51
|
Interactions between the microbiome and mating influence the female's transcriptional profile in Drosophila melanogaster. Sci Rep 2020; 10:18168. [PMID: 33097776 PMCID: PMC7584617 DOI: 10.1038/s41598-020-75156-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Drosophila melanogaster females undergo a variety of post-mating changes that influence their activity, feeding behavior, metabolism, egg production and gene expression. These changes are induced either by mating itself or by sperm or seminal fluid proteins. In addition, studies have shown that axenic females-those lacking a microbiome-have altered fecundity compared to females with a microbiome, and that the microbiome of the female's mate can influence reproductive success. However, the extent to which post-mating changes in transcript abundance are affected by microbiome state is not well-characterized. Here we investigated fecundity and the post-mating transcript abundance profile of axenic or control females after mating with either axenic or control males. We observed interactions between the female's microbiome and her mating status: transcripts of genes involved in reproduction and genes with neuronal functions were differentially abundant depending on the females' microbiome status, but only in mated females. In addition, immunity genes showed varied responses to either the microbiome, mating, or a combination of those two factors. We further observed that the male's microbiome status influences the fecundity of both control and axenic females, while only influencing the transcriptional profile of axenic females. Our results indicate that the microbiome plays a vital role in the post-mating switch of the female's transcriptome.
Collapse
|
52
|
Nunes C, Sucena É, Koyama T. Endocrine regulation of immunity in insects. FEBS J 2020; 288:3928-3947. [PMID: 33021015 DOI: 10.1111/febs.15581] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/03/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
Organisms have constant contact with potentially harmful agents that can compromise their fitness. However, most of the times these agents fail to cause serious disease by virtue of the rapid and efficient immune responses elicited in the host that can range from behavioural adaptations to immune system triggering. The immune system of insects does not comprise the adaptive arm, making it less complex than that of vertebrates, but key aspects of the activation and regulation of innate immunity are conserved across different phyla. This is the case for the hormonal regulation of immunity as a part of the broad organismal responses to external conditions under different internal states. In insects, depending on the physiological circumstances, distinct hormones either enhance or suppress the immune response integrating individual (and often collective) responses physiologically and behaviourally. In this review, we provide an overview of our current knowledge on the endocrine regulation of immunity in insects, its mechanisms and implications on metabolic adaptation and behaviour. We highlight the importance of this multilayered regulation of immunity in survival and reproduction (fitness) and its dependence on the hormonal integration with other mechanisms and life-history traits.
Collapse
Affiliation(s)
| | - Élio Sucena
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
53
|
Biwot JC, Zhang HB, Liu C, Qiao JX, Yu XQ, Wang YF. Wolbachia-induced expression of kenny gene in testes affects male fertility in Drosophila melanogaster. INSECT SCIENCE 2020; 27:869-882. [PMID: 31617302 DOI: 10.1111/1744-7917.12730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 09/18/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Wolbachia are Gram-negative endosymbionts that are known to cause embryonic lethality when infected male insects mate with uninfected females or with females carrying a different strain of Wolbachia, a situation characterized as cytoplasmic incompatibility (CI). However, the mechanism of CI is not yet fully understood, although recent studies on Drosophila melanogaster have achieved great progress. Here, we found that Wolbachia infection caused changes in the expressions of several immunity-related genes, including significant upregulation of kenny (key), in the testes of D. melanogaster. Overexpression of key in fly testes led to a significant decrease in egg hatch rates when these flies mate with wild-type females. Wolbachia-infected females could rescue this embryonic lethality. Furthermore, in key overexpressing testes terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling signal was significantly stronger than in the control testes, and the level of reactive oxygen species was significantly increased. Overexpression of key also resulted in alterations of some other immunity-related gene expressions, including the downregulation of Zn72D. Knockdown of Zn72D in fly testes also led to a significant decrease in egg hatch rates. These results suggest that Wolbachia might induce the defect in male host fertility by immunity-related pathways and thus cause an oxidative damage and cell death in male testes.
Collapse
Affiliation(s)
- John C Biwot
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Hua-Bao Zhang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Chen Liu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Jun-Xue Qiao
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Xiao-Qiang Yu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| |
Collapse
|
54
|
Wei J, Gao H, Yang Y, Liu H, Yu H, Chen Z, Dong B. Seasonal dynamics and starvation impact on the gut microbiome of urochordate ascidian Halocynthia roretzi. Anim Microbiome 2020; 2:30. [PMID: 33499981 PMCID: PMC7807810 DOI: 10.1186/s42523-020-00048-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/05/2020] [Indexed: 02/02/2023] Open
Abstract
Background Gut microbiota plays important roles in host animal metabolism, homeostasis and environmental adaptation. However, the interplay between the gut microbiome and urochordate ascidian, the most closet relative of vertebrate, remains less explored. In this study, we characterized the gut microbial communities of urochordate ascidian (Halocynthia roretzi) across the changes of season and starvation stress using a comprehensive set of omic approaches including 16S rRNA gene amplicon sequencing, shotgun metagenomics, metabolomic profiling, and transcriptome sequencing. Results The 16S rRNA gene amplicon profiling revealed that ascidians harbor indigenous gut microbiota distinctly different to the marine microbial community and significant variations in composition and abundance of gut bacteria, with predominant bacterial orders representing each season. Depressed alpha-diversities of gut microbiota were observed across starvation stress when compared to the communities in aquafarm condition. Synechococcales involving photosynthesis and its related biosynthesis was reduced in abundance while the enrichments of Xanthomonadales and Legionellales may facilitate bile acid biosynthesis during starvation. Metabolomics analysis found that long chain fatty acids, linolenic acid, cyanoamino acid, and pigments derived from gut bacteria were upregulated, suggesting a beneficial contribution of the gut microbiome to the ascidian under starvation stress. Conclusions Our findings revealed seasonal variation of ascidian gut microbiota. Defense and energy-associated metabolites derived from gut microbiome may provide an adaptive interplay between gut microbiome and ascidian host that maintains a beneficial metabolic system across season and starvation stress. The diversity-generating metabolisms from both microbiota and host might lead to the co-evolution and environmental adaptation. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Jiankai Wei
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Hongwei Gao
- Technology Center of Qingdao Customs, Qingdao, 266002, China
| | - Yang Yang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Haiming Liu
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Haiyan Yu
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Zigui Chen
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Bo Dong
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China. .,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
55
|
Ernst DA, Fitak RR, Schmidt M, Derby CD, Johnsen S, Lohmann KJ. Pulse magnetization elicits differential gene expression in the central nervous system of the Caribbean spiny lobster, Panulirus argus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:725-742. [PMID: 32607762 DOI: 10.1007/s00359-020-01433-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 05/18/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022]
Abstract
Diverse animals use Earth's magnetic field to guide their movements, but the neural and molecular mechanisms underlying the magnetic sense remain enigmatic. One hypothesis is that particles of the mineral magnetite (Fe3O4) provide the basis of magnetoreception. Here we examined gene expression in the central nervous system of a magnetically sensitive invertebrate, the Caribbean spiny lobster (Panulirus argus), after applying a magnetic pulse known to alter magnetic orientation behavior. Numerous genes were differentially expressed in response to the pulse, including 647 in the brain, 1256 in the subesophageal ganglion, and 712 in the thoracic ganglia. Many such genes encode proteins linked to iron regulation, oxidative stress, and immune response, consistent with possible impacts of a magnetic pulse on magnetite-based magnetoreceptors. Additionally, however, altered expression also occurred for numerous genes with no apparent link to magnetoreception, including genes encoding proteins linked to photoreception, carbohydrate and hormone metabolism, and other physiological processes. Overall, the results are consistent with the magnetite hypothesis of magnetoreception, yet also reveal that in spiny lobsters, a strong pulse altered expression of > 10% of all expressed genes, including many seemingly unrelated to sensory processes. Thus, caution is required when interpreting the effects of magnetic pulses on animal behavior.
Collapse
Affiliation(s)
- David A Ernst
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA. .,Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA.
| | - Robert R Fitak
- Genomics and Bioinformatics Cluster, Department of Biology, University of Central Florida, Orlando, FL, 32816, USA
| | - Manfred Schmidt
- Neuroscience Institute and Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Charles D Derby
- Neuroscience Institute and Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Sönke Johnsen
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Kenneth J Lohmann
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
56
|
Özbek R, Mukherjee K, Uçkan F, Vilcinskas A. Reprograming of epigenetic mechanisms controlling host insect immunity and development in response to egg-laying by a parasitoid wasp. Proc Biol Sci 2020; 287:20200704. [PMID: 32519598 DOI: 10.1098/rspb.2020.0704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Parasitoids are insects that use other insects as hosts. They sabotage host cellular and humoral defences to promote the survival of their offspring by injecting viruses and venoms along with their eggs. Many pathogens and parasites disrupt host epigenetic mechanisms to overcome immune system defences, and we hypothesized that parasitoids may use the same strategy. We used the ichneumon wasp Pimpla turionellae as a model idiobiont parasitoid to test this hypothesis, with pupae of the greater wax moth Galleria mellonella as the host. We found that parasitoid infestation involves the suppression of host immunity-related effector genes and the modulation of host genes involved in developmental hormone signalling. The transcriptional reprogramming of host genes following the injection of parasitoid eggs was associated with changes in host epigenetic mechanisms. The introduction of parasitoids resulted in a transient decrease in host global DNA methylation and the modulation of acetylation ratios for specific histones. Genes encoding regulators of histone acetylation and deacetylation were mostly downregulated in the parasitized pupae, suggesting that parasitoids can suppress host transcription. We also detected a strong parasitoid-specific effect on host microRNAs regulating gene expression at the post-transcriptional level. Our data therefore support the hypothesis that parasitoids may favour the survival of their offspring by interfering with host epigenetic mechanisms to suppress the immune system and disrupt development.
Collapse
Affiliation(s)
- Rabia Özbek
- Branch of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Krishnendu Mukherjee
- Branch of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Fevzi Uçkan
- Department of Biology, Faculty of Science and Literature, Kocaeli University, 41380 Kocaeli, Turkey
| | - Andreas Vilcinskas
- Branch of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany.,Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich Buff Ring 26-32, 35392 Giessen, Germany.,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| |
Collapse
|
57
|
Fricke C, Ávila-Calero S, Armitage SAO. Genotypes and their interaction effects on reproduction and mating-induced immune activation in Drosophila melanogaster. J Evol Biol 2020; 33:930-941. [PMID: 32267583 DOI: 10.1111/jeb.13625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 12/19/2022]
Abstract
Mating causes considerable alterations in female physiology and behaviour, and immune gene expression, partly due to proteins transferred from males to females during copulation. The magnitude of these phenotypic changes could be driven by the genotypes of males and females, as well as their interaction. To test this, we carried out a series of genotype-by-genotype (G × G) experiments using Drosophila melanogaster populations from two distant geographical locations. We expected lines to have diverged in male reproductive traits and females to differ in their responses to these traits. We examined female physiological and behavioural post-mating responses to male mating traits, that is behaviour and ejaculate composition, in the short to mid-term (48 hr) following mating. We then explored whether a sexually transferred molecule, sex peptide (SP), is the mechanism behind our observed female post-mating responses. Our results show that the genotypes of both sexes as well as the interaction between male and female genotypes affect mating and post-mating reproductive traits. Immune gene expression of three candidate genes increased in response to mating and was genotype-dependent but did not show a G × G signature. Males showed genotype-dependent SP expression in the 7 days following eclosion, but female genotypes showed no differential sensitivity to the receipt of SP. The two genotypes demonstrated clear divergence in physiological traits in short- to mid-term responses to mating, but the longer-term consequences of these initial dynamics remain to be uncovered.
Collapse
Affiliation(s)
- Claudia Fricke
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Sergio Ávila-Calero
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany.,Münster Graduate School of Evolution, University of Münster, Münster, Germany
| | - Sophie A O Armitage
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
58
|
Pauletto M, Cattelan S, Pilastro A, Babbucci M, Bargelloni L, Gasparini C. Molecular insights into post-mating immune response in a fish with internal fertilization. J Evol Biol 2020; 33:751-761. [PMID: 32150779 DOI: 10.1111/jeb.13614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 12/11/2022]
Abstract
The tight connection between immunity and reproduction has been studied for decades. However, basic knowledge at the molecular level of the effect of mating on immune function is still lacking in many taxa. Determining whether and how the immune system is engaged after mating is a crucial step in understanding post-mating mechanisms of reproduction and sexual selection. Here, we study the transcriptional changes in immunity-related genes caused by the ejaculate in the female reproductive tract using a model species for sexual selection studies, the guppy Poecilia reticulata. To study changes triggered by the ejaculate only, rather than caused by mating, we used artificial inseminations to transfer ejaculate into females. We then compared gene expression in the reproductive tract (gonoduct and ovary) of females artificially inseminated either with ejaculate or with a control solution, after 1 hr and after 6 hr. Overall, contact with ejaculate caused short-term changes in the expression of immune-related genes in the female reproductive tract, with a complex pattern of up- and down-regulation of immune-related pathways, but with clear indication of a marked down-regulation of the immune system shortly after ejaculate contact. This suggests a link between immune function and processes occurring between mating and fertilization in this species.
Collapse
Affiliation(s)
- Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | | | | | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Clelia Gasparini
- Department of Biology, University of Padova, Padova, Italy.,Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
59
|
Wu K, Li S, Wang J, Ni Y, Huang W, Liu Q, Ling E. Peptide Hormones in the Insect Midgut. Front Physiol 2020; 11:191. [PMID: 32194442 PMCID: PMC7066369 DOI: 10.3389/fphys.2020.00191] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/19/2020] [Indexed: 12/20/2022] Open
Abstract
Insects produce many peptide hormones that play important roles in regulating growth, development, immunity, homeostasis, stress, and other processes to maintain normal life. As part of the digestive system, the insect midgut is also affected by hormones secreted from the prothoracic gland, corpus allatum, and various neuronal cells; these hormones regulate the secretion and activity of insects’ digestive enzymes and change their feeding behaviors. In addition, the insect midgut produces certain hormones when it recognizes various components or pathogenic bacteria in ingested foods; concurrently, the hormones regulate other tissues and organs. In addition, intestinal symbiotic bacteria can produce hormones that influence insect signaling pathways to promote host growth and development; this interaction is the result of long-term evolution. In this review, the types, functions, and mechanisms of hormones working on the insect midgut, as well as hormones produced therein, are reviewed for future reference in biological pest control.
Collapse
Affiliation(s)
- Kai Wu
- College of Life Sciences, Shangrao Normal University, Shangrao, China
| | - Shirong Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jing Wang
- College of Life Sciences, Shangrao Normal University, Shangrao, China
| | - Yuyang Ni
- College of Life Sciences, Shangrao Normal University, Shangrao, China
| | - Wuren Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qiuning Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, China
| | - Erjun Ling
- Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
60
|
Belmonte RL, Corbally MK, Duneau DF, Regan JC. Sexual Dimorphisms in Innate Immunity and Responses to Infection in Drosophila melanogaster. Front Immunol 2020; 10:3075. [PMID: 32076419 PMCID: PMC7006818 DOI: 10.3389/fimmu.2019.03075] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/16/2019] [Indexed: 12/20/2022] Open
Abstract
The sexes show profound differences in responses to infection and the development of autoimmunity. Dimorphisms in immune responses are ubiquitous across taxa, from arthropods to vertebrates. Drosophila melanogaster shows strong sex dimorphisms in immune system responses at baseline, upon pathogenic challenge, and over aging. We have performed an exhaustive survey of peer-reviewed literature on Drosophila immunity, and present a database of publications indicating the sex(es) analyzed in each study. While we found a growing interest in the community in adult immunity and in reporting both sexes, the main body of work in this field uses only one sex, or does not stratify by sex. We synthesize evidence for sexually dimorphic responses to bacterial, viral, and fungal infections. Dimorphisms may be mediated by distinct immune compartments, and we review work on sex differences in behavioral, epithelial, cellular, and systemic (fat body-mediated) immunity. Emerging work on sexually dimorphic aging of immune tissues, immune senescence, and inflammation are examined. We consider evolutionary drivers for sex differences in immune investment, highlight the features of Drosophila biology that make it particularly amenable to studies of immune dimorphisms, and discuss areas for future exploration.
Collapse
Affiliation(s)
- Rebecca L. Belmonte
- Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Mary-Kate Corbally
- Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - David F. Duneau
- Laboratoire Evolution & Diversite Biologique, UMR5174 EDB, CNRS, Université Toulouse 3 Paul Sabatier, Toulouse, France
| | - Jennifer C. Regan
- Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
61
|
Filice DCS, Bhargava R, Dukas R. Plasticity in male mating behavior modulates female life history in fruit flies. Evolution 2020; 74:365-376. [DOI: 10.1111/evo.13926] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/12/2019] [Accepted: 12/27/2019] [Indexed: 12/16/2022]
Affiliation(s)
- David C. S. Filice
- Department of Psychology, Neuroscience, and BehaviourMcMaster University Hamilton ON L8S 4K1 Canada
| | - Rajat Bhargava
- Department of Psychology, Neuroscience, and BehaviourMcMaster University Hamilton ON L8S 4K1 Canada
| | - Reuven Dukas
- Department of Psychology, Neuroscience, and BehaviourMcMaster University Hamilton ON L8S 4K1 Canada
| |
Collapse
|
62
|
Gao B, Song XQ, Yu H, Fu DY, Xu J, Ye H. Mating-Induced Differential Expression in Genes Related to Reproduction and Immunity in Spodoptera litura (Lepidoptera: Noctuidae) Female Moths. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:10. [PMID: 32092133 PMCID: PMC7039226 DOI: 10.1093/jisesa/ieaa003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Mating promotes reproductive activity, which may impact immune performance. Paradoxically, mating frequently challenges females' immunity (e.g., infections). Therefore, studies of postmating resource allocation between reproduction and survival are likely to shed new light on life-history trade-off and sexual selection. Here, we used RNAseq to test whether and how mating affected mRNA expression in genes related to reproduction and immunity in Spodoptera litura female moths. Results show a divergent change in the differentially expressed genes (DEGs) between reproduction and immunity: the immune response was largely downregulated shortly after mating (~6 h postmating), which has some recovery at 24 h postmating; reproductive response is trivial shortly after mating (~6 h postmating), but it largely upregulated at 24 h postmating (e.g., egg maturation related genes were highly upregulated). Considering the fact that most of the total DEGs downregulated from 0 to 6 h postmating (from 51/68 to 214/260) but most of the total DEGs upregulated at 24 h postmating (816/928), it is possible that trade-offs between reproduction and immunity occurred in mated females. For example, they may shut down immunity to favor sperm storage and save limited resources to support the increased energy required in reproduction (e.g., egg maturation and oviposition). Mating-induced infections should be trivial due to low polyandry in S. litura. A reduced immune defense may have no threat to S. litura survival but may benefit reproduction significantly. Furthermore, obvious expression changes were detected in genes related to hormone production, suggesting that endocrine changes could play important roles in postmating responses.
Collapse
Affiliation(s)
- Bo Gao
- School of Life Sciences, Yunnan University, Kunming, China
| | - Xiao-Qian Song
- School of Life Sciences, Yunnan University, Kunming, China
| | - Hong Yu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - Da-Ying Fu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - Jin Xu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - Hui Ye
- School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
63
|
Dahalan FA, Churcher TS, Windbichler N, Lawniczak MKN. The male mosquito contribution towards malaria transmission: Mating influences the Anopheles female midgut transcriptome and increases female susceptibility to human malaria parasites. PLoS Pathog 2019; 15:e1008063. [PMID: 31697788 PMCID: PMC6837289 DOI: 10.1371/journal.ppat.1008063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 09/02/2019] [Indexed: 12/25/2022] Open
Abstract
Mating causes dramatic changes in female physiology, behaviour, and immunity in many insects, inducing oogenesis, oviposition, and refractoriness to further mating. Females from the Anopheles gambiae species complex typically mate only once in their lifetime during which they receive sperm and seminal fluid proteins as well as a mating plug that contains the steroid hormone 20-hydroxyecdysone. This hormone, which is also induced by blood-feeding, plays a major role in activating vitellogenesis for egg production. Here we show that female Anopheles coluzzii susceptibility to Plasmodium falciparum infection is significantly higher in mated females compared to virgins. We also find that mating status has a major impact on the midgut transcriptome, detectable only under sugar-fed conditions: once females have blood-fed, the transcriptional changes that are induced by mating are likely masked by the widespread effects of blood-feeding on gene expression. To determine whether increased susceptibility to parasites could be driven by the additional 20E that mated females receive from males, we mimicked mating by injecting virgin females with 20E, finding that these females are significantly more susceptible to human malaria parasites than virgin females injected with the control 20E carrier. Further RNAseq was carried out to examine whether the genes that change upon 20E injection in the midgut are similar to those that change upon mating. We find that 79 midgut-expressed genes are regulated in common by both mating and 20E, and 96% (n = 76) of these are regulated in the same direction (up vs down in 20E/mated). Together, these findings show that male Anopheles mosquitoes induce changes in the female midgut that can affect female susceptibility to P. falciparum. This implies that in nature, males might contribute to malaria transmission in previously unappreciated ways, and that vector control strategies that target males may have additional benefits towards reducing transmission. Malaria mosquitoes must successfully mate and bloodfeed in order to reproduce. The impact of bloodfeeding on malaria transmission is clear given that all transmission is caused by female mosquitoes that have fed at least twice: once leading to an initial infection, and again 10–14 days later resulting in parasite transmission. The impact of mating on malaria transmission is less clear. Here we show that mating status significantly enhances transmission, such that mated females are more likely to transmit malaria parasites than virgin females. We further examine whether a hormone transferred by mating might cause this enhanced susceptibility, and we find that indeed the receipt of this hormone is also correlated with enhanced susceptibility. The results of this study imply that efforts to target male mosquitoes might not only suppress mosquito populations, but also act to decrease vector competence among residual females.
Collapse
Affiliation(s)
| | - Thomas S. Churcher
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | | | - Mara K. N. Lawniczak
- Imperial College London, South Kensington, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- * E-mail:
| |
Collapse
|
64
|
Chambers MC, Jacobson E, Khalil S, Lazzaro BP. Consequences of chronic bacterial infection in Drosophila melanogaster. PLoS One 2019; 14:e0224440. [PMID: 31648237 PMCID: PMC6812774 DOI: 10.1371/journal.pone.0224440] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/14/2019] [Indexed: 11/25/2022] Open
Abstract
Even when successfully surviving an infection, a host often fails to eliminate a pathogen completely and may sustain substantial pathogen burden for the remainder of its life. Using systemic bacterial infection in Drosophila melanogaster, we characterize chronic infection by three bacterial species from different genera - Providencia rettgeri, Serratia marcescens, and Enterococcus faecalis–following inoculation with a range of doses. To assess the consequences of these chronic infections, we determined the expression of antimicrobial peptide genes, survival of secondary infection, and starvation resistance after one week of infection. While higher infectious doses unsurprisingly lead to higher risk of death, they also result in higher chronic bacterial loads among the survivors for all three infections. All three chronic infections caused significantly elevated expression of antimicrobial peptide genes at one week post-infection and provided generalized protection again secondary bacterial infection. Only P. rettgeri infection significantly influenced resistance to starvation, with persistently infected flies dying more quickly under starvation conditions relative to controls. These results suggest that there is potentially a generalized mechanism of protection against secondary infection, but that other impacts on host physiology may depend on the specific pathogen. We propose that chronic infections in D. melanogaster could be a valuable tool for studying tolerance of infection, including impacts on host physiology and behavior.
Collapse
Affiliation(s)
- Moria Cairns Chambers
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Department of Biology, Bucknell University, Lewisburg, PA, United States of America
- * E-mail:
| | - Eliana Jacobson
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Sarah Khalil
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Brian P. Lazzaro
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
65
|
Troha K, Buchon N. Methods for the study of innate immunity in Drosophila melanogaster. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 8:e344. [PMID: 30993906 DOI: 10.1002/wdev.344] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/25/2019] [Accepted: 03/20/2019] [Indexed: 12/12/2022]
Abstract
From flies to humans, many components of the innate immune system have been conserved during metazoan evolution. This foundational observation has allowed us to develop Drosophila melanogaster, the fruit fly, into a powerful model to study innate immunity in animals. Thanks to an ever-growing arsenal of genetic tools, an easily manipulated genome, and its winning disposition, Drosophila is now employed to study not only basic molecular mechanisms of pathogen recognition and immune signaling, but also the nature of physiological responses activated in the host by microbial challenge and how dysregulation of these processes contributes to disease. Here, we present a collection of methods and protocols to challenge the fly with an assortment of microbes, both systemically and orally, and assess its humoral, cellular, and epithelial response to infection. Our review covers techniques for measuring the reaction to microbial infection both qualitatively and quantitatively. Specifically, we describe survival, bacterial load, BLUD (a measure of disease tolerance), phagocytosis, melanization, clotting, and ROS production assays, as well as efficient protocols to collect hemolymph and measure immune gene expression. We also offer an updated catalog of online resources and a collection of popular reporter lines and mutants to facilitate research efforts. This article is categorized under: Technologies > Analysis of Cell, Tissue, and Animal Phenotypes.
Collapse
Affiliation(s)
- Katia Troha
- Department of Entomology, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York
| | - Nicolas Buchon
- Department of Entomology, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York
| |
Collapse
|
66
|
Xia J, Gravato-Nobre M, Ligoxygakis P. Convergence of longevity and immunity: lessons from animal models. Biogerontology 2019; 20:271-278. [PMID: 30796710 PMCID: PMC6535424 DOI: 10.1007/s10522-019-09801-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 02/07/2019] [Indexed: 12/21/2022]
Abstract
An increasing amount of data implicate immunity-mostly innate immunity-in the ageing process; both during healthy ageing as well as in neurodegenerative diseases. Despite the aetiology however, the underlying mechanisms are poorly understood. Here we review what we know from model organisms (worms, flies and mice) on the possible mechanistic details that connect immunity and ageing. These links provide evidence that inter-tissue communication (especially the interaction between gut and brain), hormonal control mechanisms and intestinal microbiota determine immune system activity and thus influence lifespan.
Collapse
Affiliation(s)
- Jingnu Xia
- Laboratory of Cell Biology, Development and Genetics, Department of Biochemistry, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
| | - Maria Gravato-Nobre
- Laboratory of Cell Biology, Development and Genetics, Department of Biochemistry, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
| | - Petros Ligoxygakis
- Laboratory of Cell Biology, Development and Genetics, Department of Biochemistry, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK.
| |
Collapse
|
67
|
Yoshinari Y, Kurogi Y, Ameku T, Niwa R. Endocrine regulation of female germline stem cells in the fruit fly Drosophila melanogaster. CURRENT OPINION IN INSECT SCIENCE 2019; 31:14-19. [PMID: 31109668 DOI: 10.1016/j.cois.2018.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/27/2018] [Accepted: 07/03/2018] [Indexed: 06/09/2023]
Abstract
Germline stem cells (GSCs) are critical for the generation of sperms and eggs in most animals including the fruit fly Drosophila melanogaster. It is well known that self-renewal and differentiation of female D. melanogaster GSCs are regulated by local niche signals. However, little is known about whether and how the GSC number is regulated by paracrine signals. In the last decade, however, multiple humoral factors, including insulin and ecdysteroids, have been recognized as key regulators of female D. melanogaster GSCs. This review paper summarizes the role of humoral factors in female D. melanogaster GSC proliferation and maintenance in response to internal and external conditions, such as nutrients, mating stimuli, and aging.
Collapse
Affiliation(s)
- Yuto Yoshinari
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Yoshitomo Kurogi
- College of Biological Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Tomotsune Ameku
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Ryusuke Niwa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan; AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.
| |
Collapse
|
68
|
Duneau DF, Lazzaro BP. Persistence of an extracellular systemic infection across metamorphosis in a holometabolous insect. Biol Lett 2018; 14:rsbl.2017.0771. [PMID: 29438055 PMCID: PMC5830671 DOI: 10.1098/rsbl.2017.0771] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/18/2018] [Indexed: 12/17/2022] Open
Abstract
Organisms with complex life cycles can differ markedly in their biology across developmental life stages. Consequently, distinct life stages can represent drastically different environments for parasites. This difference is especially striking with holometabolous insects, which have dramatically different larval and adult life stages, bridged by a complete metamorphosis. There is no a priori guarantee that a parasite infecting the larval stage would be able to persist into the adult stage. In fact, to our knowledge, transstadial transmission of extracellular pathogens has never been documented in a host that undergoes complete metamorphosis. We tested the hypothesis that a bacterial parasite originally sampled from an adult host could infect a larva, then survive through metamorphosis and persist into the adult stage. As a model, we infected the host Drosophila melanogaster with a horizontally transmitted, extracellular bacterial pathogen, Providencia rettgeri. We found that this natural pathogen survived systemic infection of larvae (L3) and successfully persisted into the adult host. We then discuss how it may be adaptive for bacteria to transverse life stages and even minimize virulence at the larval stage in order to benefit from adult dispersal.
Collapse
Affiliation(s)
- David F Duneau
- Department of Entomology, Cornell University, 129 Garden Avenue, Ithaca, NY 14853, USA .,Université Toulouse 3 Paul Sabatier, CNRS, ENSFEA; UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), 31068 Toulouse, France
| | - Brian P Lazzaro
- Department of Entomology, Cornell University, 129 Garden Avenue, Ithaca, NY 14853, USA.,Cornell Institute of Host Microbe Interactions and Disease, Cornell University, Ithaca, NY, USA
| |
Collapse
|
69
|
Buchanan JL, Meiklejohn CD, Montooth KL. Mitochondrial Dysfunction and Infection Generate Immunity-Fecundity Tradeoffs in Drosophila. Integr Comp Biol 2018; 58:591-603. [PMID: 29945242 PMCID: PMC6145415 DOI: 10.1093/icb/icy078] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Physiological responses to short-term environmental stressors, such as infection, can have long-term consequences for fitness, particularly if the responses are inappropriate or nutrient resources are limited. Genetic variation affecting energy acquisition, storage, and usage can limit cellular energy availability and may influence resource-allocation tradeoffs even when environmental nutrients are plentiful. Here, we utilized Drosophila mitochondrial-nuclear genotypes to test whether disrupted mitochondrial function interferes with nutrient-sensing pathways, and whether this disruption has consequences for tradeoffs between immunity and fecundity. We found that an energetically-compromised genotype was relatively resistant to rapamycin-a drug that targets nutrient-sensing pathways and mimics resource limitation. Dietary resource limitation decreased survival of energetically-compromised flies. Furthermore, survival of infection with a natural pathogen was decreased in this genotype, and females of this genotype experienced immunity-fecundity tradeoffs that were not evident in genotypic controls with normal energy metabolism. Together, these results suggest that this genotype may have little excess energetic capacity and fewer cellular nutrients, even when environmental nutrients are not limiting. Genetic variation in energy metabolism may therefore act to limit the resources available for allocation to life-history traits in ways that generate tradeoffs even when environmental resources are not limiting.
Collapse
Affiliation(s)
- Justin L Buchanan
- School of Biological Sciences, University of Nebraska–Lincoln, 1104 T St, Lincoln, NE 68588-0118, USA
| | - Colin D Meiklejohn
- School of Biological Sciences, University of Nebraska–Lincoln, 1104 T St, Lincoln, NE 68588-0118, USA
| | - Kristi L Montooth
- School of Biological Sciences, University of Nebraska–Lincoln, 1104 T St, Lincoln, NE 68588-0118, USA
| |
Collapse
|
70
|
Abstract
The power and ease of Drosophila genetics and the medical relevance of mosquito-transmitted viruses have made dipterans important model organisms in antiviral immunology. Studies of virus-host interactions at the molecular and population levels have illuminated determinants of resistance to virus infection. Here, we review the sources and nature of variation in antiviral immunity and virus susceptibility in model dipteran insects, specifically the fruit fly Drosophila melanogaster and vector mosquitoes of the genera Aedes and Culex. We first discuss antiviral immune mechanisms and describe the virus-specificity of these responses. In the following sections, we review genetic and microbiota-dependent variation in antiviral immunity. In the final sections, we explore less well-studied sources of variation, including abiotic factors, sexual dimorphism, infection history, and endogenous viral elements. We borrow from work on other pathogen types and non-dipteran species when it parallels or complements studies in dipterans. Understanding natural variation in virus-host interactions may lead to the identification of novel restriction factors and immune mechanisms and shed light on the molecular determinants of vector competence.
Collapse
Affiliation(s)
- William H Palmer
- Institute of Evolutionary Biology and Centre for Infection, Evolution and Immunity, University of Edinburgh, Edinburgh EH9 3FL UK.
| | - Finny S Varghese
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, Nijmegen 6500 HB, The Netherlands.
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands.
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, Nijmegen 6500 HB, The Netherlands.
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands.
| |
Collapse
|
71
|
Abstract
Here, we provide a brief review of the mechanistic connections between immunity and aging—a fundamental biological relationship that remains poorly understood—by considering two intertwined questions: how does aging affect immunity, and how does immunity affect aging? On the one hand, aging contributes to the deterioration of immune function and predisposes the organism to infections (“immuno-senescence”). On the other hand, excessive activation of the immune system can accelerate degenerative processes, cause inflammation and immunopathology, and thus promote aging (“inflammaging”). Interestingly, several recent lines of evidence support the hypothesis that restrained or curbed immune activity at old age (that is, optimized age-dependent immune homeostasis) might actually improve realized immune function and thereby promote longevity. We focus mainly on insights from
Drosophila, a powerful genetic model system in which both immunity and aging have been extensively studied, and conclude by outlining several unresolved questions in the field.
Collapse
Affiliation(s)
- Kathrin Garschall
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | - Thomas Flatt
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland.,Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
72
|
Duneau DF, Kondolf HC, Im JH, Ortiz GA, Chow C, Fox MA, Eugénio AT, Revah J, Buchon N, Lazzaro BP. The Toll pathway underlies host sexual dimorphism in resistance to both Gram-negative and Gram-positive bacteria in mated Drosophila. BMC Biol 2017; 15:124. [PMID: 29268741 PMCID: PMC5740927 DOI: 10.1186/s12915-017-0466-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/30/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Host sexual dimorphism is being increasingly recognized to generate strong differences in the outcome of infectious disease, but the mechanisms underlying immunological differences between males and females remain poorly characterized. Here, we used Drosophila melanogaster to assess and dissect sexual dimorphism in the innate response to systemic bacterial infection. RESULTS We demonstrated sexual dimorphism in susceptibility to infection by a broad spectrum of Gram-positive and Gram-negative bacteria. We found that both virgin and mated females are more susceptible than mated males to most, but not all, infections. We investigated in more detail the lower resistance of females to infection with Providencia rettgeri, a Gram-negative bacterium that naturally infects D. melanogaster. We found that females have a higher number of phagocytes than males and that ablation of hemocytes does not eliminate the dimorphism in resistance to P. rettgeri, so the observed dimorphism does not stem from differences in the cellular response. The Imd pathway is critical for the production of antimicrobial peptides in response to Gram-negative bacteria, but mutants for Imd signaling continued to exhibit dimorphism even though both sexes showed strongly reduced resistance. Instead, we found that the Toll pathway is responsible for the dimorphism in resistance. The Toll pathway is dimorphic in genome-wide constitutive gene expression and in induced response to infection. Toll signaling is dimorphic in both constitutive signaling and in induced activation in response to P. rettgeri infection. The dimorphism in pathway activation can be specifically attributed to Persephone-mediated immune stimulation, by which the Toll pathway is triggered in response to pathogen-derived virulence factors. We additionally found that, in absence of Toll signaling, males become more susceptible than females to the Gram-positive Enterococcus faecalis. This reversal in susceptibility between male and female Toll pathway mutants compared to wildtype hosts highlights the key role of the Toll pathway in D. melanogaster sexual dimorphism in resistance to infection. CONCLUSION Altogether, our data demonstrate that Toll pathway activity differs between male and female D. melanogaster in response to bacterial infection, thus identifying innate immune signaling as a determinant of sexual immune dimorphism.
Collapse
Affiliation(s)
- David F Duneau
- Université Toulouse 3 Paul Sabatier, CNRS, ENFA, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, F-31062, Toulouse, France. .,CNRS, Université Paul Sabatier, UMR5174 EDB, F-31062, Toulouse, France.
| | - Hannah C Kondolf
- Université Toulouse 3 Paul Sabatier, CNRS, ENFA, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, F-31062, Toulouse, France.,Present Address: Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Joo Hyun Im
- Université Toulouse 3 Paul Sabatier, CNRS, ENFA, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, F-31062, Toulouse, France.,Cornell Institute of Host Microbe Interactions and Disease, Cornell University, Ithaca, NY, USA
| | - Gerardo A Ortiz
- Université Toulouse 3 Paul Sabatier, CNRS, ENFA, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, F-31062, Toulouse, France
| | - Christopher Chow
- Université Toulouse 3 Paul Sabatier, CNRS, ENFA, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, F-31062, Toulouse, France
| | - Michael A Fox
- Université Toulouse 3 Paul Sabatier, CNRS, ENFA, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, F-31062, Toulouse, France
| | - Ana T Eugénio
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, P-2780, Oeiras, Portugal
| | - J Revah
- Université Toulouse 3 Paul Sabatier, CNRS, ENFA, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, F-31062, Toulouse, France.,Cornell Institute of Host Microbe Interactions and Disease, Cornell University, Ithaca, NY, USA
| | - Nicolas Buchon
- Université Toulouse 3 Paul Sabatier, CNRS, ENFA, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, F-31062, Toulouse, France.,Cornell Institute of Host Microbe Interactions and Disease, Cornell University, Ithaca, NY, USA
| | - Brian P Lazzaro
- Université Toulouse 3 Paul Sabatier, CNRS, ENFA, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, F-31062, Toulouse, France.,Cornell Institute of Host Microbe Interactions and Disease, Cornell University, Ithaca, NY, USA
| |
Collapse
|
73
|
Takatsuka J, Nakai M, Shinoda T. A virus carries a gene encoding juvenile hormone acid methyltransferase, a key regulatory enzyme in insect metamorphosis. Sci Rep 2017; 7:13522. [PMID: 29051595 PMCID: PMC5648886 DOI: 10.1038/s41598-017-14059-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/05/2017] [Indexed: 12/29/2022] Open
Abstract
Microbial parasitism, infection, and symbiosis in animals often modulate host endocrine systems, resulting in alterations of phenotypic traits of the host that can have profound effects on the ecology and evolution of both the microorganisms and their hosts. Information about the mechanisms and genetic bases of such modulations by animal parasites is available from studies of steroid hormones. However, reports involving other hormones are scarce. We found that an insect virus, a betaentomopoxvirus, encodes a juvenile hormone acid methyltransferase that can synthesize an important insect hormone, the sesquiterpenoid juvenile hormone. Phylogenetic analysis suggested that this gene is of bacterial origin. Our study challenges the conventional view that functional enzymes in the late phase of the juvenile hormone biosynthesis pathway are almost exclusive to insects or arthropods, and shed light on juvenoid hormone synthesis beyond Eukaryota. This striking example demonstrates that even animal parasites having no metabolic pathways for molecules resembling host hormones can nevertheless influence the synthesis of such hormones, and provides a new context for studying animal parasite strategies in diverse systems such as host-parasite, host-symbiont or host-vector-parasite.
Collapse
Affiliation(s)
- Jun Takatsuka
- Forestry and Forest Products Research Institute, Forest Research and Management Organization, Tsukuba, Ibaraki, Japan.
| | - Madoka Nakai
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Tetsuro Shinoda
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|