression of mesenchymal markers, whereas depletion of ZNF451 suppresses mesenchymal phenotypes. Collectively, our findings demonstrate that ZNF451 plays a vital role in EMT through SUMOylation-dependent stabilization of TWIST2.
Collapse
Affiliation(s)
- Wang Zeng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang UniversityHangzhou 310058, Zhejiang, China
- Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang UniversityHangzhou 310058, Zhejiang, China
| | - Shuchen Gu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang UniversityHangzhou 310058, Zhejiang, China
- Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang UniversityHangzhou 310058, Zhejiang, China
| | - Yi Yu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang UniversityHangzhou 310058, Zhejiang, China
- Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang UniversityHangzhou 310058, Zhejiang, China
| | - Yili Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang UniversityHangzhou 310058, Zhejiang, China
- Key Laboratory of Surgery of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang UniversityHangzhou 310016, Zhejiang, China
| | - Mu Xiao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang UniversityHangzhou 310058, Zhejiang, China
- Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang UniversityHangzhou 310058, Zhejiang, China
| | - Xin-Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang UniversityHangzhou 310058, Zhejiang, China
- Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang UniversityHangzhou 310058, Zhejiang, China
| |
Collapse
|
94
|
Zhang J, Ten Dijke P, Wuhrer M, Zhang T. Role of glycosylation in TGF-β signaling and epithelial-to-mesenchymal transition in cancer. Protein Cell 2021; 12:89-106. [PMID: 32583064 PMCID: PMC7862465 DOI: 10.1007/s13238-020-00741-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/29/2020] [Indexed: 12/14/2022] Open
Abstract
Glycosylation is a common posttranslational modification on membrane-associated and secreted proteins that is of pivotal importance for regulating cell functions. Aberrant glycosylation can lead to uncontrolled cell proliferation, cell-matrix interactions, migration and differentiation, and has been shown to be involved in cancer and other diseases. The epithelial-to-mesenchymal transition is a key step in the metastatic process by which cancer cells gain the ability to invade tissues and extravasate into the bloodstream. This cellular transformation process, which is associated by morphological change, loss of epithelial traits and gain of mesenchymal markers, is triggered by the secreted cytokine transforming growth factor-β (TGF-β). TGF-β bioactivity is carefully regulated, and its effects on cells are mediated by its receptors on the cell surface. In this review, we first provide a brief overview of major types of glycans, namely, N-glycans, O-glycans, glycosphingolipids and glycosaminoglycans that are involved in cancer progression. Thereafter, we summarize studies on how the glycosylation of TGF-β signaling components regulates TGF-β secretion, bioavailability and TGF-β receptor function. Then, we review glycosylation changes associated with TGF-β-induced epithelial-to-mesenchymal transition in cancer. Identifying and understanding the mechanisms by which glycosylation affects TGF-β signaling and downstream biological responses will facilitate the identification of glycans as biomarkers and enable novel therapeutic approaches.
Collapse
Affiliation(s)
- Jing Zhang
- Oncode Institute and Cell Chemical Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Peter Ten Dijke
- Oncode Institute and Cell Chemical Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands.
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
95
|
Liu S, Ren J, Ten Dijke P. Targeting TGFβ signal transduction for cancer therapy. Signal Transduct Target Ther 2021; 6:8. [PMID: 33414388 PMCID: PMC7791126 DOI: 10.1038/s41392-020-00436-9] [Citation(s) in RCA: 225] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/19/2022] Open
Abstract
Transforming growth factor-β (TGFβ) family members are structurally and functionally related cytokines that have diverse effects on the regulation of cell fate during embryonic development and in the maintenance of adult tissue homeostasis. Dysregulation of TGFβ family signaling can lead to a plethora of developmental disorders and diseases, including cancer, immune dysfunction, and fibrosis. In this review, we focus on TGFβ, a well-characterized family member that has a dichotomous role in cancer progression, acting in early stages as a tumor suppressor and in late stages as a tumor promoter. The functions of TGFβ are not limited to the regulation of proliferation, differentiation, apoptosis, epithelial-mesenchymal transition, and metastasis of cancer cells. Recent reports have related TGFβ to effects on cells that are present in the tumor microenvironment through the stimulation of extracellular matrix deposition, promotion of angiogenesis, and suppression of the anti-tumor immune reaction. The pro-oncogenic roles of TGFβ have attracted considerable attention because their intervention provides a therapeutic approach for cancer patients. However, the critical function of TGFβ in maintaining tissue homeostasis makes targeting TGFβ a challenge. Here, we review the pleiotropic functions of TGFβ in cancer initiation and progression, summarize the recent clinical advancements regarding TGFβ signaling interventions for cancer treatment, and discuss the remaining challenges and opportunities related to targeting this pathway. We provide a perspective on synergistic therapies that combine anti-TGFβ therapy with cytotoxic chemotherapy, targeted therapy, radiotherapy, or immunotherapy.
Collapse
Affiliation(s)
- Sijia Liu
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Jiang Ren
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
96
|
Liu G, Guo Z, Zhang Q, Liu Z, Zhu D. AHNAK2 Promotes Migration, Invasion, and Epithelial-Mesenchymal Transition in Lung Adenocarcinoma Cells via the TGF-β/Smad3 Pathway. Onco Targets Ther 2020; 13:12893-12903. [PMID: 33363388 PMCID: PMC7754667 DOI: 10.2147/ott.s281517] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/27/2020] [Indexed: 12/28/2022] Open
Abstract
Purpose Lung adenocarcinoma is one of the common causes of cancer-related deaths worldwide. AHNAKs are giant proteins, which are correlated with cell structure and migration, cardiac calcium channel signaling, and other processes. Current studies identified AHNAK2 as a novel oncogene in some cancers; however, studies on its function in lung cancers are limited. Materials and Methods The expression of AHNAK2 was analyzed in normal lung tissues, lung adenocarcinoma tissues, and paracancerous tissues using the Oncomine database. It was further verified in relative cell lines by real-time quantitative polymerase chain reaction and Western blotting (WB). Adenocarcinoma cell lines were transfected with si-NC and si-AHNAK2 by lipofectamine 3000 and treated with or without TGF-β1, and cell migration and invasion were detected by wound-healing and transwell assays. The expression of epithelial-mesenchymal transition (EMT) markers was detected by WB, as well as that of phosphorylated-Smad3 (p-Smad3) and Smad3 levels. After Smad3 phosphorylation inhibitor was added to the adenocarcinoma cell lines, migration and invasion were detected by wound-healing and transwell assays, and the expression of EMT markers was detected by WB when the cells were transfected with si-NC and si-AHNAK2 and treated with or without TGF-β1. Results We found higher expression of AHNAK2 in lung adenocarcinoma tissues through the Oncomine database and further verified its high expression in relative cell lines. When the cells were stimulated with TGF-β1, knockdown of AHNAK2 suppressed cell migration, invasion, and EMT, and inhibited TGF-β-induced Smad3 signaling. When p-Smad3 was inhibited, knockdown of AHNAK2 had no effect on the two cell lines investigated when treated with or without TGF-β1. Conclusion AHNAK2 acts as an oncogenic protein and promotes migration, invasion, and EMT in lung adenocarcinoma cells via the TGF-β/Smad3 pathway. Thus, it may be a novel target for lung adenocarcinoma therapy.
Collapse
Affiliation(s)
- Gang Liu
- Department of Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| | - Zhongliang Guo
- Department of Respiratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| | - Qian Zhang
- Department of Respiratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| | - Zhongmin Liu
- Department of Cardiac Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| | - Dongyi Zhu
- Department of Respiratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| |
Collapse
|
97
|
Tsiampali J, Neumann S, Giesen B, Koch K, Maciaczyk D, Janiak C, Hänggi D, Maciaczyk J. Enzymatic Activity of CD73 Modulates Invasion of Gliomas via Epithelial-Mesenchymal Transition-Like Reprogramming. Pharmaceuticals (Basel) 2020; 13:E378. [PMID: 33187081 PMCID: PMC7698190 DOI: 10.3390/ph13110378] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/27/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive malignant primary brain tumour in adulthood. Despite strong research efforts current treatment options have a limited impact on glioma stem-like cells (GSCs) which contribute to GBM formation, progression and chemoresistance. Invasive growth of GSCs is in part associated with epithelial-mesenchymal-like transition (EMT), a mechanism associated with CD73 in several cancers. Here, we show that CD73 regulates the EMT activator SNAIL1 and further investigate the role of enzymatic and non-enzymatic CD73 activity in GBM progression. Reduction of CD73 protein resulted in significant suppression of GSC viability, proliferation and clonogenicity, whereas CD73 enzymatic activity exhibited negative effects only on GSC invasion involving impaired downstream adenosine (ADO) signalling. Furthermore, application of phosphodiesterase inhibitor pentoxifylline, a potent immunomodulator, effectively inhibited ZEB1 and CD73 expression and significantly decreased viability, clonogenicity, and invasion of GSC in vitro cultures. Given the involvement of adenosine and A3 adenosine receptor in GSC invasion, we investigated the effect of the pharmacological inhibition of A3AR on GSC maintenance. Direct A3AR inhibition promoted apoptotic cell death and impaired the clonogenicity of GSC cultures. Taken together, our data indicate that CD73 is an exciting novel target in GBM therapy. Moreover, pharmacological interference, resulting in disturbed ADO signalling, provides new opportunities to innovate GBM therapy.
Collapse
Affiliation(s)
- Julia Tsiampali
- Neurosurgery Department, University Hospital Duesseldorf, 40225 Duesseldorf, Germany; (J.T.); (K.K.); (D.H.)
| | - Silke Neumann
- Department of Pathology, University of Otago, Dunedin 9016, New Zealand; (S.N.); (D.M.)
| | - Beatriz Giesen
- Institute of Inorganic Chemistry and Structural Chemistry, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany; (B.G.); (C.J.)
| | - Katharina Koch
- Neurosurgery Department, University Hospital Duesseldorf, 40225 Duesseldorf, Germany; (J.T.); (K.K.); (D.H.)
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Duesseldorf, Germany
| | - Donata Maciaczyk
- Department of Pathology, University of Otago, Dunedin 9016, New Zealand; (S.N.); (D.M.)
| | - Christoph Janiak
- Institute of Inorganic Chemistry and Structural Chemistry, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany; (B.G.); (C.J.)
| | - Daniel Hänggi
- Neurosurgery Department, University Hospital Duesseldorf, 40225 Duesseldorf, Germany; (J.T.); (K.K.); (D.H.)
| | - Jaroslaw Maciaczyk
- Department of Neurosurgery, University Hospital Bonn, 53179 Bonn, Germany
- Department of Surgical Sciences, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
98
|
Cui Y, Song Y, Yan S, Cao M, Huang J, Jia D, Liu Y, Zhang S, Fan W, Cai L, Li C, Xing Y. CUEDC1 inhibits epithelial-mesenchymal transition via the TβRI/Smad signaling pathway and suppresses tumor progression in non-small cell lung cancer. Aging (Albany NY) 2020; 12:20047-20068. [PMID: 33099540 PMCID: PMC7655170 DOI: 10.18632/aging.103329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 08/15/2020] [Indexed: 12/15/2022]
Abstract
Lung cancer remains the most lethal cancer worldwide because of its high metastasis potential. Epithelial-mesenchymal transition (EMT) is known as the first step of the metastasis cascade, but the potential regulatory mechanisms of EMT have not been clearly established. In this study, we first found that low CUEDC1 expression correlated with lymph node metastasis in non-small cell lung cancer (NSCLC) patients using immunohistochemistry (IHC). CUEDC1 knockdown promoted the metastasis of NSCLC cells and EMT process and activated TβRI/Smad signaling pathway. Overexpression of CUEDC1 decreased the metastatic potential of lung cancer cells and inhibited the EMT process and inactivated TβRI/Smad signaling pathway. Immunoprecipitation (IP) assays showed that Smurf2 is a novel CUEDC1-interacting protein. Furthermore, CUEDC1 could regulate Smurf2 expression through the degradation of Smurf2. Overexpression of Smurf2 abolished CUEDC1 knockdown induced-EMT and the activation of TβRI/Smad signaling pathway, while siRNA Smurf2 reversed CUEDC1 overexpression-mediated regulation of EMT and TβRI/Smad signaling pathway. Additionally, CUEDC1 inhibited proliferation and promoted apoptosis of NSCLC cells. In vivo, CUEDC1-knockdown cells promoted metastasis and tumor growth compared with control cells. In conclusion, our findings indicate that the crucial role of CUEDC1 in NSCLC progression and provide support for its clinical investigation for therapeutic approaches.
Collapse
Affiliation(s)
- Yue Cui
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yang Song
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shi Yan
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mengru Cao
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jian Huang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dexin Jia
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuechao Liu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuai Zhang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Weina Fan
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Li Cai
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chunhong Li
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ying Xing
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
99
|
β-catenin activates TGF-β-induced epithelial-mesenchymal transition in adenomyosis. Exp Mol Med 2020; 52:1754-1765. [PMID: 33060769 PMCID: PMC8080580 DOI: 10.1038/s12276-020-00514-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/30/2022] Open
Abstract
Adenomyosis is defined as the presence of ectopic nests of endometrial glands and stroma within the myometrium. Adenomyosis is a common cause of dysmenorrhea, menorrhagia, and chronic pelvic pain but is often underdiagnosed. Despite its prevalence and severity of symptoms, its pathogenesis and etiology are poorly understood. Our previous study showed that aberrant activation of β-catenin results in adenomyosis through epithelial–mesenchymal transition. Using transcriptomic and ChIP-seq analysis, we identified activation of TGF-β signaling in the uteri of mutant mice that expressed dominant stabilized β-catenin in the uterus. There was a strong positive correlation between β-catenin and TGF-β2 proteins in women with adenomyosis. Furthermore, treatment with pirfenidone, a TGF-β inhibitor, increased E-cadherin expression and reduced cell invasiveness in Ishikawa cells with nuclear β-catenin. Our results suggest that β-catenin activates TGF-β-induced epithelial–mesenchymal transition in adenomyosis. This finding describes the molecular pathogenesis of adenomyosis and the use of TGF-β as a potential therapeutic target for adenomyosis. A regulatory link between two proteins involved in the progression of a debilitating uterine condition highlights a potential therapeutic target. Adenomyosis involves the invasion of cells from the inner lining of the uterus (the endometrium) into the uterine muscle wall (the myometrium), resulting in heavy, prolonged periods and chronic pain. The aberrent activation of a protein called β-catenin triggers adenomyosis, but the precise mechanisms are unclear. A team led by Jung-Ho Shin at the Korea University Medical Center, Seoul, South Korea, and Jae-Wook Jeong, Michigan State University, Grand Rapids, USA, used sequencing techniques in mice and human tissue samples to identify the pathways governed by β-catenin in adenomyosis. They found that the Tgf-β2 gene is directly regulated by β-catenin in the uterus. TGF-β2 levels were elevated in human adenomyosis lesions, suggesting the protein could be a therapeutic target.
Collapse
|
100
|
Takeshita A, Yasuma T, Nishihama K, D'Alessandro-Gabazza CN, Toda M, Totoki T, Okano Y, Uchida A, Inoue R, Qin L, Wang S, D'Alessandro VF, Kobayashi T, Takei Y, Mizoguchi A, Yano Y, Gabazza EC. Thrombomodulin ameliorates transforming growth factor-β1-mediated chronic kidney disease via the G-protein coupled receptor 15/Akt signal pathway. Kidney Int 2020; 98:1179-1192. [PMID: 33069430 DOI: 10.1016/j.kint.2020.05.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 04/24/2020] [Accepted: 05/07/2020] [Indexed: 12/19/2022]
Abstract
Kidney fibrosis is the common consequence of chronic kidney diseases that inexorably progresses to end-stage kidney disease with organ failure treatable only with replacement therapy. Since transforming growth factor-β1 is the main player in the pathogenesis of kidney fibrosis, we posed the hypothesis that recombinant thrombomodulin can ameliorate transforming growth factor-β1-mediated progressive kidney fibrosis and failure. To interrogate our hypothesis, we generated a novel glomerulus-specific human transforming growth factor-β1 transgenic mouse to evaluate the therapeutic effect of recombinant thrombomodulin. This transgenic mouse developed progressive glomerular sclerosis and tubulointerstitial fibrosis with kidney failure. Therapy with recombinant thrombomodulin for four weeks significantly inhibited kidney fibrosis and improved organ function compared to untreated transgenic mice. Treatment with recombinant thrombomodulin significantly inhibited apoptosis and mesenchymal differentiation of podocytes by interacting with the G-protein coupled receptor 15 to activate the Akt signaling pathway and to upregulate the expression of anti-apoptotic proteins including survivin. Thus, our study strongly suggests the potential therapeutic efficacy of recombinant thrombomodulin for the treatment of chronic kidney disease and subsequent organ failure.
Collapse
Affiliation(s)
- Atsuro Takeshita
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan; Department of Immunology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | - Taro Yasuma
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan; Department of Immunology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | - Kota Nishihama
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | | | - Masaaki Toda
- Department of Immunology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | - Toshiaki Totoki
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | - Yuko Okano
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan; Department of Immunology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | - Akihiro Uchida
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | - Ryo Inoue
- Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki, Kanawaga, Japan
| | - Liqiang Qin
- Department of Nephrology, Taizhou Hospital, Wenzhou Medical University, Lihai, Zhejiang Province, People's Republic of China
| | - Shujie Wang
- Department of Neural Regeneration and Cell Communication, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | | | - Tetsu Kobayashi
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | - Yoshiyuki Takei
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | - Akira Mizoguchi
- Department of Neural Regeneration and Cell Communication, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | - Yutaka Yano
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan.
| | - Esteban C Gabazza
- Department of Immunology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan.
| |
Collapse
|