51
|
mTOR Signaling in Protein Translation Regulation: Implications in Cancer Genesis and Therapeutic Interventions. Mol Biol Int 2014; 2014:686984. [PMID: 25505994 PMCID: PMC4258317 DOI: 10.1155/2014/686984] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/06/2014] [Indexed: 12/29/2022] Open
Abstract
mTOR is a central nutrient sensor that signals a cell to grow and proliferate. Through distinct protein complexes it regulates different levels of available cellular energy substrates required for cell growth. One of the important functions of the complex is to maintain available amino acid pool by regulating protein translation. Dysregulation of mTOR pathway leads to aberrant protein translation which manifests into various pathological states. Our review focuses on the role mTOR signaling plays in protein translation and its physiological role. It also throws some light on available data that show translation dysregulation as a cause of pathological complexities like cancer and the available drugs that target the pathway for cancer treatment.
Collapse
|
52
|
Abstract
p70 S6 kinase (p70S6K), a member of the AGC serine/threonine kinase family, was initially identified as a key player, together with its downstream effector S6, in the regulation of cellular growth and survival. The p70S6K protein has emerged in recent years as a multifunctional protein which also regulates the actin cytoskeleton and thus plays a role in cell migration. This new function is through two important activities of p70S6K, namely actin cross-linking and Rac1 and Cdc42 activation. The testis is critically dependent on an intricate balance of fundamental cellular processes such as adhesion, migration, and differentiation. It is increasingly evident that Rho GTPases and actin binding proteins play fundamental roles in regulating spermatogenesis within the testis. In this review, we will discuss current findings of p70S6K in the control of actin cytoskeleton dynamics. In addition, the potential role of p70S6K in spermatogenesis and testicular function will be highlighted.
Collapse
Affiliation(s)
- Carman K M Ip
- School of Biological Sciences; University of Hong Kong; Hong Kong, China
| | | |
Collapse
|
53
|
Phosphorylation of ribosomal protein S6 mediates compensatory renal hypertrophy. Kidney Int 2014; 87:543-56. [PMID: 25229342 PMCID: PMC4344886 DOI: 10.1038/ki.2014.302] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 07/11/2014] [Accepted: 07/24/2014] [Indexed: 01/15/2023]
Abstract
The molecular mechanism underlying renal hypertrophy and progressive nephron damage remains poorly understood. Here we generated congenic ribosomal protein S6 (rpS6) knockin mice expressing non-phosphorylatable rpS6 and found that uninephrectomy-induced renal hypertrophy was significantly blunted in these knockin mice. Uninephrectomy-induced increases in cyclin D1 and decreases in cyclin E in the remaining kidney were attenuated in the knockin mice compared to their wild-type littermates. Uninephrectomy induced rpS6 phosphorylation in the wild type mice; however, no rpS6 phosphorylation was detected in uninephrectomized or sham-operated knockin mice. Nonetheless, uninephrectomy stimulated comparable 4E-BP1 phosphorylation in both knockin and wild type mice, indicating that mTORC1 was still activated in the knockin mice. Moreover, the mTORC1 inhibitor rapamycin prevented both rpS6 and 4E-BP1 phosphorylation, significantly blunted uninephrectomy-induced renal hypertrophy in wild type mice, but did not prevent residual renal hypertrophy despite inhibiting 4E-BP1 phosphorylation in uninephrectomized knockin mice. Thus, both genetic and pharmacological approaches unequivocally demonstrate that phosphorylated rpS6 is a downstream effector of the mTORC1-S6K1 signaling pathway mediating renal hypertrophy. Hence, rpS6 phosphorylation facilitates the increase in cyclin D1 and decrease in cyclin E1 that underlie the hypertrophic nature of uninephrectomy-induced kidney growth.
Collapse
|
54
|
Bahrami-B F, Ataie-Kachoie P, Pourgholami MH, Morris DL. p70 Ribosomal protein S6 kinase (Rps6kb1): an update. J Clin Pathol 2014; 67:1019-25. [PMID: 25100792 DOI: 10.1136/jclinpath-2014-202560] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Rps6kb1 gene encodes the 70 kDa ribosomal protein S6 kinase (p70S6K), which is a serine/threonine kinase regulated by phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway. p70S6K plays a crucial role in controlling cell cycle, growth and survival. The PI3K/mTOR signalling pathway is one of the major mechanisms for controlling cell survival, proliferation and metabolism and is the central regulator of translation of some components of protein synthesis system. Upon activation, this kinase phosphorylates S6 protein of ribosomal subunit 40S resulting in selective translation of unique family of mRNAs that contain oligopyrimidine tract on 5' transcriptional site (5'TOP). 5'TOP mRNAs are coding the components of translational apparatus including ribosomal proteins and elongation factors. Due to the role of p70S6K in protein synthesis and also its involvement in a variety of human diseases ranging from diabetes and obesity to cancer, p70S6K is now being considered as a new therapeutic target for drug development. Furthermore, p70S6K acts as a biomarker for response to immunosuppressant as well as anticancer effects of inhibitors of the mTOR. Because of the narrow therapeutic index of mTOR inhibitors, drug monitoring is essential, and this is usually done by measuring blood drug levels, therapeutic response and drug-induced adverse effects. Recent studies have suggested that plasma p70S6K is a reliable index for the monitoring of patient response to mTOR inhibitors. Therefore, a better understanding of p70S6K and its role in various pathological conditions could enable the development of strategies to aid diagnosis, prognosis and treatment schedules.
Collapse
Affiliation(s)
- Farnaz Bahrami-B
- Cancer research laboratories, Department of Surgery, St George and Sutherland Clinical School, University of New South Wales, Sydney, Australia
| | | | | | - David L Morris
- Cancer research laboratories, Department of Surgery, St George and Sutherland Clinical School, University of New South Wales, Sydney, Australia
| |
Collapse
|
55
|
Regulatory effects of SKAR in interferon α signaling and its role in the generation of type I IFN responses. Proc Natl Acad Sci U S A 2014; 111:11377-82. [PMID: 25049393 DOI: 10.1073/pnas.1405250111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We provide evidence that S6 kinase 1 (S6K1) Aly/REF-like target (SKAR) is engaged in IFN-α signaling and plays a key role in the generation of IFN responses. Our data demonstrate that IFN-α induces phosphorylation of SKAR, which is mediated by either the p90 ribosomal protein S6 kinase (RSK) or p70 S6 kinase (S6K1), in a cell type-specific manner. This type I IFN-inducible phosphorylation of SKAR results in enhanced interaction with the eukaryotic initiation factor (eIF)4G and recruitment of activated RSK1 to 5' cap mRNA. Our studies also establish that SKAR is present in cap-binding CBP80 immune complexes and that this interaction is mediated by eIF4G. We demonstrate that inducible protein expression of key IFN-α-regulated protein products such as ISG15 and p21(WAF1/CIP1) requires SKAR activity. Importantly, our studies define a requirement for SKAR in the generation of IFN-α-dependent inhibitory effects on malignant hematopoietic progenitors from patients with chronic myeloid leukemia or myeloproliferative neoplasms. Taken altogether, these findings establish critical and essential roles for SKAR in the regulation of mRNA translation of IFN-sensitive genes and induction of IFN-α biological responses.
Collapse
|
56
|
Weng MT, Luo J. The enigmatic ERH protein: its role in cell cycle, RNA splicing and cancer. Protein Cell 2014; 4:807-12. [PMID: 24078386 DOI: 10.1007/s13238-013-3056-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/26/2013] [Indexed: 12/21/2022] Open
Abstract
Enhancer of rudimentary homolog (ERH) is a small, highly conserved protein among eukaryotes. Since its discovery nearly 20 years ago, its molecular function has remained enigmatic. It has been implicated to play a role in transcriptional regulation and in cell cycle. We recently showed that ERH binds to the Sm complex and is required for the mRNA splicing of the mitotic motor protein CENP-E. Furthermore, cancer cells driven by mutations in the KRAS oncogene are particularly sensitive to RNAi-mediated suppression of ERH function, and ERH expression is inversely correlated with survival in colorectal cancer patients whose tumors harbor KRAS mutation. These recent findings indicate that ERH plays an important role in cell cycle through its mRNA splicing activity and is critically required for genomic stability and cancer cell survival.
Collapse
|
57
|
Williamson DL, Li Z, Tuder RM, Feinstein E, Kimball SR, Dungan CM. Altered nutrient response of mTORC1 as a result of changes in REDD1 expression: effect of obesity vs. REDD1 deficiency. J Appl Physiol (1985) 2014; 117:246-56. [PMID: 24876363 DOI: 10.1152/japplphysiol.01350.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Although aberrant mTORC1 signaling has been well established in models of obesity, little is known about its repressor, REDD1. Therefore, the initial goal of this study was to determine the role of REDD1 on mTORC1 in obese skeletal muscle. REDD1 expression (protein and message) and mTORC1 signaling (S6K1, 4E-BP1, raptor-mTOR association, Rheb GTP) were examined in lean vs. ob/ob and REDD1 wild-type (WT) vs. knockout (KO) mice, under conditions of altered nutrient intake [fasted and fed or diet-induced obesity (10% vs. 60% fat diet)]. Despite higher (P < 0.05) S6K1 and 4E-BP1 phosphorylation, two models of obesity (ob/ob and diet-induced) displayed elevated (P < 0.05) skeletal muscle REDD1 expression compared with lean or low-fat-fed mouse muscle under fasted conditions. The ob/ob mice displayed elevated REDD1 expression (P < 0.05) that coincided with aberrant mTORC1 signaling (hyperactive S6K1, low raptor-mTOR binding, elevated Rheb GTP; P < 0.05) under fasted conditions, compared with the lean, which persisted in a dysregulated fashion under fed conditions. REDD1 KO mice gained limited body mass on a high-fat diet, although S6K1 and 4E-BP1 phosphorylation remained elevated (P < 0.05) in both the low-fat and high-fat-fed KO vs. WT mice. Similarly, the REDD1 KO mouse muscle displayed blunted mTORC1 signaling responses (S6K1 and 4E-BP1, raptor-mTOR binding) and circulating insulin under fed conditions vs. the robust responses (P < 0.05) in the WT fed mouse muscle. These studies suggest that REDD1 in skeletal muscle may serve to limit hyperactive mTORC1, which promotes aberrant mTORC1 signaling responses during altered nutrient states.
Collapse
Affiliation(s)
- David L Williamson
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York;
| | - Zhuyun Li
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
| | - Rubin M Tuder
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Denver, Colorado
| | - Elena Feinstein
- Research Division, Quark Pharmaceuticals, Ness Ziona, Israel; and
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Cory M Dungan
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
| |
Collapse
|
58
|
Mayya V, K Han D. Proteomic applications of protein quantification by isotope-dilution mass spectrometry. Expert Rev Proteomics 2014; 3:597-610. [PMID: 17181474 DOI: 10.1586/14789450.3.6.597] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Over the decades, isotope-dilution mass spectrometry (IDMS) has been implemented extensively for accurate quantification of drugs, metabolites and peptides in body fluids and tissues. More recently, it has been extended for quantifying specific proteins in complex mixtures. In this extended methodology, proteins are subjected to endoprotease action and specific resultant peptides are quantified by using synthetic stable isotope-labeled standard (SIS) peptides and IDMS. This article outlines the utilities and applications of quantifying proteins by IDMS, emphasizing its complementary value to global survey-based proteomic studies. The potential of SIS peptides to provide quantitative insights into cell signaling is also highlighted, with specific examples. Finally, we propose several novel mass spectrometric data acquisition strategies for large-scale applications of IDMS and SIS peptides in systems biology and protein biomarker validation studies.
Collapse
Affiliation(s)
- Viveka Mayya
- University of Connecticut Health Center, Department of Cell Biology and Center for Vascular Biology, Farmington, CT 06030, USA.
| | | |
Collapse
|
59
|
Kliegman JI, Fiedler D, Ryan CJ, Xu YF, Su XY, Thomas D, Caccese MC, Cheng A, Shales M, Rabinowitz JD, Krogan NJ, Shokat KM. Chemical genetics of rapamycin-insensitive TORC2 in S. cerevisiae. Cell Rep 2013; 5:1725-36. [PMID: 24360963 PMCID: PMC4007695 DOI: 10.1016/j.celrep.2013.11.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 07/10/2013] [Accepted: 11/22/2013] [Indexed: 11/28/2022] Open
Abstract
Current approaches for identifying synergistic targets use cell culture models to see if the combined effect of clinically available drugs is better than predicted by their individual efficacy. New techniques are needed to systematically and rationally identify targets and pathways that may be synergistic targets. Here, we created a tool to screen and identify molecular targets that may synergize with new inhibitors of target of rapamycin (TOR), a conserved protein that is a major integrator of cell proliferation signals in the nutrient-signaling pathway. Although clinical results from TOR complex 1 (TORC1)-specific inhibition using rapamycin analogs have been disappointing, trials using inhibitors that also target TORC2 have been promising. To understand this increased therapeutic efficacy and to discover secondary targets for combination therapy, we engineered Tor2 in S. cerevisiae to accept an orthogonal inhibitor. We used this tool to create a chemical epistasis miniarray profile (ChE-MAP) by measuring interactions between the chemically inhibited Tor2 kinase and a diverse library of deletion mutants. The ChE-MAP identified known TOR components and distinguished between TORC1- and TORC2-dependent functions. The results showed a TORC2-specific interaction with the pentose phosphate pathway, a previously unappreciated TORC2 function that suggests a role for the complex in balancing the high energy demand required for ribosome biogenesis.
Collapse
Affiliation(s)
- Joseph I Kliegman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, San Francisco, CA 94158, USA
| | - Dorothea Fiedler
- Department of Chemistry, Princeton University, Princeton, NJ 08540, USA
| | - Colm J Ryan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, San Francisco, CA 94158, USA; School of Computer Science and Informatics, University College Dublin, Dublin 4, Ireland
| | - Yi-Fan Xu
- Department of Chemistry, Princeton University, Princeton, NJ 08540, USA
| | - Xiao-Yang Su
- Department of Chemistry, Princeton University, Princeton, NJ 08540, USA
| | - David Thomas
- Department of Chemistry, Princeton University, Princeton, NJ 08540, USA
| | - Max C Caccese
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, San Francisco, CA 94158, USA
| | - Ada Cheng
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, San Francisco, CA 94158, USA
| | - Michael Shales
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, San Francisco, CA 94158, USA
| | | | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, San Francisco, CA 94158, USA.
| |
Collapse
|
60
|
Mok KW, Mruk DD, Cheng CY. Regulation of blood-testis barrier (BTB) dynamics during spermatogenesis via the "Yin" and "Yang" effects of mammalian target of rapamycin complex 1 (mTORC1) and mTORC2. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 301:291-358. [PMID: 23317821 DOI: 10.1016/b978-0-12-407704-1.00006-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In mammalian testes, haploid spermatozoa are formed from diploid spermatogonia during spermatogenesis, which is a complicated cellular process. While these cellular events were reported in the 1960s and 1970s, the underlying molecular mechanism(s) that regulates these events remained unexplored until the past ∼10 years. For instance, adhesion proteins were shown to be integrated components at the Sertoli cell-cell interface and/or the Sertoli-spermatid interface in the late 1980s. But only until recently, studies have demonstrated that some of the adhesion proteins serve as the platform for signal transduction that regulates cell adhesion. In this chapter, a brief summary and critical discussion are provided on the latest findings regarding these cell-adhesion proteins in the testis and their relationship to spermatogenesis. Moreover, antagonistic effects of two mammalian target of rapamycin (mTOR) complexes, known as mTORC1 and mTORC2, on cell-adhesion function in the testis are discussed. Finally, a hypothetic model is presented to depict how these two mTOR-signaling complexes having the "yin" and "yang" antagonistic effects on the Sertoli cell tight junction (TJ)-permeability barrier can maintain the blood-testis barrier (BTB) integrity during the epithelial cycle while preleptotene spermatocytes are crossing the BTB.
Collapse
Affiliation(s)
- Ka Wai Mok
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, USA
| | | | | |
Collapse
|
61
|
Banko MI, Krzyzanowski MK, Turcza P, Maniecka Z, Kulis M, Kozlowski P. Identification of amino acid residues of ERH required for its recruitment to nuclear speckles and replication foci in HeLa cells. PLoS One 2013; 8:e74885. [PMID: 24015320 PMCID: PMC3755989 DOI: 10.1371/journal.pone.0074885] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 08/07/2013] [Indexed: 11/18/2022] Open
Abstract
ERH is a small, highly evolutionarily conserved nuclear protein of unknown function. Its three-dimensional structure is absolutely unique and it can form a homodimer through a β sheet surface. ERH has been shown to interact, among others, with PDIP46/SKAR and Ciz1. When coexpressed with the latter protein, ERH accumulates in replication foci in the nucleus of HeLa cells. Here, we report that when ERH is coexpressed with PDIP46/SKAR in HeLa cells, it is recruited to nuclear speckles, and identify amino acid residues critical for targeting ERH to both these subnuclear structures. ERH H3A Q9A shows a diminished recruitment to nuclear speckles but it is recruited to replication foci. ERH E37A T51A is very poorly recruited to replication foci while still accumulating in nuclear speckles. Consequently, ERH H3A Q9A E37A T51A is recruited neither to nuclear speckles nor to replication foci. The lack of interactions of these three ERH forms with PDIP46/SKAR and/or Ciz1 was further confirmed in vitro by GST pull-down assay. The residues whose substitutions interfere with the accumulation in nuclear speckles are situated on the β sheet surface of ERH, indicating that only the monomer of ERH can interact with PDIP46/SKAR. Substitutions affecting the recruitment to replication foci map to the other side of ERH, near a long loop between the α1 and α2 helices, thus both the monomer and the dimer of ERH could interact with Ciz1. The construction of the ERH mutants not recruited to nuclear speckles or replication foci will facilitate further studies on ERH actions in these subnuclear structures.
Collapse
Affiliation(s)
- Monika I. Banko
- Department of Molecular Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Marek K. Krzyzanowski
- Department of Molecular Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Paulina Turcza
- Department of Molecular Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Zuzanna Maniecka
- Department of Molecular Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Marta Kulis
- Department of Molecular Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Piotr Kozlowski
- Department of Molecular Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- * E-mail:
| |
Collapse
|
62
|
Crystal structures of S6K1 provide insights into the regulation mechanism of S6K1 by the hydrophobic motif. Biochem J 2013; 454:39-47. [DOI: 10.1042/bj20121863] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The activity of S6K1 (p70 ribosomal protein subunit 6 kinase 1) is stimulated by phosphorylation of Thr389 in the hydrophobic motif by mTORC1 (mammalian target of rapamycin complex 1) and phosphorylation of Thr229 in the activation loop by PDK1 (phosphoinositide-dependent kinase 1); however, the order of the two events is still ambiguous. In the present paper we report six crystal structures of the S6K1 kinase domain alone or plus the hydrophobic motif in various forms, in complexes with a highly specific inhibitor. The structural data, together with the biochemical data, reveal in vivo phosphorylation of Thr389 in the absence of Thr229 phosphorylation and demonstrate the importance of two conserved residues, Gln140 and Arg121, in the establishment of a hydrogen-bonding network between the N-lobe (N-terminal lobe) and the hydrophobic motif. Phosphorylation of Thr389 or introduction of a corresponding negatively charged group leads to reinforcement of the network and stabilization of helix αC. Furthermore, comparisons of S6K1 with other AGC (protein kinase A/protein kinase G/protein kinase C) family kinases suggest that the structural and sequence differences in the hydrophobic motif and helix αC account for their divergence in PDK1 dependency. Taken together, the results of the present study indicate that phosphorylation of the hydrophobic motif in S6K1 is independent of, and probably precedes and promotes, phosphorylation of the activation loop.
Collapse
|
63
|
Alayev A, Holz MK. mTOR signaling for biological control and cancer. J Cell Physiol 2013; 228:1658-64. [PMID: 23460185 DOI: 10.1002/jcp.24351] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 02/12/2013] [Indexed: 12/20/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a major intersection that connects signals from the extracellular milieu to corresponding changes in intracellular processes. When abnormally regulated, the mTOR signaling pathway is implicated in a wide spectrum of cancers, neurological diseases, and proliferative disorders. Therefore, pharmacological agents that restore the regulatory balance of the mTOR pathway could be beneficial for a great number of diseases. This review summarizes current understanding of mTOR signaling and some unanswered questions in the field. We describe the composition of the mTOR complexes, upstream signals that activate mTOR, and physiological processes that mTOR regulates. We also discuss the role of mTOR and its downstream effectors in cancer, obesity and diabetes, and autism.
Collapse
Affiliation(s)
- Anya Alayev
- Department of Biology, Stern College for Women of Yeshiva University, New York, New York 10016, USA
| | | |
Collapse
|
64
|
Report of interstitial 22q13.1q13.2 microduplication in two siblings with distinctive dysmorphic features, heart defect and mental retardation. Eur J Med Genet 2013; 56:389-96. [PMID: 23707653 DOI: 10.1016/j.ejmg.2013.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 05/07/2013] [Indexed: 11/22/2022]
Abstract
We present two siblings (a boy and a girl) with a submicroscopic 4 Mb duplication at 22q13.1q13.2. Both children manifested infantile hypotonia and delayed motor milestones, congenital heart defect, growth deficiency, and strikingly similar and distinctive craniofacial dysmorphism including brachycephaly, blepharophimosis, short broad-based nose and wide mouth with thin upper lip. The boy had also a submucous cleft palate. Both had fair skin and hair compared with their parents. Both had moderate mental retardation associated with a short attention span. A 4-Mb interstitial duplication at 22q13.1q13.2 was detected by whole genome microarray comparative genomic hybridisation (array CGH) in both children. The duplication was confirmed by fluorescence in situ hybridisation (FISH) analysis. Their parents had normal array CGH results. FISH analysis revealed that the father was a carrier of a balanced interchromosomal submicroscopic insertion of 22q13 into chromosome 11q23, explaining the unbalanced aberration detected in both children. This report narrows down the critical region at 22q13.1q13.2, which is associated with mental retardation, pre- and post-natal growth retardation, hippocampal malformation, psychiatric symptoms such as short attention span and facial dysmorphism including hypertelorism, epicanthal folds and low set/abnormal ears.
Collapse
|
65
|
Gallinetti J, Harputlugil E, Mitchell JR. Amino acid sensing in dietary-restriction-mediated longevity: roles of signal-transducing kinases GCN2 and TOR. Biochem J 2013; 449:1-10. [PMID: 23216249 PMCID: PMC3695616 DOI: 10.1042/bj20121098] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
DR (dietary restriction), or reduced food intake without malnutrition, is associated with extended longevity, improved metabolic fitness and increased stress resistance in a wide range of organisms. DR is often referred to as calorie restriction, implying that reduced energy intake is responsible for its widespread and evolutionarily conserved benefits. However, recent data indicate dietary amino acid restriction as a key mediator of DR benefits. In fruitflies, an imbalance in essential amino acid intake is thought to underlie longevity benefits of DR. In mammals, reduced dietary protein or essential amino acid intake can extend longevity, improve metabolic fitness and increase stress resistance. In the present paper we review two evolutionarily conserved signal transduction pathways responsible for sensing amino acid levels. The eIF2α (eukaryotic initiation factor 2α) kinase GCN2 (general amino acid control non-derepressible 2) senses the absence of one or more amino acids by virtue of direct binding to uncharged cognate tRNAs. The presence of certain amino acids, such as leucine, permits activation of the master growth regulating kinase TOR (target of rapamycin). These two signal transduction pathways react to amino acid deprivation by inhibiting general protein translation while at the same time increasing translation of specific mRNAs involved in restoring homoeostasis. Together, these pathways may contribute to the regulation of longevity, metabolic fitness and stress resistance.
Collapse
Affiliation(s)
| | | | - James R. Mitchell
- Department of Genetics and Complex Diseases, Harvard School of Public Health, 655 Huntington Avenue, Boston, MA 02115, U.S.A
| |
Collapse
|
66
|
Savinska L, Skorokhod O, Klipa O, Gout I, Filonenko V. Development of monoclonal antibodies specific to ribosomal protein S6 kinase 2. Hybridoma (Larchmt) 2012; 31:289-94. [PMID: 22894784 DOI: 10.1089/hyb.2012.0032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ribosomal protein S6 kinase 2 (S6K2) is a serine/threonine kinase that belongs to the family of AGC kinases, which includes PKB/Akt, PKC, PDK1, and SGK1. Mammalian cells express two isoforms of S6K, termed S6K1 and S6K2. Each of these has nuclear and cytoplasmic spicing variants, which originate from different initiation start codons. Nuclear isoforms of S6K1 and S6K2 are slightly longer, as they possess additional sequences at the N-terminus with nuclear localization signals. Biochemical and genetic studies implicated S6Ks in the regulation of cell size, growth, and energy metabolism. Deregulation of S6K signaling has been linked to various human pathologies, making them excellent targets for drug discovery. The aim of this study was to produce monoclonal antibodies directed at the N-terminal regulatory region of S6K2, which shows very low homology to S6K1 or other members of the AGC family. To achieve this goal, two S6K2 fragments covering 1-64aa and 14-64aa N-terminal sequences were expressed in bacteria as GST/6His fusion proteins. Affinity purified recombinant proteins were used as antigens for immunization, hybridoma screening, and analysis of generated clones. We produced a panel of S6K2-specific antibodies, which recognized recombinant S6K2 proteins in ELISA and Western blot analysis. Further analysis of selected clones revealed that three clones, termed B1, B2, and B4, specifically recognized not only recombinant, but also endogenous S6K2 in Western blot analysis of HEK293 cell lysates. Specificity of B2 clone has been confirmed in additional commonly used immunoassays, including immunoprecipitation and immunocytochemistry. These properties make B2 MAb particularly valuable for elucidating signal transduction pathways involving S6K2 signaling under physiological conditions and in human pathologies.
Collapse
Affiliation(s)
- Lilia Savinska
- Department of Cell Signalling, Institute of Molecular Biology and Genetics, NAS of Ukraine, Zabolotnogo str 150, Kyiv, Ukraine
| | | | | | | | | |
Collapse
|
67
|
Abstract
mRNA translation is the most energy consuming process in the cell. In addition, it plays a pivotal role in the control of gene expression and is therefore tightly regulated. In response to various extracellular stimuli and intracellular cues, signaling pathways induce quantitative and qualitative changes in mRNA translation by modulating the phosphorylation status and thus the activity of components of the translational machinery. In this work we focus on the phosphoinositide 3-kinase (PI3K)/AKT and the mitogen-activated protein kinase (MAPK) pathways, as they are strongly implicated in the regulation of translation in homeostasis, whereas their malfunction has been linked to aberrant translation in human diseases, including cancer.
Collapse
Affiliation(s)
- Philippe P Roux
- Institute for Research in Immunology and Cancer, Université de Montréal, Québec, Canada.
| | | |
Collapse
|
68
|
Folco EG, Lee CS, Dufu K, Yamazaki T, Reed R. The proteins PDIP3 and ZC11A associate with the human TREX complex in an ATP-dependent manner and function in mRNA export. PLoS One 2012; 7:e43804. [PMID: 22928037 PMCID: PMC3426524 DOI: 10.1371/journal.pone.0043804] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/26/2012] [Indexed: 11/19/2022] Open
Abstract
The conserved TREX complex, which contains UAP56, Aly, CIP29, and the multi-subunit THO complex, functions in mRNA export. Recently, several putative new components of the human TREX complex were identified by mass spectrometry. Here, we investigated the function of two of these, PDIP3 and ZC11A. Our data indicate that both of these proteins are components of a common TREX complex and function in mRNA export. Recently, we found that both CIP29 and Aly associate with the DEAD box helicase UAP56 and with the TREX complex in an ATP-dependent manner. We now show that this is also the case for PDIP3 and ZC11A. Thus, together with previous work, our data indicate that the TREX complex participates in multiple ATP-dependent interactions.
Collapse
Affiliation(s)
- Eric G. Folco
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Chung-Sheng Lee
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kobina Dufu
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tomohiro Yamazaki
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robin Reed
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
69
|
Shiga A, Ishihara T, Miyashita A, Kuwabara M, Kato T, Watanabe N, Yamahira A, Kondo C, Yokoseki A, Takahashi M, Kuwano R, Kakita A, Nishizawa M, Takahashi H, Onodera O. Alteration of POLDIP3 splicing associated with loss of function of TDP-43 in tissues affected with ALS. PLoS One 2012; 7:e43120. [PMID: 22900096 PMCID: PMC3416794 DOI: 10.1371/journal.pone.0043120] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 07/17/2012] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease caused by selective loss of motor neurons. In the ALS motor neurons, TAR DNA-binding protein of 43 kDa (TDP-43) is dislocated from the nucleus to cytoplasm and forms inclusions, suggesting that loss of a nuclear function of TDP-43 may underlie the pathogenesis of ALS. TDP-43 functions in RNA metabolism include regulation of transcription, mRNA stability, and alternative splicing of pre-mRNA. However, a function of TDP-43 in tissue affected with ALS has not been elucidated. We sought to identify the molecular indicators reflecting on a TDP-43 function. Using exon array analysis, we observed a remarkable alteration of splicing in the polymerase delta interacting protein 3 (POLDIP3) as a result of the depletion of TDP-43 expression in two types of cultured cells. In the cells treated with TDP-43 siRNA, wild-type POLDIP3 (variant-1) decreased and POLDIP3 lacking exon 3 (variant-2) increased. The RNA binding ability of TDP-43 was necessary for inclusion of POLDIP3 exon 3. Moreover, we found an increment of POLDIP3 variant-2 mRNA in motor cortex, spinal cord and spinal motor neurons collected by laser capture microdissection with ALS. Our results suggest a loss of TDP-43 function in tissues affected with ALS, supporting the hypothesis that a loss of function of TDP-43 underlies the pathogenesis of ALS.
Collapse
Affiliation(s)
- Atsushi Shiga
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tomohiko Ishihara
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akinori Miyashita
- Department of Molecular Genetics, Genome Science Branch, Center for Bioresource-Based Researches, Brain Research Institute, Niigata University, Niigata, Japan
| | - Misaki Kuwabara
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Taisuke Kato
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Norihiro Watanabe
- Laboratory of Hematology and Oncology, Graduate School of Health Sciences, Niigata University, Niigata, Japan
| | - Akie Yamahira
- Laboratory of Hematology and Oncology, Graduate School of Health Sciences, Niigata University, Niigata, Japan
| | - Chigusa Kondo
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akio Yokoseki
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masuhiro Takahashi
- Laboratory of Hematology and Oncology, Graduate School of Health Sciences, Niigata University, Niigata, Japan
| | - Ryozo Kuwano
- Department of Molecular Genetics, Genome Science Branch, Center for Bioresource-Based Researches, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathological Neuroscience, Resource Branch for Brain Disease Research, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masatoyo Nishizawa
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hitoshi Takahashi
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Osamu Onodera
- Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Brain Research Institute, Niigata University, Niigata, Japan
- * E-mail:
| |
Collapse
|
70
|
Dagon Y, Hur E, Zheng B, Wellenstein K, Cantley LC, Kahn BB. p70S6 kinase phosphorylates AMPK on serine 491 to mediate leptin's effect on food intake. Cell Metab 2012; 16:104-12. [PMID: 22727014 PMCID: PMC3407689 DOI: 10.1016/j.cmet.2012.05.010] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 02/28/2012] [Accepted: 05/11/2012] [Indexed: 11/30/2022]
Abstract
The PI3K-AKT, mTOR-p70S6 kinase and AMPK pathways play distinct and critical roles in metabolic regulation. Each pathway is necessary for leptin's anorexigenic effects in the hypothalamus. Here we show that these pathways converge in an integrated phosphorylation cascade to mediate leptin action in the hypothalamus. We identify serine(491) on α2AMPK as the site of convergence and show that p70S6 kinase forms a complex with α2AMPK, resulting in phosphorylation on serine(491). Blocking α2AMPK-serine(491) phosphorylation increases hypothalamic AMPK activity, food intake, and body weight. Serine(491) phosphorylation is necessary for leptin's effects on hypothalamic α2AMPK activity, neuropeptide expression, food intake, and body weight. These results identify an inhibitory AMPK kinase, p70S6 kinase, and demonstrate that AMPK is a substrate for mTOR-p70S6 kinase. This discovery has broad biologic implications since mTOR-p70S6 kinase and AMPK have multiple, fundamental and generally opposing cellular effects that regulate metabolism, cell growth, and development.
Collapse
Affiliation(s)
- Yossi Dagon
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
71
|
Blandino-Rosano M, Chen AY, Scheys JO, Alejandro EU, Gould AP, Taranukha T, Elghazi L, Cras-Méneur C, Bernal-Mizrachi E. mTORC1 signaling and regulation of pancreatic β-cell mass. Cell Cycle 2012; 11:1892-902. [PMID: 22544327 DOI: 10.4161/cc.20036] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The capacity of β cells to expand in response to insulin resistance is a critical factor in the development of type 2 diabetes. Proliferation of β cells is a major component for these adaptive responses in animal models. The extracellular signals responsible for β-cell expansion include growth factors, such as insulin, and nutrients, such as glucose and amino acids. AKT activation is one of the important components linking growth signals to the regulation of β-cell expansion. Downstream of AKT, tuberous sclerosis complex 1 and 2 (TSC1/2) and mechanistic target of rapamycin complex 1 (mTORC1) signaling have emerged as prime candidates in this process, because they integrate signals from growth factors and nutrients. Recent studies demonstrate the importance of mTORC1 signaling in β cells. This review will discuss recent advances in the understanding of how this pathway regulates β-cell mass and present data on the role of TSC1 in modulation of β-cell mass. Herein, we also demonstrate that deletion of Tsc1 in pancreatic β cells results in improved glucose tolerance, hyperinsulinemia and expansion of β-cell mass that persists with aging.
Collapse
Affiliation(s)
- Manuel Blandino-Rosano
- Department of Internal Medicine; Division of Metabolism, Endocrinology and Diabetes, Brehm Center for Diabetes Research, University of Michigan Medical Center; Ann Arbor, MI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Abstract
INTRODUCTION The p70 S6 kinase (p70(S6K)) is frequently active in ovarian and a wide range of cancer types, and it has a crucial role in several processes considered hallmarks of cancer. Therefore, blocking p70(S6K) expression or activity may present a promising strategy for anticancer treatment. AREAS COVERED The current understanding of the molecular mechanisms that govern p70(S6K) regulation as well as its tumorigenic effects, which are involved in the initiation and progression in ovarian cancer, in particular the emerging new role of p70(S6K) in cell migration, which is a prerequisite of tumor metastasis. The p70(S6K) cellular substrates and/or interacting proteins. The current state of drugs that target this kinase, either alone or in combination with other targeted agents. EXPERT OPINION Targeting p70(S6K) through the use of small-molecule inhibitors, microRNAs and natural compounds may represent a beneficial new avenue for cancer therapy and opens new areas of investigation in p70(S6K) biology.
Collapse
Affiliation(s)
- Carman K M Ip
- University of Hong Kong, School of Biological Sciences, 4S-14 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | | |
Collapse
|
73
|
Xie J, Herbert TP. The role of mammalian target of rapamycin (mTOR) in the regulation of pancreatic β-cell mass: implications in the development of type-2 diabetes. Cell Mol Life Sci 2012; 69:1289-304. [PMID: 22068611 PMCID: PMC11114779 DOI: 10.1007/s00018-011-0874-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 10/20/2011] [Accepted: 10/20/2011] [Indexed: 12/22/2022]
Abstract
Type-2 diabetes mellitus (T2DM) is a disorder that is characterized by high blood glucose concentration in the context of insulin resistance and/or relative insulin deficiency. It causes metabolic changes that lead to the damage and functional impairment of organs and tissues resulting in increased morbidity and mortality. It is this form of diabetes whose prevalence is increasing at an alarming rate due to the 'obesity epidemic', as obesity is a key risk factor in the development of insulin resistance. However, the majority of individuals who have insulin resistance do not develop diabetes due to a compensatory increase in insulin secretion in response to an increase in insulin demand. This adaptive response is sustained by an increase in both β-cell function and mass. Importantly, there is increasing evidence that the Serine/Threonine kinase mammalian target of rapamycin (mTOR) plays a key role in the regulation of β-cell mass and therefore likely plays a critical role in β-cell adaptation. Therefore, the primary focus of this review is to summarize our current understanding of the role of mTOR in stimulating pancreatic β-cell mass and thus, in the prevention of type-2 diabetes.
Collapse
Affiliation(s)
- Jianling Xie
- Department of Cell Physiology and Pharmacology, University of Leicester, The Henry Wellcome Building, University Road, Leicester, LE1 9HN UK
| | - Terence P. Herbert
- Department of Cell Physiology and Pharmacology, University of Leicester, The Henry Wellcome Building, University Road, Leicester, LE1 9HN UK
| |
Collapse
|
74
|
Abstract
Discoveries made over the past 20 years highlight the importance of mRNA decay as a means of modulating gene expression and thereby protein production. Up until recently, studies largely focused on identifying cis-acting sequences that serve as mRNA stability or instability elements, the proteins that bind these elements, how the process of translation influences mRNA decay and the ribonucleases that catalyse decay. Now, current studies have begun to elucidate how the decay process is regulated. This Review examines our current understanding of how mammalian cell mRNA decay is controlled by different signalling pathways and lays out a framework for future research.
Collapse
|
75
|
Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem J 2012; 441:1-21. [PMID: 22168436 DOI: 10.1042/bj20110892] [Citation(s) in RCA: 772] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ribosomal protein S6K (S6 kinase) represents an extensively studied effector of the TORC1 [TOR (target of rapamycin) complex 1], which possesses important yet incompletely defined roles in cellular and organismal physiology. TORC1 functions as an environmental sensor by integrating signals derived from diverse environmental cues to promote anabolic and inhibit catabolic cellular functions. mTORC1 (mammalian TORC1) phosphorylates and activates S6K1 and S6K2, whose first identified substrate was rpS6 (ribosomal protein S6), a component of the 40S ribosome. Studies over the past decade have uncovered a number of additional S6K1 substrates, revealing multiple levels at which the mTORC1-S6K1 axis regulates cell physiology. The results thus far indicate that the mTORC1-S6K1 axis controls fundamental cellular processes, including transcription, translation, protein and lipid synthesis, cell growth/size and cell metabolism. In the present review we summarize the regulation of S6Ks, their cellular substrates and functions, and their integration within rapidly expanding mTOR (mammalian TOR) signalling networks. Although our understanding of the role of mTORC1-S6K1 signalling in physiology remains in its infancy, evidence indicates that this signalling axis controls, at least in part, glucose homoeostasis, insulin sensitivity, adipocyte metabolism, body mass and energy balance, tissue and organ size, learning, memory and aging. As dysregulation of this signalling axis contributes to diverse disease states, improved understanding of S6K regulation and function within mTOR signalling networks may enable the development of novel therapeutics.
Collapse
|
76
|
Fiesel FC, Weber SS, Supper J, Zell A, Kahle PJ. TDP-43 regulates global translational yield by splicing of exon junction complex component SKAR. Nucleic Acids Res 2011; 40:2668-82. [PMID: 22121224 PMCID: PMC3315294 DOI: 10.1093/nar/gkr1082] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
TDP-43 is linked to neurodegenerative diseases including frontotemporal dementia and amyotrophic lateral sclerosis. Mostly localized in the nucleus, TDP-43 acts in conjunction with other ribonucleoproteins as a splicing co-factor. Several RNA targets of TDP-43 have been identified so far, but its role(s) in pathogenesis remains unclear. Using Affymetrix exon arrays, we have screened for the first time for splicing events upon TDP-43 knockdown. We found alternative splicing of the ribosomal S6 kinase 1 (S6K1) Aly/REF-like target (SKAR) upon TDP-43 knockdown in non-neuronal and neuronal cell lines. Alternative SKAR splicing depended on the first RNA recognition motif (RRM1) of TDP-43 and on 5′-GA-3’ and 5′-UG-3′ repeats within the SKAR pre-mRNA. SKAR is a component of the exon junction complex, which recruits S6K1, thereby facilitating the pioneer round of translation and promoting cell growth. Indeed, we found that expression of the alternatively spliced SKAR enhanced S6K1-dependent signaling pathways and the translational yield of a splice-dependent reporter. Consistent with this, TDP-43 knockdown also increased translational yield and significantly increased cell size. This indicates a novel mechanism of deregulated translational control upon TDP-43 deficiency, which might contribute to pathogenesis of the protein aggregation diseases frontotemporal dementia and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Fabienne C Fiesel
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research and German Center for Neurodegenerative Diseases, University of Tübingen, 72076 Tübingen, Germany.
| | | | | | | | | |
Collapse
|
77
|
Abstract
The mammalian target of rapamycin (mTOR) is a central controller of cell growth and proliferation. mTOR forms two distinct complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTORC1 is regulated by multiple signals such as growth factors, amino acids, and cellular energy and regulates numerous essential cellular processes including translation, transcription, and autophagy. The AMP-activated protein kinase (AMPK) is a cellular energy sensor and signal transducer that is regulated by a wide array of metabolic stresses. These two pathways serve as a signaling nexus for regulating cellular metabolism, energy homeostasis, and cell growth, and dysregulation of each pathway may contribute to the development of metabolic disorders such as obesity, type 2 diabetes, and cancer. This review focuses on our current understanding of the relationship between AMPK and mTORC1 signaling and discusses their roles in cellular and organismal energy homeostasis.
Collapse
Affiliation(s)
- Ken Inoki
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
78
|
A nucleolar protein, H19 opposite tumor suppressor (HOTS), is a tumor growth inhibitor encoded by a human imprinted H19 antisense transcript. Proc Natl Acad Sci U S A 2011; 108:16759-64. [PMID: 21940503 DOI: 10.1073/pnas.1110904108] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The H19 gene, which localizes within a chromosomal region on human chromosome 11p15 that is commonly lost in Wilms tumor (WT), encodes an imprinted untranslated RNA. However, the biological significance of the H19 noncoding transcript remains unresolved because replacement of the RNA transcript with a neocassette has no obvious phenotypic effect. Here we show that the human H19 locus also encodes a maternally expressed, translated gene, antisense to the known H19 transcript, which is conserved in primates. This gene, termed HOTS for H19 opposite tumor suppressor, encodes a protein that localizes to the nucleus and nucleolus and that interacts with the human enhancer of rudimentary homolog (ERH) protein. WTs that show loss of heterozygosity of 11p15 or loss of imprinting of IGF2 also silence HOTS (7/7 and 10/10, respectively). Overexpression of HOTS inhibits Wilms, rhabdoid, rhabdomyosarcoma, and choriocarcinoma tumor cell growth, and silencing HOTS by RNAi increases in vitro colony formation and in vivo tumor growth. These results demonstrate that the human H19 locus harbors an imprinted gene encoding a tumor suppressor protein within the long-sought WT2 locus.
Collapse
|
79
|
Guo W, Qian L, Zhang J, Zhang W, Morrison A, Hayes P, Wilson S, Chen T, Zhao J. Sirt1 overexpression in neurons promotes neurite outgrowth and cell survival through inhibition of the mTOR signaling. J Neurosci Res 2011; 89:1723-36. [PMID: 21826702 DOI: 10.1002/jnr.22725] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/26/2011] [Accepted: 05/29/2011] [Indexed: 01/05/2023]
Abstract
The mammalian nicotinamide-adenine dinucleotide (NAD)-dependent deacetylase Sirt1 impacts different processes involved in the maintenance of brain integrity and in the pathogenic pathways associated with several neurodegenerative disorders, including Alzheimer's disease. Here we used human Sirt1 transgenic mice to demonstrate that neuron-specific Sirt1 overexpression promoted neurite outgrowth and improved cell viability under normal and nutrient-limiting conditions in primary culture systems and that Sirt1-overexpressing neurons exhibited higher tolerance to cell death or degeneration induced by amyloid-β1-42 oligomers. Coincidentally, we found that enhanced Sirt1 expression in neurons downregulated the mammalian target of rapamycin (mTOR) protein levels and its phosphorylation without changes in its mRNA levels, which was accompanied by concomitant inhibition of the mTOR downstream signaling activity as revealed by decreased p70S6 kinase (p70S6K) phosphorylation at Thr389. Consistently with this, using a Sirt1 siRNA transfection approach, we observed that reduction of endogenous mouse Sirt1 led to increased levels of mTOR and phosphorylation of itself and p70S6K as well as impaired cell survival and neurite outgrowth in wild-type mouse primary neurons, corroborating a suppressing effect of mTOR by Sirt1. Correspondingly, the mTOR inhibitor rapamycin markedly improved neuronal cell survival in response to nutrient deprivation and significantly enhanced neurite outgrowth in wild-type mouse neurons. The protective effect of rapamycin was extended to neurons even with Sirt1 siRNA knockdown that displayed developmental abnormalities compared with siRNA control-treated cells. Collectively, our findings suggest that Sirt1 may act to promote growth and survival of neurons in the central nervous system via its negative modulation of mTOR signaling.
Collapse
Affiliation(s)
- Wenjing Guo
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Abstract
Studies of epilepsy have mainly focused on the membrane proteins that control neuronal excitability. Recently, attention has been shifting to intracellular proteins and their interactions, signaling cascades and feedback regulation as they relate to epilepsy. The mTOR (mammalian target of rapamycin) signal transduction pathway, especially, has been suggested to play an important role in this regard. These pathways are involved in major physiological processes as well as in numerous pathological conditions. Here, involvement of the mTOR pathway in epilepsy will be reviewed by presenting; an overview of the pathway, a brief description of key signaling molecules, a summary of independent reports and possible implications of abnormalities of those molecules in epilepsy, a discussion of the lack of experimental data, and questions raised for the understanding its epileptogenic mechanism.
Collapse
Affiliation(s)
- Chang Hoon Cho
- Epilepsy Research Laboratory Department of Pediatrics Children's Hospital of Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
81
|
Evans DS, Kapahi P, Hsueh WC, Kockel L. TOR signaling never gets old: aging, longevity and TORC1 activity. Ageing Res Rev 2011; 10:225-37. [PMID: 20385253 PMCID: PMC2943975 DOI: 10.1016/j.arr.2010.04.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 03/31/2010] [Accepted: 04/01/2010] [Indexed: 12/21/2022]
Abstract
The target of rapamycin (TOR) signal transduction network monitors intra- and extracellular conditions that favor cell growth. Research during the last decade has revealed a modular structure of the TOR signaling network. Each signaling module senses a particular set of signals from the cellular milieu and exerts regulatory control towards TOR activity. The TOR pathway responds to growth factor signals, nutrient availability, and cellular stresses like hypoxia and energy stress. The signaling modules and their molecular components constituting the TOR network are remarkably conserved in both sequence and function across species. In yeast, roundworms, flies, and mice, the TOR pathway has been shown to regulate lifespan. Correspondingly, genetic, dietary or pharmacological manipulation of individual signaling modules as well as TOR activity itself extends lifespan in these model organisms. We discuss the potential impact of manipulating TOR activity for human health and lifespan.
Collapse
Affiliation(s)
- Daniel S. Evans
- Departments of Medicine and Epidemiology & Biostatistics, University of California, San Francisco, CA
| | | | - Wen-Chi Hsueh
- Departments of Medicine and Epidemiology & Biostatistics, University of California, San Francisco, CA
| | - Lutz Kockel
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA
| |
Collapse
|
82
|
Jastrzebski K, Hannan KM, House CM, Hung SSC, Pearson RB, Hannan RD. A phospho-proteomic screen identifies novel S6K1 and mTORC1 substrates revealing additional complexity in the signaling network regulating cell growth. Cell Signal 2011; 23:1338-47. [PMID: 21440620 DOI: 10.1016/j.cellsig.2011.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 03/16/2011] [Indexed: 01/09/2023]
Abstract
S6K1, a critical downstream substrate of mTORC1, has been implicated in regulating protein synthesis and a variety of processes that impinge upon cell growth and proliferation. While the role of the cytoplasmic p70(S6K1) isoform in the regulation of translation has been intensively studied, the targets and function of the nuclear p85(S6K1) isoform remain unclear. Therefore, we carried out a phospho-proteomic screen to identify novel p85(S6K1) substrates. Four novel putative p85(S6K1) substrates, GRP75, CCTβ, PGK1 and RACK1, and two mTORC1 substrates, ANXA4 and PSMA6 were identified, with diverse roles in chaperone function, ribosome maturation, metabolism, vesicle trafficking and the proteasome, respectively. The chaperonin subunit CCTβ was further investigated and the site of phosphorylation mapped to serine 260, a site located in the chaperonin apical domain. Consistent with this domain being involved in folding substrate interactions, we found that phosphorylation of serine 260 modulates chaperonin folding activity.
Collapse
Affiliation(s)
- Katarzyna Jastrzebski
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Locked Bag 1, A'Beckett Street, Victoria 8006, Australia
| | | | | | | | | | | |
Collapse
|
83
|
Fenton TR, Gout IT. Functions and regulation of the 70kDa ribosomal S6 kinases. Int J Biochem Cell Biol 2011; 43:47-59. [PMID: 20932932 DOI: 10.1016/j.biocel.2010.09.018] [Citation(s) in RCA: 255] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 09/17/2010] [Accepted: 09/23/2010] [Indexed: 01/01/2023]
Abstract
The 70kDa ribosomal protein S6 kinases, S6K1 and S6K2 are two highly homologous serine/threonine kinases that are activated in response to growth factors, cytokines and nutrients. The S6 kinases have been linked to diverse cellular processes, including protein synthesis, mRNA processing, glucose homeostasis, cell growth and survival. Studies in model organisms have highlighted the roles that S6K activity plays in a number of pathologies, including obesity, diabetes, ageing and cancer. The importance of S6K function in human diseases has led to the development of S6K-specific inhibitors by a number of companies, offering the promise of improved tools with which to study these enzymes and potentially the effective targeting of deregulated S6K signalling in patients. Here we review the current literature on the role of S6Ks in the regulation of cell growth, survival and proliferation downstream of various signalling pathways and how their dysregulation contributes to the pathogenesis of human diseases.
Collapse
Affiliation(s)
- Tim R Fenton
- Ludwig Institute for Cancer Research, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0660, USA
| | | |
Collapse
|
84
|
Abstract
The mammalian target of rapamycin (mTOR) is a protein kinase that plays key roles in cellular regulation. It forms complexes with additional proteins. The best-understood one is mTOR complex 1 (mTORC1). The regulation and cellular functions of mTORC1 have been the subjects of intense study; despite this, many questions remain to be answered. They include questions about the actual mechanisms by which mTORC1 signaling is stimulated by hormones and growth factors, which involves the small GTPase Rheb, and by amino acids, which involves other GTPase proteins. The control of Rheb and the mechanism by which it activates mTORC1 remain incompletely understood. Although it has been known for many years that rapamycin interferes with some functions of mTORC1, it is not known how it does this, or why only some functions of mTORC1 are affected. mTORC1 regulates diverse cellular functions. Several mTORC1 substrates are now known, although in several cases their physiological roles are poorly or incompletely understood. In the case of several processes, although it is clear that they are regulated by mTORC1, it is not known how mTORC1 does this. Lastly, mTORC1 is implicated in ageing, but again it is unclear what mechanisms account for this. Given the importance of mTORC1 signaling both for cellular functions and in human disease, it is a high priority to gain further insights into the control of mTORC1 signaling and the mechanisms by which it controls cellular functions and animal physiology.
Collapse
Affiliation(s)
- Xuemin Wang
- School of Biological Sciences, Life Sciences Building, University of Southampton, UK
| | | |
Collapse
|
85
|
Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 2010; 40:310-22. [PMID: 20965424 PMCID: PMC2993060 DOI: 10.1016/j.molcel.2010.09.026] [Citation(s) in RCA: 971] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 09/03/2010] [Accepted: 09/28/2010] [Indexed: 02/06/2023]
Abstract
The large serine/threonine protein kinase mTOR regulates cellular and organismal homeostasis by coordinating anabolic and catabolic processes with nutrient, energy, and oxygen availability and growth factor signaling. Cells and organisms experience a wide variety of insults that perturb the homeostatic systems governed by mTOR and therefore require appropriate stress responses to allow cells to continue to function. Stress can manifest from an excess or lack of upstream signals or as a result of genetic perturbations in upstream effectors of the pathway. mTOR nucleates two large protein complexes that are important nodes in the pathways that help buffer cells from stresses, and are implicated in the progression of stress-associated phenotypes and diseases, such as aging, tumorigenesis, and diabetes. This review focuses on the key components of the mTOR complex 1 pathway and on how various stresses impinge upon them.
Collapse
Affiliation(s)
- Shomit Sengupta
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | | | |
Collapse
|
86
|
Pearce LR, Alton GR, Richter DT, Kath JC, Lingardo L, Chapman J, Hwang C, Alessi DR. Characterization of PF-4708671, a novel and highly specific inhibitor of p70 ribosomal S6 kinase (S6K1). Biochem J 2010; 431:245-55. [PMID: 20704563 DOI: 10.1042/bj20101024] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025]
Abstract
S6K1 (p70 ribosomal S6 kinase 1) is activated by insulin and growth factors via the PI3K (phosphoinositide 3-kinase) and mTOR (mammalian target of rapamycin) signalling pathways. S6K1 regulates numerous processes, such as protein synthesis, growth, proliferation and longevity, and its inhibition has been proposed as a strategy for the treatment of cancer and insulin resistance. In the present paper we describe a novel cell-permeable inhibitor of S6K1, PF-4708671, which specifically inhibits the S6K1 isoform with a Ki of 20 nM and IC50 of 160 nM. PF-4708671 prevents the S6K1-mediated phosphorylation of S6 protein in response to IGF-1 (insulin-like growth factor 1), while having no effect upon the PMA-induced phosphorylation of substrates of the highly related RSK (p90 ribosomal S6 kinase) and MSK (mitogen- and stress-activated kinase) kinases. PF-4708671 was also found to induce phosphorylation of the T-loop and hydrophobic motif of S6K1, an effect that is dependent upon mTORC1 (mTOR complex 1). PF-4708671 is the first S6K1-specific inhibitor to be reported and will be a useful tool for delineating S6K1-specific roles downstream of mTOR.
Collapse
Affiliation(s)
- Laura R Pearce
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, Scotland, U.K.
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Abstract
In mammalian cells, newly synthesized mRNAs undergo a pioneer round of translation that is important for mRNA quality control. Following maturation of messenger ribonucleoprotein particles during and after the pioneer round, steady-state cycles of mRNA translation generate most of the cell's proteins. Translation factors, RNA-binding proteins, and targets of signaling pathways that are particular to newly synthesized mRNAs regulate critical functions of the pioneer round.
Collapse
Affiliation(s)
- Lynne E. Maquat
- Department of Biochemistry and Biophysics and Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Woan-Yuh Tarn
- Department of Biochemistry and Biophysics and Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Olaf Isken
- Institute for Virology and Cell Biology, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
88
|
Fenton TR, Gwalter J, Cramer R, Gout IT. S6K1 is acetylated at lysine 516 in response to growth factor stimulation. Biochem Biophys Res Commun 2010; 398:400-5. [PMID: 20599721 DOI: 10.1016/j.bbrc.2010.06.081] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 06/20/2010] [Indexed: 10/19/2022]
Abstract
The 70kDa ribosomal protein S6 kinase 1 (S6K1) plays important roles in the regulation of protein synthesis, cell growth and metabolism. S6K1 is activated by the phosphorylation of multiple serine and threonine residues in response to stimulation by a variety of growth factors and cytokines. In addition to phosphorylation, we have recently shown that S6K1 is also targeted by lysine acetylation. Here, using tandem mass spectrometry we have mapped acetylation of S6K1 to lysine 516, a site close to the C-terminus of the kinase that is highly conserved amongst vertebrate S6K1 orthologues. Using acetyl-specific K516 antibodies, we show that acetylation of endogenous S6K1 at this site is potently induced upon growth factor stimulation. Although S6K1 acetylation and phosphorylation are both induced by growth factor stimulation, these events appear to be functionally independent. Indeed, experiments using inhibitors of S6K1 activation and exposure of cells to various stresses indicate that S6K1 acetylation can occur in the absence of phosphorylation and vice versa. We propose that K516 acetylation may serve to modulate important kinase-independent functions of S6K1 in response to growth factor signalling.
Collapse
Affiliation(s)
- Tim R Fenton
- Department of Structural and Molecular Biology, University College London, Gower Street, Darwin Building, London WC1E 6BT, UK
| | | | | | | |
Collapse
|
89
|
Xu XY, Zhang Z, Su WH, Zhang Y, Yu YQ, Li YX, Zong ZH, Yu BZ. Characterization of p70 S6 kinase 1 in early development of mouse embryos. Dev Dyn 2010; 238:3025-34. [PMID: 19877273 DOI: 10.1002/dvdy.22131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The mTOR kinase controls cell growth, proliferation, and survival through two distinct multiprotein complexes mTORC1 and mTORC2. p70 S6 Kinase 1 (S6K1) is characterized as downstream effector of mTOR. Until recently, the connection between S6K1 and mTORC1 /mTORC2 during the early development of mouse embryos has not been well elucidated. Here, the expression level of total S6K1 and its phosphorylation at Thr389 was determined in four phases of one-cell embryos. S6K1 was active throughout the cell cycle especially with higher activity in G2 and M phases. Rapamycin decreased the activity of M-phase promoting factor (MPF) and delayed the first mitotic cleavage. Down-regulating mTOR and raptor reduced S6K1 phosphorylation at Thr389 in one-cell embryos. Furthermore, rapamycin and microinjection of raptor shRNA decreased the immunofluorescent staining of Thr389 phospho-S6K1. It is proposed that mTORC1 may be involved in the control of MPF by regulating S6K1 during the early development of mouse embryos.
Collapse
Affiliation(s)
- Xiao-Yan Xu
- Department of Pathophysiology, College of Basic Medicine, China Medical University, Shenyang, Liaoning Province, PR China
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Mayya V, Han DK. Phosphoproteomics by mass spectrometry: insights, implications, applications and limitations. Expert Rev Proteomics 2010; 6:605-18. [PMID: 19929607 DOI: 10.1586/epr.09.84] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Phosphorylation of proteins is a predominant, reversible post-translational modification. It is central to a wide variety of physiological responses and signaling mechanisms. Recent advances have allowed the global scope of phosphorylation to be addressed by mass spectrometry using phosphoproteomic approaches. In this perspective, we discuss four aspects of phosphoproteomics: the insights and implications from recently published phosphoproteomic studies and the applications and limitations of current phosphoproteomic strategies. Since approximately 50,000 known phosphorylation sites do not yet have any ascribed function, we present our perspectives on a major function of protein phosphorylation that may be of predictive value in hypothesis-based investigations. Finally, we discuss strategies to measure the stoichiometry of phosphorylation in a proteome-wide manner that is not provided by current phosphoproteomic approaches.
Collapse
Affiliation(s)
- Viveka Mayya
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA.
| | | |
Collapse
|
91
|
Dempsey JM, Mahoney SJ, Blenis J. mTORC1-Mediated Control of Protein Translation. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1874-6047(10)28001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
92
|
Fenton TR, Gwalter J, Ericsson J, Gout IT. Histone acetyltransferases interact with and acetylate p70 ribosomal S6 kinases in vitro and in vivo. Int J Biochem Cell Biol 2009; 42:359-66. [PMID: 19961954 DOI: 10.1016/j.biocel.2009.11.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 11/12/2009] [Accepted: 11/24/2009] [Indexed: 12/27/2022]
Abstract
The 70kDa ribosomal protein S6 kinases (S6K1 and S6K2) play important roles in the regulation of protein synthesis, cell growth and survival. S6Ks are activated in response to mitogen stimulation and nutrient sufficiency by the phosphorylation of conserved serine and threonine residues. Here we show for the first time, that in addition to phosphorylation, S6Ks are also targeted by lysine acetylation. Following mitogen stimulation, S6Ks interact with the p300 and p300/CBP-associated factor (PCAF) acetyltransferases. S6Ks can be acetylated by p300 and PCAF in vitro and S6K acetylation is detected in cells expressing p300. Furthermore, it appears that the acetylation sites targeted by p300 lie within the divergent C-terminal regulatory domains of both S6K1 and S6K2. Acetylation of S6K1 and 2 is increased upon the inhibition of class I/II histone deacetylases (HDACs) by trichostatin-A, while the enhancement of S6K1 acetylation by nicotinamide suggests the additional involvement of sirtuin deacetylases in S6K deacetylation. Both expression of p300 and HDAC inhibition cause increases in S6K protein levels, and we have shown that S6K2 is stabilized in cells treated with HDAC inhibitors. The finding that S6Ks are targeted by histone acetyltransferases uncovers a novel mode of crosstalk between mitogenic signalling pathways and the transcriptional machinery and reveals additional complexity in the regulation of S6K function.
Collapse
Affiliation(s)
- T R Fenton
- Research Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
93
|
Abstract
The rapamycin-insensitive companion of mammalian target of rapamycin (mTOR) (Rictor) is a key member of mTOR complex-2 (mTORC2), which phosphorylates the AGC kinases Akt/PKB, PKC and SGK1 at a C-terminal hydrophobic motif. We identified several novel sites on Rictor that are phosphorylated, including Thr1135, which is conserved across all vertebrates. Phosphorylation of this site on Rictor is stimulated by amino acids and growth factors through a rapamycin-sensitive signaling cascade. We demonstrate here that Rictor is a direct target of the ribosomal protein S6 kinase-1 (S6K1). Rictor phosphorylation at Thr1135 does not lead to major changes in mTORC2-kinase activity. However, phosphorylation of this site turns over rapidly and mediates 14-3-3 binding to Rictor and mTORC2, providing possibility for altered interactions of the complex. These findings reveal an unexpected signaling input into mTORC2, which is regulated by amino acids, growth factors and rapamycin.
Collapse
|
94
|
Meyuhas O, Dreazen A. Ribosomal protein S6 kinase from TOP mRNAs to cell size. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 90:109-53. [PMID: 20374740 DOI: 10.1016/s1877-1173(09)90003-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ribosomal protein S6 kinase (S6K) has been implicated in the phosphorylation of multiple substrates and is subject to activation by a wide variety of signals that converge at mammalian target of rapamycin (mTOR). In the course of the search for its physiological role, it was proposed that S6K activation and ribosomal protein S6 (rpS6) phosphorylation account for the translational activation of a subgroup of transcripts, the TOP mRNAs. The structural hallmark of these mRNAs is an oligopyrimidine tract at their 5'-terminus, known as the 5'-TOP motif. TOP mRNAs consists of about 90 members that encode multiple components of the translational machinery, such as ribosomal proteins and translation factors. The translation efficiency of TOP mRNAs indeed correlates with S6K activation and rpS6 phosphorylation, yet recent biochemical and genetic studies have established that, although S6K and TOP mRNAs respond to similar signals and are regulated by mTOR, they maintain no cause and effect relationship. Instead, S6K is primarily involved in regulation of cell size, and affects glucose homeostasis, but is dispensable for global protein synthesis, whereas translational efficiency of TOP mRNAs is a determinant of the cellular protein synthesis capacity. Despite extensive studies of their function and mode of regulation, the mechanism underlying the effect of S6K on the cell size, as well as the trans-acting factor that mediates the translational control of TOP mRNAs, still await their identification.
Collapse
Affiliation(s)
- Oded Meyuhas
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
95
|
Mahoney SJ, Dempsey JM, Blenis J. Cell signaling in protein synthesis ribosome biogenesis and translation initiation and elongation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 90:53-107. [PMID: 20374739 DOI: 10.1016/s1877-1173(09)90002-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protein synthesis is a highly energy-consuming process that must be tightly regulated. Signal transduction cascades respond to extracellular and intracellular cues to phosphorylate proteins involved in ribosomal biogenesis and translation initiation and elongation. These phosphorylation events regulate the timing and rate of translation of both specific and total mRNAs. Alterations in this regulation can result in dysfunction and disease. While many signaling pathways intersect to control protein synthesis, the mTOR and MAPK pathways appear to be key players. This chapter briefly reviews the mTOR and MAPK pathways and then focuses on individual phosphorylation events that directly control ribosome biogenesis and translation.
Collapse
Affiliation(s)
- Sarah J Mahoney
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
96
|
Westmoreland JJ, Wang Q, Bouzaffour M, Baker SJ, Sosa-Pineda B. Pdk1 activity controls proliferation, survival, and growth of developing pancreatic cells. Dev Biol 2009; 334:285-98. [PMID: 19635472 PMCID: PMC2744847 DOI: 10.1016/j.ydbio.2009.07.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 06/29/2009] [Accepted: 07/20/2009] [Indexed: 12/22/2022]
Abstract
The formation of adequate masses of endocrine and exocrine pancreatic tissues during embryogenesis is essential to ensure proper nutrition and glucose homeostasis at postnatal stages. We generated mice with pancreas-specific ablation of the 3-phosphoinositide-dependent protein kinase 1 (Pdk1) to investigate how signaling downstream of the phosphatidylinositol-3-OH kinase (PI3K) pathway controls pancreas development. Pdk1-conditional knock-out mice were born with conspicuous pancreas hypoplasia, and within a few weeks, they developed severe hyperglycemia. Our detailed characterization of the mutant embryonic pancreas also revealed distinct temporal, cell type-specific requirements of Pdk1 activity in the control of cell proliferation, cell survival, and cell size during pancreas development. These results thus uncover Pdk1 as a novel, crucial regulator of pancreatic growth during embryogenesis. In addition, we provide evidence that Pdk1 activity is required differently in mature pancreatic cell types, since compensatory proliferation and possible mTORC2 activation occurred in exocrine cells but not in beta cells of the Pdk1-deficient postnatal pancreas.
Collapse
Affiliation(s)
- Joby J. Westmoreland
- Department of Genetics and Tumor Cell Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Qian Wang
- Department of Genetics and Tumor Cell Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Mohamed Bouzaffour
- Department of Genetics and Tumor Cell Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Suzanne J. Baker
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Beatriz Sosa-Pineda
- Department of Genetics and Tumor Cell Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
97
|
Dowling RJO, Pollak M, Sonenberg N. Current status and challenges associated with targeting mTOR for cancer therapy. BioDrugs 2009; 23:77-91. [PMID: 19489650 DOI: 10.2165/00063030-200923020-00002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway plays a critical role in the regulation of cellular growth, survival, and proliferation. Inappropriate activation of PI3K/Akt/mTOR signaling can promote a cellular environment that is favorable for transformation. In fact, dysregulation of this pathway, as a result of genetic mutations and amplifications, is implicated in a variety of human cancers. Therefore, mTOR has emerged as a key target for the treatment of cancer, particularly in the treatment of tumors that exhibit increased mTOR signaling as a result of genetic lesions. The immunosuppressant sirolimus (rapamycin) directly inhibits mTOR activity and suppresses the growth of cancer cells in vitro and in vivo. As a result, a number of sirolimus derivatives have been developed as anti-cancer therapies, and these compounds are currently under investigation in phase I-III clinical trials. In this review, we summarize the use of sirolimus derivatives in clinical trials and address some of the challenges associated with targeting mTOR for the treatment of human cancer.
Collapse
Affiliation(s)
- Ryan J O Dowling
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
98
|
Reuss D, von Deimling A. Hereditary tumor syndromes and gliomas. Recent Results Cancer Res 2009; 171:83-102. [PMID: 19322539 DOI: 10.1007/978-3-540-31206-2_5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Several congenital syndromes caused by germline mutations in tumor suppressor genes predispose to the development of glial tumors. In the last few decades our knowledge about the molecular functions of these genes and the pathogenesis of hereditary tumor syndromes has greatly increased. The most common syndromes are the neurofibromatoses (type 1 and type 2) and the tuberous scleroses complex. There are interesting overlaps in the molecular pathogen-esis. Deregulation of Ras or downstream Ras pathways including MEK/ERK and AKT/ mTOR plays an important role in these three syndromes. Other rare syndromes include Li-Fraumeni, melanoma-astrocytoma, and Turcot syndrome involving cell cycle regulators and DNA repair genes. The genes and pathways involved in the pathogenesis of these syndromes also play an important role in the development of sporadic tumors. Therefore research on hereditary syndromes contributes substantially to our understanding of tumor formation.
Collapse
Affiliation(s)
- David Reuss
- Department of Neuropathology, Institute of Pathology, Im Neuenheimer Feld 220/221, Heidelberg 69120, Germany.
| | | |
Collapse
|
99
|
Pastor MD, García-Yébenes I, Fradejas N, Pérez-Ortiz JM, Mora-Lee S, Tranque P, Moro MÁ, Pende M, Calvo S. mTOR/S6 kinase pathway contributes to astrocyte survival during ischemia. J Biol Chem 2009; 284:22067-22078. [PMID: 19535330 DOI: 10.1074/jbc.m109.033100] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neurons are highly dependent on astrocyte survival during brain damage. To identify genes involved in astrocyte function during ischemia, we performed mRNA differential display in astrocytes after oxygen and glucose deprivation (OGD). We detected a robust down-regulation of S6 kinase 1 (S6K1) mRNA that was accompanied by a sharp decrease in protein levels and activity. OGD-induced apoptosis was increased by the combined deletion of S6K1 and S6K2 genes, as well as by treatment with rapamycin that inhibits S6K1 activity by acting on the upstream regulator mTOR (mammalian target of rapamycin). Astrocytes lacking S6K1 and S6K2 (S6K1;S6K2-/-) displayed a defect in BAD phosphorylation and in the expression of the anti-apoptotic factors Bcl-2 and Bcl-xL. Furthermore reactive oxygen species were increased while translation recovery was impaired in S6K-deficient astrocytes following OGD. Rescue of either S6K1 or S6K2 expression by adenoviral infection revealed that protective functions were specifically mediated by S6K1, because this isoform selectively promoted resistance to OGD and reduction of ROS levels. Finally, "in vivo" effects of S6K suppression were analyzed in the permanent middle cerebral artery occlusion model of ischemia, in which absence of S6K expression increased mortality and infarct volume. In summary, this article uncovers a protective role for astrocyte S6K1 against brain ischemia, indicating a functional pathway that senses nutrient and oxygen levels and may be beneficial for neuronal survival.
Collapse
Affiliation(s)
- María Dolores Pastor
- Department of Medical Sciences, Medical School, Universidad de Castilla La Mancha, 02006 Albacete, Spain
| | - Isaac García-Yébenes
- Department of Pharmacology, Medical School, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Noelia Fradejas
- Department of Medical Sciences, Medical School, Universidad de Castilla La Mancha, 02006 Albacete, Spain
| | - José Manuel Pérez-Ortiz
- Department of Medical Sciences, Medical School, Universidad de Castilla La Mancha, 02006 Albacete, Spain
| | - Silvia Mora-Lee
- Department of Medical Sciences, Medical School, Universidad de Castilla La Mancha, 02006 Albacete, Spain
| | - Pedro Tranque
- Department of Medical Sciences, Medical School, Universidad de Castilla La Mancha, 02006 Albacete, Spain
| | - María Ángeles Moro
- Department of Pharmacology, Medical School, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Mario Pende
- INSERM U845, Université Paris Descartes, 75015 Paris, France
| | - Soledad Calvo
- Department of Medical Sciences, Medical School, Universidad de Castilla La Mancha, 02006 Albacete, Spain
| |
Collapse
|
100
|
Dunlop EA, Tee AR. Mammalian target of rapamycin complex 1: signalling inputs, substrates and feedback mechanisms. Cell Signal 2009; 21:827-35. [PMID: 19166929 DOI: 10.1016/j.cellsig.2009.01.012] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 01/02/2009] [Indexed: 01/16/2023]
Abstract
The mammalian target of rapamycin (mTOR) signalling pathway is implicated in the pathogenesis of a number of cancers and inherited hamartoma syndromes which have led to mTOR inhibitors, such as rapamycin, being tested in clinical trials. Knowledge of the mTOR pathway is rapidly expanding. This review provides an update on the most recent additions to the mTOR pathway with particular emphasis on mTORC1 signalling. mTORC1 signalling is classically known for its role in regulating cell growth and proliferation through modulation of protein synthesis. Recent research has identified novel mTORC1 cell signalling mechanisms that modulate mitochondrial biogenesis, hypoxia signalling and cell cycle progression and uncovered novel mTORC1 targets; YY1, HIF and SGK1. It is unsurprising that regulation of mTORC1 is multifaceted with many positive and negative signalling inputs. We discuss the recent advances that have been made to determine the upstream mechanisms that control mTORC1 through hypoxia, energy sensing and nutrient signalling. Also discussed are current findings that have unravelled a series of novel mTORC1-associated proteins that directly control the activity of mTORC1 and include PRAS40, FKBP38, Rag GTPases and RalA.
Collapse
Affiliation(s)
- E A Dunlop
- Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff, Wales, UK
| | | |
Collapse
|