51
|
Li Y, Liang Y, Liu M, Zhang Q, Wang Z, Fan J, Ruan Y, Zhang A, Dong X, Yue J, Li C. Genome-Wide Association Studies Provide Insights Into the Genetic Architecture of Seed Germination Traits in Maize. FRONTIERS IN PLANT SCIENCE 2022; 13:930438. [PMID: 35755688 PMCID: PMC9226777 DOI: 10.3389/fpls.2022.930438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 06/01/2023]
Abstract
Seed germination is an important agronomic trait that affects crop yield and quality. Rapid and uniform seed germination traits are required in agricultural production. Although several genes are involved in seed germination and have been identified in Arabidopsis and rice, the genetic basis governing seed germination in maize remains unknown. Herein, we conducted a genome-wide association study to determine the genetic architecture of two germination traits, germination speed, and consistency, in a diverse panel. We genotyped 321 maize inbred populations with tropical, subtropical, or temperate origins using 1219401 single-nucleotide polymorphism markers. We identified 58 variants that were associated with the two traits, and 12 of these were shared between the two traits, indicating partial genetic similarity. Moreover, 36 candidate genes were involved in seed germination with functions including energy metabolism, signal transduction, and transcriptional regulation. We found that favorable variants had a greater effect on the tropical subpopulation than on the temperate. Accumulation of favorable variants shortened germination time and improved uniformity in maize inbred lines. These findings contribute significantly to understanding the genetic basis of maize seed germination and will contribute to the molecular breeding of maize seed germination.
Collapse
Affiliation(s)
- Yuntong Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yameng Liang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Meiling Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Qiyuan Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Ziwei Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Jinjuan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yanye Ruan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Ao Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Xiaomei Dong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Jing Yue
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, China
| | - Cong Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
52
|
Yang J, Zhang J, Du H, Zhao H, Li H, Xu Y, Mao A, Zhang X, Fu Y, Xia Y, Wen C. The vegetable SNP database: An integrated resource for plant breeders and scientists. Genomics 2022; 114:110348. [PMID: 35339630 DOI: 10.1016/j.ygeno.2022.110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/24/2022] [Accepted: 03/20/2022] [Indexed: 01/14/2023]
Abstract
Single nucleotide polymorphisms (SNPs) are widely used in genetic research and molecular breeding. To date, the genomes of many vegetable crops have been assembled, and hundreds of core germplasms for each vegetable have been sequenced. However, these data are not currently easily accessible because they are stored on different public databases. Therefore, a vegetable crop SNP database should be developed that hosts SNPs demonstrated to have a high success rate in genotyping for genetic research (herein, "alpha SNPs"). We constructed a database (VegSNPDB, http://www.vegsnpdb.cn/) containing the sequence data of 2032 germplasms from 16 vegetable crop species. VegSNPDB hosts 118,725,944 SNPs of which 4,877,305 were alpha SNPs. SNPs can be searched by chromosome number, position, SNP type, genetic population, or specific individuals, as well as the values of MAF, PIC, and heterozygosity. We hope that VegSNPDB will become an important SNP database for the vegetable research community.
Collapse
Affiliation(s)
- Jingjing Yang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Jian Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Heshan Du
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Hong Zhao
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Haizhen Li
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Yong Xu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Aijun Mao
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Xiaofei Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Yiqian Fu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Yang Xia
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Changlong Wen
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China; State Key Laboratory of Vegetable Germplasm Innovation, Tianjin 300380, China.
| |
Collapse
|
53
|
Fudge JB. Flowering time: Soybean adapts to the tropics. Curr Biol 2022; 32:R360-R362. [PMID: 35472422 DOI: 10.1016/j.cub.2022.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Soybean plants - the source of tofu, as well as soybean milk and oil - flower quickly under short-day photoperiods typical of low latitudes. A new study characterises how natural variation in soybean SOC1 floral-promoting genes confers adaptation to different photoperiods.
Collapse
Affiliation(s)
- Jared B Fudge
- Jared B. Fudge is Associate Scientific Editor at Current Biology.
| |
Collapse
|
54
|
Kou K, Yang H, Li H, Fang C, Chen L, Yue L, Nan H, Kong L, Li X, Wang F, Wang J, Du H, Yang Z, Bi Y, Lai Y, Dong L, Cheng Q, Su T, Wang L, Li S, Hou Z, Lu S, Zhang Y, Che Z, Yu D, Zhao X, Liu B, Kong F. A functionally divergent SOC1 homolog improves soybean yield and latitudinal adaptation. Curr Biol 2022; 32:1728-1742.e6. [PMID: 35263616 DOI: 10.1016/j.cub.2022.02.046] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/22/2021] [Accepted: 02/14/2022] [Indexed: 12/30/2022]
Abstract
Soybean (Glycine max) grows in a wide range of latitudes, but it is extremely sensitive to photoperiod, which reduces its yield and ability to adapt to different environments. Therefore, understanding of the genetic basis of soybean adaptation is of great significance for breeding and improvement. Here, we characterized Tof18 (SOC1a) that conditions early flowering and growth habit under both short-day and long-day conditions. Molecular analysis confirmed that the two SOC1 homologs present in soybeans (SOC1a and SOC1b) underwent evolutionary functional divergence, with SOC1a having stronger effects on flowering time and stem node number than SOC1b due to transcriptional differences. soc1a soc1b double mutants showed stronger functional effects than either of the single mutants, perhaps due to the formation of SOC1a and SOC1b homodimers or heterodimers. Additionally, Tof18/SOC1a improves the latitudinal adaptation of cultivated soybeans, highlighting the functional importance of SOC1a. The Tof18G allele facilitates adaptation to high latitudes, whereas Tof18A facilitates adaptation to low latitudes. We demonstrated that SOC1s contribute to floral induction in both leaves and shoot apex through inter-regulation with FTs. The SOC1a-SOC1b-Dt2 complex plays essential roles in stem growth habit by directly binding to the regulatory sequence of Dt1, making the genes encoding these proteins potential targets for genome editing to improve soybean yield via molecular breeding. Since the natural Tof18A allele increases node number, introgressing this allele into modern cultivars could improve yields, which would help optimize land use for food production in the face of population growth and global warming.
Collapse
Affiliation(s)
- Kun Kou
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Hui Yang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China.
| | - Haiyang Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Fang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Liyu Chen
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Lin Yue
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Haiyang Nan
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Lingping Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Xiaoming Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Fan Wang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Jianhao Wang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Haiping Du
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Zhongyi Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingdong Bi
- Institute of Crops Tillage and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Yongcai Lai
- Institute of Crops Tillage and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Lidong Dong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Qun Cheng
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Tong Su
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Lingshuang Wang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Shichen Li
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Zhihong Hou
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163000, China
| | - Sijia Lu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Yuhang Zhang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Zhijun Che
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Deyue Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohui Zhao
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China.
| | - Baohui Liu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China; The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China.
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China; The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China.
| |
Collapse
|
55
|
Michel KJ, Lima DC, Hundley H, Singan V, Yoshinaga Y, Daum C, Barry K, Broman KW, Buell CR, de Leon N, Kaeppler SM. Genetic mapping and prediction of flowering time and plant height in a maize Stiff Stalk MAGIC population. Genetics 2022; 221:6571196. [PMID: 35441688 PMCID: PMC9157087 DOI: 10.1093/genetics/iyac063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/08/2022] [Indexed: 11/12/2022] Open
Abstract
The Stiff Stalk heterotic pool is a foundation of US maize seed parent germplasm and has been heavily utilized by both public and private maize breeders since its inception in the 1930's. Flowering time and plant height are critical characteristics for both inbred parents and their test crossed hybrid progeny. To study these traits, a six parent multiparent advanced generation intercross (MAGIC) population was developed including maize inbred lines B73, B84, PHB47 (B37 type), LH145 (B14 type), PHJ40 (novel early Stiff Stalk), and NKH8431 (B73/B14 type). A set of 779 doubled haploid lines were evaluated for flowering time and plant height in two field replicates in 2016 and 2017, and a subset of 689 and 561 doubled haploid lines were crossed to two testers, respectively, and evaluated as hybrids in two locations in 2018 and 2019 using an incomplete block design. Markers were derived from a Practical Haplotype Graph built from the founder whole genome assemblies and genotype-by-sequencing and exome capture-based sequencing of the population. Genetic mapping utilizing an update to R/qtl2 revealed differing profiles of significant loci for both traits between 635 of the DH lines and two sets of 570 and 471 derived hybrids. Genomic prediction was used to test the feasibility of predicting hybrid phenotypes based on the per se data. Predictive abilities were highest on direct models trained using the data they would predict (0.55 to 0.63), and indirect models trained using per se data to predict hybrid traits had slightly lower predictive abilities (0.49 to 0.55). Overall, this finding is consistent with the overlapping and non-overlapping significant QTL found within the per se and hybrid populations and suggests that selections for phenology traits can be made effectively on doubled haploid lines before hybrid data is available.
Collapse
Affiliation(s)
- Kathryn J Michel
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dayane C Lima
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hope Hundley
- U.S. Department of Energy Joint Genome Institute, Berkeley, California 94720, USA
| | - Vasanth Singan
- Ambry Genetics, 1 Enterprise, Aliso Viejo, CA-92656, USA.,U.S. Department of Energy Joint Genome Institute, Berkeley, California 94720, USA
| | - Yuko Yoshinaga
- U.S. Department of Energy Joint Genome Institute, Berkeley, California 94720, USA
| | - Chris Daum
- U.S. Department of Energy Joint Genome Institute, Berkeley, California 94720, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Berkeley, California 94720, USA
| | - Karl W Broman
- Departments of Biostatistics and Medical Informatics, University of Wisconsin-Madison, WI 53706, USA
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA.,Department of Energy Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA.,Center for Applied Genetic Technologies, Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA
| | - Natalia de Leon
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Shawn M Kaeppler
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA.,Wisconsin Crop Innovation Center, University of Wisconsin-Madison, Middleton, WI 53562, USA
| |
Collapse
|
56
|
Odell SG, Hudson AI, Praud S, Dubreuil P, Tixier MH, Ross-Ibarra J, Runcie DE. Modeling allelic diversity of multiparent mapping populations affects detection of quantitative trait loci. G3 (BETHESDA, MD.) 2022; 12:6509518. [PMID: 35100382 PMCID: PMC8895984 DOI: 10.1093/g3journal/jkac011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/27/2021] [Indexed: 12/02/2022]
Abstract
The search for quantitative trait loci that explain complex traits such as yield and drought tolerance has been ongoing in all crops. Methods such as biparental quantitative trait loci mapping and genome-wide association studies each have their own advantages and limitations. Multiparent advanced generation intercross populations contain more recombination events and genetic diversity than biparental mapping populations and are better able to estimate effect sizes of rare alleles than association mapping populations. Here, we discuss the results of using a multiparent advanced generation intercross population of doubled haploid maize lines created from 16 diverse founders to perform quantitative trait loci mapping. We compare 3 models that assume bi-allelic, founder, and ancestral haplotype allelic states for quantitative trait loci. The 3 methods have differing power to detect quantitative trait loci for a variety of agronomic traits. Although the founder approach finds the most quantitative trait loci, all methods are able to find unique quantitative trait loci, suggesting that each model has advantages for traits with different genetic architectures. A closer look at a well-characterized flowering time quantitative trait loci, qDTA8, which contains vgt1, highlights the strengths and weaknesses of each method and suggests a potential epistatic interaction. Overall, our results reinforce the importance of considering different approaches to analyzing genotypic datasets, and shows the limitations of binary SNP data for identifying multiallelic quantitative trait loci.
Collapse
Affiliation(s)
- Sarah G Odell
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.,Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Asher I Hudson
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA.,Center for Population Biology, University of California, Davis, CA 95616, USA
| | - Sébastien Praud
- Limagrain, Centre de Recherche de Chappes, Chappes 63720, France
| | - Pierre Dubreuil
- Limagrain, Centre de Recherche de Chappes, Chappes 63720, France
| | | | - Jeffrey Ross-Ibarra
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA.,Center for Population Biology, University of California, Davis, CA 95616, USA.,Genome Center, University of California, Davis, CA 95616, USA
| | - Daniel E Runcie
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
57
|
Perez-Limón S, Li M, Cintora-Martinez GC, Aguilar-Rangel MR, Salazar-Vidal MN, González-Segovia E, Blöcher-Juárez K, Guerrero-Zavala A, Barrales-Gamez B, Carcaño-Macias J, Costich DE, Nieto-Sotelo J, Martinez de la Vega O, Simpson J, Hufford MB, Ross-Ibarra J, Flint-Garcia S, Diaz-Garcia L, Rellán-Álvarez R, Sawers RJH. A B73×Palomero Toluqueño mapping population reveals local adaptation in Mexican highland maize. G3 (BETHESDA, MD.) 2022; 12:jkab447. [PMID: 35100386 PMCID: PMC8896015 DOI: 10.1093/g3journal/jkab447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/16/2021] [Indexed: 01/31/2023]
Abstract
Generations of farmer selection in the central Mexican highlands have produced unique maize varieties adapted to the challenges of the local environment. In addition to possessing great agronomic and cultural value, Mexican highland maize represents a good system for the study of local adaptation and acquisition of adaptive phenotypes under cultivation. In this study, we characterize a recombinant inbred line population derived from the B73 reference line and the Mexican highland maize variety Palomero Toluqueño. B73 and Palomero Toluqueño showed classic rank-changing differences in performance between lowland and highland field sites, indicative of local adaptation. Quantitative trait mapping identified genomic regions linked to effects on yield components that were conditionally expressed depending on the environment. For the principal genomic regions associated with ear weight and total kernel number, the Palomero Toluqueño allele conferred an advantage specifically in the highland site, consistent with local adaptation. We identified Palomero Toluqueño alleles associated with expression of characteristic highland traits, including reduced tassel branching, increased sheath pigmentation and the presence of sheath macrohairs. The oligogenic architecture of these three morphological traits supports their role in adaptation, suggesting they have arisen from consistent directional selection acting at distinct points across the genome. We discuss these results in the context of the origin of phenotypic novelty during selection, commenting on the role of de novo mutation and the acquisition of adaptive variation by gene flow from endemic wild relatives.
Collapse
Affiliation(s)
- Sergio Perez-Limón
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
- Department of Plant Science, The Pennsylvania State University, State College, PA 16802, USA
| | - Meng Li
- Department of Plant Science, The Pennsylvania State University, State College, PA 16802, USA
| | - G Carolina Cintora-Martinez
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
| | - M Rocio Aguilar-Rangel
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
| | - M Nancy Salazar-Vidal
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
- Department of Evolution and Ecology, UC Davis, CA 95616 USA
| | - Eric González-Segovia
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Karla Blöcher-Juárez
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
| | - Alejandro Guerrero-Zavala
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
| | - Benjamin Barrales-Gamez
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
| | - Jessica Carcaño-Macias
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
| | - Denise E Costich
- International Center for Maize and Wheat Improvement (CIMMyT), De México 56237, México
| | - Jorge Nieto-Sotelo
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Octavio Martinez de la Vega
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
| | - June Simpson
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
| | - Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Jeffrey Ross-Ibarra
- Department of Evolution and Ecology, UC Davis, CA 95616 USA
- Center for Population Biology, and Genome Center, UC Davis, Davis, CA 95616, USA
| | - Sherry Flint-Garcia
- U.S. Department of Agriculture, Agricultural Research Service Plant Genetics Research Unit, Columbia, MO 65211, USA
| | - Luis Diaz-Garcia
- Campo Experimental Pabellón-INIFAP. Carretera Aguascalientes-Zacatecas, Aguascalientes, CP 20660, México
| | - Rubén Rellán-Álvarez
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Ruairidh J H Sawers
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
- Department of Plant Science, The Pennsylvania State University, State College, PA 16802, USA
| |
Collapse
|
58
|
Carvalho RF, Aguiar-Perecin MLR, Clarindo WR, Fristche-Neto R, Mondin M. A Heterochromatic Knob Reducing the Flowering Time in Maize. Front Genet 2022; 12:799681. [PMID: 35280927 PMCID: PMC8908004 DOI: 10.3389/fgene.2021.799681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Maize flowering time is an important agronomic trait, which has been associated with variations in the genome size and heterochromatic knobs content. We integrated three steps to show this association. Firstly, we selected inbred lines varying for heterochromatic knob composition at specific sites in the homozygous state. Then, we produced homozygous and heterozygous hybrids for knobs. Second, we measured the genome size and flowering time for all materials. Knob composition did not affect the genome size and flowering time. Finally, we developed an association study and identified a knob marker on chromosome 9 showing the strongest association with flowering time. Indeed, modelling allele substitution and dominance effects could offer only one heterochromatic knob locus that could affect flowering time, making it earlier rather than the knob composition.
Collapse
Affiliation(s)
- Renata Flávia Carvalho
- “Luiz de Queiroz” College of Agriculture, ESALQ, University of São Paulo, Piracicaba, Brazil
| | | | | | - Roberto Fristche-Neto
- “Luiz de Queiroz” College of Agriculture, ESALQ, University of São Paulo, Piracicaba, Brazil
- International Rice Research Institute (IRRI) - Breeding Analytics and Data, Management Unit, Laguna, Philippines
| | - Mateus Mondin
- “Luiz de Queiroz” College of Agriculture, ESALQ, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
59
|
Xu G, Zhang X, Chen W, Zhang R, Li Z, Wen W, Warburton ML, Li J, Li H, Yang X. Population genomics of Zea species identifies selection signatures during maize domestication and adaptation. BMC PLANT BIOLOGY 2022; 22:72. [PMID: 35180846 PMCID: PMC8855575 DOI: 10.1186/s12870-022-03427-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/05/2022] [Indexed: 05/19/2023]
Abstract
BACKGROUND Maize (Zea mays L. ssp. mays) was domesticated from teosinte (Zea mays ssp. parviglumis) about 9000 years ago in southwestern Mexico and adapted to a range of environments worldwide. Researchers have depicted the maize domestication and adaptation processes over the past two decades, but efforts have been limited either in sample size or genetic diversity. To better understand these processes, we conducted a genome-wide survey of 982 maize inbred lines and 190 teosinte accessions using over 40,000 single-nucleotide polymorphism markers. RESULTS Population structure, principal component analysis, and phylogenetic trees all confirmed the evolutionary relationship between maize and teosinte, and determined the evolutionary lineage of all species within teosinte. Shared haplotype analysis showed similar levels of ancestral alleles from Zea mays ssp. parviglumis and Zea mays ssp. mexicana in maize. Scans for selection signatures identified 394 domestication sweeps by comparing wild and cultivated maize and 360 adaptation sweeps by comparing tropical and temperate maize. Permutation tests revealed that the public association signals for flowering time were highly enriched in the domestication and adaptation sweeps. Genome-wide association study identified 125 loci significantly associated with flowering-time traits, ten of which identified candidate genes that have undergone selection during maize adaptation. CONCLUSIONS In this study, we characterized the history of maize domestication and adaptation at the population genomic level and identified hundreds of domestication and adaptation sweeps. This study extends the molecular mechanism of maize domestication and adaptation, and provides resources for basic research and genetic improvement in maize.
Collapse
Affiliation(s)
- Gen Xu
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, China Agricultural University, Beijing, 100193, China
- Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Xuan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, China Agricultural University, Beijing, 100193, China
- Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Wenkang Chen
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, China Agricultural University, Beijing, 100193, China
- Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Renyu Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, China Agricultural University, Beijing, 100193, China
- Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhi Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, China Agricultural University, Beijing, 100193, China
- Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Weiwei Wen
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Marilyn L Warburton
- United States of Department of Agriculture, Agricultural Research Service, Corn Host Plant Resistance Research Unit, Box 9555, Mississippi, MS, 39762, USA
| | - Jiansheng Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, China Agricultural University, Beijing, 100193, China
| | - Huihui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xiaohong Yang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, China Agricultural University, Beijing, 100193, China.
- Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
60
|
Osnato M, Cota I, Nebhnani P, Cereijo U, Pelaz S. Photoperiod Control of Plant Growth: Flowering Time Genes Beyond Flowering. FRONTIERS IN PLANT SCIENCE 2022; 12:805635. [PMID: 35222453 PMCID: PMC8864088 DOI: 10.3389/fpls.2021.805635] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/23/2021] [Indexed: 05/02/2023]
Abstract
Fluctuations in environmental conditions greatly influence life on earth. Plants, as sessile organisms, have developed molecular mechanisms to adapt their development to changes in daylength, or photoperiod. One of the first plant features that comes to mind as affected by the duration of the day is flowering time; we all bring up a clear image of spring blossom. However, for many plants flowering happens at other times of the year, and many other developmental aspects are also affected by changes in daylength, which range from hypocotyl elongation in Arabidopsis thaliana to tuberization in potato or autumn growth cessation in trees. Strikingly, many of the processes affected by photoperiod employ similar gene networks to respond to changes in the length of light/dark cycles. In this review, we have focused on developmental processes affected by photoperiod that share similar genes and gene regulatory networks.
Collapse
Affiliation(s)
- Michela Osnato
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institute of Environmental Science and Technology of the Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ignacio Cota
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Poonam Nebhnani
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Unai Cereijo
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Soraya Pelaz
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
61
|
Long R, Zhang F, Zhang Z, Li M, Chen L, Wang X, Liu W, Zhang T, Yu LX, He F, Jiang X, Yang X, Yang C, Wang Z, Kang J, Yang Q. Genome assembly of alfalfa cultivar zhongmu-4 and identification of SNPs associated with agronomic traits. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:14-28. [PMID: 35033678 PMCID: PMC9510860 DOI: 10.1016/j.gpb.2022.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 12/21/2022]
Abstract
Alfalfa (Medicago sativa L.) is the most important legume forage crop worldwide with high nutritional value and yield. For a long time, the breeding of alfalfa was hampered by lacking reliable information on the autotetraploid genome and molecular markers linked to important agronomic traits. We herein reported the de novo assembly of the allele-aware chromosome-level genome of Zhongmu-4, a cultivar widely cultivated in China, and a comprehensive database of genomic variations based on resequencing of 220 germplasms. Approximate 2.74 Gb contigs (N50 of 2.06 Mb), accounting for 88.39% of the estimated genome, were assembled, and 2.56 Gb contigs were anchored to 32 pseudo-chromosomes. A total of 34,922 allelic genes were identified from the allele-aware genome. We observed the expansion of gene families, especially those related to the nitrogen metabolism, and the increase of repetitive elements including transposable elements, which probably resulted in the increase of Zhongmu-4 genome compared with Medicago truncatula. Population structure analysis revealed that the accessions from Asia and South America had relatively lower genetic diversity than those from Europe, suggesting that geography may influence alfalfa genetic divergence during local adaption. Genome-wide association studies identified 101 single nucleotide polymorphisms (SNPs) associated with 27 agronomic traits. Two candidate genes were predicted to be correlated with fall dormancy and salt response. We believe that the allele-aware chromosome-level genome sequence of Zhongmu-4 combined with the resequencing data of the diverse alfalfa germplasms will facilitate genetic research and genomics-assisted breeding in variety improvement of alfalfa.
Collapse
Affiliation(s)
- Ruicai Long
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fan Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99163, United States
| | - Zhiwu Zhang
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99163, United States
| | - Mingna Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lin Chen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xue Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenwen Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tiejun Zhang
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Long-Xi Yu
- United States Department of Agriculture-Agricultural Research Service, Plant and Germplasm Introduction and Testing Research, Prosser, WA, 99350, United States
| | - Fei He
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xueqian Jiang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xijiang Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Changfu Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhen Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Junmei Kang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Qingchuan Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
62
|
Lin Z, Zhou L, Zhong S, Fang X, Liu H, Li Y, Zhu C, Liu J, Lin Z. A gene regulatory network for tiller development mediated by Tin8 in maize. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:110-122. [PMID: 34453433 DOI: 10.1093/jxb/erab399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
The complex gene regulatory network underlying tiller development in maize remains largely unknown. Here we identified two major quantitative trait loci for tiller number, Tin8 on chromosome 8 and the previously known Tb1 on chromosome 1, in a population derived from a teosinte-maize cross. Map-based cloning and association mapping revealed that Tin8, corresponding to Zcn8 encoding a phosphatidylethanolamine-binding-related kinase, is down-regulated in transcription, which results in decreased tiller number. A strong interaction between Tin8 and the key gen Tb1 was detected for tiller number. Further RNA-seq analysis showed that the expression of 13 genes related to tiller development was controlled by Tin8. Our results support the existence of a complex gene regulatory network for the outgrowth of the tiller bud in maize, in which Zcn8 controls 13 tiller-related genes, including four genes for hormonal responses. In particular, Zcn8 represses Gt1, D14, and Tru1 through the interaction with Tb1.
Collapse
Affiliation(s)
- Zhelong Lin
- National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing 100193, China
| | - Leina Zhou
- National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing 100193, China
| | - Shuyang Zhong
- National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing 100193, China
| | - Xiaojian Fang
- National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing 100193, China
| | - Hangqin Liu
- National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing 100193, China
| | - Yan Li
- National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing 100193, China
| | - Can Zhu
- National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing 100193, China
| | - Jiacheng Liu
- National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing 100193, China
| | - Zhongwei Lin
- National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing 100193, China
| |
Collapse
|
63
|
Su H, Chen Z, Dong Y, Ku L, Abou-Elwafa SF, Ren Z, Cao Y, Dou D, Liu Z, Liu H, Tian L, Zhang D, Zeng H, Han S, Zhu F, Du C, Chen Y. Identification of ZmNF-YC2 and its regulatory network for maize flowering time. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7792-7807. [PMID: 34338753 DOI: 10.1093/jxb/erab364] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Flowering time is an important agronomic trait that determines the distribution and adaptation of plants. The accurate prediction of flowering time in elite germplasm is critical for maize breeding. However, the molecular mechanisms underlying the photoperiod response remain elusive in maize. Here we cloned the flowering time-controlling gene, ZmNF-YC2, by map-based cloning and confirmed that ZmNF-YC2 is the nuclear transcription factor Y subunit C-2 protein and a positive regulator of flowering time in maize under long-day conditions. Our results show that ZmNF-YC2 promotes the expression of ZmNF-YA3. ZmNF-YA3 negatively regulates the transcription of ZmAP2. ZmAP2 suppresses the expression of ZMM4 to delay flowering time. We then developed a gene regulatory model of flowering time in maize using ZmNF-YC2, ZmNF-YA3, ZmAP2, ZMM4, and other key genes. The cascading regulation by ZmNF-YC2 of maize flowering time has not been reported in other species.
Collapse
Affiliation(s)
- Huihui Su
- Synergetic Innovation Center of Henan Grain Crops and National Key, Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan, 450046, China
| | - Zhihui Chen
- Synergetic Innovation Center of Henan Grain Crops and National Key, Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan, 450046, China
| | - Yahui Dong
- Synergetic Innovation Center of Henan Grain Crops and National Key, Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan, 450046, China
| | - Lixia Ku
- Synergetic Innovation Center of Henan Grain Crops and National Key, Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan, 450046, China
| | | | - Zhenzhen Ren
- Synergetic Innovation Center of Henan Grain Crops and National Key, Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan, 450046, China
| | - Yingying Cao
- Synergetic Innovation Center of Henan Grain Crops and National Key, Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan, 450046, China
| | - Dandan Dou
- Synergetic Innovation Center of Henan Grain Crops and National Key, Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan, 450046, China
| | - Zhixue Liu
- Synergetic Innovation Center of Henan Grain Crops and National Key, Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan, 450046, China
| | - Huafeng Liu
- Synergetic Innovation Center of Henan Grain Crops and National Key, Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan, 450046, China
| | - Lei Tian
- Synergetic Innovation Center of Henan Grain Crops and National Key, Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan, 450046, China
| | - Dongling Zhang
- Synergetic Innovation Center of Henan Grain Crops and National Key, Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan, 450046, China
| | - Haixia Zeng
- Synergetic Innovation Center of Henan Grain Crops and National Key, Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan, 450046, China
| | - Shengbo Han
- Synergetic Innovation Center of Henan Grain Crops and National Key, Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan, 450046, China
| | - Fangfang Zhu
- Synergetic Innovation Center of Henan Grain Crops and National Key, Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan, 450046, China
| | - Chunguang Du
- Department of Biology, Montclair State University, Montclair, NJ 07043, USA
| | - Yanhui Chen
- Synergetic Innovation Center of Henan Grain Crops and National Key, Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan, 450046, China
| |
Collapse
|
64
|
Abraham-Juárez MJ, Barnes AC, Aragón-Raygoza A, Tyson D, Kur A, Strable J, Rellán-Álvarez R. The arches and spandrels of maize domestication, adaptation, and improvement. CURRENT OPINION IN PLANT BIOLOGY 2021; 64:102124. [PMID: 34715472 DOI: 10.1016/j.pbi.2021.102124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
People living in the Balsas River basin in southwest México domesticated maize from the bushy grass teosinte. Nine thousand years later, in 2021, Ms. Deb Haaland - a member of the Pueblo of Laguna tribe of New Mexico - wore a dress adorned with a cornstalk when she was sworn in as the Secretary of Interior of the United States of America. This choice of garment highlights the importance of the coevolution of maize and the farmers who, through careful selection over thousands of years, domesticated maize and adapted the physiology and shoot architecture of maize to fit local environments and growth habits. Some traits such as tillering were directly selected on (arches), and others such as tassel size are the by-products (spandrels) of maize evolution. Here, we review current knowledge of the underlying cellular, developmental, physiological, and metabolic processes that were selected by farmers and breeders, which have positioned maize as a top global staple crop.
Collapse
Affiliation(s)
- María Jazmín Abraham-Juárez
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Irapuato, 36821, Mexico
| | - Allison C Barnes
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Alejandro Aragón-Raygoza
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA; Unidad de Genómica Avanzada, Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Guanajuato, Mexico
| | - Destiny Tyson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA; Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Andi Kur
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Josh Strable
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Rubén Rellán-Álvarez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
65
|
Wang X, Zhou P, Huang R, Zhang J, Ouyang X. A Daylength Recognition Model of Photoperiodic Flowering. FRONTIERS IN PLANT SCIENCE 2021; 12:778515. [PMID: 34868180 PMCID: PMC8638659 DOI: 10.3389/fpls.2021.778515] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/22/2021] [Indexed: 06/01/2023]
Abstract
The photoperiodic flowering pathway is crucial for plant development to synchronize internal signaling events and external seasons. One hundred years after photoperiodic flowering was discovered, the underlying core signaling network has been elucidated in model plants such as Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and soybean (Glycine max). Here, we review the progress made in the photoperiodic flowering area and summarize previously accepted photoperiodic flowering models. We then introduce a new model based on daylength recognition by florigen. By determining the expression levels of the florigen gene, this model can assess the mechanism of daylength sensing and crop latitude adaptation. Future applications of this model under the constraints of global climate change are discussed.
Collapse
Affiliation(s)
- Xiaoying Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Peng Zhou
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Rongyu Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jianfu Zhang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Xinhao Ouyang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
66
|
Su H, Liang J, Abou-Elwafa SF, Cheng H, Dou D, Ren Z, Xie J, Chen Z, Gao F, Ku L, Chen Y. ZmCCT regulates photoperiod-dependent flowering and response to stresses in maize. BMC PLANT BIOLOGY 2021; 21:453. [PMID: 34615461 PMCID: PMC8493678 DOI: 10.1186/s12870-021-03231-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/23/2021] [Indexed: 05/30/2023]
Abstract
BACKGROUND Appropriate flowering time is very important to the success of modern agriculture. Maize (Zea mays L.) is a major cereal crop, originated in tropical areas, with photoperiod sensitivity. Which is an important obstacle to the utilization of tropical/subtropical germplasm resources in temperate regions. However, the study on the regulation mechanism of photoperiod sensitivity of maize is still in the early stage. Although it has been previously reported that ZmCCT is involved in the photoperiod response and delays maize flowering time under long-day conditions, the underlying mechanism remains unclear. RESULTS Here, we showed that ZmCCT overexpression delays flowering time and confers maize drought tolerance under LD conditions. Implementing the Gal4-LexA/UAS system identified that ZmCCT has a transcriptional inhibitory activity, while the yeast system showed that ZmCCT has a transcriptional activation activity. DAP-Seq analysis and EMSA indicated that ZmCCT mainly binds to promoters containing the novel motifs CAAAAATC and AAATGGTC. DAP-Seq and RNA-Seq analysis showed that ZmCCT could directly repress the expression of ZmPRR5 and ZmCOL9, and promote the expression of ZmRVE6 to delay flowering under long-day conditions. Moreover, we also demonstrated that ZmCCT directly binds to the promoters of ZmHY5, ZmMPK3, ZmVOZ1 and ZmARR16 and promotes the expression of ZmHY5 and ZmMPK3, but represses ZmVOZ1 and ZmARR16 to enhance stress resistance. Additionally, ZmCCT regulates a set of genes associated with plant development. CONCLUSIONS ZmCCT has dual functions in regulating maize flowering time and stress response under LD conditions. ZmCCT negatively regulates flowering time and enhances maize drought tolerance under LD conditions. ZmCCT represses most flowering time genes to delay flowering while promotes most stress response genes to enhance stress tolerance. Our data contribute to a comprehensive understanding of the regulatory mechanism of ZmCCT in controlling maize flowering time and stress response.
Collapse
Affiliation(s)
- Huihui Su
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Jiachen Liang
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | | | - Haiyang Cheng
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Dandan Dou
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Zhenzhen Ren
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Jiarong Xie
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Zhihui Chen
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Fengran Gao
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Lixia Ku
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
| | - Yanhui Chen
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
| |
Collapse
|
67
|
Li Z, Li K, Yang X, Hao H, Jing HC. Combined QTL mapping and association study reveals candidate genes for leaf number and flowering time in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3459-3472. [PMID: 34247253 DOI: 10.1007/s00122-021-03907-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE Twelve QTL for flowering and leaf number were detected. The ZmWRKY14Hap4 could increase leaf number, flowering time and biomass yield which are promising for silage maize breeding. Silage maize, one of the most important feedstock for ruminants, is widely grown from temperate regions to the tropics. Flowering time and leaf number are two significantly correlated traits and important for the quality, adaptation and biomass yield of silage maize. In this study, a recombinant inbred line population consisting of 215 individuals and an association panel of 369 inbred lines were analysed in field conditions in three locations for 2 consecutive years, and five, four and three quantitative trait loci for the total leaf number, days to anthesis (DTA) and silking (DTS) were detected, which could explain 48.55, 35.37 and 34.22% of total phenotypic variation, respectively. Association analysis of qLN10 on chromosome 10 found that ZmWRKY14 was the candidate gene for leaf number, whose expression level was negatively correlated with the leaf number. There are five haplotypes for ZmWRKY14, and haplotype 4 could significantly increase flowering time, leaf number and biomass yield, but has no obvious influence on ear weight. The optimal allelic combination of ZmWRKY14 and ZCN8 could further increase leaf number and biomass yield. The results will provide important genetic information for silage maize breeding.
Collapse
Affiliation(s)
- Zhigang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kun Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaohong Yang
- Beijing Key Laboratory of Crop Genetic Improvement, National Maize Improvement Centre of China, China Agricultural University, Beijing, 100193, China
| | - Huaiqing Hao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Hai-Chun Jing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, China
- Engineering Laboratory for Grass-Based Livestock Husbandry, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
68
|
Jiang L, Wang Y, Xia A, Wang Q, Zhang X, Jez JM, Li Z, Tan W, He Y. A natural single-nucleotide polymorphism variant in sulfite reductase influences sulfur assimilation in maize. THE NEW PHYTOLOGIST 2021; 232:692-704. [PMID: 34254312 DOI: 10.1111/nph.17616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Plants absorb sulfur from the environment and assimilate it into suitable forms for the biosynthesis of a broad range of molecules. Although the biochemical pathway of sulfur assimilation is known, how genetic differences contribute to natural variation in sulfur assimilation remains poorly understood. Here, using a genome-wide association study, we uncovered a single-nucleotide polymorphism (SNP) variant in the sulfite reductase (SiR) gene that was significantly associated with SiR protein abundance in a maize natural association population. We also demonstrated that the synonymous C to G base change at SNP69 may repress translational activity by altering messenger RNA secondary structure, which leads to reduction in ZmSiR protein abundance and sulfur assimilation activity. Population genetic analyses showed that the SNP69C allele was likely a variant occurring after the initial maize domestication and accumulated with the spread of maize cultivation from tropical to temperate regions. This study provides the first evidence that genetic polymorphisms in the exon of ZmSiR could influence the protein abundance through a posttranscriptional mechanism and in part contribute to natural variation in sulfur assimilation. These findings provide a prospective target to improve maize varieties with proper sulfur nutrient levels assisted by molecular breeding and engineering.
Collapse
Affiliation(s)
- Luguang Jiang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Yan Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Aiai Xia
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Qi Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Xiaolei Zhang
- Safety and Quality Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Joseph M Jez
- Department of Biology, Washington University in St Louis, St Louis, MO, 63130, USA
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Weiming Tan
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Yan He
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| |
Collapse
|
69
|
Dong L, Fang C, Cheng Q, Su T, Kou K, Kong L, Zhang C, Li H, Hou Z, Zhang Y, Chen L, Yue L, Wang L, Wang K, Li Y, Gan Z, Yuan X, Weller JL, Lu S, Kong F, Liu B. Genetic basis and adaptation trajectory of soybean from its temperate origin to tropics. Nat Commun 2021; 12:5445. [PMID: 34521854 PMCID: PMC8440769 DOI: 10.1038/s41467-021-25800-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/31/2021] [Indexed: 11/09/2022] Open
Abstract
Soybean (Glycine max) serves as a major source of protein and edible oils worldwide. The genetic and genomic bases of the adaptation of soybean to tropical regions remain largely unclear. Here, we identify the novel locus Time of Flowering 16 (Tof16), which confers delay flowering and improve yield at low latitudes and determines that it harbors the soybean homolog of LATE ELONGATED HYPOCOTYL (LHY). Tof16 and the previously identified J locus genetically additively but independently control yield under short-day conditions. More than 80% accessions in low latitude harbor the mutations of tof16 and j, which suggests that loss of functions of Tof16 and J are the major genetic basis of soybean adaptation into tropics. We suggest that maturity and yield traits can be quantitatively improved by modulating the genetic complexity of various alleles of the LHY homologs, J and E1. Our findings uncover the adaptation trajectory of soybean from its temperate origin to the tropics.
Collapse
Affiliation(s)
- Lidong Dong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Chao Fang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Qun Cheng
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Tong Su
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Kun Kou
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Lingping Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Chunbao Zhang
- Soybean Research Institute, National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Haiyang Li
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Zhihong Hou
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yuhang Zhang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Liyu Chen
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Lin Yue
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Lingshuang Wang
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Kai Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yongli Li
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Zhuoran Gan
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xiaohui Yuan
- School of Computer Science and Technology, Wuhan University of Technology, Wuhan, China
| | - James L Weller
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia.
| | - Sijia Lu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China.
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China.
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China.
| | - Baohui Liu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China.
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China.
| |
Collapse
|
70
|
Zhang F, Wu J, Sade N, Wu S, Egbaria A, Fernie AR, Yan J, Qin F, Chen W, Brotman Y, Dai M. Genomic basis underlying the metabolome-mediated drought adaptation of maize. Genome Biol 2021; 22:260. [PMID: 34488839 PMCID: PMC8420056 DOI: 10.1186/s13059-021-02481-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/25/2021] [Indexed: 11/10/2022] Open
Abstract
Background Drought is a major environmental disaster that causes crop yield loss worldwide. Metabolites are involved in various environmental stress responses of plants. However, the genetic control of metabolomes underlying crop environmental stress adaptation remains elusive. Results Here, we perform non-targeted metabolic profiling of leaves for 385 maize natural inbred lines grown under well-watered as well as drought-stressed conditions. A total of 3890 metabolites are identified and 1035 of these are differentially produced between well-watered and drought-stressed conditions, representing effective indicators of maize drought response and tolerance. Genetic dissections reveal the associations between these metabolites and thousands of single-nucleotide polymorphisms (SNPs), which represented 3415 metabolite quantitative trait loci (mQTLs) and 2589 candidate genes. 78.6% of mQTLs (2684/3415) are novel drought-responsive QTLs. The regulatory variants that control the expression of the candidate genes are revealed by expression QTL (eQTL) analysis of the transcriptomes of leaves from 197 maize natural inbred lines. Integrated metabolic and transcriptomic assays identify dozens of environment-specific hub genes and their gene-metabolite regulatory networks. Comprehensive genetic and molecular studies reveal the roles and mechanisms of two hub genes, Bx12 and ZmGLK44, in regulating maize metabolite biosynthesis and drought tolerance. Conclusion Our studies reveal the first population-level metabolomes in crop drought response and uncover the natural variations and genetic control of these metabolomes underlying crop drought adaptation, demonstrating that multi-omics is a powerful strategy to dissect the genetic mechanisms of crop complex traits. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-021-02481-1.
Collapse
Affiliation(s)
- Fei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.,Hubei Hongshan laboratory, Wuhan, 430070, China
| | - Jinfeng Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.,Hubei Hongshan laboratory, Wuhan, 430070, China
| | - Nir Sade
- School of Plant Sciences and Food Security, The Institute for Cereal Crops Improvement, Tel-Aviv University, 69978, Tel Aviv, Israel
| | - Si Wu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Aiman Egbaria
- School of Plant Sciences and Food Security, The Institute for Cereal Crops Improvement, Tel-Aviv University, 69978, Tel Aviv, Israel
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.,Hubei Hongshan laboratory, Wuhan, 430070, China
| | - Feng Qin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yariv Brotman
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany. .,Department of Life Sciences, Ben-Gurion University of the Negev, 8410501, Beersheba, Israel.
| | - Mingqiu Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China. .,Hubei Hongshan laboratory, Wuhan, 430070, China.
| |
Collapse
|
71
|
Wang L, Josephs EB, Lee KM, Roberts LM, Rellán-Álvarez R, Ross-Ibarra J, Hufford MB. Molecular Parallelism Underlies Convergent Highland Adaptation of Maize Landraces. Mol Biol Evol 2021; 38:3567-3580. [PMID: 33905497 PMCID: PMC8382895 DOI: 10.1093/molbev/msab119] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Convergent phenotypic evolution provides some of the strongest evidence for adaptation. However, the extent to which recurrent phenotypic adaptation has arisen via parallelism at the molecular level remains unresolved, as does the evolutionary origin of alleles underlying such adaptation. Here, we investigate genetic mechanisms of convergent highland adaptation in maize landrace populations and evaluate the genetic sources of recurrently selected alleles. Population branch excess statistics reveal substantial evidence of parallel adaptation at the level of individual single-nucleotide polymorphism (SNPs), genes, and pathways in four independent highland maize populations. The majority of convergently selected SNPs originated via migration from a single population, most likely in the Mesoamerican highlands, while standing variation introduced by ancient gene flow was also a contributor. Polygenic adaptation analyses of quantitative traits reveal that alleles affecting flowering time are significantly associated with elevation, indicating the flowering time pathway was targeted by highland adaptation. In addition, repeatedly selected genes were significantly enriched in the flowering time pathway, indicating their significance in adapting to highland conditions. Overall, our study system represents a promising model to study convergent evolution in plants with potential applications to crop adaptation across environmental gradients.
Collapse
Affiliation(s)
- Li Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, USA
| | - Emily B Josephs
- The Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Kristin M Lee
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, USA
| | - Lucas M Roberts
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Rubén Rellán-Álvarez
- Langebio, Irapuato, Gto., Mexico
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Jeffrey Ross-Ibarra
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, USA
- Genome Center and Center for Population Biology, University of California, Davis, Davis, CA, USA
| | - Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
72
|
Liu N, Du Y, Warburton ML, Xiao Y, Yan J. Phenotypic Plasticity Contributes to Maize Adaptation and Heterosis. Mol Biol Evol 2021; 38:1262-1275. [PMID: 33212480 PMCID: PMC8480182 DOI: 10.1093/molbev/msaa283] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Plant phenotypic plasticity describes altered phenotypic performance of an individual when grown in different environments. Exploring genetic architecture underlying plant plasticity variation may help mitigate the detrimental effects of a rapidly changing climate on agriculture, but little research has been done in this area to date. In the present study, we established a population of 976 maize F1 hybrids by crossing 488 diverse inbred lines with two elite testers. Genome-wide association study identified hundreds of quantitative trait loci associated with phenotypic plasticity variation across diverse F1 hybrids, the majority of which contributed very little variance, in accordance with the polygenic nature of these traits. We identified several quantitative trait locus regions that may have been selected during the tropical-temperate adaptation process. We also observed heterosis in terms of phenotypic plasticity, in addition to the traditional genetic value differences measured between hybrid and inbred lines, and the pattern of which was affected by genetic background. Our results demonstrate a landscape of phenotypic plasticity in maize, which will aid in the understanding of its genetic architecture, its contribution to adaptation and heterosis, and how it may be exploited for future maize breeding in a rapidly changing environment.
Collapse
Affiliation(s)
- Nannan Liu
- Horticulture Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.,National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuanhao Du
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Marilyn L Warburton
- United States Department of Agriculture-Agricultural Research Service: Corn Host Plant Resistance Research Unit, Mississippi State, MS
| | - Yingjie Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
73
|
Liang Y, Liu HJ, Yan J, Tian F. Natural Variation in Crops: Realized Understanding, Continuing Promise. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:357-385. [PMID: 33481630 DOI: 10.1146/annurev-arplant-080720-090632] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Crops feed the world's population and shape human civilization. The improvement of crop productivity has been ongoing for almost 10,000 years and has evolved from an experience-based to a knowledge-driven practice over the past three decades. Natural alleles and their reshuffling are long-standing genetic changes that affect how crops respond to various environmental conditions and agricultural practices. Decoding the genetic basis of natural variation is central to understanding crop evolution and, in turn, improving crop breeding. Here, we review current advances in the approaches used to map the causal alleles of natural variation, provide refined insights into the genetics and evolution of natural variation, and outline how this knowledge promises to drive the development of sustainable agriculture under the dome of emerging technologies.
Collapse
Affiliation(s)
- Yameng Liang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; ,
| | - Hai-Jun Liu
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, 1030 Vienna, Austria;
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China;
| | - Feng Tian
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; ,
| |
Collapse
|
74
|
Waters JM, McCulloch GA. Reinventing the wheel? Reassessing the roles of gene flow, sorting and convergence in repeated evolution. Mol Ecol 2021; 30:4162-4172. [PMID: 34133810 DOI: 10.1111/mec.16018] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/31/2022]
Abstract
Biologists have long been intrigued by apparently predictable and repetitive evolutionary trajectories inferred across a variety of lineages and systems. In recent years, high-throughput sequencing analyses have started to transform our understanding of such repetitive shifts. While researchers have traditionally categorized such shifts as either "convergent" or "parallel," based on relatedness of the lineages involved, emerging genomic insights provide an opportunity to better describe the actual evolutionary mechanisms at play. A synthesis of recent genomic analyses confirms that convergence is the predominant driver of repetitive evolution among species, whereas repeated sorting of standing variation is the major driver of repeated shifts within species. However, emerging data reveal numerous notable exceptions to these expectations, with recent examples of de novo mutations underpinning convergent shifts among even very closely related lineages, while repetitive sorting processes have occurred among even deeply divergent taxa, sometimes via introgression. A number of very recent analyses have found evidence for both processes occurring on different scales within taxa. We suggest that the relative importance of convergent versus sorting processes depends on the interplay between gene flow among populations, and phylogenetic relatedness of the lineages involved.
Collapse
|
75
|
Li X, Guo T, Wang J, Bekele WA, Sukumaran S, Vanous AE, McNellie JP, Tibbs-Cortes LE, Lopes MS, Lamkey KR, Westgate ME, McKay JK, Archontoulis SV, Reynolds MP, Tinker NA, Schnable PS, Yu J. An integrated framework reinstating the environmental dimension for GWAS and genomic selection in crops. MOLECULAR PLANT 2021; 14:874-887. [PMID: 33713844 DOI: 10.1016/j.molp.2021.03.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/03/2021] [Accepted: 03/09/2021] [Indexed: 05/08/2023]
Abstract
Identifying mechanisms and pathways involved in gene-environment interplay and phenotypic plasticity is a long-standing challenge. It is highly desirable to establish an integrated framework with an environmental dimension for complex trait dissection and prediction. A critical step is to identify an environmental index that is both biologically relevant and estimable for new environments. With extensive field-observed complex traits, environmental profiles, and genome-wide single nucleotide polymorphisms for three major crops (maize, wheat, and oat), we demonstrated that identifying such an environmental index (i.e., a combination of environmental parameter and growth window) enables genome-wide association studies and genomic selection of complex traits to be conducted with an explicit environmental dimension. Interestingly, genes identified for two reaction-norm parameters (i.e., intercept and slope) derived from flowering time values along the environmental index were less colocalized for a diverse maize panel than for wheat and oat breeding panels, agreeing with the different diversity levels and genetic constitutions of the panels. In addition, we showcased the usefulness of this framework for systematically forecasting the performance of diverse germplasm panels in new environments. This general framework and the companion CERIS-JGRA analytical package should facilitate biologically informed dissection of complex traits, enhanced performance prediction in breeding for future climates, and coordinated efforts to enrich our understanding of mechanisms underlying phenotypic variation.
Collapse
Affiliation(s)
- Xianran Li
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - Tingting Guo
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - Jinyu Wang
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - Wubishet A Bekele
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Sivakumar Sukumaran
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | - Adam E Vanous
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - James P McNellie
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | | | - Marta S Lopes
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | - Kendall R Lamkey
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - Mark E Westgate
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - John K McKay
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Matthew P Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | - Nicholas A Tinker
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | | | - Jianming Yu
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
76
|
Natural variation and artificial selection of photoperiodic flowering genes and their applications in crop adaptation. ABIOTECH 2021; 2:156-169. [PMID: 36304754 PMCID: PMC9590489 DOI: 10.1007/s42994-021-00039-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Flowering links vegetative growth and reproductive growth and involves the coordination of local environmental cues and plant genetic information. Appropriate timing of floral initiation and maturation in both wild and cultivated plants is important to their fitness and productivity in a given growth environment. The domestication of plants into crops, and later crop expansion and improvement, has often involved selection for early flowering. In this review, we analyze the basic rules for photoperiodic adaptation in several economically important and/or well-researched crop species. The ancestors of rice (Oryza sativa), maize (Zea mays), soybean (Glycine max), and tomato (Solanum lycopersicum) are short-day plants whose photosensitivity was reduced or lost during domestication and expansion to high-latitude areas. Wheat (Triticum aestivum) and barley (Hordeum vulgare) are long-day crops whose photosensitivity is influenced by both latitude and vernalization type. Here, we summarize recent studies about where these crops were domesticated, how they adapted to photoperiodic conditions as their growing area expanded from domestication locations to modern cultivating regions, and how allelic variants of photoperiodic flowering genes were selected during this process. A deeper understanding of photoperiodic flowering in each crop will enable better molecular design and breeding of high-yielding cultivars suited to particular local environments. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-021-00039-0.
Collapse
|
77
|
Joint analysis of days to flowering reveals independent temperate adaptations in maize. Heredity (Edinb) 2021; 126:929-941. [PMID: 33888874 PMCID: PMC8178344 DOI: 10.1038/s41437-021-00422-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 02/07/2021] [Accepted: 02/25/2021] [Indexed: 02/02/2023] Open
Abstract
Domesticates are an excellent model for understanding biological consequences of rapid climate change. Maize (Zea mays ssp. mays) was domesticated from a tropical grass yet is widespread across temperate regions today. We investigate the biological basis of temperate adaptation in diverse structured nested association mapping (NAM) populations from China, Europe (Dent and Flint) and the United States as well as in the Ames inbred diversity panel, using days to flowering as a proxy. Using cross-population prediction, where high prediction accuracy derives from overall genomic relatedness, shared genetic architecture, and sufficient diversity in the training population, we identify patterns in predictive ability across the five populations. To identify the source of temperate adapted alleles in these populations, we predict top associated genome-wide association study (GWAS) identified loci in a Random Forest Classifier using independent temperate-tropical North American populations based on lines selected from Hapmap3 as predictors. We find that North American populations are well predicted (AUC equals 0.89 and 0.85 for Ames and USNAM, respectively), European populations somewhat well predicted (AUC equals 0.59 and 0.67 for the Dent and Flint panels, respectively) and that the Chinese population is not predicted well at all (AUC is 0.47), suggesting an independent adaptation process for early flowering in China. Multiple adaptations for the complex trait days to flowering in maize provide hope for similar natural systems under climate change.
Collapse
|
78
|
Arefian M, Bhagya N, Prasad TSK. Phosphorylation-mediated signalling in flowering: prospects and retrospects of phosphoproteomics in crops. Biol Rev Camb Philos Soc 2021; 96:2164-2191. [PMID: 34047006 DOI: 10.1111/brv.12748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/18/2022]
Abstract
Protein phosphorylation is a major post-translational modification, regulating protein function, stability, and subcellular localization. To date, annotated phosphorylation data are available mainly for model organisms and humans, despite the economic importance of crop species and their large kinomes. Our understanding of the phospho-regulation of flowering in relation to the biology and interaction between the pollen and pistil is still significantly lagging, limiting our knowledge on kinase signalling and its potential applications to crop production. To address this gap, we bring together relevant literature that were previously disconnected to present an overview of the roles of phosphoproteomic signalling pathways in modulating molecular and cellular regulation within specific tissues at different morphological stages of flowering. This review is intended to stimulate research, with the potential to increase crop productivity by providing a platform for novel molecular tools.
Collapse
Affiliation(s)
- Mohammad Arefian
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - N Bhagya
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, 575018, India
| |
Collapse
|
79
|
Xiao Y, Jiang S, Cheng Q, Wang X, Yan J, Zhang R, Qiao F, Ma C, Luo J, Li W, Liu H, Yang W, Song W, Meng Y, Warburton ML, Zhao J, Wang X, Yan J. The genetic mechanism of heterosis utilization in maize improvement. Genome Biol 2021; 22:148. [PMID: 33971930 PMCID: PMC8108465 DOI: 10.1186/s13059-021-02370-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In maize hybrid breeding, complementary pools of parental lines with reshuffled genetic variants are established for superior hybrid performance. To comprehensively decipher the genetics of heterosis, we present a new design of multiple linked F1 populations with 42,840 F1 maize hybrids, generated by crossing a synthetic population of 1428 maternal lines with 30 elite testers from diverse genetic backgrounds and phenotyped for agronomic traits. RESULTS We show that, although yield heterosis is correlated with the widespread, minor-effect epistatic QTLs, it may be resulted from a few major-effect additive and dominant QTLs in early developmental stages. Floral transition is probably one critical stage for heterosis formation, in which epistatic QTLs are activated by paternal contributions of alleles that counteract the recessive, deleterious maternal alleles. These deleterious alleles, while rare, epistatically repress other favorable QTLs. We demonstrate this with one example, showing that Brachytic2 represses the Ubiquitin3 locus in the maternal lines; in hybrids, the paternal allele alleviates this repression, which in turn recovers the height of the plant and enhances the weight of the ear. Finally, we propose a molecular design breeding by manipulating key genes underlying the transition from vegetative-to-reproductive growth. CONCLUSION The new population design is used to dissect the genetic basis of heterosis which accelerates maize molecular design breeding by diminishing deleterious epistatic interactions.
Collapse
Affiliation(s)
- Yingjie Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuqin Jiang
- National Maize Improvement Center, Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Qian Cheng
- Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Shaanxi, China
| | - Xiaqing Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agricultural & Forestry Sciences, Beijing, 100097, China
| | - Jun Yan
- National Maize Improvement Center, Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Ruyang Zhang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agricultural & Forestry Sciences, Beijing, 100097, China
| | - Feng Qiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuang Ma
- Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Shaanxi, China
| | - Jingyun Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenqiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haijun Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenyu Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenhao Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yijiang Meng
- College of Life Science, Hebei Agricultural University, Baoding, 071001, China
| | - Marilyn L Warburton
- United States Department of Agriculture-Agricultural Research Service, Corn Host Plant Resistance Research Unit, Box 9555, MS, 39762, Mississippi State, USA
| | - Jiuran Zhao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agricultural & Forestry Sciences, Beijing, 100097, China.
| | - Xiangfeng Wang
- National Maize Improvement Center, Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
80
|
Qiu L, Wu Q, Wang X, Han J, Zhuang G, Wang H, Shang Z, Tian W, Chen Z, Lin Z, He H, Hu J, Lv Q, Ren J, Xu J, Li C, Wang X, Li Y, Li S, Huang R, Chen X, Zhang C, Lu M, Liang C, Qin P, Huang X, Li S, Ouyang X. Forecasting rice latitude adaptation through a daylength-sensing-based environment adaptation simulator. NATURE FOOD 2021; 2:348-362. [PMID: 37117734 DOI: 10.1038/s43016-021-00280-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/20/2021] [Indexed: 04/30/2023]
Abstract
Global climate change necessitates crop varieties with good environmental adaptability. As a proxy for climate adaptation, crop breeders could select for adaptability to different latitudes, but the lengthy procedures for that slow development. Here, we combined molecular technologies with a streamlined in-house screening method to facilitate rapid selection for latitude adaptation. We established the daylength-sensing-based environment adaptation simulator (DEAS) to assess rice latitude adaptation status via the transcriptional dynamics of florigen genes at different latitudes. The DEAS predicted the florigen expression profiles in rice varieties with high accuracy. Furthermore, the DEAS showed potential for application in different crops. Incorporating the DEAS into conventional breeding programmes would help to develop cultivars for climate adaptation.
Collapse
Affiliation(s)
- Leilei Qiu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Qinqin Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiaoying Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jiupan Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Gui Zhuang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Hao Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhiyun Shang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Wei Tian
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhuo Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Zechuan Lin
- School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Hang He
- School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Jie Hu
- School of Mathematical Sciences, Xiamen University, Xiamen, China
| | - Qiming Lv
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Juansheng Ren
- Crop Research Institute of Sichuan Academy of Agricultural Science, Chengdu, China
| | - Jun Xu
- Deyang Agricultural Science and Education Management Station, Deyang, China
| | - Chen Li
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiangfeng Wang
- Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yang Li
- Photobiological Industry Institute, Sanan Sino-Science Photobiotech, Xiamen, China
| | - Shaohua Li
- Photobiological Industry Institute, Sanan Sino-Science Photobiotech, Xiamen, China
| | - Rongyu Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xu Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Cheng Zhang
- Liaoning Rice Research Institute, Shenyang, China
| | - Ming Lu
- Jilin Academy of Agricultural Sciences, Changchun, China
| | - Chengzhi Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Peng Qin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shigui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xinhao Ouyang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
81
|
González AM, Vander Schoor JK, Fang C, Kong F, Wu J, Weller JL, Santalla M. Ancient relaxation of an obligate short-day requirement in common bean through loss of CONSTANS-like gene function. Curr Biol 2021; 31:1643-1652.e2. [PMID: 33609454 DOI: 10.1016/j.cub.2021.01.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 01/24/2023]
Abstract
Common bean (Phaseolus vulgaris L.) is a major global food staple and source of dietary protein that was domesticated independently in Mexico and Andean South America. Its subsequent development as a crop of importance worldwide has been enabled by genetic relaxation of the strict short-day requirement typical of wild forms, but the genetic basis for this change is not well understood. Recently, a loss of photoperiod sensitivity was shown to result from mutations in the phytochrome photoreceptor gene Ppd/PHYA3 that arose independently within the two major domesticated lineages. Here, we define a second major photoperiod sensitivity locus, at which recessive alleles associate with deleterious mutations affecting the CONSTANS-like gene COL2. A wider survey of sequence variation in over 800 diverse lines, including wild, landrace, and domesticated accessions, show that distinct col2 haplotypes are associated with early flowering in Andean and Mesoamerican germplasm. The relative frequencies and distributions of COL2 and PHYA3 haplotypes imply that photoperiod adaptation developed in two phases within each gene pool: an initial reduction in sensitivity through impairment of COL2 function and subsequent complete loss through PHYA3. Gene expression analyses indicate that COL2 functions downstream of PHYA3 to repress expression of FT genes and may function in parallel with PvE1, the bean ortholog of a key legume-specific flowering repressor. Collectively, these results define the molecular basis for a key phenological adaptation, reveal a striking convergence in the naturally replicated evolution of this major crop, and further emphasize the wider evolutionary lability of CONSTANS effects on flowering time control.
Collapse
Affiliation(s)
- Ana M González
- Grupo de Genética del Desarrollo de Plantas, Misión Biológica de Galicia-CSIC, PO Box 28, 36080 Pontevedra, Spain
| | | | - Chao Fang
- Innovation Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Fanjiang Kong
- Innovation Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jing Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - James L Weller
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia.
| | - Marta Santalla
- Grupo de Genética del Desarrollo de Plantas, Misión Biológica de Galicia-CSIC, PO Box 28, 36080 Pontevedra, Spain.
| |
Collapse
|
82
|
Chen Q, Li W, Tan L, Tian F. Harnessing Knowledge from Maize and Rice Domestication for New Crop Breeding. MOLECULAR PLANT 2021; 14:9-26. [PMID: 33316465 DOI: 10.1016/j.molp.2020.12.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 05/11/2023]
Abstract
Crop domestication has fundamentally altered the course of human history, causing a shift from hunter-gatherer to agricultural societies and stimulating the rise of modern civilization. A greater understanding of crop domestication would provide a theoretical basis for how we could improve current crops and develop new crops to deal with environmental challenges in a sustainable manner. Here, we provide a comprehensive summary of the similarities and differences in the domestication processes of maize and rice, two major staple food crops that feed the world. We propose that maize and rice might have evolved distinct genetic solutions toward domestication. Maize and rice domestication appears to be associated with distinct regulatory and evolutionary mechanisms. Rice domestication tended to select de novo, loss-of-function, coding variation, while maize domestication more frequently favored standing, gain-of-function, regulatory variation. At the gene network level, distinct genetic paths were used to acquire convergent phenotypes in maize and rice domestication, during which different central genes were utilized, orthologous genes played different evolutionary roles, and unique genes or regulatory modules were acquired for establishing new traits. Finally, we discuss how the knowledge gained from past domestication processes, together with emerging technologies, could be exploited to improve modern crop breeding and domesticate new crops to meet increasing human demands.
Collapse
Affiliation(s)
- Qiuyue Chen
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Weiya Li
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lubin Tan
- State Key Laboratory of Agrobiotechnology, National Center for Evaluation of Agricultural Wild Plants (Rice), MOE Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing 100193, China.
| | - Feng Tian
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
83
|
Sun H, Wang C, Chen X, Liu H, Huang Y, Li S, Dong Z, Zhao X, Tian F, Jin W. dlf1 promotes floral transition by directly activating ZmMADS4 and ZmMADS67 in the maize shoot apex. THE NEW PHYTOLOGIST 2020; 228:1386-1400. [PMID: 32579713 DOI: 10.1111/nph.16772] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
The floral transition of the maize (Zea mays ssp. mays) shoot apical meristem determines leaf number and flowering time, which are key traits influencing local adaptation and yield potential. dlf1 (delayed flowering1) encodes a basic leucine zipper protein that interacts with the florigen ZCN8 to mediate floral induction in the shoot apex. However, the mechanism of how dlf1 promotes floral transition remains largely unknown. We demonstrate that dlf1 underlies qLB7-1, a quantitative trait locus controlling leaf number and flowering time that was identified in a BC2 S3 population derived from a cross between maize and its wild ancestor, teosinte (Zea mays ssp. parviglumis). Transcriptome sequencing and chromatin immunoprecipitation sequencing demonstrated that DLF1 binds the core promoter of two AP1/FUL subfamily MADS-box genes, ZmMADS4 and ZmMADS67, to activate their expression. Knocking out ZmMADS4 and ZmMADS67 both increased leaf number and delayed flowering, indicating that they promote the floral transition. Nucleotide diversity analysis revealed that dlf1 and ZmMADS67 were targeted by selection, suggesting that they may have played important roles in maize flowering time adaptation. We show that dlf1 promotes maize floral transition by directly activating ZmMADS4 and ZmMADS67 in the shoot apex, providing novel insights into the mechanism of maize floral transition.
Collapse
Affiliation(s)
- Huayue Sun
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Chenglong Wang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Xiaoyang Chen
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Hongbing Liu
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yumin Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Suxing Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhaobin Dong
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Xiaoming Zhao
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Feng Tian
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Weiwei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
84
|
Adaptive introgression from maize has facilitated the establishment of teosinte as a noxious weed in Europe. Proc Natl Acad Sci U S A 2020; 117:25618-25627. [PMID: 32989136 DOI: 10.1073/pnas.2006633117] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Global trade has considerably accelerated biological invasions. The annual tropical teosintes, the closest wild relatives of maize, were recently reported as new agricultural weeds in two European countries, Spain and France. Their prompt settlement under climatic conditions differing drastically from that of their native range indicates rapid genetic evolution. We performed a phenotypic comparison of French and Mexican teosintes under European conditions and showed that only the former could complete their life cycle during maize cropping season. To test the hypothesis that crop-to-wild introgression triggered such rapid adaptation, we used single nucleotide polymorphisms to characterize patterns of genetic variation in French, Spanish, and Mexican teosintes as well as in maize germplasm. We showed that both Spanish and French teosintes originated from Zea mays ssp. mexicana race "Chalco," a weedy teosinte from the Mexican highlands. However, introduced teosintes differed markedly from their Mexican source by elevated levels of genetic introgression from the high latitude Dent maize grown in Europe. We identified a clear signature of divergent selection in a region of chromosome 8 introgressed from maize and encompassing ZCN8, a major flowering time gene associated with adaptation to high latitudes. Moreover, herbicide assays and sequencing revealed that French teosintes have acquired herbicide resistance via the introgression of a mutant herbicide-target gene (ACC1) present in herbicide-resistant maize cultivars. Altogether, our results demonstrate that adaptive crop-to-wild introgression has triggered both rapid adaptation to a new climatic niche and acquisition of herbicide resistance, thereby fostering the establishment of an emerging noxious weed.
Collapse
|
85
|
Cortinovis G, Di Vittori V, Bellucci E, Bitocchi E, Papa R. Adaptation to novel environments during crop diversification. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:203-217. [PMID: 32057695 DOI: 10.1016/j.pbi.2019.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
In the context of the global challenge of climate change, mitigation strategies are needed to adapt crops to novel environments. The main goal to address this is an understanding of the genetic basis of crop adaptation to different agro-ecological conditions. The movement of crops during the Colombian Exchange that started with the travels of Columbus in 1492 is an example of rapid adaptation to novel environments. Many diversification-related traits have been characterised in multiple crop species, and association-mapping analyses have identified loci involved in these. Here, we present an overview of current knowledge regarding the molecular basis related to the complex patterns of crop adaptation and dissemination, particularly outside their centres of origin. Investigation of the genomic basis of crop expansion offers a powerful contribution to the development of tools to identify and exploit valuable genetic diversity and to improve and design novel resilient crop varieties.
Collapse
Affiliation(s)
- Gaia Cortinovis
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Valerio Di Vittori
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Elisa Bellucci
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Elena Bitocchi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| | - Roberto Papa
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
86
|
Maize adaptation across temperate climates was obtained via expression of two florigen genes. PLoS Genet 2020; 16:e1008882. [PMID: 32673315 DOI: 10.1371/journal.pgen.1008882] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 07/28/2020] [Accepted: 05/22/2020] [Indexed: 11/19/2022] Open
Abstract
Expansion of the maize growing area was central for food security in temperate regions. In addition to the suppression of the short-day requirement for floral induction, it required breeding for a large range of flowering time that compensates the effect of South-North gradients of temperatures. Here we show the role of a novel florigen gene, ZCN12, in the latter adaptation in cooperation with ZCN8. Strong eQTLs of ZCN8 and ZCN12, measured in 327 maize lines, accounted for most of the genetic variance of flowering time in platform and field experiments. ZCN12 had a strong effect on flowering time of transgenic Arabidopsis thaliana plants; a path analysis showed that it directly affected maize flowering time together with ZCN8. The allelic composition at ZCN QTLs showed clear signs of selection by breeders. This suggests that florigens played a central role in ensuring a large range of flowering time, necessary for adaptation to temperate areas.
Collapse
|
87
|
Denoyes B, Gaston A, Rothan C. Make it bloom! CONSTANS contributes to day neutrality in rose. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3923-3926. [PMID: 32628767 PMCID: PMC7337180 DOI: 10.1093/jxb/eraa270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This article comments on:
Lu J, Sun J, Jiang A, Bai M, Fan C, Liu J, Ning G, Wang C. 2020. Alternate expression of CONSTANS-LIKE 4 in short days and CONSTANS in long days facilitates day-neutral response in Rosa chinensis. Journal of Experimental Botany 71, 4057–4068
Collapse
Affiliation(s)
- Béatrice Denoyes
- INRAE and University of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, Villenave d’Ornon, France
| | - Amèlia Gaston
- INRAE and University of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, Villenave d’Ornon, France
| | - Christophe Rothan
- INRAE and University of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, Villenave d’Ornon, France
| |
Collapse
|
88
|
Liu HJ, Jian L, Xu J, Zhang Q, Zhang M, Jin M, Peng Y, Yan J, Han B, Liu J, Gao F, Liu X, Huang L, Wei W, Ding Y, Yang X, Li Z, Zhang M, Sun J, Bai M, Song W, Chen H, Sun X, Li W, Lu Y, Liu Y, Zhao J, Qian Y, Jackson D, Fernie AR, Yan J. High-Throughput CRISPR/Cas9 Mutagenesis Streamlines Trait Gene Identification in Maize. THE PLANT CELL 2020; 32:1397-1413. [PMID: 32102844 PMCID: PMC7203946 DOI: 10.1105/tpc.19.00934] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/06/2020] [Accepted: 02/21/2020] [Indexed: 05/19/2023]
Abstract
Maize (Zea mays) is one of the most important crops in the world. However, few agronomically important maize genes have been cloned and used for trait improvement, due to its complex genome and genetic architecture. Here, we integrated multiplexed CRISPR/Cas9-based high-throughput targeted mutagenesis with genetic mapping and genomic approaches to successfully target 743 candidate genes corresponding to traits relevant for agronomy and nutrition. After low-cost barcode-based deep sequencing, 412 edited sequences covering 118 genes were precisely identified from individuals showing clear phenotypic changes. The profiles of the associated gene-editing events were similar to those identified in human cell lines and consequently are predictable using an existing algorithm originally designed for human studies. We observed unexpected but frequent homology-directed repair through endogenous templates that was likely caused by spatial contact between distinct chromosomes. Based on the characterization and interpretation of gene function from several examples, we demonstrate that the integration of forward and reverse genetics via a targeted mutagenesis library promises rapid validation of important agronomic genes for crops with complex genomes. Beyond specific findings, this study also guides further optimization of high-throughput CRISPR experiments in plants.
Collapse
Affiliation(s)
- Hai-Jun Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Liumei Jian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jieting Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- WIMI Biotechnology Co., Ltd., Changzhou 213000, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Maolin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Minliang Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong Peng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiali Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Baozhu Han
- WIMI Biotechnology Co., Ltd., Changzhou 213000, China
| | - Jie Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Fan Gao
- Xishuangbanna Institute of Agricultural Science, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Xiangguo Liu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Lei Huang
- WIMI Biotechnology Co., Ltd., Changzhou 213000, China
| | - Wenjie Wei
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunxiu Ding
- Xishuangbanna Institute of Agricultural Science, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Xiaofeng Yang
- WIMI Biotechnology Co., Ltd., Changzhou 213000, China
| | - Zhenxian Li
- Xishuangbanna Institute of Agricultural Science, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Mingliang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiamin Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Minji Bai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenhao Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanmo Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi'ang Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenqiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuming Lu
- Biogle Genome Editing Center, Changzhou 213125, China
| | - Ya Liu
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100097, China
| | - Jiuran Zhao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100097, China
| | - Yangwen Qian
- WIMI Biotechnology Co., Ltd., Changzhou 213000, China
| | - David Jackson
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
89
|
Lu S, Dong L, Fang C, Liu S, Kong L, Cheng Q, Chen L, Su T, Nan H, Zhang D, Zhang L, Wang Z, Yang Y, Yu D, Liu X, Yang Q, Lin X, Tang Y, Zhao X, Yang X, Tian C, Xie Q, Li X, Yuan X, Tian Z, Liu B, Weller JL, Kong F. Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. Nat Genet 2020; 52:428-436. [PMID: 32231277 DOI: 10.1038/s41588-020-0604-7] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/27/2020] [Indexed: 01/01/2023]
Abstract
Adaptive changes in plant phenology are often considered to be a feature of the so-called 'domestication syndrome' that distinguishes modern crops from their wild progenitors, but little detailed evidence supports this idea. In soybean, a major legume crop, flowering time variation is well characterized within domesticated germplasm and is critical for modern production, but its importance during domestication is unclear. Here, we identify sequential contributions of two homeologous pseudo-response-regulator genes, Tof12 and Tof11, to ancient flowering time adaptation, and demonstrate that they act via LHY homologs to promote expression of the legume-specific E1 gene and delay flowering under long photoperiods. We show that Tof12-dependent acceleration of maturity accompanied a reduction in dormancy and seed dispersal during soybean domestication, possibly predisposing the incipient crop to latitudinal expansion. Better understanding of this early phase of crop evolution will help to identify functional variation lost during domestication and exploit its potential for future crop improvement.
Collapse
Affiliation(s)
- Sijia Lu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Lidong Dong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Chao Fang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lingping Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Qun Cheng
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Liyu Chen
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Tong Su
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haiyang Nan
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Lei Zhang
- Anhui Academy of Agricultural Sciences, Hefei, China
| | - Zhijuan Wang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongqing Yang
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xiaolei Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qingyong Yang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Xiaoya Lin
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yang Tang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xiaohui Zhao
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xinquan Yang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Changen Tian
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Qiguang Xie
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Xia Li
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaohui Yuan
- School of Computer Science and Technology, Wuhan University of Technology, Wuhan, China.
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Baohui Liu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China.
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China.
| | - James L Weller
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia.
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China.
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
90
|
Gaudinier A, Blackman BK. Evolutionary processes from the perspective of flowering time diversity. THE NEW PHYTOLOGIST 2020; 225:1883-1898. [PMID: 31536639 DOI: 10.1111/nph.16205] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/30/2019] [Indexed: 05/18/2023]
Abstract
Although it is well appreciated that genetic studies of flowering time regulation have led to fundamental advances in the fields of molecular and developmental biology, the ways in which genetic studies of flowering time diversity have enriched the field of evolutionary biology have received less attention despite often being equally profound. Because flowering time is a complex, environmentally responsive trait that has critical impacts on plant fitness, crop yield, and reproductive isolation, research into the genetic architecture and molecular basis of its evolution continues to yield novel insights into our understanding of domestication, adaptation, and speciation. For instance, recent studies of flowering time variation have reconstructed how, when, and where polygenic evolution of phenotypic plasticity proceeded from standing variation and de novo mutations; shown how antagonistic pleiotropy and temporally varying selection maintain polymorphisms in natural populations; and provided important case studies of how assortative mating can evolve and facilitate speciation with gene flow. In addition, functional studies have built detailed regulatory networks for this trait in diverse taxa, leading to new knowledge about how and why developmental pathways are rewired and elaborated through evolutionary time.
Collapse
Affiliation(s)
- Allison Gaudinier
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Benjamin K Blackman
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
91
|
Rio S, Mary-Huard T, Moreau L, Bauland C, Palaffre C, Madur D, Combes V, Charcosset A. Disentangling group specific QTL allele effects from genetic background epistasis using admixed individuals in GWAS: An application to maize flowering. PLoS Genet 2020; 16:e1008241. [PMID: 32130208 PMCID: PMC7075643 DOI: 10.1371/journal.pgen.1008241] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 03/16/2020] [Accepted: 01/29/2020] [Indexed: 12/21/2022] Open
Abstract
When handling a structured population in association mapping, group-specific allele effects may be observed at quantitative trait loci (QTLs) for several reasons: (i) a different linkage disequilibrium (LD) between SNPs and QTLs across groups, (ii) group-specific genetic mutations in QTL regions, and/or (iii) epistatic interactions between QTLs and other loci that have differentiated allele frequencies between groups. We present here a new genome-wide association (GWAS) approach to identify QTLs exhibiting such group-specific allele effects. We developed genetic materials including admixed progeny from different genetic groups with known genome-wide ancestries (local admixture). A dedicated statistical methodology was developed to analyze pure and admixed individuals jointly, allowing one to disentangle the factors causing the heterogeneity of allele effects across groups. This approach was applied to maize by developing an inbred "Flint-Dent" panel including admixed individuals that was evaluated for flowering time. Several associations were detected revealing a wide range of configurations of allele effects, both at known flowering QTLs (Vgt1, Vgt2 and Vgt3) and new loci. We found several QTLs whose effect depended on the group ancestry of alleles while others interacted with the genetic background. Our GWAS approach provides useful information on the stability of QTL effects across genetic groups and can be applied to a wide range of species.
Collapse
Affiliation(s)
- Simon Rio
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190, Gif-sur-Yvette, France
| | - Tristan Mary-Huard
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190, Gif-sur-Yvette, France
- MIA, INRAE, AgroParisTech, Université Paris-Saclay, 75005, Paris, France
| | - Laurence Moreau
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190, Gif-sur-Yvette, France
| | - Cyril Bauland
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190, Gif-sur-Yvette, France
| | - Carine Palaffre
- UE 0394 SMH, INRAE, 2297 Route de l’INRA, 40390, Saint-Martin-de-Hinx, France
| | - Delphine Madur
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190, Gif-sur-Yvette, France
| | - Valérie Combes
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190, Gif-sur-Yvette, France
| | - Alain Charcosset
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190, Gif-sur-Yvette, France
| |
Collapse
|
92
|
Interaction Between Induced and Natural Variation at oil yellow1 Delays Reproductive Maturity in Maize. G3-GENES GENOMES GENETICS 2020; 10:797-810. [PMID: 31822516 PMCID: PMC7003087 DOI: 10.1534/g3.119.400838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We previously demonstrated that maize (Zea mays) locus very oil yellow1 (vey1) encodes a putative cis-regulatory expression polymorphism at the magnesium chelatase subunit I gene (aka oil yellow1) that strongly modifies the chlorophyll content of the semi-dominant Oy1-N1989 mutants. The vey1 allele of Mo17 inbred line reduces chlorophyll content in the mutants leading to reduced photosynthetic output. Oy1-N1989 mutants in B73 reached reproductive maturity four days later than wild-type siblings. Enhancement of Oy1-N1989 by the Mo17 allele at the vey1 QTL delayed maturity further, resulting in detection of a flowering time QTL in two bi-parental mapping populations crossed to Oy1-N1989. The near isogenic lines of B73 harboring the vey1 allele from Mo17 delayed flowering of Oy1-N1989 mutants by twelve days. Just as previously observed for chlorophyll content, vey1 had no effect on reproductive maturity in the absence of the Oy1-N1989 allele. Loss of chlorophyll biosynthesis in Oy1-N1989 mutants and enhancement by vey1 reduced CO2 assimilation. We attempted to separate the effects of photosynthesis on the induction of flowering from a possible impact of chlorophyll metabolites and retrograde signaling by manually reducing leaf area. Removal of leaves, independent of the Oy1-N1989 mutant, delayed flowering but surprisingly reduced chlorophyll contents of emerging leaves. Thus, defoliation did not completely separate the identity of the signal(s) that regulates flowering time from changes in chlorophyll content in the foliage. These findings illustrate the necessity to explore the linkage between metabolism and the mechanisms that connect it to flowering time regulation.
Collapse
|
93
|
Fang H, Fu X, Wang Y, Xu J, Feng H, Li W, Xu J, Jittham O, Zhang X, Zhang L, Yang N, Xu G, Wang M, Li X, Li J, Yan J, Yang X. Genetic basis of kernel nutritional traits during maize domestication and improvement. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:278-292. [PMID: 31529523 DOI: 10.1111/tpj.14539] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/01/2019] [Accepted: 09/09/2019] [Indexed: 05/28/2023]
Abstract
The nutritional traits of maize kernels are important for human and animal nutrition, and these traits have undergone selection to meet the diverse nutritional needs of humans. However, our knowledge of the genetic basis of selecting for kernel nutritional traits is limited. Here, we identified both single and epistatic quantitative trait loci (QTLs) that contributed to the differences of oil and carotenoid traits between maize and teosinte. Over half of teosinte alleles of single QTLs increased the values of the detected oil and carotenoid traits. Based on the pleiotropism or linkage information of the identified single QTLs, we constructed a trait-locus network to help clarify the genetic basis of correlations among oil and carotenoid traits. Furthermore, the selection features and evolutionary trajectories of the genes or loci underlying variations in oil and carotenoid traits revealed that these nutritional traits produced diverse selection events during maize domestication and improvement. To illustrate more, a mutator distance-relative transposable element (TE) in intron 1 of DXS2, which encoded a rate-limiting enzyme in the methylerythritol phosphate pathway, was identified to increase carotenoid biosynthesis by enhancing DXS2 expression. This TE occurs in the grass teosinte, and has been found to have undergone selection during maize domestication and improvement, and is almost fixed in yellow maize. Our findings not only provide important insights into evolutionary changes in nutritional traits, but also highlight the feasibility of reintroducing back into commercial agricultural germplasm those nutritionally important genes hidden in wild relatives.
Collapse
Affiliation(s)
- Hui Fang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xiuyi Fu
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yuebin Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Xu
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Haiying Feng
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Weiya Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jieting Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Orawan Jittham
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xuan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Lili Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Ning Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gen Xu
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Min Wang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xiaowei Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jiansheng Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaohong Yang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
94
|
Wisser RJ, Fang Z, Holland JB, Teixeira JEC, Dougherty J, Weldekidan T, de Leon N, Flint-Garcia S, Lauter N, Murray SC, Xu W, Hallauer A. The Genomic Basis for Short-Term Evolution of Environmental Adaptation in Maize. Genetics 2019; 213:1479-1494. [PMID: 31615843 PMCID: PMC6893377 DOI: 10.1534/genetics.119.302780] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 10/04/2019] [Indexed: 12/14/2022] Open
Abstract
Understanding the evolutionary capacity of populations to adapt to novel environments is one of the major pursuits in genetics. Moreover, for plant breeding, maladaptation is the foremost barrier to capitalizing on intraspecific variation in order to develop new breeds for future climate scenarios in agriculture. Using a unique study design, we simultaneously dissected the population and quantitative genomic basis of short-term evolution in a tropical landrace of maize that was translocated to a temperate environment and phenotypically selected for adaptation in flowering time phenology. Underlying 10 generations of directional selection, which resulted in a 26-day mean decrease in female-flowering time, [Formula: see text] of the heritable variation mapped to [Formula: see text] of the genome, where, overall, alleles shifted in frequency beyond the boundaries of genetic drift in the expected direction given their flowering time effects. However, clustering these non-neutral alleles based on their profiles of frequency change revealed transient shifts underpinning a transition in genotype-phenotype relationships across generations. This was distinguished by initial reductions in the frequencies of few relatively large positive effect alleles and subsequent enrichment of many rare negative effect alleles, some of which appear to represent allelic series. With these genomic shifts, the population reached an adapted state while retaining [Formula: see text] of the standing molecular marker variation in the founding population. Robust selection and association mapping tests highlighted several key genes driving the phenotypic response to selection. Our results reveal the evolutionary dynamics of a finite polygenic architecture conditioning a capacity for rapid environmental adaptation in maize.
Collapse
Affiliation(s)
- Randall J Wisser
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19716
| | - Zhou Fang
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695
| | - James B Holland
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695
- US Department of Agriculture-Agricultural Research Service, Raleigh, North Carolina 27695
| | - Juliana E C Teixeira
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19716
| | - John Dougherty
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19716
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware 19714
| | | | - Natalia de Leon
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Sherry Flint-Garcia
- US Department of Agriculture-Agricultural Research Service, Columbia, Missouri 65211
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211
| | - Nick Lauter
- US Department of Agriculture-Agricultural Research Service, Ames, Iowa 50011
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011
| | - Seth C Murray
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843
| | - Wenwei Xu
- Agricultural Research and Extension Center, Texas A&M AgriLife Research, Lubbock, Texas 79403
| | - Arnel Hallauer
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
95
|
Chen Q, Yang CJ, York AM, Xue W, Daskalska LL, DeValk CA, Krueger KW, Lawton SB, Spiegelberg BG, Schnell JM, Neumeyer MA, Perry JS, Peterson AC, Kim B, Bergstrom L, Yang L, Barber IC, Tian F, Doebley JF. TeoNAM: A Nested Association Mapping Population for Domestication and Agronomic Trait Analysis in Maize. Genetics 2019; 213:1065-1078. [PMID: 31481533 PMCID: PMC6827374 DOI: 10.1534/genetics.119.302594] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 08/30/2019] [Indexed: 12/21/2022] Open
Abstract
Recombinant inbred lines (RILs) are an important resource for mapping genes controlling complex traits in many species. While RIL populations have been developed for maize, a maize RIL population with multiple teosinte inbred lines as parents has been lacking. Here, we report a teosinte nested association mapping (TeoNAM) population, derived from crossing five teosinte inbreds to the maize inbred line W22. The resulting 1257 BC1S4 RILs were genotyped with 51,544 SNPs, providing a high-density genetic map with a length of 1540 cM. On average, each RIL is 15% homozygous teosinte and 8% heterozygous. We performed joint linkage mapping (JLM) and a genome-wide association study (GWAS) for 22 domestication and agronomic traits. A total of 255 QTL from JLM were identified, with many of these mapping near known genes or novel candidate genes. TeoNAM is a useful resource for QTL mapping for the discovery of novel allelic variation from teosinte. TeoNAM provides the first report that PROSTRATE GROWTH1, a rice domestication gene, is also a QTL associated with tillering in teosinte and maize. We detected multiple QTL for flowering time and other traits for which the teosinte allele contributes to a more maize-like phenotype. Such QTL could be valuable in maize improvement.
Collapse
Affiliation(s)
- Qiuyue Chen
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
- National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Chin Jian Yang
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Alessandra M York
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Wei Xue
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Lora L Daskalska
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Craig A DeValk
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Kyle W Krueger
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Samuel B Lawton
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | | | - Jack M Schnell
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Michael A Neumeyer
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Joseph S Perry
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Aria C Peterson
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Brandon Kim
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Laura Bergstrom
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Liyan Yang
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
- School of Life Science, Shanxi Normal University, Linfen, Shanxi 041004, China
| | - Isaac C Barber
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Feng Tian
- National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - John F Doebley
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| |
Collapse
|
96
|
Eshed Y, Lippman ZB. Revolutions in agriculture chart a course for targeted breeding of old and new crops. Science 2019; 366:science.aax0025. [PMID: 31488704 DOI: 10.1126/science.aax0025] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The dominance of the major crops that feed humans and their livestock arose from agricultural revolutions that increased productivity and adapted plants to large-scale farming practices. Two hormone systems that universally control flowering and plant architecture, florigen and gibberellin, were the source of multiple revolutions that modified reproductive transitions and proportional growth among plant parts. Although step changes based on serendipitous mutations in these hormone systems laid the foundation, genetic and agronomic tuning were required for broad agricultural benefits. We propose that generating targeted genetic variation in core components of both systems would elicit a wider range of phenotypic variation. Incorporating this enhanced diversity into breeding programs of conventional and underutilized crops could help to meet the future needs of the human diet and promote sustainable agriculture.
Collapse
Affiliation(s)
- Yuval Eshed
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA. .,Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| |
Collapse
|
97
|
Xu G, Cao J, Wang X, Chen Q, Jin W, Li Z, Tian F. Evolutionary Metabolomics Identifies Substantial Metabolic Divergence between Maize and Its Wild Ancestor, Teosinte. THE PLANT CELL 2019; 31:1990-2009. [PMID: 31227559 PMCID: PMC6751114 DOI: 10.1105/tpc.19.00111] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/03/2019] [Accepted: 06/17/2019] [Indexed: 05/04/2023]
Abstract
Maize (Zea mays subsp mays) was domesticated from its wild ancestor, teosinte (Zea mays subsp parviglumis). Maize's distinct morphology and adaptation to diverse environments required coordinated changes in various metabolic pathways. However, how the metabolome was reshaped since domestication remains poorly understood. Here, we report a comprehensive assessment of divergence in the seedling metabolome between maize and teosinte. In total, 461 metabolites exhibited significant divergence due to selection. Interestingly, teosinte and tropical and temperate maize, representing major stages of maize evolution, targeted distinct sets of metabolites. Alkaloids, terpenoids, and lipids were specifically targeted in the divergence between teosinte and tropical maize, while benzoxazinoids were specifically targeted in the divergence between tropical and temperate maize. To identify genetic factors controlling metabolic divergence, we assayed the seedling metabolome of a large maize-by-teosinte cross population. We show that the recent metabolic divergence between tropical and temperate maize tended to have simpler genetic architecture than the divergence between teosinte and tropical maize. Through integrating transcriptome data, we identified candidate genes contributing to metabolic divergence, many of which were under selection at the nucleotide and transcript levels. Through overexpression or mutant analysis, we verified the roles of Flavanone 3-hydroxylase1, Purple aleurone1, and maize terpene synthase1 in the divergence of their related biosynthesis pathways. Our findings not only provide important insights into domestication-associated changes in the metabolism but also highlight the power of combining omics data for trait dissection.
Collapse
Affiliation(s)
- Guanghui Xu
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Jingjing Cao
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xufeng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Qiuyue Chen
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Weiwei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Feng Tian
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
98
|
Wang P, Xiong Y, Gong R, Yang Y, Fan K, Yu S. A key variant in the cis-regulatory element of flowering gene Ghd8 associated with cold tolerance in rice. Sci Rep 2019; 9:9603. [PMID: 31270366 PMCID: PMC6610134 DOI: 10.1038/s41598-019-45794-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/13/2019] [Indexed: 11/30/2022] Open
Abstract
Variations in the gene promoter play critical roles in the evolution of important adaptive traits in crops, but direct links of the regulatory mutation to the adaptive change are not well understood. Here, we examine the nucleotide variations in the promoter region of a transcription factor (Ghd8) that control grain number, plant height and heading date in rice. We find that a dominant promoter type of subspecies japonica displayed a high activity for Ghd8 expression in comparison with the one in indica. Transgenic analyses revealed that higher expression levels of Ghd8 delayed heading date and enhanced cold tolerance in rice. Furthermore, a single-nucleotide polymorphism (T1279G) at the position −1279 bp that locates on the potential GA-responsive motif in the Ghd8 promoter affected the expression of this gene. The 1279 T variant has elevated expression of Ghd8, thus conferring increased cold tolerance of rice seedlings. Nucleotide diversity analysis revealed that the approximately 25-kb genomic region surrounding Ghd8 in the subspecies japonica was under significant selection pressure. Our findings demonstrate that the join effects of the regulatory and coding variants largely contribute to the divergence of japonica and indica and increase the adaptability of japonica to the cold environment.
Collapse
Affiliation(s)
- Peng Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.,Department of Agronomy and Horticulture, University of Nebraska Lincoln, Lincoln, NE, 68588-0660, USA
| | - Yin Xiong
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rong Gong
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ying Yang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.,Department of Agronomy and Horticulture, University of Nebraska Lincoln, Lincoln, NE, 68588-0660, USA
| | - Kai Fan
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sibin Yu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
99
|
Li K, Wen W, Alseekh S, Yang X, Guo H, Li W, Wang L, Pan Q, Zhan W, Liu J, Li Y, Wu X, Brotman Y, Willmitzer L, Li J, Fernie AR, Yan J. Large-scale metabolite quantitative trait locus analysis provides new insights for high-quality maize improvement. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:216-230. [PMID: 30888713 DOI: 10.1111/tpj.14317] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/27/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
It is generally recognized that many favorable genes which were lost during domestication, including those related to both nutritional value and stress resistance, remain hidden in wild relatives. To uncover such genes in teosinte, an ancestor of maize, we conducted metabolite profiling in a BC2 F7 population generated from a cross between the maize wild relative (Zea mays ssp. mexicana) and maize inbred line Mo17. In total, 65 primary metabolites were quantified in four tissues (seedling-stage leaf, grouting-stage leaf, young kernel and mature kernel) with clear tissue-specific patterns emerging. Three hundred and fifty quantitative trait loci (QTLs) for these metabolites were obtained, which were distributed unevenly across the genome and included two QTL hotspots. Metabolite concentrations frequently increased in the presence of alleles from the teosinte genome while the opposite was observed for grain yield and shape trait QTLs. Combination of the multi-tissue transcriptome and metabolome data provided considerable insight into the metabolic variations between maize and its wild relatives. This study thus identifies favorable genes hidden in the wild relative which should allow us to balance high yield and quality in future modern crop breeding programs.
Collapse
Affiliation(s)
- Kun Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Shizishan Lu 1, 430070, Hongshan, Wuhan, China
| | - Weiwei Wen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Shizishan Lu 1, 430070, Hongshan, Wuhan, China
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Shizishan Lu 1, 430070, Hongshan, Wuhan, China
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Centre of Plant System Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Xiaohong Yang
- Beijing Key Laboratory of Crop Genetic Improvement, National Maize Improvement Center of China, China Agricultural University, West Yuanmingyuan Lu 2, 100193, Haidian, Beijing, China
| | - Huan Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Shizishan Lu 1, 430070, Hongshan, Wuhan, China
| | - Wenqiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Shizishan Lu 1, 430070, Hongshan, Wuhan, China
| | - Luxi Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Shizishan Lu 1, 430070, Hongshan, Wuhan, China
| | - Qingchun Pan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Shizishan Lu 1, 430070, Hongshan, Wuhan, China
| | - Wei Zhan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Shizishan Lu 1, 430070, Hongshan, Wuhan, China
| | - Jie Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Shizishan Lu 1, 430070, Hongshan, Wuhan, China
| | - Yanhua Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Shizishan Lu 1, 430070, Hongshan, Wuhan, China
| | - Xiao Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Shizishan Lu 1, 430070, Hongshan, Wuhan, China
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Lothar Willmitzer
- Centre of Plant System Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Jiansheng Li
- Beijing Key Laboratory of Crop Genetic Improvement, National Maize Improvement Center of China, China Agricultural University, West Yuanmingyuan Lu 2, 100193, Haidian, Beijing, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Centre of Plant System Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Shizishan Lu 1, 430070, Hongshan, Wuhan, China
| |
Collapse
|
100
|
Liang Y, Liu Q, Wang X, Huang C, Xu G, Hey S, Lin HY, Li C, Xu D, Wu L, Wang C, Wu W, Xia J, Han X, Lu S, Lai J, Song W, Schnable PS, Tian F. ZmMADS69 functions as a flowering activator through the ZmRap2.7-ZCN8 regulatory module and contributes to maize flowering time adaptation. THE NEW PHYTOLOGIST 2019; 221:2335-2347. [PMID: 30288760 DOI: 10.1111/nph.15512] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/14/2018] [Indexed: 05/26/2023]
Abstract
Flowering time is a major determinant of the local adaptation of plants. Although numerous loci affecting flowering time have been mapped in maize, their underlying molecular mechanisms and roles in adaptation remain largely unknown. Here, we report the identification and characterization of MADS-box transcription factor ZmMADS69 that functions as a flowering activator through the ZmRap2.7-ZCN8 regulatory module and contributes to adaptation. We show that ZmMADS69 underlies a quantitative trait locus controlling the difference in flowering time between maize and its wild ancestor, teosinte. Maize ZmMADS69 allele is expressed at a higher level at floral transition and confers earlier flowering than the teosinte allele under long days and short days. Overexpression of ZmMADS69 causes early flowering, while a transposon insertion mutant of ZmMADS69 exhibits delayed flowering. ZmMADS69 shows pleiotropic effects for multiple traits of agronomic importance. ZmMADS69 functions upstream of the flowering repressor ZmRap2.7 to downregulate its expression, thereby relieving the repression of the florigen gene ZCN8 and causing early flowering. Population genetic analyses showed that ZmMADS69 was a target of selection and may have played an important role as maize spread from the tropics to temperate zones. Our findings provide important insights into the regulation and adaptation of flowering time.
Collapse
Affiliation(s)
- Yameng Liang
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qiang Liu
- Department of Agronomy, Iowa State University, Ames, IA, 50010-3650, USA
| | - Xufeng Wang
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Cheng Huang
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Guanghui Xu
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Stefan Hey
- Department of Agronomy, Iowa State University, Ames, IA, 50010-3650, USA
| | - Hung-Ying Lin
- Department of Agronomy, Iowa State University, Ames, IA, 50010-3650, USA
| | - Cong Li
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Dingyi Xu
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Lishuan Wu
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Chenglong Wang
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Weihao Wu
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jinliang Xia
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xu Han
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Sijia Lu
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Jinsheng Lai
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Weibin Song
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Patrick S Schnable
- Department of Agronomy, Iowa State University, Ames, IA, 50010-3650, USA
- Department of Plant Genetics & Breeding, China Agricultural University, Beijing, 100193, China
| | - Feng Tian
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| |
Collapse
|