51
|
Heuer SE, Keezer KJ, Hewes AA, Onos KD, Graham KC, Howell GR, Bloss EB. Control of hippocampal synaptic plasticity by microglia-dendrite interactions depends on genetic context in mouse models of Alzheimer's disease. Alzheimers Dement 2024; 20:601-614. [PMID: 37753835 PMCID: PMC10840883 DOI: 10.1002/alz.13440] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 09/28/2023]
Abstract
INTRODUCTION Human data suggest susceptibility and resilience to features of Alzheimer's disease (AD) such as microglia activation and synaptic dysfunction are under genetic control. However, causal relationships between these processes, and how genomic diversity modulates them remain systemically underexplored in mouse models. METHODS AD-vulnerable hippocampal neurons were virally labeled in inbred (C57BL/6J) and wild-derived (PWK/PhJ) APP/PS1 and wild-type mice, and brain microglia depleted from 4 to 8 months of age. Dendrites were assessed for synapse plasticity changes by evaluating spine densities and morphologies. RESULTS In C57BL/6J, microglia depletion blocked amyloid-induced synaptic density and morphology changes. At a finer scale, synaptic morphology on individual branches was dependent on microglia-dendrite physical interactions. Conversely, synapses from PWK/PhJ mice showed remarkable stability in response to amyloid, and no evidence of microglia contact-dependent changes on dendrites. DISCUSSION These results demonstrate that microglia-dependent synaptic alterations in specific AD-vulnerable projection pathways are differentially controlled by genetic context.
Collapse
Affiliation(s)
- Sarah E. Heuer
- The Jackson LaboratoryBar HarborMaineUSA
- Graduate School of Biomedical SciencesTufts UniversityBostonMassachusettsUSA
| | | | | | | | | | - Gareth R. Howell
- The Jackson LaboratoryBar HarborMaineUSA
- Graduate School of Biomedical SciencesTufts UniversityBostonMassachusettsUSA
- Graduate School of Biomedical Sciences and EngineeringUniversity of MaineOronoMaineUSA
| | - Erik B. Bloss
- The Jackson LaboratoryBar HarborMaineUSA
- Graduate School of Biomedical SciencesTufts UniversityBostonMassachusettsUSA
- Graduate School of Biomedical Sciences and EngineeringUniversity of MaineOronoMaineUSA
| |
Collapse
|
52
|
Lee J, Lee H, Lee H, Shin M, Shin MG, Seo J, Lee EJ, Park SA, Park S. ANKS1A regulates LDL receptor-related protein 1 (LRP1)-mediated cerebrovascular clearance in brain endothelial cells. Nat Commun 2023; 14:8463. [PMID: 38123547 PMCID: PMC10733300 DOI: 10.1038/s41467-023-44319-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Brain endothelial LDL receptor-related protein 1 (LRP1) is involved in the clearance of Aβ peptides across the blood-brain barrier (BBB). Here we show that endothelial deficiency of ankyrin repeat and SAM domain containing 1 A (ANKS1A) reduces both the cell surface levels of LRP1 and the Aβ clearance across the BBB. Association of ANKS1A with the NPXY motifs of LRP1 facilitates the transport of LRP1 from the endoplasmic reticulum toward the cell surface. ANKS1A deficiency in an Alzheimer's disease mouse model results in exacerbated Aβ pathology followed by cognitive impairments. These deficits are reversible by gene therapy with brain endothelial-specific ANKS1A. In addition, human induced pluripotent stem cell-derived BBBs (iBBBs) were generated from endothelial cells lacking ANKS1A or carrying the rs6930932 variant. Those iBBBs exhibit both reduced cell surface LRP1 and impaired Aβ clearance. Thus, our findings demonstrate that ANKS1A regulates LRP1-mediated Aβ clearance across the BBB.
Collapse
Affiliation(s)
- Jiyeon Lee
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Korea
| | - Haeryung Lee
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Korea
| | - Hyein Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, 42988, Korea
| | - Miram Shin
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Korea
| | - Min-Gi Shin
- Department of Brain Science, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Jinsoo Seo
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, 42988, Korea
| | - Eun Jeong Lee
- Department of Brain Science, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Sun Ah Park
- Lab for Neurodegenerative Dementia, Department of Anatomy, and Department of Neurology, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Korea.
| |
Collapse
|
53
|
Wang Y, Cui L, Zhao H, He H, Chen L, Song X, Liu D, Qiu J, Sun Y. Exploring the Connectivity of Neurodegenerative Diseases: Microglia as the Center. J Inflamm Res 2023; 16:6107-6121. [PMID: 38107384 PMCID: PMC10725686 DOI: 10.2147/jir.s440377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023] Open
Abstract
Degenerative diseases affect people's life and health and cause a severe social burden. Relevant mechanisms of microglia have been studied, aiming to control and reduce degenerative disease occurrence effectively. This review discussed the specific mechanisms underlying microglia in neurodegenerative diseases, age-related hearing loss, Alzheimer's disease, Parkinson's disease, and peripheral nervous system (PNS) degenerative diseases. It also reviewed the studies of microglia inhibitors (PLX3397/PLX5622) and activators (lipopolysaccharide), and suggested that reducing microglia can effectively curb the genesis and progression of degenerative diseases. Finally, microglial cells' anti-inflammatory and pro-inflammatory dual role was considered the critical communication point in central and peripheral degenerative diseases. Although it is difficult to describe the complex morphological structure of microglia in a unified manner, this does not prevent them from being a target for future treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yan Wang
- The Second Medical College, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
| | - Limei Cui
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
| | - He Zhao
- The Second Medical College, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
| | - Huhuifen He
- The Second Medical College, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
| | - Liang Chen
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
| | - Xicheng Song
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
| | - Dawei Liu
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
| | - Jingjing Qiu
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
| | - Yan Sun
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
| |
Collapse
|
54
|
Daniels MJD, Lefevre L, Szymkowiak S, Drake A, McCulloch L, Tzioras M, Barrington J, Dando OR, He X, Mohammad M, Sasaguri H, Saito T, Saido TC, Spires-Jones TL, McColl BW. Cystatin F ( Cst7) drives sex-dependent changes in microglia in an amyloid-driven model of Alzheimer's disease. eLife 2023; 12:e85279. [PMID: 38085657 PMCID: PMC10715728 DOI: 10.7554/elife.85279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 11/04/2023] [Indexed: 12/18/2023] Open
Abstract
Microglial endolysosomal (dys)function is strongly implicated in neurodegenerative disease. Transcriptomic studies show that a microglial state characterised by a set of genes involved in endolysosomal function is induced in both mouse Alzheimer's disease (AD) models and human AD brain, and that the emergence of this state is emphasised in females. Cst7 (encoding cystatin F) is among the most highly upregulated genes in these microglia. However, despite such striking and robust upregulation, the function of Cst7 in neurodegenerative disease is not understood. Here, we crossed Cst7-/- mice with the AppNL-G-F mouse to test the role of Cst7 in a model of amyloid-driven AD. Surprisingly, we found that Cst7 plays a sexually dimorphic role regulating microglia in this model. In females, Cst7-/-AppNL-G-F microglia had greater endolysosomal gene expression, lysosomal burden, and amyloid beta (Aβ) burden in vivo and were more phagocytic in vitro. However, in males, Cst7-/-AppNL-G-F microglia were less inflammatory and had a reduction in lysosomal burden but had no change in Aβ burden. Overall, our study reveals functional roles for one of the most commonly upregulated genes in microglia across disease models, and the sex-specific profiles of Cst7-/--altered microglial disease phenotypes. More broadly, the findings raise important implications for AD including crucial questions on sexual dimorphism in neurodegenerative disease and the interplay between endolysosomal and inflammatory pathways in AD pathology.
Collapse
Affiliation(s)
- Michael JD Daniels
- UK Dementia Research Institute at The University of EdinburghEdinburghUnited Kingdom
| | - Lucas Lefevre
- UK Dementia Research Institute at The University of EdinburghEdinburghUnited Kingdom
| | - Stefan Szymkowiak
- UK Dementia Research Institute at The University of EdinburghEdinburghUnited Kingdom
| | - Alice Drake
- UK Dementia Research Institute at The University of EdinburghEdinburghUnited Kingdom
| | - Laura McCulloch
- UK Dementia Research Institute at The University of EdinburghEdinburghUnited Kingdom
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of EdinburghEdinburghUnited Kingdom
| | - Makis Tzioras
- UK Dementia Research Institute at The University of EdinburghEdinburghUnited Kingdom
| | - Jack Barrington
- UK Dementia Research Institute at The University of EdinburghEdinburghUnited Kingdom
| | - Owen R Dando
- UK Dementia Research Institute at The University of EdinburghEdinburghUnited Kingdom
- Simons Initiative for the Developing Brain, University of EdinburghEdinburghUnited Kingdom
| | - Xin He
- UK Dementia Research Institute at The University of EdinburghEdinburghUnited Kingdom
- Simons Initiative for the Developing Brain, University of EdinburghEdinburghUnited Kingdom
| | - Mehreen Mohammad
- UK Dementia Research Institute at The University of EdinburghEdinburghUnited Kingdom
| | - Hiroki Sasaguri
- Department of Neurology and Neurological Science, Graduate School of Medicine, Tokyo Medical and Dental UniversityTokyoJapan
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science InstituteWakoJapan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science InstituteWakoJapan
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya UniversityNagoyaJapan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science InstituteWakoJapan
| | - Tara L Spires-Jones
- UK Dementia Research Institute at The University of EdinburghEdinburghUnited Kingdom
| | - Barry W McColl
- UK Dementia Research Institute at The University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
55
|
Olmedillas M, Brawek B, Li K, Richter C, Garaschuk O. Plaque vicinity as a hotspot of microglial turnover in a mouse model of Alzheimer's disease. Glia 2023; 71:2884-2901. [PMID: 37596829 DOI: 10.1002/glia.24458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/25/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023]
Abstract
Microglia, the major immune cells of the brain, are functionally heterogeneous but in vivo functional properties of these cells are rarely studied at single-cell resolution. By using microRNA-9 regulated viral vectors for multicolor labeling and longitudinal in vivo monitoring of individual microglia, we followed their fate in the cortex of healthy adult mice and at the onset of amyloidosis in a mouse model of Alzheimer's disease. In wild-type mice, microglia were rather mobile (16% of the cells migrated at least once in 10-20 days) but had a low turnover as documented by low division and death rates. Half of the migratory events were tightly associated with blood vessels. Surprisingly, basic migration properties of microglia (i.e., fraction of migrating cells, saltatory migration pattern, speed of migration, translocation distance, and strong association with blood vessels) were preserved in amyloid-depositing brains, despite amyloid plaques becoming the major destination of migration. Besides, amyloid deposition significantly increased microglial division and death rates. Moreover, the plaque vicinity became a hotspot of microglial turnover, harboring 33% of all migration, 70% of death and 54% of division events.
Collapse
Affiliation(s)
- Maria Olmedillas
- Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Bianca Brawek
- Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Kaizhen Li
- Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Cris Richter
- Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Olga Garaschuk
- Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
56
|
Claeys W, Verhaege D, Van Imschoot G, Van Wonterghem E, Van Acker L, Amelinck L, De Ponti FF, Scott C, Geerts A, Van Steenkiste C, Van Hoecke L, Vandenbroucke RE. Limitations of PLX3397 as a microglial investigational tool: peripheral and off-target effects dictate the response to inflammation. Front Immunol 2023; 14:1283711. [PMID: 38077359 PMCID: PMC10703484 DOI: 10.3389/fimmu.2023.1283711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023] Open
Abstract
Microglia, the resident macrophages of the central nervous system (CNS), play a critical role in CNS homeostasis and neuroinflammation. Pexidartinib (PLX3397), a colony-stimulating factor 1 (CSF1) receptor inhibitor, is widely used to deplete microglia, offering flexible options for both long-term depletion and highly versatile depletion-repopulation cycles. However, the potential impact of PLX3397 on peripheral (immune) cells remains controversial. Until now, the microglia-specificity of this type of compounds has not been thoroughly evaluated, particularly in the context of peripherally derived neuroinflammation. Our study addresses this gap by examining the effects of PLX3397 on immune cells in the brain, liver, circulation and bone marrow, both in homeostasis and systemic inflammation models. Intriguingly, we demonstrate that PLX3397 treatment not only influences the levels of tissue-resident macrophages, but also affects circulating and bone marrow immune cells beyond the mononuclear phagocyte system (MPS). These alterations in peripheral immune cells disrupt the response to systemic inflammation, consequently impacting the phenotype irrespective of microglial depletion. Furthermore, we observed that a lower dose of PLX3397, which does not deplete microglia, demonstrates similar (non-)MPS effects, both in the periphery and the brain, but fails to fully replicate the peripheral alterations seen in the higher doses, questioning lower doses as a 'peripheral control' strategy. Overall, our data highlight the need for caution when interpreting studies employing this compound, as it may not be suitable for specific investigation of microglial function in the presence of systemic inflammation.
Collapse
Affiliation(s)
- Wouter Claeys
- Department of Internal Medicine and Paediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Barriers in Inflammation, VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Daan Verhaege
- Barriers in Inflammation, VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Griet Van Imschoot
- Barriers in Inflammation, VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Elien Van Wonterghem
- Barriers in Inflammation, VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Lore Van Acker
- Barriers in Inflammation, VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Laura Amelinck
- Barriers in Inflammation, VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Federico F. De Ponti
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB–UGent Center for Inflammation Research, Ghent, Belgium
| | - Charlotte Scott
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB–UGent Center for Inflammation Research, Ghent, Belgium
| | - Anja Geerts
- Department of Internal Medicine and Paediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Christophe Van Steenkiste
- Antwerp University, Department of Gastroenterology and Hepatology, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Maria Middelares Hospital, Ghent, Belgium
| | - Lien Van Hoecke
- Barriers in Inflammation, VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Roosmarijn E. Vandenbroucke
- Barriers in Inflammation, VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
57
|
Gaunt JR, Zainolabidin N, Yip AKK, Tan JM, Low AYT, Chen AI, Ch'ng TH. Cytokine enrichment in deep cerebellar nuclei is contributed by multiple glial populations and linked to reduced amyloid plaque pathology. J Neuroinflammation 2023; 20:269. [PMID: 37978387 PMCID: PMC10656954 DOI: 10.1186/s12974-023-02913-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/28/2023] [Indexed: 11/19/2023] Open
Abstract
Alzheimer's disease (AD) pathology and amyloid-beta (Aβ) plaque deposition progress slowly in the cerebellum compared to other brain regions, while the entorhinal cortex (EC) is one of the most vulnerable regions. Using a knock-in AD mouse model (App KI), we show that within the cerebellum, the deep cerebellar nuclei (DCN) has particularly low accumulation of Aβ plaques. To identify factors that might underlie differences in the progression of AD-associated neuropathology across regions, we profiled gene expression in single nuclei (snRNAseq) across all cell types in the DCN and EC of wild-type (WT) and App KI male mice at age 7 months. We found differences in expression of genes associated with inflammatory activation, PI3K-AKT signalling, and neuron support functions between both regions and genotypes. In WT mice, the expression of interferon-response genes in microglia is higher in the DCN than the EC and this enrichment is confirmed by RNA in situ hybridisation, and measurement of inflammatory cytokines by protein array. Our analyses also revealed that multiple glial populations are responsible for establishing this cytokine-enriched niche. Furthermore, homogenates derived from the DCN induced inflammatory gene expression in BV2 microglia. We also assessed the relationship between the DCN microenvironment and Aβ pathology by depleting microglia using a CSF1R inhibitor PLX5622 and saw that, surprisingly, the expression of a subset of inflammatory cytokines was increased while plaque abundance in the DCN was further reduced. Overall, our study revealed the presence of a cytokine-enriched microenvironment unique to the DCN that when modulated, can alter plaque deposition.
Collapse
Affiliation(s)
- Jessica R Gaunt
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Science Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Norliyana Zainolabidin
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Science Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Alaric K K Yip
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Science Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Jia Min Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Science Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Aloysius Y T Low
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Albert I Chen
- Center for Aging Research, Scintillon Institute, 6868 Nancy Ridge Drive, San Diego, CA, 92121, USA.
- Molecular Neurobiology Laboratory, Salk Institute, La Jolla, CA, 92037, USA.
| | - Toh Hean Ch'ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Science Building, 11 Mandalay Road, Singapore, 308232, Singapore.
- School of Biological Science, Nanyang Technological University, Singapore, 63755, Singapore.
| |
Collapse
|
58
|
Lee JY, Jeong EA, Lee J, Shin HJ, Lee SJ, An HS, Kim KE, Kim WH, Bae YC, Kang H, Roh GS. TonEBP Haploinsufficiency Attenuates Microglial Activation and Memory Deficits in Middle-Aged and Amyloid β Oligomer-Treated Mice. Cells 2023; 12:2612. [PMID: 37998347 PMCID: PMC10670066 DOI: 10.3390/cells12222612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Age-related microglial activation is associated with cognitive impairment. Tonicity-responsive enhancer-binding protein (TonEBP) is a critical mediator of microglial activation in response to neuroinflammation. However, the precise role of TonEBP in the middle-aged brain is not yet known. We used TonEBP haploinsufficient mice to investigate the role of TonEBP in middle-aged or amyloid β oligomer (AβO)-injected brains and examined the effect of TonEBP knockdown on AβO-treated BV2 microglial cells. Consistent with an increase in microglial activation with aging, hippocampal TonEBP expression levels were increased in middle-aged (12-month-old) and old (24-month-old) mice compared with young (6-month-old) mice. Middle-aged TonEBP haploinsufficient mice showed reduced microglial activation and fewer memory deficits than wild-type mice. Electron microscopy revealed that synaptic pruning by microglial processes was reduced by TonEBP haploinsufficiency. TonEBP haploinsufficiency also reduced dendritic spine loss and improved memory deficits in AβO-treated mice. Furthermore, TonEBP knockdown attenuated migration and phagocytosis in AβO-treated BV2 cells. These findings suggest that TonEBP plays important roles in age-related microglial activation and memory deficits.
Collapse
Affiliation(s)
- Jong Youl Lee
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (J.Y.L.); (E.A.J.); (J.L.); (H.J.S.); (S.J.L.); (H.S.A.); (K.E.K.)
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju 28159, Republic of Korea;
| | - Eun Ae Jeong
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (J.Y.L.); (E.A.J.); (J.L.); (H.J.S.); (S.J.L.); (H.S.A.); (K.E.K.)
| | - Jaewoong Lee
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (J.Y.L.); (E.A.J.); (J.L.); (H.J.S.); (S.J.L.); (H.S.A.); (K.E.K.)
| | - Hyun Joo Shin
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (J.Y.L.); (E.A.J.); (J.L.); (H.J.S.); (S.J.L.); (H.S.A.); (K.E.K.)
| | - So Jeong Lee
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (J.Y.L.); (E.A.J.); (J.L.); (H.J.S.); (S.J.L.); (H.S.A.); (K.E.K.)
| | - Hyeong Seok An
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (J.Y.L.); (E.A.J.); (J.L.); (H.J.S.); (S.J.L.); (H.S.A.); (K.E.K.)
| | - Kyung Eun Kim
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (J.Y.L.); (E.A.J.); (J.L.); (H.J.S.); (S.J.L.); (H.S.A.); (K.E.K.)
| | - Won-Ho Kim
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju 28159, Republic of Korea;
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 41944, Republic of Korea;
| | - Heeyoung Kang
- Department of Neurology, College of Medicine, Gyeongsang National University Hospital, Gyeongsang National University, Jinju 52727, Republic of Korea;
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (J.Y.L.); (E.A.J.); (J.L.); (H.J.S.); (S.J.L.); (H.S.A.); (K.E.K.)
| |
Collapse
|
59
|
Litwiniuk A, Juszczak GR, Stankiewicz AM, Urbańska K. The role of glial autophagy in Alzheimer's disease. Mol Psychiatry 2023; 28:4528-4539. [PMID: 37679471 DOI: 10.1038/s41380-023-02242-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023]
Abstract
Although Alzheimer's disease is the most pervasive neurodegenerative disorder, the mechanism underlying its development is still not precisely understood. Available data indicate that pathophysiology of this disease may involve impaired autophagy in glial cells. The dysfunction is manifested as reduced ability of astrocytes and microglia to clear abnormal protein aggregates. Consequently, excessive accumulation of amyloid beta plaques and neurofibrillary tangles activates microglia and astrocytes leading to decreased number of mature myelinated oligodendrocytes and death of neurons. These pathologic effects of autophagy dysfunction can be rescued by pharmacological activation of autophagy. Therefore, a deeper understanding of the molecular mechanisms involved in autophagy dysfunction in glial cells in Alzheimer's disease may lead to the development of new therapeutic strategies. However, such strategies need to take into consideration differences in regulation of autophagy in different types of neuroglia.
Collapse
Affiliation(s)
- Anna Litwiniuk
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Warsaw, Mazovia, Poland
| | - Grzegorz Roman Juszczak
- Department of Animal Behavior and Welfare, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, Mazovia, Poland
| | - Adrian Mateusz Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, Mazovia, Poland.
| | - Kaja Urbańska
- Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Mazovia, Poland.
| |
Collapse
|
60
|
Yang Y, García-Cruzado M, Zeng H, Camprubí-Ferrer L, Bahatyrevich-Kharitonik B, Bachiller S, Deierborg T. LPS priming before plaque deposition impedes microglial activation and restrains Aβ pathology in the 5xFAD mouse model of Alzheimer's disease. Brain Behav Immun 2023; 113:228-247. [PMID: 37437821 DOI: 10.1016/j.bbi.2023.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023] Open
Abstract
Microglia have an innate immunity memory (IIM) with divergent functions in different animal models of neurodegenerative diseases, including Alzheimer's disease (AD). AD is characterized by chronic neuroinflammation, neurodegeneration, tau tangles and β-amyloid (Aβ) deposition. Systemic inflammation has been implicated in contributing to the progression of AD. Multiple reports have demonstrated unique microglial signatures in AD mouse models and patients. However, the proteomic profiles of microglia modified by IIM have not been well-documented in an AD model. Therefore, in the present study, we investigate whether lipopolysaccharide (LPS)-induced IIM in the pre-clinical stage of AD alters the microglial responses and shapes the neuropathology. We accomplished this by priming 5xFAD and wild-type (WT) mice with an LPS injection at 6 weeks (before the robust development of plaques). 140 days later, we evaluated microglial morphology, activation, the microglial barrier around Aβ, and Aβ deposition in both 5xFAD primed and unprimed mice. Priming induced decreased soma size of microglia and reduced colocalization of PSD95 and Synaptophysin in the retrosplenial cortex. Priming appeared to increase phagocytosis of Aβ, resulting in fewer Thioflavin S+ Aβ fibrils in the dentate gyrus. RIPA-soluble Aβ 40 and 42 were significantly reduced in Primed-5xFAD mice leading to a smaller size of MOAB2+ Aβ plaques in the prefrontal cortex. We also found that Aβ-associated microglia in the Primed-5xFAD mice were less activated and fewer in number. After priming, we also observed improved memory performance in 5xFAD. To further elucidate the molecular mechanism underlying these changes, we performed quantitative proteomic analysis of microglia and bone marrow monocytes. A specific pattern in the microglial proteome was revealed in primed 5xFAD mice. These results suggest that the imprint signatures of primed microglia display a distinctive phenotype and highlight the potential for a beneficial adaption of microglia when intervention occurs in the pre-clinical stage of AD.
Collapse
Affiliation(s)
- Yiyi Yang
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Sweden.
| | - Marta García-Cruzado
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Sweden
| | - Hairuo Zeng
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Sweden
| | - Lluís Camprubí-Ferrer
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Sweden
| | - Bazhena Bahatyrevich-Kharitonik
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Sweden; Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, University of Seville, CSIC, Spain; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Sara Bachiller
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Sweden; Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, University of Seville, CSIC, Spain; Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Tomas Deierborg
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Sweden.
| |
Collapse
|
61
|
Han CZ, Li RZ, Hansen E, Trescott S, Fixsen BR, Nguyen CT, Mora CM, Spann NJ, Bennett HR, Poirion O, Buchanan J, Warden AS, Xia B, Schlachetzki JCM, Pasillas MP, Preissl S, Wang A, O'Connor C, Shriram S, Kim R, Schafer D, Ramirez G, Challacombe J, Anavim SA, Johnson A, Gupta M, Glass IA, Levy ML, Haim SB, Gonda DD, Laurent L, Hughes JF, Page DC, Blurton-Jones M, Glass CK, Coufal NG. Human microglia maturation is underpinned by specific gene regulatory networks. Immunity 2023; 56:2152-2171.e13. [PMID: 37582369 PMCID: PMC10529991 DOI: 10.1016/j.immuni.2023.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/11/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023]
Abstract
Microglia phenotypes are highly regulated by the brain environment, but the transcriptional networks that specify the maturation of human microglia are poorly understood. Here, we characterized stage-specific transcriptomes and epigenetic landscapes of fetal and postnatal human microglia and acquired corresponding data in induced pluripotent stem cell (iPSC)-derived microglia, in cerebral organoids, and following engraftment into humanized mice. Parallel development of computational approaches that considered transcription factor (TF) co-occurrence and enhancer activity allowed prediction of shared and state-specific gene regulatory networks associated with fetal and postnatal microglia. Additionally, many features of the human fetal-to-postnatal transition were recapitulated in a time-dependent manner following the engraftment of iPSC cells into humanized mice. These data and accompanying computational approaches will facilitate further efforts to elucidate mechanisms by which human microglia acquire stage- and disease-specific phenotypes.
Collapse
Affiliation(s)
- Claudia Z Han
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rick Z Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emily Hansen
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Samantha Trescott
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Bethany R Fixsen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Celina T Nguyen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Cristina M Mora
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Nathanael J Spann
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hunter R Bennett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Olivier Poirion
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Center for Epigenomics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Justin Buchanan
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Center for Epigenomics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anna S Warden
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Bing Xia
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Martina P Pasillas
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sebastian Preissl
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Center for Epigenomics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Allen Wang
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Center for Epigenomics, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Shreya Shriram
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Roy Kim
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Danielle Schafer
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Gabriela Ramirez
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Jean Challacombe
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Samuel A Anavim
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Avalon Johnson
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Mihir Gupta
- Department of Neurosurgery, University of California, San Diego, La Jolla, CA 92037, USA
| | - Ian A Glass
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, WA, USA
| | - Michael L Levy
- Department of Neurosurgery, University of California, San Diego-Rady Children's Hospital, San Diego, CA 92123, USA
| | - Sharona Ben Haim
- Department of Neurosurgery, University of California, San Diego, La Jolla, CA 92037, USA
| | - David D Gonda
- Department of Neurosurgery, University of California, San Diego-Rady Children's Hospital, San Diego, CA 92123, USA
| | - Louise Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - David C Page
- Whitehead Institute, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| | - Mathew Blurton-Jones
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92696, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Nicole G Coufal
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
62
|
Self WK, Holtzman DM. Emerging diagnostics and therapeutics for Alzheimer disease. Nat Med 2023; 29:2187-2199. [PMID: 37667136 DOI: 10.1038/s41591-023-02505-2] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/18/2023] [Indexed: 09/06/2023]
Abstract
Alzheimer disease (AD) is the most common contributor to dementia in the world, but strategies that slow or prevent its clinical progression have largely remained elusive, until recently. This Review highlights the latest advances in biomarker technologies and therapeutic development to improve AD diagnosis and treatment. We review recent results that enable pathological staging of AD with neuroimaging and fluid-based biomarkers, with a particular emphasis on the role of amyloid, tau and neuroinflammation in disease pathogenesis. We discuss the lessons learned from randomized controlled trials, including some supporting the proposal that certain anti-amyloid antibodies slow cognitive decline during the mildly symptomatic phase of AD. In addition, we highlight evidence for newly identified therapeutic targets that may be able to modify AD pathogenesis and progression. Collectively, these recent discoveries-and the research directions that they open-have the potential to move AD clinical care toward disease-modifying treatment strategies with maximal benefits for patients.
Collapse
Affiliation(s)
- Wade K Self
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
63
|
Chandra S, Di Meco A, Dodiya HB, Popovic J, Cuddy LK, Weigle IQ, Zhang X, Sadleir K, Sisodia SS, Vassar R. The gut microbiome regulates astrocyte reaction to Aβ amyloidosis through microglial dependent and independent mechanisms. Mol Neurodegener 2023; 18:45. [PMID: 37415149 DOI: 10.1186/s13024-023-00635-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Previous studies show that antibiotic-mediated (abx) alteration of the gut microbiome (GMB) results in a reduction of amyloid beta (Aβ) plaques and proinflammatory microglial phenotype in male APPPS1-21 mice. However, the effect of GMB perturbation on astrocyte phenotypes and microglial-astrocyte communication in the context of amyloidosis has not been examined. METHODS To study whether the GMB modulates astrocyte phenotype in the context of amyloidosis, APPPS1-21 male and female mice were treated with broad-spectrum abx leading to GMB perturbation. GFAP + astrocytes, plaque-associated astrocytes (PAA), PAA morphological parameters, and astrocyte complement component C3 levels were quantified using a combination of immunohistochemistry, immunoblotting, widefield microscopy, and confocal microscopy. Furthermore, these same astrocyte phenotypes were assessed in abx-treated APPPS1-21 male mice that received either fecal matter transplant (FMT) from untreated APPPS1-21 male donors to restore their microbiome or vehicle control. To assess complete absence of the GMB on astrocyte phenotypes, the same astrocyte phenotypes were quantified in APPPS1-21 male mice raised in germ-free (GF) or specific-pathogen free conditions (SPF). Lastly, we assessed whether microglia are necessary for abx-induced astrocyte phenotypes by depleting microglia in APPPS1-21 male mice via treatment with a colony-stimulating factor 1 receptor (CSF1R) inhibitor (PLX5622) and vehicle control or PLX5622 and abx. RESULTS Herein, we demonstrate that postnatal treatment of male APPPS1-21 mice with broad-spectrum abx leading to GMB perturbation reduces GFAP + reactive astrocytes and PAAs, suggesting that the GMB plays a role in regulating reactive astrocyte induction and recruitment to Aβ plaques. Additionally, we show that compared to controls, PAAs in abx-treated male APPPS1-21 mice exhibit an altered morphology with increased number and length of processes and reduced astrocytic complement C3, consistent with a homeostatic phenotype. GFAP + astrocyte reduction, PAA reduction, astrocyte morphological changes, and C3 levels are restored when abx-treated mice are subject to FMT from untreated APPPS1-21 male donor mice. Next, we found that APPPS1-21 male mice raised in GF conditions have similar astrocyte phenotypes as abx-treated male APPPS1-21 male mice. Correlational analysis revealed that pathogenic bacteria depleted by abx correlate with GFAP + astrocytosis, PAAs, and astrocyte morphological changes. Finally, we determined that abx-mediated reduction in GFAP + astrocytosis, PAAs, and astrocytic C3 expression is independent of microglia. However, abx-induced astrocyte morphological alterations are dependent on the presence of microglia, suggesting that there is both microglial independent and dependent GMB control of reactive astrocyte phenotypes. CONCLUSIONS We show for the first time, in the context of amyloidosis, that the GMB plays an important role in controlling reactive astrocyte induction, morphology, and astrocyte recruitment to Aβ plaques. GMB regulation of these astrocytic phenotypes is both independent and dependent on microglia.
Collapse
Affiliation(s)
- Sidhanth Chandra
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Antonio Di Meco
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Hemraj B Dodiya
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA
| | - Jelena Popovic
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Leah K Cuddy
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Ian Q Weigle
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA
| | - Xiaoqiong Zhang
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA
| | - Katherine Sadleir
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sangram S Sisodia
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA
| | - Robert Vassar
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Northwestern University, Tarry Building Room 8-711, 300 East Superior Street, Chicago, IL, 60611, USA.
| |
Collapse
|
64
|
Morabito S, Reese F, Rahimzadeh N, Miyoshi E, Swarup V. hdWGCNA identifies co-expression networks in high-dimensional transcriptomics data. CELL REPORTS METHODS 2023; 3:100498. [PMID: 37426759 PMCID: PMC10326379 DOI: 10.1016/j.crmeth.2023.100498] [Citation(s) in RCA: 174] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/13/2023] [Accepted: 05/16/2023] [Indexed: 07/11/2023]
Abstract
Biological systems are immensely complex, organized into a multi-scale hierarchy of functional units based on tightly regulated interactions between distinct molecules, cells, organs, and organisms. While experimental methods enable transcriptome-wide measurements across millions of cells, popular bioinformatic tools do not support systems-level analysis. Here we present hdWGCNA, a comprehensive framework for analyzing co-expression networks in high-dimensional transcriptomics data such as single-cell and spatial RNA sequencing (RNA-seq). hdWGCNA provides functions for network inference, gene module identification, gene enrichment analysis, statistical tests, and data visualization. Beyond conventional single-cell RNA-seq, hdWGCNA is capable of performing isoform-level network analysis using long-read single-cell data. We showcase hdWGCNA using data from autism spectrum disorder and Alzheimer's disease brain samples, identifying disease-relevant co-expression network modules. hdWGCNA is directly compatible with Seurat, a widely used R package for single-cell and spatial transcriptomics analysis, and we demonstrate the scalability of hdWGCNA by analyzing a dataset containing nearly 1 million cells.
Collapse
Affiliation(s)
- Samuel Morabito
- Mathematical, Computational, and Systems Biology (MCSB) Program, University of California, Irvine, Irvine, CA, USA
- Center for Complex Biological Systems (CCBS), University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
| | - Fairlie Reese
- Center for Complex Biological Systems (CCBS), University of California, Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Negin Rahimzadeh
- Mathematical, Computational, and Systems Biology (MCSB) Program, University of California, Irvine, Irvine, CA, USA
- Center for Complex Biological Systems (CCBS), University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
| | - Emily Miyoshi
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Vivek Swarup
- Center for Complex Biological Systems (CCBS), University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
65
|
Ennerfelt H, Holliday C, Shapiro D, Zengeler K, Bolte A, Ulland T, Lukens J. CARD9 attenuates Aβ pathology and modifies microglial responses in an Alzheimer's disease mouse model. Proc Natl Acad Sci U S A 2023; 120:e2303760120. [PMID: 37276426 PMCID: PMC10268238 DOI: 10.1073/pnas.2303760120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 06/07/2023] Open
Abstract
Recent advances have highlighted the importance of several innate immune receptors expressed by microglia in Alzheimer's disease (AD). In particular, mounting evidence from AD patients and experimental models indicates pivotal roles for TREM2, CD33, and CD22 in neurodegenerative disease progression. While there is growing interest in targeting these microglial receptors to treat AD, we still lack knowledge of the downstream signaling molecules used by these receptors to orchestrate immune responses in AD. Notably, TREM2, CD33, and CD22 have been described to influence signaling associated with the intracellular adaptor molecule CARD9 to mount downstream immune responses outside of the brain. However, the role of CARD9 in AD remains poorly understood. Here, we show that genetic ablation of CARD9 in the 5xFAD mouse model of AD results in exacerbated amyloid beta (Aβ) deposition, increased neuronal loss, worsened cognitive deficits, and alterations in microglial responses. We further show that pharmacological activation of CARD9 promotes improved clearance of Aβ deposits from the brains of 5xFAD mice. These results help to establish CARD9 as a key intracellular innate immune signaling molecule that regulates Aβ-mediated disease and microglial responses. Moreover, these findings suggest that targeting CARD9 might offer a strategy to improve Aβ clearance in AD.
Collapse
Affiliation(s)
- Hannah Ennerfelt
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA22908
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA22908
- Cell and Molecular Biology Graduate Training Program, University of Virginia, Charlottesville, VA22908
| | - Coco Holliday
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA22908
| | - Daniel A. Shapiro
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA22908
| | - Kristine E. Zengeler
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA22908
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA22908
- Cell and Molecular Biology Graduate Training Program, University of Virginia, Charlottesville, VA22908
| | - Ashley C. Bolte
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA22908
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA22908
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA22908
| | - Tyler K. Ulland
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI53705
| | - John R. Lukens
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA22908
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA22908
- Cell and Molecular Biology Graduate Training Program, University of Virginia, Charlottesville, VA22908
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA22908
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA22908
| |
Collapse
|
66
|
Stephen TL, Korobkova L, Breningstall B, Nguyen K, Mehta S, Pachicano M, Jones KT, Hawes D, Cabeen RP, Bienkowski MS. Machine Learning Classification of Alzheimer's Disease Pathology Reveals Diffuse Amyloid as a Major Predictor of Cognitive Impairment in Human Hippocampal Subregions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543117. [PMID: 37333119 PMCID: PMC10274752 DOI: 10.1101/2023.05.31.543117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Analyzing Alzheimer's disease (AD) pathology within anatomical subregions is a significant challenge, often carried out by pathologists using a standardized, semi-quantitative approach. To augment traditional methods, a high-throughput, high-resolution pipeline was created to classify the distribution of AD pathology within hippocampal subregions. USC ADRC post-mortem tissue sections from 51 patients were stained with 4G8 for amyloid, Gallyas for neurofibrillary tangles (NFTs) and Iba1 for microglia. Machine learning (ML) techniques were utilized to identify and classify amyloid pathology (dense, diffuse and APP (amyloid precursor protein)), NFTs, neuritic plaques and microglia. These classifications were overlaid within manually segmented regions (aligned with the Allen Human Brain Atlas) to create detailed pathology maps. Cases were separated into low, intermediate, or high AD stages. Further data extraction enabled quantification of plaque size and pathology density alongside ApoE genotype, sex, and cognitive status. Our findings revealed that the increase in pathology burden across AD stages was driven mainly by diffuse amyloid. The pre and para-subiculum had the highest levels of diffuse amyloid while NFTs were highest in the A36 region in high AD cases. Moreover, different pathology types had distinct trajectories across disease stages. In a subset of AD cases, microglia were elevated in intermediate and high compared to low AD. Microglia also correlated with amyloid pathology in the Dentate Gyrus. The size of dense plaques, which may represent microglial function, was lower in ApoE4 carriers. In addition, individuals with memory impairment had higher levels of both dense and diffuse amyloid. Taken together, our findings integrating ML classification approaches with anatomical segmentation maps provide new insights on the complexity of disease pathology in AD progression. Specifically, we identified diffuse amyloid pathology as being a major driver of AD in our cohort, regions of interest and microglial responses that might advance AD diagnosis and treatment.
Collapse
|
67
|
Brioschi S, Belk JA, Peng V, Molgora M, Rodrigues PF, Nguyen KM, Wang S, Du S, Wang WL, Grajales-Reyes GE, Ponce JM, Yuede CM, Li Q, Baer JM, DeNardo DG, Gilfillan S, Cella M, Satpathy AT, Colonna M. A Cre-deleter specific for embryo-derived brain macrophages reveals distinct features of microglia and border macrophages. Immunity 2023; 56:1027-1045.e8. [PMID: 36791722 PMCID: PMC10175109 DOI: 10.1016/j.immuni.2023.01.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/27/2022] [Accepted: 01/27/2023] [Indexed: 02/16/2023]
Abstract
Genetic tools to target microglia specifically and efficiently from the early stages of embryonic development are lacking. We generated a constitutive Cre line controlled by the microglia signature gene Crybb1 that produced nearly complete recombination in embryonic brain macrophages (microglia and border-associated macrophages [BAMs]) by the perinatal period, with limited recombination in peripheral myeloid cells. Using this tool in combination with Flt3-Cre lineage tracer, single-cell RNA-sequencing analysis, and confocal imaging, we resolved embryonic-derived versus monocyte-derived BAMs in the mouse cortex. Deletion of the transcription factor SMAD4 in microglia and embryonic-derived BAMs using Crybb1-Cre caused a developmental arrest of microglia, which instead acquired a BAM specification signature. By contrast, the development of genuine BAMs remained unaffected. Our results reveal that SMAD4 drives a transcriptional and epigenetic program that is indispensable for the commitment of brain macrophages to the microglia fate and highlight Crybb1-Cre as a tool for targeting embryonic brain macrophages.
Collapse
Affiliation(s)
- Simone Brioschi
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA.
| | - Julia A Belk
- Department of Computer Science, Stanford University, Stanford, CA, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Vincent Peng
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Martina Molgora
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Patrick Fernandes Rodrigues
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Khai M Nguyen
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Shoutang Wang
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Siling Du
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Wei-Le Wang
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Gary E Grajales-Reyes
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Jennifer M Ponce
- McDonnell Genome Institute, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Carla M Yuede
- Department of Psychiatry, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Qingyun Li
- Department of Neuroscience, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA; Department of Genetics, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - John M Baer
- Department of Medicine, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - David G DeNardo
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA; Department of Medicine, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA; Siteman Cancer Center, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Ansuman T Satpathy
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA; Department of Pathology, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford University, Stanford, CA, USA; Parker Institute for Cancer Immunotherapy, Stanford University, Stanford, CA, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA.
| |
Collapse
|
68
|
Temple S. Advancing cell therapy for neurodegenerative diseases. Cell Stem Cell 2023; 30:512-529. [PMID: 37084729 PMCID: PMC10201979 DOI: 10.1016/j.stem.2023.03.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/23/2023]
Abstract
Cell-based therapies are being developed for various neurodegenerative diseases that affect the central nervous system (CNS). Concomitantly, the roles of individual cell types in neurodegenerative pathology are being uncovered by genetic and single-cell studies. With a greater understanding of cellular contributions to health and disease and with the arrival of promising approaches to modulate them, effective therapeutic cell products are now emerging. This review examines how the ability to generate diverse CNS cell types from stem cells, along with a deeper understanding of cell-type-specific functions and pathology, is advancing preclinical development of cell products for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sally Temple
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA.
| |
Collapse
|
69
|
Heuer SE, Keezer KJ, Hewes AA, Onos KD, Graham KC, Howell GR, Bloss EB. Genetic context controls early microglia-synaptic interactions in mouse models of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.28.538728. [PMID: 37162819 PMCID: PMC10168315 DOI: 10.1101/2023.04.28.538728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Common features of Alzheimer's disease (AD) include amyloid pathology, microglia activation and synaptic dysfunction, however, the causal relationships amongst them remains unclear. Further, human data suggest susceptibility and resilience to AD neuropathology is controlled by genetic context, a factor underexplored in mouse models. To this end, we leveraged viral strategies to label an AD-vulnerable neuronal circuit in CA1 dendrites projecting to the frontal cortex in genetically diverse C57BL/6J (B6) and PWK/PhJ (PWK) APP/PS1 mouse strains and used PLX5622 to non-invasively deplete brain microglia. Reconstructions of labeled neurons revealed microglia-dependent changes in dendritic spine density and morphology in B6 wild-type (WT) and APP/PS1 yet a marked stability of spines across PWK mice. We further showed that synaptic changes depend on direct microglia-dendrite interactions in B6. APP/PS1 but not PWK. APP/PS1 mice. Collectively, these results demonstrate that microglia-dependent synaptic alterations in a specific AD-vulnerable projection pathway are differentially controlled by genetic context.
Collapse
Affiliation(s)
- Sarah E. Heuer
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | | | | | | | | | - Gareth R. Howell
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine 04469, USA
| | - Erik B. Bloss
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine 04469, USA
| |
Collapse
|
70
|
Bhatti JS, Khullar N, Mishra J, Kaur S, Sehrawat A, Sharma E, Bhatti GK, Selman A, Reddy PH. Stem cells in the treatment of Alzheimer's disease - Promises and pitfalls. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166712. [PMID: 37030521 DOI: 10.1016/j.bbadis.2023.166712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/31/2023] [Indexed: 04/10/2023]
Abstract
Alzheimer's disease (AD) is the most widespread form of neurodegenerative disorder that causes memory loss and multiple cognitive issues. The underlying mechanisms of AD include the build-up of amyloid-β and phosphorylated tau, synaptic damage, elevated levels of microglia and astrocytes, abnormal microRNAs, mitochondrial dysfunction, hormonal imbalance, and age-related neuronal loss. However, the etiology of AD is complex and involves a multitude of environmental and genetic factors. Currently, available AD medications only alleviate symptoms and do not provide a permanent cure. Therefore, there is a need for therapies that can prevent or reverse cognitive decline, brain tissue loss, and neural instability. Stem cell therapy is a promising treatment for AD because stem cells possess the unique ability to differentiate into any type of cell and maintain their self-renewal. This article provides an overview of the pathophysiology of AD and existing pharmacological treatments. This review article focuses on the role of various types of stem cells in neuroregeneration, the potential challenges, and the future of stem cell-based therapies for AD, including nano delivery and gaps in stem cell technology.
Collapse
Affiliation(s)
- Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India
| | - Jayapriya Mishra
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Satinder Kaur
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Abhishek Sehrawat
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Eva Sharma
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Ashley Selman
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA.
| |
Collapse
|
71
|
Bridlance C, Thion MS. Multifaceted microglia during brain development: Models and tools. Front Neurosci 2023; 17:1125729. [PMID: 37034157 PMCID: PMC10076615 DOI: 10.3389/fnins.2023.1125729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/24/2023] [Indexed: 04/11/2023] Open
Abstract
Microglia, the brain resident macrophages, are multifaceted glial cells that belong to the central nervous and immune systems. As part of the immune system, they mediate innate immune responses, regulate brain homeostasis and protect the brain in response to inflammation or injury. At the same time, they can perform a wide array of cellular functions that relate to the normal functioning of the brain. Importantly, microglia are key actors of brain development. Indeed, these early brain invaders originate outside of the central nervous system from yolk sac myeloid progenitors, and migrate into the neural folds during early embryogenesis. Before the generation of oligodendrocytes and astrocytes, microglia thus occupy a unique position, constituting the main glial population during early development and participating in a wide array of embryonic and postnatal processes. During this developmental time window, microglia display remarkable features, being highly heterogeneous in time, space, morphology and transcriptional states. Although tremendous progress has been made in our understanding of their ontogeny and roles, there are several limitations for the investigation of specific microglial functions as well as their heterogeneity during development. This review summarizes the current murine tools and models used in the field to study the development of these peculiar cells. In particular, we focus on the methodologies used to label and deplete microglia, monitor their behavior through live-imaging and also discuss the progress currently being made by the community to unravel microglial functions in brain development and disorders.
Collapse
Affiliation(s)
- Cécile Bridlance
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Morgane Sonia Thion
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
72
|
Xiong M, Wang C, Gratuze M, Saadi F, Bao X, Bosch ME, Lee C, Jiang H, Serrano JR, Gonzales ER, Kipnis M, Holtzman DM. Astrocytic APOE4 removal confers cerebrovascular protection despite increased cerebral amyloid angiopathy. Mol Neurodegener 2023; 18:17. [PMID: 36922879 PMCID: PMC10018855 DOI: 10.1186/s13024-023-00610-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Alzheimer Disease (AD) and cerebral amyloid angiopathy (CAA) are both characterized by amyloid-β (Aβ) accumulation in the brain, although Aβ deposits mostly in the brain parenchyma in AD and in the cerebrovasculature in CAA. The presence of CAA can exacerbate clinical outcomes of AD patients by promoting spontaneous intracerebral hemorrhage and ischemia leading to CAA-associated cognitive decline. Genetically, AD and CAA share the ε4 allele of the apolipoprotein E (APOE) gene as the strongest genetic risk factor. Although tremendous efforts have focused on uncovering the role of APOE4 on parenchymal plaque pathogenesis in AD, mechanistic studies investigating the role of APOE4 on CAA are still lacking. Here, we addressed whether abolishing APOE4 generated by astrocytes, the major producers of APOE, is sufficient to ameliorate CAA and CAA-associated vessel damage. METHODS We generated transgenic mice that deposited both CAA and plaques in which APOE4 expression can be selectively suppressed in astrocytes. At 2-months-of-age, a timepoint preceding CAA and plaque formation, APOE4 was removed from astrocytes of 5XFAD APOE4 knock-in mice. Mice were assessed at 10-months-of-age for Aβ plaque and CAA pathology, gliosis, and vascular integrity. RESULTS Reducing the levels of APOE4 in astrocytes shifted the deposition of fibrillar Aβ from the brain parenchyma to the cerebrovasculature. However, despite increased CAA, astrocytic APOE4 removal reduced overall Aβ-mediated gliosis and also led to increased cerebrovascular integrity and function in vessels containing CAA. CONCLUSION In a mouse model of CAA, the reduction of APOE4 derived specifically from astrocytes, despite increased fibrillar Aβ deposition in the vasculature, is sufficient to reduce Aβ-mediated gliosis and cerebrovascular dysfunction.
Collapse
Affiliation(s)
- Monica Xiong
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Division of Biology and Biomedical Sciences (DBBS), Washington University School of Medicine, St. Louis, MO 63110 USA
- Present Address: Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
| | - Chao Wang
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, 400016 China
| | - Maud Gratuze
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Present address: Institute of Neurophysiopathology (INP UMR7051), CNRS, Aix-Marseille Université, Marseille, 13005 France
| | - Fareeha Saadi
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Xin Bao
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Megan E. Bosch
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Choonghee Lee
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Hong Jiang
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Javier Remolina Serrano
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Ernesto R. Gonzales
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Michal Kipnis
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - David M. Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
73
|
Wu Y, Eisel UL. Microglia-Astrocyte Communication in Alzheimer's Disease. J Alzheimers Dis 2023; 95:785-803. [PMID: 37638434 PMCID: PMC10578295 DOI: 10.3233/jad-230199] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 08/29/2023]
Abstract
Microglia and astrocytes are regarded as active participants in the central nervous system under various neuropathological conditions, including Alzheimer's disease (AD). Both microglia and astrocyte activation have been reported to occur with a spatially and temporarily distinct pattern. Acting as a double-edged sword, glia-mediated neuroinflammation may be both detrimental and beneficial to the brain. In a variety of neuropathologies, microglia are activated before astrocytes, which facilitates astrocyte activation. Yet reactive astrocytes can also prevent the activation of adjacent microglia in addition to helping them become activated. Studies describe changes in the genetic profile as well as cellular and molecular responses of these two types of glial cells that contribute to dysfunctional immune crosstalk in AD. In this paper, we construct current knowledge of microglia-astrocyte communication, highlighting the multifaceted functions of microglia and astrocytes and their role in AD. A thorough comprehension of microglia-astrocyte communication could hasten the creation of novel AD treatment approaches.
Collapse
Affiliation(s)
- Yingying Wu
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Ulrich L.M. Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
74
|
Warden AS, Han C, Hansen E, Trescott S, Nguyen C, Kim R, Schafer D, Johnson A, Wright M, Ramirez G, Lopez-Sanchez M, Coufal NG. Tools for studying human microglia: In vitro and in vivo strategies. Brain Behav Immun 2023; 107:369-382. [PMID: 36336207 PMCID: PMC9810377 DOI: 10.1016/j.bbi.2022.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/11/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Microglia may only represent 10% of central nervous system (CNS) cells but they perform critical roles in development, homeostasis and neurological disease. Microglia are also environmentally regulated, quickly losing their transcriptomic and epigenetic signature after leaving the CNS. This facet of microglia biology is both fascinating and technically challenging influencing the study of the genetics and function of human microglia in a manner that recapitulates the CNS environment. In this review we provide a comprehensive overview of existing in vitro and in vivo methodology to study human microglia, such as immortalized cells lines, stem cell-derived microglia, cerebral organoids and xenotransplantation. Since there is currently no single method that completely recapitulates all hallmarks of human ex vivo adult homeostatic microglia, we also discuss the advantages and limitations of each existing model as a practical guide for researchers.
Collapse
Affiliation(s)
- Anna S Warden
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Claudia Han
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emily Hansen
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Samantha Trescott
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Celina Nguyen
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Roy Kim
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Danielle Schafer
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Avalon Johnson
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Madison Wright
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gabriela Ramirez
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mark Lopez-Sanchez
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicole G Coufal
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
75
|
Hou J, Chen Y, Grajales-Reyes G, Colonna M. TREM2 dependent and independent functions of microglia in Alzheimer's disease. Mol Neurodegener 2022; 17:84. [PMID: 36564824 PMCID: PMC9783481 DOI: 10.1186/s13024-022-00588-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/02/2022] [Indexed: 12/25/2022] Open
Abstract
Microglia are central players in brain innate immunity and have been the subject of extensive research in Alzheimer's disease (AD). In this review, we aim to summarize the genetic and functional discoveries that have advanced our understanding of microglia reactivity to AD pathology. Given the heightened AD risk posed by rare variants of the microglial triggering receptor expressed on myeloid cells 2 (TREM2), we will focus on the studies addressing the impact of this receptor on microglia responses to amyloid plaques, tauopathy and demyelination pathologies in mouse and human. Finally, we will discuss the implications of recent discoveries on microglia and TREM2 biology on potential therapeutic strategies for AD.
Collapse
Affiliation(s)
- Jinchao Hou
- grid.4367.60000 0001 2355 7002Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Yun Chen
- grid.4367.60000 0001 2355 7002Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Gary Grajales-Reyes
- grid.4367.60000 0001 2355 7002Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Marco Colonna
- grid.4367.60000 0001 2355 7002Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
76
|
Fonken LK, Gaudet AD. Neuroimmunology of healthy brain aging. Curr Opin Neurobiol 2022; 77:102649. [PMID: 36368270 PMCID: PMC9826730 DOI: 10.1016/j.conb.2022.102649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/10/2022]
Abstract
Aging involves progressive deterioration away from homeostasis. Whereas the healthy adult brain maintains neuroimmune cells in a surveillant and homeostatic state, aged glial cells have a hyperreactive phenotype. These age-related pro-inflammatory biases are driven in part by cell-intrinsic factors, including increased cell priming and pro-inflammatory cell states. In addition, the aged inflammatory milieu is shaped by an altered environment, such as amplified danger signals and cytokines and dysregulated glymphatic function. These cell-instrinsic and environmental factors conspire to heighten the age-related risk for neuroimmune activation and associated pathology. In this review, we discuss cellular and molecular neuroimmune shifts with "healthy" aging; how these age-related changes affect physiology and behavior; and how recent research has revealed neuroimmune pathways and targets for improving health span.
Collapse
Affiliation(s)
- Laura K Fonken
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX, USA.
| | - Andrew D Gaudet
- Department of Psychology, College of Liberal Arts, University of Texas at Austin, Austin, TX, USA; Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, USA. https://twitter.com/Gaudet_91
| |
Collapse
|
77
|
Paolicelli RC, Sierra A, Stevens B, Tremblay ME, Aguzzi A, Ajami B, Amit I, Audinat E, Bechmann I, Bennett M, Bennett F, Bessis A, Biber K, Bilbo S, Blurton-Jones M, Boddeke E, Brites D, Brône B, Brown GC, Butovsky O, Carson MJ, Castellano B, Colonna M, Cowley SA, Cunningham C, Davalos D, De Jager PL, de Strooper B, Denes A, Eggen BJL, Eyo U, Galea E, Garel S, Ginhoux F, Glass CK, Gokce O, Gomez-Nicola D, González B, Gordon S, Graeber MB, Greenhalgh AD, Gressens P, Greter M, Gutmann DH, Haass C, Heneka MT, Heppner FL, Hong S, Hume DA, Jung S, Kettenmann H, Kipnis J, Koyama R, Lemke G, Lynch M, Majewska A, Malcangio M, Malm T, Mancuso R, Masuda T, Matteoli M, McColl BW, Miron VE, Molofsky AV, Monje M, Mracsko E, Nadjar A, Neher JJ, Neniskyte U, Neumann H, Noda M, Peng B, Peri F, Perry VH, Popovich PG, Pridans C, Priller J, Prinz M, Ragozzino D, Ransohoff RM, Salter MW, Schaefer A, Schafer DP, Schwartz M, Simons M, Smith CJ, Streit WJ, Tay TL, Tsai LH, Verkhratsky A, von Bernhardi R, Wake H, Wittamer V, Wolf SA, Wu LJ, Wyss-Coray T. Microglia states and nomenclature: A field at its crossroads. Neuron 2022; 110:3458-3483. [PMID: 36327895 PMCID: PMC9999291 DOI: 10.1016/j.neuron.2022.10.020] [Citation(s) in RCA: 829] [Impact Index Per Article: 276.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/06/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Microglial research has advanced considerably in recent decades yet has been constrained by a rolling series of dichotomies such as "resting versus activated" and "M1 versus M2." This dualistic classification of good or bad microglia is inconsistent with the wide repertoire of microglial states and functions in development, plasticity, aging, and diseases that were elucidated in recent years. New designations continuously arising in an attempt to describe the different microglial states, notably defined using transcriptomics and proteomics, may easily lead to a misleading, although unintentional, coupling of categories and functions. To address these issues, we assembled a group of multidisciplinary experts to discuss our current understanding of microglial states as a dynamic concept and the importance of addressing microglial function. Here, we provide a conceptual framework and recommendations on the use of microglial nomenclature for researchers, reviewers, and editors, which will serve as the foundations for a future white paper.
Collapse
Affiliation(s)
- Rosa C Paolicelli
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Amanda Sierra
- Achucarro Basque Center for Neuroscience, Glial Cell Biology Lab, Leioa, Spain; Department of Neuroscience, University of the Basque Country EHU/UPV, Leioa, Spain; Ikerbasque Foundation, Bilbao, Spain.
| | - Beth Stevens
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, (HHMI), MD, USA; Boston Children's Hospital, Boston, MA, USA.
| | - Marie-Eve Tremblay
- Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Bahareh Ajami
- Department of Molecular Microbiology & Immunology, Department of Behavioral and Systems Neuroscience, Oregon Health & Science University School of Medicine, Portland, OR, USA
| | - Ido Amit
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Etienne Audinat
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Mariko Bennett
- Children's Hospital of Philadelphia, Department of Psychiatry, Department of Pediatrics, Division of Child Neurology, Philadelphia, PA, USA
| | - Frederick Bennett
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Alain Bessis
- École Normale Supérieure, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Paris Sciences et Lettres Research University, Paris, France
| | - Knut Biber
- Neuroscience Discovery, AbbVie Deutschland GmbH, Ludwigshafen, Germany
| | - Staci Bilbo
- Departments of Psychology & Neuroscience, Neurobiology, and Cell Biology, Duke University, Durham, NC, USA
| | - Mathew Blurton-Jones
- Center for the Neurobiology of Learning and Memory, UCI MIND, University of California, Irvine, CA, USA
| | - Erik Boddeke
- Department Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center, Groningen, the Netherlands
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Bert Brône
- BIOMED Research Institute, University of Hasselt, Hasselt, Belgium
| | - Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Department Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Monica J Carson
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, CA, USA
| | - Bernardo Castellano
- Unidad de Histología Medica, Depto. Biología Celular, Fisiología e Inmunología, Barcelona, Spain; Instituto de Neurociencias, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Sally A Cowley
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Colm Cunningham
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Republic of Ireland; Trinity College Institute of Neuroscience, Trinity College, Dublin, Republic of Ireland
| | - Dimitrios Davalos
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Bart de Strooper
- UK Dementia Research Institute at University College London, London, UK; Vlaams Instituut voor Biotechnologie at Katholieke Universiteit Leuven, Leuven, Belgium
| | - Adam Denes
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Bart J L Eggen
- Department of Biomedical Sciences of Cells & Systems, section Molecular Neurobiology, University of Groningen, Groningen, the Netherlands; University Medical Center Groningen, Groningen, the Netherlands
| | - Ukpong Eyo
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Elena Galea
- Institut de Neurociències and Departament de Bioquímica, Unitat de Bioquímica, Universitat Autònoma de Barcelona, Barcelona, Spain; ICREA, Barcelona, Spain
| | - Sonia Garel
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Paris, France; College de France, Paris, France
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | | | - Ozgun Gokce
- Institute for Stroke and Dementia Research, Ludwig Maximillian's University of Munich, Munich, Germany
| | - Diego Gomez-Nicola
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Berta González
- Unidad de Histología Medica, Depto. Biología Celular, Fisiología e Inmunología and Instituto de Neurociencias, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Siamon Gordon
- Chang Gung University, Taoyuan City, Taiwan (ROC); Sir William Dunn School of Pathology, Oxford, UK
| | - Manuel B Graeber
- Ken Parker Brain Tumour Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Andrew D Greenhalgh
- Lydia Becker Institute of Immunology and Inflammation, Geoffrey Jefferson Brain Research Centre, Division of Infection, Immunity & Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Pierre Gressens
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Christian Haass
- Division of Metabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-Universität Munchen, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy); Munich, Germany
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Frank L Heppner
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Soyon Hong
- UK Dementia Research Institute at University College London, London, UK
| | - David A Hume
- Mater Research Institute-University of Queensland, Brisbane, QLD, Australia
| | - Steffen Jung
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Helmut Kettenmann
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany; Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia (BIG), Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Greg Lemke
- MNL-L, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Marina Lynch
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Republic of Ireland
| | - Ania Majewska
- Department of Neuroscience, University of Rochester, Rochester, NY, USA
| | - Marzia Malcangio
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Tarja Malm
- University of Eastern Finland, Kuopio, Finland
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Takahiro Masuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Japan
| | - Michela Matteoli
- Humanitas University, Department of Biomedical Sciences, Milan, Italy
| | - Barry W McColl
- UK Dementia Research Institute, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Veronique E Miron
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK; UK Dementia Research Institute at the University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | | | - Michelle Monje
- Howard Hughes Medical Institute, (HHMI), MD, USA; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | | | - Agnes Nadjar
- Neurocentre Magendie, University of Bordeaux, Bordeaux, France; Institut Universitaire de France (IUF), Paris, France
| | - Jonas J Neher
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Urte Neniskyte
- VU LSC-EMBL Partnership for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania; Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Harald Neumann
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| | - Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Institute of Mitochondrial Biology and Medicine of Xi'an Jiaotong University School of Life Science and Technology, Xi'an, China
| | - Bo Peng
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Francesca Peri
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - V Hugh Perry
- UK Dementia Research Institute, University College London, London, UK; School of Biological Sciences, University of Southampton, Southampton, UK
| | - Phillip G Popovich
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Clare Pridans
- University of Edinburgh, Centre for Inflammation Research, Edinburgh, UK
| | - Josef Priller
- Department of Psychiatry & Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany; Charité - Universitätsmedizin Berlin and DZNE, Berlin, Germany; University of Edinburgh and UK DRI, Edinburgh, UK
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Davide Ragozzino
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | | | - Michael W Salter
- Hospital for Sick Children, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | - Anne Schaefer
- Nash Family Department of Neuroscience, Center for Glial Biology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Max Planck Institute for Biology of Ageing, Koeln, Germany
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Michal Schwartz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, German Center for Neurodegenerative Diseases, Munich, Germany
| | - Cody J Smith
- Galvin Life Science Center, University of Notre Dame, Indianapolis, IN, USA
| | - Wolfgang J Streit
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Tuan Leng Tay
- Faculty of Biology, University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools Centre, University of Freiburg, Freiburg, Germany; Freiburg Institute of Advanced Studies, University of Freiburg, Freiburg, Germany; Department of Biology, Boston University, Boston, MA, USA; Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Li-Huei Tsai
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexei Verkhratsky
- Achucarro Basque Center for Neuroscience, Glial Cell Biology Lab, Leioa, Spain; Department of Neuroscience, University of the Basque Country EHU/UPV, Leioa, Spain; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | | | - Hiroaki Wake
- Department of Anatomy and Molecular Cell Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Valérie Wittamer
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium; ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Susanne A Wolf
- Charité Universitätsmedizin, Experimental Ophthalmology and Neuroimmunology, Berlin, Germany
| | - Long-Jun Wu
- Department of Neurology and Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
78
|
Early death in a mouse model of Alzheimer's disease exacerbated by microglial loss of TAM receptor signaling. Proc Natl Acad Sci U S A 2022; 119:e2204306119. [PMID: 36191221 PMCID: PMC9564325 DOI: 10.1073/pnas.2204306119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recurrent seizure is a common comorbidity in early-stage Alzheimer's disease (AD) and may contribute to AD pathogenesis and cognitive decline. Similarly, many mouse models of Alzheimer's disease that overproduce amyloid beta are prone to epileptiform seizures that may result in early sudden death. We studied one such model, designated APP/PS1, and found that mutation of the TAM receptor tyrosine kinase (RTK) Mer or its ligand Gas6 greatly exacerbated early death. Lethality was tied to violent seizures that appeared to initiate in the dentate gyrus (DG) of the hippocampus, where Mer plays an essential role in the microglial phagocytosis of both apoptotic and newborn cells normally generated during adult neurogenesis. We found that newborn DG neurons and excitatory synapses between the DG and the cornu ammonis field 3 (CA3) field of the hippocampus were increased in TAM-deficient mice, and that premature death and adult neurogenesis in these mice were coincident. In contrast, the incidence of lethal seizures and the deposition of dense-core amyloid plaques were strongly anticorrelated. Together, these results argue that TAM-mediated phagocytosis sculpts synaptic connectivity in the hippocampus, and that seizure-inducing amyloid beta polymers are present prior to the formation of dense-core plaques.
Collapse
|
79
|
Kecheliev V, Spinelli F, Herde A, Haider A, Mu L, Klohs J, Ametamey SM, Ni R. Evaluation of cannabinoid type 2 receptor expression and pyridine-based radiotracers in brains from a mouse model of Alzheimer's disease. Front Aging Neurosci 2022; 14:1018610. [PMID: 36248003 PMCID: PMC9561934 DOI: 10.3389/fnagi.2022.1018610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Neuroinflammation plays an important role in the pathophysiology of Alzheimer's disease. The cannabinoid type 2 receptor (CB2R) is an emerging target for neuroinflammation and therapeutics of Alzheimer's disease. Here, we aim to assess the alterations in brain CB2R levels and evaluate novel CB2R imaging tracers in the arcAß mouse model of Alzheimer's disease amyloidosis. Immunohistochemical staining for amyloid-ß deposits (6E10), microgliosis (anti-Iba1 and anti-CD68 antibodies), astrocytes (GFAP) and the anti-CB2R antibody was performed on brain slices from 17-month-old arcAß mice. Autoradiography using the CB2R imaging probes [18F]RoSMA-18-d6, [11C]RSR-056, and [11C]RS-028 and mRNA analysis were performed in brain tissue from arcAß and non-transgenic littermate (NTL) mice at 6, 17, and 24 months of age. Specific increased CB2R immunofluorescence intensities on the increased number of GFAP-positive astrocytes and Iba1-positive microglia were detected in the hippocampus and cortex of 17-month-old arcAß mice compared to NTL mice. CB2R immunofluorescence was higher in glial cells inside 6E10-positive amyloid-ß deposits than peri-plaque glial cells, which showed low background immunofluorescence in the hippocampus and cortex of 17-month-old arcAß mice. Ex vivo autoradiography showed that the specific binding of [18F]RoSMA-18-d6 and [11C]RSR-056 was comparable in arcAß and NTL mice at 6, 17, and 24 months of age. The level of Cnr2 mRNA expression in the brain was not significantly different between arcAß and NTL mice at 6, 17, or 24 months of age. In conclusion, we demonstrated pronounced specific increases in microglial and astroglial CB2R expression levels in a mouse model of AD-related cerebral amyloidosis, emphasizing CB2R as a suitable target for imaging neuroinflammation.
Collapse
Affiliation(s)
- Vasil Kecheliev
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Francesco Spinelli
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Adrienne Herde
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Achi Haider
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Linjing Mu
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Simon M. Ametamey
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|