51
|
The herpes simplex virus 1 protein ICP4 acts as both an activator and repressor of host genome transcription during infection. Mol Cell Biol 2021; 41:e0017121. [PMID: 34251885 DOI: 10.1128/mcb.00171-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection by herpes simplex virus 1 (HSV-1) impacts nearly all steps of host cell gene expression. The regulatory mechanisms by which this occurs, and the interplay between host and viral factors, have yet to be fully elucidated. We investigated how the occupancy of RNA polymerase II (Pol II) on the host genome changes during HSV-1 infection and is impacted by the viral immediate early protein ICP4. Pol II ChIP-seq experiments revealed ICP4-dependent decreases and increases in Pol II levels across the bodies of hundreds of genes. Our data suggest ICP4 represses host transcription by inhibiting recruitment of Pol II and activates host genes by promoting release of Pol II from promoter proximal pausing into productive elongation. Consistent with this, ICP4 was required for the decrease in levels of the pausing factor NELF-A on several HSV-1 activated genes after infection. In the absence of infection, exogenous expression of ICP4 activated, but did not repress, transcription of some genes in a chromatin-dependent context. Our data support the model that ICP4 decreases promoter proximal pausing on host genes activated by infection, and ICP4 is necessary, but not sufficient, to repress transcription of host genes during viral infection.
Collapse
|
52
|
Smith JP, Dutta AB, Sathyan KM, Guertin MJ, Sheffield NC. PEPPRO: quality control and processing of nascent RNA profiling data. Genome Biol 2021; 22:155. [PMID: 33992117 PMCID: PMC8126160 DOI: 10.1186/s13059-021-02349-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/12/2021] [Indexed: 12/18/2022] Open
Abstract
Nascent RNA profiling is growing in popularity; however, there is no standard analysis pipeline to uniformly process the data and assess quality. Here, we introduce PEPPRO, a comprehensive, scalable workflow for GRO-seq, PRO-seq, and ChRO-seq data. PEPPRO produces uniformly processed output files for downstream analysis and assesses adapter abundance, RNA integrity, library complexity, nascent RNA purity, and run-on efficiency. PEPPRO is restartable and fault-tolerant, records copious logs, and provides a web-based project report. PEPPRO can be run locally or using a cluster, providing a portable first step for genomic nascent RNA analysis.
Collapse
Affiliation(s)
- Jason P Smith
- Center for Public Health Genomics, University of Virginia, Charlottesville, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, USA
| | - Arun B Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, USA
| | | | - Michael J Guertin
- Center for Public Health Genomics, University of Virginia, Charlottesville, USA.
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, USA.
| | - Nathan C Sheffield
- Center for Public Health Genomics, University of Virginia, Charlottesville, USA.
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, USA.
- Department of Public Health Sciences, University of Virginia, Charlottesville, USA.
- Department of Biomedical Engineering, University of Virginia, Charlottesville, USA.
| |
Collapse
|
53
|
Herrero-Ruiz A, Martínez-García PM, Terrón-Bautista J, Millán-Zambrano G, Lieberman JA, Jimeno-González S, Cortés-Ledesma F. Topoisomerase IIα represses transcription by enforcing promoter-proximal pausing. Cell Rep 2021; 35:108977. [PMID: 33852840 PMCID: PMC8052185 DOI: 10.1016/j.celrep.2021.108977] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 02/05/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
Accumulation of topological stress in the form of DNA supercoiling is inherent to the advance of RNA polymerase II (Pol II) and needs to be resolved by DNA topoisomerases to sustain productive transcriptional elongation. Topoisomerases are therefore considered positive facilitators of transcription. Here, we show that, in contrast to this general assumption, human topoisomerase IIα (TOP2A) activity at promoters represses transcription of immediate early genes such as c-FOS, maintaining them under basal repressed conditions. Thus, TOP2A inhibition creates a particular topological context that results in rapid release from promoter-proximal pausing and transcriptional upregulation, which mimics the typical bursting behavior of these genes in response to physiological stimulus. We therefore describe the control of promoter-proximal pausing by TOP2A as a layer for the regulation of gene expression, which can act as a molecular switch to rapidly activate transcription, possibly by regulating the accumulation of DNA supercoiling at promoter regions.
Collapse
Affiliation(s)
- Andrés Herrero-Ruiz
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain; Topology and DNA Breaks Group, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain
| | - Pedro Manuel Martínez-García
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain
| | - José Terrón-Bautista
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain
| | - Gonzalo Millán-Zambrano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain
| | | | - Silvia Jimeno-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain; Departamento de Genética, Universidad de Sevilla, Sevilla 41080, Spain.
| | - Felipe Cortés-Ledesma
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain; Topology and DNA Breaks Group, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain.
| |
Collapse
|
54
|
Choi HM, Lee SH, Lee MS, Park D, Choi SS. Investigation of the putative role of antisense transcripts as regulators of sense transcripts by correlation analysis of sense-antisense pairs in colorectal cancers. FASEB J 2021; 35:e21482. [PMID: 33710708 DOI: 10.1096/fj.202002297rrr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 12/13/2022]
Abstract
Antisense transcription occurs widely more expected than when it was first identified in bacteria in the 1980s. However, the functional relevance of antisense transcripts in transcription remains controversial. Here, we investigated the putative role of antisense transcripts in regulating their corresponding sense transcripts by analyzing changes in correlative relationships between sense-antisense pairs under tumor and normal conditions. A total of 3469 sense-antisense gene pairs (SAGPs) downloaded from BioMart mapped to a list of sense and antisense genes in RNA-seq data derived from 80 paired colorectal cancer (CRC) samples were analyzed. As a result, cancer-related genes were significantly enriched in the significantly correlated SAGPs (SCPs). Differentially expressed genes estimated between normal and tumor conditions were also significantly more enriched in SCPs than in non-SCPs. Interestingly, using differential correlation analysis, we found that tumor samples had a significantly larger density of genes with higher correlation coefficients than normal samples, as verified by various cancer transcriptomes from The Cancer Genome Atlas (TCGA). Moreover, we found that the magnitude of the correlation between SAGPs could distinguish poor prognostic CRCs from good prognostic CRCs, showing that correlation coefficients between the SAGPs of CRCs with a poor prognosis were significantly stronger than CRCs with a good prognosis. Consistent with this finding, the Cox proportion hazards model showed that the survival rates were significantly different between patients with high and low expression of genes in the SCPs. All these results strongly support the idea that antisense transcripts are important regulators of their corresponding sense transcripts.
Collapse
Affiliation(s)
- Hye-Mi Choi
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, Korea
| | - Sang-Hyeop Lee
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, Korea
| | - Min-Seok Lee
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, Korea
| | | | - Sun Shim Choi
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
55
|
Huffines AK, Edwards YJK, Schneider DA. Spt4 Promotes Pol I Processivity and Transcription Elongation. Genes (Basel) 2021; 12:413. [PMID: 33809333 PMCID: PMC8000598 DOI: 10.3390/genes12030413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 01/25/2023] Open
Abstract
RNA polymerases (Pols) I, II, and III collectively synthesize most of the RNA in a eukaryotic cell. Transcription by Pols I, II, and III is regulated by hundreds of trans-acting factors. One such protein, Spt4, has been previously identified as a transcription factor that influences both Pols I and II. Spt4 forms a complex with Spt5, described as the Spt4/5 complex (or DSIF in mammalian cells). This complex has been shown previously to directly interact with Pol I and potentially affect transcription elongation. The previous literature identified defects in transcription by Pol I when SPT4 was deleted, but the necessary tools to characterize the mechanism of this effect were not available at the time. Here, we use a technique called Native Elongating Transcript Sequencing (NET-seq) to probe for the global occupancy of Pol I in wild-type (WT) and spt4△ Saccharomyces cerevisiae (yeast) cells at single nucleotide resolution in vivo. Analysis of NET-seq data reveals that Spt4 promotes Pol I processivity and enhances transcription elongation through regions of the ribosomal DNA that are particularly G-rich. These data suggest that Spt4/5 may directly affect transcription elongation by Pol I in vivo.
Collapse
Affiliation(s)
| | | | - David A. Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham 720 20th Street South, Birmingham, AL 35294, USA; (A.K.H.); (Y.J.K.E.)
| |
Collapse
|
56
|
Wang J, Rojas P, Mao J, Mustè Sadurnì M, Garnier O, Xiao S, Higgs MR, Garcia P, Saponaro M. Persistence of RNA transcription during DNA replication delays duplication of transcription start sites until G2/M. Cell Rep 2021; 34:108759. [PMID: 33596418 PMCID: PMC7900609 DOI: 10.1016/j.celrep.2021.108759] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 11/09/2020] [Accepted: 01/26/2021] [Indexed: 12/22/2022] Open
Abstract
As transcription and replication use DNA as substrate, conflicts between transcription and replication can occur, leading to genome instability with direct consequences for human health. To determine how the two processes are coordinated throughout S phase, we characterize both processes together at high resolution. We find that transcription occurs during DNA replication, with transcription start sites (TSSs) not fully replicated along with surrounding regions and remaining under-replicated until late in the cell cycle. TSSs undergo completion of DNA replication specifically when cells enter mitosis, when RNA polymerase II is removed. Intriguingly, G2/M DNA synthesis occurs at high frequency in unperturbed cell culture, but it is not associated with increased DNA damage and is fundamentally separated from mitotic DNA synthesis. TSSs duplicated in G2/M are characterized by a series of specific features, including high levels of antisense transcription, making them difficult to duplicate during S phase.
Collapse
Affiliation(s)
- Jianming Wang
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Patricia Rojas
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jingwen Mao
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Martina Mustè Sadurnì
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Olivia Garnier
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Songshu Xiao
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Martin R Higgs
- Lysine Methylation and DNA Damage Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Paloma Garcia
- Stem Cells and Genome Stability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Marco Saponaro
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
57
|
Floc'hlay S, Wong ES, Zhao B, Viales RR, Thomas-Chollier M, Thieffry D, Garfield DA, Furlong EEM. Cis-acting variation is common across regulatory layers but is often buffered during embryonic development. Genome Res 2021; 31:211-224. [PMID: 33310749 PMCID: PMC7849415 DOI: 10.1101/gr.266338.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022]
Abstract
Precise patterns of gene expression are driven by interactions between transcription factors, regulatory DNA sequences, and chromatin. How DNA mutations affecting any one of these regulatory "layers" are buffered or propagated to gene expression remains unclear. To address this, we quantified allele-specific changes in chromatin accessibility, histone modifications, and gene expression in F1 embryos generated from eight Drosophila crosses at three embryonic stages, yielding a comprehensive data set of 240 samples spanning multiple regulatory layers. Genetic variation (allelic imbalance) impacts gene expression more frequently than chromatin features, with metabolic and environmental response genes being most often affected. Allelic imbalance in cis-regulatory elements (enhancers) is common and highly heritable, yet its functional impact does not generally propagate to gene expression. When it does, genetic variation impacts RNA levels through two alternative mechanisms involving either H3K4me3 or chromatin accessibility and H3K27ac. Changes in RNA are more predictive of variation in H3K4me3 than vice versa, suggesting a role for H3K4me3 downstream from transcription. The impact of a substantial proportion of genetic variation is consistent across embryonic stages, with 50% of allelic imbalanced features at one stage being also imbalanced at subsequent developmental stages. Crucially, buffering, as well as the magnitude and evolutionary impact of genetic variants, is influenced by regulatory complexity (i.e., number of enhancers regulating a gene), with transcription factors being most robust to cis-acting, but most influenced by trans-acting, variation.
Collapse
Affiliation(s)
- Swann Floc'hlay
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Emily S Wong
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, New South Wales 2052, Australia
| | - Bingqing Zhao
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Germany
| | - Rebecca R Viales
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Germany
| | - Morgane Thomas-Chollier
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Denis Thieffry
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - David A Garfield
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Germany
| | - Eileen E M Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Germany
| |
Collapse
|
58
|
Mazina MY, Kovalenko EV, Vorobyeva NE. The negative elongation factor NELF promotes induced transcriptional response of Drosophila ecdysone-dependent genes. Sci Rep 2021; 11:172. [PMID: 33420323 PMCID: PMC7794308 DOI: 10.1038/s41598-020-80650-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/24/2020] [Indexed: 12/21/2022] Open
Abstract
For many years it was believed that promoter-proximal RNA-polymerase II (Pol II) pausing manages the transcription of genes in Drosophila development by controlling spatiotemporal properties of their activation and repression. But the exact proteins that cooperate to stall Pol II in promoter-proximal regions of developmental genes are still largely unknown. The current work describes the molecular mechanism employed by the Negative ELongation Factor (NELF) to control the Pol II pause at genes whose transcription is induced by 20-hydroxyecdysone (20E). According to our data, the NELF complex is recruited to the promoters and enhancers of 20E-dependent genes. Its presence at the regulatory sites of 20E-dependent genes correlates with observed interaction between the NELF-A subunit and the ecdysone receptor (EcR). The complete NELF complex is formed at the 20E-dependent promoters and participates in both their induced transcriptional response and maintenance of the uninduced state to keep them ready for the forthcoming transcription. NELF depletion causes a significant decrease in transcription induced by 20E, which is associated with the disruption of Pol II elongation complexes. A considerable reduction in the promoter-bound level of the Spt5 subunit of transcription elongation factor DSIF was observed at the 20E-dependent genes upon NELF depletion. We presume that an important function of NELF is to participate in stabilizing the Pol II-DSIF complex, resulting in a significant impact on transcription of its target genes. In order to directly link NELF to regulation of 20E-dependent genes in development, we show the presence of NELF at the promoters of 20E-dependent genes during their active transcription in both embryogenesis and metamorphosis. We also demonstrate that 20E-dependent promoters, while temporarily inactive at the larval stage, preserve a Pol II paused state and bind NELF complex.
Collapse
Affiliation(s)
- Marina Yu Mazina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Elena V Kovalenko
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | | |
Collapse
|
59
|
Abstract
Post-transcriptional processing strongly affects the stability and the relative quantification of RNA molecules, so that steady-state levels of mature RNA, such as mRNAs, rarely reflect accurately the rate of in situ transcription in nuclei by RNA polymerases (RNAPs). The "Global Run-on Sequencing (GRO-Seq)" method, developed in 2008, combines the nuclear run-on assay with next-generation deep sequencing to detect nascent RNA levels to annotate the positions, the relative levels and the orientation of transcriptionally engaged RNA polymerase II (RNAPII) molecules genome-wide. Thus, GRO-Seq is a powerful method to infer mechanistic insights into the multiple levels of transcriptional regulation such as promoter-proximal pausing of RNAP, bidirectional transcription, and enhancer activity. Here, we describe a protocol for mammalian cells that can reliably detect low abundant nascent RNA from both coding and noncoding genomic regions. This protocol can easily be adapted for most mammalian cells to define the transcriptionally active regions of the genome and to measure dynamic transcriptional responses with high sensitivity upon external stimuli.
Collapse
|
60
|
Liu OHF, Kiema M, Beter M, Ylä-Herttuala S, Laakkonen JP, Kaikkonen MU. Hypoxia-Mediated Regulation of Histone Demethylases Affects Angiogenesis-Associated Functions in Endothelial Cells. Arterioscler Thromb Vasc Biol 2020; 40:2665-2677. [PMID: 32938217 DOI: 10.1161/atvbaha.120.315214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Previous studies have demonstrated that the expression of several lysine (K)-specific demethylases (KDMs) is induced by hypoxia. Here, we sought to investigate the exact mechanisms underlying this regulation and its functional implications for endothelial cell function, such as angiogenesis. Approach and Results: We analyzed the expression changes of KDMs under hypoxia and modulation of HIF (hypoxia-inducible factor) expression using GRO-Seq and RNA-Seq in endothelial cells. We provide evidence that the majority of the KDMs are induced at the level of nascent transcription mediated by the action of HIF-1α and HIF-2α. Importantly, we show that transcriptional changes at the level of initiation represent the major mechanism of gene activation. To delineate the epigenetic effects of hypoxia and HIF activation in normoxia, we analyzed the genome-wide changes of H3K27me3 using chromosome immunoprecipitation-Seq. We discovered a redistribution of H3K27me3 at ≈2000 to 3000 transcriptionally active loci nearby genes implicated in angiogenesis. Among these, we demonstrate that vascular endothelial growth factor A (VEGFA) expression is partly induced by KDM4B- and KDM6B-mediated demethylation of nearby regions. Knockdown of KDM4B and KDM6B decreased cell proliferation, tube formation, and endothelial sprouting while affecting hundreds of genes associated with angiogenesis. These findings provide novel insights into the regulation of KDMs by hypoxia and the epigenetic regulation of VEGFA-mediated angiogenesis. CONCLUSIONS Our study describes an additional level of epigenetic regulation where hypoxia induces redistribution of H3K27me3 around genes implicated in proliferation and angiogenesis. More specifically, we demonstrate that KDM4B and KDM6B play a key role in modulating the expression of the major angiogenic driver VEGFA.
Collapse
Affiliation(s)
- Oscar Hsin-Fu Liu
- A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio (O.H.-F.L., M.K., M.B., S.Y.-H., J.P.L., M.U.K.)
| | - Miika Kiema
- A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio (O.H.-F.L., M.K., M.B., S.Y.-H., J.P.L., M.U.K.)
| | - Mustafa Beter
- A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio (O.H.-F.L., M.K., M.B., S.Y.-H., J.P.L., M.U.K.)
| | - Seppo Ylä-Herttuala
- Science Service Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| | - Johanna P Laakkonen
- A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio (O.H.-F.L., M.K., M.B., S.Y.-H., J.P.L., M.U.K.)
| | - Minna U Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio (O.H.-F.L., M.K., M.B., S.Y.-H., J.P.L., M.U.K.)
| |
Collapse
|
61
|
Zhang X, Zhao M, McCarty DR, Lisch D. Transposable elements employ distinct integration strategies with respect to transcriptional landscapes in eukaryotic genomes. Nucleic Acids Res 2020; 48:6685-6698. [PMID: 32442316 PMCID: PMC7337890 DOI: 10.1093/nar/gkaa370] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 12/27/2022] Open
Abstract
Transposable elements (TEs) are ubiquitous DNA segments capable of moving from one site to another within host genomes. The extant distributions of TEs in eukaryotic genomes have been shaped by both bona fide TE integration preferences in eukaryotic genomes and by selection following integration. Here, we compare TE target site distribution in host genomes using multiple de novo transposon insertion datasets in both plants and animals and compare them in the context of genome-wide transcriptional landscapes. We showcase two distinct types of transcription-associated TE targeting strategies that suggest a process of convergent evolution among eukaryotic TE families. The integration of two precision-targeting elements are specifically associated with initiation of RNA Polymerase II transcription of highly expressed genes, suggesting the existence of novel mechanisms of precision TE targeting in addition to passive targeting of open chromatin. We also highlight two features that can facilitate TE survival and rapid proliferation: tissue-specific transposition and minimization of negative impacts on nearby gene function due to precision targeting.
Collapse
Affiliation(s)
- Xinyan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Meixia Zhao
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Donald R McCarty
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Damon Lisch
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
62
|
Ibragimov AN, Bylino OV, Shidlovskii YV. Molecular Basis of the Function of Transcriptional Enhancers. Cells 2020; 9:E1620. [PMID: 32635644 PMCID: PMC7407508 DOI: 10.3390/cells9071620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Transcriptional enhancers are major genomic elements that control gene activity in eukaryotes. Recent studies provided deeper insight into the temporal and spatial organization of transcription in the nucleus, the role of non-coding RNAs in the process, and the epigenetic control of gene expression. Thus, multiple molecular details of enhancer functioning were revealed. Here, we describe the recent data and models of molecular organization of enhancer-driven transcription.
Collapse
Affiliation(s)
- Airat N. Ibragimov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (A.N.I.); (O.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Oleg V. Bylino
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (A.N.I.); (O.V.B.)
| | - Yulii V. Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (A.N.I.); (O.V.B.)
- I.M. Sechenov First Moscow State Medical University, 8, bldg. 2 Trubetskaya St., 119048 Moscow, Russia
| |
Collapse
|
63
|
Bacon CW, Challa A, Hyder U, Shukla A, Borkar AN, Bayo J, Liu J, Wu SY, Chiang CM, Kutateladze TG, D'Orso I. KAP1 Is a Chromatin Reader that Couples Steps of RNA Polymerase II Transcription to Sustain Oncogenic Programs. Mol Cell 2020; 78:1133-1151.e14. [PMID: 32402252 PMCID: PMC7305985 DOI: 10.1016/j.molcel.2020.04.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/25/2020] [Accepted: 04/17/2020] [Indexed: 01/08/2023]
Abstract
Precise control of the RNA polymerase II (RNA Pol II) cycle, including pausing and pause release, maintains transcriptional homeostasis and organismal functions. Despite previous work to understand individual transcription steps, we reveal a mechanism that integrates RNA Pol II cycle transitions. Surprisingly, KAP1/TRIM28 uses a previously uncharacterized chromatin reader cassette to bind hypo-acetylated histone 4 tails at promoters, guaranteeing continuous progression of RNA Pol II entry to and exit from the pause state. Upon chromatin docking, KAP1 first associates with RNA Pol II and then recruits a pathway-specific transcription factor (SMAD2) in response to cognate ligands, enabling gene-selective CDK9-dependent pause release. This coupling mechanism is exploited by tumor cells to aberrantly sustain transcriptional programs commonly dysregulated in cancer patients. The discovery of a factor integrating transcription steps expands the functional repertoire by which chromatin readers operate and provides mechanistic understanding of transcription regulation, offering alternative therapeutic opportunities to target transcriptional dysregulation.
Collapse
Affiliation(s)
- Curtis W Bacon
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Biological Chemistry Graduate Program, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashwini Challa
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Usman Hyder
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashutosh Shukla
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Aditi N Borkar
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Juan Bayo
- Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, CONICET, Universidad Austral, Derqui-Pilar, Buenos Aires 1629, Argentina
| | - Jiuyang Liu
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Shwu-Yuan Wu
- Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cheng-Ming Chiang
- Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Iván D'Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
64
|
Enhancer RNAs are an important regulatory layer of the epigenome. Nat Struct Mol Biol 2020; 27:521-528. [PMID: 32514177 DOI: 10.1038/s41594-020-0446-0] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 05/07/2020] [Indexed: 12/20/2022]
Abstract
Noncoding RNAs (ncRNAs) direct a remarkable number of diverse functions in development and disease through their regulation of transcription, RNA processing and translation. Leading the charge in the RNA revolution is a class of ncRNAs that are synthesized at active enhancers, called enhancer RNAs (eRNAs). Here, we review recent insights into the biogenesis of eRNAs and the mechanisms underlying their multifaceted functions and consider how these findings could inform future investigations into enhancer transcription and eRNA function.
Collapse
|
65
|
Negative elongation factor complex enables macrophage inflammatory responses by controlling anti-inflammatory gene expression. Nat Commun 2020; 11:2286. [PMID: 32385332 PMCID: PMC7210294 DOI: 10.1038/s41467-020-16209-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 04/21/2020] [Indexed: 01/06/2023] Open
Abstract
Studies on macrophage gene expression have historically focused on events leading to RNA polymerase II recruitment and transcription initiation, whereas the contribution of post-initiation steps to macrophage activation remains poorly understood. Here, we report that widespread promoter-proximal RNA polymerase II pausing in resting macrophages is marked by co-localization of the negative elongation factor (NELF) complex and facilitated by PU.1. Upon inflammatory stimulation, over 60% of activated transcriptome is regulated by polymerase pause-release and a transient genome-wide NELF dissociation from chromatin, unexpectedly, independent of CDK9, a presumed NELF kinase. Genetic disruption of NELF in macrophages enhanced transcription of AP-1-encoding Fos and Jun and, consequently, AP-1 targets including Il10. Augmented expression of IL-10, a critical anti-inflammatory cytokine, in turn, attenuated production of pro-inflammatory mediators and, ultimately, macrophage-mediated inflammation in vivo. Together, these findings establish a previously unappreciated role of NELF in constraining transcription of inflammation inhibitors thereby enabling inflammatory macrophage activation. Macrophage activation is integral to innate immunity and inflammation, and involves transcriptome remodeling leading to the rapid upregulation of pro- and anti-inflammatory effector genes. Here the authors show that the negative elongation factor (NELF) complex controls the transcription of anti-inflammatory genes through Pol II pause release.
Collapse
|
66
|
Fitz J, Neumann T, Steininger M, Wiedemann EM, Garcia AC, Athanasiadis A, Schoeberl UE, Pavri R. Spt5-mediated enhancer transcription directly couples enhancer activation with physical promoter interaction. Nat Genet 2020; 52:505-515. [PMID: 32251373 DOI: 10.1038/s41588-020-0605-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 02/28/2020] [Indexed: 12/19/2022]
Abstract
Active enhancers are frequently transcribed, yet the regulatory role of enhancer transcription remains debated. Here, we depleted the RNA polymerase II pausing and elongation factor Spt5 in activated mouse B cells and found that approximately 50% of enhancer-gene pairs showed co-regulated transcription, consistent with a potential functional requirement for enhancer transcription. In particular, Spt5 depletion led to loss of super-enhancer-promoter physical interaction and gene expression at the immunoglobulin heavy-chain locus (Igh), abrogating antibody class switch recombination. This defect correlated strictly with loss of enhancer transcription but did not affect acetylation of histone H3 at lysine 27, chromatin accessibility and occupancy of Mediator and cohesin at the enhancer. Strikingly, CRISPRa-mediated rescue of enhancer transcription in Spt5-depleted cells restored Igh gene expression. Our work suggests that Spt5-mediated enhancer transcription underlies the physical and functional interaction between a subset of active enhancers and their target promoters.
Collapse
Affiliation(s)
- Johanna Fitz
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Tobias Neumann
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | | | | | | | | | | | - Rushad Pavri
- Research Institute of Molecular Pathology (IMP), Vienna, Austria.
| |
Collapse
|
67
|
Aoi Y, Smith ER, Shah AP, Rendleman EJ, Marshall SA, Woodfin AR, Chen FX, Shiekhattar R, Shilatifard A. NELF Regulates a Promoter-Proximal Step Distinct from RNA Pol II Pause-Release. Mol Cell 2020; 78:261-274.e5. [PMID: 32155413 PMCID: PMC7402197 DOI: 10.1016/j.molcel.2020.02.014] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 12/17/2019] [Accepted: 02/18/2020] [Indexed: 02/08/2023]
Abstract
RNA polymerase II (RNA Pol II) is generally paused at promoter-proximal regions in most metazoans, and based on in vitro studies, this function has been attributed to the negative elongation factor (NELF). Here, we show that upon rapid depletion of NELF, RNA Pol II fails to be released into gene bodies, stopping instead around the +1 nucleosomal dyad-associated region. The transition to the 2nd pause region is independent of positive transcription elongation factor P-TEFb. During the heat shock response, RNA Pol II is rapidly released from pausing at heat shock-induced genes, while most genes are paused and transcriptionally downregulated. Both of these aspects of the heat shock response remain intact upon NELF loss. We find that NELF depletion results in global loss of cap-binding complex from chromatin without global reduction of nascent transcript 5' cap stability. Thus, our studies implicate NELF functioning in early elongation complexes distinct from RNA Pol II pause-release.
Collapse
Affiliation(s)
- Yuki Aoi
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Edwin R Smith
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Avani P Shah
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Emily J Rendleman
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Stacy A Marshall
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ashley R Woodfin
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Fei X Chen
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ramin Shiekhattar
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ali Shilatifard
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
68
|
Fant CB, Levandowski CB, Gupta K, Maas ZL, Moir J, Rubin JD, Sawyer A, Esbin MN, Rimel JK, Luyties O, Marr MT, Berger I, Dowell RD, Taatjes DJ. TFIID Enables RNA Polymerase II Promoter-Proximal Pausing. Mol Cell 2020; 78:785-793.e8. [PMID: 32229306 DOI: 10.1016/j.molcel.2020.03.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/15/2019] [Accepted: 03/05/2020] [Indexed: 02/07/2023]
Abstract
RNA polymerase II (RNAPII) transcription is governed by the pre-initiation complex (PIC), which contains TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, RNAPII, and Mediator. After initiation, RNAPII enzymes pause after transcribing less than 100 bases; precisely how RNAPII pausing is enforced and regulated remains unclear. To address specific mechanistic questions, we reconstituted human RNAPII promoter-proximal pausing in vitro, entirely with purified factors (no extracts). As expected, NELF and DSIF increased pausing, and P-TEFb promoted pause release. Unexpectedly, the PIC alone was sufficient to reconstitute pausing, suggesting RNAPII pausing is an inherent PIC function. In agreement, pausing was lost upon replacement of the TFIID complex with TATA-binding protein (TBP), and PRO-seq experiments revealed widespread disruption of RNAPII pausing upon acute depletion (t = 60 min) of TFIID subunits in human or Drosophila cells. These results establish a TFIID requirement for RNAPII pausing and suggest pause regulatory factors may function directly or indirectly through TFIID.
Collapse
Affiliation(s)
- Charli B Fant
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | | | - Kapil Gupta
- School of Biochemistry, Bristol Research Centre for Synthetic Biology, University of Bristol, Bristol, UK
| | - Zachary L Maas
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - John Moir
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Jonathan D Rubin
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Andrew Sawyer
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Meagan N Esbin
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Jenna K Rimel
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Olivia Luyties
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Michael T Marr
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Imre Berger
- School of Biochemistry, Bristol Research Centre for Synthetic Biology, University of Bristol, Bristol, UK
| | - Robin D Dowell
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA; BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
69
|
Bagchi DN, Battenhouse AM, Park D, Iyer VR. The histone variant H2A.Z in yeast is almost exclusively incorporated into the +1 nucleosome in the direction of transcription. Nucleic Acids Res 2020; 48:157-170. [PMID: 31722407 PMCID: PMC7145542 DOI: 10.1093/nar/gkz1075] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/22/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022] Open
Abstract
Transcription start sites (TSS) in eukaryotes are characterized by a nucleosome-depleted region (NDR), which appears to be flanked upstream and downstream by strongly positioned nucleosomes incorporating the histone variant H2A.Z. H2A.Z associates with both active and repressed TSS and is important for priming genes for rapid transcriptional activation. However, the determinants of H2A.Z occupancy at specific nucleosomes and its relationship to transcription initiation remain unclear. To further elucidate the specificity of H2A.Z, we determined its genomic localization at single nucleosome resolution, as well as the localization of its chromatin remodelers Swr1 and Ino80. By analyzing H2A.Z occupancy in conjunction with RNA expression data that captures promoter-derived antisense initiation, we find that H2A.Z's bimodal incorporation on either side of the NDR is not a general feature of TSS, but is specifically a marker for bidirectional transcription, such that the upstream flanking -1 H2A.Z-containing nucleosome is more appropriately considered as a +1 H2A.Z nucleosome for antisense transcription. The localization of H2A.Z almost exclusively at the +1 nucleosome suggests that a transcription-initiation dependent process could contribute to its specific incorporation.
Collapse
Affiliation(s)
- Dia N Bagchi
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
| | - Anna M Battenhouse
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
| | - Daechan Park
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
| | - Vishwanath R Iyer
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
70
|
Gregersen LH, Mitter R, Svejstrup JQ. Using TT chem-seq for profiling nascent transcription and measuring transcript elongation. Nat Protoc 2020; 15:604-627. [PMID: 31915390 DOI: 10.1038/s41596-019-0262-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/29/2019] [Indexed: 01/08/2023]
Abstract
The dynamics of transcription can be studied genome wide by high-throughput sequencing of nascent and newly synthesized RNA. 4-thiouridine (4SU) labeling in vivo enables the specific capture of such new transcripts, with 4SU residues being tagged by biotin linkers and captured using streptavidin beads before library production and high-throughput sequencing. To achieve high-resolution profiles of transcribed regions, an RNA fragmentation step before biotin tagging was introduced, in an approach known as transient transcriptome sequencing (TT-seq). We recently introduced a chemical approach for RNA fragmentation that we refer to as TTchem-seq. We describe how TTchem-seq can be used in combination with transient inhibition of early elongation using the reversible CDK9 inhibitor, 5,6-dichlorobenzimidazole 1-β-D-ribofuranoside (DRB), to measure RNA polymerase II (RNAPII) elongation rates in vivo, a technique we call DRB/TTchem-seq. Here, we provide detailed protocols for carrying out TTchem-seq and DRB/TTchem-seq, including computational analysis. Experiments and data analysis can be performed over a period of 10-13 d and require molecular biology and bioinformatics skills.
Collapse
Affiliation(s)
- Lea H Gregersen
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, UK
| | - Richard Mitter
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, UK
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
71
|
Abstract
An important capacity of genes is the rapid change of expression levels to cope with the environment, known as expression responsiveness or plasticity. Elucidating the genomic mechanisms determining expression plasticity is critical for understanding the molecular basis of phenotypic plasticity, fitness and adaptation. In this study, we systematically quantified gene expression plasticity in four metazoan species by integrating changes of expression levels under a large number of genetic and environmental conditions. From this, we demonstrated that expression plasticity measures a distinct feature of gene expression that is orthogonal to other well-studied features, including gene expression level and tissue specificity/broadness. Expression plasticity is conserved across species with important physiological implications. The magnitude of expression plasticity is highly correlated with gene function and genes with high plasticity are implicated in disease susceptibility. Genome-wide analysis identified many conserved promoter cis-elements, trans-acting factors (such as CTCF), and gene body histone modifications (H3K36me3, H3K79me2 and H4K20me1) that are significantly associated with expression plasticity. Analysis of expression changes in perturbation experiments further validated a causal role of specific transcription factors and histone modifications. Collectively, this work reveals the general properties, physiological implications and multivariable regulation of gene expression plasticity in metazoans, extending the mechanistic understanding of gene regulation.
Collapse
Affiliation(s)
- Long Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 10049, People's Republic of China
| | - Zhiguang Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 10049, People's Republic of China
| | - Fei He
- Biology Department, Brookhaven National Lab, Upton, NY 11967, USA
| | - Zhuo Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 10049, People's Republic of China
| |
Collapse
|
72
|
Wissink EM, Vihervaara A, Tippens ND, Lis JT. Nascent RNA analyses: tracking transcription and its regulation. Nat Rev Genet 2019; 20:705-723. [PMID: 31399713 PMCID: PMC6858503 DOI: 10.1038/s41576-019-0159-6] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2019] [Indexed: 12/19/2022]
Abstract
The programmes that direct an organism's development and maintenance are encoded in its genome. Decoding of this information begins with regulated transcription of genomic DNA into RNA. Although transcription and its control can be tracked indirectly by measuring stable RNAs, it is only by directly measuring nascent RNAs that the immediate regulatory changes in response to developmental, environmental, disease and metabolic signals are revealed. Multiple complementary methods have been developed to quantitatively track nascent transcription genome-wide at nucleotide resolution, all of which have contributed novel insights into the mechanisms of gene regulation and transcription-coupled RNA processing. Here we critically evaluate the array of strategies used for investigating nascent transcription and discuss the recent conceptual advances they have provided.
Collapse
Affiliation(s)
- Erin M Wissink
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Anniina Vihervaara
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Nathaniel D Tippens
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
73
|
Lis JT. A 50 year history of technologies that drove discovery in eukaryotic transcription regulation. Nat Struct Mol Biol 2019; 26:777-782. [PMID: 31439942 PMCID: PMC7106917 DOI: 10.1038/s41594-019-0288-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/26/2019] [Indexed: 01/12/2023]
Abstract
Transcription regulation is critical to organism development and homeostasis. Control of expression of the 20,000 genes in human cells requires many hundreds of proteins acting through sophisticated multistep mechanisms. In this Historical Perspective, I highlight the progress that has been made in elucidating eukaryotic transcriptional mechanisms through an array of disciplines and approaches, and how this concerted effort has been driven by the development of new technologies.
Collapse
Affiliation(s)
- John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
74
|
Rodrigues DF, Costa VM, Silvestre R, Bastos ML, Carvalho F. Methods for the analysis of transcriptome dynamics. Toxicol Res (Camb) 2019; 8:597-612. [PMID: 31588338 PMCID: PMC6764467 DOI: 10.1039/c9tx00088g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
The transcriptome is the complete set of transcripts in a cell or tissue and includes ribosomal RNA (rRNA), messenger RNA (mRNA), transfer RNA (tRNA), and regulatory noncoding RNA. At steady-state, the transcriptome results from a compensatory variation of the transcription and decay rate to maintain the RNA concentration constant. RNA transcription constitutes the first stage in gene expression, and thus is a major and primary mode of gene expression control. Nevertheless, regulation of RNA decay is also a key factor in gene expression control, involving either selective RNA stabilization or enhanced degradation. Transcriptome analysis allows the identification of gene expression alterations, providing new insights regarding the pathways and mechanisms involved in physiological and pathological processes. Upon perturbation of cell homeostasis, rapid changes in gene expression are required to adapt to new conditions. Thus, to better understand the regulatory mechanisms associated with gene expression alterations, it is vital to acknowledge the relative contribution of RNA synthesis and decay to the transcriptome. To the toxicology field, the study of gene expression regulation mechanisms can help identify the early and mechanistic relevant cellular events associated with a particular response. This review aims to provide a critical comparison of the available methods used to analyze the contribution of RNA transcription and decay to gene expression dynamics. Notwithstanding, an integration of the data obtained is necessary to understand the entire repercussions of gene transcription changes at a system-level. Thus, a brief overview of the methods available for the integration and analysis of the data obtained from transcriptome analysis will also be provided.
Collapse
Affiliation(s)
- Daniela F Rodrigues
- UCIBIO , REQUIMTE , Laboratory of Toxicology , Faculty of Pharmacy , University of Porto , Rua Jorge Viterbo Ferreira , 228 , 4050-313 , Porto , Portugal . ;
| | - Vera M Costa
- UCIBIO , REQUIMTE , Laboratory of Toxicology , Faculty of Pharmacy , University of Porto , Rua Jorge Viterbo Ferreira , 228 , 4050-313 , Porto , Portugal . ;
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS) , School of Medicine , University of Minho , Campus de Gualtar , 4710-057 , Braga , Portugal
- ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães , Campus de Gualtar , 4710-057 , Braga , Portugal
| | - Maria L Bastos
- UCIBIO , REQUIMTE , Laboratory of Toxicology , Faculty of Pharmacy , University of Porto , Rua Jorge Viterbo Ferreira , 228 , 4050-313 , Porto , Portugal . ;
| | - Félix Carvalho
- UCIBIO , REQUIMTE , Laboratory of Toxicology , Faculty of Pharmacy , University of Porto , Rua Jorge Viterbo Ferreira , 228 , 4050-313 , Porto , Portugal . ;
| |
Collapse
|
75
|
Chen FX, Smith ER, Shilatifard A. Born to run: control of transcription elongation by RNA polymerase II. Nat Rev Mol Cell Biol 2019; 19:464-478. [PMID: 29740129 DOI: 10.1038/s41580-018-0010-5] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The dynamic regulation of transcription elongation by RNA polymerase II (Pol II) is an integral part of the implementation of gene expression programmes during development. In most metazoans, the majority of transcribed genes exhibit transient pausing of Pol II at promoter-proximal regions, and the release of Pol II into gene bodies is controlled by many regulatory factors that respond to environmental and developmental cues. Misregulation of the elongation stage of transcription is implicated in cancer and other human diseases, suggesting that mechanistic understanding of transcription elongation control is therapeutically relevant. In this Review, we discuss the features, establishment and maintenance of Pol II pausing, the transition into productive elongation, the control of transcription elongation by enhancers and by factors of other cellular processes, such as topoisomerases and poly(ADP-ribose) polymerases (PARPs), and the potential of therapeutic targeting of the elongation stage of transcription by Pol II.
Collapse
Affiliation(s)
- Fei Xavier Chen
- Simpson Querrey Center for Epigenetics and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Edwin R Smith
- Simpson Querrey Center for Epigenetics and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ali Shilatifard
- Simpson Querrey Center for Epigenetics and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
76
|
Reichholf B, Herzog VA, Fasching N, Manzenreither RA, Sowemimo I, Ameres SL. Time-Resolved Small RNA Sequencing Unravels the Molecular Principles of MicroRNA Homeostasis. Mol Cell 2019; 75:756-768.e7. [PMID: 31350118 PMCID: PMC6713562 DOI: 10.1016/j.molcel.2019.06.018] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/04/2019] [Accepted: 06/13/2019] [Indexed: 11/27/2022]
Abstract
Argonaute-bound microRNAs silence mRNA expression in a dynamic and regulated manner to control organismal development, physiology, and disease. We employed metabolic small RNA sequencing for a comprehensive view on intracellular microRNA kinetics in Drosophila. Based on absolute rate of biogenesis and decay, microRNAs rank among the fastest produced and longest-lived cellular transcripts, disposing up to 105 copies per cell at steady-state. Mature microRNAs are produced within minutes, revealing tight intracellular coupling of biogenesis that is selectively disrupted by pre-miRNA-uridylation. Control over Argonaute protein homeostasis generates a kinetic bottleneck that cooperates with non-coding RNA surveillance to ensure faithful microRNA loading. Finally, regulated small RNA decay enables the selective rapid turnover of Ago1-bound microRNAs, but not of Ago2-bound small interfering RNAs (siRNAs), reflecting key differences in the robustness of small RNA silencing pathways. Time-resolved small RNA sequencing opens new experimental avenues to deconvolute the timescales, molecular features, and regulation of small RNA silencing pathways in living cells.
Collapse
Affiliation(s)
- Brian Reichholf
- Institute of Molecular Biotechnology (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Veronika A Herzog
- Institute of Molecular Biotechnology (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Nina Fasching
- Institute of Molecular Biotechnology (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | | | - Ivica Sowemimo
- Institute of Molecular Biotechnology (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Stefan L Ameres
- Institute of Molecular Biotechnology (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria.
| |
Collapse
|
77
|
Rennie S, Dalby M, Lloret-Llinares M, Bakoulis S, Dalager Vaagensø C, Heick Jensen T, Andersson R. Transcription start site analysis reveals widespread divergent transcription in D. melanogaster and core promoter-encoded enhancer activities. Nucleic Acids Res 2019; 46:5455-5469. [PMID: 29659982 PMCID: PMC6009668 DOI: 10.1093/nar/gky244] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/22/2018] [Indexed: 12/19/2022] Open
Abstract
Mammalian gene promoters and enhancers share many properties. They are composed of a unified promoter architecture of divergent transcripton initiation and gene promoters may exhibit enhancer function. However, it is currently unclear how expression strength of a regulatory element relates to its enhancer strength and if the unifying architecture is conserved across Metazoa. Here we investigate the transcription initiation landscape and its associated RNA decay in Drosophila melanogaster. We find that the majority of active gene-distal enhancers and a considerable fraction of gene promoters are divergently transcribed. We observe quantitative relationships between enhancer potential, expression level and core promoter strength, providing an explanation for indirectly related histone modifications that are reflecting expression levels. Lowly abundant unstable RNAs initiated from weak core promoters are key characteristics of gene-distal developmental enhancers, while the housekeeping enhancer strengths of gene promoters reflect their expression strengths. The seemingly separable layer of regulation by gene promoters with housekeeping enhancer potential is also indicated by chromatin interaction data. Our results suggest a unified promoter architecture of many D. melanogaster regulatory elements, that is universal across Metazoa, whose regulatory functions seem to be related to their core promoter elements.
Collapse
Affiliation(s)
- Sarah Rennie
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Maria Dalby
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Marta Lloret-Llinares
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, 8000 Aarhus C, Denmark
| | - Stylianos Bakoulis
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Christian Dalager Vaagensø
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, 8000 Aarhus C, Denmark
| | - Robin Andersson
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
78
|
Scheidegger A, Dunn CJ, Samarakkody A, Koney NKK, Perley D, Saha RN, Nechaev S. Genome-wide RNA pol II initiation and pausing in neural progenitors of the rat. BMC Genomics 2019; 20:477. [PMID: 31185909 PMCID: PMC6558777 DOI: 10.1186/s12864-019-5829-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/23/2019] [Indexed: 12/29/2022] Open
Abstract
Background Global RNA sequencing technologies have revealed widespread RNA polymerase II (Pol II) transcription outside of gene promoters. Small 5′-capped RNA sequencing (Start-seq) originally developed for the detection of promoter-proximal Pol II pausing has helped improve annotation of Transcription Start Sites (TSSs) of genes as well as identification of non-genic regulatory elements. However, apart from the most well studied genomes of human and mouse, mammalian transcription has not been profiled with sufficiently high precision. Results We prepared and sequenced Start-seq libraries from rat (Rattus norgevicus) primary neural progenitor cells. Over 48 million uniquely mappable reads from two independent biological replicates allowed us to define the TSSs of 7365 known genes in the rn6 genome, reannotating 2503 TSSs by more than 5 base pairs, characterize promoter-associated antisense transcription, and profile Pol II pausing. By combining TSS data with polyA-selected RNA sequencing, we also identified thousands of potential new genes producing stable RNA as well as non-genic transcripts representing possible regulatory elements. Conclusions Our study has produced the first Start-seq dataset for the rat. Apart from profiling transcription initiation, our data reaffirm the prevalence of Pol II pausing across the rat genome and indicate conservation of pausing mechanisms across metazoan genomes. We suggest that pausing location, at least in mammals, is constrained by a distance from initiation of transcription, whether it occurs at or outside of a gene promoter. Abundant antisense transcription initiation around protein coding genes indicates that Pol II recruited to the vicinity of a promoter is distributed to available start sites of transcription at either DNA strand. Transcriptome profiling of neural progenitors presented here will facilitate further studies of other rat cell types as well as other organisms. Electronic supplementary material The online version of this article (10.1186/s12864-019-5829-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adam Scheidegger
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, 58202, USA.,Present address: Omega Therapeutics, Cambridge, MA, 02139, USA
| | - Carissa J Dunn
- Molecular and Cell Biology Department, School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA
| | - Ann Samarakkody
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, 58202, USA.,Present address: Department of Pediatric Hematology-Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Nii Koney-Kwaku Koney
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, 58202, USA
| | - Danielle Perley
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, 58202, USA
| | - Ramendra N Saha
- Molecular and Cell Biology Department, School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA
| | - Sergei Nechaev
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, 58202, USA.
| |
Collapse
|
79
|
Abstract
In this review, Core et al. discuss the recent advances in our understanding of the early steps in Pol II transcription, highlighting the events and factors involved in the establishment and release of paused Pol II. They also discuss a number of unanswered questions about the regulation and function of Pol II pausing. Precise spatio–temporal control of gene activity is essential for organismal development, growth, and survival in a changing environment. Decisive steps in gene regulation involve the pausing of RNA polymerase II (Pol II) in early elongation, and the controlled release of paused polymerase into productive RNA synthesis. Here we describe the factors that enable pausing and the events that trigger Pol II release into the gene. We also discuss open questions in the field concerning the stability of paused Pol II, nucleosomes as obstacles to elongation, and potential roles of pausing in defining the precision and dynamics of gene expression.
Collapse
Affiliation(s)
- Leighton Core
- Department of Molecular and Cell Biology, Institute of Systems Genomics, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
80
|
Baluapuri A, Hofstetter J, Dudvarski Stankovic N, Endres T, Bhandare P, Vos SM, Adhikari B, Schwarz JD, Narain A, Vogt M, Wang SY, Düster R, Jung LA, Vanselow JT, Wiegering A, Geyer M, Maric HM, Gallant P, Walz S, Schlosser A, Cramer P, Eilers M, Wolf E. MYC Recruits SPT5 to RNA Polymerase II to Promote Processive Transcription Elongation. Mol Cell 2019; 74:674-687.e11. [PMID: 30928206 PMCID: PMC6527870 DOI: 10.1016/j.molcel.2019.02.031] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/27/2018] [Accepted: 02/21/2019] [Indexed: 01/17/2023]
Abstract
The MYC oncoprotein binds to promoter-proximal regions of virtually all transcribed genes and enhances RNA polymerase II (Pol II) function, but its precise mode of action is poorly understood. Using mass spectrometry of both MYC and Pol II complexes, we show here that MYC controls the assembly of Pol II with a small set of transcription elongation factors that includes SPT5, a subunit of the elongation factor DSIF. MYC directly binds SPT5, recruits SPT5 to promoters, and enables the CDK7-dependent transfer of SPT5 onto Pol II. Consistent with known functions of SPT5, MYC is required for fast and processive transcription elongation. Intriguingly, the high levels of MYC that are expressed in tumors sequester SPT5 into non-functional complexes, thereby decreasing the expression of growth-suppressive genes. Altogether, these results argue that MYC controls the productive assembly of processive Pol II elongation complexes and provide insight into how oncogenic levels of MYC permit uncontrolled cellular growth. MYC enhances productive transcription by defining the protein composition of Pol II MYC directly binds SPT5 and hands it over to Pol II in a CDK7-dependent manner Transfer of SPT5 increases speed and processivity of Pol II MYC’s effects on Pol II function shape its tumor-specific gene expression profile
Collapse
Affiliation(s)
- Apoorva Baluapuri
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Julia Hofstetter
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Nevenka Dudvarski Stankovic
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Theresa Endres
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Pranjali Bhandare
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Seychelle Monique Vos
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Bikash Adhikari
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jessica Denise Schwarz
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ashwin Narain
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Markus Vogt
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Shuang-Yan Wang
- Rudolf Virchow Center for Experimental Biomedicine, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Robert Düster
- Institute of Structural Biology, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Lisa Anna Jung
- Karolinska Institutet, Department of Biosciences and Nutrition, Hälsovägen 7C, 14157 Huddinge, Sweden
| | - Jens Thorsten Vanselow
- Rudolf Virchow Center for Experimental Biomedicine, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Armin Wiegering
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Hans Michael Maric
- Rudolf Virchow Center for Experimental Biomedicine, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Peter Gallant
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Susanne Walz
- Core Unit Bioinformatics, Comprehensive Cancer Center Mainfranken, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Karolinska Institutet, Department of Biosciences and Nutrition, Hälsovägen 7C, 14157 Huddinge, Sweden
| | - Martin Eilers
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Elmar Wolf
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
81
|
Venters BJ. Insights from resolving protein-DNA interactions at near base-pair resolution. Brief Funct Genomics 2019; 17:80-88. [PMID: 29211822 DOI: 10.1093/bfgp/elx043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
One of the central goals in molecular biology is to understand how cell-type-specific expression patterns arise through selective recruitment of RNA polymerase II (Pol II) to a subset of gene promoters. Pol II needs to be recruited to a precise genomic position at the proper time to produce messenger RNA from a DNA template. Ostensibly, transcription is a relatively simple cellular process; yet, experimentally measuring and then understanding the combinatorial possibilities of transcriptional regulators remain a daunting task. Since its introduction in 1985, chromatin immunoprecipitation (ChIP) has remained a key tool for investigating protein-DNA contacts in vivo. Over 30 years of intensive research using ChIP have provided numerous insights into mechanisms of gene regulation. As functional genomic technologies improve, they present new opportunities to address key biological questions. ChIP-exo is a refined version of ChIP-seq that significantly reduces background signal, while providing near base-pair mapping resolution for protein-DNA interactions. This review discusses the evolution of the ChIP assay over the years; the methodological differences between ChIP-seq, ChIP-exo and ChIP-nexus; and highlight new insights into epigenetic and transcriptional mechanisms that were uniquely enabled with the near base-pair resolution of ChIP-exo.
Collapse
|
82
|
Chathoth KT, Zabet NR. Chromatin architecture reorganization during neuronal cell differentiation in Drosophila genome. Genome Res 2019; 29:613-625. [PMID: 30709849 PMCID: PMC6442379 DOI: 10.1101/gr.246710.118] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/23/2019] [Indexed: 12/14/2022]
Abstract
The organization of the genome into topologically associating domains (TADs) was shown to have a regulatory role in development and cellular function, but the mechanism involved in TAD establishment is still unclear. Here, we present the first high-resolution contact map of Drosophila neuronal cells (BG3) and identify different classes of TADs by comparing this to genome organization in embryonic cells (Kc167). We find that only some TADs are conserved in both cell lines, whereas the rest are cell-type–specific. This is supported by a change in the enrichment of architectural proteins at TAD borders, with BEAF-32 present in embryonic cells and CTCF in neuronal cells. Furthermore, we observe strong divergent transcription, together with RNA Polymerase II occupancy and an increase in DNA accessibility at the TAD borders. TAD borders that are specific to neuronal cells are enriched in enhancers controlled by neuronal-specific transcription factors. Our results suggest that TADs are dynamic across developmental stages and reflect the interplay between insulators, transcriptional states, and enhancer activities.
Collapse
Affiliation(s)
- Keerthi T Chathoth
- School of Biological Sciences, University of Essex, Colchester, CO4 3SQ, United Kingdom
| | - Nicolae Radu Zabet
- School of Biological Sciences, University of Essex, Colchester, CO4 3SQ, United Kingdom
| |
Collapse
|
83
|
Zhu J, Liu M, Liu X, Dong Z. RNA polymerase II activity revealed by GRO-seq and pNET-seq in Arabidopsis. NATURE PLANTS 2018; 4:1112-1123. [PMID: 30374093 DOI: 10.1038/s41477-018-0280-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 09/14/2018] [Indexed: 05/25/2023]
Abstract
RNA polymerase II (Pol II) plays an essential role in gene expression. We used plant native elongating transcript sequencing and global run-on sequencing to profile nascent RNAs genome wide in Arabidopsis. We found that Pol II tends to accumulate downstream of the transcription start site (TSS). Moreover, Pol II with an unphosphorylated carboxyl-terminal domain (CTD) mainly accumulates downstream of the TSS, while Pol II with a Ser 5P CTD associates with spliceosomes, and Pol II with a Ser 2P CTD presents a sharp peak within 250 base pairs downstream of the polyadenylation site (PAS). Pol II pausing both at promoter-proximal regions and after PAS affects the transcription rate. Interestingly, active genes can be classified into three clusters based on the different modes of transcription. We demonstrate that these two methods are suitable to study Pol II dynamics in planta. Although transcription is conserved overall within eukaryotes, there is plant-specific regulation.
Collapse
Affiliation(s)
- Jiafu Zhu
- Plant Gene Engineering Centre, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Liu
- Plant Gene Engineering Centre, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xiaobin Liu
- Plant Gene Engineering Centre, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Zhicheng Dong
- Plant Gene Engineering Centre, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
- School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China.
| |
Collapse
|
84
|
Schor IE, Bussotti G, Maleš M, Forneris M, Viales RR, Enright AJ, Furlong EEM. Non-coding RNA Expression, Function, and Variation during Drosophila Embryogenesis. Curr Biol 2018; 28:3547-3561.e9. [PMID: 30393032 PMCID: PMC6264527 DOI: 10.1016/j.cub.2018.09.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/10/2018] [Accepted: 09/12/2018] [Indexed: 01/02/2023]
Abstract
Long non-coding RNAs (lncRNAs) can often function in the regulation of gene expression during development; however, their generality as essential regulators in developmental processes and organismal phenotypes remains unclear. Here, we performed a tailored investigation of lncRNA expression and function during Drosophila embryogenesis, interrogating multiple stages, tissue specificity, nuclear localization, and genetic backgrounds. Our results almost double the number of annotated lncRNAs expressed at these embryonic stages. lncRNA levels are generally positively correlated with those of their neighboring genes, with little evidence of transcriptional interference. Using fluorescent in situ hybridization, we report the spatiotemporal expression of 15 new lncRNAs, revealing very dynamic tissue-specific patterns. Despite this, deletion of selected lncRNA genes had no obvious developmental defects or effects on viability under standard and stressed conditions. However, two lncRNA deletions resulted in modest expression changes of a small number of genes, suggesting that they fine-tune expression of non-essential genes. Several lncRNAs have strain-specific expression, indicating that they are not fixed within the population. This intra-species variation across genetic backgrounds may thereby be a useful tool to distinguish rapidly evolving lncRNAs with as yet non-essential roles.
Collapse
Affiliation(s)
- Ignacio E Schor
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Departamento de Fisiología, Biología Molecular y Celular, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Giovanni Bussotti
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton CB10 1SD, UK
| | - Matilda Maleš
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Mattia Forneris
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Rebecca R Viales
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Anton J Enright
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton CB10 1SD, UK
| | - Eileen E M Furlong
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.
| |
Collapse
|
85
|
Chu T, Rice EJ, Booth GT, Salamanca HH, Wang Z, Core LJ, Longo SL, Corona RJ, Chin LS, Lis JT, Kwak H, Danko CG. Chromatin run-on and sequencing maps the transcriptional regulatory landscape of glioblastoma multiforme. Nat Genet 2018; 50:1553-1564. [PMID: 30349114 PMCID: PMC6204104 DOI: 10.1038/s41588-018-0244-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 08/21/2018] [Indexed: 11/09/2022]
Abstract
The human genome encodes a variety of poorly understood RNA species that remain challenging to identify using existing genomic tools. We developed chromatin run-on and sequencing (ChRO-seq) to map the location of RNA polymerase for almost any input sample, including samples with degraded RNA that are intractable to RNA sequencing. We used ChRO-seq to map nascent transcription in primary human glioblastoma (GBM) brain tumors. Enhancers identified in primary GBMs resemble open chromatin in the normal human brain. Rare enhancers that are activated in malignant tissue drive regulatory programs similar to the developing nervous system. We identified enhancers that regulate groups of genes that are characteristic of each known GBM subtype and transcription factors that drive them. Finally we discovered a core group of transcription factors that control the expression of genes associated with clinical outcomes. This study characterizes the transcriptional landscape of GBM and introduces ChRO-seq as a method to map regulatory programs that contribute to complex diseases.
Collapse
Affiliation(s)
- Tinyi Chu
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Graduate field of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Edward J Rice
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Gregory T Booth
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - H Hans Salamanca
- Department of Anesthesiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Zhong Wang
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Leighton J Core
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Sharon L Longo
- Department of Neurological Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Robert J Corona
- Department of Pathology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Lawrence S Chin
- Department of Neurological Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Hojoong Kwak
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| | - Charles G Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
86
|
Ibrahim MM, Karabacak A, Glahs A, Kolundzic E, Hirsekorn A, Carda A, Tursun B, Zinzen RP, Lacadie SA, Ohler U. Determinants of promoter and enhancer transcription directionality in metazoans. Nat Commun 2018; 9:4472. [PMID: 30367057 PMCID: PMC6203779 DOI: 10.1038/s41467-018-06962-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 09/11/2018] [Indexed: 12/16/2022] Open
Abstract
Divergent transcription from promoters and enhancers is pervasive in many species, but it remains unclear if it is a general feature of all eukaryotic cis regulatory elements. To address this, here we define cis regulatory elements in C. elegans, D. melanogaster and H. sapiens and investigate the determinants of their transcription directionality. In all three species, we find that divergent transcription is initiated from two separate core promoter sequences and promoter regions display competition between histone modifications on the + 1 and −1 nucleosomes. In contrast, promoter directionality, sequence composition surrounding promoters, and positional enrichment of chromatin states, are different across species. Integrative models of H3K4me3 levels and core promoter sequence are highly predictive of promoter and enhancer directionality and support two directional classes, skewed and balanced. The relative importance of features to these models are clearly distinct for promoters and enhancers. Differences in regulatory architecture within and between metazoans are therefore abundant, arguing against a unified eukaryotic model. Divergent transcription from promoters and enhancers occurs in many species, but it is unclear if it is a general feature of all eukaryotic cis regulatory elements. Here the authors define cis regulatory elements in worms, flies, and human; and identify several differences in regulatory architecture among metazoans.
Collapse
Affiliation(s)
- Mahmoud M Ibrahim
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany.,Department of Biology, Humboldt Universitaet zu Berlin, 10115, Berlin, Germany.,Department of Nephrology and Immunology, Faculty of Medicine, RWTH Aachen University, Pauwelstraat 30, 52074, Aachen, Germany
| | - Aslihan Karabacak
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany.,Department of Biology, Humboldt Universitaet zu Berlin, 10115, Berlin, Germany
| | - Alexander Glahs
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany.,Department of Biology, Humboldt Universitaet zu Berlin, 10115, Berlin, Germany
| | - Ena Kolundzic
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany.,Department of Biology, Humboldt Universitaet zu Berlin, 10115, Berlin, Germany
| | - Antje Hirsekorn
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Alexa Carda
- Department of Biostatistics & Bioinformatics, Duke University Medical Center, Durham, 27710, NC, USA
| | - Baris Tursun
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Robert P Zinzen
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Scott A Lacadie
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany. .,Berlin Institute of Health (BIH), Berlin, 10178, Germany.
| | - Uwe Ohler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany. .,Department of Biology, Humboldt Universitaet zu Berlin, 10115, Berlin, Germany. .,Department of Biostatistics & Bioinformatics, Duke University Medical Center, Durham, 27710, NC, USA. .,Berlin Institute of Health (BIH), Berlin, 10178, Germany.
| |
Collapse
|
87
|
Hu H, Chen E, Li Y, Zhu X, Zhang T, Zhu X. Effects of Arsenic Trioxide on INF-gamma Gene Expression in MRL/lpr Mice and Human Lupus. Biol Trace Elem Res 2018; 184:391-397. [PMID: 29159556 DOI: 10.1007/s12011-017-1206-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/15/2017] [Indexed: 02/02/2023]
Abstract
Arsenic trioxide (As2O3; ATO), a traditional Chinese medicine, is used to treat patients with acute promye-locytic leukemia, while its application for treatment of systemic lupus erythematosus (SLE) is still under evaluation. The high expression of INF-gamma (INF-γ) is a primary pathogenic factor in SLE. It is found that ATO can reduce INF-γ expression levels in lupus-prone mice, whereas it is not clear whether ATO has the same effect on SLE patients. Therefore, this study was to investigate the underlying mechanism of the effects of ATO on the expression of INF-γ in splenocytes of MRL/lpr mice and PBMCs of human lupus. The mRNA and protein expression levels of INF-γ were assessed by real-time RT-PCR and ELISA, respectively. The histone acetylation status of the INF-γ promoter and the binding of RNA polymerase II (RNA Pol II) to the INF-γ promoter were detected using a chromatin immunoprecipitation (ChIP) technique. The mRNA and protein expression levels of INF-γ decreased in both splenocytes of MRL/lpr mice and PBMCs of SLE patients with ATO treatment, which were accompanied by reduced histone H4 and H3 acetylation in INF-γ promoter and decreased combination of RNA Pol II to the INF-γ promoter. Therefore, ATO may reduce the expression level of the INF-γ by altering the levels of INF-γ promoter acetylation and the combination of RNA Pol II to the INF-γ promoter in splenocytes of MRL/lpr mice and PBMCs of SLE patients.
Collapse
Affiliation(s)
- Hongye Hu
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Enjiu Chen
- Department of Pneumology, The People Hospital of Pingyang, Wenzhou, Zhejiang Province, China
| | - Yongji Li
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang Street, Ouhai District, Wenzhou, Zhejiang Province, 325000, China
| | - Xiaochun Zhu
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang Street, Ouhai District, Wenzhou, Zhejiang Province, 325000, China
| | - Ting Zhang
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang Street, Ouhai District, Wenzhou, Zhejiang Province, 325000, China
| | - Xiaofang Zhu
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang Street, Ouhai District, Wenzhou, Zhejiang Province, 325000, China.
| |
Collapse
|
88
|
|
89
|
Manzo SG, Hartono SR, Sanz LA, Marinello J, De Biasi S, Cossarizza A, Capranico G, Chedin F. DNA Topoisomerase I differentially modulates R-loops across the human genome. Genome Biol 2018; 19:100. [PMID: 30060749 PMCID: PMC6066927 DOI: 10.1186/s13059-018-1478-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/10/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Co-transcriptional R-loops are abundant non-B DNA structures in mammalian genomes. DNA Topoisomerase I (Top1) is often thought to regulate R-loop formation owing to its ability to resolve both positive and negative supercoils. How Top1 regulates R-loop structures at a global level is unknown. RESULTS Here, we perform high-resolution strand-specific R-loop mapping in human cells depleted for Top1 and find that Top1 depletion results in both R-loop gains and losses at thousands of transcribed loci, delineating two distinct gene classes. R-loop gains are characteristic for long, highly transcribed, genes located in gene-poor regions anchored to Lamin B1 domains and in proximity to H3K9me3-marked heterochromatic patches. R-loop losses, by contrast, occur in gene-rich regions overlapping H3K27me3-marked active replication initiation regions. Interestingly, Top1 depletion coincides with a block of the cell cycle in G0/G1 phase and a trend towards replication delay. CONCLUSIONS Our findings reveal new properties of Top1 in regulating R-loop homeostasis in a context-dependent manner and suggest a potential role for Top1 in modulating the replication process via R-loop formation.
Collapse
Affiliation(s)
- Stefano G Manzo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Present address: Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Stella R Hartono
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, USA
| | - Lionel A Sanz
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, USA
| | - Jessica Marinello
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| | - Frederic Chedin
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, USA.
| |
Collapse
|
90
|
Abstract
Proteotoxic stress, that is, stress caused by protein misfolding and aggregation, triggers the rapid and global reprogramming of transcription at genes and enhancers. Genome-wide assays that track transcriptionally engaged RNA polymerase II (Pol II) at nucleotide resolution have provided key insights into the underlying molecular mechanisms that regulate transcriptional responses to stress. In addition, recent kinetic analyses of transcriptional control under heat stress have shown how cells 'prewire' and rapidly execute genome-wide changes in transcription while concurrently becoming poised for recovery. The regulation of Pol II at genes and enhancers in response to heat stress is coupled to chromatin modification and compartmentalization, as well as to co-transcriptional RNA processing. These mechanistic features seem to apply broadly to other coordinated genome-regulatory responses.
Collapse
Affiliation(s)
- Anniina Vihervaara
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Fabiana M Duarte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
91
|
Zhu J, Li C, Gong C, Li X. Regulation of Pol II Pausing Is Involved in Daily Gene Transcription in the Mouse Liver. J Biol Rhythms 2018; 33:350-362. [PMID: 29845885 DOI: 10.1177/0748730418779526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The circadian clock orchestrates gene expression rhythms. Regulation at the level of gene transcription is essential for molecular and cellular rhythms. Pol II pause release is a critical step of transcription regulation. However, whether and how Pol II pause release is regulated during daily transcription have not been characterized. In this study, we performed Pol II ChIP-seq across the day in the mouse liver and quantitatively analyzed binding signals within the transcription start site (TSS) region and the gene body. We frequently found discordant changes between Pol II near the TSS ([Pol II]TSS, paused Pol II) and that within the gene body ([Pol II]GB, transcribing Pol II) across the genome, with only [Pol II]GB always reflecting transcription of clock and clock-controlled genes. Accordingly, Pol II traveling ratios of more than 7000 genes showed significant daily changes (>1.5-fold). Therefore, there is widespread regulation of Pol II pausing in the mouse liver. Interestingly, gene transcription rhythms exhibited a bimodal phase distribution. The transcription of ~400 genes peaked near ZT0, coincident with a genome-wide increase in [Pol II]TSS and traveling ratio (TR). The transcription of ~300 other genes peaked ~12 h later, when there was a global decrease in [Pol II]TSS and TR. ChIP-seq against TATA-binding protein (Tbp), a preinitiation complex (PIC) component, revealed that Pol II recruitment mainly played an indirect role in transcriptional output, with transcriptional termination and pause release functioning prominently in determining the fate of initiated Pol II and its pausing status. Taken together, our results revealed a critical, albeit complex role of Pol II pausing control in regulating the temporal output of gene transcription.
Collapse
Affiliation(s)
- Jialou Zhu
- 1. These authors contributed equally to this work
| | - Chengwei Li
- 1. These authors contributed equally to this work.,2. Center for Disease Control and Prevention of Linyi, Linyi, Shandong Province, P. R. China
| | | | | |
Collapse
|
92
|
Haas DA, Meiler A, Geiger K, Vogt C, Preuss E, Kochs G, Pichlmair A. Viral targeting of TFIIB impairs de novo polymerase II recruitment and affects antiviral immunity. PLoS Pathog 2018; 14:e1006980. [PMID: 29709033 PMCID: PMC5927403 DOI: 10.1371/journal.ppat.1006980] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/19/2018] [Indexed: 11/21/2022] Open
Abstract
Viruses have evolved a plethora of mechanisms to target host antiviral responses. Here, we propose a yet uncharacterized mechanism of immune regulation by the orthomyxovirus Thogoto virus (THOV) ML protein through engaging general transcription factor TFIIB. ML generates a TFIIB depleted nuclear environment by re-localizing it into the cytoplasm. Although a broad effect on gene expression would be anticipated, ML expression, delivery of an ML-derived functional domain or experimental depletion of TFIIB only leads to altered expression of a limited number of genes. Our data indicate that TFIIB is critically important for the de novo recruitment of Pol II to promoter start sites and that TFIIB may not be required for regulated gene expression from paused promoters. Since many immune genes require de novo recruitment of Pol II, targeting of TFIIB by THOV represents a neat mechanism to affect immune responses while keeping other cellular transcriptional activities intact. Thus, interference with TFIIB activity may be a favourable site for therapeutic intervention to control undesirable inflammation. Viruses target the innate immune system at critical vulnerability points. Here we show that the orthomyxovirus Thogoto virus impairs activity of general transcription factor IIB (TFIIB). Surprisingly, impairment of TFIIB function does not result in a general inhibition of transcription but in a rather specific impairment of selective genes. Transcriptome and functional analyses intersected with published CHIP-Seq datasets suggest that affected genes require de novo recruitment of the polymerase complex. Since the innate immune system heavily relies on genes that require de novo recruitment of the polymerase complex, targeting of TFIIB represents a neat mechanism to broadly affect antiviral immunity. Conversely, therapeutic targeting of TFIIB may represent a mechanism to limit pathological side effects caused by overshooting immune reactions.
Collapse
Affiliation(s)
- Darya A. Haas
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
| | - Arno Meiler
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
| | - Katharina Geiger
- Institute of Virology, Medical Center—University of Freiburg, Freiburg, Germany
| | - Carola Vogt
- Institute of Virology, Medical Center—University of Freiburg, Freiburg, Germany
| | - Ellen Preuss
- Institute of Virology, Medical Center—University of Freiburg, Freiburg, Germany
| | - Georg Kochs
- Institute of Virology, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Pichlmair
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
- Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany
- German Center for Infection Research (DZIF), Munich partner site, Munich, Germany
- * E-mail:
| |
Collapse
|
93
|
Liu J, Wu X, Zhang H, Pfeifer GP, Lu Q. Dynamics of RNA Polymerase II Pausing and Bivalent Histone H3 Methylation during Neuronal Differentiation in Brain Development. Cell Rep 2018; 20:1307-1318. [PMID: 28793256 DOI: 10.1016/j.celrep.2017.07.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/17/2017] [Accepted: 07/18/2017] [Indexed: 11/29/2022] Open
Abstract
During cellular differentiation, genes important for differentiation are expected to be silent in stem/progenitor cells yet can be readily activated. RNA polymerase II (Pol II) pausing and bivalent chromatin marks are two paradigms suited for establishing such a poised state of gene expression; however, their specific contributions in development are not well understood. Here we characterized Pol II pausing and H3K4me3/H3K27me3 marks in neural progenitor cells (NPCs) and their daughter neurons purified from the developing mouse cortex. We show that genes paused in NPCs or neurons are characteristic of respective cellular functions important for each cell type, although pausing and pause release were not correlated with gene activation. Bivalent chromatin marks poised the marked genes in NPCs for activation in neurons. Interestingly, we observed a positive correlation between H3K27me3 and paused Pol II. This study thus reveals cell type-specific Pol II pausing and gene activation-associated bivalency during mammalian neuronal differentiation.
Collapse
Affiliation(s)
- Jiancheng Liu
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Xiwei Wu
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Heying Zhang
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Gerd P Pfeifer
- Department of Cancer Biology, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Qiang Lu
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
94
|
Samata M, Akhtar A. Dosage Compensation of the X Chromosome: A Complex Epigenetic Assignment Involving Chromatin Regulators and Long Noncoding RNAs. Annu Rev Biochem 2018; 87:323-350. [PMID: 29668306 DOI: 10.1146/annurev-biochem-062917-011816] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
X chromosome regulation represents a prime example of an epigenetic phenomenon where coordinated regulation of a whole chromosome is required. In flies, this is achieved by transcriptional upregulation of X chromosomal genes in males to equalize the gene dosage differences in females. Chromatin-bound proteins and long noncoding RNAs (lncRNAs) constituting a ribonucleoprotein complex known as the male-specific lethal (MSL) complex or the dosage compensation complex mediate this process. MSL complex members decorate the male X chromosome, and their absence leads to male lethality. The male X chromosome is also enriched with histone H4 lysine 16 acetylation (H4K16ac), indicating that the chromatin compaction status of the X chromosome also plays an important role in transcriptional activation. How the X chromosome is specifically targeted and how dosage compensation is mechanistically achieved are central questions for the field. Here, we review recent advances, which reveal a complex interplay among lncRNAs, the chromatin landscape, transcription, and chromosome conformation that fine-tune X chromosome gene expression.
Collapse
Affiliation(s)
- Maria Samata
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany; .,Faculty of Biology, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Asifa Akhtar
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany;
| |
Collapse
|
95
|
Fitz J, Neumann T, Pavri R. Regulation of RNA polymerase II processivity by Spt5 is restricted to a narrow window during elongation. EMBO J 2018. [PMID: 29514850 PMCID: PMC5897773 DOI: 10.15252/embj.201797965] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spt5 is a highly conserved RNA polymerase II (Pol II)‐associated pausing and elongation factor. However, its impact on global elongation and Pol II processivity in mammalian cells has not been clarified. Here, we show that depleting Spt5 in mouse embryonic fibroblasts (MEFs) does not cause global elongation defects or decreased elongation rates. Instead, in Spt5‐depleted cells, a fraction of Pol II molecules are dislodged during elongation, thus decreasing the number of Pol II complexes that complete the transcription cycle. Most strikingly, this decrease is restricted to a narrow window between 15 and 20 kb from the promoter, a distance which coincides with the stage where accelerating Pol II attains maximum elongation speed. Consequently, long genes show a greater dependency on Spt5 for optimal elongation efficiency and overall gene expression than short genes. We propose that an important role of Spt5 in mammalian elongation is to promote the processivity of those Pol II complexes that are transitioning toward maximum elongation speed 15–20 kb from the promoter.
Collapse
Affiliation(s)
- Johanna Fitz
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Tobias Neumann
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Rushad Pavri
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
96
|
Abstract
Mutations of the FOXP2 gene cause a severe speech and language disorder, providing a molecular window into the neurobiology of language. Individuals with FOXP2 mutations have structural and functional alterations affecting brain circuits that overlap with sites of FOXP2 expression, including regions of the cortex, striatum, and cerebellum. FOXP2 displays complex patterns of expression in the brain, as well as in non-neuronal tissues, suggesting that sophisticated regulatory mechanisms control its spatio-temporal expression. However, to date, little is known about the regulation of FOXP2 or the genomic elements that control its expression. Using chromatin conformation capture (3C), we mapped the human FOXP2 locus to identify putative enhancer regions that engage in long-range interactions with the promoter of this gene. We demonstrate the ability of the identified enhancer regions to drive gene expression. We also show regulation of the FOXP2 promoter and enhancer regions by candidate regulators - FOXP family and TBR1 transcription factors. These data point to regulatory elements that may contribute to the temporal- or tissue-specific expression patterns of human FOXP2. Understanding the upstream regulatory pathways controlling FOXP2 expression will bring new insight into the molecular networks contributing to human language and related disorders.
Collapse
Affiliation(s)
- Martin Becker
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands.,Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| | - Paolo Devanna
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Sonja C Vernes
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
97
|
Meers MP, Adelman K, Duronio RJ, Strahl BD, McKay DJ, Matera AG. Transcription start site profiling uncovers divergent transcription and enhancer-associated RNAs in Drosophila melanogaster. BMC Genomics 2018; 19:157. [PMID: 29466941 PMCID: PMC5822475 DOI: 10.1186/s12864-018-4510-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/30/2018] [Indexed: 12/15/2022] Open
Abstract
Background High-resolution transcription start site (TSS) mapping in D. melanogaster embryos and cell lines has revealed a rich and detailed landscape of both cis- and trans-regulatory elements and factors. However, TSS profiling has not been investigated in an orthogonal in vivo setting. Here, we present a comprehensive dataset that links TSS dynamics with nucleosome occupancy and gene expression in the wandering third instar larva, a developmental stage characterized by large-scale shifts in transcriptional programs in preparation for metamorphosis. Results The data recapitulate major regulatory classes of TSSs, based on peak width, promoter-proximal polymerase pausing, and cis-regulatory element density. We confirm the paucity of divergent transcription units in D. melanogaster, but also identify notable exceptions. Furthermore, we identify thousands of novel initiation events occurring at unannotated TSSs that can be classified into functional categories by their local density of histone modifications. Interestingly, a sub-class of these unannotated TSSs overlaps with functionally validated enhancer elements, consistent with a regulatory role for “enhancer RNAs” (eRNAs) in defining developmental transcription programs. Conclusions High-depth TSS mapping is a powerful strategy for identifying and characterizing low-abundance and/or low-stability RNAs. Global analysis of transcription initiation patterns in a developing organism reveals a vast number of novel initiation events that identify potential eRNAs as well as other non-coding transcripts critical for animal development. Electronic supplementary material The online version of this article (10.1186/s12864-018-4510-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael P Meers
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, 27599, USA.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA.,Departments of Biology and Genetics, University of North Carolina, Chapel Hill, 27599, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, 27599, USA.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA.,Departments of Biology and Genetics, University of North Carolina, Chapel Hill, 27599, USA
| | - Brian D Strahl
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, 27599, USA.,Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Daniel J McKay
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, 27599, USA.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA.,Departments of Biology and Genetics, University of North Carolina, Chapel Hill, 27599, USA
| | - A Gregory Matera
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, 27599, USA. .,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA. .,Departments of Biology and Genetics, University of North Carolina, Chapel Hill, 27599, USA.
| |
Collapse
|
98
|
Zhang R, Wu J, Ferrandon S, Glowacki KJ, Houghton JA. Targeting GLI by GANT61 involves mechanisms dependent on inhibition of both transcription and DNA licensing. Oncotarget 2018; 7:80190-80207. [PMID: 27863397 PMCID: PMC5348313 DOI: 10.18632/oncotarget.13376] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/07/2016] [Indexed: 12/31/2022] Open
Abstract
The GLI genes are transcription factors and in cancers are oncogenes, aberrantly and constitutively activated. GANT61, a specific GLI inhibitor, has induced extensive cytotoxicity in human models of colon cancer. The FOXM1 promoter was determined to be a transcriptional target of GLI1. In HT29 cells, inhibition of GLI1 binding at the GLI consensus sequence by GANT61 led to inhibited binding of Pol II, the pause-release factors DSIF, NELF and p-TEFb. The formation of R-loops (RNA:DNA hybrids, ssDNA), were reduced by GANT61 at the FOXM1 promoter. Pretreatment of HT29 cells with α-amanitin reduced GANT61-induced γH2AX foci. Co-localization of GLI1 and BrdU foci, inhibited by GANT61, indicated GLI1 and DNA replication to be linked. By co-immunoprecipitation and confocal microscopy, GLI1 co-localized with the DNA licensing factors ORC4, CDT1, and MCM2. Significant co-localization of GLI1 and ORC4 was inhibited by GANT61, and enrichment of ORC4 occurred at the GLI binding site in the FOXM1 promoter. CDT1 was found to be a transcription target of GLI1. Overexpression of CDT1 in HT29 and SW480 cells reduced GANT61-induced cell death, gH2AX foci, and cleavage of caspase-3. Data demonstrate involvement of transcription and of DNA replication licensing factors by non-transcriptional and transcriptional mechanisms in the GLI-dependent mechanism of action of GANT61.
Collapse
Affiliation(s)
- Ruowen Zhang
- Department of Oncology, Division of Drug Discovery, Southern Research, Birmingham, AL, USA
| | - Jiahui Wu
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Katie J Glowacki
- Department of Oncology, Division of Drug Discovery, Southern Research, Birmingham, AL, USA
| | - Janet A Houghton
- Department of Oncology, Division of Drug Discovery, Southern Research, Birmingham, AL, USA
| |
Collapse
|
99
|
Sacta MA, Tharmalingam B, Coppo M, Rollins DA, Deochand DK, Benjamin B, Yu L, Zhang B, Hu X, Li R, Chinenov Y, Rogatsky I. Gene-specific mechanisms direct glucocorticoid-receptor-driven repression of inflammatory response genes in macrophages. eLife 2018; 7:34864. [PMID: 29424686 PMCID: PMC5821458 DOI: 10.7554/elife.34864] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 01/28/2018] [Indexed: 01/13/2023] Open
Abstract
The glucocorticoid receptor (GR) potently represses macrophage-elicited inflammation, however, the underlying mechanisms remain obscure. Our genome-wide analysis in mouse macrophages reveals that pro-inflammatory paused genes, activated via global negative elongation factor (NELF) dissociation and RNA Polymerase (Pol)2 release from early elongation arrest, and non-paused genes, induced by de novo Pol2 recruitment, are equally susceptible to acute glucocorticoid repression. Moreover, in both cases the dominant mechanism involves rapid GR tethering to p65 at NF-kB-binding sites. Yet, specifically at paused genes, GR activation triggers widespread promoter accumulation of NELF, with myeloid cell-specific NELF deletion conferring glucocorticoid resistance. Conversely, at non-paused genes, GR attenuates the recruitment of p300 and histone acetylation, leading to a failure to assemble BRD4 and Mediator at promoters and enhancers, ultimately blocking Pol2 initiation. Thus, GR displays no preference for a specific pro-inflammatory gene class; however, it effects repression by targeting distinct temporal events and components of transcriptional machinery.
Collapse
Affiliation(s)
- Maria A Sacta
- Weill Cornell/ Rockefeller/ Sloan Kettering Tri-Institutional MD-PhD Program, New York, United States.,Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, United States.,Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, United States
| | - Bowranigan Tharmalingam
- Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, United States
| | - Maddalena Coppo
- Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, United States
| | - David A Rollins
- Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, United States.,Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, United States
| | - Dinesh K Deochand
- Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, United States
| | - Bradley Benjamin
- Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, United States
| | - Li Yu
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Bin Zhang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Xiaoyu Hu
- Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, United States.,Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Rong Li
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, United States
| | - Yurii Chinenov
- Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, United States
| | - Inez Rogatsky
- Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, United States.,Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, United States
| |
Collapse
|
100
|
Mazina MY, Kovalenko EV, Derevyanko PK, Nikolenko JV, Krasnov AN, Vorobyeva NE. One signal stimulates different transcriptional activation mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:178-189. [PMID: 29410380 DOI: 10.1016/j.bbagrm.2018.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/10/2017] [Accepted: 01/15/2018] [Indexed: 12/30/2022]
Abstract
Transcriptional activation is often represented as a "one-step process" that involves the simultaneous recruitment of co-activator proteins, leading to a change in gene status. Using Drosophila developmental ecdysone-dependent genes as a model, we demonstrated that activation of transcription is instead a continuous process that consists of a number of steps at which different phases of transcription (initiation or elongation) are stimulated. Thorough evaluation of the behaviour of multiple transcriptional complexes during the early activation process has shown that the pathways by which activation proceeds for different genes may vary considerably, even in response to the same induction signal. RNA polymerase II recruitment is an important step that is involved in one of the pathways. RNA polymerase II recruitment is accompanied by the recruitment of a significant number of transcriptional coactivators as well as slight changes in the chromatin structure. The second pathway involves the stimulation of transcriptional elongation as its key step. The level of coactivator binding to the promoter shows almost no increase, whereas chromatin modification levels change significantly.
Collapse
Affiliation(s)
- Marina Yu Mazina
- Group of Transcriptional Complexes Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Elena V Kovalenko
- Group of Transcriptional Complexes Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Polina K Derevyanko
- Group of Transcriptional Complexes Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Julia V Nikolenko
- Group of Studying an Association of Transcription and mRNA Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Aleksey N Krasnov
- Group of Studying an Association of Transcription and mRNA Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Nadezhda E Vorobyeva
- Group of Transcriptional Complexes Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia.
| |
Collapse
|