51
|
Arena D, Nguyen C, Ali LMA, Verde-Sesto E, Iturrospe A, Arbe A, İşci U, Şahin Z, Dumoulin F, Gary-Bobo M, Pomposo JA. Amphiphilic Single-Chain Polymer Nanoparticles as Imaging and Far-Red Photokilling Agents for Photodynamic Therapy in Zebrafish Embryo Xenografts. Adv Healthc Mater 2024; 13:e2401683. [PMID: 38973211 DOI: 10.1002/adhm.202401683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/18/2024] [Indexed: 07/09/2024]
Abstract
This work introduces rationally designed, improved amphiphilic single-chain polymer nanoparticles (SCNPs) for imaging and photodynamic therapy (PDT) in zebrafish embryo xenografts. SCNPs are ultrasmall polymeric nanoparticles with sizes similar to proteins, making them ideal for biomedical applications. Amphiphilic SCNPs result from the self-assembly in water of isolated synthetic polymeric chains through intrachain hydrophobic interactions, mimicking natural biomacromolecules and, specially, proteins (in size and when loaded with drugs, metal ions or fluorophores also in function). These ultrasmall, soft nanoparticles have various applications, including catalysis, sensing, and nanomedicine. Initial in vitro experiments with nonfunctionalized, amphiphilic SCNPs loaded with a photosensitizing Zn phthalocyanine with four nonperipheral isobutylthio substituents, ZnPc, showed promise for PDT. Herein, the preparation of improved, amphiphilic SCNPs containing ZnPc as highly efficient photosensitizer encapsulated within the nanoparticle and surrounded by anthracene units is disclosed. The amount of anthracene groups and ZnPc molecules within each single-chain nanoparticle controls the imaging and PDT properties of these nanocarriers. Critically, this work opens the way to improved PDT applications based on amphiphilic SCNPs as a first step toward ideal, long-term artificial photo-oxidases (APO).
Collapse
Affiliation(s)
- Davide Arena
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel Lardizabal 5, Donostia, 20018, Spain
| | - Christophe Nguyen
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, Montpellier, 34293, France
| | - Lamiaa M A Ali
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, Montpellier, 34293, France
- Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria, 21561, Egypt
| | - Ester Verde-Sesto
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel Lardizabal 5, Donostia, 20018, Spain
- IKERBASQUE - Basque Foundation for Science, Plaza de Euskadi 5, Bilbao, 48009, Spain
| | - Amaia Iturrospe
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel Lardizabal 5, Donostia, 20018, Spain
| | - Arantxa Arbe
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel Lardizabal 5, Donostia, 20018, Spain
| | - Umit İşci
- Marmara University, Faculty of Technology, Department of Metallurgical and Materials Engineering, Istanbul, Turkey
| | - Zeynel Şahin
- Marmara University, Faculty of Technology, Department of Metallurgical and Materials Engineering, Istanbul, Turkey
| | - Fabienne Dumoulin
- Acıbadem Mehmet Ali Aydınlar University, Faculty of Engineering and Natural Sciences, Department of Biomedical Engineering, Istanbul, Turkey
| | - Magali Gary-Bobo
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, Montpellier, 34293, France
| | - José A Pomposo
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel Lardizabal 5, Donostia, 20018, Spain
- IKERBASQUE - Basque Foundation for Science, Plaza de Euskadi 5, Bilbao, 48009, Spain
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, University of the Basque Country (UPV/EHU), Donostia, 20800, Spain
| |
Collapse
|
52
|
Poma P, Rigogliuso S, Labbozzetta M, Carfì Pavia F, Carbone C, Ma J, Cusimano A, Notarbartolo M. Antimigratory effects of a new NF-κB inhibitor, (S)-b-salicyloylamino-a-exo-methylene-ƴ-butyrolactone, in 2D and 3D breast cancer models. Biomed Pharmacother 2024; 180:117552. [PMID: 39426283 DOI: 10.1016/j.biopha.2024.117552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
One of the pharmacological approaches to neoplastic disease aims to target the metastatic capacity of tumor cells to reduce their aggressive behavior. In this study, we analyzed the antimigratory capacity of the compound SEMBL, (S)-β-salicyloylamino-a-exo-methylene-ƴ-butyrolactone, a new analog of (-)-Dehydroxymethylepoxyquinomicin ((-)-DHMEQ), in three different breast cancer cell lines: MCF-7, MCF-7R and MDA-MB-231. This molecule is characterized by intense antiproliferative activity, evaluated by MTS assay, showing greater potency than DHMEQ. SEMBL was able to inhibit nuclear factor κappa B (NF-κB) activation observed through TransAM™ assay, while cell invasion and wound healing assays revealed a strong reduction in invasive capacity mediated by metalloproteinase 2 (MMP-2) and Vimentin decrease. These results, obtained in vitro, were corroborated on 3D systems made up of Poly-L-Lactic Acid (PLLA) scaffolds. In summary, SEMBL exerts interesting anti-tumor activities in preclinical breast cancer models and therefore it could be a promising new molecule to be studied also in other types of neoplastic disease.
Collapse
Affiliation(s)
- Paola Poma
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.
| | - Salvatrice Rigogliuso
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Manuela Labbozzetta
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | | | - Camilla Carbone
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Jun Ma
- Department of Research and Development, Shenzhen Wanhe Pharmaceutical Co., Ltd., Shenzhen, China
| | - Alessandra Cusimano
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Monica Notarbartolo
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| |
Collapse
|
53
|
de Souza JS, Kliemann N, Vieira FGK, Al Nahas A, Reitz LK, Aglago EK, Copetti CLK, Vieira LC, Huybrechts I, de Pinho NB, Di Pietro PF. Development, Content Validity and Usability of a Self-Assessment Instrument for the Lifestyle of Breast Cancer Survivors in Brazil. Nutrients 2024; 16:3707. [PMID: 39519541 PMCID: PMC11547887 DOI: 10.3390/nu16213707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Breast cancer is the most common cancer among women globally, and it negatively impacts diet and quality of life, increasing the risk of recurrence. Adhering to World Cancer Research Fund (WCRF) and American Institute for Cancer Research (AICR) lifestyle guidelines, such as healthy eating habits and nutritional status, can help in primary and secondary cancer prevention. However, no questionnaire was found for self-assessment of these guidelines for the Brazilian population. The aim of this study is to carry out content validity, pilot, and usability testing of the self-administered digital instrument "PrevCancer" assessing adherence to the WCRF/AICR recommendations in Brazilian female breast cancer survivors. METHODS We conducted a psychometric study that involved the development of an instrument based on WCRF/AICR recommendations. Assessment of content validity involved the Content Validity Index (CVI) based on expert assessments (n = 7). The pilot study involved the System Usability Scale (SUS) after applying the developed instrument (n = 65) and anthropometric assessment for convergent validity by female participants (n = 55). The final usability test consisted of evaluating the satisfaction with the instrument of women with breast cancer (n = 14). RESULTS The "PrevCancer" instrument demonstrated good content (CVI = 1.0) as well as good usability and acceptability in the pilot study (mean SUS score = 88.1). The convergent validity stage demonstrated positive associations between the PrevCancer parameters and anthropometric parameters (p < 0.001). In the final usability study (mean SUS score = 90.3), participants' receptivity to the instrument was excellent. CONCLUSIONS The PrevCancer instrument had valid content and great usability by the target population, proving to be a useful tool for future cancer research.
Collapse
Affiliation(s)
- Jaqueline Schroeder de Souza
- Post Graduate Program in Nutrition, Federal University of Santa Catarina, Florianopolis 88040-900, Brazil; (J.S.d.S.); (F.G.K.V.); (C.L.K.C.); (L.C.V.)
| | | | - Francilene Gracieli Kunradi Vieira
- Post Graduate Program in Nutrition, Federal University of Santa Catarina, Florianopolis 88040-900, Brazil; (J.S.d.S.); (F.G.K.V.); (C.L.K.C.); (L.C.V.)
| | - Aline Al Nahas
- International Agency for Research on Cancer, 69366 Lyon, France; (A.A.N.); (I.H.)
| | - Luiza Kuhnen Reitz
- Florianopolis Specialized Oncology Center, Florianopolis 88032-005, Brazil;
| | - Elom Kouassivi Aglago
- School of Public Health, Imperial College London, St Mary Campus, Norfolk Place, London W12 0BZ, UK;
| | - Cândice Laís Knöner Copetti
- Post Graduate Program in Nutrition, Federal University of Santa Catarina, Florianopolis 88040-900, Brazil; (J.S.d.S.); (F.G.K.V.); (C.L.K.C.); (L.C.V.)
| | - Lilian Cardoso Vieira
- Post Graduate Program in Nutrition, Federal University of Santa Catarina, Florianopolis 88040-900, Brazil; (J.S.d.S.); (F.G.K.V.); (C.L.K.C.); (L.C.V.)
| | - Inge Huybrechts
- International Agency for Research on Cancer, 69366 Lyon, France; (A.A.N.); (I.H.)
| | | | - Patricia Faria Di Pietro
- Post Graduate Program in Nutrition, Federal University of Santa Catarina, Florianopolis 88040-900, Brazil; (J.S.d.S.); (F.G.K.V.); (C.L.K.C.); (L.C.V.)
| |
Collapse
|
54
|
Chen Y, Zuo X, Tang Y, Zhou Z. The effects of Tai Chi and Baduanjin on breast cancer patients: systematic review and meta-analysis of randomized controlled trials. Front Oncol 2024; 14:1434087. [PMID: 39529823 PMCID: PMC11551136 DOI: 10.3389/fonc.2024.1434087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024] Open
Abstract
Background Tai Chi and Baduanjin are nonpharmacological interventions that are widely applied among cancer patients. Objective This meta-analysis aimed to assess the effect of Tai Chi and Baduanjin on breast cancer patients by summarizing and pooling the results of previous studies. Methods The PubMed, Embase, Web of Science, Scopus and Cochrane Library and several databases were searched up to December 1, 2023, to identify high-quality RCTs. Relevant terms such as Tai Chi and Baduanjin were used as keywords. Stata 15.0 software and Review Manager (version 5.3; Cochrane Training) were used to screen the studies, extract the data, code the data, and perform the meta-analysis. The mean differences (MDs) and standardized mean differences (SMDs) with 95% CIs were used to calculate continuous variables. The Cochrane risk of bias assessment tool was used to evaluate the risk of bias. The PICOS framework was used to develop the following eligibility criteria: (i) population - breast cancer patients; (ii) intervention - Tai Chi and Baduanjin intervention; (iii) comparison - Tai Chi and Baduanjin group and different intervention (e.g., regular intervention, routine rehabilitation training, waiting list, sham Qigong, usual care, no intervention); (iv) outcomes - cognitive ability, shoulder joint function, anxiety, depression, fatigue, sleep quality, quality of life; and (v) study design - randomized controlled trial. Results From January 2013 to December 2023, we included a total of 16 RCTs involving 1247 patients. A total of 647 patients were in the experimental group and were treated with Tai Chi and Baduanjin, while 600 patients were in the control group and were treated with traditional methods. The results of our meta-analysis indicate that Tai Chi and Baduanjin yield outcomes that are comparable to those of traditional treatment methods. Specifically, Tai Chi and Baduanjin significantly increased cognitive function, increased shoulder joint function, improved sleep quality indicators and improved quality of life indicators. Furthermore, Tai Chi and Baduanjin significantly reduced anxiety symptoms, depression symptoms, and fatigue symptoms among breast cancer patients. Sensitivity analysis was performed, a funnel plot was constructed. No publication bias was indicated by Egger's or Begg's test. Conclusion Overall, Tai Chi and Baduanjin are viable and effective nonpharmacological approaches for treating breast cancer patients, as they yield better results than traditional treatment methods. However, these findings should be interpreted with caution due to the limited number of controlled trials, small sample sizes, and low quality of the evidence. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023469301.
Collapse
Affiliation(s)
- Yifang Chen
- Institution of Policy Studies, Lingnan University, Tuen Mun, Hong Kong SAR, China
| | - Xinyi Zuo
- Sociology Department, School of Government, Shenzhen University, Shenzhen, Guangdong, China
| | - Yong Tang
- Sociology Department, School of Government, Shenzhen University, Shenzhen, Guangdong, China
| | | |
Collapse
|
55
|
Liu H, Lu Y, Zong J, Zhang B, Li X, Qi H, Yu T, Li Y. Engineering dendritic cell biomimetic membrane as a delivery system for tumor targeted therapy. J Nanobiotechnology 2024; 22:663. [PMID: 39465376 PMCID: PMC11520105 DOI: 10.1186/s12951-024-02913-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024] Open
Abstract
Targeted immunotherapies make substantial strides in clinical cancer care due to their ability to counteract the tumor's capacity to suppress immune responses. Advances in biomimetic technology with minimally immunogenic and highly targeted, are addressing issues of targeted drug delivery and disrupting the tumor's immunosuppressive environment to trigger immune activation. Specifically, the use of dendritic cell (DC) membranes to coat nanoparticles ensures targeted delivery due to DC's unique ability to activate naive T cells, spotlighting their role in immunotherapy aimed at disrupting the tumor microenvironment. The potential of DC's biomimetic membrane to mediate immune activation and target tumors is gaining momentum, enhancing the effectiveness of cancer treatments in conjunction with other immune responses. This review delves into the methodologies behind crafting DC membranes and the fusion of dendritic and tumor cell membranes for encapsulating therapeutic nanoparticles. It explores their applications and recent advancements in combating cancer, offering an all-encompassing perspective on DC biomimetic nanosystems, immunotherapy driven by antigen presentation, and the collaborative efforts of drug delivery in chemotherapy and photodynamic therapies. Current evidence shows promise in augmenting combined therapeutic approaches for cancer treatment and holds translational potential for various cancer treatments in a clinical setting.
Collapse
Affiliation(s)
- Huiyang Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, People's Republic of China
| | - Yiming Lu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, People's Republic of China
| | - Jinbao Zong
- Clinical Laboratory, Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, 266000, People's Republic of China
| | - Bei Zhang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xiaolu Li
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Hongzhao Qi
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China.
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China.
| | - Yu Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, People's Republic of China.
| |
Collapse
|
56
|
Kalaimani K, Balachandran S, Boopathy LK, Roy A, Jayachandran B, Sankaranarayanan S, Arumugam MK. Recent advancements in small interfering RNA based therapeutic approach on breast cancer. Eur J Pharmacol 2024; 981:176877. [PMID: 39128807 DOI: 10.1016/j.ejphar.2024.176877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/23/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Breast cancer (BC) is the most common and malignant tumor diagnosed in women, with 2.9 million cases in 2023 and the fifth highest cancer-causing mortality worldwide. Recent developments in targeted therapy options for BC have demonstrated the promising potential of small interfering RNA (siRNA)-based cancer therapeutic approaches. As BC continues to be a global burden, siRNA therapy emerges as a potential treatment strategy to regulate disease-related genes in other types of cancers, including BC. siRNAs are tiny RNA molecules that, by preventing their expression, can specifically silence genes linked to the development of cancer. In order to increase the stability and effectiveness of siRNA delivery to BC cells, minimize off-target effects, and improve treatment efficacy, advanced delivery technologies such as lipid nanoparticles and nanocarriers have been created. Additionally, combination therapies, such as siRNAs that target multiple pathways are used in conjunction with conventional chemotherapy agents, have shown synergistic effects in various preclinical studies, opening up new treatment options for breast cancer that are personalized and precision medicine-oriented. Targeting important genes linked to BC growth, metastasis, and chemo-resistance has been reported in BC research using siRNA-based therapies. This study reviews recent reports on therapeutic approaches to siRNA for advanced treatment of BC. Furthermore, this review evaluates the role and mechanisms of siRNA in BC and demonstrates the potential of exploiting siRNA as a novel target for BC therapy.
Collapse
Affiliation(s)
- Kathirvel Kalaimani
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Shana Balachandran
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Lokesh Kumar Boopathy
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Anitha Roy
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India
| | - Bhuvaneshwari Jayachandran
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Sangamithra Sankaranarayanan
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Madan Kumar Arumugam
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India.
| |
Collapse
|
57
|
Zhang P, Qian N, Lai H, Chen S, Wu K, Luo X, Lei B, Liu M, Cui J. PRODH Regulates Tamoxifen Resistance through Ferroptosis in Breast Cancer Cells. Genes (Basel) 2024; 15:1316. [PMID: 39457440 PMCID: PMC11507086 DOI: 10.3390/genes15101316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Estrogen receptor-positive breast cancer accounts for around 70% of all cases. Tamoxifen, an anti-estrogenic inhibitor, is the primary drug used for this type of breast cancer treatment. However, tamoxifen resistance is a major challenge in clinics. Metabolic reprogramming, an emerging hallmark of cancer, plays a key role in cancer initiation, progression, and therapy resistance. The metabolism of non-essential amino acids such as serine, proline, and glutamine is involved in tumor metabolism reprogramming. Although the association of glutamine metabolism with tamoxifen resistance has been well established, the role of proline metabolism and its critical enzyme PRODH is unknown. OBJECTIVE The aim of this study is to explore the role and mechanism of PRODH in tamoxifen resistance in breast cancer cells. METHODS PRODH and GPX4 expressions in tamoxifen-resistant cells were detected using real-time PCR and Western blot analysis. The breast cells' response to tamoxifen was measured using MTT assays. Trans-well assays were used to detect cell migration and invasion. A Xenograft tumor assay was used to detect the role of PRODH in tumor growth. Reactive oxygen species were measured using flow cytometry. RESULTS PRODH expression is reduced in tamoxifen-resistant cells, and its overexpression enhances tamoxifen response in vitro and in vivo. Conversely, PRODH knockdown confers tamoxifen resistance in tamoxifen-sensitive cells. Mechanistic studies show that ferroptosis is inhibited in tamoxifen-resistant cells and overexpression of PRODH restores the ferroptosis in tamoxifen-resistant cells. Moreover, Ferrostatin-1 (Fer-1), the ferroptosis inhibitor, reversed the effect of PRODH on tamoxifen resistance. CONCLUSIONS These findings suggest that PRODH regulates tamoxifen resistance by regulating ferroptosis in tamoxifen-resistant cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jiajun Cui
- The Department of Biochemistry, Medicine School, Yichun University, Yichun 336000, China (N.Q.); (K.W.); (X.L.); (B.L.); (M.L.)
| |
Collapse
|
58
|
Kim J, Chang HS, Yun HJ, Chang HJ, Park KC. New Small-Molecule SERCA Inhibitors Enhance Treatment Efficacy in Lenvatinib-Resistant Papillary Thyroid Cancer. Int J Mol Sci 2024; 25:10646. [PMID: 39408974 PMCID: PMC11476702 DOI: 10.3390/ijms251910646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Papillary thyroid cancer (PTC) is one of the most treatable forms of cancer, with many cases being fully curable. However, resistance to anticancer drugs often leads to metastasis or recurrence, contributing to the failure of cancer therapy and, ultimately, patient mortality. The mechanisms underlying molecular differences in patients with metastatic or recurrent PTC, particularly those resistant to anticancer drugs through epigenetic reprogramming, remain poorly understood. Consequently, refractory PTC presents a critical challenge, and effective therapeutic strategies are urgently needed. Therefore, this study aimed to identify small-molecule inhibitors to enhance treatment efficacy in lenvatinib-resistant PTC. We observed an increase in sarco/endoplasmic reticulum calcium ATPase (SERCA) levels in patient-derived lenvatinib-resistant PTC cells compared with lenvatinib-sensitive ones, highlighting its potential as a therapeutic target. We subsequently identified two SERCA inhibitors [candidates 40 (isoflurane) and 42 (ethacrynic acid)] through in silico screening. These candidates demonstrated significant tumor shrinkage in a xenograft tumor model and reduced cell viability in patient-derived lenvatinib-resistant PTC cells when used in combination with lenvatinib. Our findings have potential clinical value for the development of new combination therapies to effectively target highly malignant, anticancer drug-resistant cancers.
Collapse
Affiliation(s)
- Jungmin Kim
- Department of Surgery, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea;
| | - Hang-Seok Chang
- Department of Surgery, Thyroid Cancer Center, Gangnam Severance Hospital, Institute of Refractory Thyroid Cancer, Yonsei University College of Medicine, Seoul 06273, Republic of Korea; (H.-S.C.); (H.J.Y.); (H.-J.C.)
| | - Hyeok Jun Yun
- Department of Surgery, Thyroid Cancer Center, Gangnam Severance Hospital, Institute of Refractory Thyroid Cancer, Yonsei University College of Medicine, Seoul 06273, Republic of Korea; (H.-S.C.); (H.J.Y.); (H.-J.C.)
| | - Ho-Jin Chang
- Department of Surgery, Thyroid Cancer Center, Gangnam Severance Hospital, Institute of Refractory Thyroid Cancer, Yonsei University College of Medicine, Seoul 06273, Republic of Korea; (H.-S.C.); (H.J.Y.); (H.-J.C.)
| | - Ki Cheong Park
- Department of Surgery, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea;
| |
Collapse
|
59
|
Sabu N, Attia Hussein Mahmoud H, Salazar González JF, Naruboina N, Esteban Rojas Prieto S, Govender S, Ruthvik Phani Narayan V, Priyank Batukbhai B, Ahmadi Y. Role of Immunotherapy in Conjunction With the Surgical Treatment of Breast Cancer: Preoperative and Postoperative Applications. Cureus 2024; 16:e71441. [PMID: 39539894 PMCID: PMC11559439 DOI: 10.7759/cureus.71441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Breast cancer is one of the most common cancers in the world. Since the appearance of molecular medicine, the perspective of breast cancer treatment has changed, making it more successful in comparison with the treatment during previous years. Numerous ongoing trials are exploring the capacity of immunotherapy, mainly in immune checkpoint inhibitors (ICIs), in conjunction with conventional therapies or with antibody-drug conjugates (ADCs). The current narrative review discusses the advantages and limitations of immunotherapy in breast cancer treatment in conjunction with the surgical options available. Going through the modern capacity of surgery treatment and how the use of immunotherapy in conjunction with it has emerged as a transformative approach to breast cancer and listing the main complications and adverse effects caused by ICIs. We searched Google Scholar, PubMed, MEDLINE, and EMBASS. Fourteen different articles showed that the use of cytokines and cancer vaccines revealed new possibilities to treat breast cancer with antibodies against PD-1/PD-L1 (pembrolizumab), PI3K/Akt/mTOR (alpelisib and everolimus), CAR T-cell (chimeric antigen receptor), PARP (poly ADP-ribose polymerase), and CTLA4 (cytotoxic T-lymphocyte-associated protein 4), and with representative relevance of changing in tumor microenvironment. Immunotherapy made it possible to reduce recurrences, after radiotherapy and surgery. Estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2) targets show also a high effectivity. In recent years, the release of new strategies has become promising, for changing the microenvironment and de-escalation of therapy based on tumor biology, novel biomarkers, and tumor spread.
Collapse
Affiliation(s)
- Nagma Sabu
- Department of Surgery, University of Perpetual Help System Dalta - JONELTA Foundation School of Medicine, Las Pinas, PHL
| | | | | | | | | | - Seyanne Govender
- General Practice, American University of the Caribbean, Cupecoy, SXM
| | | | | | - Yasmin Ahmadi
- School of Medicine, Royal College of Surgeons in Ireland - Medical University of Bahrain, Muharraq, BHR
| |
Collapse
|
60
|
Salinas-Jazmín N, Medina-Mondragón MA, Jiménez-López J, Guerrero-Rodríguez SL, Cuautle-Rodríguez P, Velasco-Velázquez MA. Continuous exposure to doxorubicin induces stem cell-like characteristics and plasticity in MDA-MB-231 breast cancer cells identified with the SORE6 reporter. Cancer Chemother Pharmacol 2024; 94:571-583. [PMID: 39180549 PMCID: PMC11438702 DOI: 10.1007/s00280-024-04701-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/11/2024] [Indexed: 08/26/2024]
Abstract
PURPOSE Cancer stem cells (CSCs) account for recurrence and resistance to breast cancer drugs, rendering them a cause of mortality and therapeutic failure. In this study, we examined the effects of exposure to low concentrations of doxorubicin (Dox) on CSCs and non-CSCs from TNBC. METHODS The effects of Dox were studied using the SORE6 reporter system. We examined the enrichment of the CSCs population, as well as the proliferation, and death of the reporter-positive fraction (GFP + cells) by flow cytometry. The resistant and stemness phenotypes were analyzed by viability and mammosphere formation assay, respectively. We identified differentially expressed and coregulated genes by RNA-seq analysis, and the correlation between gene expression and clinical outcome was evaluated by Kaplan-Mayer analysis using public databases. RESULTS In MDAMB231 and Hs578t cells, we identified enriched subsets in the CSCs population after continuous exposure to low concentrations of Dox. Cells from these enriched cultures showed resistance to toxic concentrations of Dox and increased efficiency of mammosphere formation. In purified GFP + or GFP- cells, Dox increased the mammosphere-forming efficiency, promoted phenotypic switches in non-CSCs populations to a CSC-like state, reduced proliferation, and induced differential gene expression. We identified several biological processes and molecular functions that partially explain the development of doxorubicin-resistant cells and cellular plasticity. Among the genes that were regulated by Dox exposure, the expression of ITGB1, SNAI1, NOTCH4, STAT5B, RAPGEF3, LAMA2, and GNAI1 was significantly associated with poor survival, the stemness phenotype, and chemoresistance. CONCLUSION The generation of chemoresistant cells that have characteristics of CSCs, after exposure to low concentrations of Dox, involves the differential expression of genes that have a clinical impact.
Collapse
Affiliation(s)
- Nohemí Salinas-Jazmín
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de Mexico, México.
| | | | - Jeannie Jiménez-López
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de Mexico, México
| | - Sandra Lucia Guerrero-Rodríguez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de Mexico, México
| | - Patricia Cuautle-Rodríguez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de Mexico, México
| | - Marco Antonio Velasco-Velázquez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de Mexico, México
| |
Collapse
|
61
|
Tinterri C, Darwish SS, Barbieri E, Sagona A, Vinci V, Gentile D. Pathologic Complete Response After Neoadjuvant Chemotherapy in Breast Cancer Patients Treated With Mastectomy: Indications for Treatment and Oncological Outcomes. Eur J Breast Health 2024; 20:277-283. [PMID: 39323311 PMCID: PMC11589190 DOI: 10.4274/ejbh.galenos.2024.2024-6-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/31/2024] [Indexed: 09/27/2024]
Abstract
Objective The aim of this study was to evaluate the clinical outcomes of breast cancer (BC) patients treated with neoadjuvant chemotherapy (NAC) followed by mastectomy, focusing on cases achieving pathologic complete response (pCR). The implications of residual ductal carcinoma in situ (DCIS) on prognosis and survival were examined. Materials and Methods A retrospective cohort study included BC patients treated with NAC followed by mastectomy at the breast unit of IRCCS Humanitas Research Hospital between March 2010 and October 2021. Patients were sub-grouped into two: Those with residual DCIS (ypTis) and those with complete response without residual tumor (ypT0). Key variables such as demographics, tumor characteristics, treatment regimens, and survival outcomes were analyzed. Results Of 681 patients treated with NAC, 175 achieved pCR, with 60 undergoing mastectomy. Among these 60 patients, 24 had residual DCIS (ypTis) while 36 had no residual invasive or in situ disease (ypT0). Patients with ypTis had higher rates of multifocal disease (62.5% vs. 27.8%, p = 0.006) and stage III disease (37.5% vs. 11.1%, p = 0.046). Triple-negative breast cancer was more prevalent in the ypT0 group (55.6% vs. 20.8%, p = 0.005). During a mean follow-up of 47 months, 11 patients experienced recurrence, with no significant differences in disease-free survival (DFS) and overall survival (OS) between the groups (p = 0.781, p = 0.963, respectively). Conclusion Residual DCIS after NAC did not significantly impact DFS or OS compared to complete pathologic response without residual DCIS. This study underscores the need for further research to refine pCR definitions and improve NAC's prognostic and therapeutic roles in BC management.
Collapse
Affiliation(s)
- Corrado Tinterri
- Clinic of Breast Unit, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University Faculty of Medicine, Milan, Italy
| | - Shadya Sara Darwish
- Department of Breast Unit, Humanitas Gavazzeni Clinical Institute, Bergamo, Italy
| | - Erika Barbieri
- Clinic of Breast Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Andrea Sagona
- Clinic of Breast Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Valeriano Vinci
- Department of Biomedical Sciences, Humanitas University Faculty of Medicine, Milan, Italy
- Department of Plastic and Reconstructive Surgery, Humanitas Clinical and Research Center-IRCCS, Milan, Italy
| | - Damiano Gentile
- Clinic of Breast Unit, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University Faculty of Medicine, Milan, Italy
| |
Collapse
|
62
|
Pradeep Prabhu P, Mohanty B, Lobo CL, Balusamy SR, Shetty A, Perumalsamy H, Mahadev M, Mijakovic I, Dubey A, Singh P. Harnessing the nutriceutics in early-stage breast cancer: mechanisms, combinational therapy, and drug delivery. J Nanobiotechnology 2024; 22:574. [PMID: 39294665 PMCID: PMC11411841 DOI: 10.1186/s12951-024-02815-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Breast cancer (BC) is a significant health challenge, ranking as the second leading cause of cancer-related death and the primary cause of mortality among women aged 45 to 55. Early detection is crucial for optimal prognosis. Among various treatment options available for cancer, chemotherapy remains the predominant approach. However, its patient-friendliness is hindered by cytotoxicity, adverse effects, multi-drug resistance, potential for recurrence, and high costs. This review explores extensively studied phytomolecules, elucidating their molecular mechanisms. It also emphasizes the importance of combination therapy, highlighting recent advancements in the exploration of diverse drug delivery systems and novel routes of administration. The regulatory considerations are crucial in translating these approaches into clinical practices. RESULTS Consequently, there is growing interest in exploring the relationship between diet, cancer, and complementary and alternative medicine (CAM) in cancer chemotherapy. Phytochemicals like berberine, curcumin, quercetin, lycopene, sulforaphane, resveratrol, epigallocatechin gallate, apigenin, genistein, thymoquinone have emerged as promising candidates due to their pleiotropic actions on target cells through multiple mechanisms with minimal toxicity effects. This review focuses on extensively studied phytomolecules, elucidating their molecular mechanisms. It also emphasizes the importance of combination therapy, highlighting recent advancements in the exploration of diverse drug delivery systems and novel routes of administration. The regulatory considerations are crucial in translating these approaches into clinical practices. CONCLUSION The present review provides a comprehensive understanding of the molecular mechanisms, coupled with well-designed clinical trials and adherence to regulatory guidelines, which pave the way for nutrition-based combination therapies to become a frontline approach in early-stage BC treatment.
Collapse
Affiliation(s)
- Pavithra Pradeep Prabhu
- Nitte (Deemed to Be University), Department of Pharmacognosy, NGSM Institute of Pharmaceutical Sciences, Mangaluru, 575018, India
| | - Barsha Mohanty
- Nitte (Deemed to Be University), Department of Molecular Genetics and Cancer Biology, Nitte University Centre for Science, Education and Research, Mangaluru, 575018, India
| | - Cynthia Lizzie Lobo
- Nitte (Deemed to Be University), Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Mangaluru, 575018, India
| | - Sri Renukadevi Balusamy
- Department of Food Science and Biotechnology, Sejong University, Gwangjin-Gu, Seoul, Republic of Korea.
| | - Amitha Shetty
- Nitte (Deemed to Be University), Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Mangaluru, 575018, India
| | - Haribalan Perumalsamy
- Center for Creative Convergence Education, Hanyang University, Seoul, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, South Korea, Hanyang University, Seoul, Republic of Korea
| | - Manohar Mahadev
- Nitte (Deemed to Be University), Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Mangaluru, 575018, India
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Akhilesh Dubey
- Nitte (Deemed to Be University), Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Mangaluru, 575018, India.
| | - Priyanka Singh
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| |
Collapse
|
63
|
Holt F, Ivanova A, Wang Z, Darby S, Duane F, Ntentas G, Oliveros S, Lavery B, Shah K, Eichholz A, Dodwell D, Taylor C. Estimated Doses to the Heart, Lungs and Oesophagus and Risks From Typical UK Radiotherapy for Early Breast Cancer During 2015-2023. Clin Oncol (R Coll Radiol) 2024; 36:e322-e332. [PMID: 38853062 PMCID: PMC11511668 DOI: 10.1016/j.clon.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 06/11/2024]
Abstract
PURPOSE Breast cancer radiotherapy can increase the risks of heart disease, lung cancer and oesophageal cancer. At present, the best dosimetric predictors of these risks are mean doses to the whole heart, lungs and oesophagus, respectively. We aimed to estimate typical doses to these organs and resulting risks from UK breast cancer radiotherapy. METHODS A systematic review and meta-analysis was conducted of planned or delivered mean doses to the whole heart, lungs or oesophagus from UK breast cancer radiotherapy in studies published during 2015-2023. Average mean doses were summarised for combinations of laterality and clinical targets. Heart disease and lung cancer mortality risks were then estimated using established models. RESULTS For whole heart, thirteen studies reported 2893 doses. Average mean doses were higher in left than in right-sided radiotherapy and increased with extent of clinical targets. For left-sided radiotherapy, average mean heart doses were: 2.0 Gy (range 1.2-8.0 Gy) breast/chest wall, 2.7 Gy (range 0.6-5.6 Gy) breast/chest wall with either axilla or supraclavicular nodes and 2.9 Gy (range 1.3-4.7 Gy) breast/chest wall with nodes including internal mammary. For right-sided radiotherapy, average mean heart doses were: 1.0 Gy (range 0.3-1.0 Gy) breast/chest wall and 1.2 Gy (range 1.0-1.4 Gy) breast/chest wall with either axilla or supraclavicular nodes. There were no whole heart dose estimates from right internal mammary radiotherapy. For whole lung, six studies reported 2230 doses. Average mean lung doses increased with extent of targets irradiated: 2.6 Gy (range 1.4-3.0 Gy) breast/chest wall, 3.0 Gy (range 0.9-5.1 Gy) breast/chest wall with either axilla or supraclavicular nodes and 7.1 Gy (range 6.7-10.0 Gy) breast/chest wall with nodes including internal mammary. For whole oesophagus, two studies reported 76 doses. Average mean oesophagus doses increased with extent of targets irradiated: 1.4 Gy (range 1.0-2.0 Gy) breast/chest wall with either axilla or supraclavicular nodes and 5.8 Gy (range 1.9-10.0 Gy) breast/chest wall with nodes including internal mammary. CONCLUSIONS The typical doses to these organs may be combined with dose-response relationships to estimate radiation risks. Estimated 30-year absolute lung cancer mortality risks from modern UK breast cancer radiotherapy for patients irradiated when aged 50 years were 2-6% for long-term continuing smokers, and <1% for non-smokers. Estimated 30-year mortality risks for heart disease were <1%.
Collapse
Affiliation(s)
- F Holt
- Nuffield Department of Population Health, University of Oxford, UK
| | - A Ivanova
- Nuffield Department of Population Health, University of Oxford, UK; Canadian Nuclear Safety Commission, Ottawa, Canada
| | - Z Wang
- Nuffield Department of Population Health, University of Oxford, UK
| | - S Darby
- Nuffield Department of Population Health, University of Oxford, UK
| | - F Duane
- St. Luke's Radiation Oncology Network and Trinity St. James' Cancer Institute, Ireland
| | - G Ntentas
- Nuffield Department of Population Health, University of Oxford, UK; Department of Medical Physics, Guy's & St Thomas' NHS Foundation Trust, UK
| | - S Oliveros
- Nuffield Department of Population Health, University of Oxford, UK; Oxford University Hospitals, Oxford, UK
| | - B Lavery
- Oxford University Hospitals, Oxford, UK
| | - K Shah
- Oxford University Hospitals, Oxford, UK
| | - A Eichholz
- Buckinghamshire Healthcare NHS Trust, Aylesbury, UK
| | - D Dodwell
- Nuffield Department of Population Health, University of Oxford, UK; Oxford University Hospitals, Oxford, UK
| | - C Taylor
- Nuffield Department of Population Health, University of Oxford, UK; Oxford University Hospitals, Oxford, UK.
| |
Collapse
|
64
|
Kim D, Kim H. Optimization of photothermal therapy conditions through diffusion analysis based on the initial injection radius of AuNPs. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3854. [PMID: 39051128 DOI: 10.1002/cnm.3854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/12/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Anticancer treatment is performed in various ways, and photothermal therapy (PTT) is gaining traction from a noninvasive treatment perspective. PTT is a treatment technique based on the photothermal effect that kills tumors by increasing their temperature. In this study, gold nanoparticles (AuNPs), which are photothermal agents, were used in numerical simulations to determine the PTT effect by considering diffusion induced changes in the distribution area of the AuNPs. The treatment effect was confirmed by varying the initial injection radius of AuNPs represented by the injection volume, the elapsed time after injection of AuNPs, and the laser intensity. The degree of maintenance of the apoptotic temperature band in the tumor was quantitatively analyzed by the apoptotic variable. Ultimately, if the initial injection radius of AuNPs is 0.7 mm or less, the optimal time to start treatment is 240 min after injection, and for 1.0 and 1.2 mm, it is optimal to start treatment when the elapsed time after injection is 90 and 30 min, respectively. This study identified the optimal treatment conditions for dosage of AuNPs and treatment start time in PTT using AuNPs, which will serve as a reference point for future PTT studies.
Collapse
Affiliation(s)
- Donghyuk Kim
- Department of Mechanical Engineering, Ajou University, Suwon-si, Gyeonggi-do, Korea
| | - Hyunjung Kim
- Department of Mechanical Engineering, Ajou University, Suwon-si, Gyeonggi-do, Korea
| |
Collapse
|
65
|
Xiao Y, Zheng P, Xu W, Wu Z, Zhang X, Wang R, Huang T, Ming J. Progesterone receptor impairs immune respond and down-regulates sensitivity to anti-LAG3 in breast cancer. Transl Res 2024; 271:68-78. [PMID: 38795691 DOI: 10.1016/j.trsl.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/09/2024] [Accepted: 05/02/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Progesterone receptor (PR) serves as a crucial prognostic and predictive marker in breast cancer. Nonetheless, the interplay between PR and the tumor immune microenvironment remains inadequately understood. This investigation employs bioinformatics analyses, mouse models, and clinical specimens to elucidate the impact of PR on immune microenvironment and identify potential targets for immunotherapy, furnishing valuable guidance for clinical practice. METHODS Analysis of immune infiltration score by Xcell between PR-positive and PR-negative breast cancer tumors. Construction of overexpression mouse progesterone receptor (mPgr) EMT-6 cell was to explore the tumor immune microenvironment. Furthermore, anti- Lymphocyte-activation gene 3 (LAG3) therapy aimed to investigate whether PR could influence the effectiveness of immune treatments. RESULTS Overexpression mPgr inhibited tumor growth in vitro, but promoted tumor growth in Balb/c mouse. Flow cytometry showed that the proportion and cytotoxicity of CD8+T cells in tumor of overexpressing mPgr group were significantly reduced. The significant reduction in overexpressing mPgr group was found in the proportions of LAG3+CD8+ T cells and LAG3+ Treg T cells. Anti-LAG3 treatment resulted in reduced tumor growth in EV group mouse rather than in overexpressing mPgr group. Patents derived tumor fragment (PDTF) also showed higher anti-tumor ability of CD3+T cell in patents' tumor with PR <20% after anti-human LAG3 treatment in vitro. CONCLUSIONS The mPgr promotes tumor growth by downregulating the infiltration and function of cytotoxic cell. LAG3 may be a target of ER-positive breast cancer immunotherapy. The high expression of PR hinders the sensitivity to anti-LAG3 treatment.
Collapse
Affiliation(s)
- Yunxiao Xiao
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Peng Zheng
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Wenjie Xu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Zhenghao Wu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Ximeng Zhang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Rong Wang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China.
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China.
| |
Collapse
|
66
|
Wang Z, Shen X. Prognostic and clinicopathological significance of fibrinogen-to-albumin ratio (FAR) in patients with breast cancer: a meta-analysis. World J Surg Oncol 2024; 22:220. [PMID: 39182155 PMCID: PMC11344941 DOI: 10.1186/s12957-024-03506-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND The fibrinogen-to-albumin ratio (FAR) has been extensively studied for its role in predicting the prognosis of breast cancer (BC) patients; however, existing findings are conflicting. Therefore, this meta-analysis was conducted to identify the significance of FAR in predicting BC prognosis. METHODS We searched PubMed, Embase, Web of Science, Cochrane Library, and China National Knowledge Infrastructure databases until May 25, 2024. The value of FAR for predicting overall survival (OS) and disease-free survival (DFS) in BC was examined by calculating the combined hazard ratios (HRs) and 95% confidence intervals (CIs). Correlations between FAR and clinicopathological factors were analyzed using combined odds ratios (ORs) and 95% CIs. RESULTS Eight studies involving 4094 patients were included in this work. As shown by our combined data, increased FAR significantly predicted poor OS (HR = 2.84, 95% CI = 1.83-4.39, p < 0.001) and poor DFS (HR = 2.43, 95% CI = 1.66-3.58, p < 0.001) of BC. Moreover, the combined data showed that increased FAR was significantly correlated with age ≥ 50 years (OR = 2.04, 95% CI = 1.37-3.04, p < 0.001), stage III cancer (OR = 1.53, 95% CI = 1.04-2.27, p = 0.033), and the presence of lymph node metastases (OR = 1.33, 95% CI = 1.11-1.61, p = 0.002). Nonetheless, FAR was not significantly associated with tumor size, ER/PR/HER-2 status, or lymphovascular invasion in patients with BC. CONCLUSION In this meta-analysis, higher FAR was significantly associated with unfavorable OS and DFS in patients with BC and significantly correlated with several features predictive of cancer development in BC.
Collapse
Affiliation(s)
- Zhanwei Wang
- Department of Breast Surgery, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Xiaqing Shen
- Operating Room, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang, 313000, China.
| |
Collapse
|
67
|
Cuevas D, Amigo R, Agurto A, Heredia AA, Guzmán C, Recabal-Beyer A, González-Pecchi V, Caprile T, Haigh JJ, Farkas C. The Role of Epithelial-to-Mesenchymal Transition Transcription Factors (EMT-TFs) in Acute Myeloid Leukemia Progression. Biomedicines 2024; 12:1915. [PMID: 39200378 PMCID: PMC11351244 DOI: 10.3390/biomedicines12081915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Acute myeloid leukemia (AML) is a diverse malignancy originating from myeloid progenitor cells, with significant genetic and clinical variability. Modern classification systems like those from the World Health Organization (WHO) and European LeukemiaNet use immunophenotyping, molecular genetics, and clinical features to categorize AML subtypes. This classification highlights crucial genetic markers such as FLT3, NPM1 mutations, and MLL-AF9 fusion, which are essential for prognosis and directing targeted therapies. The MLL-AF9 fusion protein is often linked with therapy-resistant AML, highlighting the risk of relapse due to standard chemotherapeutic regimes. In this sense, factors like the ZEB, SNAI, and TWIST gene families, known for their roles in epithelial-mesenchymal transition (EMT) and cancer metastasis, also regulate hematopoiesis and may serve as effective therapeutic targets in AML. These genes contribute to cell proliferation, differentiation, and extramedullary hematopoiesis, suggesting new possibilities for treatment. Advancing our understanding of the molecular mechanisms that promote AML, especially how the bone marrow microenvironment affects invasion and drug resistance, is crucial. This comprehensive insight into the molecular and environmental interactions in AML emphasizes the need for ongoing research and more effective treatments.
Collapse
Affiliation(s)
- Diego Cuevas
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4030000, Chile; (D.C.); (A.A.); (A.A.H.); (C.G.); (V.G.-P.)
| | - Roberto Amigo
- Laboratorio de Regulación Transcripcional, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile;
| | - Adolfo Agurto
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4030000, Chile; (D.C.); (A.A.); (A.A.H.); (C.G.); (V.G.-P.)
| | - Adan Andreu Heredia
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4030000, Chile; (D.C.); (A.A.); (A.A.H.); (C.G.); (V.G.-P.)
| | - Catherine Guzmán
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4030000, Chile; (D.C.); (A.A.); (A.A.H.); (C.G.); (V.G.-P.)
| | - Antonia Recabal-Beyer
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile;
| | - Valentina González-Pecchi
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4030000, Chile; (D.C.); (A.A.); (A.A.H.); (C.G.); (V.G.-P.)
| | - Teresa Caprile
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile;
| | - Jody J. Haigh
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Carlos Farkas
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4030000, Chile; (D.C.); (A.A.); (A.A.H.); (C.G.); (V.G.-P.)
| |
Collapse
|
68
|
Xie M, Meng F, Wang P, Díaz-García AM, Parkhats M, Santos-Oliveira R, Asim MH, Bostan N, Gu H, Yang L, Li Q, Yang Z, Lai H, Cai Y. Surface Engineering of Magnetic Iron Oxide Nanoparticles for Breast Cancer Diagnostics and Drug Delivery. Int J Nanomedicine 2024; 19:8437-8461. [PMID: 39170101 PMCID: PMC11338174 DOI: 10.2147/ijn.s477652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
Data published in 2020 by the International Agency for Research on Cancer (IARC) of the World Health Organization show that breast cancer (BC) has become the most common cancer globally, affecting more than 2 million women each year. The complex tumor microenvironment, drug resistance, metastasis, and poor prognosis constitute the primary challenges in the current diagnosis and treatment of BC. Magnetic iron oxide nanoparticles (MIONPs) have emerged as a promising nanoplatform for diagnostic tumor imaging as well as therapeutic drug-targeted delivery due to their unique physicochemical properties. The extensive surface engineering has given rise to multifunctionalized MIONPs. In this review, the latest advancements in surface modification strategies of MIONPs over the past five years are summarized and categorized as constrast agents and drug delivery platforms. Additionally, the remaining challenges and future prospects of MIONPs-based targeted delivery are discussed.
Collapse
Affiliation(s)
- Mengjie Xie
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Key Laboratory of Traditional Chinese Medicine Informatization / International Science and Technology Cooperation Base of Guangdong Province/School of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Fansu Meng
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, 528400, People’s Republic of China
| | - Panpan Wang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | | | - Marina Parkhats
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, 220072, Belarus
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Rio de Janeiro, RJ, 21941906, Brazil
| | | | - Nazish Bostan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Honghui Gu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Lina Yang
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Qi Li
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Zhenjiang Yang
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Haibiao Lai
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, 528400, People’s Republic of China
| | - Yu Cai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Key Laboratory of Traditional Chinese Medicine Informatization / International Science and Technology Cooperation Base of Guangdong Province/School of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| |
Collapse
|
69
|
Zhang S, Liu Y, Xie Y, Ding C, Zuo R, Guo Z, Qi S, Fu T, Chen W. Fe 3O 4@R837 Nanoplatform Enhances Chemical Dynamic Therapy and Immunotherapy: Integrated Transcriptomic Analysis Reveals Key Genes in Breast Cancer Prognosis. ACS Biomater Sci Eng 2024; 10:5274-5289. [PMID: 39056174 DOI: 10.1021/acsbiomaterials.4c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Breast cancer represents a substantial contributor to mortality rates among women with cancer. Chemical dynamic therapy is a promising anticancer strategy that utilizes the Fenton reaction to transform naturally occurring hydrogen peroxide (H2O2) into hydroxyl radicals (•OH). Additionally, cancer immunotherapy using immune drugs, such as imiquimod (R837), has shown promise in activating T cells to kill tumor cells. In this study, we proposed a Fe3O4@R837 smart nanoplatform that can trigger the Fenton reaction and induce immune responses in breast cancer treatment. Furthermore, we performed transcriptome sequencing on breast cancer samples and used the R package (limma) to analyze differential expression profiles and select differentially expressed genes (DEGs). We obtained clinical information and RNA expression matrix data from The Cancer Genome Atlas database to perform survival analysis and identify prognostic-related genes (PRGs) and molecular subtypes with distinct prognoses. We used the TIMER 2.0 web and other methods to determine the tumor immune microenvironment and immune status of different prognostic subtypes. We identified DPGs by taking the intersection of DEGs and PRGs and performed functional analyses, including gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis, to elucidate potential mechanisms. Subsequently, we constructed a protein-protein interaction network using the STRING database to visualize the interactions between the DPGs. We screened hub genes from the DPGs using the Cytoscape plugin and identified six hub genes: CD3E, GZMK, CD27, SH2D1A, ZAP70, and TIGIT. Our results indicate that these six key genes regulate immune cell recruitment to increase T-cell cytotoxicity and kill tumors. Targeting these key genes can enhance immunotherapy and improve the breast cancer prognosis.
Collapse
Affiliation(s)
- Shichao Zhang
- Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, P. R. China
- The Second Hospital of Tianjin Medical University, Tianjin 300211, P. R. China
| | - Yijiang Liu
- First Affiliate Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, P. R. China
| | - Yuhan Xie
- The Second Hospital of Tianjin Medical University, Tianjin 300211, P. R. China
| | - Chenchun Ding
- Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, P. R. China
| | - Renjie Zuo
- Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, P. R. China
| | - Zhenzhen Guo
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, P. R. China
| | - Shiyong Qi
- The Second Hospital of Tianjin Medical University, Tianjin 300211, P. R. China
| | - Tingting Fu
- School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Weibin Chen
- Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, P. R. China
| |
Collapse
|
70
|
Freguia S, Platano D, Donati D, Giorgi F, Tedeschi R. Closing the Gaps: An Integrative Review of Yoga's Benefits for Lymphedema in Breast Cancer Survivors. Life (Basel) 2024; 14:999. [PMID: 39202741 PMCID: PMC11355715 DOI: 10.3390/life14080999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Dissection of the axillary lymph nodes during surgery for breast cancer with lymph node involvement is burdened by a complication: lymphedema. Approximately half of women undergoing axillary dissection suffer from it, with a notable impact in terms of perceived discomfort, presented quality of life, and alteration of body image. There is also no shortage of problems in the patient's social and professional life. METHODS The present review aims to select Randomized Controlled Trials (RCTs) present in the literature regarding the effects of yoga as an alternative therapy in patients with breast cancer-related lymphedema. A search of four databases was undertaken: Cochrane, Pubmed, Scopus, and Web of Science. The searches were conducted on 19 May 2024, and updated to 30 June 2024 without date limits. RCTs without language limitations, in any context, and with any yoga variant were considered. RESULTS The postulated search strings highlighted a total of 69 potentially eligible studies. The study selection system consisted of two levels of screening, (1) abstract selection and (2) full-text selection, for a total of three studies included in the review. The three RCTs included involved mixed treatment sessions in an outpatient setting with a yoga teacher and at home using a DVD. In the various studies, the outcome measures concerned quality of life, ROM, spinal mobility, limb volume, and tissue induration. CONCLUSIONS According to the analysis of the data obtained, yoga as an alternative therapy could be useful if combined with the usual care routine in women with lymphedema related to sensory cancer, in terms of improving physical, professional, and emotional quality of life and reducing symptoms such as fatigue, pain, and insomnia. Furthermore, yoga could bring about a reduction in tissue induration of the limb, greater spinal mobility evaluated in terms of improvement of the pelvic and kyphotic angle, and greater strength in shoulder abduction.
Collapse
Affiliation(s)
- Sara Freguia
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40136 Bologna, Italy
| | - Daniela Platano
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40136 Bologna, Italy
- Physical Medicine and Rehabilitation Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Danilo Donati
- Physical Therapy and Rehabilitation Unit, Policlinico di Modena, 41125 Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Federica Giorgi
- Pediatric Physical Medicine and Rehabilitation Unit, IRCCS Institute of Neurological Sciences of Bologna, Via Altura 3, 40124 Bologna, Italy
| | - Roberto Tedeschi
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40136 Bologna, Italy
| |
Collapse
|
71
|
Yan Z, Liang Z, Luo K, Yu L, Chen C, Yu M, Guo X, Li M. METTL3-modified lncRNA DSCAM-AS1 promotes breast cancer progression through inhibiting ferroptosis. J Bioenerg Biomembr 2024; 56:451-459. [PMID: 38833042 DOI: 10.1007/s10863-024-10024-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024]
Abstract
Numerous studies have indicated that N6-methyladenosine (m6A) and lncRNAs play pivotal roles in human cancer. However, the underlying functions and mechanisms of m6A-lncRNA in the physiological processes of breast cancer remain unclear. Here, we found that DSCAM-AS1 is an m6A-modified lncRNA that was overexpressed in breast cancer tissues and cells, indicating poor clinical prognosis. Gain/loss functional assays suggested that DSCAM-AS1 inhibited erastin-induced ferroptosis in breast cancer cells. Mechanistically, there were remarkable m6A modification sites on both the 3'-UTR of DSCAM-AS1 and the endogenous antioxidant factor SLC7A11. M6A methyltransferase methyltransferase-like 3 (METTL3) methylated both SLC7A11 and DSCAM-AS1. Moreover, DSCAM-AS1 recognized m6A sites on the SLC7A11 mRNA, thereby enhancing its stability. Taken together, these findings indicated a potential therapeutic strategy for breast cancer ferroptosis in an m6A-dependent manner.
Collapse
Affiliation(s)
- Zeming Yan
- Department of Breast Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Zhongzeng Liang
- Department of Breast Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Kangwei Luo
- Department of Breast Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Liyan Yu
- Department of Breast Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Chunyan Chen
- Department of Breast Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Miao Yu
- Department of Breast Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Xiaojing Guo
- Graduate School of Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Mingyi Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China.
| |
Collapse
|
72
|
Chang X, Tang X, Tang W, Weng L, Liu T, Zhu Z, Liu J, Zhu M, Zhang Y, Chen X. Synergistic Regulation of Targeted Organelles in Tumor Cells to Promote Photothermal-Immunotherapy Using Intelligent Core-Satellite-Like Nanoparticles for Effective Treatment of Breast Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400069. [PMID: 38634246 DOI: 10.1002/smll.202400069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/05/2024] [Indexed: 04/19/2024]
Abstract
The normal operation of organelles is critical for tumor growth and metastasis. Herein, an intelligent nanoplatform (BMAEF) is fabricated to perform on-demand destruction of mitochondria and golgi apparatus, which also generates the enhanced photothermal-immunotherapy, resulting in the effective inhibition of primary and metastasis tumor. The BMAEF has a core of mesoporous silica nanoparticles loaded with brefeldin A (BM), which is connected to ethylenebis(oxyethylenenitrilo)tetraacetic acid (EGTA) and folic acid co-modified gold nanoparticles (AEF). During therapy, the BMAEF first accumulates in tumor cells via folic acid-induced targeting. Subsequently, the schiff base/ester bond cleaves in lysosome to release brefeldin A and AEF with exposed EGTA. The EGTA further captures Ca2+ to block ion transfer among mitochondria, endoplasmic reticulum, and golgi apparatus, which not only induced dysfunction of mitochondria and golgi apparatus assisted by brefeldin A to suppress both energy and material metabolism against tumor growth and metastasis, but causes AEF aggregation for tumor-specific photothermal therapy and photothermal assisted immunotherapy. Moreover, the dysfunction of these organelles also stops the production of BMI1 and heat shock protein 70 to further enhance the metastasis inhibition and photothermal therapy, which meanwhile triggers the escape of cytochrome C to cytoplasm, leading to additional apoptosis of tumor cells.
Collapse
Affiliation(s)
- Xiaowei Chang
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaoyu Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Wenjun Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Lin Weng
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Tao Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zeren Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Jie Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Man Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Xin Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
73
|
Kashefi S, Mohammadi-Yeganeh S, Ghorbani-Bidkorpeh F, Shabani M, Koochaki A, Haji Molla Hoseini M. The anti-cancer properties of miR-340 plasmid-chitosan complexes (miR-340 CC) on murine model of breast cancer. J Drug Target 2024; 32:838-847. [PMID: 38805391 DOI: 10.1080/1061186x.2024.2361675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
MiRNA-340 (miR-340) has been found to have tumour-suppressing effects in breast cancer (BC). However, for clinical use, miRNAs need to be delivered safely and effectively to protect them from degradation. In our previous study, we used chitosan complexes as a safe carrier with anti-cancer properties to deliver miR-340 plasmid into 4T1 cells. This study explored further information concerning the anti-cancer impacts of both chitosan and miR-340 plasmid in a murine model of BC. Mice bearing 4T1 cells were intra-tumorally administered miR-340 plasmid-chitosan complexes (miR-340 CC). Afterwards, the potential of miR-340 CC in promoting anti-tumour immune responses was evaluated. MiR-340 CC significantly reduced tumour size, inhibited metastasis, and prolonged the survival of mice. MiR-340 CC up-regulates P-27 gene expression related to cancer cell apoptosis, and down-regulates gene expressions involved in angiogenesis and metastasis (breast regression protein-39 (BRP-39)) and CD163 as an anti-inflammatory macrophages (MQs) marker. Furthermore, CD47 expression as a MQs immune check-point was remarkably decreased after miR-340 CC treatment. The level of IL-12 in splenocytes of miR-340 CC treated mice increased, while the level of IL-10 decreased, indicating anti-cancer immune responses. Our findings display that miR-340 CC can be considered as a promising therapy in BC.
Collapse
Affiliation(s)
- Sarvenaz Kashefi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ghorbani-Bidkorpeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ameneh Koochaki
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Haji Molla Hoseini
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
74
|
Nava-Tapia DA, Román-Justo NY, Cuenca-Rojo A, Guerrero-Rivera LG, Patrón-Guerrero A, Poblete-Cruz RI, Zacapala-Gómez AE, Sotelo-Leyva C, Navarro-Tito N, Mendoza-Catalán MA. Exploring the potential of tocopherols: mechanisms of action and perspectives in the prevention and treatment of breast cancer. Med Oncol 2024; 41:208. [PMID: 39060448 DOI: 10.1007/s12032-024-02454-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Currently, breast cancer is the most common cause of mortality caused by neoplasia in women worldwide. The unmet challenges of conventional cancer therapy are chemoresistance and lack of selectivity, which can lead to serious side effects in patients; therefore, new treatments based on natural compounds that serve as adjuvants in breast cancer therapy are urgently needed. Tocopherols are naturally occurring antioxidant compounds that have shown antitumor activity against several types of cancer, including breast cancer. This review summarizes the antitumoral activity of tocopherols, such as the antiproliferative, apoptotic, anti-invasive, and antioxidant effects of tocopherols, through different molecular mechanisms. According to the studies described, α-T, δ-T and γ-T are the most studied in breast tumor cells; however, α-T and γ-T show a more critical antitumor activity and significant potential as a complements to chemotherapeutic drugs against breast cancer, enhancing toxicity against tumor cells and preventing cytotoxicity in nontumor cells. However, the possible relationship between tocopherol intake, related to concentration, and the promotion of cancer in particular cases should not be ruled out, so additional studies are required to determine the correct dose to obtain the desired antitumor effect. Moreover, nanomicelles of D-α-tocopherol have promising potential as pharmaceutical excipients for drug delivery to improve the cytotoxicity and selectivity of first-line chemotherapeutics against breast cancer.
Collapse
Affiliation(s)
- Dania A Nava-Tapia
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico
| | - Norely Y Román-Justo
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico
| | - Antonio Cuenca-Rojo
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico
| | - Lizeth G Guerrero-Rivera
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico
| | - Annet Patrón-Guerrero
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico
| | - Ruth I Poblete-Cruz
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico
| | - Ana E Zacapala-Gómez
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico
| | - César Sotelo-Leyva
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico
| | - Napoleón Navarro-Tito
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico.
| | - Miguel A Mendoza-Catalán
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico.
| |
Collapse
|
75
|
Wang YC, Shueng PW, Hu CY, Tung FI, Chen MH, Liu TY. Hyaluronic acid-based injectable formulation developed to mitigate metastasis and radiation-induced skin fibrosis in breast cancer treatment. Carbohydr Polym 2024; 336:122136. [PMID: 38670762 DOI: 10.1016/j.carbpol.2024.122136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024]
Abstract
The standard treatment for early-stage breast cancer involves breast-conserving surgery followed by adjuvant radiotherapy. However, approximately 20 % of patients experience distant metastasis, and adjuvant radiotherapy often leads to radiation-induced skin fibrosis (RISF). In this study, we develop an on-site injectable formulation composed of selenocystamine (SeCA) and hyaluronic acid (HyA), referred to as SeCA cross-linked HyA (SCH) agent, and investigate its potential to mitigate metastasis and prevent RISF associated with breast cancer therapy. SCH agents are synthesized using the nanoprecipitation method to modulate cell-cell tight junctions and tissue inflammation. The toxicity assessments reveal that SCH agents with a higher Se content (Se payload 17.4 μg/mL) are well tolerated by L929 cells compared to SeCA (Se payload 3.2 μg/mL). In vitro, SCH agents significantly enhance cell-cell tight junctions and effectively mitigate migration and invasion of breast cancer cells (4T1). In vivo, SCH agents mitigate distant lung metastasis. Furthermore, in animal models, SCH agents reduce RISF and promote wound repair. These findings highlight the potential of SCH agents as a novel therapeutic formulation for effectively mitigating metastasis and reducing RISF. This holds great promise for improving clinical outcomes in breast cancer patients undergoing adjuvant radiotherapy.
Collapse
Affiliation(s)
- Yu-Chi Wang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Pei-Wei Shueng
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City 220216, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chan-Yu Hu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Fu-I Tung
- Department of Orthopaedics, Yang-Ming Branch, Taipei City Hospital, Taipei 111024, Taiwan; Department of Health and Welfare, College of City Management, University of Taipei, Taipei 111036, Taiwan
| | - Ming-Hong Chen
- Division of Neurosurgery, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 220216, Taiwan; Department of Electrical Engineering, Yuan Ze University, Taoyuan City 320315, Taiwan
| | - Tse-Ying Liu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan.
| |
Collapse
|
76
|
Silva AAR, Cardoso MR, de Oliveira DC, Godoy P, Talarico MCR, Gutiérrez JM, Rodrigues Peres RM, de Carvalho LM, Miyaguti NADS, Sarian LO, Tata A, Derchain SFM, Porcari AM. Plasma Metabolome Signatures to Predict Responsiveness to Neoadjuvant Chemotherapy in Breast Cancer. Cancers (Basel) 2024; 16:2473. [PMID: 39001535 PMCID: PMC11240312 DOI: 10.3390/cancers16132473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Neoadjuvant chemotherapy (NACT) has arisen as a treatment option for breast cancer (BC). However, the response to NACT is still unpredictable and dependent on cancer subtype. Metabolomics is a tool for predicting biomarkers and chemotherapy response. We used plasma to verify metabolomic alterations in BC before NACT, relating to clinical data. METHODS Liquid chromatography coupled to mass spectrometry (LC-MS) was performed on pre-NACT plasma from patients with BC (n = 75). After data filtering, an SVM model for classification was built and validated with 75%/25% of the data, respectively. RESULTS The model composed of 19 identified metabolites effectively predicted NACT response for training/validation sets with high sensitivity (95.4%/93.3%), specificity (91.6%/100.0%), and accuracy (94.6%/94.7%). In both sets, the panel correctly classified 95% of resistant and 94% of sensitive females. Most compounds identified by the model were lipids and amino acids and revealed pathway alterations related to chemoresistance. CONCLUSION We developed a model for predicting patient response to NACT. These metabolite panels allow clinical gain by building precision medicine strategies based on tumor stratification.
Collapse
Affiliation(s)
- Alex Ap. Rosini Silva
- MSLife Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Av. São Francisco de Assis, 218, Sala 211, Prédio 5, Bragança Paulista 12916900, São Paulo, Brazil; (A.A.R.S.); (D.C.d.O.)
| | - Marcella R. Cardoso
- Department of Obstetrics and Gynecology, Division of Gynecologic and Breast Oncology, Faculty of Medical Sciences, University of Campinas (UNICAMP—Universidade Estadual de Campinas), Campinas 13083881, São Paulo, Brazil
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Danilo Cardoso de Oliveira
- MSLife Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Av. São Francisco de Assis, 218, Sala 211, Prédio 5, Bragança Paulista 12916900, São Paulo, Brazil; (A.A.R.S.); (D.C.d.O.)
| | - Pedro Godoy
- MSLife Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Av. São Francisco de Assis, 218, Sala 211, Prédio 5, Bragança Paulista 12916900, São Paulo, Brazil; (A.A.R.S.); (D.C.d.O.)
| | - Maria Cecília R. Talarico
- Department of Obstetrics and Gynecology, Division of Gynecologic and Breast Oncology, Faculty of Medical Sciences, University of Campinas (UNICAMP—Universidade Estadual de Campinas), Campinas 13083881, São Paulo, Brazil
| | - Junier Marrero Gutiérrez
- MSLife Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Av. São Francisco de Assis, 218, Sala 211, Prédio 5, Bragança Paulista 12916900, São Paulo, Brazil; (A.A.R.S.); (D.C.d.O.)
| | - Raquel M. Rodrigues Peres
- MSLife Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Av. São Francisco de Assis, 218, Sala 211, Prédio 5, Bragança Paulista 12916900, São Paulo, Brazil; (A.A.R.S.); (D.C.d.O.)
| | - Lucas M. de Carvalho
- Post Graduate Program in Health Sciences, São Francisco University, Bragança Paulista 12916900, São Paulo, Brazil
| | - Natália Angelo da Silva Miyaguti
- MSLife Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Av. São Francisco de Assis, 218, Sala 211, Prédio 5, Bragança Paulista 12916900, São Paulo, Brazil; (A.A.R.S.); (D.C.d.O.)
| | - Luis O. Sarian
- Department of Obstetrics and Gynecology, Division of Gynecologic and Breast Oncology, Faculty of Medical Sciences, University of Campinas (UNICAMP—Universidade Estadual de Campinas), Campinas 13083881, São Paulo, Brazil
| | - Alessandra Tata
- Laboratory of Experimental Chemistry, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale Fiume 78, 36100 Vicenza, Italy;
| | - Sophie F. M. Derchain
- Department of Obstetrics and Gynecology, Division of Gynecologic and Breast Oncology, Faculty of Medical Sciences, University of Campinas (UNICAMP—Universidade Estadual de Campinas), Campinas 13083881, São Paulo, Brazil
| | - Andreia M. Porcari
- MSLife Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Av. São Francisco de Assis, 218, Sala 211, Prédio 5, Bragança Paulista 12916900, São Paulo, Brazil; (A.A.R.S.); (D.C.d.O.)
| |
Collapse
|
77
|
Jiang Q, Hu H, Liao J, Li ZH, Tan J. Development and validation of a nomogram for breast cancer-related lymphedema. Sci Rep 2024; 14:15602. [PMID: 38971880 PMCID: PMC11227568 DOI: 10.1038/s41598-024-66573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 07/02/2024] [Indexed: 07/08/2024] Open
Abstract
To establish and validate a predictive model for breast cancer-related lymphedema (BCRL) among Chinese patients to facilitate individualized risk assessment. We retrospectively analyzed data from breast cancer patients treated at a major single-center breast hospital in China. From 2020 to 2022, we identified risk factors for BCRL through logistic regression and developed and validated a nomogram using R software (version 4.1.2). Model validation was achieved through the application of receiver operating characteristic curve (ROC), a calibration plot, and decision curve analysis (DCA), with further evaluated by internal validation. Among 1485 patients analyzed, 360 developed lymphedema (24.2%). The nomogram incorporated body mass index, operative time, lymph node count, axillary dissection level, surgical site infection, and radiotherapy as predictors. The AUCs for training (N = 1038) and validation (N = 447) cohorts were 0.779 and 0.724, respectively, indicating good discriminative ability. Calibration and decision curve analysis confirmed the model's clinical utility. Our nomogram provides an accurate tool for predicting BCRL risk, with potential to enhance personalized management in breast cancer survivors. Further prospective validation across multiple centers is warranted.
Collapse
Affiliation(s)
- Qihua Jiang
- Department of Breast Surgery, Third Hospital of Nanchang, No. 2, Xiangshan South Road, Xi Hu District, Nanchang City, 330008, Jiangxi Province, China
| | - Hai Hu
- Department of General Surgery, Third Hospital of Nanchang, No. 2, Xiangshan South Road, Xi Hu District, Nanchang City, 330008, Jiangxi Province, China
| | - Jing Liao
- Department of Breast Surgery, Third Hospital of Nanchang, No. 2, Xiangshan South Road, Xi Hu District, Nanchang City, 330008, Jiangxi Province, China
| | - Zhi-Hua Li
- Department of Breast Surgery, Third Hospital of Nanchang, No. 2, Xiangshan South Road, Xi Hu District, Nanchang City, 330008, Jiangxi Province, China.
- Jiangxi Province Key Laboratory of Breast Diseases, Third Hospital of Nanchang, No. 2, Xiangshan South Road, Xihu District, Nanchang City, 330008, Jiangxi Province, China.
| | - Juntao Tan
- Department of Breast Surgery, Third Hospital of Nanchang, No. 2, Xiangshan South Road, Xi Hu District, Nanchang City, 330008, Jiangxi Province, China.
- Jiangxi Province Key Laboratory of Breast Diseases, Third Hospital of Nanchang, No. 2, Xiangshan South Road, Xihu District, Nanchang City, 330008, Jiangxi Province, China.
| |
Collapse
|
78
|
Schiavone A, Ventimiglia F, Zarba Meli E, Taffurelli M, Caruso F, Gentilini OD, Del Mastro L, Livi L, Castellano I, Bernardi D, Minelli M, Fortunato L. Third national surgical consensus conference of the Italian Association of Breast Surgeons (ANISC) on management after neoadjuvant chemotherapy: The difficulty in reaching a consensus. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024; 50:108351. [PMID: 38701582 DOI: 10.1016/j.ejso.2024.108351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/15/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
INTRODUCTION Neoadjuvant chemotherapy (NAC) has a profound impact on surgical management of breast cancer. For this reason, the Italian Association of Breast Surgeons (ANISC) promoted the third national Consensus Conference on this subject, open to multidisciplinary specialists. MATERIALS AND METHODS The Consensus Conference was held on-line in November 2022, and after an introductory session with five core-team experts, participants were asked to vote on eleven controversial issues, while results were collected in real-time with a polling system. RESULTS A total of 164 dedicated specialists from 74 Breast Centers participated. Consensus was reached for only three of the eleven issues, including: 1) the indication to assess the response with Magnetic Resonance Imaging (79 %); 2) the need to re-assess the biological factors of the residual tumor if present (96 %); 3) the possibility of omitting a formal axillary node dissection for cN1 patients if a pathologic Complete Response (pCR) was confirmed with analysis of one or more sentinel lymph nodes (82 %). The majority voted in favor of mapping both the breast and nodal lesions pre-NAC (59 %), and against the omission of sentinel lymph node biopsy in cN0 patients in the case of pathologic or clinical Complete Response (69 %). In cases of cT3/cN1+ tumors with pCR, only 8 % of participants considered appropriate the omission of Post-Mastectomy Radiation Therapy. CONCLUSION There is still a wide variability in surgical approaches after NAC in the "real world". As NAC is increasingly used, multidisciplinary teams should be attuned to conforming their procedures to the rapid advances in this field.
Collapse
Affiliation(s)
- Alfonso Schiavone
- Breast Center, San Giovanni-Addolorata Hospital, Via Dell'Amba Aradam 8, 00184, Rome, Italy; Department of Surgical Science, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.
| | - Fabrizio Ventimiglia
- Breast Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico di Sant'Orsola, Via Giuseppe Massarenti 9, 40138, Bologna, Italy
| | - Emanuele Zarba Meli
- Breast Center, San Giovanni-Addolorata Hospital, Via Dell'Amba Aradam 8, 00184, Rome, Italy
| | - Mario Taffurelli
- Breast Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico di Sant'Orsola, Via Giuseppe Massarenti 9, 40138, Bologna, Italy
| | - Francesco Caruso
- Breast Unit, Humanitas Istituto Clinico Catanese, Contrada Cubba 11, SP54, 95045, Misterbianco, CT, Italy
| | | | - Lucia Del Mastro
- Breast Unit, IRCCS Ospedale Policlinico San Martino, Department of Internal Medicine and Medical Specialties (DIMI), Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Lorenzo Livi
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, P.zza San Marco 4, 50121, Florence, Italy
| | - Isabella Castellano
- Pathology Unit, Department of Medical Sciences, University of Turin, Via Giuseppe Verdi 8, 10124, Turin, Italy
| | - Daniela Bernardi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Mauro Minelli
- Breast Center, San Giovanni-Addolorata Hospital, Via Dell'Amba Aradam 8, 00184, Rome, Italy
| | - Lucio Fortunato
- Breast Center, San Giovanni-Addolorata Hospital, Via Dell'Amba Aradam 8, 00184, Rome, Italy
| |
Collapse
|
79
|
Zhang Y, Tan Y, Yuan J, Tang H, Zhang H, Tang Y, Xie Y, Wu L, Xie J, Xiao X, Li Y, Kong Y. circLIFR-007 reduces liver metastasis via promoting hnRNPA1 nuclear export and YAP phosphorylation in breast cancer. Cancer Lett 2024; 592:216907. [PMID: 38685451 DOI: 10.1016/j.canlet.2024.216907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 05/02/2024]
Abstract
Cancer metastasis is the major cause of death in patients with breast cancer (BC). The liver is a common site of breast cancer metastasis, and the 5-year survival rate of patients with breast cancer liver metastases (BCLMs) is only about 8.5 %. CircRNAs are involved in a variety of cancer-related pathological behaviors, and their unique structure and resistance to RNA degradation enable them to serve as ideal diagnostic biomarkers and therapeutic targets. Therefore, it is important to investigate the role and molecular mechanism of circRNAs in cancer metastasis. CircLIFR-007 was identified as a critical circular RNA in BC metastasis by circRNAs microarray and qRT-PCR experiment. Cell function assays were performed to explore the effect of circLIFR-007 in breast cancer cells. Experiments in vivo validated the function of circLIFR-007. Several molecular assays were performed to investigate the underlying mechanisms. We found that circLIFR-007 acted as a negative controller in breast cancer liver metastasis. CircLIFR-007 upregulates the phosphorylation level of YAP by exporting hnRNPA1 to promote the combination between hnRNPA1 and YAP in the cytoplasm. Overexpression of circLIFR-007 suppressed the expression of liver metastasis-related proteins, SREBF1 and SNAI1, which were regulated by transcription factor YAP. Functionally, circLIFR-007 inhibits the proliferation and metastasis of breast cancer cells both in vivo and in vitro.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yeru Tan
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Hanqi Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yuhui Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yi Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Linyu Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Jindong Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Xiangsheng Xiao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Yuehua Li
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Yanan Kong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
80
|
Gharavi AT, Irian S, Niknejad A, Parang K, Salimi M. Harnessing exosomes as a platform for drug delivery in breast cancer: A systematic review for in vivo and in vitro studies. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200800. [PMID: 38706989 PMCID: PMC11067457 DOI: 10.1016/j.omton.2024.200800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Breast cancer remains a significant global health concern, emphasizing the critical need for effective treatment strategies, especially targeted therapies. This systematic review summarizes the findings from in vitro and in vivo studies regarding the therapeutic potential of exosomes as drug delivery platforms in the field of breast cancer treatment. A comprehensive search was conducted across bibliographic datasets, including Web of Science, PubMed, and Scopus, using relevant queries from several related published articles and the Medical Subject Headings Database. Then, all morphological, biomechanical, histopathological, and cellular-molecular outcomes were systematically collected. A total of 30 studies were identified based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. These studies underwent assessment using the Systematic Review Centre for Laboratory Animal Experimentation risk of bias assessment tool. The results indicate that exosomes exhibit promise as effective drug delivery platforms, capable of hindering cancer cell viability, proliferation, migration, and angiogenesis. However, a comprehensive assessment is challenging due to some studies deviating from guidelines and having incomplete methodology. Addressing these, future studies should detail methodologies, optimize dosing, and enhance exosome production. Standardization in reporting, consistent protocols, and exploration of alternative sources are crucial.
Collapse
Affiliation(s)
- Abdulwahab Teflischi Gharavi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Saeed Irian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Azadeh Niknejad
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618-1908, USA
| | - Mona Salimi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
81
|
Zhang L, Huang S, Yuan Y. Butyrate inhibits the malignant biological behaviors of breast cancer cells by facilitating cuproptosis-associated gene expression. J Cancer Res Clin Oncol 2024; 150:287. [PMID: 38833016 PMCID: PMC11150186 DOI: 10.1007/s00432-024-05807-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Butyrate is a common short-chain fatty acids (SCFA), and it has been demonstrated to regulate the development of breast cancer (BC), while the underlying mechanism is still unreported. METHODS Gas chromatography was used to measure the amounts of SCFA (acetate, propionate, and butyrate) in the feces. Cell viability was measured by the CCK-8 assay. The wound healing assay demonstrated cell migration, and the transwell assay demonstrated cell invasion. The levels of protein and gene were determined by western blot assay and RT-qPCR assay, respectively. RESULTS The levels of SCFA were lower in the faecal samples from BC patients compared to control samples. In cellular experiments, butyrate significantly suppressed the cell viability, migration and invasion of T47D in a dose-dependent manner. In animal experiments, butyrate effectively impeded the growth of BC tumors. Toll like receptor 4 (TLR4) was highly expressed in the tumors from BC patients. Butyrate inhibited the expression of TLR4. In addition, butyrate promoted the expression of cuproptosis-related genes including PDXK (pyridoxal kinase) and SLC25A28 (solute carrier family 25 member 28), which was lowly expressed in BC tumors. Importantly, overexpression of TLR4 can reverses the promotion of butyrate to PDXK and SLC25A28 expression and the prevention of butyrate to the malignant biological behaviors of T47D cells. CONCLUSION In summary, butyrate inhibits the development of BC by facilitating the expression of PDXK and SLC25A28 through inhibition of TLR4. Our investigation first identified a connection among butyrate, TLR4 and cuproptosis-related genes in BC progression. These findings may provide novel target for the treatment of BC.
Collapse
Affiliation(s)
- Liming Zhang
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Shan Huang
- Neonatal Room, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Ying Yuan
- Intensive Care Unit, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, People's Republic of China
| |
Collapse
|
82
|
Jheng YW, Chan YN, Wu CJ, Lin MW, Tseng LM, Wang YJ. Neuropathic Pain Affects Quality of Life in Breast Cancer Survivors with Chemotherapy-Induced Peripheral Neuropathy. Pain Manag Nurs 2024; 25:308-315. [PMID: 38278750 DOI: 10.1016/j.pmn.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Despite the significant impact of chemotherapy-induced peripheral neuropathy on the quality of life for breast cancer survivors, there is a notable lack of comprehensive research. Therefore, a crucial need exists for further systematic investigation and inquiry into this matter. AIMS This study examined predictors of quality of life in breast cancer survivors with chemotherapy-induced peripheral neuropathy. DESIGN A cross-sectional, correlational design. SETTINGS This study was conducted at a medical center in northern Taiwan and a teaching hospital in northeastern Taiwan. PARTICIPANTS/SUBJECTS One hundred and thirty adult women with breast cancer, who have undergone chemotherapy and obtained a Total Neuropathy Scale-Clinical Version score>0, were enrolled. METHODS Neuropathic pain, sleep disturbances, depression, and quality of life were evaluated using multiple regression analysis to identify quality of life predictors. Clinical importance was established using the minimally important difference of Functional Assessment of Cancer Therapy-Breast. RESULTS The study indicated that improving depression (B = -10.87, p < .001) and neuropathic pain (B = -8.33, p = .004) may enhance the quality of life of breast cancer survivors with chemotherapy-induced peripheral neuropathy. Moreover, the individual's marital status and family history of breast cancer were identified as predictive factors. CONCLUSIONS This study illuminates quality of life determinants for breast cancer survivors with chemotherapy-induced peripheral neuropathy, advocating comprehensive care and addressing depression and neuropathic pain for better outcomes.
Collapse
Affiliation(s)
- You-Wun Jheng
- From the Department of Nursing, Taichung Veterans General Hospital Taichung, Taiwan
| | - Ya-Ning Chan
- Department of Population Health Sciences, Duke University, 215 Morris Street, Durham, NC 27701, USA.
| | - Chih-Jung Wu
- Department of Nursing, China Medical University, Taichung, Taiwan
| | - Ming-Wei Lin
- Institute of Public Health, National Yang-Ming University, Taipei, Taiwan
| | - Ling-Ming Tseng
- Department of Surgery, Veterans General Hospital-Taipei, Taipei, Taiwan
| | - Ya-Jung Wang
- Department of Nursing, Da-Yeh University, Dacun, Changhua, Taiwan.
| |
Collapse
|
83
|
Kuruoglu FE, Ekici ZM, Nak D, Ozyigit MO, Kupeli ZA, Koca D. Investigation of efficacy of two different chemotherapy protocols used in neoadjuvant chemotherapy in clinical stages II-IV canine malignant mammary tumours. Vet Comp Oncol 2024; 22:284-294. [PMID: 38600051 DOI: 10.1111/vco.12976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
The first aim of this study is to demonstrate the clinical efficacy and reliability of two different neoadjuvant chemotherapy (NAC) protocols consisting of doxorubicin/cyclophosphamide (AC) and paclitaxel in dogs with clinical stages II-IV canine malignant mammary tumours (CMTs). Secondly, to determine the Luminal A, Luminal B, HER2-positive and triple-negative molecular subtypes and their value in predicting clinical response to NAC in biopsy samples, and thirdly, to reveal the changes in Ki-67, human epidermal growth factor receptor type 2 (HER2), oestrogen receptor (ER), and progesterone receptor (PgR) expression levels induced by NAC. Thirty dogs with clinical stages II-IV CMTs (T1-3N0-1M0) according to the modified TNM system were included in the study. Dogs in group-1 (n = 15) AC combination and dogs in group-2 (n = 15) were administered paclitaxel. Partial response (PR) was the most common clinical response in both treatment groups (66.66% and 86.66%, respectively). There was no difference between the groups regarding clinical response parameters (p = .001). The rate of treatment responders was higher than the rate of non-responders in both groups (p < .001). The adverse effects observed in both groups were mostly limited to grades 1 and 2 and all were easy to manage. The most frequently detected molecular subtype was Luminal A (59.25%). Complete response (CR) was achieved in 33.33% of dogs with triple-negative CMT in the AC group and 14.29% of the Luminal A subtype in the paclitaxel group. Alterations in Ki-67, HER2, ER, and PgR expressions after chemotherapy were not statistically significant (p > .05). As a result, we have shown that these neoadjuvant chemotherapy protocols are effective and safe alternative treatment options for CMTs.
Collapse
Affiliation(s)
- Fikriye Ecem Kuruoglu
- Department of Obstetrics and Gynecology, Veterinary Faculty, Bursa Uludag University, Bursa, Turkey
| | - Zeynep Merve Ekici
- Department of Obstetrics and Gynecology, Veterinary Faculty, Bursa Uludag University, Bursa, Turkey
| | - Deniz Nak
- Department of Obstetrics and Gynecology, Veterinary Faculty, Bursa Uludag University, Bursa, Turkey
| | - Musa Ozgur Ozyigit
- Department of Department of Pathology, Veterinary Faculty, Bursa Uludag University, Bursa, Turkey
| | - Zehra Avci Kupeli
- Department of Department of Pathology, Veterinary Faculty, Bursa Uludag University, Bursa, Turkey
| | - Davut Koca
- Department of Obstetrics and Gynecology, Veterinary Faculty, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
84
|
Xu P, Luo W, Hu J, Ma X, Hao Q, Hui W, Zhou Z, Lin S, Wang M, Wu H, Dai Z, Kang H. Favorable outcome of neoadjuvant endocrine treatment than surgery-first in female HR-positive/HER2-negative breast cancer patients-A NCDB analysis (2010-2016). Cancer Med 2024; 13:e7244. [PMID: 38859692 PMCID: PMC11165171 DOI: 10.1002/cam4.7244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/03/2024] [Accepted: 04/27/2024] [Indexed: 06/12/2024] Open
Abstract
PURPOSE To assess the efficacy of neoadjuvant endocrine therapy in female HR-positive/HER2-negative breast cancer patients. DATA AND METHODS We identified female patients aged ≥18 years with cT1-4N0-XM0, HR(+), and HER2(-) breast cancer from the National Cancer Database. The patients who underwent surgery first were categorized as "surgery-first," while those who received NET before surgery were classified as "NET." Propensity score-matching, Cox proportional-hazard model, variance inflation factors, and interaction analysis were employed to estimate the correlation between NET and survival outcomes. RESULTS Among 432,387 cases, 2914 NET patients and 2914 surgery-first patients were matched. Compared with the surgery-first group, the NET group received less adjuvant chemotherapy (p < 0.001). Furthermore, the NET group exhibited higher survival probabilities compared with the surgery-first group (3 years: 91.4% vs. 82.1%; 5 years: 82.1% vs. 66.8%). Multivariate Cox analysis indicated that NET was associated with improved OS (surgery-first vs. NET: HR 2.17, 95% CI: 1.93-2.44). Age over 55 years old, having public insurance, higher CDCC score, higher NSBR grade, ER(+)PR(-), and advanced clinical stage were related to worse OS (all p < 0.05). There was an interaction between age, race, income, and home and treatment regimen (all p < 0.05). CONCLUSION NET may be a more effective treatment procedure than surgery-first in female HR-positive/HER2-negative, non-metastatic breast cancer patients. Future clinical studies with more detailed data will provide higher-level evidence-based data.
Collapse
Affiliation(s)
- Peng Xu
- The Comprehensive Breast Care CenterThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Wen Luo
- The Comprehensive Breast Care CenterThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Jingjing Hu
- Massachusetts General Cancer CenterBostonMassachusettsUSA
| | - Xiaobin Ma
- The Comprehensive Breast Care CenterThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Qian Hao
- The Comprehensive Breast Care CenterThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Wentao Hui
- The Comprehensive Breast Care CenterThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Zhangjian Zhou
- The Comprehensive Breast Care CenterThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Shuai Lin
- The Comprehensive Breast Care CenterThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Meng Wang
- The Comprehensive Breast Care CenterThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Hao Wu
- Department of Biophysics, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to DiseasesXi'an Jiaotong University Health Science CenterXi'anShaanxiChina
| | - Zhijun Dai
- Department of Breast SurgeryThe First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhouChina
| | - Huafeng Kang
- The Comprehensive Breast Care CenterThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| |
Collapse
|
85
|
Yildirim S, Dogan A, Akdag G, Yüksel Yasar Z, Bal H, Kinikoglu O, Oksuz S, Ozkerim U, Tunbekici S, Yildiz HS, Alan O, Coban Kokten S, Isik D, Surmeli H, Basoglu T, Sever ON, Odabas H, Yildirim ME, Turan N. The role of laboratory indices on treatment response and survival in breast cancer receiving neoadjuvant chemotherapy. Sci Rep 2024; 14:12123. [PMID: 38802494 PMCID: PMC11130235 DOI: 10.1038/s41598-024-63096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024] Open
Abstract
Neoadjuvant chemotherapy (NACT) is the standard treatment for locally advanced, high-risk breast cancer. Pathological complete response (pCR) improves survival. Peripheral blood-derived indices reflecting systemic inflammation and nutritional status have long been used as predictive and prognostic markers in solid malignancies. This retrospective study investigates whether eight commonly used indices in patients receiving NACT affect pCR and survival. This study includes 624 locally advanced breast cancer patients who received NACT. The biomarker indices were calculated from peripheral blood samples taken two weeks before starting chemotherapy. The indices' optimal cut-off values were determined using ROC Curve analysis. During a median follow-up period of 42 months, recurrence was detected in 146 patients, and 75 patients died. pCR was observed in 166 patients (26.6%). In univariate analysis, NLR, PLR, SII, PNI, HALP, and HRR were statistically significantly associated (p = 0.00; p = 0.03; p = 0.03; p = 0.02; p = 0.00; p = 0.02 respectively), but in multivariate analysis, only NLR was significantly predictive for pCR(p = 0.04). In multivariate analysis, the HGB/RDW score significantly predicted DFS(p = 0.04). The PNI score was identified as a marker predicting survival for both OS and PFS (p = 0.01, p = 0.01, respectively). In conclusion, peripheral blood-derived indices have prognostic and predictive values on pCR and survival. However, further studies are needed to validate our findings.
Collapse
Affiliation(s)
- Sedat Yildirim
- Department of Medical Oncology, Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Cevizli, D-100 Güney Yanyol, Cevizli Mevkii No:47, 34865, Kartal, Istanbul, Turkey.
| | - Akif Dogan
- Department of Medical Oncology, Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Cevizli, D-100 Güney Yanyol, Cevizli Mevkii No:47, 34865, Kartal, Istanbul, Turkey
| | - Goncagul Akdag
- Department of Medical Oncology, Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Cevizli, D-100 Güney Yanyol, Cevizli Mevkii No:47, 34865, Kartal, Istanbul, Turkey
| | - Zeynep Yüksel Yasar
- Department of Medical Oncology, Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Cevizli, D-100 Güney Yanyol, Cevizli Mevkii No:47, 34865, Kartal, Istanbul, Turkey
| | - Hamit Bal
- Department of Medical Oncology, Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Cevizli, D-100 Güney Yanyol, Cevizli Mevkii No:47, 34865, Kartal, Istanbul, Turkey
| | - Oguzcan Kinikoglu
- Department of Medical Oncology, Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Cevizli, D-100 Güney Yanyol, Cevizli Mevkii No:47, 34865, Kartal, Istanbul, Turkey
| | - Sila Oksuz
- Department of Medical Oncology, Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Cevizli, D-100 Güney Yanyol, Cevizli Mevkii No:47, 34865, Kartal, Istanbul, Turkey
| | - Ugur Ozkerim
- Department of Medical Oncology, Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Cevizli, D-100 Güney Yanyol, Cevizli Mevkii No:47, 34865, Kartal, Istanbul, Turkey
| | - Salih Tunbekici
- Department of Medical Oncology, Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Cevizli, D-100 Güney Yanyol, Cevizli Mevkii No:47, 34865, Kartal, Istanbul, Turkey
| | - Hacer Sahika Yildiz
- Department of Medical Oncology, Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Cevizli, D-100 Güney Yanyol, Cevizli Mevkii No:47, 34865, Kartal, Istanbul, Turkey
| | - Ozkan Alan
- Division of Medical Oncology, School of Medicine, Koç University, Istanbul, Turkey
| | - Sermin Coban Kokten
- Department of Pathology, Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Istanbul, Turkey
| | - Deniz Isik
- Department of Medical Oncology, Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Cevizli, D-100 Güney Yanyol, Cevizli Mevkii No:47, 34865, Kartal, Istanbul, Turkey
| | - Heves Surmeli
- Department of Medical Oncology, Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Cevizli, D-100 Güney Yanyol, Cevizli Mevkii No:47, 34865, Kartal, Istanbul, Turkey
| | - Tugba Basoglu
- Department of Medical Oncology, Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Cevizli, D-100 Güney Yanyol, Cevizli Mevkii No:47, 34865, Kartal, Istanbul, Turkey
| | - Ozlem Nuray Sever
- Department of Medical Oncology, Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Cevizli, D-100 Güney Yanyol, Cevizli Mevkii No:47, 34865, Kartal, Istanbul, Turkey
| | - Hatice Odabas
- Department of Medical Oncology, Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Cevizli, D-100 Güney Yanyol, Cevizli Mevkii No:47, 34865, Kartal, Istanbul, Turkey
| | - Mahmut Emre Yildirim
- Department of Medical Oncology, Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Cevizli, D-100 Güney Yanyol, Cevizli Mevkii No:47, 34865, Kartal, Istanbul, Turkey
| | - Nedim Turan
- Department of Medical Oncology, Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Cevizli, D-100 Güney Yanyol, Cevizli Mevkii No:47, 34865, Kartal, Istanbul, Turkey
| |
Collapse
|
86
|
He E, Xia X, Quan H, Leng P. Expression Significance of Estrogen Receptor ER-α36 in Breast Cancer Treated by Chemotherapy: A Meta-Analysis. Mol Biotechnol 2024; 66:991-999. [PMID: 38270756 DOI: 10.1007/s12033-023-01029-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/10/2023] [Indexed: 01/26/2024]
Abstract
Estrogen receptor (ER) is a molecular marker and target for diagnosing and treating breast cancer (BC). ER-α36, a novel estrogen receptor subtype, involved in the proliferation, differentiation, metastasis, and invasion of tumor cells. It is closely linked to the progression of various cancers. Therefore, studying ER is of high significance in treating BC. In this study, we will investigate the changes in the expression level of ER-α36 in patients with BC treated by chemotherapy through meta-analysis, so as to evaluate the clinical value of ER-α36 in the prognosis of BC treated by chemotherapy. English databases such as PubMed, Web of Science, Embase, and The Cochrane Library were searched to retrieve the articles published from the establishment of the database to April 2023. The keywords included chemotherapy, neoadjuvant chemotherapy, breast cancer, estrogen receptor alpha, and ER-α36. Five suitable studies, encompassing 636 patients, were ultimately selected. The meta-analysis results revealed that, following the chemotherapy, the analysis of ER-α36 positive cases yielded an Odds Ratio (OR) of 0.42, a 95% confidence interval (CI) of 0.28-0.64 (Z = 4.00, P < 0.0001). Additionally, the analysis of cases exhibiting remission in BC demonstrated an OR of 2.22 (95% CI = 1.40-3.50, Z = 3.40, P = 0.0007). Compared to patients receiving single chemotherapy agents or those untreated with chemotherapy, the combined use of multiple chemotherapy drugs can significantly reduce the levels of ER-α36 in BC patients, enhancing the remission rate of BC. ER-α36 can serve as a critical indicator for assessing the prognosis of BC following chemotherapy.
Collapse
Affiliation(s)
- Enping He
- Department of Clinical Laboratory, The Second Affiliated Hospital of Cheng du Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, Sichuan Province, China
| | - Xuliang Xia
- Department of Thyroid Gland Breast Surgery, The Second Affiliated Hospital of Cheng du Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, Sichuan Province, China
| | - Hui Quan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Cheng du Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, Sichuan Province, China
| | - Ping Leng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan Province, China.
| |
Collapse
|
87
|
Fernández-Casas A, Leirós-Rodríguez R, Hernandez-Lucas P, González-Represas A. Protective effects of exercise on cardiotoxicity induced by breast cancer treatments: A systematic review and meta-analysis. Maturitas 2024; 183:107932. [PMID: 38325133 DOI: 10.1016/j.maturitas.2024.107932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVE Currently, one of the main causes of death in women with breast cancer is cardiovascular disease caused by the oncologic therapies. Exercise has demonstrated positive effects on cardiovascular fitness in individuals without cancer. Therefore, the aim of this study was to evaluate the cardioprotective effects of exercise in women with breast cancer, during and after the application of their treatments. METHODS Systematic search was done in PubMed, Scopus, Web of Science, CINAHL, MEDLINE, SPORTDiscus, and PEDro. The articles must have been published in the last ten years; the intervention to be evaluated was to consist of an exercise program; the sample had to comprise women who were undergoing breast cancer treatment or who had completed it at the time of the intervention; and the outcome variables had to include at least one parameter for the assessment of cardiac function and/or structure. RESULTS Of the 28 articles identified, nine reported non-randomized controlled studies, 16 randomized clinical trials and three quasi-experimental studies. The effects of exercise on left ventricular ejection fraction, global longitudinal strain and the E/A waveforms ratio were not significant. However, its effect on VO2max was significant. CONCLUSIONS Exercise does not seem to be effective in avoiding the cardiotoxic effects of oncological treatment for breast cancer. Although exercise seems to mitigate the symptomatology, reflected in improved functional capacity, more long-term studies are needed. PROSPERO REGISTRATION CODE CRD42023391441.
Collapse
Affiliation(s)
- Alicia Fernández-Casas
- Functional Biology and Health Sciences Department, University of Vigo, Pontevedra, Spain
| | - Raquel Leirós-Rodríguez
- SALBIS Research Group, Nursing and Physical Therapy Department, University of Leon, Ponferrada, Spain.
| | - Pablo Hernandez-Lucas
- Functional Biology and Health Sciences Department, University of Vigo, Pontevedra, Spain.
| | | |
Collapse
|
88
|
Trabulus FDC, Nazli MA, Arslan E, Mermut O, Dal F, Akce B, Gursu RU, Talu ECK, Couteau JNA. Predictors of recurrence in breast cancer patients with pathological partial response. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20231215. [PMID: 38656005 DOI: 10.1590/1806-9282.20231215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/25/2023] [Indexed: 04/26/2024]
Abstract
OBJECTIVE Patients with residual disease after neoadjuvant chemotherapy have a relative risk of developing recurrence. This study investigates the risk factors for recurrence in locally advanced breast cancer patients with residual disease and evaluates survival analysis. METHODS This is a retrospective, single-center study. Breast cancer patients who failed to achieve a pathological complete response after neoadjuvant chemotherapy were included. Demographic, clinicopathological, and treatment characteristics were evaluated to identify predictive factors of recurrence and survival analysis. RESULTS We included 205 patients in this study. After a median of 31 months of follow-up, 10 patients died, and 20 developed distant metastasis. Disease-free survival and disease-specific survival were 73.8% and 83.1%, respectively. Lymphovascular invasion and non-luminal subtype were independent predictors of locoregional recurrence. In situ carcinoma, lymphovascular invasion, ypTIII stage, and non-luminal molecular subtypes were independent predictors of disease-free survival. The only independent factor affecting disease-specific survival was cNII-III. The number of involved lymph nodes was an independent predictor of disease-free survival in patients without complete axillary response. CONCLUSION Factors affecting disease-specific survival and disease-free survival were cNII-III and the number of involved lymph nodes, respectively. Patients with non-luminal, large residual tumors with in situ carcinoma, lymphovascular invasion, clinically positive axilla, and residual nodal involvement have a high relative risk for recurrence and may benefit from additional treatments.
Collapse
Affiliation(s)
- Fadime Didem Can Trabulus
- Bahçeşehir University, School of Medicine, Goztepe Medical Park Hospital, Department of General Surgery - İstanbul, Turkey
| | - Mehmet Ali Nazli
- University of Health Sciences, Istanbul Training and Education Hospital, Department of Radiology - İstanbul, Turkey
| | - Esra Arslan
- University of Health Sciences, Istanbul Training and Education Hospital, Department of Nuclear Medicine - İstanbul, Turkey
| | - Ozlem Mermut
- University of Health Sciences, Istanbul Training and Education Hospital, Department of Radiation Oncology - İstanbul, Turkey
| | - Fatih Dal
- University of Health Sciences, Istanbul Training and Education Hospital, Department of General Surgery - İstanbul, Turkey
| | - Bulent Akce
- University of Health Sciences, Istanbul Training and Education Hospital, Department of General Surgery - İstanbul, Turkey
| | - Riza Umar Gursu
- University of Health Sciences, Istanbul Training and Education Hospital, Department of Medical Oncology - İstanbul, Turkey
| | - Esra Canan Kelten Talu
- University of Health Sciences, İzmir Faculty of Medicine, Department of Pathology - İzmir, Turkey
| | | |
Collapse
|
89
|
Mineva ND, Pianetti S, Das SG, Srinivasan S, Billiald NM, Sonenshein GE. A Novel Class of Human ADAM8 Inhibitory Antibodies for Treatment of Triple-Negative Breast Cancer. Pharmaceutics 2024; 16:536. [PMID: 38675197 PMCID: PMC11054802 DOI: 10.3390/pharmaceutics16040536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
New targeted treatments are urgently needed to improve triple-negative breast cancer (TNBC) patient survival. Previously, we identified the cell surface protein A Disintegrin And Metalloprotease 8 (ADAM8) as a driver of TNBC tumor growth and spread via its metalloproteinase and disintegrin (MP and DI) domains. In proof-of-concept studies, we demonstrated that a monoclonal antibody (mAb) that simultaneously inhibits both domains represents a promising therapeutic approach. Here, we screened a hybridoma library using a multistep selection strategy, including flow cytometry for Ab binding to native conformation protein and in vitro cell-based functional assays to isolate a novel panel of highly specific human ADAM8 dual MP and DI inhibitory mAbs, called ADPs. The screening of four top candidates for in vivo anti-cancer activity in an orthotopic MDA-MB-231 TNBC model of ADAM8-driven primary growth identified two lead mAbs, ADP2 and ADP13. Flow cytometry, hydrogen/deuterium exchange-mass spectrometry (HDX-MS) and alanine (ALA) scanning mutagenesis revealed that dual MP and DI inhibition was mediated via binding to the DI. Further testing in mice showed ADP2 and ADP13 reduce aggressive TNBC characteristics, including locoregional regrowth and metastasis, and improve survival, demonstrating strong therapeutic potential. The continued development of these mAbs into an ADAM8-targeted therapy could revolutionize TNBC treatment.
Collapse
Affiliation(s)
- Nora D. Mineva
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; (S.P.); (S.G.D.); (S.S.); (N.M.B.)
- Adecto Pharmaceuticals, Inc., Boston, MA 02446, USA
| | - Stefania Pianetti
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; (S.P.); (S.G.D.); (S.S.); (N.M.B.)
- Adecto Pharmaceuticals, Inc., Boston, MA 02446, USA
| | - Sonia G. Das
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; (S.P.); (S.G.D.); (S.S.); (N.M.B.)
| | - Srimathi Srinivasan
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; (S.P.); (S.G.D.); (S.S.); (N.M.B.)
| | - Nicolas M. Billiald
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; (S.P.); (S.G.D.); (S.S.); (N.M.B.)
| | - Gail E. Sonenshein
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; (S.P.); (S.G.D.); (S.S.); (N.M.B.)
- Adecto Pharmaceuticals, Inc., Boston, MA 02446, USA
| |
Collapse
|
90
|
Zhang L, Cao X, Chen J, Dong Y, Chen W, Gao Y, Guo J, Huang H. Co-delivery of siBcl-2 and PTX with mitochondria-targeted functions to overcoming multidrug resistance. Int J Pharm 2024; 654:123970. [PMID: 38447779 DOI: 10.1016/j.ijpharm.2024.123970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
Multidrug resistance (MDR) poses a significant impediment to the efficacy of chemotherapy in clinical settings. Despite Paclitaxel (PTX) being designated as the primary pharmaceutical agent for treating recurrent and metastatic breast cancer, the emergence of PTX resistance frequently results in therapeutic shortcomings, representing a substantial obstacle in clinical breast cancer management. In response, we developed a delivery system exhibiting dual specificity for both tumors and mitochondria. This system facilitated the sequential administration of small interfering B-cell lymphoma-2 (siBcl-2) and PTX to the tumor cytoplasm and mitochondria, respectively, with the aim of surmounting PTX resistance in tumor cells through the activation of the mitochondrial apoptosis pathway. Notably, we employed genetic engineering techniques to fabricate a recombinant ferritin containing the H-subunit (HFn), known for its tumor-targeting capabilities, for loading siBcl-2. This HFn-siBcl-2 complex was then combined with positively charged Triphenylphosphine-Liposome@PTX (TL@PTX) nanoparticles (NPs) to formulate HFn/siBcl-2@TL/PTX. Guided by HFn, these nanoparticles efficiently entered cells and released siBcl-2 through the action of triphenylphosphine (TPP)-mediated "proton sponge," thereby precisely modulating the expression of Bcl-2 protein. Simultaneously, PTX was directed to the mitochondria through the accurate targeting of TL@PTX, synergistically initiating the mitochondrial apoptosis pathway and effectively suppressing PTX resistance both in vitro and in vivo. In conclusion, the development of this dual-targeting delivery system presents a promising therapeutic strategy for overcoming PTX resistance in the clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Liqiao Zhang
- Department of Pharmacy, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, PR China.
| | - Xinyu Cao
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Jiayi Chen
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Yanyan Dong
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Wenwen Chen
- Department of Pharmacy, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Yu Gao
- Department of Pharmacy, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Jingjing Guo
- Jiangsu Medical Devices Inspection Center, PR China.
| | - Haiqin Huang
- College of Pharmacy, Nantong University, Nantong 226001, PR China.
| |
Collapse
|
91
|
Chen H, Dong K, Ding J, Xia J, Qu F, Lan F, Liao H, Qian Y, Huang J, Xu Z, Gu Z, Shi B, Yu M, Cui X, Yu Y. CRISPR genome-wide screening identifies PAK1 as a critical driver of ARSI cross-resistance in prostate cancer progression. Cancer Lett 2024; 587:216725. [PMID: 38364963 DOI: 10.1016/j.canlet.2024.216725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/26/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Next-generation androgen receptor signaling inhibitors (ARSIs), such as enzalutamide (Enza) and darolutamide (Daro), are initially effective for the treatment of advanced prostate cancer (PCa) and castration-resistant prostate cancer (CRPC). However, patients often relapse and develop cross-resistance, which consequently makes drug resistance an inevitable cause of CRPC-related mortality. By conducting a comprehensive analysis of GEO datasets, CRISPR genome-wide screening results, ATAC-seq data, and RNA-seq data, we systemically identified PAK1 as a significant contributor to ARSI cross-resistance due to the activation of the PAK1/RELA/hnRNPA1/AR-V7 axis. Inhibition of PAK1 followed by suppression of NF-κB pathways and AR-V7 expression effectively overcomes ARSI cross-resistance. Our findings indicate that PAK1 represents a promising therapeutic target gene for the treatment of ARSI cross-resistant PCa patients in the clinic. STATEMENT OF SIGNIFICANCE: PAK1 drives ARSI cross-resistance in prostate cancer progression.
Collapse
Affiliation(s)
- Haojie Chen
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China; Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Keqin Dong
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China; Department of Urology, Chinese PLA General Hospital of Central Theater Command, Wuhan, 430064, China
| | - Jie Ding
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Jia Xia
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Fajun Qu
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Fuying Lan
- Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Haihong Liao
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Yuhang Qian
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Jiacheng Huang
- Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Zihan Xu
- Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Zhengqin Gu
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China.
| | - Bowen Shi
- Department of Urology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.
| | - Mingming Yu
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Xingang Cui
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China.
| | - Yongjiang Yu
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China.
| |
Collapse
|
92
|
Li X, Liu G, Wu W. Progress in Biological Research and Treatment of Pseudomyxoma Peritonei. Cancers (Basel) 2024; 16:1406. [PMID: 38611084 PMCID: PMC11010892 DOI: 10.3390/cancers16071406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Pseudomyxoma peritonei (PMP) is a rare disease characterized by extensive peritoneal implantation and mass secretion of mucus after primary mucinous tumors of the appendix or other organ ruptures. Cytoreductive surgery (CRS) combined with hyperthermic intraperitoneal chemotherapy (HIPEC) is currently the preferred treatment, with excellent efficacy and safety, and is associated with breakthrough progress in long-term disease control and prolonged survival. However, the high recurrence rate of PMP is the key challenge in its treatment, which limits the clinical application of multiple rounds of CRS-HIPEC and does not benefit from conventional systemic chemotherapy. Therefore, the development of alternative therapies for patients with refractory or relapsing PMP is critical. The literature related to PMP research progress and treatment was searched in the Web of Science, PubMed, and Google Scholar databases, and a literature review was conducted. The overview of the biological research, treatment status, potential therapeutic strategies, current research limitations, and future directions associated with PMP are presented, focuses on CRS-HIPEC therapy and alternative or combination therapy strategies, and emphasizes the clinical transformation prospects of potential therapeutic strategies such as mucolytic agents and targeted therapy. It provides a theoretical reference for the treatment of PMP and the main directions for future research.
Collapse
Affiliation(s)
- Xi Li
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha 410008, China;
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Guodong Liu
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha 410008, China;
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wei Wu
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha 410008, China;
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
93
|
Roudini K, Mirzania M, Yavari T, Seyyedsalehi MS, Nahvijou A, Zebardast J, Saadat M, Khajeh-Mehrizi A. Neoadjuvant Chemotherapy in Patients with HER2-Negative Breast Cancer: A Report from Clinical Breast Cancer Registry of Iran. ARCHIVES OF IRANIAN MEDICINE 2024; 27:206-215. [PMID: 38685847 PMCID: PMC11097303 DOI: 10.34172/aim.2024.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 02/28/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Neoadjuvant chemotherapy (NCT) has become an increasingly popular approach in management of breast cancer (BC). This study was conducted to evaluate the pathologic response and 36-month recurrence and survival rates of patients with human epidermal growth factor receptor 2 (HER2)-negative BC treated with different NCT regimens. METHODS A total of 163 female patients with HER2-negative BC who received NCT during 2017-2020 were identified from the Clinical Breast Cancer Registry of Iran and entered the study. The prescribed NCT regimens included 4 cycles of doxorubicin plus cyclophosphamide, 4 cycles of doxorubicin plus cyclophosphamide followed by 4 cycles of paclitaxel, 4 cycles of doxorubicin plus cyclophosphamide followed by 4 cycles of docetaxel or 6 cycles of doxorubicin plus cyclophosphamide plus docetaxel (TAC). RESULTS Thirty-two patients (19.6%) experienced pathologic complete response (pCR). TAC regimen, triple negative-BC and ki67>10% were significantly associated with increased pCR. The recurrence, overall survival (OS) and disease-free survival (DFS) rate at 36 months for all patients were 16.6%, 84.7% and 79.8%, respectively. Type of neoadjuvant regimen as well as age, hormone receptor status, Ki67, grade, clinical stage, type of surgery and pathologic response to chemotherapy did not significantly influence the survival and recurrence; however, TAC results in improved recurrence, OS and DFS rates. CONCLUSION This study provides further evidence that NCT is a viable treatment option for patients with HER2-negative BC. The TAC regimen resulted in a significantly higher pCR rate compared to other regimens, but did not result in a significant improvement in recurrence, OS and DFS and rates.
Collapse
Affiliation(s)
- Kamran Roudini
- Department of Hematology and Medical Oncology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrzad Mirzania
- Department of Hematology and Medical Oncology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Yavari
- Department of Internal Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Monireh Sadat Seyyedsalehi
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Azin Nahvijou
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Jayran Zebardast
- Department of Cognitive Linguistics, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Science, Tehran, Iran
| | - Mina Saadat
- Student Research Committee, School of Nursing and Midwifery, Shahroud University of Medical Science, Shahroud, Iran
| | - Ahmad Khajeh-Mehrizi
- Department of Hematology and Medical Oncology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
94
|
Fuentes-Aguilar A, González-Bakker A, Jovanović M, Stojanov SJ, Puerta A, Gargano A, Dinić J, Vega-Báez JL, Merino-Montiel P, Montiel-Smith S, Alcaro S, Nocentini A, Pešić M, Supuran CT, Padrón JM, Fernández-Bolaños JG, López Ó. Coumarins-lipophilic cations conjugates: Efficient mitocans targeting carbonic anhydrases. Bioorg Chem 2024; 145:107168. [PMID: 38354500 DOI: 10.1016/j.bioorg.2024.107168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
Being aware of the need to develop more efficient therapies against cancer, herein we disclose an innovative approach for the design of selective antiproliferative agents. We have accomplished the conjugation of a coumarin fragment with lipophilic cations (triphenylphosphonium salts, guanidinium) for providing mitochondriotropic agents that simultaneously target also carbonic anhydrases IX and XII, involved in the development and progression of cancer. The new compounds prepared herein turned out to be strong inhibitors of carbonic anhydrases IX and XII of human origin (low-to-mid nM range), also endowed with high selectivity, exhibiting negligible activity towards cytosolic CA isoforms. Key interactions with the enzyme were analysed using docking and molecular dynamics simulations. Regarding their in vitro antiproliferative activities, an increase of the tether length connecting both pharmacophores led to a clear improvement in potency, reaching the submicromolar range for the lead compounds, and an outstanding selectivity towards tumour cell lines (S.I. up to >357). Cytotoxic effects were also analysed on MDR cell lines under hypoxic and normoxic conditions. Chemoresistance exhibited by phosphonium salts, and not by guanidines, against MDR cells was based on the fact that the former were found to be substrates of P-glycoprotein (P-gp), the pump responsible for extruding foreign chemicals; this situation was reversed by administrating tariquidar, a third generation P-gp inhibitor. Moreover, phosphonium salts provoked a profound depolarization of mitochondria membranes from tumour cells, thus probably compromising their oxidative metabolism. To gain insight into the mode of action of title compounds, continuous live cell microscopy was employed; interestingly, this technique revealed two different antiproliferative mechanisms for both families of mitocans. Whereas phosphonium salts had a cytostatic effect, blocking cell division, guanidines led to cell death via apoptosis.
Collapse
Affiliation(s)
- Alma Fuentes-Aguilar
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, PUE, Mexico; Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain
| | - Aday González-Bakker
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González", Universidad de la Laguna, C/ Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | - Mirna Jovanović
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia
| | - Sofija Jovanović Stojanov
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González", Universidad de la Laguna, C/ Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | - Adriana Gargano
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Campus Universitario "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Jelena Dinić
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia
| | - José L Vega-Báez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, PUE, Mexico
| | - Penélope Merino-Montiel
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, PUE, Mexico
| | - Sara Montiel-Smith
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, PUE, Mexico
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Campus Universitario "S. Venuta", Viale Europa, 88100 Catanzaro, Italy; Net4Science Academic Spinoff, Università "Magna Græcia" di Catanzaro, Campus Universitario "S. Venuta", Viale Europa, 88100 Catanzaro, Italy; Associazione CRISEA - Centro di Ricerca e Servizi Avanzati per l'Innovazione Rurale, Località Condoleo, 88055 Belcastro (CZ), Italy
| | - Alessio Nocentini
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019 Florence, Italy
| | - Milica Pešić
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia.
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019 Florence, Italy.
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González", Universidad de la Laguna, C/ Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain.
| | - José G Fernández-Bolaños
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain.
| |
Collapse
|
95
|
Wang T, Xing G, Fu T, Ma Y, Wang Q, Zhang S, Chang X, Tong Y. Role of mitochondria in doxorubicin-mediated cardiotoxicity: From molecular mechanisms to therapeutic strategies. Cell Stress Chaperones 2024; 29:349-357. [PMID: 38485043 PMCID: PMC10999808 DOI: 10.1016/j.cstres.2024.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/09/2024] [Indexed: 04/05/2024] Open
Abstract
This comprehensive review delves into the pivotal role of mitochondria in doxorubicin-induced cardiotoxicity, a significant complication limiting the clinical use of this potent anthracycline chemotherapeutic agent. Doxorubicin, while effective against various malignancies, is associated with dose-dependent cardiotoxicity, potentially leading to irreversible cardiac damage. The review meticulously dissects the molecular mechanisms underpinning this cardiotoxicity, particularly focusing on mitochondrial dysfunction, a central player in this adverse effect. Central to the discussion is the concept of mitochondrial quality control, including mitochondrial dynamics (fusion/fission balance) and mitophagy. The review presents evidence linking aberrations in these processes to cardiotoxicity in doxorubicin-treated patients. It elucidates how doxorubicin disrupts mitochondrial dynamics, leading to an imbalance between mitochondrial fission and fusion, and impairs mitophagy, culminating in the accumulation of dysfunctional mitochondria and subsequent cardiac cell damage. Furthermore, the review explores emerging therapeutic strategies targeting mitochondrial dysfunction. It highlights the potential of modulating mitochondrial dynamics and enhancing mitophagy to mitigate doxorubicin-induced cardiac damage. These strategies include pharmacological interventions with mitochondrial fission inhibitors, fusion promoters, and agents that modulate mitophagy. The review underscores the promising results from preclinical studies while advocating for more extensive clinical trials to validate these approaches in human patients. In conclusion, this review offers valuable insights into the intricate relationship between mitochondrial dysfunction and doxorubicin-mediated cardiotoxicity. It underscores the need for continued research into targeted mitochondrial therapies as a means to improve the cardiac safety profile of doxorubicin, thereby enhancing the overall treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Tianen Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guoli Xing
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tong Fu
- Brandeis University, Waltham, MA, USA
| | - Yanchun Ma
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qi Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shuxiang Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xing Chang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Ying Tong
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China.
| |
Collapse
|
96
|
Han J, Hua H, Fei J, Liu J, Guo Y, Ma W, Chen J. Prediction of Disease-Free Survival in Breast Cancer using Deep Learning with Ultrasound and Mammography: A Multicenter Study. Clin Breast Cancer 2024; 24:215-226. [PMID: 38281863 DOI: 10.1016/j.clbc.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Breast cancer is a leading cause of cancer morbility and mortality in women. The possibility of overtreatment or inappropriate treatment exists, and methods for evaluating prognosis need to be improved. MATERIALS AND METHODS Patients (from January 2013 to December 2018) were recruited and divided into a training group and a testing group. All patients were followed for more than 3 years. Patients were divided into a disease-free group and a recurrence group based on follow up results at 3 years. Ultrasound (US) and mammography (MG) images were collected to establish deep learning models (DLMs) using ResNet50. Clinical data, MG, and US characteristics were collected to select independent prognostic factors using a cox proportional hazards model to establish a clinical model. DLM and independent prognostic factors were combined to establish a combined model. RESULTS In total, 1242 patients were included. Independent prognostic factors included age, neoadjuvant chemotherapy, HER2, orientation, blood flow, dubious calcification, and size. We established 5 models: the US DLM, MG DLM, US + MG DLM, clinical and combined model. The combined model using US images, MG images, and pathological, clinical, and radiographic characteristics had the highest predictive performance (AUC = 0.882 in the training group, AUC = 0.739 in the testing group). CONCLUSION DLMs based on the combination of US, MG, and clinical data have potential as predictive tools for breast cancer prognosis.
Collapse
Affiliation(s)
- Junqi Han
- Department of Breast Imaging, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Hui Hua
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Jie Fei
- Department of Breast Imaging, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Jingjing Liu
- Department of Breast Imaging, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yijun Guo
- Department of Breast Imaging Diagnosis, National Clinical Research Center for Cancer, Tianjin Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Wenjuan Ma
- Department of Breast Imaging Diagnosis, National Clinical Research Center for Cancer, Tianjin Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Jingjing Chen
- Department of Breast Imaging, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China.
| |
Collapse
|
97
|
Chang X, Zhu Z, Weng L, Tang X, Liu T, Zhu M, Liu J, Tang W, Zhang Y, Chen X. Selective Manipulation of the Mitochondria Oxidative Stress in Different Cells Using Intelligent Mesoporous Silica Nanoparticles to Activate On-Demand Immunotherapy for Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307310. [PMID: 38039438 DOI: 10.1002/smll.202307310] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/03/2023] [Indexed: 12/03/2023]
Abstract
Herein, the vitamin K2 (VK2)/maleimide (MA) coloaded mesoporous silica nanoparticles (MSNs), functional molecules including folic acid (FA)/triphenylphosphine (TPP)/tetrapotassium hexacyanoferrate trihydrate (THT), as well as CaCO3 are explored to fabricate a core-shell-corona nanoparticle (VMMFTTC) for on-demand anti-tumor immunotherapy. After application, the tumor-specific acidic environment first decomposed CaCO3 corona, which significantly levitates the pH value of tumor tissue to convert M2 type macrophage to the antitumor M1 type. The resulting VMMFTT would then internalize in both tumor cells and macrophages via FA-assisted endocytosis and free endocytosis, respectively. These distinct processes generate different amount of VMMFTT in above two cells followed by 1) TPP-induced accumulation in the mitochondria, 2) THT-mediated effective capture of various signal ions to cut off signal transmission and further inhibit glutathione (GSH) generation, 3) ions catalyzed reactive oxygen species (ROS) production through Fenton reaction, 4) sustained release of VK2 and MA to further enhance the ROS production and GSH depletion, which caused significant apoptosis of tumor cells and additional M2-to-M1 macrophage polarization via different processes of oxidative stress. Moreover, the primary tumor apoptosis further matures surrounding immature dendritic cells and activates T cells to continuously promote the antitumor immunotherapy.
Collapse
Affiliation(s)
- Xiaowei Chang
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zeren Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Lin Weng
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaoyu Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Tao Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Man Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Jie Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wenjun Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Xin Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
98
|
Yasen X, Aikebaier R, Maimaiti A, Mushajiang M. IL-33/soluble ST2 axis is associated with radiation-induced cardiac injury. Open Life Sci 2024; 19:20220841. [PMID: 38585634 PMCID: PMC10997150 DOI: 10.1515/biol-2022-0841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/24/2024] [Accepted: 02/20/2024] [Indexed: 04/09/2024] Open
Abstract
Radiotherapy for treating breast cancer is associated with cardiac damage. This study aimed to investigate the role of the interleukin (IL)-33/soluble receptor ST2 (sST2) axis in radiation-induced cardiac injury. Expressions of IL-33 and sST2 were detected in breast cancer patients following radiotherapy, radiation-induced cardiac damaged mice model, and cardiomyocytes using quantitative real-time PCR (qRT-PCR) and immunohistochemical assay. Cardiac injury was evaluated through an ultrasound imaging system and hematoxylin & eosin staining. The transcriptional factor was assessed using dual-luciferase reporter assay and chromatin immunoprecipitation. The results indicated that IL-33 and sST2 were highly expressed in breast cancer patients, which further elevated post-6 months but reduced after 12 months of radiotherapy. Radiation induces cardiac dysfunction and elevated IL-33 and sST2 levels in a time-dependent manner. However, silencing of IL-33 decreased sST2 expression to alleviate radiation-induced cardiac dysfunction. The IL-33 could be transcriptional activated by TCF7L2 by binding to IL33 promoter sites, which mutation alleviated cardiomyocyte injury caused by radiation. Additionally, radiation treatment resulted in higher levels of TCF7L2, IL-33, and sST2 in cardiomyocytes, and TCF7L2 knockdown reduced IL-33 and sST2 expression. In conclusion, TCF7L2 transcriptional-activated IL-33 mediated sST2 to regulate radiation-induced cardiac damage, providing novel insights into radiotherapy-induced cardiac damage.
Collapse
Affiliation(s)
- Xiaokeya Yasen
- Department of Tumor Internal Medicine, The First People’s Hospital of Kashgar Prefecture, Xinjiang, China
| | - Renaguli Aikebaier
- Department of Tumor Internal Medicine, The First People’s Hospital of Kashgar Prefecture, Xinjiang, China
| | - Atiguli Maimaiti
- Department of Tumor Internal Medicine, The First People’s Hospital of Kashgar Prefecture, Xinjiang, China
| | - Munire Mushajiang
- Department of Breast Radiotherapy, Cancer Hospital Affiliated to Xinjiang Medical University, 789 Suzhou East Street, Xinshi District, Urumqi City, Xinjiang 830000, China
| |
Collapse
|
99
|
Wang T, Xing G, Fu T, Ma Y, Wang Q, Zhang S, Chang X, Tong Y. Role of mitochondria in doxorubicin-mediated cardiotoxicity: from molecular mechanisms to therapeutic strategies. Int J Med Sci 2024; 21:809-816. [PMID: 38617011 PMCID: PMC11008476 DOI: 10.7150/ijms.94485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/27/2024] [Indexed: 04/16/2024] Open
Abstract
This comprehensive review delves into the pivotal role of mitochondria in doxorubicin-induced cardiotoxicity, a significant complication limiting the clinical use of this potent anthracycline chemotherapeutic agent. Doxorubicin, while effective against various malignancies, is associated with dose-dependent cardiotoxicity, potentially leading to irreversible cardiac damage. The review meticulously dissects the molecular mechanisms underpinning this cardiotoxicity, particularly focusing on mitochondrial dysfunction, a central player in this adverse effect. Central to the discussion is the concept of mitochondrial quality control (MQC), including mitochondrial dynamics (fusion/fission balance) and mitophagy. The review presents evidence linking aberrations in these processes to cardiotoxicity in doxorubicin-treated patients. It elucidates how doxorubicin disrupts mitochondrial dynamics, leading to an imbalance between mitochondrial fission and fusion, and impairs mitophagy, culminating in the accumulation of dysfunctional mitochondria and subsequent cardiac cell damage. Furthermore, the review explores emerging therapeutic strategies targeting mitochondrial dysfunction. It highlights the potential of modulating mitochondrial dynamics and enhancing mitophagy to mitigate doxorubicin-induced cardiac damage. These strategies include pharmacological interventions with mitochondrial fission inhibitors, fusion promoters, and agents that modulate mitophagy. The review underscores the promising results from preclinical studies while advocating for more extensive clinical trials to validate these approaches in human patients. In conclusion, this review offers valuable insights into the intricate relationship between mitochondrial dysfunction and doxorubicin-mediated cardiotoxicity. It underscores the need for continued research into targeted mitochondrial therapies as a means to improve the cardiac safety profile of doxorubicin, thereby enhancing the overall treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Tianen Wang
- First Afliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Guoli Xing
- First Afliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Tong Fu
- Brandeis University, Waltham, MA 02453, USA
| | - Yanchun Ma
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Qi Wang
- First Afliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Shuxiang Zhang
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xing Chang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Ying Tong
- First Afliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
100
|
Bartusik-Aebisher D, Mytych W, Dynarowicz K, Myśliwiec A, Machorowska-Pieniążek A, Cieślar G, Kawczyk-Krupka A, Aebisher D. Magnetic Resonance Imaging in Breast Cancer Tissue In Vitro after PDT Therapy. Diagnostics (Basel) 2024; 14:563. [PMID: 38473036 DOI: 10.3390/diagnostics14050563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Photodynamic therapy (PDT) is increasingly used in modern medicine. It has found application in the treatment of breast cancer. The most common cancer among women is breast cancer. We collected cancer cells from the breast from the material received after surgery. We focused on tumors that were larger than 10 mm in size. Breast cancer tissues for this quantitative non-contrast magnetic resonance imaging (MRI) study could be seen macroscopically. The current study aimed to present findings on quantitative non-contrast MRI of breast cancer cells post-PDT through the evaluation of relaxation times. The aim of this work was to use and optimize a 1.5 T MRI system. MRI tests were performed using a clinical scanner, namely the OPTIMA MR360 manufactured by General Electric HealthCare. The work included analysis of T1 and T2 relaxation times. This analysis was performed using the MATLAB package (produced by MathWorks). The created application is based on medical MRI images saved in the DICOM3.0 standard. T1 and T2 measurements were subjected to the Shapiro-Wilk test, which showed that both samples belonged to a normal distribution, so a parametric t-test for dependent samples was used to test for between-sample variability. The study included 30 sections tested in 2 stages, with consistent technical parameters. For T1 measurements, 12 scans were performed with varying repetition times (TR) and a constant echo time (TE) of 3 ms. For T2 measurements, 12 scans were performed with a fixed repetition time of 10,000 ms and varying echo times. After treating samples with PpIX disodium salt and bubbling with pure oxygen, PDT irradiation was applied. The cell relaxation time after therapy was significantly shorter than the cell relaxation time before PDT. The cells were exposed to PpIX disodium salt as the administered pharmacological substance. The study showed that the therapy significantly affected tumor cells, which was confirmed by a significant reduction in tumor cell relaxation time on the MRI results.
Collapse
Affiliation(s)
- Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| | - Wiktoria Mytych
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | | | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| |
Collapse
|