51
|
Zhou X, Xiao C, Li Y, Shang Y, Yin D, Li S, Xiang B, Lu R, Ji Y, Wu Y, Meng W, Zhu H, Liu J, Hu H, Mo X, Xu H. Mid1ip1b modulates apical reorientation of non-centrosomal microtubule organizing center in epithelial cells. J Genet Genomics 2018; 45:433-442. [PMID: 30174135 DOI: 10.1016/j.jgg.2018.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 02/05/2023]
Abstract
In most kinds of animal cells, the centrosome serves as the main microtubule organizing center (MTOC) that nucleates microtubule arrays throughout the cytoplasm to maintain cell structure, cell division and intracellular transport. Whereas in epithelial cells, non-centrosomal MTOCs are established in the apical domain for generating asymmetric microtubule fibers and cilia in epithelial cells for the organ morphogenesis during embryonic development. However, the mechanism by which MTOCs localize to the apical domain in epithelial cells remains largely unknown. Here, we show that Mid1ip1b has a close interaction with γ-tubulin protein, the central component of MTOC, and modulates lumen opening of the neural tube, gut, intestine, and kidney of zebrafish. Knockdown or dominant negative effect of Mid1ip1b resulted in failure of lumen formation of the organs as aforementioned. Moreover, the non-centrosomal MTOCs were unable to orientate to the apical domain in Mid1ip1b knockdown epithelial cells, and the centrosomal MTOCs were inaccurately placed in the apical domain, resulting in defective formation of asymmetric microtubules and misplacement of cilia in the apical domain. These data uncover a molecule that controls the proper localization of MTOCs in the apical domain in epithelial cells for organ morphogenesis during embryonic development.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Chun Xiao
- National Clinical Research Center of Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Li
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yanna Shang
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Dongqin Yin
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Siying Li
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Bo Xiang
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Ran Lu
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yi Ji
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yang Wu
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Wentong Meng
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Hongyan Zhu
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jin Liu
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Huozhen Hu
- National Clinical Research Center of Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xianming Mo
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Hong Xu
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| |
Collapse
|
52
|
Bornens M. Cell polarity: having and making sense of direction-on the evolutionary significance of the primary cilium/centrosome organ in Metazoa. Open Biol 2018; 8:180052. [PMID: 30068565 PMCID: PMC6119866 DOI: 10.1098/rsob.180052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022] Open
Abstract
Cell-autonomous polarity in Metazoans is evolutionarily conserved. I assume that permanent polarity in unicellular eukaryotes is required for cell motion and sensory reception, integration of these two activities being an evolutionarily constrained function. Metazoans are unique in making cohesive multicellular organisms through complete cell divisions. They evolved a primary cilium/centrosome (PC/C) organ, ensuring similar functions to the basal body/flagellum of unicellular eukaryotes, but in different cells, or in the same cell at different moments. The possibility that this innovation contributed to the evolution of individuality, in being instrumental in the early specification of the germ line during development, is further discussed. Then, using the example of highly regenerative organisms like planarians, which have lost PC/C organ in dividing cells, I discuss the possibility that part of the remodelling necessary to reach a new higher-level unit of selection in multi-cellular organisms has been triggered by conflicts among individual cell polarities to reach an organismic polarity. Finally, I briefly consider organisms with a sensorimotor organ like the brain that requires exceedingly elongated polarized cells for its activity. I conclude that beyond critical consequences for embryo development, the conservation of cell-autonomous polarity in Metazoans had far-reaching implications for the evolution of individuality.
Collapse
Affiliation(s)
- Michel Bornens
- Institut Curie, PSL Research University, CNRS - UMR 144, 75005 Paris, France
| |
Collapse
|
53
|
Sallee MD, Zonka JC, Skokan TD, Raftrey BC, Feldman JL. Tissue-specific degradation of essential centrosome components reveals distinct microtubule populations at microtubule organizing centers. PLoS Biol 2018; 16:e2005189. [PMID: 30080857 PMCID: PMC6103517 DOI: 10.1371/journal.pbio.2005189] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 08/21/2018] [Accepted: 07/20/2018] [Indexed: 11/19/2022] Open
Abstract
Non-centrosomal microtubule organizing centers (ncMTOCs) are found in most differentiated cells, but how these structures regulate microtubule organization and dynamics is largely unknown. We optimized a tissue-specific degradation system to test the role of the essential centrosomal microtubule nucleators γ-tubulin ring complex (γ-TuRC) and AIR-1/Aurora A at the apical ncMTOC, where they both localize in Caenorhabditis elegans embryonic intestinal epithelial cells. As at the centrosome, the core γ-TuRC component GIP-1/GCP3 is required to recruit other γ-TuRC components to the apical ncMTOC, including MZT-1/MZT1, characterized here for the first time in animal development. In contrast, AIR-1 and MZT-1 were specifically required to recruit γ-TuRC to the centrosome, but not to centrioles or to the apical ncMTOC. Surprisingly, microtubules remain robustly organized at the apical ncMTOC upon γ-TuRC and AIR-1 co-depletion, and upon depletion of other known microtubule regulators, including TPXL-1/TPX2, ZYG-9/ch-TOG, PTRN-1/CAMSAP, and NOCA-1/Ninein. However, loss of GIP-1 removed a subset of dynamic EBP-2/EB1-marked microtubules, and the remaining dynamic microtubules grew faster. Together, these results suggest that different microtubule organizing centers (MTOCs) use discrete proteins for their function, and that the apical ncMTOC is composed of distinct populations of γ-TuRC-dependent and -independent microtubules that compete for a limited pool of resources.
Collapse
Affiliation(s)
- Maria D. Sallee
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Jennifer C. Zonka
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Taylor D. Skokan
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Brian C. Raftrey
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Jessica L. Feldman
- Department of Biology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
54
|
Muroyama A, Terwilliger M, Dong B, Suh H, Lechler T. Genetically induced microtubule disruption in the mouse intestine impairs intracellular organization and transport. Mol Biol Cell 2018; 29:1533-1541. [PMID: 29742015 PMCID: PMC6080650 DOI: 10.1091/mbc.e18-01-0057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In most differentiated cells, microtubules reorganize into noncentrosomal arrays that are cell-type specific. In the columnar absorptive enterocytes of the intestine, microtubules form polarized apical–basal arrays that have been proposed to play multiple roles. However, in vivo testing of these hypotheses has been hampered by a lack of genetic tools to specifically perturb microtubules. Here we analyze mice in which microtubules are disrupted by conditional inducible expression of the microtubule-severing protein spastin. Spastin overexpression resulted in multiple cellular defects, including aberrations in nuclear and organelle positioning and deficient nutrient transport. However, cell shape, adhesion, and polarity remained intact, and mutant mice continued to thrive. Notably, the phenotypes of microtubule disruption are similar to those induced by microtubule disorganization upon loss of CAMSAP3/Nezha. These data demonstrate that enterocyte microtubules have important roles in organelle organization but are not essential for growth under homeostatic conditions.
Collapse
Affiliation(s)
- Andrew Muroyama
- Departments of Dermatology and Cell Biology, Duke University, Durham, NC 27708
| | - Michael Terwilliger
- Departments of Dermatology and Cell Biology, Duke University, Durham, NC 27708
| | - Bushu Dong
- Departments of Dermatology and Cell Biology, Duke University, Durham, NC 27708
| | - Harrison Suh
- Departments of Dermatology and Cell Biology, Duke University, Durham, NC 27708
| | - Terry Lechler
- Departments of Dermatology and Cell Biology, Duke University, Durham, NC 27708
| |
Collapse
|
55
|
St Johnston D. Establishing and transducing cell polarity: common themes and variations. Curr Opin Cell Biol 2018; 51:33-41. [PMID: 29153703 DOI: 10.1016/j.ceb.2017.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/10/2017] [Indexed: 12/17/2022]
Abstract
All cells in vivo have a primary axis of polarity that controls many aspects of their behaviour, such as the direction of protein secretion and signalling, the orientation of cell division and directed cell movement and morphogenesis. Cell polarise in response to extracellular cues or intracellular landmarks that initiate a signal transduction process that establishes complementary cortical domains of conserved polarity factors. These cortical domains then transmit this polarity to the rest of the cell by regulating the organisation of the cytoskeleton and membrane trafficking systems. Here I review work over the past couple of years that has elucidated many key features of how polarity is established and transduced in different systems, but has also revealed unexpected variations in polarity mechanisms depending on context.
Collapse
Affiliation(s)
- Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QN, UK.
| |
Collapse
|
56
|
Zenker J, White MD, Templin RM, Parton RG, Thorn-Seshold O, Bissiere S, Plachta N. A microtubule-organizing center directing intracellular transport in the early mouse embryo. Science 2018; 357:925-928. [PMID: 28860385 DOI: 10.1126/science.aam9335] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/03/2017] [Accepted: 08/01/2017] [Indexed: 12/26/2022]
Abstract
The centrosome is the primary microtubule-organizing center (MTOC) of most animal cells; however, this organelle is absent during early mammalian development. Therefore, the mechanism by which the mammalian embryo organizes its microtubules (MTs) is unclear. We visualize MT bridges connecting pairs of cells and show that the cytokinetic bridge does not undergo stereotypical abscission after cell division. Instead, it serves as scaffold for the accumulation of the MT minus-end-stabilizing protein CAMSAP3 throughout interphase, thereby transforming this structure into a noncentrosomal MTOC. Transport of the cell adhesion molecule E-cadherin to the membrane is coordinated by this MTOC and is required to form the pluripotent inner mass. Our study reveals a noncentrosomal form of MT organization that directs intracellular transport and is essential for mammalian development.
Collapse
Affiliation(s)
- J Zenker
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - M D White
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - R M Templin
- Institute for Molecular Biosciences and Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland, Australia
| | - R G Parton
- Institute for Molecular Biosciences and Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland, Australia
| | - O Thorn-Seshold
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - S Bissiere
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - N Plachta
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore. .,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
57
|
Goldspink DA, Rookyard C, Tyrrell BJ, Gadsby J, Perkins J, Lund EK, Galjart N, Thomas P, Wileman T, Mogensen MM. Ninein is essential for apico-basal microtubule formation and CLIP-170 facilitates its redeployment to non-centrosomal microtubule organizing centres. Open Biol 2017; 7:rsob.160274. [PMID: 28179500 PMCID: PMC5356440 DOI: 10.1098/rsob.160274] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/17/2017] [Indexed: 01/08/2023] Open
Abstract
Differentiation of columnar epithelial cells involves a dramatic reorganization of the microtubules (MTs) and centrosomal components into an apico-basal array no longer anchored at the centrosome. Instead, the minus-ends of the MTs become anchored at apical non-centrosomal microtubule organizing centres (n-MTOCs). Formation of n-MTOCs is critical as they determine the spatial organization of MTs, which in turn influences cell shape and function. However, how they are formed is poorly understood. We have previously shown that the centrosomal anchoring protein ninein is released from the centrosome, moves in a microtubule-dependent manner and accumulates at n-MTOCs during epithelial differentiation. Here, we report using depletion and knockout (KO) approaches that ninein expression is essential for apico-basal array formation and epithelial elongation and that CLIP-170 is required for its redeployment to n-MTOCs. Functional inhibition also revealed that IQGAP1 and active Rac1 coordinate with CLIP-170 to facilitate microtubule plus-end cortical targeting and ninein redeployment. Intestinal tissue and in vitro organoids from the Clip1/Clip2 double KO mouse with deletions in the genes encoding CLIP-170 and CLIP-115, respectively, confirmed requirement of CLIP-170 for ninein recruitment to n-MTOCs, with possible compensation by other anchoring factors such as p150Glued and CAMSAP2 ensuring apico-basal microtubule formation despite loss of ninein at n-MTOCs.
Collapse
Affiliation(s)
| | - Chris Rookyard
- School of Computing Science, University of East Anglia, Norwich, UK
| | | | - Jonathan Gadsby
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - James Perkins
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Elizabeth K Lund
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Niels Galjart
- Department of Cell Biology and Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Paul Thomas
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Tom Wileman
- Medical School, University of East Anglia, Norwich, UK
| | - Mette M Mogensen
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
58
|
Lang CF, Munro E. The PAR proteins: from molecular circuits to dynamic self-stabilizing cell polarity. Development 2017; 144:3405-3416. [PMID: 28974638 DOI: 10.1242/dev.139063] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PAR proteins constitute a highly conserved network of scaffolding proteins, adaptors and enzymes that form and stabilize cortical asymmetries in response to diverse inputs. They function throughout development and across the metazoa to regulate cell polarity. In recent years, traditional approaches to identifying and characterizing molecular players and interactions in the PAR network have begun to merge with biophysical, theoretical and computational efforts to understand the network as a pattern-forming biochemical circuit. Here, we summarize recent progress in the field, focusing on recent studies that have characterized the core molecular circuitry, circuit design and spatiotemporal dynamics. We also consider some of the ways in which the PAR network has evolved to polarize cells in different contexts and in response to different cues and functional constraints.
Collapse
Affiliation(s)
- Charles F Lang
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA.,Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA .,Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
59
|
Muroyama A, Lechler T. Microtubule organization, dynamics and functions in differentiated cells. Development 2017; 144:3012-3021. [PMID: 28851722 DOI: 10.1242/dev.153171] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the past several decades, numerous studies have greatly expanded our knowledge about how microtubule organization and dynamics are controlled in cultured cells in vitro However, our understanding of microtubule dynamics and functions in vivo, in differentiated cells and tissues, remains under-explored. Recent advances in generating genetic tools and imaging technologies to probe microtubules in situ, coupled with an increased interest in the functions of this cytoskeletal network in differentiated cells, are resulting in a renaissance. Here, we discuss the lessons learned from such approaches, which have revealed that, although some differentiated cells utilize conserved strategies to remodel microtubules, there is considerable diversity in the underlying molecular mechanisms of microtubule reorganization. This highlights a continued need to explore how differentiated cells regulate microtubule geometry in vivo.
Collapse
Affiliation(s)
- Andrew Muroyama
- Departments of Dermatology and Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Terry Lechler
- Departments of Dermatology and Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
60
|
Abstract
The scaffold protein Par-3 (
Drosophila Bazooka) is a central organizer of cell polarity across animals. This review focuses on how the clustering of Par-3 contributes to cell polarity. It begins with the Par-3 homo-oligomerization mechanism and its regulation by Par-1 phosphorylation. The role of polarized cytoskeletal networks in distributing Par-3 clusters to one end of the cell is then discussed, as is the subsequent maintenance of polarized Par-3 clusters through hindered mobility and inhibition from the opposite pole. Finally, specific roles of Par-3 clusters are reviewed, including the bundling of microtubules, the cortical docking of centrosomes, the growth and positioning of cadherin–catenin clusters, and the inhibition of the Par-6–aPKC kinase cassette. Examples are drawn from
Drosophila, Caenorhabditis elegans, mammalian cell culture, and biochemical studies.
Collapse
Affiliation(s)
- Tony J C Harris
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
61
|
Winter ES, Schwarz A, Fabig G, Feldman JL, Pires-daSilva A, Müller-Reichert T, Sadler PL, Shakes DC. Cytoskeletal variations in an asymmetric cell division support diversity in nematode sperm size and sex ratios. Development 2017; 144:3253-3263. [PMID: 28827395 DOI: 10.1242/dev.153841] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/14/2017] [Indexed: 12/18/2022]
Abstract
Asymmetric partitioning is an essential component of many developmental processes. As spermatogenesis concludes, sperm are streamlined by discarding unnecessary cellular components into cellular wastebags called residual bodies (RBs). During nematode spermatogenesis, this asymmetric partitioning event occurs shortly after anaphase II, and both microtubules and actin partition into a central RB. Here, we use fluorescence and transmission electron microscopy to elucidate and compare the intermediate steps of RB formation in Caenorhabditis elegans, Rhabditis sp. SB347 (recently named Auanema rhodensis) and related nematodes. In all cases, intact microtubules reorganize and move from centrosomal to non-centrosomal sites at the RB-sperm boundary whereas actin reorganizes through cortical ring expansion and clearance from the poles. However, in species with tiny spermatocytes, these cytoskeletal changes are restricted to one pole. Consequently, partitioning yields one functional sperm with the X-bearing chromosome complement and an RB with the other chromosome set. Unipolar partitioning may not require an unpaired X, as it also occurs in XX spermatocytes. Instead, constraints related to spermatocyte downsizing may have contributed to the evolution of a sperm cell equivalent to female polar bodies.
Collapse
Affiliation(s)
- Ethan S Winter
- Department of Biology, College of William and Mary, Williamsburg, VA 23187, USA
| | - Anna Schwarz
- Experimental Center, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, 01307, Germany
| | - Gunar Fabig
- Experimental Center, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, 01307, Germany
| | - Jessica L Feldman
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | | | - Thomas Müller-Reichert
- Experimental Center, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, 01307, Germany
| | - Penny L Sadler
- Department of Biology, College of William and Mary, Williamsburg, VA 23187, USA.,Department of Biology & Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Diane C Shakes
- Department of Biology, College of William and Mary, Williamsburg, VA 23187, USA
| |
Collapse
|
62
|
Elkouby YM, Mullins MC. Coordination of cellular differentiation, polarity, mitosis and meiosis - New findings from early vertebrate oogenesis. Dev Biol 2017; 430:275-287. [PMID: 28666956 DOI: 10.1016/j.ydbio.2017.06.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 12/21/2022]
Abstract
A mechanistic dissection of early oocyte differentiation in vertebrates is key to advancing our knowledge of germline development, reproductive biology, the regulation of meiosis, and all of their associated disorders. Recent advances in the field include breakthroughs in the identification of germline stem cells in Medaka, in the cellular architecture of the germline cyst in mice, in a mechanistic dissection of chromosomal pairing and bouquet formation in meiosis in mice, in tracing oocyte symmetry breaking to the chromosomal bouquet of meiosis in zebrafish, and in the biology of the Balbiani body, a universal oocyte granule. Many of the major events in early oogenesis are universally conserved, and some are co-opted for species-specific needs. The chromosomal events of meiosis are of tremendous consequence to gamete formation and have been extensively studied. New light is now being shed on other aspects of early oocyte differentiation, which were traditionally considered outside the scope of meiosis, and their coordination with meiotic events. The emerging theme is of meiosis as a common groundwork for coordinating multifaceted processes of oocyte differentiation. In an accompanying manuscript we describe methods that allowed for investigations in the zebrafish ovary to contribute to these breakthroughs. Here, we review these advances mostly from the zebrafish and mouse. We discuss oogenesis concepts across established model organisms, and construct an inclusive paradigm for early oocyte differentiation in vertebrates.
Collapse
Affiliation(s)
- Yaniv M Elkouby
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
63
|
Abstract
The organization of microtubule networks is crucial for controlling chromosome segregation during cell division, for positioning and transport of different organelles, and for cell polarity and morphogenesis. The geometry of microtubule arrays strongly depends on the localization and activity of the sites where microtubules are nucleated and where their minus ends are anchored. Such sites are often clustered into structures known as microtubule-organizing centers, which include the centrosomes in animals and spindle pole bodies in fungi. In addition, other microtubules, as well as membrane compartments such as the cell nucleus, the Golgi apparatus, and the cell cortex, can nucleate, stabilize, and tether microtubule minus ends. These activities depend on microtubule-nucleating factors, such as γ-tubulin-containing complexes and their activators and receptors, and microtubule minus end-stabilizing proteins with their binding partners. Here, we provide an overview of the current knowledge on how such factors work together to control microtubule organization in different systems.
Collapse
Affiliation(s)
- Jingchao Wu
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, The Netherlands; ,
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, The Netherlands; ,
| |
Collapse
|
64
|
Wang S, Tang NH, Lara-Gonzalez P, Zhao Z, Cheerambathur DK, Prevo B, Chisholm AD, Desai A, Oegema K. A toolkit for GFP-mediated tissue-specific protein degradation in C. elegans. Development 2017; 144:2694-2701. [PMID: 28619826 DOI: 10.1242/dev.150094] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/08/2017] [Indexed: 02/05/2023]
Abstract
Proteins that are essential for embryo production, cell division and early embryonic events are frequently reused later in embryogenesis, during organismal development or in the adult. Examining protein function across these different biological contexts requires tissue-specific perturbation. Here, we describe a method that uses expression of a fusion between a GFP-targeting nanobody and a SOCS-box containing ubiquitin ligase adaptor to target GFP-tagged proteins for degradation. When combined with endogenous locus GFP tagging by CRISPR-Cas9 or with rescue of a null mutant with a GFP fusion, this approach enables routine and efficient tissue-specific protein ablation. We show that this approach works in multiple tissues - the epidermis, intestine, body wall muscle, ciliated sensory neurons and touch receptor neurons - where it recapitulates expected loss-of-function mutant phenotypes. The transgene toolkit and the strain set described here will complement existing approaches to enable routine analysis of the tissue-specific roles of C. elegans proteins.
Collapse
Affiliation(s)
- Shaohe Wang
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Ngang Heok Tang
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Pablo Lara-Gonzalez
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhiling Zhao
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Dhanya K Cheerambathur
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Bram Prevo
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrew D Chisholm
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Arshad Desai
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Karen Oegema
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
65
|
Nashchekin D, Fernandes AR, St Johnston D. Patronin/Shot Cortical Foci Assemble the Noncentrosomal Microtubule Array that Specifies the Drosophila Anterior-Posterior Axis. Dev Cell 2017; 38:61-72. [PMID: 27404359 PMCID: PMC4943857 DOI: 10.1016/j.devcel.2016.06.010] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/03/2016] [Accepted: 06/08/2016] [Indexed: 02/06/2023]
Abstract
Noncentrosomal microtubules play an important role in polarizing differentiated cells, but little is known about how these microtubules are organized. Here we identify the spectraplakin, Short stop (Shot), as the cortical anchor for noncentrosomal microtubule organizing centers (ncMTOCs) in the Drosophila oocyte. Shot interacts with the cortex through its actin-binding domain and recruits the microtubule minus-end-binding protein, Patronin, to form cortical ncMTOCs. Shot/Patronin foci do not co-localize with γ-tubulin, suggesting that they do not nucleate new microtubules. Instead, they capture and stabilize existing microtubule minus ends, which then template new microtubule growth. Shot/Patronin foci are excluded from the oocyte posterior by the Par-1 polarity kinase to generate the polarized microtubule network that localizes axis determinants. Both proteins also accumulate apically in epithelial cells, where they are required for the formation of apical-basal microtubule arrays. Thus, Shot/Patronin ncMTOCs may provide a general mechanism for organizing noncentrosomal microtubules in differentiated cells. The Drosophila spectraplakin, Shot, recruits Patronin to form noncentrosomal MTOCs The actin-binding domain of Shot anchors the ncMTOCs to the oocyte cortex Par-1 excludes Shot from the posterior cortex to define the anterior-posterior axis Shot/Patronin ncMTOCs lack γ-tubulin and grow MTs from stabilized minus-end stumps
Collapse
Affiliation(s)
- Dmitry Nashchekin
- The Gurdon Institute and the Department of Genetics, the University of Cambridge, Cambridge CB2 1QN, UK
| | - Artur Ribeiro Fernandes
- The Gurdon Institute and the Department of Genetics, the University of Cambridge, Cambridge CB2 1QN, UK
| | - Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, the University of Cambridge, Cambridge CB2 1QN, UK.
| |
Collapse
|
66
|
Silverman E, Zhao J, Merriam JC, Nagasaki T. Intracellular Position of Centrioles and the Direction of Homeostatic Epithelial Cell Movements in the Mouse Cornea. J Histochem Cytochem 2017; 65:83-91. [PMID: 28117631 DOI: 10.1369/0022155416674718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Corneal epithelial cells exhibit continuous centripetal movements at a rate of about 30 µm per day, but neither the driving force nor the mechanism that determines the direction of movements is known. To facilitate the investigation of homeostatic cell movement, we examined if the intracellular position of a centriole can be used as a directional marker of epithelial cell movements in the mouse cornea. A direction of cell movements was estimated in fixed specimens from a pattern of underlying subepithelial nerve fibers. Intracellular position of centrioles was determined by gamma-tubulin immunohistology and plotted in a narrow strip along the entire diameter of a cornea from limbus to limbus. When we determined the position of centrioles in the peripheral cornea where cell movements proceed generally along a radial path, about 55% of basal epithelial cells contained a centriole in the front half of a cell. However, in the central cornea where cells exhibit a spiral pattern of movements, centrioles were distributed randomly. These results suggest that centrioles tend to be positioned toward the direction of movement in corneal basal epithelial cells when they are moving centripetally at a steady rate.
Collapse
Affiliation(s)
- Erika Silverman
- Department of Ophthalmology, Columbia University, New York, New York (ES, JZ, JCM, TN)
| | - Jin Zhao
- Department of Ophthalmology, Columbia University, New York, New York (ES, JZ, JCM, TN)
| | - John C Merriam
- Department of Ophthalmology, Columbia University, New York, New York (ES, JZ, JCM, TN)
| | - Takayuki Nagasaki
- Department of Ophthalmology, Columbia University, New York, New York (ES, JZ, JCM, TN)
| |
Collapse
|
67
|
Burute M, Prioux M, Blin G, Truchet S, Letort G, Tseng Q, Bessy T, Lowell S, Young J, Filhol O, Théry M. Polarity Reversal by Centrosome Repositioning Primes Cell Scattering during Epithelial-to-Mesenchymal Transition. Dev Cell 2017; 40:168-184. [PMID: 28041907 PMCID: PMC5497078 DOI: 10.1016/j.devcel.2016.12.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/02/2016] [Accepted: 12/02/2016] [Indexed: 02/07/2023]
Abstract
During epithelial-to-mesenchymal transition (EMT), cells lining the tissue periphery break up their cohesion to migrate within the tissue. This dramatic reorganization involves a poorly characterized reorientation of the apicobasal polarity of static epithelial cells into the front-rear polarity of migrating mesenchymal cells. To investigate the spatial coordination of intracellular reorganization with morphological changes, we monitored centrosome positioning during EMT in vivo, in developing mouse embryos and mammary gland, and in vitro, in cultured 3D cell aggregates and micropatterned cell doublets. In all conditions, centrosomes moved from their off-centered position next to intercellular junctions toward extracellular matrix adhesions on the opposite side of the nucleus, resulting in an effective internal polarity reversal. This move appeared to be supported by controlled microtubule network disassembly. Sequential release of cell confinement using dynamic micropatterns, and modulation of microtubule dynamics, confirmed that centrosome repositioning was responsible for further cell disengagement and scattering.
Collapse
Affiliation(s)
- Mithila Burute
- CytoMorpho Lab, A2T, UMRS1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, INSERM/AP-HP/Université Paris Diderot, 1 Avenue Claude Vellefaux, 75010 Paris, France; CytoMorpho Lab, LPCV, UMR5168, Biosciences & Biotechnology Institute of Grenoble, CEA/INRA/CNRS/Université Grenoble-Alpes, 17 rue des Martyrs, 38054 Grenoble, France; CYTOO SA, 7 Parvis Louis Néel, 38040 Grenoble, France
| | - Magali Prioux
- CytoMorpho Lab, LPCV, UMR5168, Biosciences & Biotechnology Institute of Grenoble, CEA/INRA/CNRS/Université Grenoble-Alpes, 17 rue des Martyrs, 38054 Grenoble, France
| | - Guillaume Blin
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Sandrine Truchet
- GABI, INRA/AgroParisTech/Université Paris-Saclay, Domaine de Vilvert, 78352 Jouy-en-Josas, France
| | - Gaëlle Letort
- CytoMorpho Lab, LPCV, UMR5168, Biosciences & Biotechnology Institute of Grenoble, CEA/INRA/CNRS/Université Grenoble-Alpes, 17 rue des Martyrs, 38054 Grenoble, France
| | - Qingzong Tseng
- CytoMorpho Lab, LPCV, UMR5168, Biosciences & Biotechnology Institute of Grenoble, CEA/INRA/CNRS/Université Grenoble-Alpes, 17 rue des Martyrs, 38054 Grenoble, France
| | - Thomas Bessy
- CytoMorpho Lab, A2T, UMRS1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, INSERM/AP-HP/Université Paris Diderot, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Sally Lowell
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Joanne Young
- CYTOO SA, 7 Parvis Louis Néel, 38040 Grenoble, France
| | - Odile Filhol
- Laboratoire de Biologie du Cancer et de l'Infection, UMRS1036, Biosciences & Biotechnology Institute of Grenoble, CEA/INSERM/Université Grenoble-Alpes, 17 rue des Martyrs, 38054 Grenoble, France
| | - Manuel Théry
- CytoMorpho Lab, A2T, UMRS1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, INSERM/AP-HP/Université Paris Diderot, 1 Avenue Claude Vellefaux, 75010 Paris, France; CytoMorpho Lab, LPCV, UMR5168, Biosciences & Biotechnology Institute of Grenoble, CEA/INRA/CNRS/Université Grenoble-Alpes, 17 rue des Martyrs, 38054 Grenoble, France.
| |
Collapse
|
68
|
Abstract
The maintenance of genome stability is critical for proper cell function, and loss of this stability contributes to many human diseases and developmental disorders. Therefore, cells have evolved partially redundant mechanisms to monitor and protect the genome. One subcellular organelle implicated in the maintenance of genome stability is the centrosome, best known as the primary microtubule organizing center of most animal cells. Centrosomes serve many different roles throughout the cell cycle, and many of those roles, including mitotic spindle assembly, nucleation of the interphase microtubule array, DNA damage response, and efficient cell cycle progression, have been proposed to help maintain genome stability. As a result, the centrosome is itself a highly regulated entity. Here, we review evidence concerning the significance of the centrosome in promoting genome integrity. Recent advances permitting acute and persistent centrosome removal suggest we still have much to learn regarding the specific function and actual importance of centrosomes in different contexts, as well as how cells may compensate for centrosome dysfunction to maintain the integrity of the genome. Although many animal cells survive and proliferate in the absence of centrosomes, they do so aberrantly. Based on these and other studies, we conclude that centrosomes serve as critical, multifunctional organelles that promote genome stability.
Collapse
Affiliation(s)
- Dorothy A Lerit
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute; National Institutes of Health, Bethesda, MD, 20892, USA.
- National Institutes of Health, 50 South Drive, Building 50, Room 2122, Bethesda, MD, 20892, USA.
| | - John S Poulton
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA.
- University of North Carolina, Fordham 519, CB#3280, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
69
|
Bone CR, Chang YT, Cain NE, Murphy SP, Starr DA. Nuclei migrate through constricted spaces using microtubule motors and actin networks in C. elegans hypodermal cells. Development 2016; 143:4193-4202. [PMID: 27697906 DOI: 10.1242/dev.141192] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/20/2016] [Indexed: 12/22/2022]
Abstract
Cellular migrations through constricted spaces are a crucial aspect of many developmental and disease processes including hematopoiesis, inflammation and metastasis. A limiting factor in these events is nuclear deformation. Here, we establish an in vivo model in which nuclei can be visualized while moving through constrictions and use it to elucidate mechanisms for nuclear migration. C. elegans hypodermal P-cell larval nuclei traverse a narrow space that is about 5% their width. This constriction is blocked by fibrous organelles, structures that pass through P cells to connect the muscles to cuticle. Fibrous organelles are removed just prior to nuclear migration, when nuclei and lamins undergo extreme morphological changes to squeeze through the space. Both actin and microtubule networks are organized to mediate nuclear migration. The LINC complex, consisting of the SUN protein UNC-84 and the KASH protein UNC-83, recruits dynein and kinesin-1 to the nuclear surface. Both motors function in P-cell nuclear migration, but dynein, functioning through UNC-83, plays a more central role as nuclei migrate towards minus ends of polarized microtubule networks. Thus, the nucleoskeleton and cytoskeleton are coordinated to move nuclei through constricted spaces.
Collapse
Affiliation(s)
- Courtney R Bone
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Yu-Tai Chang
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Natalie E Cain
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Shaun P Murphy
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
70
|
Sanchez AD, Feldman JL. Microtubule-organizing centers: from the centrosome to non-centrosomal sites. Curr Opin Cell Biol 2016; 44:93-101. [PMID: 27666167 DOI: 10.1016/j.ceb.2016.09.003] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/19/2016] [Accepted: 09/08/2016] [Indexed: 11/25/2022]
Abstract
The process of cellular differentiation requires the distinct spatial organization of the microtubule cytoskeleton, the arrangement of which is specific to cell type. Microtubule patterning does not occur randomly, but is imparted by distinct subcellular sites called microtubule-organizing centers (MTOCs). Since the discovery of MTOCs fifty years ago, their study has largely focused on the centrosome. All animal cells use centrosomes as MTOCs during mitosis. However in many differentiated cells, MTOC function is reassigned to non-centrosomal sites to generate non-radial microtubule organization better suited for new cell functions, such as mechanical support or intracellular transport. Here, we review the current understanding of non-centrosomal MTOCs (ncMTOCs) and the mechanisms by which they form in differentiating animal cells.
Collapse
Affiliation(s)
- Ariana D Sanchez
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA
| | - Jessica L Feldman
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA.
| |
Collapse
|
71
|
Coch RA, Leube RE. Intermediate Filaments and Polarization in the Intestinal Epithelium. Cells 2016; 5:E32. [PMID: 27429003 PMCID: PMC5040974 DOI: 10.3390/cells5030032] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 01/02/2023] Open
Abstract
The cytoplasmic intermediate filament cytoskeleton provides a tissue-specific three-dimensional scaffolding with unique context-dependent organizational features. This is particularly apparent in the intestinal epithelium, in which the intermediate filament network is localized below the apical terminal web region and is anchored to the apical junction complex. This arrangement is conserved from the nematode Caenorhabditis elegans to humans. The review summarizes compositional, morphological and functional features of the polarized intermediate filament cytoskeleton in intestinal cells of nematodes and mammals. We emphasize the cross talk of intermediate filaments with the actin- and tubulin-based cytoskeleton. Possible links of the intermediate filament system to the distribution of apical membrane proteins and the cell polarity complex are highlighted. Finally, we discuss how these properties relate to the establishment and maintenance of polarity in the intestine.
Collapse
Affiliation(s)
- Richard A Coch
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, Aachen 52074, Germany.
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, Aachen 52074, Germany.
| |
Collapse
|
72
|
Román-Fernández A, Bryant DM. Complex Polarity: Building Multicellular Tissues Through Apical Membrane Traffic. Traffic 2016; 17:1244-1261. [PMID: 27281121 DOI: 10.1111/tra.12417] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/06/2016] [Accepted: 06/06/2016] [Indexed: 12/20/2022]
Abstract
The formation of distinct subdomains of the cell surface is crucial for multicellular organism development. The most striking example of this is apical-basal polarization. What is much less appreciated is that underpinning an asymmetric cell surface is an equally dramatic intracellular endosome rearrangement. Here, we review the interplay between classical cell polarity proteins and membrane trafficking pathways, and discuss how this marriage gives rise to cell polarization. We focus on those mechanisms that regulate apical polarization, as this is providing a number of insights into how membrane traffic and polarity are regulated at the tissue level.
Collapse
Affiliation(s)
- Alvaro Román-Fernández
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow, G61 1BD, UK.,Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - David M Bryant
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow, G61 1BD, UK.,Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| |
Collapse
|
73
|
Muroyama A, Seldin L, Lechler T. Divergent regulation of functionally distinct γ-tubulin complexes during differentiation. J Cell Biol 2016; 213:679-92. [PMID: 27298324 PMCID: PMC4915192 DOI: 10.1083/jcb.201601099] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/29/2016] [Indexed: 11/22/2022] Open
Abstract
Differentiation induces the formation of noncentrosomal microtubule arrays in diverse tissues. The formation of these arrays requires loss of microtubule-organizing activity (MTOC) at the centrosome, but the mechanisms regulating this transition remain largely unexplored. Here, we use the robust loss of centrosomal MTOC activity in the epidermis to identify two pools of γ-tubulin that are biochemically and functionally distinct and differentially regulated. Nucleation-competent CDK5RAP2-γ-tubulin complexes were maintained at centrosomes upon initial epidermal differentiation. In contrast, Nedd1-γ-tubulin complexes did not promote nucleation but were required for anchoring of microtubules, a previously uncharacterized activity for this complex. Cell cycle exit specifically triggered loss of Nedd1-γ-tubulin complexes, providing a mechanistic link connecting MTOC activity and differentiation. Collectively, our studies demonstrate that distinct γ-tubulin complexes regulate different microtubule behaviors at the centrosome and show that differential regulation of these complexes drives loss of centrosomal MTOC activity.
Collapse
Affiliation(s)
- Andrew Muroyama
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710 Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | - Lindsey Seldin
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710 Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | - Terry Lechler
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710 Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
74
|
Quintin S, Gally C, Labouesse M. Noncentrosomal microtubules in C. elegans epithelia. Genesis 2016; 54:229-42. [PMID: 26789944 DOI: 10.1002/dvg.22921] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 11/12/2022]
Abstract
The microtubule cytoskeleton has a dual contribution to cell organization. First, microtubules help displace chromosomes and provide tracks for organelle transport. Second, microtubule rigidity confers specific mechanical properties to cells, which are crucial in cilia or mechanosensory structures. Here we review the recently uncovered organization and functions of noncentrosomal microtubules in C. elegans epithelia, focusing on how they contribute to nuclear positioning and protein transport. In addition, we describe recent data illustrating how the microtubule and actin cytoskeletons interact to achieve those functions.
Collapse
Affiliation(s)
- Sophie Quintin
- Development and Stem Cells Department, IGBMC - CNRS UMR 7104/INSERM U964/Université de Strasbourg, 1 Rue Laurent Fries, Illkirch, 67400, France
| | - Christelle Gally
- Development and Stem Cells Department, IGBMC - CNRS UMR 7104/INSERM U964/Université de Strasbourg, 1 Rue Laurent Fries, Illkirch, 67400, France
| | - Michel Labouesse
- Université Pierre Et Marie Curie, IBPS, CNRS UMR7622, 7 Quai St-Bernard, Paris, 75005, France
| |
Collapse
|
75
|
Vichas A, Laurie MT, Zallen JA. The Ski2-family helicase Obelus regulates Crumbs alternative splicing and cell polarity. J Cell Biol 2016; 211:1011-24. [PMID: 26644515 PMCID: PMC4674277 DOI: 10.1083/jcb.201504083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The conserved Ski2-family helicase Obelus regulates alternative splicing of the Crumbs polarity protein to control epithelial polarity and junctional organization in Drosophila. Alternative splicing can have profound consequences for protein activity, but the functions of most alternative splicing regulators are not known. We show that Obelus, a conserved Ski2-family helicase, is required for cell polarity and adherens junction organization in the Drosophila melanogaster embryo. In obelus mutants, epithelial cells display an expanded apical domain, aggregation of adherens junctions at the cell membrane, and microtubule-dependent defects in centrosome positioning. Through whole-genome transcriptome analysis, we found that Obelus is required for the alternative splicing of a small number of transcripts in the early embryo, including the pre-mRNA that encodes the apical polarity protein Crumbs. In obelus mutants, inclusion of an alternative exon results in increased expression of a Crumbs isoform that contains an additional epidermal growth factor–like repeat in the extracellular domain. Overexpression of this alternative Crumbs isoform recapitulates the junctional aggregation and centrosome positioning defects of obelus mutants. These results indicate that regulation of Crumbs alternative splicing by the Obelus helicase modulates epithelial polarity during development.
Collapse
Affiliation(s)
- Athea Vichas
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065 Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Matthew T Laurie
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065 Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Jennifer A Zallen
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065 Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
76
|
Cearns MD, Escuin S, Alexandre P, Greene NDE, Copp AJ. Microtubules, polarity and vertebrate neural tube morphogenesis. J Anat 2016; 229:63-74. [PMID: 27025884 DOI: 10.1111/joa.12468] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2016] [Indexed: 12/20/2022] Open
Abstract
Microtubules (MTs) are key cellular components, long known to participate in morphogenetic events that shape the developing embryo. However, the links between the cellular functions of MTs, their effects on cell shape and polarity, and their role in large-scale morphogenesis remain poorly understood. Here, these relationships were examined with respect to two strategies for generating the vertebrate neural tube: bending and closure of the mammalian neural plate; and cavitation of the teleost neural rod. The latter process has been compared with 'secondary' neurulation that generates the caudal spinal cord in mammals. MTs align along the apico-basal axis of the mammalian neuroepithelium early in neural tube closure, participating functionally in interkinetic nuclear migration, which indirectly impacts on cell shape. Whether MTs play other functional roles in mammalian neurulation remains unclear. In the zebrafish, MTs are important for defining the neural rod midline prior to its cavitation, both by localizing apical proteins at the tissue midline and by orienting cell division through a mirror-symmetric MT apparatus that helps to further define the medial localization of apical polarity proteins. Par proteins have been implicated in centrosome positioning in neuroepithelia as well as in the control of polarized morphogenetic movements in the neural rod. Understanding of MT functions during early nervous system development has so far been limited, partly by techniques that fail to distinguish 'cause' from 'effect'. Future developments will likely rely on novel ways to selectively impair MT function in order to investigate the roles they play.
Collapse
Affiliation(s)
- Michael D Cearns
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, London, UK
| | - Sarah Escuin
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, London, UK
| | - Paula Alexandre
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, London, UK
| | - Nicholas D E Greene
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, London, UK
| | - Andrew J Copp
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, London, UK
| |
Collapse
|
77
|
Sedwick C. Jessica Feldman: Microtubule-organizing function dives off centrosomes. ACTA ACUST UNITED AC 2016; 212:484-5. [PMID: 26929446 DOI: 10.1083/jcb.2125pi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Feldman studies how cell patterning and cytoskeletal organization are controlled.
Collapse
|
78
|
Abstract
Gametogenesis in animal oocytes reduces the diploid genome content of germline precursors to a haploid state in gametes by discarding ¾ of the duplicated chromosomes through a sequence of two meiotic cell divisions called meiosis I and II. The assembly of the microtubule-based spindle structure that mediates this reduction in genome content remains poorly understood compared to our knowledge of mitotic spindle assembly and function. In this review, we consider the diversity of oocyte meiotic spindle assembly and structure across animal phylogeny, review recent advances in our understanding of how animal oocytes assemble spindles in the absence of the centriole-based microtubule-organizing centers that dominate mitotic spindle assembly, and discuss different models for how chromosomes are captured and moved to achieve chromosome segregation during oocyte meiotic cell division.
Collapse
Affiliation(s)
- Aaron F Severson
- Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio, USA
| | - George von Dassow
- Oregon Institute of Marine Biology, University of Oregon, Charleston, Oregon, USA
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA.
| |
Collapse
|
79
|
Quintin S, Wang S, Pontabry J, Bender A, Robin F, Hyenne V, Landmann F, Gally C, Oegema K, Labouesse M. Non-centrosomal epidermal microtubules act in parallel to LET-502/ROCK to promote C. elegans elongation. Development 2015; 143:160-73. [PMID: 26586219 PMCID: PMC6514414 DOI: 10.1242/dev.126615] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 11/10/2015] [Indexed: 12/11/2022]
Abstract
C. elegans embryonic elongation is a morphogenetic event driven by actomyosin contractility and muscle-induced tension transmitted through hemidesmosomes. A role for the microtubule cytoskeleton has also been proposed, but its contribution remains poorly characterized. Here, we investigate the organization of the non-centrosomal microtubule arrays present in the epidermis and assess their function in elongation. We show that the microtubule regulators γ-tubulin and NOCA-1 are recruited to hemidesmosomes and adherens junctions early in elongation. Several parallel approaches suggest that microtubule nucleation occurs from these sites. Disrupting the epidermal microtubule array by overexpressing the microtubule-severing protein Spastin or by inhibiting the C. elegans ninein homolog NOCA-1 in the epidermis mildly affected elongation. However, microtubules were essential for elongation when hemidesmosomes or the activity of the Rho kinase LET-502/ROCK were partially compromised. Imaging of junctional components and genetic analyses suggest that epidermal microtubules function together with Rho kinase to promote the transport of E-cadherin to adherens junctions and myotactin to hemidesmosomes. Our results indicate that the role of LET-502 in junctional remodeling is likely to be independent of its established function as a myosin II activator, but requires a microtubule-dependent pathway involving the syntaxin SYX-5. Hence, we propose that non-centrosomal microtubules organized by epidermal junctions contribute to elongation by transporting junction remodeling factors, rather than having a mechanical role. Summary: During C. elegans embryonic elongation, microtubules nucleate at adjerens junctions and hemidesmosomes, and are important for the transport of junctional proteins.
Collapse
Affiliation(s)
- Sophie Quintin
- IGBMC - CNRS UMR 7104 - INSERM U964 - Université de Strasbourg, 1 rue Laurent Fries, BP 10142, Illkirch 67404, Cedex, France
| | - Shahoe Wang
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Julien Pontabry
- IGBMC - CNRS UMR 7104 - INSERM U964 - Université de Strasbourg, 1 rue Laurent Fries, BP 10142, Illkirch 67404, Cedex, France
| | - Ambre Bender
- IGBMC - CNRS UMR 7104 - INSERM U964 - Université de Strasbourg, 1 rue Laurent Fries, BP 10142, Illkirch 67404, Cedex, France
| | - François Robin
- Institut de Biologie Paris Seine, IBPS FR3631, Université Pierre et Marie Curie, 7-9 Quai Saint Bernard, Paris 75005, France
| | - Vincent Hyenne
- IGBMC - CNRS UMR 7104 - INSERM U964 - Université de Strasbourg, 1 rue Laurent Fries, BP 10142, Illkirch 67404, Cedex, France
| | - Frédéric Landmann
- IGBMC - CNRS UMR 7104 - INSERM U964 - Université de Strasbourg, 1 rue Laurent Fries, BP 10142, Illkirch 67404, Cedex, France
| | - Christelle Gally
- IGBMC - CNRS UMR 7104 - INSERM U964 - Université de Strasbourg, 1 rue Laurent Fries, BP 10142, Illkirch 67404, Cedex, France
| | - Karen Oegema
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Michel Labouesse
- IGBMC - CNRS UMR 7104 - INSERM U964 - Université de Strasbourg, 1 rue Laurent Fries, BP 10142, Illkirch 67404, Cedex, France Institut de Biologie Paris Seine, IBPS FR3631, Université Pierre et Marie Curie, 7-9 Quai Saint Bernard, Paris 75005, France
| |
Collapse
|
80
|
A Par-1-Par-3-Centrosome Cell Polarity Pathway and Its Tuning for Isotropic Cell Adhesion. Curr Biol 2015; 25:2701-8. [PMID: 26455305 DOI: 10.1016/j.cub.2015.08.063] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/08/2015] [Accepted: 08/28/2015] [Indexed: 02/02/2023]
Abstract
To form regulated barriers between body compartments, epithelial cells polarize into apical and basolateral domains and assemble adherens junctions (AJs). Despite close links with polarity networks that generate single polarized domains, AJs distribute isotropically around the cell circumference for adhesion with all neighboring cells [1-3]. How AJs avoid the influence of polarity networks to maintain their isotropy has been unclear. In established epithelia, trans cadherin interactions could maintain AJ isotropy [4], but AJs are dynamic during epithelial development and remodeling [5, 6], and thus specific mechanisms may control their isotropy. In Drosophila, aPKC prevents hyper-polarization of junctions as epithelia develop from cellularization to gastrulation [7]. Here, we show that aPKC does so by inhibiting a positive feedback loop between Bazooka (Baz)/Par-3, a junctional organizer [5, 8-10], and centrosomes. Without aPKC, Baz and centrosomes lose their isotropic distributions and recruit each other to single plasma membrane (PM) domains. Surprisingly, our loss- and gain-of-function analyses show that the Baz-centrosome positive feedback loop is driven by Par-1, a kinase known to phosphorylate Baz and inhibit its basolateral localization [8, 11, 12]. We find that Par-1 promotes the positive feedback loop through both centrosome microtubule effects and Baz phosphorylation. Normally, aPKC attenuates the circuit by expelling Par-1 from the apical domain at gastrulation. The combination of local activation and global inhibition is a common polarization strategy [13-16]. Par-1 seems to couple both effects for a potent Baz polarization mechanism that is regulated for the isotropy of Baz and AJs around the cell circumference.
Collapse
|
81
|
Affiliation(s)
- Maria D Sallee
- a Department of Biology ; Stanford University ; Stanford , CA USA
| | | |
Collapse
|
82
|
Abstract
It has become clear that the role of centrosomes extends well beyond that of important microtubule organizers. There is increasing evidence that they also function as coordination centres in eukaryotic cells, at which specific cytoplasmic proteins interact at high concentrations and important cell decisions are made. Accordingly, hundreds of proteins are concentrated at centrosomes, including cell cycle regulators, checkpoint proteins and signalling molecules. Nevertheless, several observations have raised the question of whether centrosomes are essential for many cell processes. Recent findings have shed light on the functions of centrosomes in animal cells and on the molecular mechanisms of centrosome assembly, in particular during mitosis. These advances should ultimately allow the in vitro reconstitution of functional centrosomes from their component proteins to unlock the secrets of these enigmatic organelles.
Collapse
|
83
|
Wang S, Wu D, Quintin S, Green RA, Cheerambathur DK, Ochoa SD, Desai A, Oegema K. NOCA-1 functions with γ-tubulin and in parallel to Patronin to assemble non-centrosomal microtubule arrays in C. elegans. eLife 2015; 4:e08649. [PMID: 26371552 PMCID: PMC4608005 DOI: 10.7554/elife.08649] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/12/2015] [Indexed: 12/21/2022] Open
Abstract
Non-centrosomal microtubule arrays assemble in differentiated tissues to perform mechanical and transport-based functions. In this study, we identify Caenorhabditis elegans NOCA-1 as a protein with homology to vertebrate ninein. NOCA-1 contributes to the assembly of non-centrosomal microtubule arrays in multiple tissues. In the larval epidermis, NOCA-1 functions redundantly with the minus end protection factor Patronin/PTRN-1 to assemble a circumferential microtubule array essential for worm growth and morphogenesis. Controlled degradation of a γ-tubulin complex subunit in this tissue revealed that γ-tubulin acts with NOCA-1 in parallel to Patronin/PTRN-1. In the germline, NOCA-1 and γ-tubulin co-localize at the cell surface, and inhibiting either leads to a microtubule assembly defect. γ-tubulin targets independently of NOCA-1, but NOCA-1 targeting requires γ-tubulin when a non-essential putatively palmitoylated cysteine is mutated. These results show that NOCA-1 acts with γ-tubulin to assemble non-centrosomal arrays in multiple tissues and highlight functional overlap between the ninein and Patronin protein families. DOI:http://dx.doi.org/10.7554/eLife.08649.001 Microtubules are hollow, rigid filaments that are found in the cells of animals and other eukaryotes. These filaments are built from smaller building blocks called tubulin heterodimers; and in dividing animal cells, they mainly emerge from structures called centrosomes. When a cell is dividing, arrays of microtubules that originate from centrosomes help assemble the spindle-like structure that segregates the chromosomes. Many non-dividing or specialized cells—including neurons, skin cells and muscle fibers—assemble other arrays of microtubules that do not emerge from centrosomes, but nevertheless perform a variety of structural, mechanical and transport-based roles. Compared to the centrosomal arrays, much less is known about how these non-centrosomal microtubules are assembled. A vertebrate protein called ‘ninein’ had previously been shown to be involved in anchoring microtubules at centrosomes. Ninein can change its localization from centrosomes to the cell surface in mammalian skin cells, suggesting that it might also have a role in assembling the peripheral microtubule arrays that are found in these cells. Now, Wang et al. have identified a protein from worms called NOCA-1, which contains a region similar to the part of ninein that was previously shown to be needed to anchor microtubules at centrosomes. The experiments show that NOCA-1 guides the assembly of non-centrosomal microtubule arrays in multiple tissues in C. elegans worms. This includes in the outer layer of the worm's larvae, which is similar to mammalian skin. The results also highlight that NOCA-1 performs many of the same roles as a member of the Patronin family of proteins called PTRN-1, which interacts with the ‘minus’ end of a microtubule to prevent the microtubule from breaking apart. Wang et al. also found that NOCA-1 works with another protein called γ-tubulin, which helps new microtubules to form and also interacts with microtubule minus ends. In contrast, PTRN-1 works independently of γ-tubulin. This suggests that NOCA-1 works together with γ-tubulin to protect new microtubule ends or promote their assembly, a role similar to what has been proposed for Patronin family proteins. Overall, Wang et al.'s results highlight the importance of ninein-related proteins in the assembly of non-centrosomal microtubule arrays and suggest overlapping roles for the ninein and Patronin families of proteins. DOI:http://dx.doi.org/10.7554/eLife.08649.002
Collapse
Affiliation(s)
- Shaohe Wang
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States.,Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, United States
| | - Di Wu
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States
| | - Sophie Quintin
- Institut Génétique Biologie Moléculaire Ceasllulaire, Faculté de médecine, Université de Strasbourg, Strasbourg, France.,Institut Clinique de la Souris, Illkirch-Graffenstaden, France
| | - Rebecca A Green
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States
| | - Dhanya K Cheerambathur
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States
| | - Stacy D Ochoa
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States
| | - Arshad Desai
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States
| | - Karen Oegema
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States
| |
Collapse
|
84
|
Borek WE, Groocock LM, Samejima I, Zou J, de Lima Alves F, Rappsilber J, Sawin KE. Mto2 multisite phosphorylation inactivates non-spindle microtubule nucleation complexes during mitosis. Nat Commun 2015; 6:7929. [PMID: 26243668 PMCID: PMC4918325 DOI: 10.1038/ncomms8929] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 06/25/2015] [Indexed: 01/09/2023] Open
Abstract
Microtubule nucleation is highly regulated during the eukaryotic cell cycle, but the underlying molecular mechanisms are largely unknown. During mitosis in fission yeast Schizosaccharomyces pombe, cytoplasmic microtubule nucleation ceases simultaneously with intranuclear mitotic spindle assembly. Cytoplasmic nucleation depends on the Mto1/2 complex, which binds and activates the γ-tubulin complex and also recruits the γ-tubulin complex to both centrosomal (spindle pole body) and non-centrosomal sites. Here we show that the Mto1/2 complex disassembles during mitosis, coincident with hyperphosphorylation of Mto2 protein. By mapping and mutating multiple Mto2 phosphorylation sites, we generate mto2-phosphomutant strains with enhanced Mto1/2 complex stability, interaction with the γ-tubulin complex and microtubule nucleation activity. A mutant with 24 phosphorylation sites mutated to alanine, mto2[24A], retains interphase-like behaviour even in mitotic cells. This provides a molecular-level understanding of how phosphorylation ‘switches off' microtubule nucleation complexes during the cell cycle and, more broadly, illuminates mechanisms regulating non-centrosomal microtubule nucleation. In S. pombe, cytoplasmic microtubule nucleation, which depends on the Mto1/2 complex, ceases during mitosis. Here, Borek et al., show that multisite phosphorylation of Mto1/2 during mitosis disassembles the Mto1/2 complex and prevents microtubule nucleation activity.
Collapse
Affiliation(s)
- Weronika E Borek
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Lynda M Groocock
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Itaru Samejima
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Juan Zou
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Flavia de Lima Alves
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Juri Rappsilber
- 1] Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK [2] Department of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin 13355, Germany
| | - Kenneth E Sawin
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| |
Collapse
|
85
|
Yang R, Feldman JL. SPD-2/CEP192 and CDK Are Limiting for Microtubule-Organizing Center Function at the Centrosome. Curr Biol 2015; 25:1924-31. [PMID: 26119750 DOI: 10.1016/j.cub.2015.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/18/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022]
Abstract
The centrosome acts as the microtubule-organizing center (MTOC) during mitosis in animal cells. Microtubules are nucleated and anchored by γ-tubulin ring complexes (γ-TuRCs) embedded within the centrosome's pericentriolar material (PCM). The PCM is required for the localization of γ-TuRCs, and both are steadily recruited to the centrosome, culminating in a peak in MTOC function in metaphase. In differentiated cells, the centrosome is often attenuated as an MTOC and MTOC function is reassigned to non-centrosomal sites such as the apical membrane in epithelial cells, the nuclear envelope in skeletal muscle, and down the lengths of axons and dendrites in neurons. Hyperactive MTOC function at the centrosome is associated with epithelial cancers and with invasive behavior in tumor cells. Little is known about the mechanisms that limit MTOC activation at the centrosome. Here, we find that MTOC function at the centrosome is completely inactivated during cell differentiation in C. elegans embryonic intestinal cells and MTOC function is reassigned to the apical membrane. In cells that divide after differentiation, the cellular MTOC state switches between the membrane and the centrosome. Using cell fusion experiments in live embryos, we find that the centrosome MTOC state is dominant and that the inactive MTOC state of the centrosome is malleable; fusion of a mitotic cell to a differentiated or interphase cell results in rapid reactivation of the centrosome MTOC. We show that conversion of MTOC state involves the conserved centrosome protein SPD-2/CEP192 and CDK activity from the mitotic cell.
Collapse
Affiliation(s)
- Renzhi Yang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jessica L Feldman
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
86
|
Salinas-Saavedra M, Stephenson TQ, Dunn CW, Martindale MQ. Par system components are asymmetrically localized in ectodermal epithelia, but not during early development in the sea anemone Nematostella vectensis. EvoDevo 2015; 6:20. [PMID: 26101582 PMCID: PMC4476184 DOI: 10.1186/s13227-015-0014-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/12/2015] [Indexed: 11/10/2022] Open
Abstract
Background The evolutionary origins of cell polarity in metazoan embryos are unclear. In most bilaterian animals, embryonic and cell polarity are set up during embryogenesis with the same molecules being utilized to regulate tissue polarity at different life stages. Atypical protein kinase C (aPKC), lethal giant larvae (Lgl), and Partitioning-defective (Par) proteins are conserved components of cellular polarization, and their role in establishing embryonic asymmetry and tissue polarity have been widely studied in model bilaterian groups. However, the deployment and role of these proteins in animals outside Bilateria has not been studied. We address this by characterizing the localization of different components of the Par system during early development of the sea anemone Nematostella vectensis, a member of the clade Cnidaria, the sister group to bilaterian animals. Results Immunostaining using specific N. vectensis antibodies and the overexpression of mRNA-reporter constructs show that components of the N. vectensis Par system (NvPar-1, NvPar-3, NvPar-6, NvaPKC, and NvLgl) distribute throughout the microtubule cytoskeleton of eggs and early embryos without clear polarization along any embryonic axis. However, they become asymmetrically distributed at later stages, when the embryo forms an ectodermal epithelial layer. NvLgl and NvPar-1 localize in the basolateral cortex, and NvaPKC, NvPar-6, and NvPar-3 at the apical zone of the cell in a manner seen in bilaterian animals. Conclusions The cnidarian N. vectensis exhibits clear polarity at all stages of early embryonic development, which appears to be established independent of the Par system reported in many bilaterian embryos. However, in N. vectensis, using multiple immunohistochemical and fluorescently labeled markers in vivo, components of this system are deployed to organize epithelial cell polarity at later stages of development. This suggests that Par system proteins were co-opted to organize early embryonic cell polarity at the base of the Bilateria and that, therefore, different molecular mechanisms operate in early cnidarian embryogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0014-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miguel Salinas-Saavedra
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 N, Ocean Shore Blvd, St. Augustine, FL 32080-8610 USA
| | - Thomas Q Stephenson
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 N, Ocean Shore Blvd, St. Augustine, FL 32080-8610 USA
| | - Casey W Dunn
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912 USA
| | - Mark Q Martindale
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 N, Ocean Shore Blvd, St. Augustine, FL 32080-8610 USA
| |
Collapse
|
87
|
Shaye DD, Greenwald I. The disease-associated formin INF2/EXC-6 organizes lumen and cell outgrowth during tubulogenesis by regulating F-actin and microtubule cytoskeletons. Dev Cell 2015; 32:743-55. [PMID: 25771894 DOI: 10.1016/j.devcel.2015.01.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/02/2014] [Accepted: 01/13/2015] [Indexed: 10/23/2022]
Abstract
We investigate how outgrowth at the basolateral cell membrane is coordinated with apical lumen formation in the development of a biological tube by characterizing exc-6, a gene required for C. elegans excretory cell (EC) tubulogenesis. We show that EXC-6 is orthologous to the human formin INF2, which polymerizes filamentous actin (F-actin) and binds microtubules (MTs) in vitro. Dominant INF2 mutations cause focal segmental glomerulosclerosis (FSGS), a kidney disease, and FSGS+Charcot-Marie-Tooth neuropathy. We show that activated INF2 can substitute for EXC-6 in C. elegans and that disease-associated mutations cause constitutive activity. Using genetic analysis and live imaging, we show that exc-6 regulates MT and F-actin accumulation at EC tips and dynamics of basolateral-localized MTs, indicating that EXC-6 organizes F-actin and MT cytoskeletons during tubulogenesis. The pathology associated with INF2 mutations is believed to reflect misregulation of F-actin, but our results suggest alternative or additional mechanisms via effects on MT dynamics.
Collapse
Affiliation(s)
- Daniel D Shaye
- Howard Hughes Medical Institute, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA.
| | - Iva Greenwald
- Howard Hughes Medical Institute, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA; Department of Genetics and Development, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
88
|
Murata SI, Warigaya K, Matsuzaki I, Itonaga M, Shimizu Y, Shuto M. Microtubule-organizing center-mediated nuclear polarity in various normal and neoplastic human tissues. Virchows Arch 2015; 466:625-35. [PMID: 25742907 DOI: 10.1007/s00428-015-1744-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 12/24/2014] [Accepted: 02/11/2015] [Indexed: 11/26/2022]
Abstract
Nuclear polarity is characterized by intracytoplasmic nuclear positioning and alignment in the tissue. The mechanisms responsible for maintaining nuclear polarity in normal cells and its disturbance in neoplastic cells are not understood. We studied microtubule-organizing center (MTOC) positioning-mediated nuclear polarity in various normal and neoplastic human tissues, as well as in cultured cells. To visualize the MTOC in cells, gamma-tubulin and pericentrin were immunohistochemically stained by fluorescence and non-fluorescence methods. Position of MTOC in normal and neoplastic tissue was assessed by spatial relationship with nucleus and apico-basal axis. We found MTOC positioning to be related to morphogenesis in various normal and neoplastic human tissues, as well as in cultured cells. MTOC positions were different between two-dimensional cultured isolated cells and three-dimensional cultured gland-formed cells. The MTOC position was specific depending on the cell type in the tissue structure. In particular, glandular and urothelial epithelium had a strong relationship with preservation of nuclear polarity and MTOC positioning. Carcinoma cells showed an irregular position or absence of the MTOC depending on poorer differentiation and higher grade of carcinomas. In conclusion, the position of the MTOC affects regulation of nuclear polarity and morphogenesis of normal and pathological tissue structure.
Collapse
Affiliation(s)
- Shin-Ichi Murata
- Department of Human Pathology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan,
| | | | | | | | | | | |
Collapse
|
89
|
Saegusa K, Sato M, Sato K, Nakajima-Shimada J, Harada A, Sato K. Caenorhabditis elegans chaperonin CCT/TRiC is required for actin and tubulin biogenesis and microvillus formation in intestinal epithelial cells. Mol Biol Cell 2014; 25:3095-3104. [PMID: 25143409 PMCID: PMC4196862 DOI: 10.1091/mbc.e13-09-0530] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 07/29/2014] [Accepted: 08/06/2014] [Indexed: 11/11/2022] Open
Abstract
Intestinal epithelial cells have unique apical membrane structures, known as microvilli, that contain bundles of actin microfilaments. In this study, we report that Caenorhabditis elegans cytosolic chaperonin containing TCP-1 (CCT) is essential for proper formation of microvilli in intestinal cells. In intestinal cells of cct-5(RNAi) animals, a substantial amount of actin is lost from the apical area, forming large aggregates in the cytoplasm, and the apical membrane is deformed into abnormal, bubble-like structures. The length of the intestinal microvilli is decreased in these animals. However, the overall actin protein levels remain relatively unchanged when CCT is depleted. We also found that CCT depletion causes a reduction in the tubulin levels and disorganization of the microtubule network. In contrast, the stability and localization of intermediate filament protein IFB-2, which forms a dense filamentous network underneath the apical surface, appears to be superficially normal in CCT-deficient cells, suggesting substrate specificity of CCT in the folding of filamentous cytoskeletons in vivo. Our findings demonstrate physiological functions of CCT in epithelial cell morphogenesis using whole animals.
Collapse
Affiliation(s)
- Keiko Saegusa
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Miyuki Sato
- Laboratory of Molecular Membrane Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Katsuya Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | | | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| |
Collapse
|
90
|
Elric J, Etienne-Manneville S. Centrosome positioning in polarized cells: common themes and variations. Exp Cell Res 2014; 328:240-8. [PMID: 25218948 DOI: 10.1016/j.yexcr.2014.09.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 09/01/2014] [Indexed: 12/17/2022]
Abstract
The centrosome position is tightly regulated during the cell cycle and during differentiated cellular functions. Because centrosome organizes the microtubule network to coordinate both intracellular organization and cell signaling, centrosome positioning is crucial to determine either the axis of cell division, the direction of cell migration or the polarized immune response of lymphocytes. Since alteration of centrosome positioning seems to promote cell transformation and tumor spreading, the molecular mechanisms controlling centrosome movement in response to extracellular and intracellular cues are under intense investigation. Evolutionary conserved pathways involving polarity proteins and cytoskeletal rearrangements are emerging as common regulators of centrosome positioning in a wide variety of cellular contexts.
Collapse
Affiliation(s)
- Julien Elric
- Institut Pasteur - CNRS URA 2582, Cell Polarity, Migration and Cancer Unit, 25 rue du Dr Roux, 75724 Paris Cedex 15, France; Université Pierre et Marie Curie, Cellule Pasteur UPMC, rue du Dr Roux, 75015 Paris, France
| | - Sandrine Etienne-Manneville
- Institut Pasteur - CNRS URA 2582, Cell Polarity, Migration and Cancer Unit, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
91
|
Matis M, Russler-Germain DA, Hu Q, Tomlin CJ, Axelrod JD. Microtubules provide directional information for core PCP function. eLife 2014; 3:e02893. [PMID: 25124458 PMCID: PMC4151085 DOI: 10.7554/elife.02893] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Planar cell polarity (PCP) signaling controls the polarization of cells within the plane of an epithelium. Two molecular modules composed of Fat(Ft)/Dachsous(Ds)/Four-jointed(Fj) and a ‘PCP-core’ including Frizzled(Fz) and Dishevelled(Dsh) contribute to polarization of individual cells. How polarity is globally coordinated with tissue axes is unresolved. Consistent with previous results, we find that the Ft/Ds/Fj-module has an effect on a MT-cytoskeleton. Here, we provide evidence for the model that the Ft/Ds/Fj-module provides directional information to the core-module through this MT organizing function. We show Ft/Ds/Fj-dependent initial polarization of the apical MT-cytoskeleton prior to global alignment of the core-module, reveal that the anchoring of apical non-centrosomal MTs at apical junctions is polarized, observe that directional trafficking of vesicles containing Dsh depends on Ft, and demonstrate the feasibility of this model by mathematical simulation. Together, these results support the hypothesis that Ft/Ds/Fj provides a signal to orient core PCP function via MT polarization. DOI:http://dx.doi.org/10.7554/eLife.02893.001 Almost all cells exhibit some sort of polarity: the epithelial cells that line the digestive tract, for example, have an apical domain, which faces out, and a basal domain, which faces the tissue underneath. Some epithelial cells also exhibit planar cell polarity: this involves key structures within the cell being oriented along an axis within the plane of an epithelium. Disruption of planar cell polarity is associated with various developmental defects. It is known that the planar polarity of epithelial cells relies on two molecular complexes—a ‘core’ complex and a signaling complex called the Ft/Ds/Fj system—working together. While each of these complexes contributes to whole tissues having the correct polarity, the way they interact to achieve this is not fully understood. Now, by studying epithelial cells in the wings of fruit flies, Matis et al. have provided evidence for a specific model for this interaction. The process starts with the Ft/Ds/Fj signaling complex, which orients structures called microtubules inside the cell. Microtubules are involved in providing structural support for cells, and also in the transport of organelles within cells. Once the microtubules are oriented in the correct direction, they help to orient the core complex by moving some of the proteins that make up this complex in a specified direction. An important future challenge will be to understand how the proteins in the Ft/Ds/Fj system interact with microtubules to give them their orientation. DOI:http://dx.doi.org/10.7554/eLife.02893.002
Collapse
Affiliation(s)
- Maja Matis
- Department of Pathology, Stanford University School of Medicine, Stanford, United States
| | | | - Qie Hu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, United States
| | - Claire J Tomlin
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, United States
| | - Jeffrey D Axelrod
- Department of Pathology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
92
|
Werner ME, Mitchell JW, Putzbach W, Bacon E, Kim SK, Mitchell BJ. Radial intercalation is regulated by the Par complex and the microtubule-stabilizing protein CLAMP/Spef1. J Cell Biol 2014; 206:367-76. [PMID: 25070955 PMCID: PMC4121976 DOI: 10.1083/jcb.201312045] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 06/25/2014] [Indexed: 01/28/2023] Open
Abstract
The directed movement of cells is critical for numerous developmental and disease processes. A developmentally reiterated form of migration is radial intercalation; the process by which cells move in a direction orthogonal to the plane of the tissue from an inner layer to an outer layer. We use the radial intercalation of cells into the skin of Xenopus laevis embryos as a model to study directed cell migration within an epithelial tissue. We identify a novel function for both the microtubule-binding protein CLAMP and members of the microtubule-regulating Par complex during intercalation. Specifically, we show that Par3 and aPKC promote the apical positioning of centrioles, whereas CLAMP stabilizes microtubules along the axis of migration. We propose a model in which the Par complex defines the orientation of apical migration during intercalation and in which subcellular localization of CLAMP promotes the establishment of an axis of microtubule stability required for the active migration of cells into the outer epithelium.
Collapse
Affiliation(s)
- Michael E Werner
- Department of Cell and Molecular Biology and Driskill Graduate Program in Life Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611
| | - Jennifer W Mitchell
- Department of Cell and Molecular Biology and Driskill Graduate Program in Life Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611
| | - William Putzbach
- Department of Cell and Molecular Biology and Driskill Graduate Program in Life Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611
| | - Elizabeth Bacon
- Department of Cell and Molecular Biology and Driskill Graduate Program in Life Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611
| | - Sun K Kim
- Department of Cell and Molecular Biology and Driskill Graduate Program in Life Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611
| | - Brian J Mitchell
- Department of Cell and Molecular Biology and Driskill Graduate Program in Life Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
93
|
Booth AJR, Blanchard GB, Adams RJ, Röper K. A dynamic microtubule cytoskeleton directs medial actomyosin function during tube formation. Dev Cell 2014; 29:562-576. [PMID: 24914560 PMCID: PMC4064686 DOI: 10.1016/j.devcel.2014.03.023] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/28/2014] [Accepted: 03/27/2014] [Indexed: 12/13/2022]
Abstract
The cytoskeleton is a major determinant of cell-shape changes that drive the formation of complex tissues during development. Important roles for actomyosin during tissue morphogenesis have been identified, but the role of the microtubule cytoskeleton is less clear. Here, we show that during tubulogenesis of the salivary glands in the fly embryo, the microtubule cytoskeleton undergoes major rearrangements, including a 90° change in alignment relative to the apicobasal axis, loss of centrosomal attachment, and apical stabilization. Disruption of the microtubule cytoskeleton leads to failure of apical constriction in placodal cells fated to invaginate. We show that this failure is due to loss of an apical medial actomyosin network whose pulsatile behavior in wild-type embryos drives the apical constriction of the cells. The medial actomyosin network interacts with the minus ends of acentrosomal microtubule bundles through the cytolinker protein Shot, and disruption of Shot also impairs apical constriction. Large-scale rearrangement of microtubules accompanies early tube formation Loss of microtubules leads to loss of apical constriction during tube formation During tubulogenesis, apical constriction is driven by pulsatile medial actomyosin Microtubules and the cytolinker Shot stabilize the medial actomyosin
Collapse
Affiliation(s)
- Alexander J R Booth
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Guy B Blanchard
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Richard J Adams
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Katja Röper
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
94
|
Establishing the plane of symmetry for lumen formation and bilateral brain formation in the zebrafish neural rod. Semin Cell Dev Biol 2014; 31:100-5. [PMID: 24721474 DOI: 10.1016/j.semcdb.2014.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 04/01/2014] [Indexed: 11/21/2022]
Abstract
The lumen of the zebrafish neural tube develops precisely at the midline of the solid neural rod primordium. This process depends on cell polarisation and cell rearrangements, both of which are manifest at the midline of the neural rod. The result of this cell polarisation and cell rearrangement is an epithelial tube that has overt mirror-symmetry, such that cell morphology and apicobasal polarisation are mirrored across the midline of the neural tube. This article discusses how this mirror-symmetry is established and proposes the hypothesis that positioning the cells' centrosomes to the midline of the neural rod is a key event in organising this process.
Collapse
|
95
|
Wang T, Yanger K, Stanger BZ, Cassio D, Bi E. Cytokinesis defines a spatial landmark for hepatocyte polarization and apical lumen formation. J Cell Sci 2014; 127:2483-92. [PMID: 24706948 DOI: 10.1242/jcs.139923] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
By definition, all epithelial cells have apical-basal polarity, but it is unclear how epithelial polarity is acquired and how polarized cells engage in tube formation. Here, we show that hepatocyte polarization is linked to cytokinesis using the rat hepatocyte cell line Can 10. Before abscission, polarity markers are delivered to the site of cell division in a strict spatiotemporal order. Immediately after abscission, daughter cells remain attached through a unique disc-shaped structure, which becomes the site for targeted exocytosis, resulting in the formation of a primitive bile canaliculus. Subsequently, oriented cell division and asymmetric cytokinesis occur at the bile canaliculus midpoint, resulting in its equal partitioning into daughter cells. Finally, successive cycles of oriented cell division and asymmetric cytokinesis lead to the formation of a tubular bile canaliculus, which is shared by two rows of hepatocytes. These findings define a novel mechanism for cytokinesis-linked polarization and tube formation, which appears to be broadly conserved in diverse cell types.
Collapse
Affiliation(s)
- Ting Wang
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kilangsungla Yanger
- Gastroenterology Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ben Z Stanger
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA Gastroenterology Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Doris Cassio
- INSERM, UMR-S 757, Université Paris-Sud, Orsay, F-91405, France
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
96
|
Abstract
Little is understood about how the centrosome, a complex organelle and signaling hub consisting of hundreds of components, is assembled. In this issue of Developmental Cell, Conduit et al. (2014) shed light on this issue, showing that modification and recruitment of Centrosomin to the centrosome center creates a dynamic pericentriolar matrix.
Collapse
Affiliation(s)
- Tim Stearns
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
97
|
Centrosomes and the Art of Mitotic Spindle Maintenance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 313:179-217. [DOI: 10.1016/b978-0-12-800177-6.00006-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
98
|
Abstract
Axon regeneration after damage is widespread in the animal kingdom, and the nematode Caenorhabditis elegans has recently emerged as a tractable model in which to study the genetics and cell biology of axon regrowth in vivo. A key early step in axon regrowth is the conversion of part of a mature axon shaft into a growth cone-like structure, involving coordinated alterations in the microtubule, actin, and neurofilament systems. Recent attention has focused on microtubule dynamics as a determinant of axon-regrowth ability in several organisms. Live imaging studies have begun to reveal how the microtubule cytoskeleton is remodeled after axon injury, as well as the regulatory pathways involved. The dual leucine zipper kinase family of mixed-lineage kinases has emerged as a critical sensor of axon damage and plays a key role in regulating microtubule dynamics in the damaged axon.
Collapse
Affiliation(s)
- Andrew D Chisholm
- Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, California 92093;
| |
Collapse
|
99
|
Zhu X, Kaverina I. Golgi as an MTOC: making microtubules for its own good. Histochem Cell Biol 2013; 140:361-7. [PMID: 23821162 DOI: 10.1007/s00418-013-1119-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2013] [Indexed: 12/22/2022]
Abstract
In cells, microtubules (MTs) are nucleated at MT-organizing centers (MTOCs). The centrosome-based MTOCs organize radial MT arrays, which are often not optimal for polarized trafficking. A recently discovered subset of non-centrosomal MTs nucleated at the Golgi has proven to be indispensable for the Golgi organization, post-Golgi trafficking and cell polarity. Here, we summarize the history of this discovery, known molecular prerequisites of MT nucleation at the Golgi and unique functions of Golgi-derived MTs.
Collapse
Affiliation(s)
- Xiaodong Zhu
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | |
Collapse
|
100
|
Abstract
The centrosome, a major organizer of microtubules, has important functions in regulating cell shape, polarity, cilia formation and intracellular transport as well as the position of cellular structures, including the mitotic spindle. By means of these activities, centrosomes have important roles during animal development by regulating polarized cell behaviors, such as cell migration or neurite outgrowth, as well as mitotic spindle orientation. In recent years, the pace of discovery regarding the structure and composition of centrosomes has continuously accelerated. At the same time, functional studies have revealed the importance of centrosomes in controlling both morphogenesis and cell fate decision during tissue and organ development. Here, we review examples of centrosome and centriole positioning with a particular emphasis on vertebrate developmental systems, and discuss the roles of centrosome positioning, the cues that determine positioning and the mechanisms by which centrosomes respond to these cues. The studies reviewed here suggest that centrosome functions extend to the development of tissues and organs in vertebrates.
Collapse
Affiliation(s)
- Nan Tang
- Department of Anatomy, Cardiovascular Research Institute, The University of California, San Francisco, USA.
| | | |
Collapse
|