51
|
Wang C, Li Z, Zhang L, Gao Y, Cai X, Wu W. Identifying Key Metabolites Associated with Glucosinolate Biosynthesis in Response to Nitrogen Management Strategies in Two Rapeseed ( Brassica napus) Varieties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:634-645. [PMID: 34985260 DOI: 10.1021/acs.jafc.1c06472] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A high glucosinolate (GSL) concentration, an undesirable substance, has severely restricted rapeseed (Brassica species) development. We performed widely targeted metabolomics analysis based on the ultra-high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) technology to analyze the metabolic profiles and identify the differential metabolites and GSL components in response to different nitrogen (N) levels in two rapeseed varieties. A total of 341 metabolites and 38 GSL components were detected in the seeds. A total of 188 differential metabolites, including 34 GSL components, were identified in response to different treatments, which were mapped into 2-oxocarboxylic acid metabolism, tryptophan metabolism, and GSL biosynthesis. Key indicators of GSL components highly responsible for different N levels under two contrasting varieties were recognized, i.e., 1-methylpropyl GSL and 4-methylthiobutyl GSL. This study suggests that the efficient N management and variety selection are important strategies for developing rapeseed with low GSLs.
Collapse
Affiliation(s)
- Cheng Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Zhaojie Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- College of Tropical Crops, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Lingxiang Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yuan Gao
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xiaohui Cai
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Wei Wu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- College of Tropical Crops, Hainan University, Haikou, Hainan 570228, People's Republic of China
| |
Collapse
|
52
|
Zhou E, Song N, Xiao Q, Farooq Z, Jia Z, Wen J, Dai C, Ma C, Tu J, Shen J, Fu T, Yi B. Construction of transgenic detection system of Brassica napus L. based on single nucleotide polymorphism chip. 3 Biotech 2022; 12:11. [PMID: 34966634 PMCID: PMC8655060 DOI: 10.1007/s13205-021-03062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 11/09/2021] [Indexed: 01/03/2023] Open
Abstract
Brassica napus L. is a vital oil crop in China. As auxiliary tools for rapeseed breeding, transgenic technologies play a considerable role in heterosis, variety improvement, and pest resistance. Research on transgenic detection technologies is of great significance for the introduction, supervision, and development of transgenic rapeseed in China. However, the transgenic detection methods currently in use are complex and time-consuming, with low output. A single nucleotide polymorphism (SNP) chip can effectively overcome such limitations. In the present study, we collected 40 transgenic elements and designed 291 probes. The probe sequences were submitted to Illumina Company, and the Infinium chip technology was used to prepare SNP chips. In the present Brassica napus transgenic detection experiment, 84 high-quality probes of 17 transgenic elements were preliminarily screened, and genotyping effect was optimised for the probe signal value. Ultimately, a transgenic detection system for B. napus was developed. The developed system has the advantages of simple operation, minimal technical errors, and stable detection outcomes. A transgenic detection sensitivity test revealed that the probe designed could accurately detect 1% of transgenic samples and had high detection sensitivity. In addition, in repeatability tests, the CaMV35S promoter coefficient of variation was approximately 3.58%. Therefore, the SNP chip had suitable repeatability in transgene detection. The SNP chip developed could be used to construct transgenic detection systems for B. napus. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03062-6.
Collapse
Affiliation(s)
- Enqiang Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Nuan Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Qing Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Zunaira Farooq
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Zhibo Jia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| |
Collapse
|
53
|
Wang Z, Han Y, Luo S, Rong X, Song H, Jiang N, Li C, Yang L. Calcium peroxide alleviates the waterlogging stress of rapeseed by improving root growth status in a rice-rape rotation field. FRONTIERS IN PLANT SCIENCE 2022; 13:1048227. [PMID: 36466266 PMCID: PMC9718366 DOI: 10.3389/fpls.2022.1048227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/04/2022] [Indexed: 05/16/2023]
Abstract
Waterlogging stress has a negative influence on agricultural production, particularly for rapeseed yield in a rice-rape rotation field. To alleviate the profound impacts of waterlogging stress on rapeseed production, a new fertilization with calcium peroxide (CaO2) was proposed. In this field experiment, with the conventional rape (Brassica napus L.) variety fengyou958 (FY958) and early maturing rape variety xiangyou420 (XY420) as materials, waterlogging was imposed from the bud to flowering stage, and three supplies of CaO2 (0, C1 for the 594 kg hm-2 and C2 for the 864 kg hm-2) were added as basal fertilizer. The results showed that CaO2 significantly reduced the accumulation of fermentation products in roots and alleviated the peroxidation of leaves. The reduced waterlogging stress promoted the root vigor and agronomic characters, such as branches, plant height and stem diameter, accelerated dry matter and nutrients accumulation, and resulting in 22.7% (C1) to 232.8% (C2) higher grain yields in XY420, and 112.4% (C1) to 291.8% (C2) higher grain yields in FY958, respectively. In conclusion, 594 kg hm-2 to 864 kg hm-2 CaO2 application restored the growth of waterlogged rapeseed leaves, and reduced the anaerobic intensity of root, which enhanced the resistance of plants to waterlogging, and improved crop productivity. In a certain range, the higher CaO2 application, the more the yield. This study provides a valid method to prevent damage from flooding in crop fields.
Collapse
Affiliation(s)
- Zhiyuan Wang
- College of Resources and Environmental, Hunan Agricultural University, Changsha, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Changsha, China
| | - Yongliang Han
- College of Resources and Environmental, Hunan Agricultural University, Changsha, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Changsha, China
| | - Shang Luo
- College of Resources and Environmental, Hunan Agricultural University, Changsha, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Changsha, China
| | - Xiangmin Rong
- College of Resources and Environmental, Hunan Agricultural University, Changsha, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Changsha, China
| | - Haixing Song
- College of Resources and Environmental, Hunan Agricultural University, Changsha, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Changsha, China
| | - Na Jiang
- College of Resources and Environmental, Hunan Agricultural University, Changsha, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Changsha, China
| | - Changwei Li
- College of Resources and Environmental, Hunan Agricultural University, Changsha, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Changsha, China
| | - Lan Yang
- College of Resources and Environmental, Hunan Agricultural University, Changsha, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Changsha, China
- *Correspondence: Lan Yang,
| |
Collapse
|
54
|
Ding W, Lei H, Zhang J, Wang L, Zhang J, Ju X, Li H, Zhang G. One‐time N fertilization reduces greenhouse emissions and N leaching while maintaining high yields in a rape–rice rotation system. AGRONOMY JOURNAL 2022; 114:427-439. [DOI: 10.1002/agj2.20947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 10/28/2021] [Indexed: 01/22/2025]
Abstract
AbstractIn China, the rice (Oryza sativa L.)–rapeseed (Brassica napus L.) rotation system is facing great challenges, including constantly growing demand, on‐going labor shortages, and increasing environmental burdens. Thus, producing more food and higher benefits while minimizing environmental costs is required for future development. A 2‐yr field experiment comparing three nitrogen (N) fertilization treatments (non‐N treatment as control [CK], conventional urea application [CU], one‐time application of controlled‐release urea [CRU]) was performed. Results showed that the rice season dominated annual CH4 emissions (>95%) and on average contributed more than 50% of the annual N2O emissions. Additionally, the main forms of mineral N leaching were different for rape and rice. Nitrate (NO3–)–N was the major component of leaching in rape season, while for rice season NO3––N and NH4+–N were equal. Relative to CU, CRU significantly increased the rapeseed yield by 10.7∼13.9% and maintained the rice productivity, reduced mineral N leaching losses by 19.6∼20.8% for the rice season, and resulted in less total methane (CH4) and nitrous oxide (N2O) emissions (TGHGs) by 12.1% across the two rotations. Furthermore, a net economic benefit (NEB) considering yields, fertilizer input, labor, and other input costs indicated CRU increased the economic return by 58.3%. However, CRU did not improve partial factor productivity of nitrogen fertilizer (PFPN) and decreased the NEB by 3.1% without considering the labor cost. It indicated a one‐time application of the CRU for rice–rapeseed rotation system was an environmentally and economically profitable technology. This paper provided a promising solution for farmers to enhance rice–rapeseed productivity and increase income while minimizing the environmental footprint.
Collapse
Affiliation(s)
- Wuhan Ding
- Agro‐Environmental Protection Institute, Ministry of Agriculture and Rural Affairs Tianjin 300191 China
- Institute of Agricultural Resources and Regional Planning Chinese Academy of Agricultural Sciences Beijing 100081 China
| | - Haojie Lei
- Institute of Agricultural Resources and Regional Planning Chinese Academy of Agricultural Sciences Beijing 100081 China
- College of the Environment and Ecology Xiamen Univ. Fujian 361102 China
| | - Jing Zhang
- Institute of Agricultural Resources and Regional Planning Chinese Academy of Agricultural Sciences Beijing 100081 China
- Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes College of Resources and Environmental Sciences Zhongkai Univ. of Agriculture and Engineering Guangzhou 510225 China
| | - Ligang Wang
- Institute of Agricultural Resources and Regional Planning Chinese Academy of Agricultural Sciences Beijing 100081 China
| | - Jianfeng Zhang
- Institute of Agricultural Resources and Regional Planning Chinese Academy of Agricultural Sciences Beijing 100081 China
| | - Xuehai Ju
- Rural Energy & Environment Agency Ministry of Agriculture and Rural Affairs Beijing 100125 China
| | - Hu Li
- Institute of Agricultural Resources and Regional Planning Chinese Academy of Agricultural Sciences Beijing 100081 China
| | - Guilong Zhang
- Agro‐Environmental Protection Institute, Ministry of Agriculture and Rural Affairs Tianjin 300191 China
| |
Collapse
|
55
|
Gao Z, Zhang J, Li F, Zheng J, Xu G. Effect of Oils in Feed on the Production Performance and Egg Quality of Laying Hens. Animals (Basel) 2021; 11:3482. [PMID: 34944258 PMCID: PMC8698086 DOI: 10.3390/ani11123482] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 12/13/2022] Open
Abstract
With the development of a large-scale and intensive production industry, the number of laying hens in China is rapidly increasing. Oils, as an important source of essential fatty acids, can be added to the diet to effectively improve the production performance and absorption of other nutrients. The present review discusses the practical application of different types and qualities of oils in poultry diets and studies the critical effects of these oils on production performance, such as the egg weight, feed intake, feed conversion ratio (FCR), and various egg quality parameters, including the albumen height, Haugh units, yolk color, and saturated/unsaturated fatty acids. This article reviews the effects of different dietary oil sources on the production performance and egg quality of laying hens and their potential functional mechanisms and provides a reference for the selection of different sources of oils to include in the diet with the aim of improving egg production. This review thus provides a reference for the application of oils to the diets of laying hens. Future studies are needed to determine how poultry products can be produced with the appropriate proper oils in the diet and without negative effects on production performance and egg quality.
Collapse
Affiliation(s)
- Zhouyang Gao
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.G.); (J.Z.)
| | - Junnan Zhang
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.G.); (J.Z.)
| | - Fuwei Li
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| | - Jiangxia Zheng
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.G.); (J.Z.)
| | - Guiyun Xu
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.G.); (J.Z.)
| |
Collapse
|
56
|
Xu M, Wang C, Ling L, Batchelor WD, Zhang J, Kuai J. Sensitivity analysis of the CROPGRO-Canola model in China: A case study for rapeseed. PLoS One 2021; 16:e0259929. [PMID: 34793545 PMCID: PMC8601501 DOI: 10.1371/journal.pone.0259929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/02/2021] [Indexed: 11/19/2022] Open
Abstract
Increasing domestic rapeseed production is an important national goal in China. Researchers often use tools such as crop models to determine optimum management practices for new varieties to increased production. The CROPGRO-Canola model has not been used to simulate rapeseed in China. The overall goal of this work was to identify key inputs to the CROPGRO-Canola model for calibration with limited datasets in the Yangtze River basin. First, we conducted a global sensitivity analysis to identify key genetic and soil inputs that have a large effect on simulated days to flowering, days to maturity, yield, above-ground biomass, and maximum leaf area index. The extended Fourier amplitude test method (EFAST) sensitivity analysis was performed for a single year at 8 locations in the Yangtze River basin (spatial analysis) and for seven years at a location in Wuhan, China (temporal analysis). The EFAST software was run for 4520 combinations of input parameters for each site and year, resulting in a sensitivity index for each input parameter. Parameters were ranked using the top-down concordance method to determine relative sensitivity. Results indicated that the model outputs of days to flowering, days to maturity, yield, above-ground biomass, and maximum leaf area index were most sensitive to parameters that affect the duration of critical growth periods, such as emergence to flowering, and temperature response to these stages, as well as parameters that affect total biomass at harvest. The five model outputs were also sensitive to several soil parameters, including drained upper and lower limit (SDUL and SLLL) and drainage rate (SLDR). The sensitivity of parameters was generally spatially and temporally stable. The results of the sensitivity analysis were used to calibrate and evaluate the model for a single rapeseed experiment in Wuhan, China. The model was calibrated using two seasons and evaluated using three seasons of data. Excellent nRMSE values were obtained for days to flowering (≤1.71%), days to maturity (≤ 1.48%), yield (≤ 9.96%), and above-ground biomass (≤ 9.63%). The results of this work can be used to guide researchers on model calibration and evaluation across the Yangtze River basin in China.
Collapse
Affiliation(s)
- Mancan Xu
- Macro Agriculture Research Institute, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, P.R. China
| | - Chunmeng Wang
- Macro Agriculture Research Institute, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, P.R. China
| | - Lin Ling
- Macro Agriculture Research Institute, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, P.R. China
- Inspection and Quarantine Technology Communication Department, Shanghai Customs College, Shanghai, P.R. China
| | | | - Jian Zhang
- Macro Agriculture Research Institute, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province, P.R. China
| | - Jie Kuai
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, P.R. China
| |
Collapse
|
57
|
Zhang X, Cheng J, Lin Y, Fu Y, Xie J, Li B, Bian X, Feng Y, Liang W, Tang Q, Zhang H, Liu X, Zhang Y, Liu C, Jiang D. Editing homologous copies of an essential gene affords crop resistance against two cosmopolitan necrotrophic pathogens. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2349-2361. [PMID: 34265153 PMCID: PMC8541787 DOI: 10.1111/pbi.13667] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/17/2021] [Accepted: 07/07/2021] [Indexed: 05/03/2023]
Abstract
Sclerotinia sclerotiorum and Botrytis cinerea are typical necrotrophic pathogens that can attack more than 700 and 3000 plant species, respectively, and cause huge economic losses across numerous crops. In particular, the absence of resistant cultivars makes the stem rot because of S. sclerotiorum the major threat of rapeseed (Brassica napus) worldwide along with Botrytis. Previously, we identified an effector-like protein (SsSSVP1) from S. sclerotiorum and a homologue of SsSSVP1 on B. cinerea genome and found that SsSSVP1 could interact with BnQCR8 of rapeseed, a subunit of the cytochrome b-c1 complex. In this study, we found that BnQCR8 has eight homologous copies in rapeseed cultivar Westar and reduced the copy number of BnQCR8 using CRISPR/Cas9 to improve rapeseed resistance against S. sclerotiorum. Mutants with one or more copies of BnQCR8 edited showed strong resistance against S. sclerotiorum and B. cinerea. BnQCR8-edited mutants did not show significant difference from Westar in terms of respiration and agronomic traits tested, including the plant shape, flowering time, silique size, seed number, thousand seed weight and seed oil content. These traits make it possible to use these mutants directly for commercial production. Our study highlights a common gene for breeding of rapeseed to unravel the key hindrance of rapeseed production caused by S. sclerotiorum and B. cinerea. In contrast to previously established methodologies, our findings provide a novel strategy to develop crops with high resistance against multiple pathogens by editing only a single gene that encodes the common target of pathogen effectors.
Collapse
Affiliation(s)
- Xuekun Zhang
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Jiasen Cheng
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Yang Lin
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Yanping Fu
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Jiatao Xie
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Bo Li
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Xuefeng Bian
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Yanbo Feng
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Weibo Liang
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Qian Tang
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Hongxiang Zhang
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Xiaofan Liu
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Yu Zhang
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Changxing Liu
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Daohong Jiang
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
- Hubei Hongshan LaboratoryWuhanChina
| |
Collapse
|
58
|
Li Q, Shah N, Zhou X, Wang H, Yu W, Luo J, Liu Y, Li G, Liu C, Zhang C, Chen P. Identification of Micro Ribonucleic Acids and Their Targets in Response to Plasmodiophora brassicae Infection in Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 12:734419. [PMID: 34777417 PMCID: PMC8585624 DOI: 10.3389/fpls.2021.734419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/21/2021] [Indexed: 05/24/2023]
Abstract
Clubroot disease, which is caused by the soil-borne pathogen Plasmodiophora brassicae War (P. brassicae), is one of the oldest and most destructive diseases of Brassica and cruciferous crops in the world. Plant microRNAs [micro ribonucleic acids (miRNAs)] play important regulatory roles in several developmental processes. Although the role of plant miRNAs in plant-microbe interaction has been extensively studied, there are only few reports on the specific functions of miRNAs in response to P. brassicae. This study investigated the roles of miRNAs and their targets during P. brassicae infection in a pair of Brassica napus near-isogenic lines (NILs), namely clubroot-resistant line 409R and clubroot-susceptible line 409S. Small RNA sequencing (sRNA-seq) and degradome-seq were performed on root samples of 409R and 409S with or without P. brassicae inoculation. sRNA-seq identified a total of 48 conserved and 72 novel miRNAs, among which 18 had a significant differential expression in the root of 409R, while only one miRNA was differentially expressed in the root of 409S after P. brassicae inoculation. The degradome-seq analysis identified 938 miRNA target transcripts, which are transcription factors, enzymes, and proteins involved in multiple biological processes and most significantly enriched in the plant hormone signal transduction pathway. Between 409R and 409S, we found eight different degradation pathways in response to P. brassicae infection, such as those related to fatty acids. By combining published transcriptome data, we identified a total of six antagonistic miRNA-target pairs in 409R that are responsive to P. brassicae infection and involved in pathways associated with root development, hypersensitive cell death, and chloroplast metabolic synthesis. Our results reveal that P. brassicae infection leads to great changes in miRNA pool and target transcripts. More interestingly, these changes are different between 409R and 409S. Clarification of the crosstalk between miRNAs and their targets may shed new light on the possible mechanisms underlying the pathogen resistance against P. brassicae.
Collapse
Affiliation(s)
- Qian Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Nadil Shah
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xueqing Zhou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huiying Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenlin Yu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiajie Luo
- Agricultural Technology Extension Station of Linxiang, Lincang, China
| | - Yajun Liu
- Agricultural Technology Extension Station of Lincang, Lincang, China
| | - Genze Li
- Industrial Crops Institute of Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Chao Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunyu Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Peng Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
59
|
Siles L, Hassall KL, Sanchis Gritsch C, Eastmond PJ, Kurup S. Uncovering Trait Associations Resulting in Maximal Seed Yield in Winter and Spring Oilseed Rape. FRONTIERS IN PLANT SCIENCE 2021; 12:697576. [PMID: 34552604 PMCID: PMC8450599 DOI: 10.3389/fpls.2021.697576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Seed yield is a complex trait for many crop species including oilseed rape (OSR) (Brassica napus), the second most important oilseed crop worldwide. Studies have focused on the contribution of distinct factors in seed yield such as environmental cues, agronomical practices, growth conditions, or specific phenotypic traits at the whole plant level, such as number of pods in a plant. However, how female reproductive traits contribute to whole plant level traits, and hence to seed yield, has been largely ignored. Here, we describe the combined contribution of 33 phenotypic traits within a B. napus diversity set population and their trade-offs at the whole plant and organ level, along with their interaction with plant level traits. Our results revealed that both Winter OSR (WOSR) and Spring OSR (SOSR); the two more economically important OSR groups in terms of oil production; share a common dominant reproductive strategy for seed yield. In this strategy, the main inflorescence is the principal source of seed yield, producing a good number of ovules, a large number of long pods with a concomitantly high number of seeds per pod. Moreover, we observed that WOSR opted for additional reproductive strategies than SOSR, presenting more plasticity to maximise seed yield. Overall, we conclude that OSR adopts a key strategy to ensure maximal seed yield and propose an ideal ideotype highlighting crucial phenotypic traits that could be potential targets for breeding.
Collapse
Affiliation(s)
- Laura Siles
- Department of Plant Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - Kirsty L. Hassall
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, United Kingdom
| | | | - Peter J. Eastmond
- Department of Plant Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - Smita Kurup
- Department of Plant Sciences, Rothamsted Research, Harpenden, United Kingdom
| |
Collapse
|
60
|
Hu D, Jing J, Snowdon RJ, Mason AS, Shen J, Meng J, Zou J. Exploring the gene pool of Brassica napus by genomics-based approaches. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1693-1712. [PMID: 34031989 PMCID: PMC8428838 DOI: 10.1111/pbi.13636] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 05/08/2023]
Abstract
De novo allopolyploidization in Brassica provides a very successful model for reconstructing polyploid genomes using progenitor species and relatives to broaden crop gene pools and understand genome evolution after polyploidy, interspecific hybridization and exotic introgression. B. napus (AACC), the major cultivated rapeseed species and the third largest oilseed crop in the world, is a young Brassica species with a limited genetic base resulting from its short history of domestication, cultivation, and intensive selection during breeding for target economic traits. However, the gene pool of B. napus has been significantly enriched in recent decades that has been benefit from worldwide effects by the successful introduction of abundant subgenomic variation and novel genomic variation via intraspecific, interspecific and intergeneric crosses. An important question in this respect is how to utilize such variation to breed crops adapted to the changing global climate. Here, we review the genetic diversity, genome structure, and population-level differentiation of the B. napus gene pool in relation to known exotic introgressions from various species of the Brassicaceae, especially those elucidated by recent genome-sequencing projects. We also summarize progress in gene cloning, trait-marker associations, gene editing, molecular marker-assisted selection and genome-wide prediction, and describe the challenges and opportunities of these techniques as molecular platforms to exploit novel genomic variation and their value in the rapeseed gene pool. Future progress will accelerate the creation and manipulation of genetic diversity with genomic-based improvement, as well as provide novel insights into the neo-domestication of polyploid crops with novel genetic diversity from reconstructed genomes.
Collapse
Affiliation(s)
- Dandan Hu
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jinjie Jing
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Rod J. Snowdon
- Department of Plant BreedingIFZ Research Centre for Biosystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| | - Annaliese S. Mason
- Department of Plant BreedingIFZ Research Centre for Biosystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
- Plant Breeding DepartmentINRESThe University of BonnBonnGermany
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jinling Meng
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jun Zou
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
61
|
El-Badri AMA, Batool M, Mohamed IAA, Khatab A, Sherif A, Wang Z, Salah A, Nishawy E, Ayaad M, Kuai J, Wang B, Zhou G. Modulation of salinity impact on early seedling stage via nano-priming application of zinc oxide on rapeseed (Brassica napus L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:376-392. [PMID: 34153882 DOI: 10.1016/j.plaphy.2021.05.040] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 05/07/2021] [Indexed: 06/13/2023]
Abstract
Salinity stress negatively affects the plant's developmental stages through micronutrient imbalance. As an essential micronutrient, ZnO can substitute Na+ absorption under saline conditions. Therefore, nanoparticles as technological innovation, improve the plant growth efficiency under biotic and abiotic stresses. Nano-priming has become widely applicable in agricultural research during the last decade. The current study was conducted to highlight the impact of ZnONPs priming on seedling biological processes under 150 mM of NaCl using two rapeseed cultivars during the early seedling stage. All concentrations of ZnONPs increased the germination parameters i.e., FG%, GR, VI (I), and VI (II). Meanwhile, the high concentration (ZnO 100%) showed the highest increase in shoot length (9.60% and 25.63%), root length (41.64% and 48.17%) for Yang You 9 and Zhong Shuang 11 over hydro-priming, respectively, as well as biomass. Additionally, nano-priming improved the proline, soluble sugar, and soluble protein contents as a result of osmotic protection modulation. Moreover, nano-priming alleviated ROS and biosynthesis pigments through the reduction of accumulated (H2O2) and (O2-), and chlorophyll degradation, respectively, also enhanced antioxidant adjustment via improving the plant defense system. Nano-priming substituted the Na+ by Zn2+, K+, and Ca2+, and compensated the deficit of micronutrients, thus reduced the Na+ toxicity in the cell cytosol. To track the effects of priming during seed imbibition, it noticed that ZnO 100% and ZnO 100%+S increased the Linoleic and Linolenic acids among the studied fatty acids composition by 12.02%, 7.59%, 13.27%, and 10.38% (Yang You 9), 7.42%, 2.77%, 2.93%, and 1.49% (Zhong Shuang 11) over the hydro-priming, respectively. Moreover, the gene expression patterns of BnCAM and BnPER reflected the enhancement of germination levels, notably under the influence of ZnO 100% priming, which increased the level of BnCAM by 70.42% and 111.9% in Yang You 9 and Zhong Shuang 11, respectively. Consequently, ZnO nano-priming enhanced the seedling development through the biosynthesis of pigments, osmotic protection, reduction of ROS accumulation, adjustment of antioxidant enzymes, and improvement of the nutrient absorption, thus enhancing the economic yield under saline conditions.
Collapse
Affiliation(s)
- Ali M A El-Badri
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Field Crops Research Institute, Agricultural Research Center, Egypt
| | - Maria Batool
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ibrahim A A Mohamed
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Botany Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Ahmed Khatab
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Field Crops Research Institute, Agricultural Research Center, Egypt
| | - Ahmed Sherif
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Field Crops Research Institute, Agricultural Research Center, Egypt
| | - Zongkai Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Akram Salah
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Elsayed Nishawy
- Desert Research Center, Genetics Resource Department, Egyptian Deserts Gene Bank, Cairo, 11735, Egypt
| | - Mohammed Ayaad
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abo Zaabal, 13795, Cairo, Egypt
| | - Jie Kuai
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Guangsheng Zhou
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
62
|
Overdominance at the Gene Expression Level Plays a Critical Role in the Hybrid Root Growth of Brassica napus. Int J Mol Sci 2021; 22:ijms22179246. [PMID: 34502153 PMCID: PMC8431428 DOI: 10.3390/ijms22179246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 01/12/2023] Open
Abstract
Despite heterosis contributing to genetic improvements in crops, root growth heterosis in rapeseed plants is poorly understood at the molecular level. The current study was performed to discover key differentially expressed genes (DEGs) related to heterosis in two hybrids with contrasting root growth performance (FO; high hybrid and FV; low hybrid) based on analysis of the root heterosis effect. Based on comparative transcriptomic analysis, we believe that the overdominance at the gene expression level plays a critical role in hybrid roots’ early biomass heterosis. Our findings imply that a considerable increase in up-regulation of gene expression underpins heterosis. In the FO hybrid, high expression of DEGs overdominant in the starch/sucrose and galactose metabolic pathways revealed a link between hybrid vigor and root growth. DEGs linked to auxin, cytokinin, brassinosteroids, ethylene, and abscisic acid were also specified, showing that these hormones may enhance mechanisms of root growth and the development in the FO hybrid. Moreover, transcription factors such as MYB, ERF, bHLH, NAC, bZIP, and WRKY are thought to control downstream genes involved in root growth. Overall, this is the first study to provide a better understanding related to the regulation of the molecular mechanism of heterosis, which assists in rapeseed growth and yield improvement.
Collapse
|
63
|
Differential Effects of Organic Amendments on Maize Biomass and Nutrient Availability in Upland Calcareous Soil. ATMOSPHERE 2021. [DOI: 10.3390/atmos12081034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The current study is focuses on a sustainable agricultural ecosystem for soil fertility and human health improvement. To estimate the effects of applying organic amendments (compost, vermicompost, biochar, organic manure and rapeseed cake) on crop growth of maize and nutrient uptake in calcareous soil, eleven treatments were studied, which included compost (CM), cow manure vermicompost (CMV), pig manure vermicompost (PMV), biochar vermicompost (BCV), biochar (BC), conventional synthetic fertilizers (NPK), CMV in addition to NPK (CMV + NPK), and PMV in addition to NPK (PMV + NPK), organic manure (OM), rapeseed cake (RC) and control without any fertilization (CK). Maize above and belowground biomass were analyzed in glass greenhouse experiments. The results showed that nitrogen and carbon contents showed significant differences among treatments. Vermicompost significantly showed higher biomass as compared to inorganic fertilizers except for RC. All vermicompost treatments also showed better nutrient availability as compared to NPK and CK. In conclusion, vermicompost with all substrates are recommended for application as organic fertilizers. Our study will help promote the application of organic fertilizers alone or in combination with inorganic fertilizers rather than only inorganic fertilizers for environmental health and sustainability.
Collapse
|
64
|
Zhang H, Zhao F, Ma Z, Liu X, Cui P, Gao J, Wang Y, Zheng S. Design and optimization for the separation of cyclohexane-isopropanol-water using mixed extractants with thermal integration based on molecular mechanism. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
65
|
Cao Y, Sun J, Yao K, Xu M, Tang N, Zhou X. Nondestructive detection of lead content in oilseed rape leaves based on
MRF‐HHO‐SVR
and hyperspectral technology. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yan Cao
- School of Electrical and Information Engineering of Jiangsu University Zhenjiang China
| | - Jun Sun
- School of Electrical and Information Engineering of Jiangsu University Zhenjiang China
| | - Kunshan Yao
- School of Electrical and Information Engineering of Jiangsu University Zhenjiang China
| | - Min Xu
- School of Electrical and Information Engineering of Jiangsu University Zhenjiang China
| | - Ningqiu Tang
- School of Electrical and Information Engineering of Jiangsu University Zhenjiang China
| | - Xin Zhou
- School of Electrical and Information Engineering of Jiangsu University Zhenjiang China
| |
Collapse
|
66
|
Zhu J, Zhang J, Jiang M, Wang W, Jiang J, Li Y, Yang L, Zhou X. Development of genome-wide SSR markers in rapeseed by next generation sequencing. Gene 2021; 798:145798. [PMID: 34175391 DOI: 10.1016/j.gene.2021.145798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/28/2021] [Accepted: 06/22/2021] [Indexed: 01/07/2023]
Abstract
Rapeseed (Brassica napus L.) is an important oil crop with a huge genome. This study used next generation sequencing technology to develop SSR markers in rapeseed. A total of 213,876 sequence reads were obtained in 58.8 Mb. For these reads, 21,523 SSRs were recovered from 18,575 microsatellites sequences and 8,964 SSR primer pairs were identified. Di- and mono-nucleotides were the most abundant, accounting for 47.5% and 30.7% of all SSRs, respectively. A total of 8,776 SSRs were designed from contigs and 100 SSR primers were tested for validation of SSR locus amplification. Nearly all (94%) of the markers were found to produce clear amplicons and to be reproducible. For these markers, forty-three SSRs showed polymorphic bands in eight rapeseed accessions. Thirty-four SSRs were then applied to 78 rapeseed accessions from China to evaluate the genetic diversity. Result showed that the allele number varied from two to seven, with a mean value of 3.59. The effective allele number of ranged from 1.14 to 3.25, with an average of 2.09. The average values of observed heterozygosity and expected heterozygosity were 0.54 and 0.49, respectively. The Nei's gene diversity varied from 0.12 to 0.69, with a mean value of 0.48. Resulting of the markers testing showed that the identified genome-wide SSRs were useful in rapeseed genetic studies, including genetic diversity, QTL mapping and marker-assisted selection for breeding.
Collapse
Affiliation(s)
- Jifeng Zhu
- Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Junying Zhang
- Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Meiyan Jiang
- Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Weirong Wang
- Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jianxia Jiang
- Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yanli Li
- Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Liyong Yang
- Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xirong Zhou
- Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| |
Collapse
|
67
|
Ji C, Zhai Y, Zhang T, Shen X, Bai Y, Hong J. Carbon, energy and water footprints analysis of rapeseed oil production: A case study in China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112359. [PMID: 33756212 DOI: 10.1016/j.jenvman.2021.112359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
As the largest consumer of rapeseed oil in the world, China should consider the environmental effect of rapeseed oil production. However, only a few improvement measures have been proposed. To fill this gap, this study analyzed the energy, carbon and water footprints of rapeseed oil production based on the International Organization for Standardization standards using the framework of life cycle assessment. Results show that most of the energy, carbon, and water footprint of rapeseed oil production can be contributed to the direct processes of rapeseed cultivation, and the indirect processes of transport and fertilizer/diesel production. The value of energy and carbon footprints are calculated as 726.07 kg oil eq and 3889.75 kg CO2 eq, respectively. For the water footprint, the values of acidification, aquatic eutrophication, carcinogens, freshwater ecotoxicity, water scarcity, and non-carcinogens are 14.24 kg SO2 eq, 4.53 kg PO4-3 eq, 6.72 × 10-5Case, 5.43 × 104 PAF.m3.d, 437.62 m3 deprived, and 1.88 × 10-5 case, respectively. Spatial analysis shows that the total environmental impacts of rapeseed production are concentrated in Sichuan, Hunan, Hubei, and Jiangxi Provinces. Correlation analysis reveals the positive correlation of human health and ecosystem quality with fertilizer application and pesticide loss. In general, the environmental effect can be effectively reduced by adjusting the industrial layout to shorten the distance of transport, improve the fine cultivation degree in low-yield areas, and decrease the use of pesticides in the hilly region of southern China.
Collapse
Affiliation(s)
- Changxing Ji
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yijie Zhai
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Tianzuo Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Xiaoxu Shen
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yueyang Bai
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jinglan Hong
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
68
|
Zaman QU, Wen C, Yuqin S, Mengyu H, Desheng M, Jacqueline B, Baohong Z, Chao L, Qiong H. Characterization of SHATTERPROOF Homoeologs and CRISPR-Cas9-Mediated Genome Editing Enhances Pod-Shattering Resistance in Brassica napus L. CRISPR J 2021; 4:360-370. [PMID: 34152222 DOI: 10.1089/crispr.2020.0129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Brassica napus is the most important oil crop plant for edible oil and renewable energy source worldwide. Yield loss caused by pod shattering is a main problem during B. napus harvest. In this study, six BnSHP1 and two BnSHP2 homoeologs were targeted by the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated protein 9) genome editing system and multiple SHP1 and SHP2 mutated lines were identified for evaluating the contribution for pod-shattering resistance. Our data suggest that BnSHP1A09 is probably a promising homoeolog for controlling lignin contents at dehiscence zone. Simultaneous mutation of BnSHP1A09/C04-B/A04 and BnSHP2A05/C04-A exhibited reduced lignified layer and separation layer adjacent to valves and replum. The pod-shattering resistance index (SRI) subsequently increased to 0.31 in five homoeolog mutation lines compared with the wild type (SRI = 0.036), which provide the theoretical basis for breeding of commercial pod-shattering resistance variety.
Collapse
Affiliation(s)
- Qamar U Zaman
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, P.R. China; East Carolina University, Greenville, North Carolina, USA.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, P.R. China; East Carolina University, Greenville, North Carolina, USA
| | - Chu Wen
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, P.R. China; East Carolina University, Greenville, North Carolina, USA
| | - Shi Yuqin
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, P.R. China; East Carolina University, Greenville, North Carolina, USA
| | - Hao Mengyu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, P.R. China; East Carolina University, Greenville, North Carolina, USA
| | - Mei Desheng
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, P.R. China; East Carolina University, Greenville, North Carolina, USA
| | - Batley Jacqueline
- School of Biological Sciences, The University of Western Australia, Perth, Australia; and East Carolina University, Greenville, North Carolina, USA
| | - Zhang Baohong
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | - Li Chao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, P.R. China; East Carolina University, Greenville, North Carolina, USA
| | - Hu Qiong
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, P.R. China; East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
69
|
Dong Z, Alam MK, Xie M, Yang L, Liu J, Helal MMU, Huang J, Cheng X, Liu Y, Tong C, Zhao C, Liu S. Mapping of a major QTL controlling plant height using a high-density genetic map and QTL-seq methods based on whole-genome resequencing in Brassica napus. G3-GENES GENOMES GENETICS 2021; 11:6219302. [PMID: 33836054 PMCID: PMC8495924 DOI: 10.1093/g3journal/jkab118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/06/2021] [Indexed: 12/02/2022]
Abstract
Plant height is a crucial element related to plant architecture that influences the seed yield of oilseed rape (Brassica napus L.). In this study, we isolated a natural B. napus mutant, namely a semi-dwarf mutant (sdw-e), which exhibits a 30% reduction in plant height compared with Zhongshuang 11-HP (ZS11-HP). Quantitative trait locus sequencing (QTL-seq) was conducted using two extreme DNA bulks in F2 populations in Wuchang-2017 derived from ZS11-HP × sdw-e to identify QTLs associated with plant height. The result suggested that two QTL intervals were located on chromosome A10. The F2 population consisting of 200 individuals in Yangluo-2018 derived from ZS11-HP × sdw-e was used to construct a high-density linkage map using whole-genome resequencing. The high-density linkage map harbored 4323 bin markers and covered a total distance of 2026.52 cM with an average marker interval of 0.47 cM. The major QTL for plant height named qPHA10 was identified on linkage group A10 by interval mapping and composite interval mapping methods. The major QTL qPHA10 was highly consistent with the QTL-seq results. And then, we integrated the variation sites and expression levels of genes in the major QTL interval to predict the candidate genes. Thus, the identified QTL and candidate genes could be used in marker-assisted selection for B. napus breeding in the future.
Collapse
Affiliation(s)
- Zhixue Dong
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan 430062, P. R. China.,National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Muhammad Khorshed Alam
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan 430062, P. R. China
| | - Meili Xie
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan 430062, P. R. China
| | - Li Yang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan 430062, P. R. China.,Biosystematics Group, Experimental Plant Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Jie Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan 430062, P. R. China.,National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - M M U Helal
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan 430062, P. R. China
| | - Junyan Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan 430062, P. R. China
| | - Xiaohui Cheng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan 430062, P. R. China
| | - Yueying Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan 430062, P. R. China
| | - Chaobo Tong
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan 430062, P. R. China
| | - Chuanji Zhao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan 430062, P. R. China
| | - Shengyi Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan 430062, P. R. China
| |
Collapse
|
70
|
Wang B, Farooq Z, Chu L, Liu J, Wang H, Guo J, Tu J, Ma C, Dai C, Wen J, Shen J, Fu T, Yi B. High-generation near-isogenic lines combined with multi-omics to study the mechanism of polima cytoplasmic male sterility. BMC PLANT BIOLOGY 2021; 21:130. [PMID: 33673810 PMCID: PMC7934456 DOI: 10.1186/s12870-021-02852-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/24/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Cytoplasmic male sterility (CMS), which naturally exists in higher plants, is a useful mechanism for analyzing nuclear and mitochondrial genome functions and identifying the role of mitochondrial genes in the plant growth and development. Polima (pol) CMS is the most universally valued male sterility type in oil-seed rape. Previous studies have described the pol CMS restorer gene Rfp and the sterility-inducing gene orf224 in oil-seed rape, located in mitochondria. However, the mechanism of fertility restoration and infertility remains unknown. Moreover, it is still unknown how the fecundity restorer gene interferes with the sterility gene, provokes the sterility gene to lose its function, and leads to fertility restoration. RESULT In this study, we used multi-omics joint analysis to discover candidate genes that interact with the sterility gene orf224 and the restorer gene Rfp of pol CMS to provide theoretical support for the occurrence and restoration mechanisms of sterility. Via multi-omics analysis, we screened 24 differential genes encoding proteins related to RNA editing, respiratory electron transport chain, anther development, energy transport, tapetum development, and oxidative phosphorylation. Using a yeast two-hybrid assay, we obtained a total of seven Rfp interaction proteins, with orf224 protein covering five interaction proteins. CONCLUSIONS We propose that Rfp and its interacting protein cleave the transcript of atp6/orf224, causing the infertility gene to lose its function and restore fertility. When Rfp is not cleaved, orf224 poisons the tapetum cells and anther development-related proteins, resulting in pol CMS mitochondrial dysfunction and male infertility. The data from the joint analysis of multiple omics provided information on pol CMS's potential molecular mechanism and will help breed B. napus hybrids.
Collapse
Affiliation(s)
- Benqi Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zunaira Farooq
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Chu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huadong Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian Guo
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jin Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
71
|
Increased grain production of cultivated land by closing the existing cropping intensity gap in Southern China. Food Secur 2021. [DOI: 10.1007/s12571-021-01154-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
72
|
Luo Z, Xu M, Wang R, Liu X, Huang Y, Xiao L. Magnetic Ti 3C 2 MXene functionalized with β-cyclodextrin as magnetic solid-phase extraction and in situ derivatization for determining 12 phytohormones in oilseeds by ultra-performance liquid chromatography-tandem mass spectrometry. PHYTOCHEMISTRY 2021; 183:112611. [PMID: 33341665 DOI: 10.1016/j.phytochem.2020.112611] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Magnetic solid phase extraction integrated with in situ derivations for the profiling of 12 phytohormones in a single rapeseed seed was developed by using ultra-high performance liquid chromatography-tandem mass spectrometry. The Fe3O4@Ti3C2@β-cyclodextrin nanoparticles were firstly synthesized and used as an adsorbent for the solid-phase extraction of phytohormones. The magnetic dispersive solid-phase extraction and in situ derivation by the addition of N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide were ingeniously combined. This efficient pre-treatment method integrated the extraction, purification, and derivatization processes into one single step. Satisfactory methodological performance was achieved by optimization of the parameters. Linearities (R2 > 0.9928) and recoveries (80.4 %-115.1%) at three spiked levels, as well as the low matrix effect (from -16.63% to 17.06%) and limits of detection (0.89-13.62 pg/mL) were obtained. The spatio-temporal profiling of target phytohormones in different tissues of rapeseed germination was investigated. This method was successfully employed for analyzing target phytohormones in different oilseeds samples.
Collapse
Affiliation(s)
- Zhoufei Luo
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China; Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China
| | - Mengwei Xu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China; Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China
| | - Ruozhong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China; Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China
| | - Xiubing Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Yongkang Huang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China
| | - Langtao Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China; Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
73
|
Genome-Wide Association Mapping Unravels the Genetic Control of Seed Vigor under Low-Temperature Conditions in Rapeseed ( Brassica napus L.). PLANTS 2021; 10:plants10030426. [PMID: 33668258 PMCID: PMC7996214 DOI: 10.3390/plants10030426] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022]
Abstract
Low temperature inhibits rapid germination and successful seedling establishment of rapeseed (Brassica napus L.), leading to significant productivity losses. Little is known about the genetic diversity for seed vigor under low-temperature conditions in rapeseed, which motivated our investigation of 13 seed germination- and emergence-related traits under normal and low-temperature conditions for 442 diverse rapeseed accessions. The stress tolerance index was calculated for each trait based on performance under non-stress and low-temperature stress conditions. Principal component analysis of the low-temperature stress tolerance indices identified five principal components that captured 100% of the seedling response to low temperature. A genome-wide association study using ~8 million SNP (single-nucleotide polymorphism) markers identified from genome resequencing was undertaken to uncover the genetic basis of seed vigor related traits in rapeseed. We detected 22 quantitative trait loci (QTLs) significantly associated with stress tolerance indices regarding seed vigor under low-temperature stress. Scrutiny of the genes in these QTL regions identified 62 candidate genes related to specific stress tolerance indices of seed vigor, and the majority were involved in DNA repair, RNA translation, mitochondrial activation and energy generation, ubiquitination and degradation of protein reserve, antioxidant system, and plant hormone and signal transduction. The high effect variation and haplotype-based effect of these candidate genes were evaluated, and high priority could be given to the candidate genes BnaA03g40290D, BnaA06g07530D, BnaA09g06240D, BnaA09g06250D, and BnaC02g10720D in further study. These findings should be useful for marker-assisted breeding and genomic selection of rapeseed to increase seed vigor under low-temperature stress.
Collapse
|
74
|
Gao J, Sun Y, Bao Y, Zhou K, Kong D, Zhao G. Effects of different levels of rapeseed cake containing high glucosinolates in steer ration on rumen fermentation, nutrient digestibility and the rumen microbial community. Br J Nutr 2021; 125:266-274. [PMID: 32693843 DOI: 10.1017/s0007114520002767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This trial was conducted to study the effects of dietary rapeseed cake (RSC) containing high glucosinolates (GLS) on rumen fermentation, nutrient digestion and the rumen microbial community in steers. Eight growing steers and four rations containing RSC (GLS 226·1 μmol/g DM) at 0·00, 2·65, 5·35 and 8·00 % DM were assigned in a replicate 4 × 4 Latin square design. The results indicated that increasing RSC levels increased the ruminal concentration of thiocyanate (SCN) (P < 0·01), decreased the ruminal concentration of ammonia nitrogen (NH3-N) and the molar proportion of isovalerate (P < 0·05), did not affect the ruminal concentration of total volatile fatty acids (P > 0·05), decreased the crude protein (CP) digestibility (P < 0·05) and increased the ether extract (EE) digestibility (P < 0·01). Increasing RSC levels tended to decrease the abundances of ruminal Ruminobacter amylophilus (P = 0·055) and Ruminococcus albus (P = 0·086) but did not affect methanogens, protozoa, fungi and other bacteria (P > 0·05). Increasing RSC levels in the ration did not affect the ruminal bacterial diversity (P > 0·05), but it increased the operational taxonomic units and the bacterial richness (P < 0·05) and affected the relative abundances of some bacteria at the phylum level and genus level (P < 0·05). In conclusion, RSC decreased the ruminal concentration of NH3-N and the CP digestibility, increased the EE digestibility and partly affected the ruminal bacterial community. SCN, as the metabolite of GLS, could be a major factor affecting these indices.
Collapse
Affiliation(s)
- Jian Gao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193Beijing, People's Republic of China
| | - Yanfeng Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193Beijing, People's Republic of China
| | - Yu Bao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193Beijing, People's Republic of China
| | - Ke Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193Beijing, People's Republic of China
| | - Dehuang Kong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193Beijing, People's Republic of China
| | - Guangyong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193Beijing, People's Republic of China
| |
Collapse
|
75
|
Raza A, Su W, Hussain MA, Mehmood SS, Zhang X, Cheng Y, Zou X, Lv Y. Integrated Analysis of Metabolome and Transcriptome Reveals Insights for Cold Tolerance in Rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2021; 12:721681. [PMID: 34691103 PMCID: PMC8532563 DOI: 10.3389/fpls.2021.721681] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/30/2021] [Indexed: 05/18/2023]
Abstract
Rapeseed (Brassica napus L.) is an important oilseed crop in the world. Its productivity is significantly influenced by numerous abiotic stresses, including cold stress (CS). Consequently, enhancement in CS tolerance is becoming an important area for agricultural investigation and crop improvement. Therefore, the current study aimed to identify the stress-responsive genes, metabolites, and metabolic pathways based on a combined transcriptome and metabolome analysis to understand the CS responses and tolerance mechanisms in the cold-tolerant (C18) and cold-sensitive (C6) rapeseed varieties. Based on the metabolome analysis, 31 differentially accumulated metabolites (DAMs) were identified between different comparisons of both varieties at the same time points. From the transcriptome analysis, 2,845, 3,358, and 2,819 differentially expressed genes (DEGs) were detected from the comparison of C6-0 vs. C18-0, C6-1 vs. C18-1, and C6-7 vs. C18-7. By combining the transcriptome and metabolome data sets, we found that numerous DAMs were strongly correlated with several differentially expressed genes (DEGs). A functional enrichment analysis of the DAMs and the correlated DEGs specified that most DEGs and DAMs were mainly enriched in diverse carbohydrates and amino acid metabolisms. Among them, starch and sucrose metabolism and phenylalanine metabolism were significantly enriched and played a vital role in the CS adaption of rapeseed. Six candidate genes were selected from the two pathways for controlling the adaption to low temperature. In a further validation, the T-DNA insertion mutants of their Arabidopsis homologous, including 4cl3, cel5, fruct4, ugp1, axs1, and bam2/9, were characterized and six lines differed significantly in levels of freezing tolerance. The outcome of the current study provided new prospects for the understanding of the molecular basis of CS responses and tolerance mechanisms in rapeseed and present a set of candidate genes for use in improving CS adaptability in the same plant.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Wei Su
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Muhammad Azhar Hussain
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Sundas Saher Mehmood
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Xuekun Zhang
- College of Agriculture, Engineering Research Center of Ecology and Agricultural Use of Wetland of Ministry of Education, Yangtze University, Jingzhou, China
| | - Yong Cheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Xiling Zou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Yan Lv
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
- *Correspondence: Yan Lv
| |
Collapse
|
76
|
Nutrients Recovery during Vermicomposting of Cow Dung, Pig Manure, and Biochar for Agricultural Sustainability with Gases Emissions. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10248956] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An experimental vermicomposting system was established in purple soil present in Sichuan Basin, China. The purpose of vermicomposting (VC) was to recycle and manage organic waste materials; for instance, animal manure and crop residues are present in great quantity. A particular use of earthworms for VC is a valuable method for retrieving essential plant nutrients. Experimental vermicomposting followed by monitoring was conducted for two months in summer with an interval of fifteen days. Four treatments, COM (compost without earthworms), VCM (using cow manure), VPM (through pig manure), and VBC (using biochar), were applied with agricultural wastes such as rapeseed and wheat straw in combination with cow dung, pig manure, and biochar, respectively. One-way analysis of variance (ANOVA) was used to statistically analyze and interpret the nutrient change among different treatments. Post hoc analysis was done using Tukey’s test. The experimental vermicomposting results revealed that VCM gives increased plant nutrients with a minimum C: N ratio (from 22.13 to 14.38) and a maximum increase in nitrogen concentrations (1.77 to 29.15 g kg−1). A significant decrease in ammonia volatilization was observed in the order VCM > VBC > VPM when compared to COM. It was experimentally established that vermicomposting is the most suitable method for converting organic waste into nutrient-rich fertilizer with the least environmental pollution load.
Collapse
|
77
|
Xiao Z, Zou D, Zeng X, Zhang L, Liu F, Wang A, Zeng Q, Zhang G, Li L. Cadmium accumulation in oilseed rape is promoted by intercropping with faba bean and ryegrass. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111162. [PMID: 32836158 DOI: 10.1016/j.ecoenv.2020.111162] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/02/2020] [Accepted: 08/09/2020] [Indexed: 05/27/2023]
Abstract
The mechanisms of intercropping increasing plant biomass, cadmium accumulation, and organic acids secreted in rhizosphere soil are still unclear. Oilseed rape and intercrops were grown in boxes separated either with no barrier between the compartments or by a nylon mesh barrier (37 μm) to license partial root interaction, or a solid barrier to stop any root interactions. Two intercropping systems (oilseed rape-faba bean and oilseed rape-ryegrass) were carried out in soil with Cd content of 5 mg/kg. The intermingling of roots between oilseed rape and faba bean enhanced the biomass of oilseed rape. However, the biomass was negatively affected implying the higher nutrient apportionment to the ryegrass than oilseed rape. Oilseed rape intercropping with both faba bean and ryegrass played a positive role in the shoot Cd concentration of oilseed rape. The intermingling of roots played a positive role in the citric and malic acids when intercropping with faba bean. A remarkable increase in water-soluble Cd and DTPA-Cd content was observed during oilseed rape-faba bean complete root interaction treatment, up to 175.00% and 46.65%, respectively, which compare with the monoculture treatment. In both systems, the translocation factor values were higher for oilseed rape (O-F system) than for the other test plants and were always >1. Thus the Cd removal potential of oilseed rape can be further improved in the future by optimizing agronomic practices and intercropping with faba bean.
Collapse
Affiliation(s)
- Zhihua Xiao
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Dongsheng Zou
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Xinyi Zeng
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Liqing Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Fen Liu
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Andong Wang
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Qingru Zeng
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Guolin Zhang
- The College of Urban and Environmental Sciences, The Graduate School of Landscape Architecture, PKU, Beijing, 100871, PR China
| | - Longcheng Li
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China.
| |
Collapse
|
78
|
Extraction and Quantification of Sulforaphane and Indole-3-Carbinol from Rapeseed Tissues Using QuEChERS Coupled with UHPLC-MS/MS. Molecules 2020; 25:molecules25092149. [PMID: 32375365 PMCID: PMC7248958 DOI: 10.3390/molecules25092149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 01/17/2023] Open
Abstract
Rapeseed (Brassica napus L.) is rich in phenols, vitamins, carotenoids, and mineral elements, such as selenium. Additionally, it contains the active ingredients sulforaphane and indole-3-carbinol, which have been demonstrated to have pharmacological effects. In this study, sulforaphane and indole-3-carbinol were extracted and quantified from rapeseeds using quick, easy, cheap, effective, rugged and safe (QuEChERS) method coupled with ultra high performance liquid chromarography tandem mass spectrometry (UHPLC-MS/MS). The major parameters for extraction and purification efficiency were optimized, including the hydrolysis reaction, extraction condition and type and amount of purification adsorbents. The limit of detection (LOD) and the limit of quantification (LOQ) for sulforaphane were 0.05 μg/kg and 0.15 μg/kg, and for indole-3-carbinol were 5 μg/kg and 15 μg/kg, respectively. The developed method was used to successfully analyze fifty rapeseed samples. The QuEChERS coupled with UHPLC-MS/MS simultaneously detect sulforaphane and indole-3-carbinol in vegetable matrix and evaluate the quality and nutrition of rapeseed samples.
Collapse
|
79
|
Zhai Y, Yu K, Cai S, Hu L, Amoo O, Xu L, Yang Y, Ma B, Jiao Y, Zhang C, Khan MHU, Khan SU, Fan C, Zhou Y. Targeted mutagenesis of BnTT8 homologs controls yellow seed coat development for effective oil production in Brassica napus L. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1153-1168. [PMID: 31637846 PMCID: PMC7152602 DOI: 10.1111/pbi.13281] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/13/2019] [Accepted: 10/18/2019] [Indexed: 05/04/2023]
Abstract
Yellow seed is a desirable trait with great potential for improving seed quality in Brassica crops. Unfortunately, no natural or induced yellow seed germplasms have been found in Brassica napus, an important oil crop, which likely reflects its genome complexity and the difficulty of the simultaneous random mutagenesis of multiple gene copies with functional redundancy. Here, we demonstrate the first application of CRISPR/Cas9 for creating yellow-seeded mutants in rapeseed. The targeted mutations of the BnTT8 gene were stably transmitted to successive generations, and a range of homozygous mutants with loss-of-function alleles of the target genes were obtained for phenotyping. The yellow-seeded phenotype could be recovered only in targeted mutants of both BnTT8 functional copies, indicating that the redundant roles of BnA09.TT8 and BnC09.TT8b are vital for seed colour. The BnTT8 double mutants produced seeds with elevated seed oil and protein content and altered fatty acid (FA) composition without any serious defects in the yield-related traits, making it a valuable resource for rapeseed breeding programmes. Chemical staining and histological analysis showed that the targeted mutations of BnTT8 completely blocked the proanthocyanidin (PA)-specific deposition in the seed coat. Further, transcriptomic profiling revealed that the targeted mutations of BnTT8 resulted in the broad suppression of phenylpropanoid/flavonoid biosynthesis genes, which indicated a much more complex molecular mechanism underlying seed colour formation in rapeseed than in Arabidopsis and other Brassica species. In addition, gene expression analysis revealed the possible mechanism through which BnTT8 altered the oil content and fatty acid composition in seeds.
Collapse
Affiliation(s)
- Yungu Zhai
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Kaidi Yu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Shengli Cai
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Limin Hu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Olalekan Amoo
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Lei Xu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Yang Yang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Boyuan Ma
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Yangmiao Jiao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Chaofeng Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | | | - Shahid Ullah Khan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
80
|
Shah N, Li Q, Xu Q, Liu J, Huang F, Zhan Z, Qin P, Zhou X, Yu W, Zhu L, Zhang C. CRb and PbBa8.1 Synergically Increases Resistant Genes Expression upon Infection of Plasmodiophora brassicae in Brassica napus. Genes (Basel) 2020; 11:E202. [PMID: 32079196 PMCID: PMC7074261 DOI: 10.3390/genes11020202] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/21/2020] [Accepted: 02/05/2020] [Indexed: 01/26/2023] Open
Abstract
PbBa8.1 and CRb are two clubroot-resistant genes that are important for canola breeding in China. Previously, we combined these resistant genes and developed a pyramid-based, homozygous recurrent inbred line (618R), the results of which showed strong resistance to Plasmodiophora brassicae field isolates; however, the genetic mechanisms of resistance were unclear. In the present work, we conducted comparative RNA sequencing (RNA-Seq) analysis between 618R and its parental lines (305R and 409R) in order to uncover the transcriptomic response of the superior defense mechanisms of 618R and to determine how these two different resistant genes coordinate with each other. Here, we elucidated that the number and expression of differentially expressed genes (DEGs) in 618R are significantly higher than in the parental lines, and PbBa8.1 shares more DEGs and plays a dominant role in the pyramided line. The common DEGs among the lines largely exhibit non-additive expression patterns and enrichment in resistance pathways. Among the enriched pathways, plant-pathogen interaction, plant hormone signaling transduction, and secondary metabolites are the key observation. However, the expressions of the salicylic acid (SA) signaling pathway and reactive oxygen species (ROS) appear to be crucial regulatory components in defense response. Our findings provide comprehensive transcriptomic insight into understanding the interactions of resistance gene pyramids in single lines and can facilitate the breeding of improved resistance in Brassica napus.
Collapse
Affiliation(s)
- Nadil Shah
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (N.S.); (Q.L.); (F.H.); (P.Q.); (X.Z.); (W.Y.)
| | - Qian Li
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (N.S.); (Q.L.); (F.H.); (P.Q.); (X.Z.); (W.Y.)
| | - Qiang Xu
- Jingmen Agricultural Technology Extension Center, Jingmen 448000, China; (Q.X.); (J.L.)
| | - Ju Liu
- Jingmen Agricultural Technology Extension Center, Jingmen 448000, China; (Q.X.); (J.L.)
| | - Fan Huang
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (N.S.); (Q.L.); (F.H.); (P.Q.); (X.Z.); (W.Y.)
| | - Zongxiang Zhan
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China;
| | - Ping Qin
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (N.S.); (Q.L.); (F.H.); (P.Q.); (X.Z.); (W.Y.)
| | - Xueqing Zhou
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (N.S.); (Q.L.); (F.H.); (P.Q.); (X.Z.); (W.Y.)
| | - Wenlin Yu
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (N.S.); (Q.L.); (F.H.); (P.Q.); (X.Z.); (W.Y.)
| | - Li Zhu
- Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains and the College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China
| | - Chunyu Zhang
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (N.S.); (Q.L.); (F.H.); (P.Q.); (X.Z.); (W.Y.)
| |
Collapse
|
81
|
Cheng H, Jin F, Zaman QU, Ding B, Hao M, Wang Y, Huang Y, Wells R, Dong Y, Hu Q. Identification of Bna.IAA7.C05 as allelic gene for dwarf mutant generated from tissue culture in oilseed rape. BMC PLANT BIOLOGY 2019; 19:500. [PMID: 31729952 PMCID: PMC6857212 DOI: 10.1186/s12870-019-2094-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/21/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND Plant height is one of the most important agronomic traits in many crops due to its influence on lodging resistance and yield performance. Although progress has been made in the use of dwarfing genes in crop improvement, identification of new dwarf germplasm is still of significant interest for breeding varieties with increased yield. RESULTS Here we describe a dominant, dwarf mutant G7 of Brassica napus with down-curved leaves derived from tissue culture. To explore the genetic variation responsible for the dwarf phenotype, the mutant was crossed to a conventional line to develop a segregating F2 population. Bulks were formed from plants with either dwarf or conventional plant height and subjected to high throughput sequencing analysis via mutation mapping (MutMap). The dwarf mutation was mapped to a 0.6 Mb interval of B. napus chromosome C05. Candidate gene analysis revealed that one SNP causing an amino acid change in the domain II of Bna.IAA7.C05 may contribute to the dwarf phenotype. This is consistent with the phenotype of a gain-of-function indole-3-acetic acid (iaa) mutant in Bna.IAA7.C05 reported recently. GO and KEGG analysis of RNA-seq data revealed the down-regulation of auxin related genes, including many other IAA and small up regulated response (SAUR) genes, in the dwarf mutant. CONCLUSION Our studies characterize a new allele of Bna.IAA7.C05 responsible for the dwarf mutant generated from tissue culture. This may provide a valuable genetic resource for breeding for lodging resistance and compact plant stature in B. napus.
Collapse
Affiliation(s)
- Hongtao Cheng
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062 China
| | - Fenwei Jin
- Crop Research Institute, Gansu academy of Agricultural Sciences, Lanzhou, 730070 Gansu China
| | - Qamar U. Zaman
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062 China
| | - Bingli Ding
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062 China
| | - Mengyu Hao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062 China
| | - Yi Wang
- Crop Research Institute, Gansu academy of Agricultural Sciences, Lanzhou, 730070 Gansu China
| | - Yi Huang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062 China
| | - Rachel Wells
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Yun Dong
- Crop Research Institute, Gansu academy of Agricultural Sciences, Lanzhou, 730070 Gansu China
| | - Qiong Hu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062 China
| |
Collapse
|
82
|
Zaman QU, Chu W, Hao M, Shi Y, Sun M, Sang SF, Mei D, Cheng H, Liu J, Li C, Hu Q. CRISPR/Cas9-Mediated Multiplex Genome Editing of JAGGED Gene in Brassica napus L. Biomolecules 2019; 9:biom9110725. [PMID: 31726660 PMCID: PMC6921047 DOI: 10.3390/biom9110725] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/07/2019] [Indexed: 11/16/2022] Open
Abstract
Pod shattering resistance is an essential component to achieving a high yield, which is a substantial objective in polyploid rapeseed cultivation. Previous studies have suggested that the Arabidopsis JAGGED (JAG) gene is a key factor implicated in the regulatory web of dehiscence fruit. However, its role in controlling pod shattering resistance in oilseed rape is still unknown. In this study, multiplex genome editing was carried out by the CRISPR/Cas9 system on five homoeologs (BnJAG.A02, BnJAG.C02, BnJAG.C06, BnJAG.A07, and BnJAG.A08) of the JAG gene. Knockout mutagenesis of all homoeologs drastically affected the development of the lateral organs in organizing pod shape and size. The cylindrical body of the pod comprised a number of undifferentiated cells like a callus, without distinctive valves, replum, septum, and valve margins. Pseudoseeds were produced, which were divided into two halves with an incomplete layer of cells (probably septum) that separated the undifferentiated cells. These mutants were not capable of generating any productive seeds for further generations. However, one mutant line was identified in which only a BnJAG.A08-NUB-Like paralog of the JAG gene was mutated. Knockout mutagenesis in BnJAG.A08-NUB gene caused significant changes in the pod dehiscence zone. The replum region of the mutant was increased to a great extent, resulting in enlarged cell size, bumpy fruit, and reduced length compared with the wild type. A higher replum-valve joint area may have increased the resistance to pod shattering by ~2-fold in JAG mutants compared with wild type. Our results offer a basis for understanding variations in Brassica napus fruit by mutating JAG genes and providing a way forward for other Brassicaceae species.
Collapse
Affiliation(s)
- Qamar U Zaman
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China; (Q.U.Z.); (W.C.); (M.H.); (Y.S.); (M.S.); (S.-F.S.); (D.M.); (H.C.); (J.L.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wen Chu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China; (Q.U.Z.); (W.C.); (M.H.); (Y.S.); (M.S.); (S.-F.S.); (D.M.); (H.C.); (J.L.)
| | - Mengyu Hao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China; (Q.U.Z.); (W.C.); (M.H.); (Y.S.); (M.S.); (S.-F.S.); (D.M.); (H.C.); (J.L.)
| | - Yuqin Shi
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China; (Q.U.Z.); (W.C.); (M.H.); (Y.S.); (M.S.); (S.-F.S.); (D.M.); (H.C.); (J.L.)
| | - Mengdan Sun
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China; (Q.U.Z.); (W.C.); (M.H.); (Y.S.); (M.S.); (S.-F.S.); (D.M.); (H.C.); (J.L.)
| | - Shi-Fei Sang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China; (Q.U.Z.); (W.C.); (M.H.); (Y.S.); (M.S.); (S.-F.S.); (D.M.); (H.C.); (J.L.)
| | - Desheng Mei
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China; (Q.U.Z.); (W.C.); (M.H.); (Y.S.); (M.S.); (S.-F.S.); (D.M.); (H.C.); (J.L.)
| | - Hongtao Cheng
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China; (Q.U.Z.); (W.C.); (M.H.); (Y.S.); (M.S.); (S.-F.S.); (D.M.); (H.C.); (J.L.)
| | - Jia Liu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China; (Q.U.Z.); (W.C.); (M.H.); (Y.S.); (M.S.); (S.-F.S.); (D.M.); (H.C.); (J.L.)
| | - Chao Li
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China; (Q.U.Z.); (W.C.); (M.H.); (Y.S.); (M.S.); (S.-F.S.); (D.M.); (H.C.); (J.L.)
- Correspondence: (C.L.); (Q.H.)
| | - Qiong Hu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China; (Q.U.Z.); (W.C.); (M.H.); (Y.S.); (M.S.); (S.-F.S.); (D.M.); (H.C.); (J.L.)
- Correspondence: (C.L.); (Q.H.)
| |
Collapse
|
83
|
Sang SF, Mei DS, Liu J, Zaman QU, Zhang HY, Hao MY, Fu L, Wang H, Cheng HT, Hu Q. Organelle genome composition and candidate gene identification for Nsa cytoplasmic male sterility in Brassica napus. BMC Genomics 2019; 20:813. [PMID: 31694534 PMCID: PMC6836354 DOI: 10.1186/s12864-019-6187-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/15/2019] [Indexed: 12/29/2022] Open
Abstract
Background Nsa cytoplasmic male sterility (CMS) is a novel alloplasmic male sterility system derived from somatic hybridization between Brassica napus and Sinapis arvensis. Identification of the CMS-associated gene is a prerequisite for a better understanding of the origin and molecular mechanism of this CMS. With the development of genome sequencing technology, organelle genomes of Nsa CMS line and its maintainer line were sequenced by pyro-sequencing technology, and comparative analysis of the organelle genomes was carried out to characterize the organelle genome composition of Nsa CMS as well as to identify the candidate Nsa CMS-associated genes. Results Nsa CMS mitochondrial genome showed a higher collinearity with that of S. arvensis than B. napus, indicating that Nsa CMS mitochondrial genome was mainly derived from S. arvensis. However, mitochondrial genome recombination of parental lines was clearly detected. In contrast, the chloroplast genome of Nsa CMS was highly collinear with its B. napus parent, without any evidence of recombination of the two parental chloroplast genomes or integration from S. arvensis. There were 16 open reading frames (ORFs) specifically existed in Nsa CMS mitochondrial genome, which could not be identified in the maintainer line. Among them, three ORFs (orf224, orf309, orf346) possessing chimeric and transmembrane structure are most likely to be the candidate CMS genes. Sequences of all three candidate CMS genes in Nsa CMS line were found to be 100% identical with those from S. arvensis mitochondrial genome. Phylogenetic and homologous analysis showed that all the mitochondrial genes were highly conserved during evolution. Conclusions Nsa CMS contains a recombined mitochondrial genome of its two parental species with the majority form S. arvensis. Three candidate Nsa CMS genes were identified and proven to be derived from S. arvensis other than recombination of its two parental species. Further functional study of the candidate genes will help to identify the gene responsible for the CMS and the underlying molecular mechanism.
Collapse
Affiliation(s)
- Shi-Fei Sang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences / Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No.2 Xudong 2nd Road, Wuhan, 430062, People's Republic of China.,National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - De-Sheng Mei
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences / Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No.2 Xudong 2nd Road, Wuhan, 430062, People's Republic of China
| | - Jia Liu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences / Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No.2 Xudong 2nd Road, Wuhan, 430062, People's Republic of China
| | - Qamar U Zaman
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences / Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No.2 Xudong 2nd Road, Wuhan, 430062, People's Republic of China
| | - Hai-Yan Zhang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences / Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No.2 Xudong 2nd Road, Wuhan, 430062, People's Republic of China
| | - Meng-Yu Hao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences / Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No.2 Xudong 2nd Road, Wuhan, 430062, People's Republic of China
| | - Li Fu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences / Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No.2 Xudong 2nd Road, Wuhan, 430062, People's Republic of China
| | - Hui Wang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences / Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No.2 Xudong 2nd Road, Wuhan, 430062, People's Republic of China
| | - Hong-Tao Cheng
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences / Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No.2 Xudong 2nd Road, Wuhan, 430062, People's Republic of China.
| | - Qiong Hu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences / Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No.2 Xudong 2nd Road, Wuhan, 430062, People's Republic of China.
| |
Collapse
|
84
|
Velásquez AC, Castroverde CDM, He SY. Plant-Pathogen Warfare under Changing Climate Conditions. Curr Biol 2019; 28:R619-R634. [PMID: 29787730 DOI: 10.1016/j.cub.2018.03.054] [Citation(s) in RCA: 358] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Global environmental changes caused by natural and human activities have accelerated in the past 200 years. The increase in greenhouse gases is predicted to continue to raise global temperature and change water availability in the 21st century. In this Review, we explore the profound effect the environment has on plant diseases - a susceptible host will not be infected by a virulent pathogen if the environmental conditions are not conducive for disease. The change in CO2 concentrations, temperature, and water availability can have positive, neutral, or negative effects on disease development, as each disease may respond differently to these variations. However, the concept of disease optima could potentially apply to all pathosystems. Plant resistance pathways, including pattern-triggered immunity to effector-triggered immunity, RNA interference, and defense hormone networks, are all affected by environmental factors. On the pathogen side, virulence mechanisms, such as the production of toxins and virulence proteins, as well as pathogen reproduction and survival are influenced by temperature and humidity. For practical reasons, most laboratory investigations into plant-pathogen interactions at the molecular level focus on well-established pathosystems and use a few static environmental conditions that capture only a fraction of the dynamic plant-pathogen-environment interactions that occur in nature. There is great need for future research to increasingly use dynamic environmental conditions in order to fully understand the multidimensional nature of plant-pathogen interactions and produce disease-resistant crop plants that are resilient to climate change.
Collapse
Affiliation(s)
| | - Christian Danve M Castroverde
- MSU-DOE Plant Research Laboratory, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Sheng Yang He
- MSU-DOE Plant Research Laboratory, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA; Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
85
|
Chen T, Qi X, Chen M, Chen B. Gas Chromatography-Ion Mobility Spectrometry Detection of Odor Fingerprint as Markers of Rapeseed Oil Refined Grade. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2019; 2019:3163204. [PMID: 31467768 PMCID: PMC6701408 DOI: 10.1155/2019/3163204] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
In this work, gas chromatography-ion mobility spectrometry (GC-IMS) was used to analyze the volatile organic compound changes of rapeseed oil with different refined grades, the odor fingerprints of refined rapeseed oil were constructed, and a nonlinear model was built to realize rapid and accurate discrimination of rapeseed oil with different refined grades. 124 rapeseed oil samples with different refined grades were collected and analyzed by GC-IMS and chemometric tools, and 34 characteristic peaks were selected by the colorized difference method as variables to characterize the internal quality in rapeseed oil of different refined grades. The principal component analysis algorithm was used to further reduce dimensionality and extract the most relevant information. The k-nearest neighbor algorithm was applied to build a discriminant model. All the samples were recognized accurately without errors, and the results show the potential of this method to discriminate different refined grades of vegetable oil.
Collapse
Affiliation(s)
- Tong Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xingpu Qi
- Jiangsu Agri-animal Husbandry Vocational College, No. 8 East Phoenix Road, Taizhou, Jiangsu 225300, China
| | - Mingjie Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bin Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
86
|
Yang R, Deng L, Zhang L, Yue X, Mao J, Ma F, Wang X, Zhang Q, Zhang W, Li P. Comparative Metabolomic Analysis of Rapeseeds from Three Countries. Metabolites 2019; 9:metabo9080161. [PMID: 31374906 PMCID: PMC6724143 DOI: 10.3390/metabo9080161] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 01/15/2023] Open
Abstract
Rapeseed is an important oilseed with proper fatty acid composition and abundant bioactive components. Canada and China are the two major rapeseed-producing countries all over the world. Meanwhile, Canada and Mongolia are major importers of rapeseed due to the great demand for rapeseed in China. To investigate the metabolites in rapeseeds from three countries, ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS)-based metabolomics was employed to analyze rapeseeds from China, Canada, and Mongolia. As results, 67, 53, and 68 metabolites showed significant differences between Chinese and Canadian, Chinese and Mongolian, and Canadian and Mongolian rapeseeds, respectively. Differential metabolites were mainly distributed in the metabolic pathways including phenylpropanoid biosynthesis, flavone and flavonol biosynthesis, and ubiquinone and other terpenoid-quinone biosynthesis. Among the differential metabolites, contents of sinapate and sinapine were higher in Chinese rapeseeds, while the contents of brassicasterol, stigmasterol, and campestanol were higher in Canadian rapeseeds. These findings might provide insight into the metabolic characteristics of rapeseeds from three countries to guide processing and consumption of the products of rapeseed.
Collapse
Affiliation(s)
- Ruinan Yang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Ligang Deng
- Institute of Agricultural Quality Standards and Testing Technology Research, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Liangxiao Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Xiaofeng Yue
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Jin Mao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Fei Ma
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Xiupin Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Wen Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
- Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
| |
Collapse
|
87
|
Zhai Y, Cai S, Hu L, Yang Y, Amoo O, Fan C, Zhou Y. CRISPR/Cas9-mediated genome editing reveals differences in the contribution of INDEHISCENT homologues to pod shatter resistance in Brassica napus L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2111-2123. [PMID: 30980103 DOI: 10.1007/s00122-019-03341-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/05/2019] [Indexed: 05/22/2023]
Abstract
The INDEHISCENT (IND) and ALCATRAZ (ALC) gene homologues have been reported to be essential for dehiscence of fruits in Brassica species. But their functions for pod shatter resistance in Brassica napus, an important oil crops, are not well understood. Here, we assessed the functions of these two genes in rapeseed using CRISPR/Cas9 technology. The induced mutations were stably transmitted to successive generations, and a variety of homozygous mutants with loss-of-function alleles of the target genes were obtained for phenotyping. The results showed that the function of BnIND gene is essential for pod shatter and highly conserved in Brassica species, whereas the BnALC gene appears to have limited potential for rapeseed shatter resistance. The homoeologous copies of the BnIND gene have partially redundant roles in rapeseed pod shatter, with BnA03.IND exhibiting higher contributions than BnC03.IND. Analysis of data obtained from the gene expression and sequence variations of gene copies revealed that cis-regulatory divergences alter gene expression and underlie the functional differentiation of BnIND homologues. Collectively, our results generate valuable resources for rapeseed breeding programs, and more importantly provide a strategy to improve polyploid crops.
Collapse
Affiliation(s)
- Yungu Zhai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shengli Cai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Limin Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Olalekan Amoo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
88
|
Qu W, Zhang X, Han X, Wang Z, He R, Ma H. Structure and functional characteristics of rapeseed protein isolate-dextran conjugates. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.03.039] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
89
|
Pommerrenig B, Junker A, Abreu I, Bieber A, Fuge J, Willner E, Bienert MD, Altmann T, Bienert GP. Identification of Rapeseed ( Brassica napus) Cultivars With a High Tolerance to Boron-Deficient Conditions. FRONTIERS IN PLANT SCIENCE 2018; 9:1142. [PMID: 30131820 PMCID: PMC6091279 DOI: 10.3389/fpls.2018.01142] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/17/2018] [Indexed: 05/22/2023]
Abstract
Boron (B) is an essential micronutrient for seed plants. Information on B-efficiency mechanisms and B-efficient crop and model plant genotypes is very scarce. Studies evaluating the basis and consequences of B-deficiency and B-efficiency are limited by the facts that B occurs as a trace contaminant essentially everywhere, its bioavailability is difficult to control and soil-based B-deficiency growth systems allowing a high-throughput screening of plant populations have hitherto been lacking. The crop plant Brassica napus shows a very high sensitivity toward B-deficient conditions. To reduce B-deficiency-caused yield losses in a sustainable manner, the identification of B-efficient B. napus genotypes is indispensable. We developed a soil substrate-based cultivation system which is suitable to study plant growth in automated high-throughput phenotyping facilities under defined and repeatable soil B conditions. In a comprehensive screening, using this system with soil B concentrations below 0.1 mg B (kg soil)-1, we identified three highly B-deficiency tolerant B. napus cultivars (CR2267, CR2280, and CR2285) among a genetically diverse collection comprising 590 accessions from all over the world. The B-efficiency classification of cultivars was based on a detailed assessment of various physical and high-throughput imaging-based shoot and root growth parameters in soil substrate or in in vitro conditions, respectively. We identified cultivar-specific patterns of B-deficiency-responsive growth dynamics. Elemental analysis revealed striking differences only in B contents between contrasting genotypes when grown under B-deficient but not under standard conditions. Results indicate that B-deficiency tolerant cultivars can grow with a very limited amount of B which is clearly below previously described critical B-tissue concentration values. These results suggest a higher B utilization efficiency of CR2267, CR2280, and CR2285 which would represent a unique trait among so far identified B-efficient B. napus cultivars which are characterized by a higher B-uptake capacity. Testing various other nutrient deficiency treatments, we demonstrated that the tolerance is specific for B-deficient conditions and is not conferred by a general growth vigor at the seedling stage. The identified B-deficiency tolerant cultivars will serve as genetic and physiological "tools" to further understand the mechanisms regulating the B nutritional status in rapeseed and to develop B-efficient elite genotypes.
Collapse
Affiliation(s)
- Benjamin Pommerrenig
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Astrid Junker
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Isidro Abreu
- Department of Biology, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Annett Bieber
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Jacqueline Fuge
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Evelin Willner
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Manuela D. Bienert
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Thomas Altmann
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Gerd P. Bienert
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| |
Collapse
|
90
|
Wang B, Wu Z, Li Z, Zhang Q, Hu J, Xiao Y, Cai D, Wu J, King GJ, Li H, Liu K. Dissection of the genetic architecture of three seed-quality traits and consequences for breeding in Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1336-1348. [PMID: 29265559 PMCID: PMC5999192 DOI: 10.1111/pbi.12873] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/20/2017] [Accepted: 12/12/2017] [Indexed: 05/08/2023]
Abstract
Genome-wide association studies (GWASs) combining high-throughput genome resequencing and phenotyping can accelerate the dissection of genetic architecture and identification of genes for plant complex traits. In this study, we developed a rapeseed genomic variation map consisting of 4 542 011 SNPs and 628 666 INDELs. GWAS was performed for three seed-quality traits, including erucic acid content (EAC), glucosinolate content (GSC) and seed oil content (SOC) using 3.82 million polymorphisms in an association panel. Six, 49 and 17 loci were detected to be associated with EAC, GSC and SOC in multiple environments, respectively. The mean total contribution of these loci in each environment was 94.1% for EAC and 87.9% for GSC, notably higher than that for SOC (40.1%). A high correlation was observed between phenotypic variance and number of favourable alleles for associated loci, which will contribute to breeding improvement by pyramiding these loci. Furthermore, candidate genes were detected underlying associated loci, based on functional polymorphisms in gene regions where sequence variation was found to correlate with phenotypic variation. Our approach was validated by detection of well-characterized FAE1 genes at each of two major loci for EAC on chromosomes A8 and C3, along with MYB28 genes at each of three major loci for GSC on chromosomes A9, C2 and C9. Four novel candidate genes were detected by correlation between GSC and SOC and observed sequence variation, respectively. This study provides insights into the genetic architecture of three seed-quality traits, which would be useful for genetic improvement of B. napus.
Collapse
Affiliation(s)
- Bo Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Zhikun Wu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Zhaohong Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Jianlin Hu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Yingjie Xiao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Dongfang Cai
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Jiangsheng Wu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Graham J. King
- Southern Cross Plant ScienceSouthern Cross UniversityLismoreNSWAustralia
| | - Haitao Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Kede Liu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| |
Collapse
|
91
|
Qu W, Zhang X, Chen W, Wang Z, He R, Ma H. Effects of ultrasonic and graft treatments on grafting degree, structure, functionality, and digestibility of rapeseed protein isolate-dextran conjugates. ULTRASONICS SONOCHEMISTRY 2018; 42:250-259. [PMID: 29429667 DOI: 10.1016/j.ultsonch.2017.11.021] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 05/24/2023]
Abstract
Rapeseed protein isolate (RPI) and dextran conjugates were prepared by traditional and ultrasonic assisted wet-heating. The effects on the grafting degree (GD), structure, functionality, and digestibility of conjugates were studied. Ultrasonic frequency, temperature, and time all significantly affected the GD. Under the optimum conditions (temperature of 90 °C and time of 60 min), compared to traditional wet-heating, ultrasonic treatment at 28 kHz significantly increased the GD by 2.12 times. Compared to RPI, surface hydrophobicities of conjugates were significantly decreased by graft and ultrasonic treatments. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and amino acid composition results confirmed that traditional graft reaction involved cysteine (Cys) and lysine (Lys) whereas the ultrasonic assisted one involved only Cys. Both were from the 12S globulin subunit and cruciferin. Fourier transform infrared spectrum (FT-IR) and circular dichroism (CD) results showed that graft treatment significantly changed secondary structure and ultrasonic treatment had the greatest impact on the decrease in the β-sheet (19.1%) and the increase in the random coil (49.6%). Graft and ultrasonic treatments both made surface structure looser and more porous. The two treatments also caused molecular weight to become bigger, and ultrasonic treatment had the greatest effect on the increase (68.2%) in 110-20.5 kDa. Structural modifications of RPI by grafting to dextran caused improvements of solubility (at pH 5-6), emulsifying activity (at pH 4-10), emulsion stability (at pH 4-5 and 9-10), and thermal stability (at temperature 90-100 °C). The digestibility of conjugates was decreased by graft and ultrasonic treatments and the conjugates were mainly digested in the intestinal phase. The ultrasonic assisted wet-heating was an efficient and safe method for producing RPI-dextran conjugates and improving the utilization value of rapeseed meal.
Collapse
Affiliation(s)
- Wenjuan Qu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road Zhenjiang, Jiangsu 212013, China
| | - Xinxin Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road Zhenjiang, Jiangsu 212013, China
| | - Weiyu Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road Zhenjiang, Jiangsu 212013, China
| | - Zhiping Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road Zhenjiang, Jiangsu 212013, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road Zhenjiang, Jiangsu 212013, China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
92
|
Xiong JL, Wang HC, Tan XY, Zhang CL, Naeem MS. 5-aminolevulinic acid improves salt tolerance mediated by regulation of tetrapyrrole and proline metabolism in Brassica napus L. seedlings under NaCl stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 124:88-99. [PMID: 29353686 DOI: 10.1016/j.plaphy.2018.01.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/27/2017] [Accepted: 01/03/2018] [Indexed: 05/20/2023]
Abstract
5-aminolevulinic acid (ALA), a key biosynthetic precursor of tetrapyrroles, is vital for plant growth and adaptation to stress environments. Although exogenous ALA could enhance photosynthesis and biomass accumulation in plants under stress conditions, the underlying physiological and molecular mechanisms governed by ALA in promoting salt tolerance in Brassica napus L. are not yet clearly understood. In the present study, exogenous ALA with the concentration of 30 mg L-1 was applied to the leaves of B. napus seedlings subjected to 200 mM NaCl. The results showed that NaCl stress decreased the photosynthesis, biomass accumulation, and levels of chlorophyll and heme with the reduction of the concentrations of intermediates including ALA, protoporphyrin IX (Proto IX), Mg-Proto IX, and Pchlide in the tetrapyrrole (chlorophyll and heme) biosynthetic pathway. The transcript levels of genes encoding ALA-associated enzymes and genes encoding Mg-chelatase in the chlorophyll biosynthetic branch were down-regulated, while the expression levels of genes encoding Fe-chelatase in the heme branch were not significantly altered by NaCl stress. Foliar application with ALA enhanced the aboveground biomass, net photosynthetic rate, activities of antioxidant enzymes, accumulation of chlorophyll and heme, and concentrations of intermediates related to chlorophyll and heme biosynthesis in B. napus under 200 mM NaCl. The expression of most genes mentioned above remained constant in ALA-treated plants in comparison with non-ALA-treated plants under NaCl stress. Additionally, exogenous ALA synchronously induced the proline concentration and up-regulated the expression of genes P5CS and ProDH encoding proline metabolic enzymes in the NaCl treatment. These findings suggested that ALA improved salt tolerance through promoting the accumulation of chlorophyll and heme resulting from the increase of intermediate levels in the tetrapyrrole biosynthetic pathway, along with enhancing the proline accumulation in B. napus.
Collapse
Affiliation(s)
- Jun-Lan Xiong
- Oilcrops Research Institute, Chinese Academy of Agricultural Science, Wuhan 430062, China
| | - Hang-Chao Wang
- Oilcrops Research Institute, Chinese Academy of Agricultural Science, Wuhan 430062, China
| | - Xiao-Yu Tan
- Oilcrops Research Institute, Chinese Academy of Agricultural Science, Wuhan 430062, China
| | - Chun-Lei Zhang
- Oilcrops Research Institute, Chinese Academy of Agricultural Science, Wuhan 430062, China; Key Laboratory of Biology and Genetic Improvement of Oilcrops, Ministry of Agriculture, Wuhan 430062, China.
| | | |
Collapse
|
93
|
Ling J, Li R, Nwafor CC, Cheng J, Li M, Xu Q, Wu J, Gan L, Yang Q, Liu C, Chen M, Zhou Y, Cahoon EB, Zhang C. Development of iFOX-hunting as a functional genomic tool and demonstration of its use to identify early senescence-related genes in the polyploid Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:591-602. [PMID: 28718508 PMCID: PMC5787830 DOI: 10.1111/pbi.12799] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/29/2017] [Accepted: 07/12/2017] [Indexed: 05/20/2023]
Abstract
Functional genomic studies of many polyploid crops, including rapeseed (Brassica napus), are constrained by limited tool sets. Here we report development of a gain-of-function platform, termed 'iFOX (inducible Full-length cDNA OvereXpressor gene)-Hunting', for inducible expression of B. napus seed cDNAs in Arabidopsis. A Gateway-compatible plant gene expression vector containing a methoxyfenozide-inducible constitutive promoter for transgene expression was developed. This vector was used for cloning of random cDNAs from developing B. napus seeds and subsequent Agrobacterium-mediated transformation of Arabidopsis. The inducible promoter of this vector enabled identification of genes upon induction that are otherwise lethal when constitutively overexpressed and to control developmental timing of transgene expression. Evaluation of a subset of the resulting ~6000 Arabidopsis transformants revealed a high percentage of lines with full-length B. napus transgene insertions. Upon induction, numerous iFOX lines with visible phenotypes were identified, including one that displayed early leaf senescence. Phenotypic analysis of this line (rsl-1327) after methoxyfenozide induction indicated high degree of leaf chlorosis. The integrated B. napuscDNA was identified as a homolog of an Arabidopsis acyl-CoA binding protein (ACBP) gene designated BnACBP1-like. The early senescence phenotype conferred by BnACBP1-like was confirmed by constitutive expression of this gene in Arabidopsis and B. napus. Use of the inducible promoter in the iFOX line coupled with RNA-Seq analyses allowed mechanistic clues and a working model for the phenotype associated with BnACBP1-like expression. Our results demonstrate the utility of iFOX-Hunting as a tool for gene discovery and functional characterization of Brassica napus genome.
Collapse
Affiliation(s)
- Juan Ling
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Renjie Li
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Chinedu Charles Nwafor
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Department of Crop ScienceBenson Idahosa UniversityBenin CityNigeria
| | - Junluo Cheng
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Maoteng Li
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Qing Xu
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jian Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouChina
| | - Lu Gan
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Qingyong Yang
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Chao Liu
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ming Chen
- Center for Plant Science Innovation and Department of BiochemistryUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Yongming Zhou
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Edgar B. Cahoon
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Center for Plant Science Innovation and Department of BiochemistryUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Chunyu Zhang
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
94
|
Alteration in yield and oil quality traits of winter rapeseed by lodging at different planting density and nitrogen rates. Sci Rep 2018; 8:634. [PMID: 29330468 PMCID: PMC5766575 DOI: 10.1038/s41598-017-18734-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/16/2017] [Indexed: 11/25/2022] Open
Abstract
Lodging is a factor that negatively affects yield, seed quality, and harvest ability in winter rapeseed (Brassica napus L.). In this study, we quantified the lodging-induced yield losses, changes in fatty acid composition, and oil quality in rapeseed under different nitrogen application rates and planting densities. Field experiments were conducted in 2014–2017 for studying the effect of manually-induced lodging angles (0°, 30°, 60°, and 90°), 10, 20 and 30 d post-flowering at different densities and nitrogen application rates. The fertilization/planting density combination N270D45 produced the maximum observed yield and seed quality. Timing and angle of lodging had significant effects on yield. Lodging at 90° induced at 10 d post-flowering caused the maximum reduction in yield, biomass, and silique photosynthesis. Seed yield losses were higher at high N application rates, the maximum being at N360D45. Lodging decreased seed oil content and altered its fatty acid composition by increasing stearic and palmitic acid content, while decreasing linoleic and linolenic acid content, and deteriorating oil quality by increasing erucic acid and glucosinolate content. Therefore, lodging-induced yield loss and reduction in oil content might be reduced by selecting optimum N level and planting density.
Collapse
|
95
|
Li C, Hao M, Wang W, Wang H, Chen F, Chu W, Zhang B, Mei D, Cheng H, Hu Q. An Efficient CRISPR/Cas9 Platform for Rapidly Generating Simultaneous Mutagenesis of Multiple Gene Homoeologs in Allotetraploid Oilseed Rape. FRONTIERS IN PLANT SCIENCE 2018; 9:442. [PMID: 29731757 PMCID: PMC5920024 DOI: 10.3389/fpls.2018.00442] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/21/2018] [Indexed: 05/20/2023]
Abstract
With the rapid development of sequence specific nucleases (SSNs) for genome targeting, clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) is now considered the most promising method for functional genetic researches, as well as genetic improvement in crop plants. However, the gene redundancy feature within the allotetraploid rapeseed genome is one of the major obstacles for simultaneous modification of different homologs in the first generation. In addition, large scale screening to identify mutated transgenic plants is very time-and labor-consuming using the conventional restriction enzyme-based approaches. In this study, a streamlined rapeseed CRISPR-Cas9 genome editing platform was developed through synthesizing a premade U6-26 driven sgRNA expression cassette and optimizing polyacrylamide gel electrophoresis (PAGE)-based screening approach. In our experiment, a sgRNA was constructed to target five rapeseed SPL3 homologous gene copies, BnSPL3-A5/BnSPL3-A4/BnSPL3-C3/BnSPL3-C4/BnSPL3-Cnn. High-throughput sequencing analysis demonstrated that the editing frequency of CRISPR/Cas9-induced mutagenesis ranged from 96.8 to 100.0% in plants with obvious heteroduplexed PAGE bands, otherwise this proportion was only 0.00-60.8%. Consistent with those molecular analyses, Bnspl3 mutants exhibited developmental delay phenotype in the first generation. In summary, our data suggest that this set of CRISPR/Cas9 platform is qualified for rapidly generating and identifying simultaneous mutagenesis of multiple gene homologs in allotetraploid rapeseed.
Collapse
Affiliation(s)
- Chao Li
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Mengyu Hao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Wenxiang Wang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Hui Wang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Fan Chen
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Wen Chu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Desheng Mei
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Hongtao Cheng
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
- Hongtao Cheng
| | - Qiong Hu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
- *Correspondence: Qiong Hu
| |
Collapse
|
96
|
Khan S, Anwar S, Kuai J, Ullah S, Fahad S, Zhou G. Optimization of Nitrogen Rate and Planting Density for Improving Yield, Nitrogen Use Efficiency, and Lodging Resistance in Oilseed Rape. FRONTIERS IN PLANT SCIENCE 2017; 8:532. [PMID: 28536581 PMCID: PMC5423294 DOI: 10.3389/fpls.2017.00532] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 03/24/2017] [Indexed: 06/07/2023]
Abstract
Yield and lodging related traits are essential for improving rapeseed production. The objective of the present study was to investigate the influence of plant density (D) and nitrogen (N) rates on morphological and physiological traits related to yield and lodging in rapeseed. We evaluated Huayouza 9 for two consecutive growing seasons (2014-2016) under three plant densities (LD, 10 plants m-2; MD, 30 plants m-2; HD, 60 plants m-2) and four N rates (0, 60, 120, and 180 kg ha-1). Experiment was laid out in split plot design using density as a main factor and N as sub-plot factor with three replications each. Seed yield was increased by increasing density and N rate, reaching a peak at HD with 180 kg N ha-1. The effect of N rate was consistently positive in increasing the plant height, pod area index, 1,000 seed weight, shoot and root dry weights, and root neck diameter, reaching a peak at 180 kg N ha-1. Plant height was decreased by increasing D, whereas the maximum radiation interception (~80%) and net photosynthetic rate were recorded at MD at highest N. Lodging resistance and nitrogen use efficiency significantly increased with increasing D from 10 to 30 plants m-2, and N rate up to 120 kg ha-1, further increase of D and N decreased lodging resistance and NUE. Hence, our study implies that planting density 30 plants m-2 can improve yield, nitrogen use efficiency, and enhance lodging resistance by improving crop canopy.
Collapse
|