51
|
Kachroo A, Vincelli P, Kachroo P. Signaling Mechanisms Underlying Resistance Responses: What Have We Learned, and How Is It Being Applied? PHYTOPATHOLOGY 2017; 107:1452-1461. [PMID: 28609156 DOI: 10.1094/phyto-04-17-0130-rvw] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Plants have evolved highly specific mechanisms to resist pathogens including preformed barriers and the induction of elaborate signaling pathways. Induced signaling requires recognition of the pathogen either via conserved pathogen-derived factors or specific pathogen-encoded proteins called effectors. Recognition of these factors by host encoded receptor proteins can result in the elicitation of different tiers of resistance at the site of pathogen infection. In addition, plants induce a type of systemic immunity which is effective at the whole plant level and protects against a broad spectrum of pathogens. Advances in our understanding of pathogen-recognition mechanisms, identification of the underlying molecular components, and their significant conservation across diverse plant species has enabled the development of novel strategies to combat plant diseases. This review discusses key advances in plant defense signaling that have been adapted or have the potential to be adapted for plant protection against microbial diseases.
Collapse
Affiliation(s)
- Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington 40546
| | - Paul Vincelli
- Department of Plant Pathology, University of Kentucky, Lexington 40546
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington 40546
| |
Collapse
|
52
|
Aragón W, Reina-Pinto JJ, Serrano M. The intimate talk between plants and microorganisms at the leaf surface. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5339-5350. [PMID: 29136456 DOI: 10.1093/jxb/erx327] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The plant epidermis or cuticle is constantly exposed to external and internal environmental factors, including an enriched and diverse community of bacteria, yeast, fungi, viruses, and mites. It is not only where the plant has its first physical barrier, but also where organisms can be recognized and potentially where the plant defense responses can be triggered. The plant cuticle is a polymeric composite formed by an array of structurally and chemically heterogeneous compounds, including cutin and wax. A few studies have shown that cuticular components are essential and important drivers of the structure and size of the bacterial community. On the other hand, cuticular components are also important for both pathogens and plants, to initiate the pre-invasion and infection process and to activate the innate immune response, respectively. In this review, we explore current knowledge on the role of the cuticle during the intimate interactions between plants and microorganisms, in particular pathogenic and non-pathogenic bacteria and fungi. Finally, we propose new perspectives on the potential use of this information for agriculture.
Collapse
Affiliation(s)
- Wendy Aragón
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62209, Cuernavaca, Morelos, México
| | - José Juan Reina-Pinto
- Colegio El Pinar S.A.L. Camino de la Acequia, s/n 29130, Alhaurín de la Torre, Málaga, Spain
| | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62209, Cuernavaca, Morelos, México
| |
Collapse
|
53
|
Lim GH, Singhal R, Kachroo A, Kachroo P. Fatty Acid- and Lipid-Mediated Signaling in Plant Defense. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:505-536. [PMID: 28777926 DOI: 10.1146/annurev-phyto-080516-035406] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Fatty acids and lipids, which are major and essential constituents of all plant cells, not only provide structural integrity and energy for various metabolic processes but can also function as signal transduction mediators. Lipids and fatty acids can act as both intracellular and extracellular signals. In addition, cyclic and acyclic products generated during fatty acid metabolism can also function as important chemical signals. This review summarizes the biosynthesis of fatty acids and lipids and their involvement in pathogen defense.
Collapse
Affiliation(s)
- Gah-Hyun Lim
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546;
| | - Richa Singhal
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546;
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546;
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546;
| |
Collapse
|
54
|
Ju S, Go YS, Choi HJ, Park JM, Suh MC. DEWAX Transcription Factor Is Involved in Resistance to Botrytis cinerea in Arabidopsis thaliana and Camelina sativa. FRONTIERS IN PLANT SCIENCE 2017; 8:1210. [PMID: 28744297 PMCID: PMC5504226 DOI: 10.3389/fpls.2017.01210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/26/2017] [Indexed: 05/02/2023]
Abstract
The cuticle of land plants is the first physical barrier to protect their aerial parts from biotic and abiotic stresses. DEWAX, an AP2/ERF-type transcription factor, negatively regulates cuticular wax biosynthesis. In this study, we investigated the resistance to Botrytis cinerea in Arabidopsis thaliana and Camelina sativa overexpressing DEWAX and in Arabidopsis dewax mutant. Compared to wild type (WT) leaves, Arabidopsis DEWAX OX and dewax leaves were more and less permeable to toluidine blue dye, respectively. The ROS levels increased in DEWAX OX leaves, but decreased in dewax relative to WT leaves. Compared to WT, DEWAX OX was more resistant, while dewax was more sensitive to B. cinerea; however, defense responses to Pseudomonas syringae pv. tomato DC3000:GFP were inversely modulated. Microarray and RT-PCR analyses indicated that the expression of defense-related genes was upregulated in DEWAX OX, but downregulated in dewax relative to WT. Transactivation assay showed that DEWAX upregulated the expression of PDF1.2a, IGMT1, and PRX37. Chromatin immunoprecipitation assay revealed that DEWAX directly interacts with the GCC-box motifs of PDF1.2a promoter. In addition, ectopic expression of DEWAX increased the tolerance to B. cinerea in C. sativa. Taken together, we suggest that increased ROS accumulation and DEWAX-mediated upregulation of defense-related genes are closely associated with enhanced resistance to B. cinerea in Arabidopsis and C. sativa.
Collapse
Affiliation(s)
- Seulgi Ju
- Department of Bioenergy Science and Technology, Chonnam National UniversityGwangju, South Korea
| | - Young Sam Go
- Department of Bioenergy Science and Technology, Chonnam National UniversityGwangju, South Korea
| | - Hyo Ju Choi
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and BiotechnologyDeajeon, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and TechnologyDaejeon, South Korea
| | - Jeong Mee Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and BiotechnologyDeajeon, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and TechnologyDaejeon, South Korea
| | - Mi Chung Suh
- Department of Bioenergy Science and Technology, Chonnam National UniversityGwangju, South Korea
| |
Collapse
|
55
|
Duke KA, Becker MG, Girard IJ, Millar JL, Dilantha Fernando WG, Belmonte MF, de Kievit TR. The biocontrol agent Pseudomonas chlororaphis PA23 primes Brassica napus defenses through distinct gene networks. BMC Genomics 2017. [PMID: 28629321 PMCID: PMC5477169 DOI: 10.1186/s12864-017-3848-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background The biological control agent Pseudomonas chlororaphis PA23 is capable of protecting Brassica napus (canola) from the necrotrophic fungus Sclerotinia sclerotiorum via direct antagonism. While we have elucidated bacterial genes and gene products responsible biocontrol, little is known about how the host plant responds to bacterial priming on the leaf surface, including global changes in gene activity in the presence and absence of S. sclerotiorum. Results Application of PA23 to the aerial surfaces of canola plants reduced the number of S. sclerotiorum lesion-forming petals by 91.1%. RNA sequencing of the host pathogen interface showed that pretreatment with PA23 reduced the number of genes upregulated in response to S. sclerotiorum by 16-fold. By itself, PA23 activated unique defense networks indicative of defense priming. Genes encoding MAMP-triggered immunity receptors detecting flagellin and peptidoglycan were downregulated in PA23 only-treated plants, consistent with post-stimulus desensitization. Downstream, we observed reactive oxygen species (ROS) production involving low levels of H2O2 and overexpression of genes associated with glycerol-3-phosphate (G3P)-mediated systemic acquired resistance (SAR). Leaf chloroplasts exhibited increased thylakoid membrane structures and chlorophyll content, while lipid metabolic processes were upregulated. Conclusion In addition to directly antagonizing S. sclerotiorum, PA23 primes the plant defense response through induction of unique local and systemic defense networks. This study provides novel insight into the effects of biocontrol agents applied to the plant phyllosphere. Understanding these interactions will aid in the development of biocontrol systems as an alternative to chemical pesticides for protection of important crop systems. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3848-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kelly A Duke
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Michael G Becker
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Ian J Girard
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Jenna L Millar
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | | | - Mark F Belmonte
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Teresa R de Kievit
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
56
|
Singh A, Lim GH, Kachroo P. Transport of chemical signals in systemic acquired resistance. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:336-344. [PMID: 28304135 DOI: 10.1111/jipb.12537] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/14/2017] [Indexed: 06/06/2023]
Abstract
Systemic acquired resistance (SAR) is a form of broad-spectrum resistance induced in response to local infections that protects uninfected parts against subsequent secondary infections by related or unrelated pathogens. SAR signaling requires two parallel branches, one regulated by salicylic acid (SA), and the other by azelaic acid (AzA) and glycerol-3-phosphate (G3P). AzA and G3P function downstream of the free radicals nitric oxide (NO) and reactive oxygen species (ROS). During SAR, SA, AzA and G3P accumulate in the infected leaves, but only a small portion of these is transported to distal uninfected leaves. SA is preferentially transported via the apoplast, whereas phloem loading of AzA and G3P occurs via the symplast. The symplastic transport of AzA and G3P is regulated by gating of the plasmodesmata (PD). The PD localizing proteins, PDLP1 and PDLP5, regulate SAR by regulating PD gating as well as the subcellular partitioning of a SAR-associated protein.
Collapse
Affiliation(s)
- Archana Singh
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Gah-Hyun Lim
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
57
|
de Souza A, Wang JZ, Dehesh K. Retrograde Signals: Integrators of Interorganellar Communication and Orchestrators of Plant Development. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:85-108. [PMID: 27813652 DOI: 10.1146/annurev-arplant-042916-041007] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Interorganellar cooperation maintained via exquisitely controlled retrograde-signaling pathways is an evolutionary necessity for maintenance of cellular homeostasis. This signaling feature has therefore attracted much research attention aimed at improving understanding of the nature of these communication signals, how the signals are sensed, and ultimately the mechanism by which they integrate targeted processes that collectively culminate in organellar cooperativity. The answers to these questions will provide insight into how retrograde-signal-mediated regulatory mechanisms are recruited and which biological processes are targeted, and will advance our understanding of how organisms balance metabolic investments in growth against adaptation to environmental stress. This review summarizes the present understanding of the nature and the functional complexity of retrograde signals as integrators of interorganellar communication and orchestrators of plant development, and offers a perspective on the future of this critical and dynamic area of research.
Collapse
Affiliation(s)
- Amancio de Souza
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, California 92521;
| | - Jin-Zheng Wang
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, California 92521;
| | - Katayoon Dehesh
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, California 92521;
| |
Collapse
|
58
|
Huang J, Xue C, Wang H, Wang L, Schmidt W, Shen R, Lan P. Genes of ACYL CARRIER PROTEIN Family Show Different Expression Profiles and Overexpression of ACYL CARRIER PROTEIN 5 Modulates Fatty Acid Composition and Enhances Salt Stress Tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:987. [PMID: 28642782 PMCID: PMC5463277 DOI: 10.3389/fpls.2017.00987] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/24/2017] [Indexed: 05/21/2023]
Abstract
Acyl carrier proteins (ACPs) are a group of small acidic proteins functioning as important cofactors in the de novo synthesis of fatty acids. In Arabidopsis, ACPs are encoded by a small gene family comprising five plastid members, AtACP1 to AtACP5, and three mitochondrial members. The biological functions and the transcriptional responses to abiotic stresses of most AtACPs have yet to be elucidated. The present study extends previous findings and provides new knowledge on the function of ACPs by examining the responses of AtACP-encoding genes to several abiotic stresses and, in particular, the role of AtACP5 in the adaptation to salt stress. Phylogenetic analysis showed that AtACP1, AtACP2, AtACP3, and AtACP5 can be classified into one group and separated from a group comprising AtACP4 and ACP homologs from related species. Quantitative RT-PCR analysis revealed that the expression of AtACP1, AtACP2, and AtACP3 was induced by drought. Both iron deficiency and nitrogen starvation resulted in down-regulation of AtACP4. The most pronounced response was observed for AtACP5, the expression of which was dramatically decreased by salt stress. Knock-out of AtACP5 showed increased sensitivity to NaCl stress, whereas transgenic lines overexpressing AtACP5 displayed increased salt tolerance relative to the wild-type. Overexpression of AtACP5 further led to an altered composition of fatty acids, mainly a decrease of oleic acid (C18:1) and an increase of palmitic acid (C16:0), and to a lower Na+/K+ ratio when compared to the salt stressed wild-type. The comprehensive transcriptional information on the small plastid AtACP gene family in response to various abiotic stresses and the further investigation of the AtACP5 indicate that AtACP5 might be critical for salt tolerance through alterations of the composition of fatty acids and, subsequently, the Na+/K+ ratio.
Collapse
Affiliation(s)
- Jiexue Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of SciencesNanjing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Caiwen Xue
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of SciencesNanjing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Han Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of SciencesNanjing, China
| | - Lisai Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of SciencesNanjing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia SinicaTaipei, Taiwan
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of SciencesNanjing, China
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of SciencesNanjing, China
- *Correspondence: Ping Lan,
| |
Collapse
|
59
|
Yang W, Dong R, Liu L, Hu Z, Li J, Wang Y, Ding X, Chu Z. A novel mutant allele of SSI2 confers a better balance between disease resistance and plant growth inhibition on Arabidopsis thaliana. BMC PLANT BIOLOGY 2016; 16:208. [PMID: 27669891 PMCID: PMC5037883 DOI: 10.1186/s12870-016-0898-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/16/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Resistance and growth are opposing characteristics in plants. SA INSENSITIVITY OF npr1-5 (SSI2) encodes a stearoyl-ACP desaturase (S-ACP DES) that has previously been reported to simultaneously enhance resistance and repress growth. RESULTS Here, we characterize ssi2-2, a novel mutant allele of SSI2 that has two amino acid substitutions. Compared with wild-type and two other mutants of SSI2, ssi2-2 showed intermediate phenotypes in growth size, punctate necrosis, resistance to the bacterial pathogen Pst DC3000, salicylic acid (SA) content, pathogenesis-related (PR) gene levels and 18:1 content. These results indicate that ssi2-2 is a weak mutant of SSI2. Additionally, by using ssi2-2 as an intermediate control, a number of differentially expressed genes were identified in transcriptome profiling analysis. These results suggest that constitutive expression of defense-related genes and repression of IAA signaling-associated genes is present in all SSI2 mutants. CONCLUSIONS Taken together, our results suggest that the weak ssi2-2 mutant maintains a better balance between plant immunity and vegetative growth than other mutants, consequently providing a basis to genetically engineer disease resistance in crop plants.
Collapse
Affiliation(s)
- Wei Yang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, 271018 China
| | - Ran Dong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, 271018 China
| | - Li Liu
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Zhubing Hu
- College of Life Sciences, Northwest A&F University, Yangling, Shanxi 712100 China
- Present address: Department of Plant Systems Biology, VIB, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Jing Li
- College of Life Sciences, Northwest A&F University, Yangling, Shanxi 712100 China
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, 271018 China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, 271018 China
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, 271018 China
| |
Collapse
|
60
|
Li Y, Song N, Zhao C, Li F, Geng M, Wang Y, Liu W, Xie C, Sun Q. Application of Glycerol for Induced Powdery Mildew Resistance in Triticum aestivum L. Front Physiol 2016; 7:413. [PMID: 27708588 PMCID: PMC5030236 DOI: 10.3389/fphys.2016.00413] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/05/2016] [Indexed: 01/05/2023] Open
Abstract
Previous work has demonstrated that glycerol-3-phosphate (G3P) and oleic acid (18:1) are two important signal molecules associated with plant resistance to fungi. In this article, we provide evidence that a 3% glycerol spray application 1-2 days before powdery mildew infection and subsequent applications once every 4 days was sufficient to stimulate the plant defense responses without causing any significant damage to wheat leaves. We found that G3P and oleic acid levels were markedly induced by powdery mildew infection. In addition, TaGLI1 (encoding a glycerol kinase) and TaSSI2 (encoding a stearoylacyl carrier protein fatty acid desaturase), two genes associated with the glycerol and fatty acid (FA) pathways, respectively, were induced by powdery mildew infection, and their promoter regions contain some fungal response elements. Moreover, exogenous application of glycerol increased the G3P level and decreased the level of oleic acid (18:1). Glycerol application induced the expression of pathogenesis-related (PR) genes (TaPR-1, TaPR-2, TaPR-3, TaPR-4, and TaPR-5), induced the generation of reactive oxygen species (ROS) before powdery mildew infection, and induced salicylic acid (SA) accumulation in wheat leaves. Further, we sprayed glycerol in a wheat field and found that it significantly (p < 0.05) reduced the severity of powdery mildew disease and lessened disease-associated kernel weight loss, all without causing any noticeable degradation in wheat seed quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chaojie Xie
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural UniversityBeijing, China
| | - Qixin Sun
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural UniversityBeijing, China
| |
Collapse
|
61
|
Lim GH, Kachroo A, Kachroo P. Role of plasmodesmata and plasmodesmata localizing proteins in systemic immunity. PLANT SIGNALING & BEHAVIOR 2016; 11:e1219829. [PMID: 27645210 PMCID: PMC5058463 DOI: 10.1080/15592324.2016.1219829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 07/28/2016] [Indexed: 05/20/2023]
Abstract
Systemic acquired resistance (SAR) is a highly desirable form of resistance that protects against a broad-spectrum of pathogens. SAR involves the generation of a mobile signal at the site of primary infection, which arms distal portions of a plant against subsequent secondary infections. A number of diverse chemical signals contributing to SAR have been isolated and characterized. Among these, salicylic acid (SA) functions in parallel to azelaic acid (AzA) and glycerol-3-phosphate (G3P), and both AzA and G3P function downstream of the free radicals nitric oxide and reactive oxygen species. We now show that phloem loading of AzA and G3P occurs via the symplast, whereas that of SA occurs via the apoplast. The symplastic transport of AzA and G3P is regulated by plasmodesmata localizing protein (PDLP) 5, which together with PDLP1 also plays a signaling role in SAR. Together, these results reveal the transport routes of SAR associated chemical signals, and the regulatory role of PDLPs in SAR.
Collapse
Affiliation(s)
- Gah-Hyun Lim
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
- CONTACT Pradeep Kachroo
| |
Collapse
|
62
|
Medrano-Macías J, Leija-Martínez P, González-Morales S, Juárez-Maldonado A, Benavides-Mendoza A. Use of Iodine to Biofortify and Promote Growth and Stress Tolerance in Crops. FRONTIERS IN PLANT SCIENCE 2016; 7:1146. [PMID: 27602033 PMCID: PMC4993787 DOI: 10.3389/fpls.2016.01146] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/18/2016] [Indexed: 05/06/2023]
Abstract
Iodine is not considered essential for land plants; however, in some aquatic plants, iodine plays a critical role in antioxidant metabolism. In humans, iodine is essential for the metabolism of the thyroid and for the development of cognitive abilities, and it is associated with lower risks of developing certain types of cancer. Therefore, great efforts are made to ensure the proper intake of iodine to the population, for example, the iodization of table salt. In the same way, as an alternative, the use of different iodine fertilization techniques to biofortify crops is considered an adequate iodine supply method. Hence, biofortification with iodine is an active area of research, with highly relevant results. The agricultural application of iodine to enhance growth, environmental adaptation, and stress tolerance in plants has not been well explored, although it may lead to the increased use of this element in agricultural practice and thus contribute to the biofortification of crops. This review systematically presents the results published on the application of iodine in agriculture, considering different environmental conditions and farming systems in various species and varying concentrations of the element, its chemical forms, and its application method. Some studies report beneficial effects of iodine, including better growth, and changes in the tolerance to stress and antioxidant capacity, while other studies report that the applications of iodine cause no response or even have adverse effects. We suggested different assumptions that attempt to explain these conflicting results, considering the possible interaction of iodine with other trace elements, as well as the different physicochemical and biogeochemical conditions that give rise to the distinct availability and the volatilization of the element.
Collapse
Affiliation(s)
- Julia Medrano-Macías
- Departamento de Botánica, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo LeónSan Nicolás de los Garza, Mexico
| | - Paola Leija-Martínez
- Laboratorio de Fisiología, Departamento de Horticultura, Universidad Autónoma Agraria Antonio NarroSaltillo, Mexico
| | - Susana González-Morales
- Consejo Nacional de Ciencia y Tecnología, Departamento de Horticultura, Universidad Autónoma Agraria Antonio NarroSaltillo, Mexico
| | | | - Adalberto Benavides-Mendoza
- Laboratorio de Fisiología, Departamento de Horticultura, Universidad Autónoma Agraria Antonio NarroSaltillo, Mexico
- *Correspondence: Adalberto Benavides-Mendoza
| |
Collapse
|
63
|
Wittek F, Kanawati B, Wenig M, Hoffmann T, Franz-Oberdorf K, Schwab W, Schmitt-Kopplin P, Vlot AC. Folic acid induces salicylic acid-dependent immunity in Arabidopsis and enhances susceptibility to Alternaria brassicicola. MOLECULAR PLANT PATHOLOGY 2015; 16:616-22. [PMID: 25348251 PMCID: PMC6638506 DOI: 10.1111/mpp.12216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Folates are essential for one-carbon transfer reactions in all organisms and contribute, for example, to de novo DNA synthesis. Here, we detected the folate precursors 7,8-dihydropteroate (DHP) and 4-amino-4-deoxychorismate (ADC) in extracts from Arabidopsis thaliana plants by Fourier transform ion cyclotron resonance-mass spectrometry. The accumulation of DHP, but not ADC, was induced after infection of plants with Pseudomonas syringae delivering the effector protein AvrRpm1. Application of folic acid or the DHP precursor 7,8-dihydroneopterin (DHN) enhanced resistance in Arabidopsis to P. syringae and elevated the transcript accumulation of the salicylic acid (SA) marker gene pathogenesis-related1 in both the treated and systemic untreated leaves. DHN- and folic acid-induced systemic resistance was dependent on SA biosynthesis and signalling. Similar to SA, folic acid application locally enhanced Arabidopsis susceptibility to the necrotrophic fungus Alternaria brassicicola. Together, the data associate the folic acid pathway with innate immunity in Arabidopsis, simultaneously activating local and systemic SA-dependent resistance to P. syringae and suppressing local resistance to A. brassicicola.
Collapse
Affiliation(s)
- Finni Wittek
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Basem Kanawati
- Department of Environmental Sciences, Research Unit Analytical Biogeochemistry, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Marion Wenig
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Thomas Hoffmann
- Biotechnology of Natural Products, Technische Universitaet Muenchen, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Katrin Franz-Oberdorf
- Biotechnology of Natural Products, Technische Universitaet Muenchen, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universitaet Muenchen, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Philippe Schmitt-Kopplin
- Department of Environmental Sciences, Research Unit Analytical Biogeochemistry, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
- Analytical Food Chemistry, Technische Universitaet Muenchen, Alte Akademie 10, 85354, Freising, Germany
| | - A Corina Vlot
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| |
Collapse
|
64
|
El-Shetehy M, Wang C, Shine MB, Yu K, Kachroo A, Kachroo P. Nitric oxide and reactive oxygen species are required for systemic acquired resistance in plants. PLANT SIGNALING & BEHAVIOR 2015; 10:e998544. [PMID: 26375184 PMCID: PMC4883869 DOI: 10.1080/15592324.2014.998544] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/01/2014] [Indexed: 05/29/2023]
Abstract
Systemic acquired resistance (SAR) is a form of broad-spectrum disease resistance that is induced in response to primary infection and that protects uninfected portions of the plant against secondary infections by related or unrelated pathogens. SAR is associated with an increase in chemical signals that operate in a collective manner to confer protection against secondary infections. These include, the phytohormone salicylic acid (SA), glycerol-3-phosphate (G3P), azelaic acid (AzA) and more recently identified signals nitric oxide (NO) and reactive oxygen species (ROS). NO, ROS, AzA and G3P function in the same branch of the SAR pathway, and in parallel to the SA-regulated branch. NO and ROS function upstream of AzA/G3P and different reactive oxygen species functions in an additive manner to mediate chemical cleavage of the C9 double bond on C18 unsaturated fatty acids to generate AzA. The parallel and additive functioning of various chemical signals provides important new insights in the overlapping pathways leading to SAR.
Collapse
Affiliation(s)
- Mohamed El-Shetehy
- Department of Plant Pathology; University of Kentucky; Lexington, KY USA
| | - Caixia Wang
- Department of Plant Pathology; University of Kentucky; Lexington, KY USA
| | - M B Shine
- Department of Plant Pathology; University of Kentucky; Lexington, KY USA
| | - Keshun Yu
- Department of Plant Pathology; University of Kentucky; Lexington, KY USA
| | - Aardra Kachroo
- Department of Plant Pathology; University of Kentucky; Lexington, KY USA
| | - Pradeep Kachroo
- Department of Plant Pathology; University of Kentucky; Lexington, KY USA
| |
Collapse
|
65
|
Gao QM, Zhu S, Kachroo P, Kachroo A. Signal regulators of systemic acquired resistance. FRONTIERS IN PLANT SCIENCE 2015; 6:228. [PMID: 25918514 PMCID: PMC4394658 DOI: 10.3389/fpls.2015.00228] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/23/2015] [Indexed: 05/19/2023]
Abstract
Salicylic acid (SA) is an important phytohormone that plays a vital role in a number of physiological responses, including plant defense. The last two decades have witnessed a number of breakthroughs related to biosynthesis, transport, perception and signaling mediated by SA. These findings demonstrate that SA plays a crictical role in both local and systemic defense responses. Systemic acquired resistance (SAR) is one such SA-dependent response. SAR is a long distance signaling mechanism that provides broad spectrum and long-lasting resistance to secondary infections throughout the plant. This unique feature makes SAR a highly desirable trait in crop production. This review summarizes the recent advances in the role of SA in SAR and discusses its relationship to other SAR inducers.
Collapse
Affiliation(s)
- Qing-Ming Gao
- Department of Plant Pathology, University of KentuckyLexington, KY, USA
| | - Shifeng Zhu
- Department of Plant Pathology, University of KentuckyLexington, KY, USA
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Pradeep Kachroo
- Department of Plant Pathology, University of KentuckyLexington, KY, USA
| | - Aardra Kachroo
- Department of Plant Pathology, University of KentuckyLexington, KY, USA
- *Correspondence: Aardra Kachroo, Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, 1405 Veterans drive, Lexington, KY 40546, USA
| |
Collapse
|
66
|
Sun L, Zhu L, Xu L, Yuan D, Min L, Zhang X. Cotton cytochrome P450 CYP82D regulates systemic cell death by modulating the octadecanoid pathway. Nat Commun 2014; 5:5372. [PMID: 25371113 PMCID: PMC4241986 DOI: 10.1038/ncomms6372] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 09/25/2014] [Indexed: 11/09/2022] Open
Abstract
Plant oxylipins are derived from unsaturated fatty acids and play roles in plant growth and development as well as defence. Although recent studies have revealed that fatty acid metabolism is involved in systemic acquired resistance, the precise function of oxylipins in plant defence remains unknown. Here we report a cotton P450 gene SILENCE-INDUCED STEM NECROSIS (SSN), RNAi suppression of which causes a lesion mimic phenotype. SSN is also involved in jasmonate metabolism and the response to wounding. Fatty acid and oxylipin metabolite analysis showed that SSN overexpression causes hyperaccumulation of hydroxide and ketodiene fatty acids and reduced levels of 18:2 fatty acids, whereas silencing causes an imbalance in LOX (lipoxygenase) expression and excessive hydroperoxide fatty acid accumulation. We also show that an unknown oxylipin-derived factor is a putative mobile signal required for systemic cell death and hypothesize that SSN acts as a valve to regulate HR on pathogen infection. Oxylipin signalling is known to play important roles in plant growth, development and defence against pathogens. Here Sun et al. identify a novel cytochrome P450 in cotton and show that its suppression leads to activation of plant defence responses and alteration of oxylipin metabolism.
Collapse
Affiliation(s)
- Longqing Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Li Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ling Min
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
67
|
Wendehenne D, Gao QM, Kachroo A, Kachroo P. Free radical-mediated systemic immunity in plants. CURRENT OPINION IN PLANT BIOLOGY 2014; 20:127-34. [PMID: 24929297 DOI: 10.1016/j.pbi.2014.05.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/30/2014] [Accepted: 05/15/2014] [Indexed: 05/04/2023]
Abstract
Systemic acquired resistance (SAR) is a form of defense that protects plants against a broad-spectrum of secondary infections by related or unrelated pathogens. SAR related research has witnessed considerable progress in recent years and a number of chemical signals and proteins contributing to SAR have been identified. All of these diverse constituents share their requirement for the phytohormone salicylic acid, an essential downstream component of the SAR pathway. However, recent work demonstrating the essential parallel functioning of nitric oxide (NO)-derived and reactive oxygen species (ROS)-derived signaling together with SA provides important new insights in the overlapping pathways leading to SAR. This review discusses the potential significance of branched pathways and the relative contributions of NO/ROS-derived and SA-derived pathways in SAR.
Collapse
Affiliation(s)
- David Wendehenne
- Université de Bourgogne, UMR 1347 Agroécologie, Pôle Mécanisme et Gestion des Interactions Plantes-microorganismes, ERL CNRS 6300, Dijon, France
| | - Qing-Ming Gao
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, United States
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, United States
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, United States.
| |
Collapse
|
68
|
Breitenbach HH, Wenig M, Wittek F, Jordá L, Maldonado-Alconada AM, Sarioglu H, Colby T, Knappe C, Bichlmeier M, Pabst E, Mackey D, Parker JE, Vlot AC. Contrasting Roles of the Apoplastic Aspartyl Protease APOPLASTIC, ENHANCED DISEASE SUSCEPTIBILITY1-DEPENDENT1 and LEGUME LECTIN-LIKE PROTEIN1 in Arabidopsis Systemic Acquired Resistance. PLANT PHYSIOLOGY 2014; 165:791-809. [PMID: 24755512 PMCID: PMC4044859 DOI: 10.1104/pp.114.239665] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/22/2014] [Indexed: 05/19/2023]
Abstract
Systemic acquired resistance (SAR) is an inducible immune response that depends on ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). Here, we show that Arabidopsis (Arabidopsis thaliana) EDS1 is required for both SAR signal generation in primary infected leaves and SAR signal perception in systemic uninfected tissues. In contrast to SAR signal generation, local resistance remains intact in eds1 mutant plants in response to Pseudomonas syringae delivering the effector protein AvrRpm1. We utilized the SAR-specific phenotype of the eds1 mutant to identify new SAR regulatory proteins in plants conditionally expressing AvrRpm1. Comparative proteomic analysis of apoplast-enriched extracts from AvrRpm1-expressing wild-type and eds1 mutant plants led to the identification of 12 APOPLASTIC, EDS1-DEPENDENT (AED) proteins. The genes encoding AED1, a predicted aspartyl protease, and another AED, LEGUME LECTIN-LIKE PROTEIN1 (LLP1), were induced locally and systemically during SAR signaling and locally by salicylic acid (SA) or its functional analog, benzo 1,2,3-thiadiazole-7-carbothioic acid S-methyl ester. Because conditional overaccumulation of AED1-hemagglutinin inhibited SA-induced resistance and SAR but not local resistance, the data suggest that AED1 is part of a homeostatic feedback mechanism regulating systemic immunity. In llp1 mutant plants, SAR was compromised, whereas the local resistance that is normally associated with EDS1 and SA as well as responses to exogenous SA appeared largely unaffected. Together, these data indicate that LLP1 promotes systemic rather than local immunity, possibly in parallel with SA. Our analysis reveals new positive and negative components of SAR and reinforces the notion that SAR represents a distinct phase of plant immunity beyond local resistance.
Collapse
Affiliation(s)
- Heiko H Breitenbach
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology (H.H.B., M.W., F.W., C.K., M.B., E.P., A.C.V.), and Research Unit Protein Science (H.S.), 85764 Neuherberg, Germany;Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions (L.J., J.E.P., A.C.V.) and Mass Spectrometry Unit (T.C.), 50829 Cologne, Germany;John Innes Centre, Norwich NR4 7UH, United Kingdom (A.M.M.-A.); andOhio State University, Department of Horticulture and Crop Science and Department of Molecular Genetics, Columbus, Ohio 43210 (D.M.)
| | - Marion Wenig
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology (H.H.B., M.W., F.W., C.K., M.B., E.P., A.C.V.), and Research Unit Protein Science (H.S.), 85764 Neuherberg, Germany;Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions (L.J., J.E.P., A.C.V.) and Mass Spectrometry Unit (T.C.), 50829 Cologne, Germany;John Innes Centre, Norwich NR4 7UH, United Kingdom (A.M.M.-A.); andOhio State University, Department of Horticulture and Crop Science and Department of Molecular Genetics, Columbus, Ohio 43210 (D.M.)
| | - Finni Wittek
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology (H.H.B., M.W., F.W., C.K., M.B., E.P., A.C.V.), and Research Unit Protein Science (H.S.), 85764 Neuherberg, Germany;Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions (L.J., J.E.P., A.C.V.) and Mass Spectrometry Unit (T.C.), 50829 Cologne, Germany;John Innes Centre, Norwich NR4 7UH, United Kingdom (A.M.M.-A.); andOhio State University, Department of Horticulture and Crop Science and Department of Molecular Genetics, Columbus, Ohio 43210 (D.M.)
| | - Lucia Jordá
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology (H.H.B., M.W., F.W., C.K., M.B., E.P., A.C.V.), and Research Unit Protein Science (H.S.), 85764 Neuherberg, Germany;Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions (L.J., J.E.P., A.C.V.) and Mass Spectrometry Unit (T.C.), 50829 Cologne, Germany;John Innes Centre, Norwich NR4 7UH, United Kingdom (A.M.M.-A.); andOhio State University, Department of Horticulture and Crop Science and Department of Molecular Genetics, Columbus, Ohio 43210 (D.M.)
| | - Ana M Maldonado-Alconada
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology (H.H.B., M.W., F.W., C.K., M.B., E.P., A.C.V.), and Research Unit Protein Science (H.S.), 85764 Neuherberg, Germany;Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions (L.J., J.E.P., A.C.V.) and Mass Spectrometry Unit (T.C.), 50829 Cologne, Germany;John Innes Centre, Norwich NR4 7UH, United Kingdom (A.M.M.-A.); andOhio State University, Department of Horticulture and Crop Science and Department of Molecular Genetics, Columbus, Ohio 43210 (D.M.)
| | - Hakan Sarioglu
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology (H.H.B., M.W., F.W., C.K., M.B., E.P., A.C.V.), and Research Unit Protein Science (H.S.), 85764 Neuherberg, Germany;Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions (L.J., J.E.P., A.C.V.) and Mass Spectrometry Unit (T.C.), 50829 Cologne, Germany;John Innes Centre, Norwich NR4 7UH, United Kingdom (A.M.M.-A.); andOhio State University, Department of Horticulture and Crop Science and Department of Molecular Genetics, Columbus, Ohio 43210 (D.M.)
| | - Thomas Colby
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology (H.H.B., M.W., F.W., C.K., M.B., E.P., A.C.V.), and Research Unit Protein Science (H.S.), 85764 Neuherberg, Germany;Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions (L.J., J.E.P., A.C.V.) and Mass Spectrometry Unit (T.C.), 50829 Cologne, Germany;John Innes Centre, Norwich NR4 7UH, United Kingdom (A.M.M.-A.); andOhio State University, Department of Horticulture and Crop Science and Department of Molecular Genetics, Columbus, Ohio 43210 (D.M.)
| | - Claudia Knappe
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology (H.H.B., M.W., F.W., C.K., M.B., E.P., A.C.V.), and Research Unit Protein Science (H.S.), 85764 Neuherberg, Germany;Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions (L.J., J.E.P., A.C.V.) and Mass Spectrometry Unit (T.C.), 50829 Cologne, Germany;John Innes Centre, Norwich NR4 7UH, United Kingdom (A.M.M.-A.); andOhio State University, Department of Horticulture and Crop Science and Department of Molecular Genetics, Columbus, Ohio 43210 (D.M.)
| | - Marlies Bichlmeier
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology (H.H.B., M.W., F.W., C.K., M.B., E.P., A.C.V.), and Research Unit Protein Science (H.S.), 85764 Neuherberg, Germany;Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions (L.J., J.E.P., A.C.V.) and Mass Spectrometry Unit (T.C.), 50829 Cologne, Germany;John Innes Centre, Norwich NR4 7UH, United Kingdom (A.M.M.-A.); andOhio State University, Department of Horticulture and Crop Science and Department of Molecular Genetics, Columbus, Ohio 43210 (D.M.)
| | - Elisabeth Pabst
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology (H.H.B., M.W., F.W., C.K., M.B., E.P., A.C.V.), and Research Unit Protein Science (H.S.), 85764 Neuherberg, Germany;Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions (L.J., J.E.P., A.C.V.) and Mass Spectrometry Unit (T.C.), 50829 Cologne, Germany;John Innes Centre, Norwich NR4 7UH, United Kingdom (A.M.M.-A.); andOhio State University, Department of Horticulture and Crop Science and Department of Molecular Genetics, Columbus, Ohio 43210 (D.M.)
| | - David Mackey
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology (H.H.B., M.W., F.W., C.K., M.B., E.P., A.C.V.), and Research Unit Protein Science (H.S.), 85764 Neuherberg, Germany;Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions (L.J., J.E.P., A.C.V.) and Mass Spectrometry Unit (T.C.), 50829 Cologne, Germany;John Innes Centre, Norwich NR4 7UH, United Kingdom (A.M.M.-A.); andOhio State University, Department of Horticulture and Crop Science and Department of Molecular Genetics, Columbus, Ohio 43210 (D.M.)
| | - Jane E Parker
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology (H.H.B., M.W., F.W., C.K., M.B., E.P., A.C.V.), and Research Unit Protein Science (H.S.), 85764 Neuherberg, Germany;Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions (L.J., J.E.P., A.C.V.) and Mass Spectrometry Unit (T.C.), 50829 Cologne, Germany;John Innes Centre, Norwich NR4 7UH, United Kingdom (A.M.M.-A.); andOhio State University, Department of Horticulture and Crop Science and Department of Molecular Genetics, Columbus, Ohio 43210 (D.M.)
| | - A Corina Vlot
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology (H.H.B., M.W., F.W., C.K., M.B., E.P., A.C.V.), and Research Unit Protein Science (H.S.), 85764 Neuherberg, Germany;Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions (L.J., J.E.P., A.C.V.) and Mass Spectrometry Unit (T.C.), 50829 Cologne, Germany;John Innes Centre, Norwich NR4 7UH, United Kingdom (A.M.M.-A.); andOhio State University, Department of Horticulture and Crop Science and Department of Molecular Genetics, Columbus, Ohio 43210 (D.M.)
| |
Collapse
|
69
|
Wang C, El-Shetehy M, Shine MB, Yu K, Navarre D, Wendehenne D, Kachroo A, Kachroo P. Free radicals mediate systemic acquired resistance. Cell Rep 2014; 7:348-355. [PMID: 24726369 DOI: 10.1016/j.celrep.2014.03.032] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/12/2014] [Accepted: 03/11/2014] [Indexed: 01/06/2023] Open
Abstract
Systemic acquired resistance (SAR) is a form of resistance that protects plants against a broad spectrum of secondary infections. However, exploiting SAR for the protection of agriculturally important plants warrants a thorough investigation of the mutual interrelationships among the various signals that mediate SAR. Here, we show that nitric oxide (NO) and reactive oxygen species (ROS) serve as inducers of SAR in a concentration-dependent manner. Thus, genetic mutations that either inhibit NO/ROS production or increase NO accumulation (e.g., a mutation in S-nitrosoglutathione reductase [GSNOR]) abrogate SAR. Different ROS function additively to generate the fatty-acid-derived azelaic acid (AzA), which in turn induces production of the SAR inducer glycerol-3-phosphate (G3P). Notably, this NO/ROS→AzA→G3P-induced signaling functions in parallel with salicylic acid-derived signaling. We propose that the parallel operation of NO/ROS and SA pathways facilitates coordinated regulation in order to ensure optimal induction of SAR.
Collapse
Affiliation(s)
- Caixia Wang
- College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao 266109, P.R. China; Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Mohamed El-Shetehy
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - M B Shine
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Keshun Yu
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Duroy Navarre
- U.S. Department of Agriculture - Agricultural Research Service, Washington State University, Prosser, WA 99350, USA
| | - David Wendehenne
- Université de Bourgogne, ERL CNRS 6300, UMR 1347 Agroécologie, BP 86510, 21065 Dijon, France
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA.
| |
Collapse
|
70
|
Gao QM, Kachroo A, Kachroo P. Chemical inducers of systemic immunity in plants. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1849-55. [PMID: 24591049 DOI: 10.1093/jxb/eru010] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Systemic acquired resistance (SAR) is a highly desirable form of resistance that protects against a broad-spectrum of related or unrelated pathogens. SAR involves the generation of multiple signals at the site of primary infection, which arms distal portions against subsequent secondary infections. The last decade has witnessed considerable progress, and a number of chemical signals contributing to SAR have been isolated and characterized. The diverse chemical nature of these chemicals had led to the growing belief that SAR might involve interplay of multiple diverse and independent signals. However, recent results suggest that coordinated signalling from diverse signalling components facilitates SAR in plants. This review mainly discusses organized signalling by two such chemicals, glycerol-3-phoshphate and azelaic acid, and the role of basal salicylic acid levels in G3P-conferred SAR.
Collapse
Affiliation(s)
- Qing-Ming Gao
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | | | | |
Collapse
|
71
|
Rao SS, El-Habbak MH, Havens WM, Singh A, Zheng D, Vaughn L, Haudenshield JS, Hartman GL, Korban SS, Ghabrial SA. Overexpression of GmCaM4 in soybean enhances resistance to pathogens and tolerance to salt stress. MOLECULAR PLANT PATHOLOGY 2014; 15:145-60. [PMID: 24118726 PMCID: PMC6638926 DOI: 10.1111/mpp.12075] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant diseases inflict heavy losses on soybean yield, necessitating an understanding of the molecular mechanisms underlying biotic/abiotic stress responses. Ca(2) (+) is an important universal messenger, and protein sensors, prominently calmodulins (CaMs), recognize cellular changes in Ca(2) (+) in response to diverse signals. Because the development of stable transgenic soybeans is laborious and time consuming, we used the Bean pod mottle virus (BPMV)-based vector for rapid and efficient protein expression and gene silencing. The present study focuses on the functional roles of the gene encoding the soybean CaM isoform GmCaM4. Overexpression of GmCaM4 in soybean resulted in enhanced resistance to three plant pathogens and increased tolerance to high salt conditions. To gain an understanding of the underlying mechanisms, we examined the potential defence pathways involved. Our studies revealed activation/increased expression levels of pathogenesis-related (PR) genes in GmCaM4-overexpressing plants and the accumulation of jasmonic acid (JA). Silencing of GmCaM4, however, markedly repressed the expression of PR genes. We confirmed the in vivo interaction between GmCaM4 and the CaM binding transcription factor Myb2, which regulates the expression of salt-responsive genes, using the yeast two-hybrid (Y2H) system and bimolecular fluorescence complementation assays. GmCaM4 and Glycine max CaM binding receptor-like kinase (GmCBRLK) did not interact in the Y2H assays, but the interaction between GmCaM2 and GmCBRLK was confirmed. Thus, a GmCaM2-GmCBRLK-mediated salt tolerance mechanism, similar to that reported in Glycine soja, may also be functional in soybean. Confocal microscopy showed subcellular localization of the green fluorescent protein (GFP)-GmCaM4 fusion protein in the nucleus and cytoplasm.
Collapse
Affiliation(s)
- Suryadevara S Rao
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546-0091, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Borisjuk N, Hrmova M, Lopato S. Transcriptional regulation of cuticle biosynthesis. Biotechnol Adv 2014; 32:526-40. [PMID: 24486292 DOI: 10.1016/j.biotechadv.2014.01.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/08/2014] [Accepted: 01/23/2014] [Indexed: 12/12/2022]
Abstract
Plant cuticle is the hydrophobic protection layer that covers aerial plant organs and plays a pivotal role during plant development and interactions of plants with the environment. The mechanical structure and chemical composition of cuticle lipids and other secondary metabolites vary considerably between plant species, and in response to environmental stimuli and stresses. As the cuticle plays an important role in responses of plants to major abiotic stresses such as drought and high salinity, close attention has been paid to molecular processes underlying the stress-induced biosynthesis of cuticle components. This review addresses the genetic networks responsible for cuticle formation and in particular highlights the role of transcription factors that regulate cuticle formation in response to abiotic stresses.
Collapse
Affiliation(s)
- Nikolai Borisjuk
- Australian Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia.
| | - Maria Hrmova
- Australian Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia.
| | - Sergiy Lopato
- Australian Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia.
| |
Collapse
|
73
|
Serrano M, Coluccia F, Torres M, L’Haridon F, Métraux JP. The cuticle and plant defense to pathogens. FRONTIERS IN PLANT SCIENCE 2014; 5:274. [PMID: 24982666 PMCID: PMC4056637 DOI: 10.3389/fpls.2014.00274] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 05/26/2014] [Indexed: 05/03/2023]
Abstract
The cuticle provides a physical barrier against water loss and protects against irradiation, xenobiotics, and pathogens. Components of the cuticle are perceived by invading fungi and activate developmental processes during pathogenesis. In addition, cuticle alterations of various types induce a syndrome of reactions that often results in resistance to necrotrophs. This article reviews the current knowledge on the role of the cuticle in relation to the perception of pathogens and activation of defenses.
Collapse
Affiliation(s)
| | | | | | | | - Jean-Pierre Métraux
- *Correspondence: Jean-Pierre Métraux, Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland e-mail:
| |
Collapse
|
74
|
Nawrath C, Schreiber L, Franke RB, Geldner N, Reina-Pinto JJ, Kunst L. Apoplastic diffusion barriers in Arabidopsis. THE ARABIDOPSIS BOOK 2013; 11:e0167. [PMID: 24465172 PMCID: PMC3894908 DOI: 10.1199/tab.0167] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
During the development of Arabidopsis and other land plants, diffusion barriers are formed in the apoplast of specialized tissues within a variety of plant organs. While the cuticle of the epidermis is the primary diffusion barrier in the shoot, the Casparian strips and suberin lamellae of the endodermis and the periderm represent the diffusion barriers in the root. Different classes of molecules contribute to the formation of extracellular diffusion barriers in an organ- and tissue-specific manner. Cutin and wax are the major components of the cuticle, lignin forms the early Casparian strip, and suberin is deposited in the stage II endodermis and the periderm. The current status of our understanding of the relationships between the chemical structure, ultrastructure and physiological functions of plant diffusion barriers is discussed. Specific aspects of the synthesis of diffusion barrier components and protocols that can be used for the assessment of barrier function and important barrier properties are also presented.
Collapse
Affiliation(s)
- Christiane Nawrath
- University of Lausanne, Department of Plant Molecular Biology, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Lukas Schreiber
- University of Bonn, Department of Ecophysiology of Plants, Institute of Cellular and Molecular Botany (IZMB), Kirschallee 1, D-53115 Bonn, Germany
| | - Rochus Benni Franke
- University of Bonn, Department of Ecophysiology of Plants, Institute of Cellular and Molecular Botany (IZMB), Kirschallee 1, D-53115 Bonn, Germany
| | - Niko Geldner
- University of Lausanne, Department of Plant Molecular Biology, Biophore Building, CH-1015 Lausanne, Switzerland
| | - José J. Reina-Pinto
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM-UMA-CSIC), Department of Plant Breeding, Estación Experimental ‘La Mayora’. 29750 Algarrobo-Costa. Málaga. Spain
| | - Ljerka Kunst
- University of British Columbia, Department of Botany, Vancouver, B.C. V6T 1Z4, Canada
| |
Collapse
|
75
|
Kachroo A, Robin GP. Systemic signaling during plant defense. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:527-33. [PMID: 23870750 DOI: 10.1016/j.pbi.2013.06.019] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 05/18/2023]
Abstract
Systemic acquired resistance (SAR) is a type of pathogen-induced broad-spectrum resistance in plants. During SAR, primary infection-induced rapid generation and transportation of mobile signal(s) 'prepare' the rest of the plant for subsequent infections. Several, seemingly unrelated, mobile chemical inducers of SAR have been identified, at least two of which function in a feed-back regulatory loop with a lipid transfer-like protein. Signal(s) perception in the systemic tissues relies on the presence of an intact cuticle, the waxy layer covering all aerial parts of the plant. SAR results in chromatin modifications, which prime systemic tissues for enhanced and rapid signaling derived from salicylic acid, which along with its signaling components is key for SAR induction. This review summarizes recent findings related to SAR signal generation, movement, and perception.
Collapse
Affiliation(s)
- Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, United States.
| | | |
Collapse
|
76
|
Overexpression of AtSHN1/WIN1 provokes unique defense responses. PLoS One 2013; 8:e70146. [PMID: 23922943 PMCID: PMC3726498 DOI: 10.1371/journal.pone.0070146] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 06/16/2013] [Indexed: 01/10/2023] Open
Abstract
The plant cell cuticle serves as the first barrier protecting plants from mechanical injury and invading pathogens. The cuticle can be breached by cutinase-producing pathogens and the degradation products may activate pathogenesis signals in the invading pathogens. Cuticle degradation products may also trigger the plant’s defense responses. Botrytis cinerea is an important plant pathogen, capable of attacking and causing disease in a wide range of plant species. Arabidopsis thaliana shn1-1D is a gain-of-function mutant, which has a modified cuticular lipid composition. We used this mutant to examine the effect of altering the whole-cuticle metabolic pathway on plant responses to B. cinerea attack. Following infection with B. cinerea, the shn1-1D mutant discolored more quickly, accumulated more H2O2, and showed accelerated cell death relative to wild-type (WT) plants. Whole transcriptome analysis of B. cinerea-inoculated shn1-1D vs. WT plants revealed marked upregulation of genes associated with senescence, oxidative stress and defense responses on the one hand, and genes involved in the magnitude of defense-response control on the other. We propose that altered cutin monomer content and composition of shn1-1D plants triggers excessive reactive oxygen species accumulation and release which leads to a strong, unique and uncontrollable defense response, resulting in plant sensitivity and death.
Collapse
|
77
|
Song N, Hu Z, Li Y, Li C, Peng F, Yao Y, Peng H, Ni Z, Xie C, Sun Q. Overexpression of a wheat stearoyl-ACP desaturase (SACPD) gene TaSSI2 in Arabidopsis ssi2 mutant compromise its resistance to powdery mildew. Gene 2013; 524:220-7. [PMID: 23624392 DOI: 10.1016/j.gene.2013.04.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 04/05/2013] [Accepted: 04/08/2013] [Indexed: 02/09/2023]
Abstract
Fatty acids and their derivatives play important roles in plant defense responses. It has been shown that a mutation in a gene encoding one of stearoyl acyl carrier protein fatty acid desaturase isoforms (ssi2 mutant) enhances the resistance of Arabidopsis to multiple pathogens, and similar results were obtained in rice and soybean. However, it is unknown whether the ssi2 mutant is also resistant to powdery mildew (Golovinomyces cichoracearum). In this study, the ssi2 mutant showed enhanced resistance to powdery mildew. Furthermore, we described the cloning and characterization of the TaSSI2 gene (ortholog of AtSSI2) from wheat. Functional analysis of TaSSI2 was performed by overexpressing TaSSI2 in ssi2 mutant of Arabidopsis. The result indicated that ectopic expression of TaSSI2 restored the WT like morphology in the ssi2 background, the 35S:TaSSI2/ssi2 plants accumulated WT-like levels of oleic acid (18:1) and the transcript levels of R genes were significantly lower than that in ssi2 plants. In contrast to the constitutive PR gene expression in ssi2 plants, the transcript accumulation of PR1 and PR2 was similar in the 35S:TaSSI2/ssi2 and wild type both before and after inoculation. Trypan blue staining showed that extensive fungal hyphae and conidiophores were produced in wild-type and 35S:TaSSI2/ssi2 leaves while no visible powdery mildew growth was observed, but dramatic lesions developed at the infection sites in the ssi2 mutant leaves. Our results demonstrated that TaSSI2 is involved in the negative regulation of defense responses in powdery mildew infection, similar to its counterparts in Arabidopsis, indicating a highly conserved function of SSI2 gene in diverse plants.
Collapse
Affiliation(s)
- Na Song
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
A feedback regulatory loop between G3P and lipid transfer proteins DIR1 and AZI1 mediates azelaic-acid-induced systemic immunity. Cell Rep 2013; 3:1266-78. [PMID: 23602565 DOI: 10.1016/j.celrep.2013.03.030] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 02/04/2013] [Accepted: 03/20/2013] [Indexed: 11/22/2022] Open
Abstract
Systemic acquired resistance (SAR), a highly desirable form of plant defense, provides broad-spectrum immunity against diverse pathogens. The recent identification of seemingly unrelated chemical inducers of SAR warrants an investigation of their mutual interrelationships. We show that SAR induced by the dicarboxylic acid azelaic acid (AA) requires the phosphorylated sugar derivative glycerol-3-phosphate (G3P). Pathogen inoculation induced the release of free unsaturated fatty acids (FAs) and thereby triggered AA accumulation, because these FAs serve as precursors for AA. AA accumulation in turn increased the levels of G3P, which is required for AA-conferred SAR. The lipid transfer proteins DIR1 and AZI1, both of which are required for G3P- and AA-induced SAR, were essential for G3P accumulation. Conversely, reduced G3P resulted in decreased AZI1 and DIR1 transcription. Our results demonstrate that an intricate feedback regulatory loop among G3P, DIR1, and AZI1 regulates SAR and that AA functions upstream of G3P in this pathway.
Collapse
|
79
|
Lucas WJ, Groover A, Lichtenberger R, Furuta K, Yadav SR, Helariutta Y, He XQ, Fukuda H, Kang J, Brady SM, Patrick JW, Sperry J, Yoshida A, López-Millán AF, Grusak MA, Kachroo P. The plant vascular system: evolution, development and functions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:294-388. [PMID: 23462277 DOI: 10.1111/jipb.12041] [Citation(s) in RCA: 424] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of environmental habitats. Recently, considerable progress has been made in terms of our understanding of the developmental and physiological programs involved in the formation and function of the plant vascular system. In this review, we first examine the evolutionary events that gave rise to the tracheophytes, followed by analysis of the genetic and hormonal networks that cooperate to orchestrate vascular development in the gymnosperms and angiosperms. The two essential functions performed by the vascular system, namely the delivery of resources (water, essential mineral nutrients, sugars and amino acids) to the various plant organs and provision of mechanical support are next discussed. Here, we focus on critical questions relating to structural and physiological properties controlling the delivery of material through the xylem and phloem. Recent discoveries into the role of the vascular system as an effective long-distance communication system are next assessed in terms of the coordination of developmental, physiological and defense-related processes, at the whole-plant level. A concerted effort has been made to integrate all these new findings into a comprehensive picture of the state-of-the-art in the area of plant vascular biology. Finally, areas important for future research are highlighted in terms of their likely contribution both to basic knowledge and applications to primary industry.
Collapse
Affiliation(s)
- William J Lucas
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Nakai Y, Nakahira Y, Sumida H, Takebayashi K, Nagasawa Y, Yamasaki K, Akiyama M, Ohme-Takagi M, Fujiwara S, Shiina T, Mitsuda N, Fukusaki E, Kubo Y, Sato MH. Vascular plant one-zinc-finger protein 1/2 transcription factors regulate abiotic and biotic stress responses in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:761-75. [PMID: 23167462 DOI: 10.1111/tpj.12069] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 11/01/2012] [Accepted: 11/02/2012] [Indexed: 05/18/2023]
Abstract
Plants adapt to abiotic and biotic stresses by activating abscisic acid-mediated (ABA) abiotic stress-responsive and salicylic acid-(SA) or jasmonic acid-mediated (JA) biotic stress-responsive pathways, respectively. Although the abiotic stress-responsive pathway interacts antagonistically with the biotic stress-responsive pathways, the mechanisms that regulate these pathways remain largely unknown. In this study, we provide insight into the function of vascular plant one-zinc-finger proteins (VOZs) that modulate various stress responses in Arabidopsis. The expression of many stress-responsive genes was changed in the voz1voz2 double mutant under normal growth conditions. Consistent with altered stress-responsive gene expression, freezing- and drought-stress tolerances were increased in the voz1voz2 double mutant. In contrast, resistance to a fungal pathogen, Colletotrichum higginsianum, and to a bacterial pathogen, Pseudomonas syringae, was severely impaired. Thus, impairing VOZ function simultaneously conferred increased abiotic tolerance and biotic stress susceptibility. In a chilling stress condition, both the VOZ1 and VOZ2 mRNA expression levels and the VOZ2 protein level gradually decreased. VOZ2 degradation during cold exposure was completely inhibited by the addition of the 26S proteasome inhibitor, MG132, a finding that suggested that VOZ2 degradation is dependent on the ubiquitin/26S proteasome system. In voz1voz2, ABA-inducible transcription factor CBF4 expression was enhanced significantly even under normal growth conditions, despite an unchanged endogenous ABA content. A finding that suggested that VOZs negatively affect CBF4 expression in an ABA-independent manner. These results suggest that VOZs function as both negative and positive regulators of the abiotic and biotic stress-responsive pathways, and control Arabidopsis adaptation to various stress conditions.
Collapse
Affiliation(s)
- Yusuke Nakai
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Chen X, Fu S, Zhang P, Gu Z, Liu J, Qian Q, Ma B. Proteomic analysis of a disease-resistance-enhanced lesion mimic mutant spotted leaf 5 in rice. RICE (NEW YORK, N.Y.) 2013; 6:1. [PMID: 24280096 PMCID: PMC5394886 DOI: 10.1186/1939-8433-6-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 12/12/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND A lesion-mimic mutant in rice (Oryza sativa L.), spotted leaf 5 (spl5), displays a disease-resistance-enhanced phenotype, indicating that SPL5 negatively regulates cell death and resistance responses. To understand the molecular mechanisms of SPL5 mutation-induced cell death and resistance responses, a proteomics-based approach was used to identify differentially accumulated proteins between the spl5 mutant and wild type (WT). RESULTS Proteomic data from two-dimensional gel electrophoresis showed that 14 candidate proteins were significantly up- or down-regulated in the spl5 mutant compared with WT. These proteins are involved in diverse biological processes including pre-mRNA splicing, amino acid metabolism, photosynthesis, glycolysis, reactive oxygen species (ROS) metabolism, and defense responses. Two candidate proteins with a significant up-regulation in spl5 - APX7, a key ROS metabolism enzyme and Chia2a, a pathogenesis-related protein - were further analyzed by qPCR and enzyme activity assays. Consistent with the proteomic results, both transcript levels and enzyme activities of APX7 and Chia2a were significantly induced during the course of lesion formation in spl5 leaves. CONCLUSIONS Many functional proteins involving various metabolisms were likely to be responsible for the lesion formation of spl5 mutant. Generally, in spl5, the up-regulated proteins involve in defense response or PCD, and the down-regulated ones involve in amino acid metabolism and photosynthesis. These results may help to gain new insight into the molecular mechanism underlying spl5-induced cell death and disease resistance in plants.
Collapse
Affiliation(s)
- Xifeng Chen
- College of Chemistry & Life Sciences, Zhejiang Normal University, Jinhua, 321004 China
| | - Shufang Fu
- College of Chemistry & Life Sciences, Zhejiang Normal University, Jinhua, 321004 China
| | - Pinghua Zhang
- College of Chemistry & Life Sciences, Zhejiang Normal University, Jinhua, 321004 China
| | - Zhimin Gu
- College of Chemistry & Life Sciences, Zhejiang Normal University, Jinhua, 321004 China
| | - Jianzhong Liu
- College of Chemistry & Life Sciences, Zhejiang Normal University, Jinhua, 321004 China
| | - Qian Qian
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006 China
| | - Bojun Ma
- College of Chemistry & Life Sciences, Zhejiang Normal University, Jinhua, 321004 China
| |
Collapse
|
82
|
Bernard A, Joubès J. Arabidopsis cuticular waxes: advances in synthesis, export and regulation. Prog Lipid Res 2012; 52:110-29. [PMID: 23103356 DOI: 10.1016/j.plipres.2012.10.002] [Citation(s) in RCA: 268] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/17/2012] [Accepted: 10/17/2012] [Indexed: 11/15/2022]
Abstract
Cuticular waxes and cutin form the cuticle, a hydrophobic layer covering the aerial surfaces of land plants and acting as a protective barrier against environmental stresses. Very-long-chain fatty acid derived compounds that compose the cuticular waxes are produced in the endoplasmic reticulum of epidermal cells before being exported to the environmental face of the epidermis. Twenty years of genetic studies on Arabidopsis thaliana have led to the molecular characterization of enzymes catalyzing major steps in fatty acid elongation and wax biosynthesis. Although transporters required for wax export from the plasma membrane have been identified, intracellular and extracellular traffic remains largely unknown. In accordance with its major function in producing an active waterproof barrier, wax metabolism is up-regulated at the transcriptional level in response to water deficiency. However its developmental regulation is still poorly described. Here, we discuss the present knowledge of wax functions, biosynthesis and transport as well as the regulation of these processes.
Collapse
Affiliation(s)
- Amélie Bernard
- Université de Bordeaux, Laboratoire de Biogenèse Membranaire, UMR5200, F-33000 Bordeaux, France.
| | | |
Collapse
|
83
|
Xia Y, Yu K, Gao QM, Wilson EV, Navarre D, Kachroo P, Kachroo A. Acyl CoA Binding Proteins are Required for Cuticle Formation and Plant Responses to Microbes. FRONTIERS IN PLANT SCIENCE 2012; 3:224. [PMID: 23060893 PMCID: PMC3465942 DOI: 10.3389/fpls.2012.00224] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 09/17/2012] [Indexed: 05/18/2023]
Abstract
Fatty acids (FA) and lipids are well known regulators of plant defense. Our previous studies have shown that components of prokaryotic (plastidal) FA biosynthesis pathway regulate various aspects of plant defense. Here, we investigated the defense related roles of the soluble acyl CoA binding proteins (ACBPs), which are thought to facilitate the intracellular transport of FA/lipids. We show that ACBP3 and 4 are required for maintaining normal lipid levels and that ACBP3 contributes to the lipid flux between the prokaryotic and eukaryotic pathways. We also show that loss of ACBP3, 4, or 6 impair normal development of the cuticle and affect both basal and resistance protein-mediated defense against bacterial and fungal pathogens. Loss of ACBP3, 4, or 6 also inhibits the induction of systemic acquired resistance (SAR) due to the plants inability to generate SAR inducing signal(s). Together, these data show that ACBP3, ACBP4, and ACBP6 are required for cuticle development as well as defense against microbial pathogens.
Collapse
Affiliation(s)
- Ye Xia
- Department of Plant Pathology, University of KentuckyLexington, KY, USA
| | - Keshun Yu
- Department of Plant Pathology, University of KentuckyLexington, KY, USA
| | - Qing-ming Gao
- Department of Plant Pathology, University of KentuckyLexington, KY, USA
| | - Ella V. Wilson
- Department of Plant Pathology, University of KentuckyLexington, KY, USA
| | - Duroy Navarre
- U.S. Department of Agriculture, Agricultural Research Service, Washington State UniversityProsser, WA, USA
| | - Pradeep Kachroo
- Department of Plant Pathology, University of KentuckyLexington, KY, USA
| | - Aardra Kachroo
- Department of Plant Pathology, University of KentuckyLexington, KY, USA
| |
Collapse
|
84
|
Dempsey DA, Klessig DF. SOS - too many signals for systemic acquired resistance? TRENDS IN PLANT SCIENCE 2012; 17:538-45. [PMID: 22749315 DOI: 10.1016/j.tplants.2012.05.011] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 05/17/2012] [Accepted: 05/23/2012] [Indexed: 05/18/2023]
Abstract
Following pathogen infection, activation of systemic acquired resistance (SAR) in uninfected tissues requires transmission of a signal(s) from the infected tissue via the vasculature. Several candidates for this long-distance signal have been identified, including methyl salicylate (MeSA), an SFD1/GLY1-derived glycerol-3-phosphate (G3P)-dependent signal, the lipid-transfer protein DIR1, the dicarboxylic acid azelaic acid (AzA), the abietane diterpenoid dehydroabietinal (DA), jasmonic acid (JA), and the amino acid-derivative pipecolic acid (Pip). Some of these signals work cooperatively to activate SAR and/or regulate MeSA metabolism. However, Pip appears to activate SAR via an independent pathway that may impinge on these other signaling pathway(s) during de novo salicylic acid (SA) biosynthesis in the systemic tissue. Thus, a complex web of cross-interacting signals appears to activate SAR.
Collapse
|
85
|
Vicente J, Cascón T, Vicedo B, García-Agustín P, Hamberg M, Castresana C. Role of 9-lipoxygenase and α-dioxygenase oxylipin pathways as modulators of local and systemic defense. MOLECULAR PLANT 2012; 5:914-28. [PMID: 22199234 DOI: 10.1093/mp/ssr105] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant 9-lipoxygenases (9-LOX) and α-dioxygenases (α-DOX) initiate the synthesis of oxylipins after bacterial infection. Here, the role of these enzymes in plants' defense was investigated using individual Arabidopsis thaliana lox1 and dox1 mutants and a double lox1 dox1 mutant. Studies with Pseudomonas syringae pv. tomato (Pst) revealed the enhanced susceptibility of lox1 to the virulent strain Pst DC3000 and the partial impairment of lox1 and dox1 mutants to activate systemic acquired resistance. Notably, both defects were enhanced in the lox1 dox1 plants as compared with individual mutants. We found that pre-treatment with 9-LOX- and α-DOX-generated oxylipins protected plant tissues against bacterial infection. The strongest effect in this respect was exerted by 9-ketooctadecatrienoic acid (9-KOT), which is produced from linolenic acid by 9-LOX. Quantification of 9-KOT revealed its accumulation after bacterial infection. The levels were reduced in lox1 and lox1 dox1 plants but strongly increased in the dox1 mutant due to metabolic interaction of the two pathways. Transcriptional analyses indicated that 9-KOT pre-treatment modifies hormone homeostasis during bacterial infection. The nature of the changes detected suggested that 9-KOT interferes with the hormonal changes caused by bacterial effectors. This notion was substantiated by the finding that 9-KOT failed to reduce the growth of PstDC3000hrpA, a mutant compromised in effector secretion, and of the avirulent strain Pst DC3000 avrRpm1. Further support for the action of the 9-LOX- and α-DOX-oxylipin pathways as modulators of hormone homeostasis was the observation that lox1 dox1 seedlings are hypersensitive to the growth-inhibitory effect of ABA and showed enhanced activation of ABA-inducible marker genes as compared with wild-type plants.
Collapse
Affiliation(s)
- Jorge Vicente
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | | | | | | | | | | |
Collapse
|
86
|
Berkey R, Bendigeri D, Xiao S. Sphingolipids and plant defense/disease: the "death" connection and beyond. FRONTIERS IN PLANT SCIENCE 2012; 3:68. [PMID: 22639658 PMCID: PMC3355615 DOI: 10.3389/fpls.2012.00068] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 03/22/2012] [Indexed: 05/19/2023]
Abstract
Sphingolipids comprise a major class of structural materials and lipid signaling molecules in all eukaryotic cells. Over the past two decades, there has been a phenomenal growth in the study of sphingolipids (i.e., sphingobiology) at an average rate of ∼1000 research articles per year. Sphingolipid studies in plants, though accounting for only a small fraction (∼6%) of the total number of publications, have also enjoyed proportionally rapid growth in the past decade. Concomitant with the growth of sphingobiology, there has also been tremendous progress in our understanding of the molecular mechanisms of plant innate immunity. In this review, we (i) cross examine and analyze the major findings that establish and strengthen the intimate connections between sphingolipid metabolism and plant programmed cell death (PCD) associated with plant defense or disease; (ii) highlight and compare key bioactive sphingolipids involved in the regulation of plant PCD and possibly defense; (iii) discuss the potential role of sphingolipids in polarized membrane/protein trafficking and formation of lipid rafts as subdomains of cell membranes in relation to plant defense; and (iv) where possible, attempt to identify potential parallels for immunity-related mechanisms involving sphingolipids across kingdoms.
Collapse
Affiliation(s)
- Robert Berkey
- Institute for Bioscience and Biotechnology Research, University of MarylandRockville, MD, USA
- Department of Plant Sciences and Landscape Architecture, University of MarylandCollege Park, MD, USA
| | - Dipti Bendigeri
- Institute for Bioscience and Biotechnology Research, University of MarylandRockville, MD, USA
- Department of Plant Sciences and Landscape Architecture, University of MarylandCollege Park, MD, USA
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research, University of MarylandRockville, MD, USA
- Department of Plant Sciences and Landscape Architecture, University of MarylandCollege Park, MD, USA
| |
Collapse
|
87
|
Avila CA, Arévalo-Soliz LM, Jia L, Navarre DA, Chen Z, Howe GA, Meng QW, Smith JE, Goggin FL. Loss of function of FATTY ACID DESATURASE7 in tomato enhances basal aphid resistance in a salicylate-dependent manner. PLANT PHYSIOLOGY 2012; 158:2028-41. [PMID: 22291202 PMCID: PMC3320204 DOI: 10.1104/pp.111.191262] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 01/26/2012] [Indexed: 05/18/2023]
Abstract
We report here that disruption of function of the ω-3 FATTY ACID DESATURASE7 (FAD7) enhances plant defenses against aphids. The suppressor of prosystemin-mediated responses2 (spr2) mutation in tomato (Solanum lycopersicum), which eliminates the function of FAD7, reduces the settling behavior, survival, and fecundity of the potato aphid (Macrosiphum euphorbiae). Likewise, the antisense suppression of LeFAD7 expression in wild-type tomato plants reduces aphid infestations. Aphid resistance in the spr2 mutant is associated with enhanced levels of salicylic acid (SA) and mRNA encoding the pathogenesis-related protein P4. Introduction of the Naphthalene/salicylate hydroxylase transgene, which suppresses SA accumulation, restores wild-type levels of aphid susceptibility to spr2. Resistance in spr2 is also lost when we utilize virus-induced gene silencing to suppress the expression of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1), a positive regulator of many SA-dependent defenses. These results indicate that FAD7 suppresses defenses against aphids that are mediated through SA and NPR1. Although loss of function of FAD7 also inhibits the synthesis of jasmonate (JA), the effects of this desaturase on aphid resistance are not dependent on JA; other mutants impaired in JA synthesis (acx1) or perception (jai1-1) show wild-type levels of aphid susceptibility, and spr2 retains aphid resistance when treated with methyl jasmonate. Thus, FAD7 may influence JA-dependent defenses against chewing insects and SA-dependent defenses against aphids through independent effects on JA synthesis and SA signaling. The Arabidopsis (Arabidopsis thaliana) mutants Atfad7-2 and Atfad7-1fad8 also show enhanced resistance to the green peach aphid (Myzus persicae) compared with wild-type controls, indicating that FAD7 influences plant-aphid interactions in at least two plant families.
Collapse
|
88
|
Uppalapati SR, Ishiga Y, Doraiswamy V, Bedair M, Mittal S, Chen J, Nakashima J, Tang Y, Tadege M, Ratet P, Chen R, Schultheiss H, Mysore KS. Loss of abaxial leaf epicuticular wax in Medicago truncatula irg1/palm1 mutants results in reduced spore differentiation of anthracnose and nonhost rust pathogens. THE PLANT CELL 2012; 24:353-70. [PMID: 22294617 PMCID: PMC3289574 DOI: 10.1105/tpc.111.093104] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/16/2011] [Accepted: 12/31/2011] [Indexed: 05/21/2023]
Abstract
To identify genes that confer nonhost resistance to biotrophic fungal pathogens, we did a forward-genetics screen using Medicago truncatula Tnt1 retrotransposon insertion lines. From this screen, we identified an inhibitor of rust germ tube differentation1 (irg1) mutant that failed to promote preinfection structure differentiation of two rust pathogens, Phakopsora pachyrhizi and Puccinia emaculata, and one anthracnose pathogen, Colletotrichum trifolii, on the abaxial leaf surface. Cytological and chemical analyses revealed that the inhibition of rust preinfection structures in irg1 mutants is due to complete loss of the abaxial epicuticular wax crystals and reduced surface hydrophobicity. The composition of waxes on abaxial leaf surface of irg1 mutants had >90% reduction of C30 primary alcohols and a preferential increase of C29 and C31 alkanes compared with the wild type. IRG1 encodes a Cys(2)His(2) zinc finger transcription factor, PALM1, which also controls dissected leaf morphology in M. truncatula. Transcriptome analysis of irg1/palm1 mutants revealed downregulation of eceriferum4, an enzyme implicated in primary alcohol biosynthesis, and MYB96, a major transcription factor that regulates wax biosynthesis. Our results demonstrate that PALM1 plays a role in regulating epicuticular wax metabolism and transport and that epicuticular wax influences spore differentiation of host and nonhost fungal pathogens.
Collapse
Affiliation(s)
| | - Yasuhiro Ishiga
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Vanthana Doraiswamy
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Mohamed Bedair
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Shipra Mittal
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Jianghua Chen
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Jin Nakashima
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Yuhong Tang
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Million Tadege
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Pascal Ratet
- Institut des Sciences du Vegetale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France
| | - Rujin Chen
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | | | - Kirankumar S. Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
- Address correspondence to
| |
Collapse
|
89
|
Samarakoon T, Shiva S, Lowe K, Tamura P, Roth MR, Welti R. Arabidopsis thaliana membrane lipid molecular species and their mass spectral analysis. Methods Mol Biol 2012; 918:179-268. [PMID: 22893293 DOI: 10.1007/978-1-61779-995-2_13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, current approaches to electrospray ionization mass spectrometry-based analyses of membrane lipid molecular species found in Arabidopsis thaliana are summarized. Additionally, the identities of over 500 reported membrane lipid molecular species are assembled.
Collapse
Affiliation(s)
- Thilani Samarakoon
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, KS, USA
| | | | | | | | | | | |
Collapse
|
90
|
Mandal MK, Chanda B, Xia Y, Yu K, Sekine KT, Gao QM, Selote D, Kachroo A, Kachroo P. Glycerol-3-phosphate and systemic immunity. PLANT SIGNALING & BEHAVIOR 2011; 6:1871-4. [PMID: 22067992 PMCID: PMC3343732 DOI: 10.4161/psb.6.11.17901] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Glycerol-3-phosphate (G3P), a conserved three-carbon sugar, is an obligatory component of energy-producing reactions including glycolysis and glycerolipid biosynthesis. G3P can be derived via the glycerol kinase-mediated phosphorylation of glycerol or G3P dehydrogenase (G3Pdh)-mediated reduction of dihydroxyacetone phosphate. Previously, we showed G3P levels contribute to basal resistance against the hemibiotrophic pathogen, Colletotrichum higginsianum. Inoculation of Arabidopsis with C. higginsianum correlated with an increase in G3P levels and a concomitant decrease in glycerol levels in the host. Plants impaired in GLY1 encoded G3Pdh accumulated reduced levels of G3P after pathogen inoculation and showed enhanced susceptibility to C. higginsianum. Recently, we showed that G3P is also a potent inducer of systemic acquired resistance (SAR) in plants. SAR is initiated after a localized infection and confers whole-plant immunity to secondary infections. SAR involves generation of a signal at the site of primary infection, which travels throughout the plants and alerts the un-infected distal portions of the plant against secondary infections. Plants unable to synthesize G3P are defective in SAR and exogenous G3P complements this defect. Exogenous G3P also induces SAR in the absence of a primary pathogen. Radioactive tracer experiments show that a G3P derivative is translocated to distal tissues and this requires the lipid transfer protein, DIR1. Conversely, G3P is required for the translocation of DIR1 to distal tissues. Together, these observations suggest that the cooperative interaction of DIR1 and G3P mediates the induction of SAR in plants.
Collapse
Affiliation(s)
- Mihir K Mandal
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Díaz-Camino C, Annamalai P, Sanchez F, Kachroo A, Ghabrial SA. An effective virus-based gene silencing method for functional genomics studies in common bean. PLANT METHODS 2011; 7:16. [PMID: 21668993 PMCID: PMC3141803 DOI: 10.1186/1746-4811-7-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 06/13/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND Common bean (Phaseolus vulgaris L.) is a crop of economic and nutritious importance in many parts of the world. The lack of genomic resources have impeded the advancement of common bean genomics and thereby crop improvement. Although concerted efforts from the "Phaseomics" consortium have resulted in the development of several genomic resources, functional studies have continued to lag due to the recalcitrance of this crop for genetic transformation. RESULTS Here we describe the use of a bean pod mottle virus (BPMV)-based vector for silencing of endogenous genes in common bean as well as for protein expression. This BPMV-based vector was originally developed for use in soybean. It has been successfully employed for both protein expression and gene silencing in this species. We tested this vector for applications in common bean by targeting common bean genes encoding nodulin 22 and stearoyl-acyl carrier protein desaturase for silencing. Our results indicate that the BPMV vector can indeed be employed for reverse genetics studies of diverse biological processes in common bean. We also used the BPMV-based vector for expressing the green fluorescent protein (GFP) in common bean and demonstrate stable GFP expression in all common bean tissues where BPMV was detected. CONCLUSIONS The availability of this vector is an important advance for the common bean research community not only because it provides a rapid means for functional studies in common bean, but also because it does so without generating genetically modified plants. Here we describe the detailed methodology and provide essential guidelines for the use of this vector for both gene silencing and protein expression in common bean. The entire VIGS procedure can be completed in 4-5 weeks.
Collapse
Affiliation(s)
- Claudia Díaz-Camino
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, CP 62210, Cuernavaca, Morelos, México
| | - Padmanaban Annamalai
- Department of Plant Pathology, 201F Plant Science Building, University of Kentucky, 1405 Veterans Drive, Lexington, KY 40546-0312, USA
| | - Federico Sanchez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, CP 62210, Cuernavaca, Morelos, México
| | - Aardra Kachroo
- Department of Plant Pathology, 201F Plant Science Building, University of Kentucky, 1405 Veterans Drive, Lexington, KY 40546-0312, USA
| | - Said A Ghabrial
- Department of Plant Pathology, 201F Plant Science Building, University of Kentucky, 1405 Veterans Drive, Lexington, KY 40546-0312, USA
| |
Collapse
|
92
|
Chanda B, Xia Y, Mandal MK, Yu K, Sekine KT, Gao QM, Selote D, Hu Y, Stromberg A, Navarre D, Kachroo A, Kachroo P. Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants. Nat Genet 2011; 43:421-7. [PMID: 21441932 DOI: 10.1038/ng.798] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 02/02/2011] [Indexed: 12/11/2022]
Abstract
Glycerol-3-phosphate (G3P) is an important metabolite that contributes to the growth and disease-related physiologies of prokaryotes, plants, animals and humans alike. Here we show that G3P serves as the inducer of an important form of broad-spectrum immunity in plants, termed systemic acquired resistance (SAR). SAR is induced upon primary infection and protects distal tissues from secondary infections. Genetic mutants defective in G3P biosynthesis cannot induce SAR but can be rescued when G3P is supplied exogenously. Radioactive tracer experiments show that a G3P derivative is translocated to distal tissues, and this requires the lipid transfer protein, DIR1. Conversely, G3P is required for the translocation of DIR1 to distal tissues, which occurs through the symplast. These observations, along with the fact that dir1 plants accumulate reduced levels of G3P in their petiole exudates, suggest that the cooperative interaction of DIR1 and G3P orchestrates the induction of SAR in plants.
Collapse
Affiliation(s)
- Bidisha Chanda
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Gao QM, Venugopal S, Navarre D, Kachroo A. Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins. PLANT PHYSIOLOGY 2011; 155:464-76. [PMID: 21030507 PMCID: PMC3075765 DOI: 10.1104/pp.110.166876] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 10/27/2010] [Indexed: 05/19/2023]
Abstract
Signaling induced upon a reduction in oleic acid (18:1) levels simultaneously up-regulates salicylic acid (SA)-mediated responses and inhibits jasmonic acid (JA)-inducible defenses, resulting in enhanced resistance to biotrophs but increased susceptibility to necrotrophs. SA and the signaling component Enhanced Disease Susceptibility1 function redundantly in this low-18:1-derived pathway to induce SA signaling but do not function in the repression of JA responses. We show that repression of JA-mediated signaling under low-18:1 conditions is mediated via the WRKY50 and WRKY51 proteins. Knockout mutations in WRKY50 and WRKY51 lowered SA levels but did not restore pathogenesis-related gene expression or pathogen resistance to basal levels in the low-18:1-containing Arabidopsis (Arabidopsis thaliana) mutant, suppressor of SA insensitivity2 (ssi2). In contrast, both JA-inducible PDF1.2 (defensin) expression and basal resistance to Botrytis cinerea were restored. Simultaneous mutations in both WRKY genes (ssi2 wrky50 wrky51) did not further enhance the JA or Botrytis-related responses. The ssi2 wrky50 and ssi2 wrky51 plants contained high levels of reactive oxygen species and exhibited enhanced cell death, the same as ssi2 plants. This suggested that high reactive oxygen species levels or increased cell death were not responsible for the enhanced susceptibility of ssi2 plants to B. cinerea. Exogenous SA inhibited JA-inducible PDF1.2 expression in the wild type but not in wrky50 or wrky51 mutant plants. These results show that the WRKY50 and WRKY51 proteins mediate both SA- and low-18:1-dependent repression of JA signaling.
Collapse
Affiliation(s)
| | | | | | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546 (Q.-M.G., S.V., A.K.); United States Department of Agriculture-Agricultural Research Service, Washington State University, Prosser, Washington 99350 (D.N.)
| |
Collapse
|
94
|
Javelle M, Vernoud V, Rogowsky PM, Ingram GC. Epidermis: the formation and functions of a fundamental plant tissue. THE NEW PHYTOLOGIST 2011; 189:17-39. [PMID: 21054411 DOI: 10.1111/j.1469-8137.2010.03514.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Epidermis differentiation and maintenance are essential for plant survival. Constant cross-talk between epidermal cells and their immediate environment is at the heart of epidermal cell fate, and regulates epidermis-specific transcription factors. These factors in turn direct epidermal differentiation involving a whole array of epidermis-specific pathways including specialized lipid metabolism necessary to build the protective cuticle layer. An intact epidermis is crucial for certain key processes in plant development, shoot growth and plant defence. Here, we discuss the control of epidermal cell fate and the function of the epidermal cell layer in the light of recent advances in the field.
Collapse
Affiliation(s)
- Marie Javelle
- Ecole Normale Supérieure de Lyon, UMR 5667, ENS/CNRS/INRA/Université Lyon 1, Lyon, France
| | | | | | | |
Collapse
|
95
|
Xia Y, Yu K, Navarre D, Seebold K, Kachroo A, Kachroo P. The glabra1 mutation affects cuticle formation and plant responses to microbes. PLANT PHYSIOLOGY 2010; 154:833-46. [PMID: 20699396 PMCID: PMC2949009 DOI: 10.1104/pp.110.161646] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 08/04/2010] [Indexed: 05/18/2023]
Abstract
Systemic acquired resistance (SAR) is a form of defense that provides resistance against a broad spectrum of pathogens in plants. Previous work indicates a role for plastidial glycerolipid biosynthesis in SAR. Specifically, mutations in FATTY ACID DESATURASE7 (FAD7), which lead to reduced trienoic fatty acid levels and compromised plastidial lipid biosynthesis, have been associated with defective SAR. We show that the defective SAR in Arabidopsis (Arabidopsis thaliana) fad7-1 plants is not associated with a mutation in FAD7 but rather with a second-site mutation in GLABRA1 (GL1), a gene well known for its role in trichome formation. The compromised SAR in gl1 plants is associated with impairment in their cuticles. Furthermore, mutations in two other components of trichome development, GL3 and TRANSPARENT TESTA GLABRA1, also impaired cuticle development and SAR. This suggests an overlap in the biochemical pathways leading to cuticle and trichome development. Interestingly, exogenous application of gibberellic acid (GA) not only enhanced SAR in wild-type plants but also restored SAR in gl1 plants. In contrast to GA, the defense phytohoromes salicylic acid and jasmonic acid were unable to restore SAR in gl1 plants. GA application increased levels of cuticular components but not trichome formation on gl1 plants, thus implicating cuticle, but not trichomes, as an important component of SAR. Our findings question the prudence of using mutant backgrounds for genetic screens and underscore a need to reevaluate phenotypes previously studied in the gl1 background.
Collapse
Affiliation(s)
| | | | | | | | | | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546 (Y.X., K.Y., K.S., A.K., P.K.); United States Department of Agriculture-Agricultural Research Service, Washington State University, Prosser, Washington 99350 (D.N.)
| |
Collapse
|
96
|
Kosma DK, Nemacheck JA, Jenks MA, Williams CE. Changes in properties of wheat leaf cuticle during interactions with Hessian fly. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:31-43. [PMID: 20409001 DOI: 10.1111/j.1365-313x.2010.04229.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Infestation of wheat by Hessian fly larvae causes a variety of physical and biochemical modifications of the host plant. Changes occur in cuticle permeability, lipid composition and gene transcript abundance, and these responses differ substantially between resistant and susceptible wheat lines. Staining assays revealed that susceptible plants exhibited a generalized increase in leaf sheath epidermal permeability during infestation; whereas, epidermal permeability was only minimally affected in resistant plants. Furthermore, temporal profiling using gas chromatographic methods revealed that changes in cuticle lipid (wax and cutin) composition correlated well with differing levels of epidermal permeability in susceptible and resistant plants. Temporal analysis of cuticle-associated gene mRNA levels, by quantitative real-time PCR, indicated a relationship between transcript abundance and changes in cuticle lipid profiles of resistant and susceptible plants. Results suggest that conserving cuticle integrity via induction of specific wax constituents and maintenance of cutin amounts, determined by the accumulation of cuticle-associated transcripts, could be important components of wheat resistance to Hessian fly larvae.
Collapse
Affiliation(s)
- Dylan K Kosma
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
97
|
Liu PP, Yang Y, Pichersky E, Klessig DF. Altering expression of benzoic acid/salicylic acid carboxyl methyltransferase 1 compromises systemic acquired resistance and PAMP-triggered immunity in arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:82-90. [PMID: 19958141 DOI: 10.1094/mpmi-23-1-0082] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Methyl salicylate (MeSA), which is synthesized in plants from salicylic acid (SA) by methyltransferases, has roles in defense against microbial and insect pests. Most of the MeSA that accumulates after pathogen attack is synthesized by benzoic acid/SA carboxyl methyltransferase 1 (AtBSMT1). To investigate the role of AtBSMT1 in plant defense, transgenic Arabidopsis with altered AtBSMT1 function or expression were assessed for their ability to resist pathogen infection. A knockout mutant (Atbsmt1) failed to accumulate MeSA following pathogen infection; these plants also failed to accumulate SA or its glucoside in the uninoculated leaves and did not develop systemic acquired resistance (SAR). However, the Atbsmt1 mutant exhibited normal levels of effector-triggered immunity and pathogen-associated molecular pattern (PAMP)-triggered immunity to Pseudomonas syringae and Hyaloperonospora arabidopsidis. Analyses of transgenic Arabidopsis plants overexpressing AtBSMT1 revealed that they accumulate elevated levels of MeSA in pathogen-infected leaves but fail to develop SAR. Since the levels of SA and its glucoside were reduced in uninoculated systemic leaves of these plants whereas MeSA levels were elevated, AtBSMT1-mediated conversion of SA to MeSA probably compromised SAR development by suppressing SA accumulation in uninoculated leaves. PAMP-triggered immunity also was compromised in the AtBSMT1 overexpressing plants, although effector-triggered immunity was not.
Collapse
Affiliation(s)
- Po-Pu Liu
- Boyce Thompson Institute for plant Research, Tower Road, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
98
|
Mang HG, Laluk KA, Parsons EP, Kosma DK, Cooper BR, Park HC, AbuQamar S, Boccongelli C, Miyazaki S, Consiglio F, Chilosi G, Bohnert HJ, Bressan RA, Mengiste T, Jenks MA. The Arabidopsis RESURRECTION1 gene regulates a novel antagonistic interaction in plant defense to biotrophs and necrotrophs. PLANT PHYSIOLOGY 2009; 151:290-305. [PMID: 19625635 PMCID: PMC2735982 DOI: 10.1104/pp.109.142158] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 07/17/2009] [Indexed: 05/18/2023]
Abstract
We report a role for the Arabidopsis (Arabidopsis thaliana) RESURRECTION1 (RST1) gene in plant defense. The rst1 mutant exhibits enhanced susceptibility to the biotrophic fungal pathogen Erysiphe cichoracearum but enhanced resistance to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola. RST1 encodes a novel protein that localizes to the plasma membrane and is predicted to contain 11 transmembrane domains. Disease responses in rst1 correlate with higher levels of jasmonic acid (JA) and increased basal and B. cinerea-induced expression of the plant defensin PDF1.2 gene but reduced E. cichoracearum-inducible salicylic acid levels and expression of pathogenesis-related genes PR1 and PR2. These results are consistent with rst1's varied resistance and susceptibility to pathogens of different life styles. Cuticular lipids, both cutin monomers and cuticular waxes, on rst1 leaves were significantly elevated, indicating a role for RST1 in the suppression of leaf cuticle lipid synthesis. The rst1 cuticle exhibits normal permeability, however, indicating that the disease responses of rst1 are not due to changes in this cuticle property. Double mutant analysis revealed that the coi1 mutation (causing defective JA signaling) is completely epistatic to rst1, whereas the ein2 mutation (causing defective ethylene signaling) is partially epistatic to rst1, for resistance to B. cinerea. The rst1 mutation thus defines a unique combination of disease responses to biotrophic and necrotrophic fungi in that it antagonizes salicylic acid-dependent defense and enhances JA-mediated defense through a mechanism that also controls cuticle synthesis.
Collapse
Affiliation(s)
- Hyung Gon Mang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907-2054, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Venugopal SC, Jeong RD, Mandal MK, Zhu S, Chandra-Shekara AC, Xia Y, Hersh M, Stromberg AJ, Navarre D, Kachroo A, Kachroo P. Enhanced disease susceptibility 1 and salicylic acid act redundantly to regulate resistance gene-mediated signaling. PLoS Genet 2009; 5:e1000545. [PMID: 19578402 PMCID: PMC2695777 DOI: 10.1371/journal.pgen.1000545] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 06/01/2009] [Indexed: 11/19/2022] Open
Abstract
Resistance (R) protein-associated pathways are well known to participate in defense against a variety of microbial pathogens. Salicylic acid (SA) and its associated proteinaceous signaling components, including enhanced disease susceptibility 1 (EDS1), non-race-specific disease resistance 1 (NDR1), phytoalexin deficient 4 (PAD4), senescence associated gene 101 (SAG101), and EDS5, have been identified as components of resistance derived from many R proteins. Here, we show that EDS1 and SA fulfill redundant functions in defense signaling mediated by R proteins, which were thought to function independent of EDS1 and/or SA. Simultaneous mutations in EDS1 and the SA-synthesizing enzyme SID2 compromised hypersensitive response and/or resistance mediated by R proteins that contain coiled coil domains at their N-terminal ends. Furthermore, the expression of R genes and the associated defense signaling induced in response to a reduction in the level of oleic acid were also suppressed by compromising SA biosynthesis in the eds1 mutant background. The functional redundancy with SA was specific to EDS1. Results presented here redefine our understanding of the roles of EDS1 and SA in plant defense.
Collapse
Affiliation(s)
- Srivathsa C. Venugopal
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Rae-Dong Jeong
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Mihir K. Mandal
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Shifeng Zhu
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - A. C. Chandra-Shekara
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Ye Xia
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Matthew Hersh
- Department of Statistics, University of Kentucky, Lexington, Kentucky, United States of America
| | - Arnold J. Stromberg
- Department of Statistics, University of Kentucky, Lexington, Kentucky, United States of America
| | - DuRoy Navarre
- United States Department of Agriculture–Agricultural Research Service, Washington State University, Prosser, Washington, United States of America
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|