51
|
Fisher M, Downie H, Welten MCM, Delgado I, Bain A, Planzer T, Sherman A, Sang H, Tickle C. Comparative analysis of 3D expression patterns of transcription factor genes and digit fate maps in the developing chick wing. PLoS One 2011; 6:e18661. [PMID: 21526123 PMCID: PMC3081307 DOI: 10.1371/journal.pone.0018661] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 03/08/2011] [Indexed: 11/23/2022] Open
Abstract
Hoxd13, Tbx2, Tbx3, Sall1 and Sall3 genes are candidates for encoding antero-posterior positional values in the developing chick wing and specifying digit identity. In order to build up a detailed profile of gene expression patterns in cell lineages that give rise to each of the digits over time, we compared 3 dimensional (3D) expression patterns of these genes during wing development and related them to digit fate maps. 3D gene expression data at stages 21, 24 and 27 spanning early bud to digital plate formation, captured from in situ hybridisation whole mounts using Optical Projection Tomography (OPT) were mapped to reference wing bud models. Grafts of wing bud tissue from GFP chicken embryos were used to fate map regions of the wing bud giving rise to each digit; 3D images of the grafts were captured using OPT and mapped on to the same models. Computational analysis of the combined computerised data revealed that Tbx2 and Tbx3 are expressed in digit 3 and 4 progenitors at all stages, consistent with encoding stable antero-posterior positional values established in the early bud; Hoxd13 and Sall1 expression is more dynamic, being associated with posterior digit 3 and 4 progenitors in the early bud but later becoming associated with anterior digit 2 progenitors in the digital plate. Sox9 expression in digit condensations lies within domains of digit progenitors defined by fate mapping; digit 3 condensations express Hoxd13 and Sall1, digit 4 condensations Hoxd13, Tbx3 and to a lesser extent Tbx2. Sall3 is only transiently expressed in digit 3 progenitors at stage 24 together with Sall1 and Hoxd13; then becomes excluded from the digital plate. These dynamic patterns of expression suggest that these genes may play different roles in digit identity either together or in combination at different stages including the digit condensation stage.
Collapse
Affiliation(s)
- Malcolm Fisher
- Division of Cell and Developmental Biology, University of Dundee, Dundee, Scotland, United Kingdom
| | - Helen Downie
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Monique C. M. Welten
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
- * E-mail:
| | - Irene Delgado
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Andrew Bain
- Division of Cell and Developmental Biology, University of Dundee, Dundee, Scotland, United Kingdom
| | - Thorsten Planzer
- Division of Cell and Developmental Biology, University of Dundee, Dundee, Scotland, United Kingdom
| | - Adrian Sherman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, United Kingdom
| | - Helen Sang
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, United Kingdom
| | - Cheryll Tickle
- Division of Cell and Developmental Biology, University of Dundee, Dundee, Scotland, United Kingdom
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| |
Collapse
|
52
|
Bensoussan-Trigano V, Lallemand Y, Saint Cloment C, Robert B. Msx1 and Msx2 in limb mesenchyme modulate digit number and identity. Dev Dyn 2011; 240:1190-202. [PMID: 21465616 DOI: 10.1002/dvdy.22619] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2011] [Indexed: 11/08/2022] Open
Abstract
Msx1 and Msx2 encode homeodomain transcription factors that play a crucial role in limb development. However, the limb phenotype of the double Msx1(null/null) Msx2(null/null) mutant is difficult to analyze, particularly along the anteroposterior axis, because of the complex effects of the double mutation on both ectoderm- and mesoderm-derived structures. Namely, in the mutant, formation of the apical ectodermal ridge (AER) is impaired anteriorly and, consequently, the subjacent mesenchyme does not form. Using the Cre/loxP system, we investigated the respective roles of Msx genes in ectoderm and mesoderm by generating conditional mutant embryos with no Msx activity solely in the mesoderm. In these mutants, the integrity of the ectoderm-derived AER was maintained, allowing formation of the anterior mesenchyme. With this strategy, we demonstrate that mesenchymal expression of Msx1 and Msx2 is required for proper Shh and Bmp4 signaling to specify digit number and identity.
Collapse
|
53
|
Dunn IC, Paton IR, Clelland AK, Sebastian S, Johnson EJ, McTeir L, Windsor D, Sherman A, Sang H, Burt DW, Tickle C, Davey MG. The chicken polydactyly (Po) locus causes allelic imbalance and ectopic expression of Shh during limb development. Dev Dyn 2011; 240:1163-72. [PMID: 21465618 DOI: 10.1002/dvdy.22623] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2011] [Indexed: 12/18/2022] Open
Abstract
Point mutations in the intronic ZRS region of Lmbr1, a limb specific cis-regulatory element of Sonic hedgehog (Shh), are associated with polydactyly in humans, cats, and mice. We and others have recently mapped the dominant preaxial polydactyly (Po) locus in Silkie chickens to a single nucleotide polymorphism (SNP) in the ZRS region. Using polymorphisms in the chicken Shh sequence, we confirm that the ZRS region directly regulates Shh expression in the developing limb causing ectopic Shh expression in the anterior leg, prolonged Shh expression in the posterior limb, and allelic imbalance between wt and Slk Shh alleles in heterozygote limbs. Using Silkie legs, we have explored the consequences of increased Shh expression in the posterior leg on the patterning of the toes, and the induction of preaxial polydactyly.
Collapse
Affiliation(s)
- Ian C Dunn
- Division of Genetics and Genomics, The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Stricker S, Mundlos S. Mechanisms of digit formation: Human malformation syndromes tell the story. Dev Dyn 2011; 240:990-1004. [PMID: 21337664 DOI: 10.1002/dvdy.22565] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2011] [Indexed: 12/29/2022] Open
Abstract
Identifying the genetic basis of human limb malformation disorders has been instrumental in improving our understanding of limb development. Abnormalities of the hands and/or feet include defects affecting patterning, establishment, elongation, and segmentation of cartilaginous condensations, as well as growth of the individual skeletal elements. While the phenotype of such malformations is highly diverse, the mutations identified to date cluster in genes implicated in a limited number of molecular pathways, namely hedgehog, Wnt, and bone morphogenetic protein. The latter pathway appears to function as a key molecular network regulating different phases of digit and joint development. Studies in animal models not only extended our insight into the pathogenesis of these conditions, but have also contributed to our understanding of the in vivo functions and interactions of these key players. This review is aimed at integrating the current understanding of human digit malformations into the increasing knowledge of the molecular mechanisms of digit development. Developmental Dynamics 240:990-1004, 2011. © 2011 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Sigmar Stricker
- Development and Disease Group, Max Planck-Institute for Molecular Genetics, Berlin, Germany.
| | | |
Collapse
|
55
|
Stricker S, Mundlos S. FGF and ROR2 receptor tyrosine kinase signaling in human skeletal development. Curr Top Dev Biol 2011; 97:179-206. [PMID: 22074606 DOI: 10.1016/b978-0-12-385975-4.00013-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Skeletal malformations are among the most frequent developmental disturbances in humans. In the past years, progress has been made in unraveling the molecular mechanisms that govern skeletal development by the use of animal models as well as by the identification of numerous mutations that cause human skeletal syndromes. Receptor tyrosine kinases have critical roles in embryonic development. During formation of the skeletal system, the fibroblast growth factor receptor (FGFR) family plays major roles in the formation of cranial, axial, and appendicular bones. Another player of relevance to skeletal development is the unusual receptor tyrosine kinase ROR2, the function of which is as interesting as it is complex. In this chapter, we review the involvement of FGFR signaling in human skeletal disease and provide an update on the growing knowledge of ROR2.
Collapse
Affiliation(s)
- Sigmar Stricker
- Development and Disease Group, Max Planck-Institute for Molecular Genetics, Berlin, Germany
| | | |
Collapse
|
56
|
Russell AP, Maddin HC, Chrbet T. Restorative Regeneration of Digital Tips in the African Clawed Frog (Xenopus laevis Daudin). Anat Rec (Hoboken) 2010; 294:253-62. [DOI: 10.1002/ar.21313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 09/28/2010] [Indexed: 11/08/2022]
|
57
|
Bénazet JD, Zeller R. Vertebrate limb development: moving from classical morphogen gradients to an integrated 4-dimensional patterning system. Cold Spring Harb Perspect Biol 2010; 1:a001339. [PMID: 20066096 DOI: 10.1101/cshperspect.a001339] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A wealth of classical embryological manipulation experiments taking mainly advantage of the chicken limb buds identified the apical ectodermal ridge (AER) and the zone of polarizing activity (ZPA) as the respective ectodermal and mesenchymal key signaling centers coordinating proximodistal (PD) and anteroposterior (AP) limb axis development. These experiments inspired Wolpert's French flag model, which is a classic among morphogen gradient models. Subsequent molecular and genetic analysis in the mouse identified retinoic acid as proximal signal, and fibroblast growth factors (FGFs) and sonic hedgehog (SHH) as the essential instructive signals produced by AER and ZPA, respectively. Recent studies provide good evidence that progenitors are specified early with respect to their PD and AP fates and that morpho-regulatory signaling is also required for subsequent proliferative expansion of the specified progenitor pools. The determination of particular fates seems to occur rather late and depends on additional signals such as bone morphogenetic proteins (BMPs), which indicates that cells integrate signaling inputs over time and space. The coordinate regulation of PD and AP axis patterning is controlled by an epithelial-mesenchymal feedback signaling system, in which transcriptional regulation of the BMP antagonist Gremlin1 integrates inputs from the BMP, SHH, and FGF pathways. Vertebrate limb-bud development is controlled by a 4-dimensional (4D) patterning system integrating positive and negative regulatory feedback loops, rather than thresholds set by morphogen gradients.
Collapse
Affiliation(s)
- Jean-Denis Bénazet
- Developmental Genetics, Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| | | |
Collapse
|
58
|
Uejima A, Amano T, Nomura N, Noro M, Yasue T, Shiroishi T, Ohta K, Yokoyama H, Tamura K. Anterior shift in gene expression precedes anteriormost digit formation in amniote limbs. Dev Growth Differ 2010; 52:223-34. [DOI: 10.1111/j.1440-169x.2009.01161.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
59
|
Vertebrate limb bud development: moving towards integrative analysis of organogenesis. Nat Rev Genet 2009; 10:845-58. [PMID: 19920852 DOI: 10.1038/nrg2681] [Citation(s) in RCA: 337] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The limb bud is of paradigmatic value to understanding vertebrate organogenesis. Recent genetic analysis in mice has revealed the existence of a largely self-regulatory limb bud signalling system that involves many of the pathways that are known to regulate morphogenesis. These findings contrast with the prevailing view that the main limb bud axes develop largely independently of one another. In this Review, we discuss models of limb development and attempt to integrate the current knowledge of the signalling interactions that govern limb skeletal development into a systems model. The resulting integrative model provides insights into how the specification and proliferative expansion of the anteroposterior and proximodistal limb bud axes are coordinately controlled in time and space.
Collapse
|
60
|
Richardson MK, Gobes SM, van Leeuwen AC, Polman JA, Pieau C, Sánchez-Villagra MR. Heterochrony in limb evolution: developmental mechanisms and natural selection. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312:639-64. [DOI: 10.1002/jez.b.21250] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
61
|
Duboc V, Logan MP. Building limb morphology through integration of signalling modules. Curr Opin Genet Dev 2009; 19:497-503. [PMID: 19729297 DOI: 10.1016/j.gde.2009.07.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 07/20/2009] [Accepted: 07/20/2009] [Indexed: 12/15/2022]
Abstract
Growth and patterning of the vertebrate limb relies on signals produced by three discrete signalling centres: the Apical Ectodermal Ridge (AER), the Zone of Polarising Activity (ZPA) and the dorsal ectoderm. The molecular identities of these signals and their associated downstream pathways have begun to be uncovered. In this review, we focus on recent work that has highlighted the importance of cross-talk between these signalling centres and how mesenchymal progenitors integrate multiple signalling inputs. We also discuss recent evidence suggesting how modulations of key signalling pathways have been used to generate the morphological diversity seen between different vertebrate limb appendages.
Collapse
Affiliation(s)
- Veronique Duboc
- Division of Developmental Biology, MRC-National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK.
| | | |
Collapse
|
62
|
Abstract
The developing limb has been a very influential system for studying pattern formation in vertebrates. In the past, classical embryological models have explained how patterned structures are generated along the two principal axes of the limb: the proximodistal (shoulder to finger) and anteroposterior (thumb to little finger) axes. Over time, the genetic and molecular attributes of these patterning models have been discovered, while the role of growth in the patterning process has been only recently highlighted. In this review, we discuss these recent findings and propose how the various models of limb patterning can be reconciled.
Collapse
Affiliation(s)
- Matthew Towers
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | | |
Collapse
|
63
|
In the limb AER Bmp2 and Bmp4 are required for dorsal–ventral patterning and interdigital cell death but not limb outgrowth. Dev Biol 2009; 327:516-23. [DOI: 10.1016/j.ydbio.2009.01.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 12/10/2008] [Accepted: 01/06/2009] [Indexed: 11/21/2022]
|
64
|
A mutation in Ihh that causes digit abnormalities alters its signalling capacity and range. Nature 2009; 458:1196-200. [PMID: 19252479 DOI: 10.1038/nature07862] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 02/12/2009] [Indexed: 11/08/2022]
Abstract
Brachydactyly type A1 (BDA1) was the first recorded disorder of the autosomal dominant Mendelian trait in humans, characterized by shortened or absent middle phalanges in digits. It is associated with heterozygous missense mutations in indian hedgehog (IHH). Hedgehog proteins are important morphogens for a wide range of developmental processes. The capacity and range of signalling is thought to be regulated by its interaction with the receptor PTCH1 and antagonist HIP1. Here we show that a BDA1 mutation (E95K) in Ihh impairs the interaction of IHH with PTCH1 and HIP1. This is consistent with a recent paper showing that BDA1 mutations cluster in a calcium-binding site essential for the interaction with its receptor and cell-surface partners. Furthermore, we show that in a mouse model that recapitulates the E95K mutation, there is a change in the potency and range of signalling. The mice have digit abnormalities consistent with the human disorder.
Collapse
|
65
|
Hill P, Götz K, Rüther U. A SHH-independent regulation of Gli3 is a significant determinant of anteroposterior patterning of the limb bud. Dev Biol 2009; 328:506-16. [PMID: 19248778 DOI: 10.1016/j.ydbio.2009.02.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 01/27/2009] [Accepted: 02/13/2009] [Indexed: 10/21/2022]
Abstract
The family of GLI proteins (GLI1-3) comprises the intracellular mediators of the hedgehog pathway, which regulates a myriad of developmental processes, one of which is limb development. Whereas GLI1 and GLI2 seem to be dispensable during limb development, GLI3 is especially crucial since all GLI3-associated human congenital diseases comprise limb malformations. Furthermore, Gli3(-/-) mouse embryos exhibit pronounced polydactyly in conjunction with a loss of digit identities. Here we examined how the quantity of GLI3 contributes to its function by using different Gli3 mutants in order to vary overall GLI3 levels. In addition, we made use of the Gli3(Delta699) allele, which encodes a C-terminally truncated version of GLI3, thus mimicking the processed GLI3 isoform (GLI3R). The Gli3(Delta699) mutant made it feasible to analyze isoform-specific contributions of GLI3 within the context of anteroposterior patterning of the limb bud. We revealed a so far unappreciated variation in the quantitative demand for GLI3 within different phases and aspects of distal limb formation. In addition, our analyses provide evidence that unprocessed full-length GLI3 is dispensable for anteroposterior patterning of the limb bud. Instead, digit identities are most likely defined by GLI3 repressor activity alone. Furthermore, we present evidence that the anteroposterior grading of GLI3 activity by the action of SHH is supported by a prototype patterning, which regulates Gli3 independently from SHH.
Collapse
Affiliation(s)
- Patrick Hill
- Institut für Entwicklungs- und Molekularbiologie der Tiere, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | | | | |
Collapse
|
66
|
Kundrát M. Primary chondrification foci in the wing basipodium ofStruthio cameluswith comments on interpretation of autopodial elements in Crocodilia and Aves. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312:30-41. [DOI: 10.1002/jez.b.21240] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
67
|
Achieving bilateral symmetry during vertebrate limb development. Semin Cell Dev Biol 2008; 20:479-84. [PMID: 19027866 DOI: 10.1016/j.semcdb.2008.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 10/24/2008] [Indexed: 02/06/2023]
Abstract
While the various internal organs of vertebrates display many obvious left-right asymmetries in their location and/or morphology, external features exhibit a high degree of bilateral symmetry. How this external bilateral symmetry is established during development is largely unknown. In this review, we explore several mechanisms, in place during development, that regulate the final size of the limb. These mechanisms rely on the presence of positive signaling feedback loops during limb bud growth. Through the activity of these signaling loops and their eventual breakdown when the limb bud has reached a certain size, bilateral symmetry can be achieved.
Collapse
|
68
|
A second wave of Sonic hedgehog expression during the development of the bat limb. Proc Natl Acad Sci U S A 2008; 105:16982-7. [PMID: 18957550 DOI: 10.1073/pnas.0805308105] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Sonic hedgehog (Shh) plays an integral role in both the anterior-posterior (A-P) patterning and expansion of developing vertebrate limbs through a feedback loop involving Fgfs, Bmps, and Gremlin. In bat limbs A-P patterning and the size of the digital field are unique. The posterior digits of the forelimb are elongated and joined by tissue, whereas the thumb is short. The hindlimb digits often are uniform in length. Here, we reveal novel expression patterns for Shh and its target, Patched 1 (Ptc1), during limb development in two bat species. Early Shh expression in the zone of polarizing activity is wider in the bat forelimb than in the mouse forelimb, correlating with the reported expansion of Fgf8 expression in the apical ectodermal ridge and the early loss of symmetry in the bat forelimb. Later in limb development, Shh and Ptc1 expression is reinitiated in the interdigital tissue. Shh is graded along the A-P axis in forelimb and is expressed uniformly at a lower level across the hindlimb interdigital tissue. We also show that the reported Fgf8 expression in the interdigital tissue precedes the expression of Shh. We propose that the reinitiation of Shh and Fgf8 expression in bat limbs reactivates the Shh-Fgf feedback loop in the interdigital tissue of stage 16 bat embryos. The cell survival and proliferation signals provided by the Shh-Fgf signaling loop probably contribute to the lengthening of the posterior forelimb digits, the survival of the forelimb interdigital webbing, and the extension of the hindlimb digits to a uniform length.
Collapse
|
69
|
Pitsillides A, Ashhurst DE. A critical evaluation of specific aspects of joint development. Dev Dyn 2008; 237:2284-94. [DOI: 10.1002/dvdy.21654] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
70
|
Patterning mechanisms controlling digit development. J Genet Genomics 2008; 35:517-24. [DOI: 10.1016/s1673-8527(08)60071-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 06/14/2008] [Accepted: 06/15/2008] [Indexed: 11/20/2022]
|
71
|
An Fgf/Gremlin inhibitory feedback loop triggers termination of limb bud outgrowth. Nature 2008; 454:638-41. [PMID: 18594511 DOI: 10.1038/nature07085] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 05/13/2008] [Indexed: 11/09/2022]
Abstract
During organ formation and regeneration a proper balance between promoting and restricting growth is critical to achieve stereotypical size. Limb bud outgrowth is driven by signals in a positive feedback loop involving fibroblast growth factor (Fgf) genes, sonic hedgehog (Shh) and Gremlin1 (Grem1). Precise termination of these signals is essential to restrict limb bud size. The current model predicts a sequence of signal termination consistent with that in chick limb buds. Our finding that the sequence in mouse limb buds is different led us to explore alternative mechanisms. Here we show, by analysing compound mouse mutants defective in genes comprising the positive loop, genetic evidence that FGF signalling can repress Grem1 expression, revealing a novel Fgf/Grem1 inhibitory loop. This repression occurs both in mouse and chick limb buds, and is dependent on high FGF activity. These data support a mechanism where the positive Fgf/Shh loop drives outgrowth and an increase in FGF signalling, which triggers the Fgf/Grem1 inhibitory loop. The inhibitory loop then operates to terminate outgrowth signals in the order observed in either mouse or chick limb buds. Our study unveils the concept of a self-promoting and self-terminating circuit that may be used to attain proper tissue size in a broad spectrum of developmental and regenerative settings.
Collapse
|
72
|
Affiliation(s)
- Jacqueline Deschamps
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Utrecht 3584 CT, The Netherlands.
| |
Collapse
|
73
|
Unique SMAD1/5/8 activity at the phalanx-forming region determines digit identity. Proc Natl Acad Sci U S A 2008; 105:4185-90. [PMID: 18334652 DOI: 10.1073/pnas.0707899105] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The zone of polarizing activity is the primary signaling center controlling anterior-posterior patterning of the amniote limb bud. The autopodial interdigits (IDs) are secondary signaling centers proposed to determine digit identity by acting on the cells of the digital ray. Here, we focus on events accompanying digital fate determination and define a region of the digital ray that expresses Sox9 and Bmpr1b and is phosphorylated-SMAD1/5/8 (p-SMAD1/5/8) positive. We name this region the phalanx-forming region (PFR), and show that the PFR cells arise from the distal subridge mesenchyme of digital ray. This phalanx-forming cell lineage is subsequently committed to the cartilage lineage; the fate of these cells is initially labile but becomes fixed as they are incorporated into the condensed cartilage of the digit primordium. Using an in vivo reporter assay, we establish that each digital PFR has a unique p-SMAD1/5/8 activity signature. In addition, we show that changes in this activity correlate with the identity of the digit that forms after experimental manipulation, supporting the idea that threshold signaling levels can lead to different developmental outcomes in a morphogenetic field. Our data define the molecular profile of the PFR, and we propose a model for understanding formation and variation of digits during autopodial development.
Collapse
|
74
|
Lee JM, Kim JY, Cho KW, Lee MJ, Cho SW, Kwak S, Cai J, Jung HS. Wnt11/Fgfr1b cross-talk modulates the fate of cells in palate development. Dev Biol 2008; 314:341-50. [PMID: 18191119 DOI: 10.1016/j.ydbio.2007.11.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 11/20/2007] [Accepted: 11/28/2007] [Indexed: 10/22/2022]
|
75
|
Farnum CE, Tinsley M, Hermanson JW. Forelimb versus hindlimb skeletal development in the big brown bat, Eptesicus fuscus: functional divergence is reflected in chondrocytic performance in Autopodial growth plates. Cells Tissues Organs 2007; 187:35-47. [PMID: 18160801 DOI: 10.1159/000109962] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The morphology of the chiropteran forelimb demonstrates musculoskeletal specializations for powered flight essentially unique among mammals, including extreme elongation of the distal skeletal elements. Recent studies have focused primarily on the relative timing and levels of gene expression during early stages of endochondral ossification in the chiropteran embryo for clues to the molecular basis of the evolutionary origins of flight in these species. The goal of the current study was to examine how elongation of skeletal elements of the forelimb autopod is achieved through a combination of cellular proliferation, cellular enlargement and matrix synthesis during a period of rapid postnatal growth in Eptesicus fuscus. Quantitative analyses were done of multiple performance parameters of growth plate chondrocytes during all phases of the differentiation cascade. Fourteen autopodial growth plates from the forelimb and hindlimb of one individual, as well as the proximal tibial growth plate, were collected and analyzed. Significant differences were seen in all performance parameters examined. Particularly striking were the differences between growth plates of the manus and pes in the size of the pool of chondrocytes in all cellular zones and rates of turnover of terminal cells. The magnitude of hypertrophy of chondrocytes in growth plates of the manus in E. fuscus far exceeded what has been reported previously in any species, even in rapidly elongating rodent long bones. Volume changes approaching x70 and height changes of 50-60 mum/cell (paralleling the direction of growth) occurred after proliferation in the most rapidly growing growth plates. The data demonstrate that final differences in lengths of homologous skeletal elements in the autopod of the forelimb and hindlimb of this species result not just from an initiating factor early in development, but from continued quantitative differences in chondrocytic performance during postnatal bone elongation as measured by multiple kinetic-based parameters.
Collapse
Affiliation(s)
- Cornelia E Farnum
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
76
|
Zhou J, Meng J, Guo S, Gao B, Ma G, Zhu X, Hu J, Xiao Y, Lin C, Wang H, Ding L, Feng G, Guo X, He L. IHH and FGF8 coregulate elongation of digit primordia. Biochem Biophys Res Commun 2007; 363:513-518. [PMID: 17889828 DOI: 10.1016/j.bbrc.2007.08.198] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 08/29/2007] [Indexed: 10/22/2022]
Abstract
In the developing limb bud, digit pattern arises from anterior-posterior (A-P) positional information which is provided by the concentration gradient of SHH. However, the mechanisms of translating early asymmetry into morphological form are still unclear. Here, we examined the ability of IHH and FGF8 signaling to regulate digital chondrogenesis, by implanting protein-loaded beads in the interdigital space singly and in combination. We found that IHH protein induced an elongated digit and that FGF8 protein blocked the terminal phalange formation. Molecular marker analysis showed that IHH expanded Sox9 expression in mesenchymal cells possibly through up-regulated FGF8 expression. Application of both IHH and FGF8 protein induced a large terminal phalange. These results suggest that both enhanced IHH and FGF8 signaling are required for the development of additional cartilage element in limbs. IHH and FGF8 maybe play different roles and act synergistically to promote chondrogenesis during digit primordia elongation.
Collapse
Affiliation(s)
- Jian Zhou
- Bio-X Center, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Zhao W, Allen S, Dhoot GK. FGF mediatedSulf1regulation. FEBS Lett 2007; 581:4960-4. [PMID: 17905233 DOI: 10.1016/j.febslet.2007.09.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 09/06/2007] [Accepted: 09/11/2007] [Indexed: 11/25/2022]
Abstract
FGF signalling is critical for normal embryonic development. Sulf1 has been shown to inhibit FGF activity. The role of FGF4 in Sulf1 regulation was investigated during digital development of the quail autopod. Implantation of FGF4 beads in both the interdigit and at the tip of digit III differentially up-regulated Sulf1 as also confirmed in micromass cultures. FGF4 inhibited interdigital mesodermal apoptosis in a concentration dependent manner. The FGF inhibitor, SU5402, inhibited Sulf1 expression when placed in the interdigital mesoderm. However, when placed at the digital tip, SU5402 induced an ectopic domain of Sulf1 expression and inhibited further phalange formation.
Collapse
Affiliation(s)
- Wanfeng Zhao
- Department of Basic Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 OTU, UK
| | | | | |
Collapse
|
78
|
Pajni-Underwood S, Wilson CP, Elder C, Mishina Y, Lewandoski M. BMP signals control limb bud interdigital programmed cell death by regulating FGF signaling. Development 2007; 134:2359-68. [PMID: 17537800 DOI: 10.1242/dev.001677] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In vertebrate limbs that lack webbing, the embryonic interdigit region is removed by programmed cell death (PCD). Established models suggest that bone morphogenetic proteins (BMPs) directly trigger such PCD, although no direct genetic evidence exists for this. Alternatively, BMPs might indirectly affect PCD by regulating fibroblast growth factors (FGFs), which act as cell survival factors. Here, we inactivated the mouse BMP receptor gene Bmpr1a specifically in the limb bud apical ectodermal ridge (AER), a source of FGF activity. Early inactivation completely prevents AER formation. However, inactivation after limb bud initiation causes an upregulation of two AER-FGFs, Fgf4 and Fgf8, and a loss of interdigital PCD leading to webbed limbs. To determine whether excess FGF signaling inhibits interdigit PCD in these Bmpr1a mutant limbs, we performed double and triple AER-specific inactivations of Bmpr1a, Fgf4 and Fgf8. Webbing persists in AER-specific inactivations of Bmpr1a and Fgf8 owing to elevated Fgf4 expression. Inactivation of Bmpr1a, Fgf8 and one copy of Fgf4 eliminates webbing. We conclude that during normal embryogenesis, BMP signaling to the AER indirectly regulates interdigit PCD by regulating AER-FGFs, which act as survival factors for the interdigit mesenchyme.
Collapse
Affiliation(s)
- Sangeeta Pajni-Underwood
- Laboratory of Cancer and Developmental Biology National Institutes of Health, Frederick, MD 21702, USA
| | | | | | | | | |
Collapse
|
79
|
Abstract
Digit formation is the last step in the skeletal patterning of developing limbs. This process involves important aspects such as determination of chondrogenic versus interdigital areas; growth of digital rays with periodic segmentation to form joints and thus phalanges, and finally tip formation. Traditionally it was believed that the properties of digital rays were fixed at earlier stages, but recently a surprising plasticity of digit primordia at the time of condensation has been demonstrated. This implies the presence of local interactions that are able to modulate the particular programs that make a given digit, but we don't fully understand how they operate. An involvement of signaling from the interdigital spaces and from the apical ectodermal ridge has been proposed. Another interesting question is the formation of the last limb structure, digit tips, which may involve a specific molecular and cellular program. Indeed, the expression of several developmentally important genes is restricted to digit tips at late stages of limb development. Understanding the molecular and cellular interactions that lead to digit morphogenesis has important implications not only in the context of embryonic development (for example, how early cues received by cells are translated into anatomy or what are the mechanisms that control the cease of activity of signaling regions) but also in terms of limb diversification during evolution.
Collapse
Affiliation(s)
- Jesús C Casanova
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, CSIC, Darwin, 3, 28049 Madrid, Spain
| | | |
Collapse
|
80
|
Pascoal S, Carvalho CR, Rodriguez-León J, Delfini MC, Duprez D, Thorsteinsdóttir S, Palmeirim I. A Molecular Clock Operates During Chick Autopod Proximal-distal Outgrowth. J Mol Biol 2007; 368:303-9. [PMID: 17346744 DOI: 10.1016/j.jmb.2007.01.089] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 01/30/2007] [Accepted: 01/31/2007] [Indexed: 10/23/2022]
Abstract
Temporal control can be considered the fourth dimension in embryonic development. The identification of the somitogenesis molecular clock provided new insight into how embryonic cells measure time. We provide the first evidence of a molecular clock operating during chick fore-limb autopod outgrowth and patterning, by showing that the expression of the somitogenesis clock component hairy2 cycles in autopod chondrogenic precursor cells with a 6 h periodicity. We determined the length of time required to form an autopod skeletal limb element, and established a correlation between the latter and the periodicity of cyclic hairy2 gene expression. We suggest that temporal control exerted by cyclic gene expression can be a widespread mechanism providing cellular temporal information during vertebrate embryonic development.
Collapse
Affiliation(s)
- Susana Pascoal
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
| | | | | | | | | | | | | |
Collapse
|
81
|
Abstract
Here, we describe methods for applying Sonic hedgehog (Shh) to developing chick limbs. The Sonic hedgehog gene is expressed in the polarizing region, a signaling region at the posterior margin of the limb bud and application of Shh-expressing cells or Shh protein to early limb buds mimics polarizing region signaling. The polarizing region (or zone of polarizing activity) is involved in one of the best known cell-cell interactions in vertebrate embryos and is pivotal in controlling digit number and pattern. At later stages of limb development, the application of Shh protein to the regions between digit primordia can induce changes in digit morphogenesis.
Collapse
|
82
|
Khan IM, Redman SN, Williams R, Dowthwaite GP, Oldfield SF, Archer CW. The development of synovial joints. Curr Top Dev Biol 2007; 79:1-36. [PMID: 17498545 DOI: 10.1016/s0070-2153(06)79001-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During vertebrate evolution, successful adaptation of animal limbs to a variety of ecological niches depended largely on the formation and positioning of synovial joints. The function of a joint is to allow smooth articulation between opposing skeletal elements and to transmit biomechanical loads through the structure, and this is achieved through covering the ends of bones with articular cartilage, lubricating the joint with synovial fluid, using ligaments to bind the skeletal elements together, and encapsulating the joint in a protective fibrous layer of tissue. The diversity of limb generation has been proposed to occur through sequential branching and segmentation of precartilaginous skeletal elements along the proximodistal axis of the limb. The position of future joints is first delimited by areas of higher cell density called interzones initially through an as yet unidentified inductive signal, subsequently specification of these regions is controlled hierarchically by wnt14 and gdf5, respectively. Joint-forming cell fate although specified is not fixed, and joints will fuse if growth factor signaling is perturbed. Cavitation, the separation of the two opposing skeletal elements, and joint morphogenesis, the process whereby the joint cells organize and mature to establish a functional interlocking and reciprocally shaped joint, are slowly being unraveled through studying the plethora of molecules that make up the unique extracellular matrix of the forming structure. The joint lining tissue, articular cartilage, is avascular, and this limits its reparative capacity such that arthritis and associated joint pathologies are the single largest cause of disability in the adult population. Recent discoveries of adult stem cells and more specifically the isolation of chondroprogenitor cells from articular cartilage are extending available therapeutic options, though only with a more complete understanding of synovial joint development can such options have greater chances of success.
Collapse
Affiliation(s)
- I M Khan
- Cardiff School of Biosciences, Cardiff University, Cardiff CF103US, Wales, United Kingdom
| | | | | | | | | | | |
Collapse
|
83
|
Robert B, Lallemand Y. Anteroposterior patterning in the limb and digit specification: contribution of mouse genetics. Dev Dyn 2006; 235:2337-52. [PMID: 16894622 DOI: 10.1002/dvdy.20890] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The limb has been a privileged object of investigation and reflection for scientists over the past two centuries and continues to provide a heuristic framework to analyze vertebrate development. Recently, accumulation of new data has significantly changed our view on the mechanisms of limb patterning, in particular along the anterior-posterior axis. These data have led us to revisit the mode of action of the zone of polarizing activity. They shed light on the molecular and cellular mechanisms of patterning linked to the Shh-Gli3 signaling pathway and give insights into the mechanism of activation of these cardinal factors, as well as the consequences of their activity. These new data are in good part the result of systematic Application of tools used in contemporary mouse molecular genetics. These have extended the power of mouse genetics by introducing mutational strategies that allow fine-tuned modulation of gene expression, interchromosomal deletions and duplication. They have even made the mouse embryo amenable to cell lineage analysis that used to be the realm of chick embryos. In this review, we focus on the data acquired over the last five years from the analysis of mouse limb development and discuss new perspectives opened by these results.
Collapse
Affiliation(s)
- Benoît Robert
- Department of Developmental Biology, CNRS URA 2578, Pasteur Institute, Paris, France.
| | | |
Collapse
|
84
|
Bandyopadhyay A, Tsuji K, Cox K, Harfe BD, Rosen V, Tabin CJ. Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis. PLoS Genet 2006; 2:e216. [PMID: 17194222 PMCID: PMC1713256 DOI: 10.1371/journal.pgen.0020216] [Citation(s) in RCA: 465] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 11/06/2006] [Indexed: 12/16/2022] Open
Abstract
Bone morphogenetic protein (BMP) family members, including BMP2, BMP4, and BMP7, are expressed throughout limb development. BMPs have been implicated in early limb patterning as well as in the process of skeletogenesis. However, due to complications associated with early embryonic lethality, particularly for Bmp2 and Bmp4, and with functional redundancy among BMP molecules, it has been difficult to decipher the specific roles of these BMP molecules during different stages of limb development. To circumvent these issues, we have constructed a series of mouse strains lacking one or more of these BMPs, using conditional alleles in the case of Bmp2 and Bmp4 to remove them specifically from the limb bud mesenchyme. Contrary to earlier suggestions, our results indicate that BMPs neither act as secondary signals downstream of Sonic Hedghog (SHH) in patterning the anteroposterior axis nor as signals from the interdigital mesenchyme in specifying digit identity. We do find that a threshold level of BMP signaling is required for the onset of chondrogenesis, and hence some chondrogenic condensations fail to form in limbs deficient in both BMP2 and BMP4. However, in the condensations that do form, subsequent chondrogenic differentiation proceeds normally even in the absence of BMP2 and BMP7 or BMP2 and BMP4. In contrast, we find that the loss of both BMP2 and BMP4 results in a severe impairment of osteogenesis. A group of related signaling molecules called bone morphogenetic proteins (BMPs) are known to play important roles in the formation of the structures such as the limbs. However, because different members of this group often have similar effects on target cells and are produced in overlapping regions of the embryo and hence can be redundant with one another, removal of any single member of the BMP family may not reveal the full extent of the roles they play during development. We have therefore improved on this type of analysis by removing pairs of these factors (BMP2 and BMP4 or BMP2 and BMP7) specifically from the developing limb. Although some have speculated that these signals play an early role in organizing or “patterning” the different tissues of the limb, we find no evidence for such a role. We do find, however, that a minimal amount of BMP signal is required to form cartilage, and hence some cartilaginous elements fail to form in limbs deficient in both BMP2 and BMP4. Moreover, in the absence of these two BMP family members, there is a severe impairment in the development of bone tissue, resulting in severely deformed limbs. This study gives important new insight into the roles of these BMP signals in making skeletal tissues in the embryo.
Collapse
Affiliation(s)
- Amitabha Bandyopadhyay
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kunikazu Tsuji
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Karen Cox
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Brian D Harfe
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Clifford J Tabin
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
85
|
Davidson B, Shi W, Beh J, Christiaen L, Levine M. FGF signaling delineates the cardiac progenitor field in the simple chordate, Ciona intestinalis. Genes Dev 2006; 20:2728-38. [PMID: 17015434 PMCID: PMC1578698 DOI: 10.1101/gad.1467706] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 08/18/2006] [Indexed: 02/02/2023]
Abstract
Comprehensive gene networks in Ciona intestinalis embryos provide a foundation for characterizing complex developmental processes, such as the initial phases of chordate heart development. The basic helix-loop-helix regulatory gene Ci-Mesp is required for activation of cardiac transcription factors. Evidence is presented that Ci-Ets1/2, a transcriptional effector of receptor tyrosine kinase (RTK) signaling, acts downstream from Mesp to establish the heart field. Asymmetric activation of Ets1/2, possibly through localized expression of FGF9, drives heart specification within this field. During gastrulation, Ets1/2 is expressed in a group of four cells descended from two Mesp-expressing founder cells (the B7.5 cells). After gastrulation, these cells divide asymmetrically; the smaller rostral daughters exhibit RTK activation (phosphorylation of ERK) and form the heart lineage while the larger caudal daughters form the anterior tail muscle lineage. Inhibition of RTK signaling prevents heart specification. Targeted inhibition of Ets1/2 activity or FGF receptor function also blocks heart specification. Conversely, application of FGF or targeted expression of constitutively active Ets1/2 (EtsVp16) cause both rostral and caudal B7.5 lineages to form heart cells. This expansion produces an unexpected phenotype: transformation of a single-compartment heart into a functional multicompartment organ. We discuss these results with regard to the development and evolution of the multichambered vertebrate heart.
Collapse
Affiliation(s)
- Brad Davidson
- Department of Molecular and Cellular Biology, Division of Genetics and Development, Center for Integrative Genomics, University of California, Berkeley, California 94720, USA.
| | | | | | | | | |
Collapse
|
86
|
Francis JC, Radtke F, Logan MPO. Notch1 signals through Jagged2 to regulate apoptosis in the apical ectodermal ridge of the developing limb bud. Dev Dyn 2006; 234:1006-15. [PMID: 16245338 DOI: 10.1002/dvdy.20590] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The Notch family of receptors is involved in a wide variety of developmental processes, including cell fate specification, cell proliferation, and cell survival decisions during cell differentiation and tissue morphogenesis. Notch1 and Notch ligands are expressed in the developing limbs, and Notch signalling has been implicated in the formation of a variety of tissues that comprise the limb, such as the skeleton, musculature, and vasculature. Notch signalling has also been implicated in regulating overall limb size. We have used a conditional allele of Notch1 in combination with two different Cre transgenic lines to delete Notch1 function either in the limb mesenchyme or in the apical ectodermal ridge (AER) and limb ectoderm. We demonstrate that Notch signalling, involving Notch1 and Jagged2, is required to regulate the number of Fgf8-expressing cells that comprise the AER and that regulation of the levels of fibroblast growth factor signalling is important for the freeing of the digits during normal limb formation. Regulation of the extent of the AER is achieved by Notch signalling positively regulating apoptosis in the AER. We also demonstrate that Notch1 is not required for proper formation of all the derivatives of the limb mesenchyme.
Collapse
Affiliation(s)
- Jeffrey C Francis
- Division of Developmental Biology, National Institute for Medical Research, Mill Hill, London, UK
| | | | | |
Collapse
|
87
|
McGlinn E, Tabin CJ. Mechanistic insight into how Shh patterns the vertebrate limb. Curr Opin Genet Dev 2006; 16:426-32. [PMID: 16806898 DOI: 10.1016/j.gde.2006.06.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 06/09/2006] [Indexed: 11/19/2022]
Abstract
The hands and feet of a newborn baby are a beautiful reminder of the complexity of embryonic patterning. Classical studies on how these structures form have led to a theoretical framework for understanding, in general, how discrete groups of cells can instruct differential fates across a wider field through the action of long-range signals. The discovery just more than a decade ago that localized expression of Sonic hedgehog (Shh) differentially patterns structures across the limb field, resulting in digits with unique characteristics, provided a starting point for readdressing these models at a molecular level. Current research has revealed unexpected complexity in how a gradient of Shh activity is both established and received, prompting re-evaluation of the nature of patterning mechanisms within the limb.
Collapse
Affiliation(s)
- Edwina McGlinn
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | |
Collapse
|
88
|
Nissim S, Hasso SM, Fallon JF, Tabin CJ. Regulation of Gremlin expression in the posterior limb bud. Dev Biol 2006; 299:12-21. [PMID: 16989805 DOI: 10.1016/j.ydbio.2006.05.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 05/20/2006] [Accepted: 05/23/2006] [Indexed: 10/24/2022]
Abstract
Proper outgrowth of the limb bud requires a positive feedback loop between Sonic hedgehog (Shh) in the zone of polarizing activity (ZPA) and Fgfs in the overlying apical ectodermal ridge. The Bmp antagonist Gremlin is expressed in a domain anterior to the ZPA and is thought to act as a signaling intermediate between Shh and Fgf. It is currently unclear whether Shh acts directly or indirectly to initiate and maintain Gremlin. In this study, we confirm that Bmp activity is necessary and sufficient for induction of Gremlin. Beads soaked in the Bmp antagonist Noggin downregulate Gremlin, while beads soaked in Bmp2 cause its upregulation. Furthermore, Bmp2 is also capable of upregulating Gremlin in oligozeugodactyly mutant limbs that lack Shh activity, demonstrating that Gremlin expression does not depend on the combined exposure to both these factors. In spite of the ability of Bmp2 to induce Gremlin, beads soaked in high concentrations of Bmp2 downregulate Gremlin around the bead without apparent induction of cell death, whereas another target gene Msx2 is upregulated around the bead. Consistent with this concentration-dependent effect, we find that low concentrations of Bmp2 upregulate Gremlin while high concentrations of Bmp2 downregulate Gremlin in limb mesenchyme cultures. These data implicate Bmp activity as a required intermediate in the Shh-Fgf4 signaling loop. Though we show that Bmp activity is sufficient to upregulate Gremlin, Gremlin expression is excluded from a posterior domain of the limb, and expansion of this domain as limb outgrowth proceeds is important in terminating the Shh-Fgf4 signaling loop. We find that the posterior limb is refractory to Gremlin induction in response to Bmp2, suggesting that termination of the Shh-Fgf4 signaling loop results from inability of Bmp activity to induce Gremlin in the posterior. In contrast, in the oligozeugodactyly limb, we find that beads soaked in Bmp2 can induce Gremlin in the posterior, demonstrating that Shh activity is required for exclusion of Gremlin in the posterior. Finally, by blocking Shh activity with cyclopamine, we find evidence that continued Shh activity is also required to maintain refractoriness to Gremlin expression in response to Bmp activity.
Collapse
Affiliation(s)
- Sahar Nissim
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
89
|
Abstract
The vertebrate limb has been a premier model for studying pattern formation - a striking digit pattern is formed in human hands, with a thumb forming at one edge and a little finger at the other. Classic embryological studies in different model organisms combined with new sophisticated techniques that integrate gene-expression patterns and cell behaviour have begun to shed light on the mechanisms that control digit patterning, and stimulate re-evaluation of the current models.
Collapse
Affiliation(s)
- Cheryll Tickle
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| |
Collapse
|
90
|
Galis F, Kundrát M, Metz JAJ. Hox genes, digit identities and the theropod/bird transition. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 304:198-205. [PMID: 15880773 DOI: 10.1002/jez.b.21042] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Vargas and Fallon (2005. J Exp Zool (Mol Dev Evol) 304B:86-90) propose that Hox gene expression patterns indicate that the most anterior digit in bird wings is homologous to digit 1 rather than to digit 2 in other amniotes. This interpretation is based on the presence of Hoxd13 expression in combination with the absence of Hoxd12 expression in the second digit condensation from which this digit develops (the first condensation is transiently present). This is a pattern that is similar to that in the developing digit 1 of the chicken foot and the mouse hand and foot. They have tested this new hypothesis by analysing Hoxd12 and Hoxd13 expression patterns in two polydactylous chicken mutants, Silkie and talpid2. They conclude that the data support the notion that the most anterior remaining digit of the bird wing is homologous to digit 1 in other amniotes either in a standard phylogenetic sense, or alternatively in a (limited) developmental sense in agreement with the Frameshift Hypothesis of Wagner and Gautier (1999, i.e., that the developmental pathway is homologous to the one that leads to a digit 1 identity in other amniotes, although it occurs in the second instead of the first digit condensation). We argue that the Hoxd12 and Hoxd13 expression patterns found for these and other limb mutants do not allow distinguishing between the hypothesis of Vargas and Fallon (2005. J Exp Zool (Mol Dev Evol) 304B:86-90) and the alternative one, i.e., the most anterior digit in bird wings is homologous to digit 2 in other amniotes, in a phylogenetic or developmental sense. Therefore, at the moment the data on limb mutants does not present a challenge to the hypothesis, based on other developmental data (Holmgren, 1955. Acta Zool 36:243-328; Hinchliffe, 1984. In: Hecht M, Ostrom JH, Viohl G, Wellnhofer P, editors. The beginnings of birds. Eichstätt: Freunde des Jura-Museum. p 141-147; Burke and Feduccia, 1997. Science 278:666-668; Kundrát et al., 2002. J Exp Zool (Mol Dev Evol) 294B:151-159; Larsson and Wagner, 2002. J Exp Zool (Mol Dev Evol) 294B:146-151; Feduccia and Nowicki, 2002. Naturwissenschaften 89:391-393), that the digits of bird wings are homologous to digits 2,3,4 in amniotes. We recommend further testing of the hypothesis by comparing Hoxd expression patterns in different taxa.
Collapse
Affiliation(s)
- Frietson Galis
- Institute of Biology, Leiden University, 2300 RA Leiden, The Netherlands.
| | | | | |
Collapse
|
91
|
Tickle C. The contribution of chicken embryology to the understanding of vertebrate limb development. Mech Dev 2005; 121:1019-29. [PMID: 15296968 DOI: 10.1016/j.mod.2004.05.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Revised: 05/25/2004] [Accepted: 05/25/2004] [Indexed: 11/28/2022]
Abstract
The chicken is an excellent model organism for studying vertebrate limb development, mainly because of the ease of manipulating the developing limb in vivo. Classical chicken embryology has provided fate maps and elucidated the cell-cell interactions that specify limb pattern. The first defined chemical that can mimic one of these interactions was discovered by experiments on developing chick limbs and, over the last 15 years or so, the role of an increasing number of developmentally important genes has been uncovered. The principles that underlie limb development in chickens are applicable to other vertebrates and there are growing links with clinical genetics. The sequence of the chicken genome, together with other recently assembled chicken genomic resources, will present new opportunities for exploiting the ease of manipulating the limb.
Collapse
Affiliation(s)
- C Tickle
- Division of Cell and Developmental Biology, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
92
|
Talamillo A, Bastida MF, Fernandez-Teran M, Ros MA. The developing limb and the control of the number of digits. Clin Genet 2005; 67:143-53. [PMID: 15679824 DOI: 10.1111/j.1399-0004.2005.00404.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Congenital malformations of the limbs are among the most frequent congenital anomalies found in humans, and they preferentially affect the distal part--the hand or foot. The presence of extra digits, a condition called polydactyly, is the most common limb deformity of the human hand and is the consequence of disturbances in the normal program of limb development. However, despite the extensive use of the developing limb as a classical developmental model, the cellular and genetic mechanisms that control the number and identity of the digits are not completely understood. The aim of this review is to introduce the reader to the current state of knowledge in limb development and to provide the necessary background for an understanding of how deviations from the normal developmental program may lead to polydactyly.
Collapse
Affiliation(s)
- A Talamillo
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria, 39011 Santander, Spain
| | | | | | | |
Collapse
|
93
|
Franssen RA, Marks S, Wake D, Shubin N. Limb chondrogenesis of the seepage salamander,Desmognathus aeneus (Amphibia: Plethodontidae). J Morphol 2005; 265:87-101. [PMID: 15880507 DOI: 10.1002/jmor.10339] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Salamanders are infrequently mentioned in analyses of tetrapod limb formation, as their development varies considerably from that of amniotes. However, urodeles provide an opportunity to study how limb ontogeny varies with major differences in life history. Here we assess limb development in Desmognathus aeneus, a direct-developing salamander, and compare it to patterns seen in salamanders with larval stages (e.g., Ambystoma mexicanum). Both modes of development result in a limb that is morphologically indistinct from an amniote limb. Developmental series of A. mexicanum and D. aeneus were investigated using Type II collagen immunochemistry, Alcian Blue staining, and whole-mount TUNEL staining. In A. mexicanum, as each digit bud extends from the limb palette Type II collagen and proteoglycan secretion occur almost simultaneously with mesenchyme condensation. Conversely, collagen and proteoglycan secretion in digits of D. aeneus occur only after the formation of an amniote-like paddle. Within each species, Type II collagen expression patterns resemble those of proteoglycans. In both, distal structures form before more proximal structures. This observation is contrary to the proximodistal developmental pattern of other tetrapods and may be unique to urodeles. In support of previous findings, no cell death was observed during limb development in A. mexicanum. However, apoptotic cells that may play a role in digit ontogeny occur in the limbs of D. aeneus, thereby suggesting that programmed cell death has evolved as a developmental mechanism at least twice in tetrapod limb evolution.
Collapse
Affiliation(s)
- R Adam Franssen
- University of Chicago, Department of Organismal Biology and Anatomy, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
94
|
Selever J, Liu W, Lu MF, Behringer RR, Martin JF. Bmp4 in limb bud mesoderm regulates digit pattern by controlling AER development. Dev Biol 2004; 276:268-79. [PMID: 15581864 DOI: 10.1016/j.ydbio.2004.08.024] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Accepted: 08/17/2004] [Indexed: 10/26/2022]
Abstract
In the developing limb, Bmp4 is expressed in the apical ectodermal ridge (AER) and underlying mesoderm. Insight into the function of Bmp4 in limb development has been hampered by the early embryonic lethality of Bmp4 null embryos. We directly investigated Bmp4 using a conditional null allele of Bmp4 and the Prx1(cre) transgene to inactivate Bmp4 in limb bud mesoderm. The limb bud mesoderm of Prx1(cre);Bmp4 mutants was defective in production of Bmp4 but still competent to respond to Bmp signaling. Prx1(cre);Bmp4 mutant embryos had defective digit patterning including hindlimb preaxial polydactyly with posterior digit transformations. The Prx1(cre);Bmp4 mutants also had postaxial polydactyly with digit five duplications. Bmp4 mutant limbs had delayed induction and maturation of the AER that resulted in expanded Shh signaling. Moreover, the AER persisted longer in the Bmp4 mutant limb buds exposing the forming digits to prolonged Fgf8 signaling. Our data show that Bmp4 in limb mesoderm regulates AER induction and maturation and implicate signaling from the AER in regulation of digit number and identity.
Collapse
Affiliation(s)
- Jennifer Selever
- Alkek Institute of Biosciences and Technology, Texas A&M System Health Science Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
95
|
Scherz PJ, Harfe BD, McMahon AP, Tabin CJ. The limb bud Shh-Fgf feedback loop is terminated by expansion of former ZPA cells. Science 2004; 305:396-9. [PMID: 15256670 DOI: 10.1126/science.1096966] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Vertebrate limb outgrowth is driven by a positive feedback loop involving Sonic Hedgehog (Shh), Gremlin, and Fgf4. By overexpressing individual components of the loop at a time after these genes are normally down-regulated in chicken embryos, we found that Shh no longer maintains Gremlin in the posterior limb. Shh-expressing cells and their descendants cannot express Gremlin. The proliferation of these descendants forms a barrier separating the Shh signal from Gremlin-expressing cells, which breaks down the Shh-Fgf4 loop and thereby affects limb size and provides a mechanism explaining regulative properties of the limb bud.
Collapse
Affiliation(s)
- Paul J Scherz
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
96
|
Reinhold MI, Abe M, Kapadia RM, Liao Z, Naski MC. FGF18 represses noggin expression and is induced by calcineurin. J Biol Chem 2004; 279:38209-19. [PMID: 15252029 DOI: 10.1074/jbc.m404855200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Fibroblast growth factors (FGFs) and bone morphogenetic proteins strongly regulate chondrogenesis and chondrocyte gene expression. The interactions of the signaling pathways initiated by these factors are central to the control of chondrocyte differentiation. Here we show that calcium-dependent signals induce expression of FGF18, an essential regulator of bone and cartilage differentiation. The induction of FGF18 expression required the calcium-dependent phosphatase, calcineurin. The activated forms of calcineurin or the calcineurin-dependent transcription factor, NFAT4 (nuclear factor of activated T-cell 4), induced FGF18 expression. FGF18 or a constitutive active FGF receptor suppressed noggin gene induction and thereby increased chondrocyte gene expression and chondrogenesis by facilitating bone morphogenetic protein-dependent signals. These findings reinforce the interdependence of bone morphogenetic protein and FGF signaling and provide a rational explanation for abnormal bone development occurring in humans or mice with constitutively active FGF receptors.
Collapse
Affiliation(s)
- Martina I Reinhold
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | | | | | | | | |
Collapse
|
97
|
Abstract
Hyperphalangy is a digit morphology in which increased numbers of phalanges are arranged linearly within a digit beyond the plesiomorphic condition. We analyse patterns and processes of hyperphalangy by considering previous definitions and occurrences of hyperphalangy among terrestrial and secondarily aquatic extant and fossil taxa (cetaceans, ichthyosaurs, plesiosaurs and mosasaurs), and recent studies that elucidate the factors involved in terrestrial autopod joint induction. Extreme hyperphalangy, defined as exceeding a threshold condition of 4/6/6/6/6, is shown only to be found among secondarily aquatic vertebrates with a flipper limb morphology. Based on this definition, hyperphalangy occurs exclusively in digits II and III among extant cetaceans. Previous reports of cetacean embryos having more phalanges than adults is clarified and shown to be based on cartilaginous elements not ossified phalanges. Developmental prerequisites for hyperphalangy include lack of cell death in interdigital mesoderm (producing a flipper limb) and maintenance of a secondary apical ectodermal ridge (AER), which initiates digit elongation and extra joint patterning. Factors of the limb-patterning pathways located in the interdigital mesoderm, including bone morphogenetic proteins (BMPs), BMP antagonists, fibroblast growth factors (FGFs), growth/differentiation factor-5 (GDF-5), Wnt-14 and ck-erg, are implicated in maintenance of the flipper limb, secondary AER formation, digit elongation and additional joint induction leading to hyperphalangy.
Collapse
Affiliation(s)
- Tim J Fedak
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|