51
|
Drosophila Syd-1, liprin-α, and protein phosphatase 2A B' subunit Wrd function in a linear pathway to prevent ectopic accumulation of synaptic materials in distal axons. J Neurosci 2014; 34:8474-87. [PMID: 24948803 DOI: 10.1523/jneurosci.0409-14.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
During synaptic development, presynaptic differentiation occurs as an intrinsic property of axons to form specialized areas of plasma membrane [active zones (AZs)] that regulate exocytosis and endocytosis of synaptic vesicles. Genetic and biochemical studies in vertebrate and invertebrate model systems have identified a number of proteins involved in AZ assembly. However, elucidating the molecular events of AZ assembly in a spatiotemporal manner remains a challenge. Syd-1 (synapse defective-1) and Liprin-α have been identified as two master organizers of AZ assembly. Genetic and imaging analyses in invertebrates show that Syd-1 works upstream of Liprin-α in synaptic assembly through undefined mechanisms. To understand molecular pathways downstream of Liprin-α, we performed a proteomic screen of Liprin-α-interacting proteins in Drosophila brains. We identify Drosophila protein phosphatase 2A (PP2A) regulatory subunit B' [Wrd (Well Rounded)] as a Liprin-α-interacting protein, and we demonstrate that it mediates the interaction of Liprin-α with PP2A holoenzyme and the Liprin-α-dependent synaptic localization of PP2A. Interestingly, loss of function in syd-1, liprin-α, or wrd shares a common defect in which a portion of synaptic vesicles, dense-core vesicles, and presynaptic cytomatrix proteins ectopically accumulate at the distal, but not proximal, region of motoneuron axons. Strong genetic data show that a linear syd-1/liprin-α/wrd pathway in the motoneuron antagonizes glycogen synthase kinase-3β kinase activity to prevent the ectopic accumulation of synaptic materials. Furthermore, we provide data suggesting that the syd-1/liprin-α/wrd pathway stabilizes AZ specification at the nerve terminal and that such a novel function is independent of the roles of syd-1/liprin-α in regulating the morphology of the T-bar structural protein BRP (Bruchpilot).
Collapse
|
52
|
Csordás G, Varga GIB, Honti V, Jankovics F, Kurucz É, Andó I. In vivo immunostaining of hemocyte compartments in Drosophila for live imaging. PLoS One 2014; 9:e98191. [PMID: 24892745 PMCID: PMC4043501 DOI: 10.1371/journal.pone.0098191] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 04/29/2014] [Indexed: 11/18/2022] Open
Abstract
In recent years, Drosophila melanogaster has become an attractive model organism in which to study the structure and development of the cellular immune components. The emergence of immunological markers greatly accelerated the identification of the immune cells (hemocytes), while the creation of genetic reporter constructs allowed unique insight into the structural organization of hematopoietic tissues. However, investigation of the hemocyte compartments by the means of immunological markers requires dissection and fixation, which regularly disrupt the delicate structure and hamper the microanatomical characterization. Moreover, the investigation of transgenic reporters alone can be misleading as their expression often differs from the native expression pattern of their respective genes. We describe here a method that combines the reporter constructs and the immunological tools in live imaging, thereby allowing use of the array of available immunological markers while retaining the structural integrity of the hematopoietic compartments. The procedure allows the reversible immobilization of Drosophila larvae for high-resolution confocal imaging and the time-lapse video analysis of in vivo reporters. When combined with our antibody injection-based in situ immunostaining assay, the resulting double labeling of the hemocyte compartments can provide new information on the microanatomy and functional properties of the hematopoietic tissues in an intact state. Although this method was developed to study the immune system of Drosophila melanogaster, we anticipate that such a combination of genetic and immunological markers could become a versatile technique for in vivo studies in other biological systems too.
Collapse
Affiliation(s)
- Gábor Csordás
- Immunology Unit, Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Gergely I. B. Varga
- Immunology Unit, Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Viktor Honti
- Immunology Unit, Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Ferenc Jankovics
- Developmental Genetics Unit, Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Éva Kurucz
- Immunology Unit, Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - István Andó
- Immunology Unit, Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
53
|
Bury LA, Sabo SL. Dynamic mechanisms of neuroligin-dependent presynaptic terminal assembly in living cortical neurons. Neural Dev 2014; 9:13. [PMID: 24885664 PMCID: PMC4049477 DOI: 10.1186/1749-8104-9-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/12/2014] [Indexed: 12/23/2022] Open
Abstract
Background Synapse formation occurs when synaptogenic signals trigger coordinated development of pre and postsynaptic structures. One of the best-characterized synaptogenic signals is trans-synaptic adhesion. However, it remains unclear how synaptic proteins are recruited to sites of adhesion. In particular, it is unknown whether synaptogenic signals attract synaptic vesicle (SV) and active zone (AZ) proteins to nascent synapses or instead predominantly function to create sites that are capable of forming synapses. It is also unclear how labile synaptic proteins are at developing synapses after their initial recruitment. To address these issues, we used long-term, live confocal imaging of presynaptic terminal formation in cultured cortical neurons after contact with the synaptogenic postsynaptic adhesion proteins neuroligin-1 or SynCAM-1. Results Surprisingly, we find that trans-synaptic adhesion does not attract SV or AZ proteins nor alter their transport. In addition, although neurexin (the presynaptic partner of neuroligin) typically accumulates over the entire region of contact between axons and neuroligin-1-expressing cells, SV proteins selectively assemble at spots of enhanced neurexin clustering. The arrival and maintenance of SV proteins at these sites is highly variable over the course of minutes to hours, and this variability correlates with neurexin levels at individual synapses. Conclusions Together, our data support a model of synaptogenesis where presynaptic proteins are trapped at specific axonal sites, where they are stabilized by trans-synaptic adhesion signaling.
Collapse
Affiliation(s)
| | - Shasta L Sabo
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
54
|
Mishra B, Ghannad-Rezaie M, Li J, Wang X, Hao Y, Ye B, Chronis N, Collins CA. Using microfluidics chips for live imaging and study of injury responses in Drosophila larvae. J Vis Exp 2014:e50998. [PMID: 24562098 PMCID: PMC4117361 DOI: 10.3791/50998] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Live imaging is an important technique for studying cell biological processes, however this can be challenging in live animals. The translucent cuticle of the Drosophila larva makes it an attractive model organism for live imaging studies. However, an important challenge for live imaging techniques is to noninvasively immobilize and position an animal on the microscope. This protocol presents a simple and easy to use method for immobilizing and imaging Drosophila larvae on a polydimethylsiloxane (PDMS) microfluidic device, which we call the 'larva chip'. The larva chip is comprised of a snug-fitting PDMS microchamber that is attached to a thin glass coverslip, which, upon application of a vacuum via a syringe, immobilizes the animal and brings ventral structures such as the nerve cord, segmental nerves, and body wall muscles, within close proximity to the coverslip. This allows for high-resolution imaging, and importantly, avoids the use of anesthetics and chemicals, which facilitates the study of a broad range of physiological processes. Since larvae recover easily from the immobilization, they can be readily subjected to multiple imaging sessions. This allows for longitudinal studies over time courses ranging from hours to days. This protocol describes step-by-step how to prepare the chip and how to utilize the chip for live imaging of neuronal events in 3rd instar larvae. These events include the rapid transport of organelles in axons, calcium responses to injury, and time-lapse studies of the trafficking of photo-convertible proteins over long distances and time scales. Another application of the chip is to study regenerative and degenerative responses to axonal injury, so the second part of this protocol describes a new and simple procedure for injuring axons within peripheral nerves by a segmental nerve crush.
Collapse
Affiliation(s)
- Bibhudatta Mishra
- Department of Molecular, Cellular and Developmental Biology, University of Michigan
| | | | - Jiaxing Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan
| | - Xin Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan
| | - Yan Hao
- Department of Molecular, Cellular and Developmental Biology, University of Michigan
| | - Bing Ye
- Life Sciences Institute, University of Michigan; Department of Cell and Developmental Biology, University of Michigan
| | - Nikos Chronis
- Department of Biomedical Engineering, University of Michigan; Department of Mechanical Engineering, University of Michigan
| | - Catherine A Collins
- Department of Molecular, Cellular and Developmental Biology, University of Michigan;
| |
Collapse
|
55
|
Kowalski JR, Dube H, Touroutine D, Rush KM, Goodwin PR, Carozza M, Didier Z, Francis MM, Juo P. The Anaphase-Promoting Complex (APC) ubiquitin ligase regulates GABA transmission at the C. elegans neuromuscular junction. Mol Cell Neurosci 2014; 58:62-75. [PMID: 24321454 PMCID: PMC4036811 DOI: 10.1016/j.mcn.2013.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 11/23/2013] [Accepted: 12/02/2013] [Indexed: 01/05/2023] Open
Abstract
Regulation of both excitatory and inhibitory synaptic transmission is critical for proper nervous system function. Aberrant synaptic signaling, including altered excitatory to inhibitory balance, is observed in numerous neurological diseases. The ubiquitin enzyme system controls the abundance of many synaptic proteins and thus plays a key role in regulating synaptic transmission. The Anaphase-Promoting Complex (APC) is a multi-subunit ubiquitin ligase that was originally discovered as a key regulator of protein turnover during the cell cycle. More recently, the APC has been shown to function in postmitotic neurons, where it regulates diverse processes such as synapse development and synaptic transmission at glutamatergic synapses. Here we report that the APC regulates synaptic GABA signaling by acting in motor neurons to control the balance of excitatory (acetylcholine) to inhibitory (GABA) transmission at the Caenorhabditis elegans neuromuscular junction (NMJ). Loss-of-function mutants in multiple APC subunits have increased muscle excitation at the NMJ; this phenotype is rescued by expression of the missing subunit in GABA neurons. Quantitative imaging and electrophysiological analyses indicate that APC mutants have decreased GABA release but normal cholinergic transmission. Consistent with this, APC mutants exhibit convulsions in a seizure assay sensitive to reductions in GABA signaling. Previous studies in other systems showed that the APC can negatively regulate the levels of the active zone protein SYD-2 Liprin-α. Similarly, we found that SYD-2 accumulates in APC mutants at GABAergic presynaptic sites. Finally, we found that the APC subunit EMB-27 CDC16 can localize to presynapses in GABA neurons. Together, our data suggest a model in which the APC acts at GABAergic presynapses to promote GABA release and inhibit muscle excitation. These findings are the first evidence that the APC regulates transmission at inhibitory synapses and have implications for understanding nervous system pathologies, such as epilepsy, that are characterized by misregulated GABA signaling.
Collapse
Affiliation(s)
- Jennifer R Kowalski
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208 USA.
| | - Hitesh Dube
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208 USA.
| | - Denis Touroutine
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Kristen M Rush
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208 USA.
| | - Patricia R Goodwin
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Marc Carozza
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208 USA.
| | - Zachary Didier
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208 USA.
| | - Michael M Francis
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Peter Juo
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
56
|
Joshi CS, Khan SA, Khole VV. Regulation of acrosome reaction by Liprin α3, LAR and its ligands in mouse spermatozoa. Andrology 2013; 2:165-74. [PMID: 24327330 DOI: 10.1111/j.2047-2927.2013.00167] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/01/2013] [Accepted: 11/04/2013] [Indexed: 11/30/2022]
Abstract
Zona pellucida-based induction of acrosome reaction (AR) is a popular and well-accepted hypothesis. However, this hypothesis is being challenged in recent years and it has been proposed that the cumulus cells might be the site of AR. In our previous study, we reported the presence of a synaptic protein Liprin α3 on sperm acrosome, and proposed its role in AR. This study was designed to understand the role of Liprin α3 and its interacting proteins in regulation of AR. It is observed that the presence of anti-Liprin α3 antibody inhibits the process of AR. Colocalization experiments demonstrate the coexistence of leucocyte antigen related (LAR) protein, Rab-interacting molecule (RIM) and Liprin α3 on sperm acrosome thereby completing the identification of all the members of RIM/MUNC/Rab3A/liprinα complex required for membrane fusion. This study demonstrates the effect of LAR ligands such as Syndecans, Nidogens and LAR wedge domain peptide on AR. We could see an increase in AR in presence of these ligands. On the basis of these data, we speculate that in presence of ligands or wedge peptide, LAR undergoes dimerization leading to inhibition of phosphatase activity and increase in AR. The presence of one of the ligands Syndecan-1 on cumulus cells led us to hypothesize that it is Syndecan which induces AR in vivo and thus another site of AR could lie in cumulus.
Collapse
Affiliation(s)
- C S Joshi
- Department of Gamete Immunobiology, National Institute for Research in Reproductive Health, Mumbai, India
| | | | | |
Collapse
|
57
|
Spangler SA, Schmitz SK, Kevenaar JT, de Graaff E, de Wit H, Demmers J, Toonen RF, Hoogenraad CC. Liprin-α2 promotes the presynaptic recruitment and turnover of RIM1/CASK to facilitate synaptic transmission. ACTA ACUST UNITED AC 2013; 201:915-28. [PMID: 23751498 PMCID: PMC3678157 DOI: 10.1083/jcb.201301011] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Liprin-α2 is required for the presynaptic recruitment and turnover of RIM1 and CASK, components of the release machinery, and facilitates synaptic output by regulating synaptic vesicle pool size. The presynaptic active zone mediates synaptic vesicle exocytosis, and modulation of its molecular composition is important for many types of synaptic plasticity. Here, we identify synaptic scaffold protein liprin-α2 as a key organizer in this process. We show that liprin-α2 levels were regulated by synaptic activity and the ubiquitin–proteasome system. Furthermore, liprin-α2 organized presynaptic ultrastructure and controlled synaptic output by regulating synaptic vesicle pool size. The presence of liprin-α2 at presynaptic sites did not depend on other active zone scaffolding proteins but was critical for recruitment of several components of the release machinery, including RIM1 and CASK. Fluorescence recovery after photobleaching showed that depletion of liprin-α2 resulted in reduced turnover of RIM1 and CASK at presynaptic terminals, suggesting that liprin-α2 promotes dynamic scaffolding for molecular complexes that facilitate synaptic vesicle release. Therefore, liprin-α2 plays an important role in maintaining active zone dynamics to modulate synaptic efficacy in response to changes in network activity.
Collapse
Affiliation(s)
- Samantha A Spangler
- Department of Neuroscience, Erasmus Medical Center, 3015GE Rotterdam, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Abstract
The large isoforms of the Rab3 interacting molecule (RIM) family, RIM1α/β and RIM2α/β, have been shown to be centrally involved in mediating presynaptic active zone function. The RIM protein family contains two additional small isoforms, RIM3γ and RIM4γ, which are composed only of the RIM-specific C-terminal C2B domain and varying N-terminal sequences and whose function remains to be elucidated. Here, we report that both, RIM3γ and RIM4γ, play an essential role for the development of neuronal arborization and of dendritic spines independent of synaptic function. γ-RIM knock-down in rat primary neuronal cultures and in vivo resulted in a drastic reduction in the complexity of neuronal arborization, affecting both axonal and dendritic outgrowth, independent of the time point of γ-RIM downregulation during dendrite development. Rescue experiments revealed that the phenotype is caused by a function common to both γ-RIMs. These findings indicate that γ-RIMs are involved in cell biological functions distinct from the regulation of synaptic vesicle exocytosis and play a role in the molecular mechanisms controlling the establishment of dendritic complexity and axonal outgrowth.
Collapse
|
59
|
Abstract
Genetic analyses in both worm and fly have identified the RhoGAP-like protein Syd-1 as a key positive regulator of presynaptic assembly. In worm, loss of syd-1 can be fully rescued by overexpressing wild-type Liprin-α, suggesting that the primary function of Syd-1 in this process is to recruit Liprin-α. We show that loss of syd-1 from Drosophila R7 photoreceptors causes two morphological defects that occur at distinct developmental time points. First, syd-1 mutant R7 axons often fail to form terminal boutons in their normal M6 target layer. Later, those mutant axons that do contact M6 often project thin extensions beyond it. We find that the earlier defect coincides with a failure to localize synaptic vesicles, suggesting that it reflects a failure in presynaptic assembly. We then analyze the relationship between syd-1 and Liprin-α in R7s. We find that loss of Liprin-α causes a stronger early R7 defect and provide a possible explanation for this disparity: we show that Liprin-α promotes Kinesin-3/Unc-104/Imac-mediated axon transport independently of Syd-1 and that Kinesin-3/Unc-104/Imac is required for normal R7 bouton formation. Unlike loss of syd-1, loss of Liprin-α does not cause late R7 extensions. We show that overexpressing Liprin-α partly rescues the early but not the late syd-1 mutant R7 defect. We therefore conclude that the two defects are caused by distinct molecular mechanisms. We find that Trio overexpression rescues both syd-1 defects and that trio and syd-1 have similar loss- and gain-of-function phenotypes, suggesting that the primary function of Syd-1 in R7s may be to promote Trio activity.
Collapse
|
60
|
Goodwin PR, Juo P. The scaffolding protein SYD-2/Liprin-α regulates the mobility and polarized distribution of dense-core vesicles in C. elegans motor neurons. PLoS One 2013; 8:e54763. [PMID: 23358451 PMCID: PMC3554613 DOI: 10.1371/journal.pone.0054763] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 12/14/2012] [Indexed: 01/05/2023] Open
Abstract
The polarized trafficking of axonal and dendritic components is essential for the development and maintenance of neuronal structure and function. Neuropeptide-containing dense-core (DCVs) vesicles are trafficked in a polarized manner from the cell body to their sites of release; however, the molecules involved in this process are not well defined. Here we show that the scaffolding protein SYD-2/Liprin-α is required for the normal polarized localization of Venus-tagged neuropeptides to axons of cholinergic motor neurons in C. elegans. In syd-2 loss of function mutants, the normal polarized localization of INS-22 neuropeptide-containing DCVs in motor neurons is disrupted, and DCVs accumulate in the cell body and dendrites. Time-lapse microscopy and kymograph analysis of mobile DCVs revealed that syd-2 mutants exhibit decreased numbers of DCVs moving in both anterograde and retrograde directions, and a corresponding increase in stationary DCVs in both axon commissures and dendrites. In addition, DCV run lengths and velocities were decreased in both axon commissures and dendrites of syd-2 mutants. This study shows that SYD-2 promotes bi-directional mobility of DCVs and identifies SYD-2 as a novel regulator of DCV trafficking and polarized distribution.
Collapse
Affiliation(s)
- Patricia R. Goodwin
- Department of Molecular Physiology and Pharmacology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Peter Juo
- Department of Molecular Physiology and Pharmacology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
61
|
Cooperation of Syd-1 with Neurexin synchronizes pre- with postsynaptic assembly. Nat Neurosci 2012; 15:1219-26. [PMID: 22864612 DOI: 10.1038/nn.3183] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 07/02/2012] [Indexed: 12/19/2022]
Abstract
Synapse formation and maturation requires bidirectional communication across the synaptic cleft. The trans-synaptic Neurexin-Neuroligin complex can bridge this cleft, and severe synapse assembly deficits are found in Drosophila melanogaster neuroligin (Nlg1, dnlg1) and neurexin (Nrx-1, dnrx) mutants. We show that the presynaptic active zone protein Syd-1 interacts with Nrx-1 to control synapse formation at the Drosophila neuromuscular junction. Mutants in Syd-1 (RhoGAP100F, dsyd-1), Nrx-1 and Nlg1 shared active zone cytomatrix defects, which were nonadditive. Syd-1 and Nrx-1 formed a complex in vivo, and Syd-1 was important for synaptic clustering and immobilization of Nrx-1. Consequently, postsynaptic clustering of Nlg1 was affected in Syd-1 mutants, and in vivo glutamate receptor incorporation was changed in Syd-1, Nrx-1 and Nlg1 mutants. Stabilization of nascent Syd-1-Liprin-α (DLiprin-α) clusters, important to initialize active zone formation, was Nlg1 dependent. Thus, cooperation between Syd-1 and Nrx-1-Nlg1 seems to orchestrate early assembly processes between pre- and postsynaptic membranes, promoting avidity of newly forming synaptic scaffolds.
Collapse
|
62
|
Andlauer TFM, Sigrist SJ. In vivo imaging of Drosophila larval neuromuscular junctions to study synapse assembly. Cold Spring Harb Protoc 2012; 2012:407-13. [PMID: 22474662 DOI: 10.1101/pdb.top068577] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the past decade, a significant number of proteins involved in the developmental assembly and maturation of synapses have been identified. However, detailed knowledge of the molecular processes underlying developmental synapse assembly is still sparse. Here, we discuss an approach that makes extended in vivo imaging of selected proteins in live Drosophila larvae feasible at a single-synapse resolution. The intact larvae are anesthetized and neuromuscular junctions (NMJs) are noninvasively imaged with confocal microscopy. This method allows for both protein trafficking and protein turnover kinetics to be studied at various points in time during the development of an animal. These data contribute to our understanding of synaptic assembly under in vivo conditions.
Collapse
|
63
|
Ghannad-Rezaie M, Wang X, Mishra B, Collins C, Chronis N. Microfluidic chips for in vivo imaging of cellular responses to neural injury in Drosophila larvae. PLoS One 2012; 7:e29869. [PMID: 22291895 PMCID: PMC3264548 DOI: 10.1371/journal.pone.0029869] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Accepted: 12/05/2011] [Indexed: 12/17/2022] Open
Abstract
With powerful genetics and a translucent cuticle, the Drosophila larva is an ideal model system for live imaging studies of neuronal cell biology and function. Here, we present an easy-to-use approach for high resolution live imaging in Drosophila using microfluidic chips. Two different designs allow for non-invasive and chemical-free immobilization of 3rd instar larvae over short (up to 1 hour) and long (up to 10 hours) time periods. We utilized these ‘larva chips’ to characterize several sub-cellular responses to axotomy which occur over a range of time scales in intact, unanaesthetized animals. These include waves of calcium which are induced within seconds of axotomy, and the intracellular transport of vesicles whose rate and flux within axons changes dramatically within 3 hours of axotomy. Axonal transport halts throughout the entire distal stump, but increases in the proximal stump. These responses precede the degeneration of the distal stump and regenerative sprouting of the proximal stump, which is initiated after a 7 hour period of dormancy and is associated with a dramatic increase in F-actin dynamics. In addition to allowing for the study of axonal regeneration in vivo, the larva chips can be utilized for a wide variety of in vivo imaging applications in Drosophila.
Collapse
Affiliation(s)
- Mostafa Ghannad-Rezaie
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Xing Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Bibhudatta Mishra
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Catherine Collins
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (NC); (CC)
| | - Nikos Chronis
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (NC); (CC)
| |
Collapse
|
64
|
van den Berg R, Hoogenraad CC. Molecular motors in cargo trafficking and synapse assembly. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:173-96. [PMID: 22351056 DOI: 10.1007/978-3-7091-0932-8_8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Every production process, be it cellular or industrial, depends on a constant supply of energy and resources. Synapses, specialized junctions in the central nervous system through which neurons signal to each other, are no exception to this rule. In order to form new synapses and alter the strength of synaptic transmission, neurons need a regulatory mechanism to deliver and remove synaptic proteins at synaptic sites. Neurons make use of active transport driven by molecular motor proteins to move synaptic cargo over either microtubules (kinesin, dynein) or actin filaments (myosin) to their specific site of action. These mechanisms are crucial for the initial establishment of synaptic specializations during synaptogenesis and for activity-dependent changes in synaptic strength during plasticity. In this chapter, we address the organization of the neuronal cytoskeleton, focus on synaptic cargo transport activities that operate in axons and dendrites, and discuss the spatial and temporal regulation of motor protein-based transport.
Collapse
Affiliation(s)
- Robert van den Berg
- Cell Biology, Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands
| | | |
Collapse
|
65
|
Abstract
Gene products such as organelles, proteins and RNAs are actively transported to synaptic terminals for the remodeling of pre-existing neuronal connections and formation of new ones. Proteins described as molecular motors mediate this transport and utilize specialized cytoskeletal proteins that function as molecular tracks for the motor based transport of cargos. Molecular motors such as kinesins and dynein's move along microtubule tracks formed by tubulins whereas myosin motors utilize tracks formed by actin. Deficits in active transport of gene products have been implicated in a number of neurological disorders. We describe such disorders collectively as "transportopathies". Here we review current knowledge of critical components of active transport and their relevance to neurodegenerative diseases.
Collapse
|
66
|
Mathema VB, Koh YS. Inhibitor of growth-4 mediates chromatin modification and has a suppressive effect on tumorigenesis and innate immunity. Tumour Biol 2011; 33:1-7. [PMID: 21971889 DOI: 10.1007/s13277-011-0249-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 09/23/2011] [Indexed: 10/17/2022] Open
Abstract
Inhibitor of growth-4 (ING4) is a member of the ING family and acts as a tumor suppressor protein. ING4 is a promising candidate for cancer research due to its anti-angiogenic function and its role in the inhibition of cell migration, cell cycle, and induction of apoptosis. Interaction of this protein with the histone acetyl transferase complex plays a vital role in the regulation of multiple nuclear factor kappa light chain enhancer of activated B cells response elements and thus in the regulation of innate immunity. Splice variants of ING4 have different binding affinities to target sites, which results in the enhancement of its functional diversity. ING4 is among the few known regulatory proteins that can directly interact with chromatin as well as with transcription factors. The influence of ING4 on tumor necrosis factor-α, keratinocyte chemoattractant, interleukin (IL)-6, IL-8, matrix metalloproteinases, cyclooxygenase-2, and IκBα expression clearly demonstrates its critical role in the regulation of inflammatory mediators. Its interaction with liprin α1 and p53 contribute to mitigate cell spreading and induce apoptosis of cancer cells. Multiple factors including breast cancer melanoma suppressor-1 are upstream regulators of ING4 and are frequently deactivated in tumor cells. In the present review, the different properties of ING4 are discussed, and its activities are correlated with different aspects of cell physiology. Special emphasis is placed on our current understanding of ING4 with respect to its influence on chromatin modification, tumorigenesis, and innate immunity.
Collapse
Affiliation(s)
- Vivek Bhakta Mathema
- Department of Microbiology and Immunology, School of Medicine, Jeju National University, 102 Jejudaehakno, Jeju 690-756, South Korea
| | | |
Collapse
|
67
|
Abstract
Neuronal polarity sets the foundation for information processing and signal transmission within neural networks. However, fundamental question of how a neuron develops and maintains structurally and functionally distinct processes, axons and dendrites, is still an unclear. The simplicity and availability of practical genetic tools makes C. elegans as an ideal model to study neuronal polarity in vivo. In recent years, new studies have identified critical polarity molecules that function at different stages of neuronal polarization in C. elegans. This review focuses on how neurons guided by extrinsic cues, break symmetry, and subsequently recruit intracellular molecules to establish and maintain axon-dendrite polarity in vivo.
Collapse
Affiliation(s)
- Chan-Yen Ou
- Department of Biology, Howard Hughes Medical Institute, Stanford University, 385 Serra Mall, CA 94305, USA
| | | |
Collapse
|
68
|
Kemp MQ, Poort JL, Baqri RM, Lieberman AP, Breedlove SM, Miller KE, Jordan CL. Impaired motoneuronal retrograde transport in two models of SBMA implicates two sites of androgen action. Hum Mol Genet 2011; 20:4475-90. [PMID: 21873607 DOI: 10.1093/hmg/ddr380] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) impairs motor function in men and is linked to a CAG repeat mutation in the androgen receptor (AR) gene. Defects in motoneuronal retrograde axonal transport may critically mediate motor dysfunction in SBMA, but the site(s) where AR disrupts transport is unknown. We find deficits in retrograde labeling of spinal motoneurons in both a knock-in (KI) and a myogenic transgenic (TG) mouse model of SBMA. Likewise, live imaging of endosomal trafficking in sciatic nerve axons reveals disease-induced deficits in the flux and run length of retrogradely transported endosomes in both KI and TG males, demonstrating that disease triggered in muscle can impair retrograde transport of cargo in motoneuron axons, possibly via defective retrograde signaling. Supporting the idea of impaired retrograde signaling, we find that vascular endothelial growth factor treatment of diseased muscles reverses the transport/trafficking deficit. Transport velocity is also affected in KI males, suggesting a neurogenic component. These results demonstrate that androgens could act via both cell autonomous and non-cell autonomous mechanisms to disrupt axonal transport in motoneurons affected by SBMA.
Collapse
Affiliation(s)
- Michael Q Kemp
- Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824, USA
| | | | | | | | | | | | | |
Collapse
|
69
|
Schuster M, Kilaru S, Fink G, Collemare J, Roger Y, Steinberg G. Kinesin-3 and dynein cooperate in long-range retrograde endosome motility along a nonuniform microtubule array. Mol Biol Cell 2011; 22:3645-57. [PMID: 21832152 PMCID: PMC3183019 DOI: 10.1091/mbc.e11-03-0217] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The polarity of microtubules (MTs) determines the motors for intracellular motility, with kinesins moving to plus ends and dynein to minus ends. In elongated cells of Ustilago maydis, dynein is thought to move early endosomes (EEs) toward the septum (retrograde), whereas kinesin-3 transports them to the growing cell tip (anterograde). Occasionally, EEs run up to 90 μm in one direction. The underlying MT array consists of unipolar MTs at both cell ends and antipolar bundles in the middle region of the cell. Cytoplasmic MT-organizing centers, labeled with a γ-tubulin ring complex protein, are distributed along the antipolar MTs but are absent from the unipolar regions. Dynein colocalizes with EEs for 10-20 μm after they have left the cell tip. Inactivation of temperature-sensitive dynein abolishes EE motility within the unipolar MT array, whereas long-range motility is not impaired. In contrast, kinesin-3 is continuously present, and its inactivation stops long-range EE motility. This indicates that both motors participate in EE motility, with dynein transporting the organelles through the unipolar MT array near the cell ends, and kinesin-3 taking over at the beginning of the medial antipolar MT array. The cooperation of both motors mediates EE movements over the length of the entire cell.
Collapse
Affiliation(s)
- Martin Schuster
- Department of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | | | | | | | | | | |
Collapse
|
70
|
Zürner M, Mittelstaedt T, tom Dieck S, Becker A, Schoch S. Analyses of the spatiotemporal expression and subcellular localization of liprin-α proteins. J Comp Neurol 2011; 519:3019-39. [DOI: 10.1002/cne.22664] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
71
|
Spangler SA, Jaarsma D, De Graaff E, Wulf PS, Akhmanova A, Hoogenraad CC. Differential expression of liprin-α family proteins in the brain suggests functional diversification. J Comp Neurol 2011; 519:3040-60. [DOI: 10.1002/cne.22665] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
72
|
Kiok K, Sun H, Clancy H, Bose S, Kluz T, Wu F, Costa M. Liprin-α4 is required for nickel induced receptor protein tyrosine phosphatase-leukocyte antigen related receptor F (RPTP-LAR) activity. PLoS One 2011; 6:e22764. [PMID: 21829649 PMCID: PMC3150438 DOI: 10.1371/journal.pone.0022764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 06/29/2011] [Indexed: 01/04/2023] Open
Abstract
Liprin-α4 was strongly induced following nickel (II) chloride exposure in a variety of cell types including BEAS-2B, A549, BEP2D and BL41 cells. Liprin-α4, a member of the Liprin alpha family, has seven isoforms but only three of these variants were detected in BEAS-2B cells (004, 201 and 202). The level of Liprin-α4 variants 201 and 004 were highly increased in BEAS-2B cells in response to nickel. We showed that Liprin-α4 bound directly to the cytoplasmic region of RPTP-LAR (receptor protein tyrosine phosphatase-leukocyte antigen-related receptor F). The cytoplasmic region of RPTP-LAR contains two phosphatase domains but only the first domain shows activity. The second domain interacts with other proteins. The phosphatase activity was increased both following nickel treatment and also in the presence of nickel ions in cell extracts. Liprin-α4 knock-down lines with decreased expression of Liprin-α4 variants 004 and 201 exhibited greater nickel toxicity compared to controls. The RPTP-LAR phosphatase activity was only slightly increased in a Liprin-α4 knock-down line. Liprin-α4 appeared necessary for the nickel induced tyrosine phosphatase activity. The presence of Liprin-α4 and nickel increased tyrosine phosphatase activity that reduced the global levels of tyrosine phosphorylation in the cell.
Collapse
Affiliation(s)
- Kathrin Kiok
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
| | - Hong Sun
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
| | - Hailey Clancy
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
| | - Sutapa Bose
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
| | - Thomas Kluz
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
| | - Fen Wu
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
- * E-mail:
| |
Collapse
|
73
|
Abstract
The synaptic active zone, the site where Ca(2+)-triggered fusion of synaptic vesicles takes place, is commonly associated with protein-rich, electron-dense cytomatrices. The molecular composition and functional role of active zones, especially in the context of vesicular exo- and endocytosis, are under intense investigation. Per se, Drosophila synapses, which display so-called T-bars as electron-dense specializations, should be a highly suitable model system, as they allow for a combination of efficient genetics with ultrastructural and electrophysiological analyses. However, it needed a biochemical approach of the Buchner laboratory to "molecularly" access the T-bar by identification of the CAST/ERC-family member Bruchpilot as the first T-bar-residing protein. Genetic elimination of Bruchpilot revealed that the protein is essential for T-bar formation, calcium channel clustering, and hence proper vesicle fusion and patterned synaptic plasticity. Recently, Bruchpilot was shown to directly shape the T-bar, likely by adopting an elongated conformation. Moreover, first mechanisms that control the availability of Bruchpilot for T-bar assembly were described. This review seeks to summarize the information on T-bar structure, as well as on functional aspects, formulating the hypothesis that T-bars are genuine "plasticity modules."
Collapse
Affiliation(s)
- Carolin Wichmann
- NeuroCure Cluster of Excellence, Charité Berlin, Berlin, Germany
| | | |
Collapse
|
74
|
The cytoplasmic adaptor protein Caskin mediates Lar signal transduction during Drosophila motor axon guidance. J Neurosci 2011; 31:4421-33. [PMID: 21430143 DOI: 10.1523/jneurosci.5230-10.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The multiprotein complexes that receive and transmit axon pathfinding cues during development are essential to circuit generation. Here, we identify and characterize the Drosophila sterile α-motif (SAM) domain-containing protein Caskin, which shares homology with vertebrate Caskin, a CASK [calcium/calmodulin-(CaM)-activated serine-threonine kinase]-interacting protein. Drosophila caskin (ckn) is necessary for embryonic motor axon pathfinding and interacts genetically and physically with the leukocyte common antigen-related (Lar) receptor protein tyrosine phosphatase. In vivo and in vitro analyses of a panel of ckn loss-of-function alleles indicate that the N-terminal SAM domain of Ckn mediates its interaction with Lar. Like Caskin, Liprin-α is a neuronal adaptor protein that interacts with Lar via a SAM domain-mediated interaction. We present evidence that Lar does not bind Caskin and Liprin-α concurrently, suggesting they may assemble functionally distinct signaling complexes on Lar. Furthermore, a vertebrate Caskin homolog interacts with LAR family members, arguing that the role of ckn in Lar signal transduction is evolutionarily conserved. Last, we characterize several ckn mutants that retain Lar binding yet display guidance defects, implying the existence of additional Ckn binding partners. Indeed, we identify the SH2/SH3 adaptor protein Dock as a second Caskin-binding protein and find that Caskin binds Lar and Dock through distinct domains. Furthermore, whereas ckn has a nonredundant function in Lar-dependent signaling during motor axon targeting, ckn and dock have overlapping roles in axon outgrowth in the CNS. Together, these studies identify caskin as a neuronal adaptor protein required for axon growth and guidance.
Collapse
|
75
|
Liu Z, Huang Y, Zhang Y, Chen D, Zhang YQ. Drosophila Acyl-CoA synthetase long-chain family member 4 regulates axonal transport of synaptic vesicles and is required for synaptic development and transmission. J Neurosci 2011; 31:2052-63. [PMID: 21307243 PMCID: PMC6633061 DOI: 10.1523/jneurosci.3278-10.2011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 11/22/2010] [Accepted: 12/02/2010] [Indexed: 11/21/2022] Open
Abstract
Acyl-CoA synthetase long-chain family member 4 (ACSL4) converts long-chain fatty acids to acyl-CoAs that are indispensable for lipid metabolism and cell signaling. Mutations in ACSL4 cause nonsyndromic X-linked mental retardation. We previously demonstrated that Drosophila dAcsl is functionally homologous to human ACSL4, and is required for axonal targeting in the brain. Here, we report that Drosophila dAcsl mutants exhibited distally biased axonal aggregates that were immunopositive for the synaptic-vesicle proteins synaptotagmin (Syt) and cysteine-string protein, the late endosome/lysosome marker lysosome-associated membrane protein 1, the autophagosomal marker Atg8, and the multivesicular body marker Hrs (hepatocyte growth factor-regulated tyrosine kinase substrate). In contrast, the axonal distribution of mitochondria and the cell adhesion molecule Fas II (fasciclin II) was normal. Electron microscopy revealed accumulation of prelysomes and multivesicle bodies. These aggregates appear as retrograde instead of anterograde cargos. Live imaging analysis revealed that dAcsl mutations increased the velocity of anterograde transport but reduced the flux, velocity, and processivity of retrograde transport of Syt-enhanced green fluorescent protein-labeled vesicles. Immunohistochemical and electrophysiological analyses showed significantly reduced growth and stability of neuromuscular synapses, and impaired glutamatergic neurotransmission in dAcsl mutants. The axonal aggregates and synaptic defects in dAcsl mutants were fully rescued by neuronal expression of human ACSL4, supporting a functional conservation of ACSL4 across species in the nervous system. Together, our findings demonstrate that dAcsl regulates axonal transport of synaptic vesicles and is required for synaptic development and function. Defects in axonal transport and synaptic function may account, at least in part, for the pathogenesis of ACSL4-related mental retardation.
Collapse
Affiliation(s)
- Zhihua Liu
- Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Huang
- Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Zhang
- Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Di Chen
- Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Q. Zhang
- Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
76
|
Astigarraga S, Hofmeyer K, Farajian R, Treisman JE. Three Drosophila liprins interact to control synapse formation. J Neurosci 2010; 30:15358-68. [PMID: 21084592 PMCID: PMC2999520 DOI: 10.1523/jneurosci.1862-10.2010] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 08/26/2010] [Accepted: 09/17/2010] [Indexed: 11/21/2022] Open
Abstract
Liprin-α proteins are adaptors that interact with the receptor protein tyrosine phosphatase leukocyte common antigen-related (LAR) and other synaptic proteins to promote synaptic partner selection and active zone assembly. Liprin-β proteins bind to and share homology with Liprin-α proteins, but their functions at the synapse are unknown. The Drosophila genome encodes single Liprin-α and Liprin-β homologs, as well as a third related protein that we named Liprin-γ. We show that both Liprin-β and Liprin-γ physically interact with Liprin-α and that Liprin-γ also binds to LAR. Liprin-α mutations have been shown to disrupt synaptic target layer selection by R7 photoreceptors and to reduce the size of larval neuromuscular synapses. We have generated null mutations in Liprin-β and Liprin-γ to investigate their role in these processes. We find that, although Liprin-α mutant R7 axons terminate before reaching the correct target layer, Liprin-β mutant R7 axons grow beyond their target layer. Larval neuromuscular junction size is reduced in both Liprin-α and Liprin-β mutants, and further reduced in double mutants, suggesting independent functions for these Liprins. Genetic interactions demonstrate that both Liprin proteins act through the exchange factor Trio to promote stable target selection by R7 photoreceptor axons and growth of neuromuscular synapses. Photoreceptor and neuromuscular synapses develop normally in Liprin-γ mutants; however, removing Liprin-γ improves R7 targeting in Liprin-α mutants, and restores normal neuromuscular junction size to Liprin-β mutants, suggesting that Liprin-γ counteracts the functions of the other two Liprins. We propose that context-dependent interactions between the three Liprins modulate their functions in synapse formation.
Collapse
Affiliation(s)
- Sergio Astigarraga
- Kimmel Center for Biology and Medicine of the Skirball Institute and Department of Cell Biology, New York University School of Medicine, New York, New York 10016
| | - Kerstin Hofmeyer
- Kimmel Center for Biology and Medicine of the Skirball Institute and Department of Cell Biology, New York University School of Medicine, New York, New York 10016
| | - Reza Farajian
- Kimmel Center for Biology and Medicine of the Skirball Institute and Department of Cell Biology, New York University School of Medicine, New York, New York 10016
| | - Jessica E. Treisman
- Kimmel Center for Biology and Medicine of the Skirball Institute and Department of Cell Biology, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
77
|
Xiong X, Wang X, Ewanek R, Bhat P, DiAntonio A, Collins CA. Protein turnover of the Wallenda/DLK kinase regulates a retrograde response to axonal injury. J Cell Biol 2010; 191:211-23. [PMID: 20921142 PMCID: PMC2953441 DOI: 10.1083/jcb.201006039] [Citation(s) in RCA: 221] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 09/07/2010] [Indexed: 12/14/2022] Open
Abstract
Regenerative responses to axonal injury involve changes in gene expression; however, little is known about how such changes can be induced from a distant site of injury. In this study, we describe a nerve crush assay in Drosophila melanogaster to study injury signaling and regeneration mechanisms. We find that Wallenda (Wnd), a conserved mitogen-activated protein kinase (MAPK) kinase kinase homologous to dual leucine zipper kinase, functions as an upstream mediator of a cell-autonomous injury signaling cascade that involves the c-Jun NH(2)-terminal kinase MAPK and Fos transcription factor. Wnd is physically transported in axons, and axonal transport is required for the injury signaling mechanism. Wnd is regulated by a conserved E3 ubiquitin ligase, named Highwire (Hiw) in Drosophila. Injury induces a rapid increase in Wnd protein concomitantly with a decrease in Hiw protein. In hiw mutants, injury signaling is constitutively active, and neurons initiate a faster regenerative response. Our data suggest that the regulation of Wnd protein turnover by Hiw can function as a damage surveillance mechanism for responding to axonal injury.
Collapse
Affiliation(s)
- Xin Xiong
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Xin Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Ronny Ewanek
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Pavan Bhat
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - Catherine A. Collins
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
78
|
Giagtzoglou N, Ly CV, Bellen HJ. Cell adhesion, the backbone of the synapse: "vertebrate" and "invertebrate" perspectives. Cold Spring Harb Perspect Biol 2010; 1:a003079. [PMID: 20066100 DOI: 10.1101/cshperspect.a003079] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Synapses are asymmetric intercellular junctions that mediate neuronal communication. The number, type, and connectivity patterns of synapses determine the formation, maintenance, and function of neural circuitries. The complexity and specificity of synaptogenesis relies upon modulation of adhesive properties, which regulate contact initiation, synapse formation, maturation, and functional plasticity. Disruption of adhesion may result in structural and functional imbalance that may lead to neurodevelopmental diseases, such as autism, or neurodegeneration, such as Alzheimer's disease. Therefore, understanding the roles of different adhesion protein families in synapse formation is crucial for unraveling the biology of neuronal circuit formation, as well as the pathogenesis of some brain disorders. The present review summarizes some of the knowledge that has been acquired in vertebrate and invertebrate genetic model organisms.
Collapse
Affiliation(s)
- Nikolaos Giagtzoglou
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
79
|
Klassen MP, Wu YE, Maeder CI, Nakae I, Cueva JG, Lehrman EK, Tada M, Gengyo-Ando K, Wang GJ, Goodman M, Mitani S, Kontani K, Katada T, Shen K. An Arf-like small G protein, ARL-8, promotes the axonal transport of presynaptic cargoes by suppressing vesicle aggregation. Neuron 2010; 66:710-23. [PMID: 20547129 PMCID: PMC3168544 DOI: 10.1016/j.neuron.2010.04.033] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2010] [Indexed: 12/24/2022]
Abstract
Presynaptic assembly requires the packaging of requisite proteins into vesicular cargoes in the cell soma, their long-distance microtubule-dependent transport down the axon, and, finally, their reconstitution into functional complexes at prespecified sites. Despite the identification of several molecules that contribute to these events, the regulatory mechanisms defining such discrete states remain elusive. We report the characterization of an Arf-like small G protein, ARL-8, required during this process. arl-8 mutants prematurely accumulate presynaptic cargoes within the proximal axon of several neuronal classes, with a corresponding failure to assemble presynapses distally. This proximal accumulation requires the activity of several molecules known to catalyze presynaptic assembly. Dynamic imaging studies reveal that arl-8 mutant vesicles exhibit an increased tendency to form immotile aggregates during transport. Together, these results suggest that arl-8 promotes a trafficking identity for presynaptic cargoes, facilitating their efficient transport by repressing premature self-association.
Collapse
Affiliation(s)
- Matthew P. Klassen
- Howard Hughes Medical Institute, Department of Biology, Stanford University, 385 Serra Mall, Stanford, California 94305, USA
- Neurosciences Program, Stanford University School of Medicine, 385 Serra Mall, Stanford, California 94305, USA
| | - Ye E. Wu
- Howard Hughes Medical Institute, Department of Biology, Stanford University, 385 Serra Mall, Stanford, California 94305, USA
| | - Celine I. Maeder
- Howard Hughes Medical Institute, Department of Biology, Stanford University, 385 Serra Mall, Stanford, California 94305, USA
| | - Isei Nakae
- Department of Physiological Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Juan G. Cueva
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305
| | - Emily K. Lehrman
- Howard Hughes Medical Institute, Department of Biology, Stanford University, 385 Serra Mall, Stanford, California 94305, USA
| | - Minoru Tada
- Department of Physiological Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keiko Gengyo-Ando
- Department of Physiology, Tokyo Women's Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo
| | - George J. Wang
- Howard Hughes Medical Institute, Department of Biology, Stanford University, 385 Serra Mall, Stanford, California 94305, USA
| | - Miriam Goodman
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo
| | - Kenji Kontani
- Department of Physiological Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshiaki Katada
- Department of Physiological Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kang Shen
- Howard Hughes Medical Institute, Department of Biology, Stanford University, 385 Serra Mall, Stanford, California 94305, USA
| |
Collapse
|
80
|
Owald D, Fouquet W, Schmidt M, Wichmann C, Mertel S, Depner H, Christiansen F, Zube C, Quentin C, Körner J, Urlaub H, Mechtler K, Sigrist SJ. A Syd-1 homologue regulates pre- and postsynaptic maturation in Drosophila. ACTA ACUST UNITED AC 2010; 188:565-79. [PMID: 20176924 PMCID: PMC2828917 DOI: 10.1083/jcb.200908055] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A proteomics approach identifies Drosophila Syd-1 as a Bruchpilot binding partner that controls maturation on both sides of the neuromuscular junction. Active zones (AZs) are presynaptic membrane domains mediating synaptic vesicle fusion opposite postsynaptic densities (PSDs). At the Drosophila neuromuscular junction, the ELKS family member Bruchpilot (BRP) is essential for dense body formation and functional maturation of AZs. Using a proteomics approach, we identified Drosophila Syd-1 (DSyd-1) as a BRP binding partner. In vivo imaging shows that DSyd-1 arrives early at nascent AZs together with DLiprin-α, and both proteins localize to the AZ edge as the AZ matures. Mutants in dsyd-1 form smaller terminals with fewer release sites, and release less neurotransmitter. The remaining AZs are often large and misshapen, and ectopic, electron-dense accumulations of BRP form in boutons and axons. Furthermore, glutamate receptor content at PSDs increases because of excessive DGluRIIA accumulation. The AZ protein DSyd-1 is needed to properly localize DLiprin-α at AZs, and seems to control effective nucleation of newly forming AZs together with DLiprin-α. DSyd-1 also organizes trans-synaptic signaling to control maturation of PSD composition independently of DLiprin-α.
Collapse
Affiliation(s)
- David Owald
- Department of Genetics, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Prakash S, Maclendon H, Dubreuil CI, Ghose A, Hwa J, Dennehy KA, Tomalty KM, Clark K, Van Vactor D, Clandinin TR. Complex interactions amongst N-cadherin, DLAR, and Liprin-alpha regulate Drosophila photoreceptor axon targeting. Dev Biol 2009; 336:10-9. [PMID: 19766621 PMCID: PMC2783772 DOI: 10.1016/j.ydbio.2009.09.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 09/08/2009] [Accepted: 09/11/2009] [Indexed: 12/18/2022]
Abstract
The formation of stable adhesive contacts between pre- and post-synaptic neurons represents the initial step in synapse assembly. The cell adhesion molecule N-cadherin, the receptor tyrosine phosphatase DLAR, and the scaffolding molecule Liprin-alpha play critical, evolutionarily conserved roles in this process. However, how these proteins signal to the growth cone and are themselves regulated remains poorly understood. Using Drosophila photoreceptors (R cells) as a model, we evaluate genetic and physical interactions among these three proteins. We demonstrate that DLAR function in this context is independent of phosphatase activity but requires interactions mediated by its intracellular domain. Genetic studies reveal both positive and, surprisingly, inhibitory interactions amongst all three genes. These observations are corroborated by biochemical studies demonstrating that DLAR physically associates via its phosphatase domain with N-cadherin in Drosophila embryos. Together, these data demonstrate that N-cadherin, DLAR, and Liprin-alpha function in a complex to regulate adhesive interactions between pre- and post-synaptic cells and provide a novel mechanism for controlling the activity of Liprin-alpha in the developing growth cone.
Collapse
Affiliation(s)
- Saurabh Prakash
- Department of Neurobiology, 299 W. Campus Drive, Stanford University, Stanford, CA, 94305
| | - Helen Maclendon
- Department of Neurobiology, 299 W. Campus Drive, Stanford University, Stanford, CA, 94305
| | - Catherine I. Dubreuil
- Department of Cell Biology & Program in Neuroscience, 45 Shattuck Street, Harvard Medical School, Boston, MA, 02115
| | - Aurnab Ghose
- Department of Cell Biology & Program in Neuroscience, 45 Shattuck Street, Harvard Medical School, Boston, MA, 02115
| | - Jennifer Hwa
- Department of Neurobiology, 299 W. Campus Drive, Stanford University, Stanford, CA, 94305
| | - Kelly A. Dennehy
- Department of Cell Biology & Program in Neuroscience, 45 Shattuck Street, Harvard Medical School, Boston, MA, 02115
| | - Katharine M.H. Tomalty
- Department of Neurobiology, 299 W. Campus Drive, Stanford University, Stanford, CA, 94305
| | - Kelsey Clark
- Department of Neurobiology, 299 W. Campus Drive, Stanford University, Stanford, CA, 94305
| | - David Van Vactor
- Department of Cell Biology & Program in Neuroscience, 45 Shattuck Street, Harvard Medical School, Boston, MA, 02115
| | - Thomas R. Clandinin
- Department of Neurobiology, 299 W. Campus Drive, Stanford University, Stanford, CA, 94305
| |
Collapse
|
82
|
Liprin (beta)1 is highly expressed in lymphatic vasculature and is important for lymphatic vessel integrity. Blood 2009; 115:906-9. [PMID: 19965622 DOI: 10.1182/blood-2009-03-212274] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lymphatic vasculature is important for the regulation of tissue fluid homeostasis, immune response, and lipid absorption, and the development of in vitro models should allow for a better understanding of the mechanisms regulating lymphatic vascular growth, repair, and function. Here we report isolation and characterization of lymphatic endothelial cells from human intestine and show that intestinal lymphatic endothelial cells have a related but distinct gene expression profile from human dermal lymphatic endothelial cells. Furthermore, we identify liprin beta1, a member of the family of LAR transmembrane tyrosine phosphatase-interacting proteins, as highly expressed in intestinal lymphatic endothelial cells in vitro and lymphatic vasculature in vivo, and show that it plays an important role in the maintenance of lymphatic vessel integrity in Xenopus tadpoles.
Collapse
|
83
|
Baqri RM, Turner BA, Rheuben MB, Hammond BD, Kaguni LS, Miller KE. Disruption of mitochondrial DNA replication in Drosophila increases mitochondrial fast axonal transport in vivo. PLoS One 2009; 4:e7874. [PMID: 19924234 PMCID: PMC2773408 DOI: 10.1371/journal.pone.0007874] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 10/16/2009] [Indexed: 01/16/2023] Open
Abstract
Mutations in mitochondrial DNA polymerase (pol γ) cause several progressive human diseases including Parkinson's disease, Alper's syndrome, and progressive external ophthalmoplegia. At the cellular level, disruption of pol γ leads to depletion of mtDNA, disrupts the mitochondrial respiratory chain, and increases susceptibility to oxidative stress. Although recent studies have intensified focus on the role of mtDNA in neuronal diseases, the changes that take place in mitochondrial biogenesis and mitochondrial axonal transport when mtDNA replication is disrupted are unknown. Using high-speed confocal microscopy, electron microscopy and biochemical approaches, we report that mutations in pol γ deplete mtDNA levels and lead to an increase in mitochondrial density in Drosophila proximal nerves and muscles, without a noticeable increase in mitochondrial fragmentation. Furthermore, there is a rise in flux of bidirectional mitochondrial axonal transport, albeit with slower kinesin-based anterograde transport. In contrast, flux of synaptic vesicle precursors was modestly decreased in pol γ−α mutants. Our data indicate that disruption of mtDNA replication does not hinder mitochondrial biogenesis, increases mitochondrial axonal transport, and raises the question of whether high levels of circulating mtDNA-deficient mitochondria are beneficial or deleterious in mtDNA diseases.
Collapse
Affiliation(s)
- Rehan M. Baqri
- Department of Zoology, Michigan State University, East Lansing, Michigan, United States of America
- Neuroscience Program, Michigan State University, East Lansing, Michigan, United States of America
- Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Brittany A. Turner
- Department of Zoology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Mary B. Rheuben
- Neuroscience Program, Michigan State University, East Lansing, Michigan, United States of America
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, United States of America
| | - Bradley D. Hammond
- Department of Zoology, Michigan State University, East Lansing, Michigan, United States of America
- Neuroscience Program, Michigan State University, East Lansing, Michigan, United States of America
- Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Laurie S. Kaguni
- Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan, United States of America
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Kyle E. Miller
- Department of Zoology, Michigan State University, East Lansing, Michigan, United States of America
- Neuroscience Program, Michigan State University, East Lansing, Michigan, United States of America
- Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
84
|
Synaptic scaffolding protein SYD-2 clusters and activates kinesin-3 UNC-104 in C. elegans. Proc Natl Acad Sci U S A 2009; 106:19605-10. [PMID: 19880746 DOI: 10.1073/pnas.0902949106] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kinesin-3 motor UNC-104/KIF1A is essential for transporting synaptic precursors to synapses. Although the mechanism of cargo binding is well understood, little is known how motor activity is regulated. We mapped functional interaction domains between SYD-2 and UNC-104 by using yeast 2-hybrid and pull-down assays and by using FRET/fluorescence lifetime imaging microscopy to image the binding of SYD-2 to UNC-104 in living Caenorhabditis elegans. We found that UNC-104 forms SYD-2-dependent axonal clusters (appearing during the transition from L2 to L3 larval stages), which behave in FRAP experiments as dynamic aggregates. High-resolution microscopy reveals that these clusters contain UNC-104 and synaptic precursors (synaptobrevin-1). Analysis of motor motility indicates bi-directional movement of UNC-104, whereas in syd-2 mutants, loss of SYD-2 binding reduces net anterograde movement and velocity (similar after deleting UNC-104's liprin-binding domain), switching to retrograde transport characteristics when no role of SYD-2 on dynein and conventional kinesin UNC-116 motility was found. These data present a kinesin scaffolding protein that controls both motor clustering along axons and motor motility, resulting in reduced cargo transport efficiency upon loss of interaction.
Collapse
|
85
|
Nieratschker V, Schubert A, Jauch M, Bock N, Bucher D, Dippacher S, Krohne G, Asan E, Buchner S, Buchner E. Bruchpilot in ribbon-like axonal agglomerates, behavioral defects, and early death in SRPK79D kinase mutants of Drosophila. PLoS Genet 2009; 5:e1000700. [PMID: 19851455 PMCID: PMC2759580 DOI: 10.1371/journal.pgen.1000700] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 09/23/2009] [Indexed: 12/18/2022] Open
Abstract
Defining the molecular structure and function of synapses is a central theme in brain research. In Drosophila the Bruchpilot (BRP) protein is associated with T-shaped ribbons ("T-bars") at presynaptic active zones (AZs). BRP is required for intact AZ structure and normal evoked neurotransmitter release. By screening for mutations that affect the tissue distribution of Bruchpilot, we have identified a P-transposon insertion in gene CG11489 (location 79D) which shows high homology to mammalian genes for SR protein kinases (SRPKs). SRPKs phosphorylate serine-arginine rich splicing factors (SR proteins). Since proteins expressed from CG11489 cDNAs phosphorylate a peptide from a human SR protein in vitro, we name CG11489 the Drosophila Srpk79D gene. We have characterized Srpk79D transcripts and generated a null mutant. Mutation of the Srpk79D gene causes conspicuous accumulations of BRP in larval and adult nerves. At the ultrastructural level, these correspond to extensive axonal agglomerates of electron-dense ribbons surrounded by clear vesicles. Basic synaptic structure and function at larval neuromuscular junctions appears normal, whereas life expectancy and locomotor behavior of adult mutants are significantly impaired. All phenotypes of the mutant can be largely or completely rescued by panneural expression of SRPK79D isoforms. Isoform-specific antibodies recognize panneurally overexpressed GFP-tagged SRPK79D-PC isoform co-localized with BRP at presynaptic active zones while the tagged -PB isoform is found in spots within neuronal perikarya. SRPK79D concentrations in wild type apparently are too low to be revealed by these antisera. We propose that the Drosophila Srpk79D gene characterized here may be expressed at low levels throughout the nervous system to prevent the assembly of BRP containing agglomerates in axons and maintain intact brain function. The discovery of an SR protein kinase required for normal BRP distribution calls for the identification of its substrate and the detailed analysis of SRPK function for the maintenance of nervous system integrity.
Collapse
Affiliation(s)
- Vanessa Nieratschker
- Department of Genetics and Neurobiology, Julius-Maximilians-University, Würzburg, Germany
| | - Alice Schubert
- Department of Genetics and Neurobiology, Julius-Maximilians-University, Würzburg, Germany
| | - Mandy Jauch
- Department of Genetics and Neurobiology, Julius-Maximilians-University, Würzburg, Germany
| | - Nicole Bock
- Department of Genetics and Neurobiology, Julius-Maximilians-University, Würzburg, Germany
| | - Daniel Bucher
- Department of Genetics and Neurobiology, Julius-Maximilians-University, Würzburg, Germany
| | - Sonja Dippacher
- Department of Genetics and Neurobiology, Julius-Maximilians-University, Würzburg, Germany
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University, Würzburg, Germany
| | - Georg Krohne
- Department of Electron Microscopy, Julius-Maximilians-University, Würzburg, Germany
| | - Esther Asan
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University, Würzburg, Germany
| | - Sigrid Buchner
- Department of Genetics and Neurobiology, Julius-Maximilians-University, Würzburg, Germany
| | - Erich Buchner
- Department of Genetics and Neurobiology, Julius-Maximilians-University, Würzburg, Germany
| |
Collapse
|
86
|
Johnson EL, Fetter RD, Davis GW. Negative regulation of active zone assembly by a newly identified SR protein kinase. PLoS Biol 2009; 7:e1000193. [PMID: 19771148 PMCID: PMC2737616 DOI: 10.1371/journal.pbio.1000193] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 07/31/2009] [Indexed: 11/19/2022] Open
Abstract
Presynaptic, electron-dense, cytoplasmic protrusions such as the T-bar (Drosophila) or ribbon (vertebrates) are believed to facilitate vesicle movement to the active zone (AZ) of synapses throughout the nervous system. The molecular composition of these structures including the T-bar and ribbon are largely unknown, as are the mechanisms that specify their synapse-specific assembly and distribution. In a large-scale, forward genetic screen, we have identified a mutation termed air traffic controller (atc) that causes T-bar-like protein aggregates to form abnormally in motoneuron axons. This mutation disrupts a gene that encodes for a serine-arginine protein kinase (SRPK79D). This mutant phenotype is specific to SRPK79D and is not secondary to impaired kinesin-dependent axonal transport. The srpk79D gene is neuronally expressed, and transgenic rescue experiments are consistent with SRPK79D kinase activity being necessary in neurons. The SRPK79D protein colocalizes with the T-bar-associated protein Bruchpilot (Brp) in both the axon and synapse. We propose that SRPK79D is a novel T-bar-associated protein kinase that represses T-bar assembly in peripheral axons, and that SRPK79D-dependent repression must be relieved to facilitate site-specific AZ assembly. Consistent with this model, overexpression of SRPK79D disrupts AZ-specific Brp organization and significantly impairs presynaptic neurotransmitter release. These data identify a novel AZ-associated protein kinase and reveal a new mechanism of negative regulation involved in AZ assembly. This mechanism could contribute to the speed and specificity with which AZs are assembled throughout the nervous system.
Collapse
Affiliation(s)
- Ervin L. Johnson
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Richard D. Fetter
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Graeme W. Davis
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
87
|
Schlager MA, Hoogenraad CC. Basic mechanisms for recognition and transport of synaptic cargos. Mol Brain 2009; 2:25. [PMID: 19653898 PMCID: PMC2732917 DOI: 10.1186/1756-6606-2-25] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 08/04/2009] [Indexed: 12/15/2022] Open
Abstract
Synaptic cargo trafficking is essential for synapse formation, function and plasticity. In order to transport synaptic cargo, such as synaptic vesicle precursors, mitochondria, neurotransmitter receptors and signaling proteins to their site of action, neurons make use of molecular motor proteins. These motors operate on the microtubule and actin cytoskeleton and are highly regulated so that different cargos can be transported to distinct synaptic specializations at both pre- and post-synaptic sites. How synaptic cargos achieve specificity, directionality and timing of transport is a developing area of investigation. Recent studies demonstrate that the docking of motors to their cargos is a key control point. Moreover, precise spatial and temporal regulation of motor-cargo interactions is important for transport specificity and cargo recruitment. Local signaling pathways - Ca2+ influx, CaMKII signaling and Rab GTPase activity - regulate motor activity and cargo release at synaptic locations. We discuss here how different motors recognize their synaptic cargo and how motor-cargo interactions are regulated by neuronal activity.
Collapse
Affiliation(s)
- Max A Schlager
- Department of Neuroscience, Erasmus Medical Center, 3015GE, Rotterdam, The Netherlands.
| | | |
Collapse
|
88
|
Fejtova A, Davydova D, Bischof F, Lazarevic V, Altrock WD, Romorini S, Schöne C, Zuschratter W, Kreutz MR, Garner CC, Ziv NE, Gundelfinger ED. Dynein light chain regulates axonal trafficking and synaptic levels of Bassoon. ACTA ACUST UNITED AC 2009; 185:341-55. [PMID: 19380881 PMCID: PMC2700376 DOI: 10.1083/jcb.200807155] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Bassoon and the related protein Piccolo are core components of the presynaptic cytomatrix at the active zone of neurotransmitter release. They are transported on Golgi-derived membranous organelles, called Piccolo-Bassoon transport vesicles (PTVs), from the neuronal soma to distal axonal locations, where they participate in assembling new synapses. Despite their net anterograde transport, PTVs move in both directions within the axon. How PTVs are linked to retrograde motors and the functional significance of their bidirectional transport are unclear. In this study, we report the direct interaction of Bassoon with dynein light chains (DLCs) DLC1 and DLC2, which potentially link PTVs to dynein and myosin V motor complexes. We demonstrate that Bassoon functions as a cargo adapter for retrograde transport and that disruption of the Bassoon-DLC interactions leads to impaired trafficking of Bassoon in neurons and affects the distribution of Bassoon and Piccolo among synapses. These findings reveal a novel function for Bassoon in trafficking and synaptic delivery of active zone material.
Collapse
Affiliation(s)
- Anna Fejtova
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, D-39118 Magdeburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Owald D, Sigrist SJ. Assembling the presynaptic active zone. Curr Opin Neurobiol 2009; 19:311-8. [PMID: 19395253 DOI: 10.1016/j.conb.2009.03.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2009] [Revised: 03/08/2009] [Accepted: 03/17/2009] [Indexed: 12/28/2022]
Abstract
Rapid neurotransmission depends on the structural and functional integrity of synaptic connections. How synapses assemble is currently being intensely investigated to help our understanding of neuronal development and synaptic plasticity. Here we focus on the assembly of the presynaptic active zone, which regulates the synaptic vesicle exo/endo-cycle and is characterized by ultrastructural specializations and large scaffold proteins. While genetic and biochemical studies from rodents, Caenorhabditis elegans and Drosophila have started to identify proteins organizing active zone assembly, drawing a coherent picture remains challenging, with genetically established hierarchies and protein-protein interactions still to be placed into spatio-temporal and functional context. Recent advances in light and electron microscopy, together with in vivo imaging of protein traffic, will help to tackle this challenge.
Collapse
Affiliation(s)
- David Owald
- NeuroCure Cluster of Excellence, Charité Berlin, Berlin, Germany.
| | | |
Collapse
|
90
|
Abstract
Proper synaptic function requires the seamless integration of the transport, assembly, and regulation of synaptic components and structures. Inasmuch as the synapse is often distant from the neuronal cell body, newly synthesized synaptic proteins, the precursors of synaptic vesicles, active zone compartments, channels and receptors, and mitochondria, must be transported along lengthy neuronal processes to participate in synaptogenesis. Neuronal transport is mediated by motor proteins that associate with their cargoes via adaptors (or receptors) and that travel along the cytoskeleton network within the neuronal processes. Thus, the identity of membranous protein cargoes and the specificity of motor-cargo interactions are critical for correctly targeting cargoes and properly assembling synapses in developing neurons and in remodeling synapses of mature neurons in response to neuronal activity. In this article, the authors review recent progress in characterizing microtubule- and actin-based motor proteins that are involved in delivering synaptic components and discuss potential mechanisms underlying the formation of motor-receptor-cargo complexes that contribute to synaptogenesis and activity-induced synaptic plasticity.
Collapse
Affiliation(s)
- Qian Cai
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
91
|
Abstract
Neuronal mitochondria need to be transported and distributed in axons and dendrites in order to ensure an adequate energy supply and provide sufficient Ca(2+) buffering in each portion of these highly extended cells. Errors in mitochondrial transport are implicated in neurodegenerative diseases. Here we present useful tools to analyze axonal transport of mitochondria both in vitro in cultured rat neurons and in vivo in Drosophila larval neurons. These methods enable investigators to take advantage of both systems to study the properties of mitochondrial motility under normal or pathological conditions.
Collapse
Affiliation(s)
- Xinnan Wang
- F. M. Kirby Neurobiology Center, Children's Hospital Boston, and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas L. Schwarz
- F. M. Kirby Neurobiology Center, Children's Hospital Boston, and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
92
|
Zürner M, Schoch S. The mouse and human Liprin-alpha family of scaffolding proteins: genomic organization, expression profiling and regulation by alternative splicing. Genomics 2008; 93:243-53. [PMID: 19013515 DOI: 10.1016/j.ygeno.2008.10.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 09/15/2008] [Accepted: 10/13/2008] [Indexed: 11/19/2022]
Abstract
In the nervous system the Liprin-alpha protein family plays an important role in the regulation of dendrite development, the targeting of photoreceptor axons, and the formation and structure of synapses. To gain a better understanding of Liprin-alpha regulation we have comparatively analyzed the genomic organization of the human and mouse Liprin-alpha genes, characterized the alternative exon use in human and mouse, and studied their expression in adult rodent tissues and brain regions. Our results show that Liprins-alpha1-4 share multiple properties in their genomic structure, exhibit an identical modular organization, and are highly conserved within certain structural domains, indicating strong evolutionary cohesion. We demonstrate that all Liprin-alpha genes are subject to alternative splicing, which is regulated in a developmental manner. Interestingly, regulation via alternative splicing is not conserved between isoforms and across species and represents a post-transcriptional mechanism to independently diversify the properties of the individual isoforms.
Collapse
Affiliation(s)
- Magdalena Zürner
- Department of Neuropathology, University of Bonn, Bonn, Germany.
| | | |
Collapse
|
93
|
Abstract
Information processing in the nervous system relies on properly localized and organized synaptic structures at the correct locations. The formation of synapses is a long and intricate process involving multiple interrelated steps. Decades of research have identified a large number of molecular components of the presynaptic compartment. In addition to neurotransmitter-containing synaptic vesicles, presynaptic terminals are defined by cytoskeletal and membrane specializations that allow highly regulated exo- and endocytosis of synaptic vesicles and that maintain precise registration with postsynaptic targets. Functional studies at multiple levels have revealed complex interactions between the transport of vesicular intermediates, the presynaptic cytoskeleton, growth cone navigation, and synaptic targets. With the advent of finer anatomical, physiological, and molecular tools, great insights have been gained toward the mechanistic dissection of functionally redundant processes controlling the specificity and dynamics of synapses. This review highlights the recent findings pertaining to the cellular and molecular regulation of presynaptic differentiation.
Collapse
Affiliation(s)
- Yishi Jin
- Division of Biological Sciences, Section of Neurobiology, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093, USA.
| | | |
Collapse
|
94
|
Ch'ng Q, Sieburth D, Kaplan JM. Profiling synaptic proteins identifies regulators of insulin secretion and lifespan. PLoS Genet 2008; 4:e1000283. [PMID: 19043554 PMCID: PMC2582949 DOI: 10.1371/journal.pgen.1000283] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 10/28/2008] [Indexed: 12/25/2022] Open
Abstract
Cells are organized into distinct compartments to perform specific tasks with spatial precision. In neurons, presynaptic specializations are biochemically complex subcellular structures dedicated to neurotransmitter secretion. Activity-dependent changes in the abundance of presynaptic proteins are thought to endow synapses with different functional states; however, relatively little is known about the rules that govern changes in the composition of presynaptic terminals. We describe a genetic strategy to systematically analyze protein localization at Caenorhabditis elegans presynaptic specializations. Nine presynaptic proteins were GFP-tagged, allowing visualization of multiple presynaptic structures. Changes in the distribution and abundance of these proteins were quantified in 25 mutants that alter different aspects of neurotransmission. Global analysis of these data identified novel relationships between particular presynaptic components and provides a new method to compare gene functions by identifying shared protein localization phenotypes. Using this strategy, we identified several genes that regulate secretion of insulin-like growth factors (IGFs) and influence lifespan in a manner dependent on insulin/IGF signaling.
Collapse
Affiliation(s)
- QueeLim Ch'ng
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Derek Sieburth
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Joshua M. Kaplan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| |
Collapse
|
95
|
Goldstein AYN, Wang X, Schwarz TL. Axonal transport and the delivery of pre-synaptic components. Curr Opin Neurobiol 2008; 18:495-503. [PMID: 18950710 PMCID: PMC2653082 DOI: 10.1016/j.conb.2008.10.003] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 09/30/2008] [Accepted: 10/05/2008] [Indexed: 12/30/2022]
Abstract
The mechanisms for delivering components to nerve terminals are diverse and highly regulated. The diversity of kinesin motors alone is insufficient to account for the specificity of delivery. Additional specificity and control are contributed by adaptor proteins and associated regulatory molecules. The interaction of cargos with these complexes can confer distinct behaviors on the transport of synaptic organelles. The rich regulatory mechanisms of transport that are only now emerging as the cargo-motor complexes are defined and subsequent local events that regulate their dynamic relationship are examined. Here we review recent studies of kinesin-related axonal transport of three crucial synaptic components, Piccolo-bassoon Transport Vesicles (PTVs), Synaptic Vesicle Precursors (SVPs), and mitochondria, and the mechanisms that modulate their transport.
Collapse
Affiliation(s)
- Ann Y. N. Goldstein
- Addresses: F.M. Kirby Neurobiology Program, Department of Neurology and Department of Neurobiology, Children’s Hospital, Boston, 300 Longwood Ave, CLS 12120, Boston, MA 02115
| | - Xinnan Wang
- Addresses: F.M. Kirby Neurobiology Program, Department of Neurology and Department of Neurobiology, Children’s Hospital, Boston, 300 Longwood Ave, CLS 12120, Boston, MA 02115
| | - Thomas L Schwarz
- Addresses: F.M. Kirby Neurobiology Program, Department of Neurology and Department of Neurobiology, Children’s Hospital, Boston, 300 Longwood Ave, CLS 12120, Boston, MA 02115
| |
Collapse
|
96
|
Stryker E, Johnson KG. LAR, liprin alpha and the regulation of active zone morphogenesis. J Cell Sci 2008; 120:3723-8. [PMID: 17959628 DOI: 10.1242/jcs.03491] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Active zones are protein-rich regions of neurons that act as sites of synaptic vesicle fusion and neurotransmitter release at the pre-synaptic terminus. Although the discovery that the receptor protein tyrosine phosphatase LAR and its cytoplasmic binding partner liprin alpha are essential for proper active zone formation is nearly a decade old, the underlying mechanisms are still poorly understood. Recent studies have identified a number of binding partners for both LAR and liprin alpha, several of which play key roles in active zone assembly. These include nidogen, dallylike and syndecan--extracellular ligands for LAR that regulate synapse morphogenesis. In addition, liprin-alpha-interacting proteins such as ERC2, RIM and the MALS/Veli-Cask-Mint1 complex cooperate to form a dense molecular scaffold at the active zone that is crucial for proper synaptic function. These studies allow us to propose testable models of LAR and liprin alpha function, and provide insights into the fundamental molecular mechanisms of synapse formation and stabilization.
Collapse
Affiliation(s)
- Emily Stryker
- Department of Biology and Program in Neuroscience, Pomona College, 175 West 6th Street, Claremont, CA 91711, USA
| | | |
Collapse
|
97
|
Tan KD, Zhu Y, Tan HK, Rajasegaran V, Aggarwal A, Wu J, Wu HY, Hwang J, Lim DTH, Soo KC, Tan P. Amplification and overexpression of PPFIA1, a putative 11q13 invasion suppressor gene, in head and neck squamous cell carcinoma. Genes Chromosomes Cancer 2008; 47:353-62. [PMID: 18196592 DOI: 10.1002/gcc.20539] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Chromosomal amplifications of the 11q13 genomic region are frequent in head and neck squamous cell carcinoma (HNSCC). To identify novel 11q13 amplification targets, we integrated high-resolution array-based comparative genomic hybridization and Affymetrix gene-expression profiling of eight HNSCC cell lines. We found that PPFIA1 was the highest upregulated gene in the 11q13 amplicon of HNSCC cell lines when compared with HNSCC lines without 11q13 amplification and confirmed the upregulation of PPFIA1 in primary HNSCCs by real-time PCR. Using siRNA knockdown, we investigated PPFIA1 function in three HNSCC lines using both in vitro invasion assays and wound-healing assays. Surprisingly, we found that cancer cells become more invasive when the PPFIA1 protein levels were reduced, suggesting that PPFIA1 may act as an invasion inhibitor in HNSCC. This unexpected result suggests that the 11q13 amplicon may comprise both positive and negative regulators involved in HNSCC. Our study is the first to evaluate the role of PPFIA1 in head and neck carcinogenesis and suggests a potential link between PPFIA1 activity and cell-extracellular matrix interactions. This article contains supplementary material available via the Internet at http://www.interscience.wiley.com/jpages/1045-2257/suppmat.
Collapse
Affiliation(s)
- Kaia Davis Tan
- Cellular and Molecular Research, National Cancer Centre of Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Abstract
Synapses are specialized communication junctions between neurons whose plasticity provides the structural and functional basis for information processing and storage in the brain. Recent biochemical, genetic and imaging studies in diverse model systems are beginning to reveal the molecular mechanisms by which synaptic vesicles, ion channels, receptors and other synaptic components assemble to make a functional synapse. Recent evidence has shown that the formation and function of synapses are critically regulated by the liprin-alpha family of scaffolding proteins. The liprin-alphas have been implicated in pre- and post-synaptic development by recruiting synaptic proteins and regulating synaptic cargo transport. Here, we will summarize the diversity of liprin binding partners, highlight the factors that control the function of liprin-alphas at the synapse and discuss how liprin-alpha family proteins regulate synapse formation and synaptic transmission.
Collapse
|
99
|
Samuels BA, Hsueh YP, Shu T, Liang H, Tseng HC, Hong CJ, Su SC, Volker J, Neve RL, Yue DT, Tsai LH. Cdk5 promotes synaptogenesis by regulating the subcellular distribution of the MAGUK family member CASK. Neuron 2007; 56:823-37. [PMID: 18054859 PMCID: PMC2151975 DOI: 10.1016/j.neuron.2007.09.035] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 06/08/2007] [Accepted: 09/26/2007] [Indexed: 10/22/2022]
Abstract
Synaptogenesis is a highly regulated process that underlies formation of neural circuitry. Considerable work has demonstrated the capability of some adhesion molecules, such as SynCAM and Neurexins/Neuroligins, to induce synapse formation in vitro. Furthermore, Cdk5 gain of function results in an increased number of synapses in vivo. To gain a better understanding of how Cdk5 might promote synaptogenesis, we investigated potential crosstalk between Cdk5 and the cascade of events mediated by synapse-inducing proteins. One protein recruited to developing terminals by SynCAM and Neurexins/Neuroligins is the MAGUK family member CASK. We found that Cdk5 phosphorylates and regulates CASK distribution to membranes. In the absence of Cdk5-dependent phosphorylation, CASK is not recruited to developing synapses and thus fails to interact with essential presynaptic components. Functional consequences include alterations in calcium influx. Mechanistically, Cdk5 regulates the interaction between CASK and liprin-alpha. These results provide a molecular explanation of how Cdk5 can promote synaptogenesis.
Collapse
Affiliation(s)
- Benjamin Adam Samuels
- Howard Hughes Medical Institute, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Pack-Chung E, Kurshan PT, Dickman DK, Schwarz TL. A Drosophila kinesin required for synaptic bouton formation and synaptic vesicle transport. Nat Neurosci 2007; 10:980-9. [PMID: 17643120 DOI: 10.1038/nn1936] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 06/07/2007] [Indexed: 12/12/2022]
Abstract
The morphological transition of growth cones to synaptic boutons characterizes synaptogenesis. Here we have isolated mutations in immaculate connections (imac; CG8566), a previously uncharacterized Drosophila gene encoding a member of the Kinesin-3 family. Whereas earlier studies in Drosophila implicated Kinesin-1 in transporting synaptic vesicle precursors, we find that Imac is essential for this transport. An unexpected feature of imac mutants is the failure of synaptic boutons to form. Motor neurons lacking imac properly target to muscles but remain within target fields as thin processes, a structure that is distinct from either growth cones or mature terminals. Few active zones form at these endings. We show that the arrest of synaptogenesis is not a secondary consequence of the absence of transmission. Our data thus indicate that Imac transports components required for synaptic maturation and provide insight into presynaptic maturation as a process that can be differentiated from axon outgrowth and targeting.
Collapse
Affiliation(s)
- Eunju Pack-Chung
- Program in Neurobiology, Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|