51
|
Myrianthopoulos V, Evangelou K, Vasileiou PVS, Cooks T, Vassilakopoulos TP, Pangalis GA, Kouloukoussa M, Kittas C, Georgakilas AG, Gorgoulis VG. Senescence and senotherapeutics: a new field in cancer therapy. Pharmacol Ther 2018; 193:31-49. [PMID: 30121319 DOI: 10.1016/j.pharmthera.2018.08.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a stress response mechanism ensuring homeostasis. Its temporal activation during embryonic development or normal adult life is linked with beneficial properties. In contrast, persistent (chronic) senescence seems to exert detrimental effects fostering aging and age-related disorders, such as cancer. Due to the lack of a reliable marker able to detect senescence in vivo, its precise impact in age-related diseases is to a large extent still undetermined. A novel reagent termed GL13 (SenTraGorTM) that we developed, allowing senescence recognition in any type of biological material, emerges as a powerful tool to study the phenomenon of senescence in vivo. Exploiting the advantages of this novel methodological approach, scientists will be able to detect and connect senescence with aggressive behavior in human malignancies, such as tolerance to chemotherapy in classical Hodgkin Lymphoma and Langerhans Cell Histiocytosis. The latter depicts the importance of developing the new and rapidly expanding field of senotherapeutic agents targeting and driving to cell death senescent cells. We discuss in detail the current progress of this exciting area of senotherapeutics and suggest its future perspectives and applications.
Collapse
Affiliation(s)
- Vassilios Myrianthopoulos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Division of Pharmaceutical Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Greece; PharmaInformatics Unit, Athena Research Center, Greece
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Department of Anatomy-Histology-Embryology, Medical School, University of Ioannina, Ioannina, Greece
| | - Panagiotis V S Vasileiou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Tomer Cooks
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Theodoros P Vassilakopoulos
- Department of Haematology and Bone Marrow Transplantation, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Myrsini Kouloukoussa
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Museum of Anthropology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Kittas
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece.
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK; Biomedical Research Foundation, Academy of Athens, Athens, Greece.
| |
Collapse
|
52
|
Lehto M, Wolff H, Leino R, Alenius H, Savolainen J. A novel glycocluster molecule prevents timothy-induced allergic airway inflammation in mice. Allergy 2018; 73:1700-1706. [PMID: 29377154 DOI: 10.1111/all.13419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Allergen-specific immunotherapy (SIT) effectively alleviates type I allergic diseases characterized by T helper (Th)2-type immunity. Our recent studies have shown that a synthetic trivalent glycocluster, triacedimannose (TADM), suppresses the Th2-type allergic inflammation. The aim of this study was to compare TADM with two well-known adjuvants, unmethylated cytosine-phosphate-guanine oligodeoxynucleotide (CpG) and monophosphoryl lipid A (MPLA) in a grass allergen-induced chronic allergic inflammation model in mice. METHODS Female BALB/c mice were intranasally sensitized with 50 μL of timothy grass pollen extract (TE) twice a week for a period of 15 weeks. Therapeutic intranasal treatments were then performed once a week after the tenth intranasal TE instillation using TADM (10 or 25 μg/50 μL), CpG-ODN (20 μg/50 μL) or MPLA (2 μg/50 μL). Groups of 9-10 animals per treatment were killed 24 hours after the last timothy dosage. Blood, bronchoalveolar lavage (BAL) fluids and lung biopsies were taken for subsequent analysis. RESULTS When mice were repeatedly exposed to TE for 15 weeks, the number of eosinophils and lymphocytes increased in the BAL fluids. The eosinophil and lymphocyte counts decreased dose-dependently and were practically abolished in the mice treated with TADM. Treatments with MPLA or CpG significantly increased the numbers of neutrophils, while CpG nonsignificantly decreased eosinophilia compared to timothy exposure. CONCLUSIONS A novel synthetic glycocluster molecule inhibited the development of grass-induced eosinophilic pulmonary inflammation in mice when administrated in the airways. This compound could be a candidate to be used either as an adjuvant in SIT or as a topical anti-inflammatory treatment.
Collapse
Affiliation(s)
- M. Lehto
- Department of Occupational Medicine; Finnish Institute of Occupational Health; Helsinki Finland
| | - H. Wolff
- Department of Pathology; Finnish Institute of Occupational Health; Helsinki Finland
| | - R. Leino
- Johan Gadolin Process Chemistry Centre; Laboratory of Organic Chemistry; Åbo Akademi University; Turku Finland
| | - H. Alenius
- Karolinska Institutet; Institute of Environmental Medicine; Stockholm Sweden
- Medical Faculty; University of Helsinki; Helsinki Finland
| | - J. Savolainen
- Department of Pulmonary Diseases and Clinical Allergology; University of Turku; Turku University Hospital; Turku Finland
| |
Collapse
|
53
|
Fukuhara S, Tanigaki R, Kimura KI, Kataoka T. Kujigamberol interferes with pro-inflammatory cytokine-induced expression of and N-glycan modifications to cell adhesion molecules at different stages in human umbilical vein endothelial cells. Int Immunopharmacol 2018; 62:313-325. [PMID: 30053729 DOI: 10.1016/j.intimp.2018.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/11/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022]
Abstract
Kujigamberol is the norlabdane compound isolated from Kuji amber and has recently been shown to prevent Ca2+-signal transduction and exert anti-allergy effects in vitro and in vivo. However, the anti-inflammatory activities of kujigamberol remain unclear. In the present study, we investigated the biological activities of kujigamberol on cell adhesion molecules expressed on human umbilical vein endothelial cells (HUVEC) in response to pro-inflammatory cytokines. Kujigamberol decreased the molecular weight of intercellular adhesion molecule-1 (ICAM-1) by altering N-glycan modifications. In contrast to ICAM-1, kujigamberol reduced the interleukin-1α- or tumor necrosis factor α-induced expression of vascular cell adhesion molecule-1 (VCAM-1) and E-selectin at the mRNA and protein levels. Kujigamberol B, but not kujiol A, decreased the molecular weight of the ICAM-1 protein. Kujigamberol moderately inhibited yeast α-glucosidases, whereas it was only weakly inhibited by kujigamberol B and more weakly by kujiol A. Three compounds did not inhibit Jack bean α-mannosidases. The present results reveal new biological activities of kujigamberol, which interfere with the pro-inflammatory cytokine-induced expression of and N-glycan modifications to cell adhesion molecules in HUVEC.
Collapse
Affiliation(s)
- Sayuri Fukuhara
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Riho Tanigaki
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Ken-Ichi Kimura
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan
| | - Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan; The Center for Advanced Insect Research Promotion (CAIRP), Kyoto Institute of Technology, Kyoto 606-8585, Japan.
| |
Collapse
|
54
|
Madera-Salcedo IK, Danelli L, Tiwari N, Dema B, Pacreau E, Vibhushan S, Birnbaum J, Agabriel C, Liabeuf V, Klingebiel C, Menasche G, Macias-Silva M, Benhamou M, Charles N, González-Espinosa C, Vitte J, Blank U. Tomosyn functions as a PKCδ-regulated fusion clamp in mast cell degranulation. Sci Signal 2018; 11:11/537/eaan4350. [DOI: 10.1126/scisignal.aan4350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
55
|
Melo RCN, Weller PF. Contemporary understanding of the secretory granules in human eosinophils. J Leukoc Biol 2018; 104:85-93. [PMID: 29749658 DOI: 10.1002/jlb.3mr1217-476r] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 12/12/2022] Open
Abstract
Eosinophil secretory (specific) granules have a unique morphology and are both a morphologic hallmark of eosinophils and fundamental to eosinophil-mediated responses. Eosinophil mediators with multiple functional activities are presynthesized and stored within these granules, poised for very rapid, stimulus-induced secretion. The structural organization and changes of eosinophil specific granules are revealing in demonstrating the complex and diverse secretory activities of this cell. Here, we review our current knowledge on the architecture, composition, and function of eosinophil specific granules as highly elaborated organelles able to produce vesiculotubular carriers and to interplay with the intracellular vesicular trafficking. We reconsider prior identifications of eosinophil cytoplasmic granules, including "primary," "secondary," "microgranules," and "small granules"; and consonant with advances, we provide a contemporary recognition that human eosinophils contain a single population of specific granules and their developmental precursors and derived secretory vesicles.
Collapse
Affiliation(s)
- Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, UFJF, Rua José Lourenço Kelmer, Juiz de Fora, Brazil.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter F Weller
- Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, UFJF, Rua José Lourenço Kelmer, Juiz de Fora, Brazil
| |
Collapse
|
56
|
Systematic review of wound healing biomarkers in peri-implant crevicular fluid during osseointegration. Arch Oral Biol 2018; 89:107-128. [DOI: 10.1016/j.archoralbio.2018.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/15/2018] [Accepted: 02/17/2018] [Indexed: 12/29/2022]
|
57
|
Kou X, Xu X, Chen C, Sanmillan ML, Cai T, Zhou Y, Giraudo C, Le A, Shi S. The Fas/Fap-1/Cav-1 complex regulates IL-1RA secretion in mesenchymal stem cells to accelerate wound healing. Sci Transl Med 2018; 10:eaai8524. [PMID: 29540618 PMCID: PMC6310133 DOI: 10.1126/scitranslmed.aai8524] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 03/06/2017] [Accepted: 02/13/2018] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem cells (MSCs) are capable of secreting exosomes, extracellular vesicles, and cytokines to regulate cell and tissue homeostasis. However, it is unknown whether MSCs use a specific exocytotic fusion mechanism to secrete exosomes and cytokines. We show that Fas binds with Fas-associated phosphatase-1 (Fap-1) and caveolin-1 (Cav-1) to activate a common soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE)-mediated membrane fusion mechanism to release small extracellular vesicles (sEVs) in MSCs. Moreover, we reveal that MSCs produce and secrete interleukin-1 receptor antagonist (IL-1RA) associated with sEVs to maintain rapid wound healing in the gingiva via the Fas/Fap-1/Cav-1 cascade. Tumor necrosis factor-α (TNF-α) serves as an activator to up-regulate Fas and Fap-1 expression via the nuclear factor κB pathway to promote IL-1RA release. This study identifies a previously unknown Fas/Fap-1/Cav-1 axis that regulates SNARE-mediated sEV and IL-1RA secretion in stem cells, which contributes to accelerated wound healing.
Collapse
Affiliation(s)
- Xiaoxing Kou
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA 19104, USA
- Department of Orthodontics, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Beijing 100081, China
| | - Xingtian Xu
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Chider Chen
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA 19104, USA
| | - Maria Laura Sanmillan
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tao Cai
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20982, USA
| | - Yanheng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Beijing 100081, China
| | - Claudio Giraudo
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anh Le
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA 19104, USA
| | - Songtao Shi
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
58
|
Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of Cellular Senescence. Trends Cell Biol 2018; 28:436-453. [PMID: 29477613 DOI: 10.1016/j.tcb.2018.02.001] [Citation(s) in RCA: 1609] [Impact Index Per Article: 229.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a permanent state of cell cycle arrest that promotes tissue remodeling during development and after injury, but can also contribute to the decline of the regenerative potential and function of tissues, to inflammation, and to tumorigenesis in aged organisms. Therefore, the identification, characterization, and pharmacological elimination of senescent cells have gained attention in the field of aging research. However, the nonspecificity of current senescence markers and the existence of different senescence programs strongly limit these tasks. Here, we describe the molecular regulators of senescence phenotypes and how they are used for identifying senescent cells in vitro and in vivo. We also highlight the importance that these levels of regulations have in the development of therapeutic targets.
Collapse
Affiliation(s)
- Alejandra Hernandez-Segura
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jamil Nehme
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
59
|
Jin Y, Zhang P, Wang Y, Jin B, Zhou J, Zhang J, Pan J. Neddylation Blockade Diminishes Hepatic Metastasis by Dampening Cancer Stem-Like Cells and Angiogenesis in Uveal Melanoma. Clin Cancer Res 2017; 24:3741-3754. [PMID: 29233905 DOI: 10.1158/1078-0432.ccr-17-1703] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/03/2017] [Accepted: 12/05/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Liver metastasis is the major and direct cause of death in patients with uveal melanoma (UM). There is no effective therapy for patients with metastatic UM. Improved treatments of hepatic metastatic patients with UM were urgently needed. Inspired by readily detectable key components in the neddylation pathway in UM cells, we aimed at exploring whether neddylation pathway was a therapeutic target for liver metastatic UM.Experimental Design: Expression of key proteins in the neddylation pathway in UM was detected by Western blotting, real-time quantitative RT-PCR (qRT-PCR), and immunohistochemical staining. Cellular proliferation, apoptosis, cell cycle, migration, and cancer stem-like cells (CSCs) properties were examined upon treatment with MLN4924, a potent and selective NAE inhibitor. Antitumor activity and frequency of CSCs were determined by using a NOD-SCID mouse xenograft model. Liver metastasis was evaluated by use of a NOD-scid-IL2Rg-/- mouse model.Results: NAE1 expression was readily detectable in UM. Inhibition of the neddylation pathway by MLN4924 repressed the CSCs properties in UM (capacities of tumorsphere formation and serially replating, aldehyde dehydrogenase-positive cells, and frequency of CSC) through Slug protein degradation. MLN4924 treatment disturbed the paracrine secretion of NF-κB-mediated VEGF-C and its dependent angiogenesis. The inhibitory effect of neddylation blockade on proliferation, which was confirmed by xenografted UM tumor in NOD-SCID mice, was involved in activation of ATM-Chk1-Cdc25C DNA damage response, and G2-M phase arrest. Neddylation inhibition profoundly inhibited hepatic metastasis in UM.Conclusions: Our studies validate the neddylation pathway as a promising therapeutic target for the treatment of patients with hepatic metastasis of UM. Clin Cancer Res; 24(15); 3741-54. ©2017 AACRSee related commentary by Yang et al., p. 3477.
Collapse
Affiliation(s)
- Yanli Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ping Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yun Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Bei Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jingfeng Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jing Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jingxuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
60
|
Swaim CD, Scott AF, Canadeo LA, Huibregtse JM. Extracellular ISG15 Signals Cytokine Secretion through the LFA-1 Integrin Receptor. Mol Cell 2017; 68:581-590.e5. [PMID: 29100055 DOI: 10.1016/j.molcel.2017.10.003] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/31/2017] [Accepted: 10/03/2017] [Indexed: 12/30/2022]
Abstract
ISG15 is a ubiquitin-like protein that functions in innate immunity both as an intracellular protein modifier and as an extracellular signaling molecule that stimulates IFN-γ secretion. The extracellular function, important for resistance to mycobacterial disease, has remained biochemically uncharacterized. We have established an NK-92 cell-based assay for IFN-γ release, identified residues critical for ISG15 signaling, and identified the cell surface receptor as LFA-1 (CD11a/CD18; αLβ2 integrin). LFA-1 inhibition blocked IFN-γ secretion, splenocytes from CD11a-/- mice did not respond to ISG15, and ISG15 bound directly to the αI domain of CD11a in vitro. ISG15 also enhanced secretion of IL-10, indicating a broader role for ISG15 in cytokine signaling. ISG15 engagement of LFA-1 led to the activation of SRC family kinases (SFKs) and SFK inhibition blocked cytokine secretion. These findings establish the molecular basis of the extracellular function of ISG15 and the initial outside-in signaling events that drive ISG15-dependent cytokine secretion.
Collapse
Affiliation(s)
- Caleb D Swaim
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Ariella F Scott
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Larissa A Canadeo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Jon M Huibregtse
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
61
|
Adenosine, lidocaine and Mg2+ (ALM) fluid therapy attenuates systemic inflammation, platelet dysfunction and coagulopathy after non-compressible truncal hemorrhage. PLoS One 2017; 12:e0188144. [PMID: 29145467 PMCID: PMC5690633 DOI: 10.1371/journal.pone.0188144] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/01/2017] [Indexed: 11/19/2022] Open
Abstract
Background Systemic inflammation and coagulopathy are major drivers of injury progression following hemorrhagic trauma. Our aim was to examine the effect of small-volume 3% NaCl adenosine, lidocaine and Mg2+ (ALM) bolus and 0.9% NaCl/ALM ‘drip’ on inflammation and coagulation in a rat model of hemorrhagic shock. Methods Sprague-Dawley rats (429±4 g) were randomly assigned to: 1) shams, 2) no-treatment, 3) saline-controls, 4) ALM-therapy, and 5) Hextend®. Hemorrhage was induced in anesthetized-ventilated animals by liver resection (60% left lateral lobe and 50% medial lobe). After 15 min, a bolus of 3% NaCl ± ALM (0.7 ml/kg) was administered intravenously (Phase 1) followed 60 min later by 4 hour infusion of 0.9% NaCl ± ALM (0.5 ml/kg/hour) with 1-hour monitoring (Phase 2). Plasma cytokines were measured on Magpix® and coagulation using Stago/Rotational Thromboelastometry. Results After Phase 1, saline-controls, no-treatment and Hextend® groups showed significant falls in white and red cells, hemoglobin and hematocrit (up to 30%), whereas ALM animals had similar values to shams (9–15% losses). After Phase 2, these deficits in non-ALM groups were accompanied by profound systemic inflammation. In contrast, after Phase 1 ALM-treated animals had undetectable plasma levels of IL-1α and IL-1β, and IL-2, IL-6 and TNF-α were below baseline, and after Phase 2 they were less or similar to shams. Non-ALM groups (except shams) also lost their ability to aggregate platelets, had lower plasma fibrinogen levels, and were hypocoagulable. ALM-treated animals had 50-fold higher ADP-induced platelet aggregation, and 9.3-times higher collagen-induced aggregation compared to saline-controls, and had little or no coagulopathy with significantly higher fibrinogen shifting towards baseline. Hextend® had poor outcomes. Conclusions Small-volume ALM bolus/drip mounted a frontline defense against non-compressible traumatic hemorrhage by defending immune cell numbers, suppressing systemic inflammation, improving platelet aggregation and correcting coagulopathy. Saline-controls were equivalent to no-treatment. Possible mechanisms of ALM's immune-bolstering effect are discussed.
Collapse
|
62
|
Prashar A, Schnettger L, Bernard EM, Gutierrez MG. Rab GTPases in Immunity and Inflammation. Front Cell Infect Microbiol 2017; 7:435. [PMID: 29034219 PMCID: PMC5627064 DOI: 10.3389/fcimb.2017.00435] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/21/2017] [Indexed: 12/19/2022] Open
Abstract
Strict spatiotemporal control of trafficking events between organelles is critical for maintaining homeostasis and directing cellular responses. This regulation is particularly important in immune cells for mounting specialized immune defenses. By controlling the formation, transport and fusion of intracellular organelles, Rab GTPases serve as master regulators of membrane trafficking. In this review, we discuss the cellular and molecular mechanisms by which Rab GTPases regulate immunity and inflammation.
Collapse
Affiliation(s)
| | | | | | - Maximiliano G. Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, Francis Crick Institute, London, United Kingdom
| |
Collapse
|
63
|
Bielemann AM, Marcello-Machado RM, Leite FRM, Martinho FC, Chagas-Júnior OL, Antoninha Del Bel Cury A, Faot F. Comparison between inflammation-related markers in peri-implant crevicular fluid and clinical parameters during osseointegration in edentulous jaws. Clin Oral Investig 2017; 22:531-543. [PMID: 28710652 DOI: 10.1007/s00784-017-2169-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 06/26/2017] [Indexed: 01/09/2023]
Abstract
OBJECTIVES The aim of this study is to improve the understanding of interleukin mechanisms during osseointegration to enhance the monitoring of implant failure and success. Clinical parameters, implant stability, and cytokine levels in peri-implant crevicular fluid (PICF) during early bone healing after implant placement were investigated. MATERIAL AND METHODS Sixty narrow implants were placed in mandible anterior region of 30 edentulous patients (67.23 ± 7.66 years). Bone type, insertion torque, and primary stability were registered during surgery. Clinical measurements of peri-implant health and the secondary implant stability quotient (ISQ) were recorded. Samples from the PICF were collected 1, 2, 4, 8, and 12 weeks after surgery and analyzed for IL-1β, IL-6, IL-10, and TNF-α levels using ELISAs. RESULTS The gingival index increased significantly during the first week (p = 0.05), while the plaque index increased significantly between 4 to 8 and 8 to 12 weeks (p < 0.05). The probing depth and the ISQ also reduced significantly (p < 0.05) over time. The TNF-α release increased significantly after the 2nd week for non-atrophic patients and 4th week for atrophic patients (p < 0.05). The IL-1β concentrations showed a short-lived peak after 1st week (p = 0.003), specially in atrophic patients and sites with bone type I (p = 0.034; p = 0.007). The IL-6 concentrations peaked during the 1st and 2nd weeks (p < 0.05; p = 0.005) in atrophic patients and in bone type II (p = 0.023; p = 0.003). The IL-10 concentrations increased gradually over time, showing the highest concentrations at the 12th week (p < 0.005). A total of 12 implants failed at different periods. CONCLUSION While the clinical measurements presented differences between the evaluation periods, these were not indicative of early dental implant failure or peri-implant diseases. Smoking, bone atrophy, and bone type can greatly influence the cytokines concentrations during the healing time.
Collapse
Affiliation(s)
| | | | | | - Frederico Canato Martinho
- Department of Restorative Dentistry, Endodontics Division, School of Dentistry, State University of São Paulo, São José dos Campos, SP, Brazil
| | - Otacílio Luiz Chagas-Júnior
- Department of Oral and Maxillofacial Surgery and Maxillofacial Prosthodontics, School of Dentistry, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Altair Antoninha Del Bel Cury
- Department of Prosthodontics and Periodontology, School of Dentistry, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Fernanda Faot
- Department of Restorative Dentistry, School of Dentistry, Federal University of Pelotas, Gonçalves Chaves Street 457, Pelotas, RS, 96015-560, Brazil.
| |
Collapse
|
64
|
Klunder LJ, Faber KN, Dijkstra G, van IJzendoorn SCD. Mechanisms of Cell Polarity-Controlled Epithelial Homeostasis and Immunity in the Intestine. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a027888. [PMID: 28213466 DOI: 10.1101/cshperspect.a027888] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intestinal epithelial cell polarity is instrumental to maintain epithelial homeostasis and balance communications between the gut lumen and bodily tissue, thereby controlling the defense against gastrointestinal pathogens and maintenance of immune tolerance to commensal bacteria. In this review, we highlight recent advances with regard to the molecular mechanisms of cell polarity-controlled epithelial homeostasis and immunity in the human intestine.
Collapse
Affiliation(s)
- Leon J Klunder
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Sven C D van IJzendoorn
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| |
Collapse
|
65
|
Blank B, von Blume J. Cab45-Unraveling key features of a novel secretory cargo sorter at the trans-Golgi network. Eur J Cell Biol 2017; 96:383-390. [PMID: 28372832 DOI: 10.1016/j.ejcb.2017.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 12/15/2022] Open
Abstract
The accurate and efficient delivery of proteins to specific domains of the plasma membrane or to the extracellular space is critical for the ordered function of surface receptors and proteins such as insulin, collagens, antibodies, extracellular proteases. The trans-Golgi network is responsible for sorting proteins onto specific carriers for transport to their final destination. The role of the mannose-6-phosphate receptor in the sorting of hydrolases destined for lysosomes has been studied extensively, but the sorting mechanisms for secreted proteins remains poorly understood. We recently described a novel process that links the cytoplasmic actin cytoskeleton to the membrane-anchored Ca2+ ATPase SPCA1 and the lumenal Ca2+-binding protein Cab45, which mediates sorting of a subset of secretory proteins at the TGN. In response to Ca2+ influx, Cab45 forms oligomers, enabling it to bind a variety of specific cargo molecules. Thus, we suggest that this represents a novel way to export cargo molecules without the need for a bona fide transmembrane cargo receptor. This review focuses on Cab45's molecular function and highlights its possible role in disease.
Collapse
Affiliation(s)
- Birgit Blank
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Julia von Blume
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
66
|
Woo SS, James DJ, Martin TFJ. Munc13-4 functions as a Ca 2+ sensor for homotypic secretory granule fusion to generate endosomal exocytic vacuoles. Mol Biol Cell 2017; 28:792-808. [PMID: 28100639 PMCID: PMC5349786 DOI: 10.1091/mbc.e16-08-0617] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/06/2017] [Accepted: 01/11/2017] [Indexed: 12/22/2022] Open
Abstract
Munc13-4 is a Ca2+-dependent SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)- and phospholipid-binding protein that localizes to and primes secretory granules (SGs) for Ca2+-evoked secretion in various secretory cells. Studies in mast cell-like RBL-2H3 cells provide direct evidence that Munc13-4 with its two Ca2+-binding C2 domains functions as a Ca2+ sensor for SG exocytosis. Unexpectedly, Ca2+ stimulation also generated large (>2.4 μm in diameter) Munc13-4+/Rab7+/Rab11+ endosomal vacuoles. Vacuole generation involved the homotypic fusion of Munc13-4+/Rab7+ SGs, followed by a merge with Rab11+ endosomes, and depended on Ca2+ binding to Munc13-4. Munc13-4 promoted the Ca2+-stimulated fusion of VAMP8-containing liposomes with liposomes containing exocytic or endosomal Q-SNAREs and directly interacted with late endosomal SNARE complexes. Thus Munc13-4 is a tethering/priming factor and Ca2+ sensor for both heterotypic SG-plasma membrane and homotypic SG-SG fusion. Total internal reflection fluorescence microscopy imaging revealed that vacuoles were exocytic and mediated secretion of β-hexosaminidase and cytokines accompanied by Munc13-4 diffusion onto the plasma membrane. The results provide new molecular insights into the mechanism of multigranular compound exocytosis commonly observed in various secretory cells.
Collapse
Affiliation(s)
- Sang Su Woo
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Declan J James
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Thomas F J Martin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
67
|
dela Peña-Ponce MG, Rodriguez-Nieves J, Bernhardt J, Tuck R, Choudhary N, Mengual M, Mollan KR, Hudgens MG, Peter-Wohl S, De Paris K. Increasing JAK/STAT Signaling Function of Infant CD4 + T Cells during the First Year of Life. Front Pediatr 2017; 5:15. [PMID: 28271056 PMCID: PMC5318443 DOI: 10.3389/fped.2017.00015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/20/2017] [Indexed: 12/17/2022] Open
Abstract
Most infant deaths occur in the first year of life. Yet, our knowledge of immune development during this period is scarce and derived from cord blood (CB) only. To more effectively combat pediatric diseases, a deeper understanding of the kinetics and the factors that regulate the maturation of immune functions in early life is needed. Increased disease susceptibility of infants is generally attributed to T helper 2-biased immune responses. The differentiation of CD4+ T cells along a specific T helper cell lineage is dependent on the pathogen type, and on costimulatory and cytokine signals provided by antigen-presenting cells. Cytokines also regulate many other aspects of the host immune response. Therefore, toward the goal of increasing our knowledge of early immune development, we defined the temporal development of the Janus kinase (JAK)/signal transducers and activators of transcription (STAT) signaling function of CD4+ T cells using cross-sectional blood samples from healthy infants ages 0 (birth) to 14 months. We specifically focused on cytokines important in T cell differentiation (IFN-γ, IL-12, and IL-4) or in T cell survival and expansion (IL-2 and IL-7) in infant CD4+ T cells. Independent of the cytokine tested, JAK/STAT signaling in infant compared to adult CD4+ T cells was impaired at birth, but increased during the first year, with the most pronounced changes occurring in the first 6 months. The relative change in JAK/STAT signaling of infant CD4+ T cells with age was distinct for each cytokine tested. Thus, while about 60% of CB CD4+ T cells could efficiently activate STAT6 in response to IL-4, less than 5% of CB CD4+ T cells were able to activate the JAK/STAT pathway in response to IFN-γ, IL-12 or IL-2. By 4-6 months of age, the activation of the cytokine-specific STAT molecules was comparable to adults in response to IL-4 and IFN-γ, while IL-2- and IL-12-induced STAT activation remained below adult levels even at 1 year. These results suggest that common developmental and cytokine-specific factors regulate the maturation of the JAK/STAT signaling function in CD4+ T cells during the first year of life.
Collapse
Affiliation(s)
- Myra Grace dela Peña-Ponce
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Jennifer Rodriguez-Nieves
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Janice Bernhardt
- Division of Neonatal Perinatal Medicine, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Ryan Tuck
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Neelima Choudhary
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Michael Mengual
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Katie R. Mollan
- Lineberger Cancer Center, Center for AIDS Research, University of North Carolina, Chapel Hill, NC, USA
| | - Michael G. Hudgens
- Gillings School of Global Public Health, Center for AIDS Research, University of North Carolina, Chapel Hill, NC, USA
| | - Sigal Peter-Wohl
- Division of Neonatal Perinatal Medicine, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Kristina De Paris
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
68
|
Wall AA, Luo L, Hung Y, Tong SJ, Condon ND, Blumenthal A, Sweet MJ, Stow JL. Small GTPase Rab8a-recruited Phosphatidylinositol 3-Kinase γ Regulates Signaling and Cytokine Outputs from Endosomal Toll-like Receptors. J Biol Chem 2017; 292:4411-4422. [PMID: 28130450 DOI: 10.1074/jbc.m116.766337] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/14/2017] [Indexed: 12/28/2022] Open
Abstract
LPS-mediated activation of Toll-like receptor 4 (TLR4) in macrophages results in the coordinated release of proinflammatory cytokines, followed by regulatory mediators, to ensure that this potentially destructive pathway is tightly regulated. We showed previously that Rab8a recruits PI3Kγ for Akt-dependent signaling during TLR4 activation to limit the production of the proinflammatory cytokines IL-6 and IL-12p40 while enhancing the release of the regulatory/anti-inflammatory cytokine IL-10. Here we broaden the array of immune receptors controlled by Rab8a-PI3Kγ and further define the Rab-mediated membrane domains required for signaling. With CRISPR/Cas9-mediated gene editing to stably knock out and recover Rab8a in macrophage cell lines, we match Akt signaling profiles with cytokine outputs, confirming that Rab8a is a novel regulator of the Akt/mammalian target of rapamycin (mTOR) pathway downstream of multiple TLRs. Upon developing a Rab8a activation assay, we show that TLR3 and 9 agonists also activate Rab8a. Live-cell imaging reveals that Rab8a is first recruited to the plasma membrane and dorsal ruffles, but it is retained during collapse of ruffles to form macropinosomes enriched for phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2), suggesting that the macropinosome is the location where Rab8a is active. We pinpoint macropinosomes as the sites for Rab8-mediated biasing of inflammatory signaling responses via inducible production of anti-inflammatory cytokines. Thus, Rab8a and PI3Kγ are positioned in multiple TLR pathways, and this signaling axis may serve as a pharmacologically tractable target during infection and inflammation.
Collapse
Affiliation(s)
- Adam A Wall
- From the Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, University of Queensland, Brisbane, Queensland 4072, Australia and
| | - Lin Luo
- From the Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, University of Queensland, Brisbane, Queensland 4072, Australia and
| | - Yu Hung
- From the Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, University of Queensland, Brisbane, Queensland 4072, Australia and
| | - Samuel J Tong
- From the Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, University of Queensland, Brisbane, Queensland 4072, Australia and
| | - Nicholas D Condon
- From the Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, University of Queensland, Brisbane, Queensland 4072, Australia and
| | - Antje Blumenthal
- the University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Matthew J Sweet
- From the Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, University of Queensland, Brisbane, Queensland 4072, Australia and
| | - Jennifer L Stow
- From the Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, University of Queensland, Brisbane, Queensland 4072, Australia and
| |
Collapse
|
69
|
HIV Nef- and Notch1-dependent Endocytosis of ADAM17 Induces Vesicular TNF Secretion in Chronic HIV Infection. EBioMedicine 2016; 13:294-304. [PMID: 27773542 PMCID: PMC5264432 DOI: 10.1016/j.ebiom.2016.10.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/11/2016] [Accepted: 10/18/2016] [Indexed: 12/30/2022] Open
Abstract
Tumor necrosis factor (TNF) is a key cytokine in HIV replication and pathogenesis. For reasons that are not entirely clear, the cytokine remains upregulated despite anti-retroviral therapy (ART). Here we demonstrate that HIV Nef induces an alternative TNF secretion mechanism that remains active in chronic infection. Ingestion of Nef-containing plasma extracellular vesicles (pEV) from ART patients by primary immune cells, but also Nef expression, induced intracellular proTNF cleavage and secretion of vesicular TNF endosomes. Key event was the Nef-mediated routing of the TNF-converting enzyme ADAM17 into Rab4 + early endosomes and the Rab27 + secretory pathway. Analysis of lymph-node tissue by multi-epitope-ligand-cartography (MELC) confirmed a vesicular TNF secretion phenotype that co-localized with persistent Nef expression, and implicated Notch1 as an essential co-factor. Surprisingly Notch1 had no transcriptional effect but was required for the endosomal trafficking of ADAM17. We conclude that Nef expression and Nef-containing pEV mobilize TNF from endosomal compartments in acute and chronic infection. Nef/ADAM17 containing extracellular vesicles induce an endosomal TNF secretion type in primary target cells. The mechanism required the shuttling of ADAM17 into Rab4 + endosomal compartments in a Notch1-dependent manner. The mechanism could be demonstrated in tissue by multi-epitope-ligand-cartography (MELC) technology.
Despite antiviral therapy, plasma levels of TNF remain upregulated and likely play a role in many comorbidities seen in chronic HIV infection. We found that this is due to high levels of HIV-induced plasma extracellular vesicles (pEV) containing the TNF processing ADAM17 protease. Interestingly these vesicles induced a different TNF secretion type. Whereas TNF is usually shed from the plasma membrane, pEV mobilized intracellular TNF storage compartments, secreting endosomal vesicles. We could confirm this mechanism analyzing lymph node tissue sections by a novel immunostaining technology. Our report supports our previous publication implying ongoing viral activity despite successful antiretroviral therapy.
Collapse
|
70
|
Carmo LAS, Bonjour K, Ueki S, Neves JS, Liu L, Spencer LA, Dvorak AM, Weller PF, Melo RCN. CD63 is tightly associated with intracellular, secretory events chaperoning piecemeal degranulation and compound exocytosis in human eosinophils. J Leukoc Biol 2016; 100:391-401. [PMID: 26965633 PMCID: PMC6608091 DOI: 10.1189/jlb.3a1015-480r] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/18/2016] [Accepted: 02/02/2016] [Indexed: 12/26/2022] Open
Abstract
Eosinophil activation leads to secretion of presynthesized, granule-stored mediators that determine the course of allergic, inflammatory, and immunoregulatory responses. CD63, a member of the transmembrane-4 glycoprotein superfamily (tetraspanins) and present on the limiting membranes of eosinophil-specific (secretory) granules, is considered a potential surface marker for eosinophil degranulation. However, the intracellular secretory trafficking of CD63 in eosinophils and other leukocytes is not understood. Here, we provide a comprehensive investigation of CD63 trafficking at high resolution within human eosinophils stimulated with inflammatory stimuli, CCL11 and tumor necrosis factor α, which induce distinctly differing secretory processes in eosinophils: piecemeal degranulation and compound exocytosis, respectively. By using different transmission electron microscopy approaches, including an immunonanogold technique, for enhanced detection of CD63 at subcellular compartments, we identified a major intracellular pool of CD63 that is directly linked to eosinophil degranulation events. Transmission electron microscopy quantitative analyses demonstrated that, in response to stimulation, CD63 is concentrated within granules undergoing secretion by piecemeal degranulation or compound exocytosis and that CD63 tracks with the movements of vesicles and granules in the cytoplasm. Although CD63 was observed at the cell surface after stimulation, immunonanogold electron microscopy revealed that a strong CD63 pool remains in the cytoplasm. It is remarkable that CCL11 and tumor necrosis factor α triggered increased formation of CD63(+) large vesiculotubular carriers (eosinophil sombrero vesicles), which fused with granules in the process of secretion, likely acting in the intracellular translocation of CD63. Altogether, we identified active, intracellular CD63 trafficking connected to eosinophil granule-derived secretory pathways. This is important for understanding the complex secretory activities of eosinophils underlying immune responses.
Collapse
Affiliation(s)
- Lívia A S Carmo
- Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, UFJF, Juiz de Fora, Brazil
| | - Kennedy Bonjour
- Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, UFJF, Juiz de Fora, Brazil
| | - Shigeharu Ueki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Josiane S Neves
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Linying Liu
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; and
| | - Lisa A Spencer
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; and
| | - Ann M Dvorak
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter F Weller
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; and
| | - Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, UFJF, Juiz de Fora, Brazil; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; and
| |
Collapse
|
71
|
Sorvina A, Shandala T, Brooks DA. Drosophila Pkaap regulates Rab4/Rab11-dependent traffic and Rab11 exocytosis of innate immune cargo. Biol Open 2016; 5:678-88. [PMID: 27190105 PMCID: PMC4920182 DOI: 10.1242/bio.016642] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The secretion of immune-mediators is a critical step in the host innate immune response to pathogen invasion, and Rab GTPases have an important role in the regulation of this process. Rab4/Rab11 recycling endosomes are involved in the sorting of immune-mediators into specialist Rab11 vesicles that can traffic this cargo to the plasma membrane; however, how this sequential delivery process is regulated has yet to be fully defined. Here, we report that Drosophila Pkaap, an orthologue of the human dual-specific A-kinase-anchoring protein 2 or D-AKAP2 (also called AKAP10), appeared to have a nucleotide-dependent localisation to Rab4 and Rab11 endosomes. RNAi silencing of pkaap altered Rab4/Rab11 recycling endosome morphology, suggesting that Pkaap functions in cargo sorting and delivery in the secretory pathway. The depletion of pkaap also had a direct effect on Rab11 vesicle exocytosis and the secretion of the antimicrobial peptide Drosomycin at the plasma membrane. We propose that Pkaap has a dual role in antimicrobial peptide traffic and exocytosis, making it an essential component for the secretion of inflammatory mediators and the defence of the host against pathogens.
Collapse
Affiliation(s)
- Alexandra Sorvina
- Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Tetyana Shandala
- Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Douglas A Brooks
- Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia 5001, Australia
| |
Collapse
|
72
|
Zhou YQ, Liu Z, Liu ZH, Chen SP, Li M, Shahveranov A, Ye DW, Tian YK. Interleukin-6: an emerging regulator of pathological pain. J Neuroinflammation 2016; 13:141. [PMID: 27267059 PMCID: PMC4897919 DOI: 10.1186/s12974-016-0607-6] [Citation(s) in RCA: 284] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/01/2016] [Indexed: 02/08/2023] Open
Abstract
Interleukin-6 is an inflammatory cytokine with wide-ranging biological effects. It has been widely demonstrated that neuroinflammation plays a critical role in the development of pathological pain. Recently, various pathological pain models have shown elevated expression levels of interleukin-6 and its receptor in the spinal cord and dorsal root ganglia. Additionally, the administration of interleukin-6 could cause mechanical allodynia and thermal hyperalgesia, and an intrathecal injection of anti-interleukin-6 neutralizing antibody alleviated these pain-related behaviors. These studies indicated a pivotal role of interleukin-6 in pathological pain. In this review, we summarize the recent progress in understanding the roles and mechanisms of interleukin-6 in mediating pathological pain associated with bone cancer, peripheral nerve injury, spinal cord injury, chemotherapy-induced peripheral neuropathy, complete Freund’s adjuvant injection, and carrageenan injection. Understanding and regulating interleukin-6 could be an interesting lead to novel therapeutic strategies for pathological pain.
Collapse
Affiliation(s)
- Ya-Qun Zhou
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Heng Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Shu-Ping Chen
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Li
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Allahverdi Shahveranov
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yu-Ke Tian
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
73
|
Bhat SS, Friedmann KS, Knörck A, Hoxha C, Leidinger P, Backes C, Meese E, Keller A, Rettig J, Hoth M, Qu B, Schwarz EC. Syntaxin 8 is required for efficient lytic granule trafficking in cytotoxic T lymphocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1653-64. [PMID: 27094127 DOI: 10.1016/j.bbamcr.2016.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/23/2016] [Accepted: 04/14/2016] [Indexed: 12/21/2022]
Abstract
Cytotoxic T lymphocytes (CTL) eliminate pathogen-infected and cancerous cells mainly by polarized secretion of lytic granules (LG, containing cytotoxic molecules like perforin and granzymes) at the immunological synapse (IS). Members of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) family are involved in trafficking (generation, transport and fusion) of vesicles at the IS. Syntaxin 8 (Stx8) is expressed in LG and colocalizes with the T cell receptor (TCR) upon IS formation. Here, we report the significance of Stx8 for human CTL cytotoxicity. We found that Stx8 mostly localized in late, recycling endosomal and lysosomal compartments with little expression in early endosomal compartments. Down-regulation of Stx8 by siRNA resulted in reduced cytotoxicity. We found that following perforin release of the pre-existing pool upon target cell contact, Stx8 down-regulated CTL regenerate perforin pools less efficiently and thus release less perforin compared to control CTL. CD107a degranulation, real-time and end-point population cytotoxicity assays, and high resolution microscopy support our conclusion that Stx8 is required for proper and timely sorting and trafficking of cytotoxic molecules to functional LG through the endosomal pathway in human CTL.
Collapse
Affiliation(s)
- Shruthi S Bhat
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Building 48, 66421 Homburg, Germany.
| | - Kim S Friedmann
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Building 48, 66421 Homburg, Germany.
| | - Arne Knörck
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Building 48, 66421 Homburg, Germany.
| | - Cora Hoxha
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Building 48, 66421 Homburg, Germany.
| | - Petra Leidinger
- Human Genetics, School of Medicine, Saarland University, Building 60, 66421 Homburg, Germany.
| | - Christina Backes
- Center for Bioinformatics, Saarland University, Building E2.1, 66123 Saarbrücken, Germany.
| | - Eckart Meese
- Human Genetics, School of Medicine, Saarland University, Building 60, 66421 Homburg, Germany.
| | - Andreas Keller
- Center for Bioinformatics, Saarland University, Building E2.1, 66123 Saarbrücken, Germany.
| | - Jens Rettig
- Physiology, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Building 48, 66421 Homburg, Germany.
| | - Markus Hoth
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Building 48, 66421 Homburg, Germany.
| | - Bin Qu
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Building 48, 66421 Homburg, Germany.
| | - Eva C Schwarz
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Building 48, 66421 Homburg, Germany.
| |
Collapse
|
74
|
Tsave O, Petanidis S, Kioseoglou E, Yavropoulou MP, Yovos JG, Anestakis D, Tsepa A, Salifoglou A. Role of Vanadium in Cellular and Molecular Immunology: Association with Immune-Related Inflammation and Pharmacotoxicology Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4013639. [PMID: 27190573 PMCID: PMC4844775 DOI: 10.1155/2016/4013639] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/13/2016] [Indexed: 12/14/2022]
Abstract
Over the last decade, a diverse spectrum of vanadium compounds has arisen as anti-inflammatory therapeutic metallodrugs targeting various diseases. Recent studies have demonstrated that select well-defined vanadium species are involved in many immune-driven molecular mechanisms that regulate and influence immune responses. In addition, advances in cell immunotherapy have relied on the use of metallodrugs to create a "safe," highly regulated, environment for optimal control of immune response. Emerging findings include optimal regulation of B/T cell signaling and expression of immune suppressive or anti-inflammatory cytokines, critical for immune cell effector functions. Furthermore, in-depth perusals have explored NF-κB and Toll-like receptor signaling mechanisms in order to enhance adaptive immune responses and promote recruitment or conversion of inflammatory cells to immunodeficient tissues. Consequently, well-defined vanadium metallodrugs, poised to access and resensitize the immune microenvironment, interact with various biomolecular targets, such as B cells, T cells, interleukin markers, and transcription factors, thereby influencing and affecting immune signaling. A synthetically formulated and structure-based (bio)chemical reactivity account of vanadoforms emerges as a plausible strategy for designing drugs characterized by selectivity and specificity, with respect to the cellular molecular targets intimately linked to immune responses, thereby giving rise to a challenging field linked to the development of immune system vanadodrugs.
Collapse
Affiliation(s)
- Olga Tsave
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Savvas Petanidis
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Efrosini Kioseoglou
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria P. Yavropoulou
- Laboratory of Clinical and Molecular Endocrinology, 1st Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - John G. Yovos
- Laboratory of Clinical and Molecular Endocrinology, 1st Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Doxakis Anestakis
- Department of Medicine, Laboratory of General Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Medicine, Laboratory of Forensic Medicine and Toxicology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Androniki Tsepa
- Department of Medicine, Laboratory of Forensic Medicine and Toxicology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Forensic Medical Service of Thessaloniki, Ministry of Justice, Transparency, and Human Rights, Dimokratias 1 Square, 54012 Thessaloniki, Greece
| | - Athanasios Salifoglou
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
75
|
Zhang M, Xu Y, Liu Y, Cheng Y, Zhao P, Liu H, Wang Y, Ma X. Chemokine-Like Factor 1 (CKLF-1) is Overexpressed in Keloid Patients: A Potential Indicating Factor for Keloid-Predisposed Individuals. Medicine (Baltimore) 2016; 95:e3082. [PMID: 26986142 PMCID: PMC4839923 DOI: 10.1097/md.0000000000003082] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/18/2016] [Accepted: 02/23/2016] [Indexed: 01/08/2023] Open
Abstract
Chemokine-like factor 1 (CKLF-1) is a novel cytokine which have a crucial role in immune and inflammatory responses. In this study, the expression level of CKLF-1 was measured to assess the difference between keloid patients and people without keloid. Fifty samples were taken from 30 patients: 10 keloid patients; 10 scar patients; and 10 patients without obvious scarring. Patients were randomly selected from the hospitalized patients of Peking Union Medical College Hospital from September 2013 to July 2015. Five groups of samples were established: keloid samples from keloid patients (K); normal skin samples from keloid patients (KS); scar samples from scar patients (C); normal skin samples from scar patients (CS); and normal skin samples from patients without obvious scarring (S). Hematoxylin and eosin (H&E) staining was used to observe morphological changes. CKLF-1, IL-6, IL-8, IL-18, and TGF-β were detected by immunohistochemical and western blot technology. The expression of CKLF-1's mRNA was also measured by the real-time quantitative polymerase chain reaction (RT-qPCR). Compared to the K group, the other 4 groups presented significantly less inflammatory infiltration and lower expression levels of CKLF-1, IL-6, IL-8, IL-18, and TGF-β. Among the 3 normal skin groups, the expression level of CKLF-1 was significantly higher in the KS group than in the CS or S group. The mRNA expression was also obvious in the K and KS groups. CKLF-1 and other inflammatory factors were overexpressed in the samples from keloid patients, indicating that the formation of keloid may be related to inflammation and that CKLF-1 may play an important role in this process.
Collapse
Affiliation(s)
- Mingzi Zhang
- From the Department of Plastic Surgery (MZ, HL, YW), Peking Union Medical College Hospital; Department of General Surgery (YX), Youan Hospital Capital Medical University; College of Life Science and Bioengineering (YL, PZ, XM), Beijing University of Technology; and Peking University Center for Human Disease Genomics (YC), Peking University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Betulinic acid and oleanolic acid, natural pentacyclic triterpenoids, interfere with N-linked glycan modifications to intercellular adhesion molecule-1, but not its intracellular transport to the cell surface. Eur J Pharmacol 2015; 767:126-34. [PMID: 26460147 DOI: 10.1016/j.ejphar.2015.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 01/11/2023]
Abstract
Betulinic acid (3β-hydroxy-20(29)-lupen-28-oic acid), oleanolic acid (3β-hydroxy-olean-12-en-28-oic acid), and ursolic acid (3β-hydroxy-urs-12-en-28-oic acid) are close structural isomers of natural pentacyclic triterpenoid carboxylic acids. We recently identified a unique biological effect of ursolic acid, its inhibition of the intracellular trafficking of glycoproteins. In the present study, we demonstrated that betulinic acid and oleanolic acid did not inhibit the interleukin-1α-induced expression of cell-surface intercellular adhesion molecule-1 (ICAM-1) in human lung carcinoma A549 cells. Nevertheless, betulinic acid and, to a lesser extent, oleanolic acid interfered with N-linked glycan modifications to ICAM-1 in a similar manner to castanospermine (an inhibitor of endoplasmic reticulum α-glucosidases I and II), but not swainsonine (an inhibitor of Golgi α-mannosidase II). Consistent with these results, betulinic acid and oleanolic acid inhibited yeast α-glucosidase activity, but not Jack bean α-mannosidase activity. Thus, to the best of our knowledge, this is the first study to show that betulinic acid and oleanolic acid interfere with N-linked glycan modifications to ICAM-1, but not its intracellular transport to the cell surface.
Collapse
|
77
|
Ildefonso CJ, Jaime H, Rahman MM, Li Q, Boye SE, Hauswirth WW, Lucas AR, McFadden G, Lewin AS. Gene delivery of a viral anti-inflammatory protein to combat ocular inflammation. Hum Gene Ther 2015; 26:59-68. [PMID: 25420215 DOI: 10.1089/hum.2014.089] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Inflammation of the retina is a contributing factor in ocular diseases such as uveitis, diabetic retinopathy, and age-related macular degeneration (AMD). The M013 immunomodulatory protein from myxoma virus has been shown to interfere with the proinflammatory signaling pathways involving both the NLRP3 inflammasome and NF-κB. We have developed and characterized an adeno-associated viral (AAV) vector that delivers a secretable and cell-penetrating form of the M013 protein (TatM013). The expressed TatM013 protein was secreted and blocked the endotoxin-induced secretion of interleukin (IL)-1β in monocyte-derived cells and the reactive aldehyde-induced secretion of IL-1β in retinal pigment epithelium cells. The local anti-inflammatory effects of AAV-delivered TatM013 were evaluated in an endotoxin-induced uveitis (EIU) mouse model after intravitreal injection of mice with an AAV2-based vector carrying either TatM013 fused to a secreted green fluorescent protein (GFP) tag (sGFP-TatM013) or GFP. Expression of the sGFP-TatM013 transgene was demonstrated by fluorescence funduscopy in living mice. In EIU, the number of infiltrating cells and the concentration of IL-1β in the vitreous body were significantly lower in the eyes injected with AAV-sGFP-TatM013 compared with the eyes injected with control AAV-GFP. These results suggest that a virus-derived inhibitor of the innate immune response, when delivered via AAV, could be a generalized therapy for various inflammatory diseases of the eye.
Collapse
Affiliation(s)
- Cristhian J Ildefonso
- 1 Department of Molecular Genetics and Microbiology, University of Florida College of Medicine , Gainesville, FL 32610
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Expression and subcellular localization of the Qa-SNARE syntaxin17 in human eosinophils. Exp Cell Res 2015; 337:129-135. [PMID: 26254897 DOI: 10.1016/j.yexcr.2015.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 06/29/2015] [Accepted: 07/06/2015] [Indexed: 01/21/2023]
Abstract
BACKGROUND SNARE members mediate membrane fusion during intracellular trafficking underlying innate and adaptive immune responses by different cells. However, little is known about the expression and function of these proteins in human eosinophils, cells involved in allergic, inflammatory and immunoregulatory responses. Here, we investigate the expression and distribution of the Qa-SNARE syntaxin17 (STX17) within human eosinophils isolated from the peripheral blood. METHODS Flow cytometry and a pre-embedding immunonanogold electron microscopy (EM) technique that combines optimal epitope preservation and secondary Fab-fragments of antibodies linked to 1.4 nm gold particles for optimal access to microdomains, were used to investigate STX17. RESULTS STX17 was detected within unstimulated eosinophils. Immunogold EM revealed STX17 on secretory granules and on granule-derived vesiculotubular transport carriers (Eosinophil Sombrero Vesicles-EoSVs). Quantitative EM analyses showed that 77.7% of the granules were positive for STX17 with a mean±SEM of 3.9±0.2 gold particles/granule. Labeling was present on both granule outer membranes and matrices while EoSVs showed clear membrane-associated labeling. STX17 was also present in secretory granules in eosinophils stimulated with the cytokine tumor necrosis factor alpha (TNF-α) or the CC-chemokine ligand 11 CCL11 (eotaxin-1), stimuli that induce eosinophil degranulation. The number of secretory granules labeled for STX17 was significantly higher in CCL11 compared with the unstimulated group. The level of cell labeling did not change when unstimulated cells were compared with TNF-α-stimulated eosinophils. CONCLUSIONS The present study clearly shows by immunanonogold EM that STX17 is localized in eosinophil secretory granules and transport vesicles and might be involved in the transport of granule-derived cargos.
Collapse
|
79
|
Yu X, Liao Y. New insights into autocrine cytokines produced by ischemic cardiomyocytes and ventricular remodeling. SCIENCE CHINA-LIFE SCIENCES 2015. [PMID: 26208823 DOI: 10.1007/s11427-015-4883-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Xian Yu
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan, 430022, China
| | - YuHua Liao
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan, 430022, China.
| |
Collapse
|
80
|
Wall AA, Condon ND, Yeo JC, Hamilton NA, Stow JL. Dynamic imaging of the recycling endosomal network in macrophages. Methods Cell Biol 2015; 130:1-18. [PMID: 26360024 DOI: 10.1016/bs.mcb.2015.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recycling endosomes (REs) form an extensive and complex network of subcompartmentalized vesicular and tubular elements that connect with the cell surface and other endosomes in macrophages. As surveillance and defense cells of the innate immune system, macrophages are highly dependent on REs for their active and voluminous cell surface turnover and endocytic, exocytic, and recycling of membrane and cargo. Here we set out three approaches for imaging and analyzing REs in macrophages, based on the expression of fluorescently labeled RE-associated proteins and the uptake of fluorescent cargo. Subcompartments of the REs are identified by co-expression and co-localization analysis of RE associated Rab GTPases. Transferrin is a well-known cargo marker as it recycles through REs and it is compared here to other cargo, revealing how different endocytic routes intersect with REs. We show how the movement of transferrin through REs can be modeled and quantified in live cells. Finally, since phagosomes are a signature organelle for macrophages, and REs fuse with the maturing phagosome, we show imaging of REs with phagosomes using a genetically encoded pH-sensitive SNARE-based probe. Together these approaches provide multiple ways to comprehensively analyze REs and the important roles they play in these immune cells and more broadly in other cell types.
Collapse
Affiliation(s)
- Adam A Wall
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Nicholas D Condon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Jeremy C Yeo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Nicholas A Hamilton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia; Research Computing Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Jennifer L Stow
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
81
|
Correia-Álvarez E, Gómez E, Martín D, Carrocera S, Pérez S, Otero J, Peynot N, Giraud-Delville C, Caamaño JN, Sandra O, Duranthon V, Muñoz M. Expression and localization of interleukin 1 beta and interleukin 1 receptor (type I) in the bovine endometrium and embryo. J Reprod Immunol 2015; 110:1-13. [PMID: 25955718 DOI: 10.1016/j.jri.2015.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 03/06/2015] [Accepted: 03/24/2015] [Indexed: 12/31/2022]
Abstract
The interleukin-1 (IL1) system likely mediates mammalian embryo-maternal communication. In cattle, we have reported that the uterine fluid of heifers carrying early embryos shows downregulated IL1 beta (IL1B), which could lead to reduced NFkB expression and dampening of maternal innate immune responses. In this work, we assessed the expression of IL 1 beta (IL1B) and its receptor, interleukin 1 receptor type I (IL1R1) in the bovine endometrium and embryos by RT-PCR, immunohistochemistry and Western blot at the time of blastocyst development. Day 8 endometrium, both collected from animals after transfer of day 5 embryos (ET) and sham transferred (ST), showed IL1B and IL1R1 mRNA transcription and protein co-localization. Similarly, day 8 blastocyst, from ET animals and entirely produced in vitro, showed IL1R1 mRNA transcription and IL1B and IL1R1 protein co-localization. IL1B mRNA was detected in the analyzed blastocysts, but at very low levels that precluded its quantification. IL1B and IL1R1 immunostaining was observed in luminal epithelial cells, glandular epithelium and stromal cells. The presence of embryos increased endometrial IL1B protein locally, while no differences regarding IL1R1 protein and IL1B and IL1R1 mRNA were detected. These results suggest that the early preimplantation bovine embryo in the maternal tract might interact with the maternal immune system through the IL1 system. Such a mechanism may allow the embryo to elicit local endometrial responses at early stages, which are required for the development of a receptive endometrium.
Collapse
Affiliation(s)
- Eva Correia-Álvarez
- Centro de Biotecnología Animal-SERIDA, Camino de Rioseco 1225, La Olla-Deva, 33394, Gijón, Asturias, Spain
| | - Enrique Gómez
- Centro de Biotecnología Animal-SERIDA, Camino de Rioseco 1225, La Olla-Deva, 33394, Gijón, Asturias, Spain
| | - David Martín
- Centro de Biotecnología Animal-SERIDA, Camino de Rioseco 1225, La Olla-Deva, 33394, Gijón, Asturias, Spain
| | - Susana Carrocera
- Centro de Biotecnología Animal-SERIDA, Camino de Rioseco 1225, La Olla-Deva, 33394, Gijón, Asturias, Spain
| | - Silvia Pérez
- Unidad de Coordinación de Trasplantes y Terapia Celular, Hospital Universitario Central de Asturias, Carretera de Rubín s/n, 33011 Oviedo, Spain
| | - Jesús Otero
- Unidad de Coordinación de Trasplantes y Terapia Celular, Hospital Universitario Central de Asturias, Carretera de Rubín s/n, 33011 Oviedo, Spain
| | - Nathalie Peynot
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | | | - José Néstor Caamaño
- Centro de Biotecnología Animal-SERIDA, Camino de Rioseco 1225, La Olla-Deva, 33394, Gijón, Asturias, Spain
| | - Olivier Sandra
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - Véronique Duranthon
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - Marta Muñoz
- Centro de Biotecnología Animal-SERIDA, Camino de Rioseco 1225, La Olla-Deva, 33394, Gijón, Asturias, Spain.
| |
Collapse
|
82
|
Collins LE, DeCourcey J, Soledad di Luca M, Rochfort KD, Loscher CE. An Emerging Role for SNARE Proteins in Dendritic Cell Function. Front Immunol 2015; 6:133. [PMID: 25873919 PMCID: PMC4379939 DOI: 10.3389/fimmu.2015.00133] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 03/10/2015] [Indexed: 12/21/2022] Open
Abstract
Dendritic cells (DCs) provide an essential link between innate and adaptive immunity. At the site of infection, antigens recognized by DCs via pattern-recognition receptors, such as Toll-like receptors (TLRs), initiate a specific immune response. Depending on the nature of the antigen, DCs secrete distinct cytokines with which they orchestrate homeostasis and pathogen clearance. Dysregulation of this process can lead to unnecessary inflammation, which can result in a plethora of inflammatory diseases. Therefore, the secretion of cytokines from DCs is tightly regulated and this regulation is facilitated by highly conserved trafficking protein families. These proteins control the transport of vesicles from the Golgi complex to the cell surface and between organelles. In this review, we will discuss the role of soluble n-ethylmaleimide-sensitive factor attachment protein receptor proteins (SNAREs) in DCs, both as facilitators of secretion and as useful tools to determine the pathways of secretion through their definite locations within the cells and inherent specificity in opposing binding partners on vesicles and target membranes. The role of SNAREs in DC function may present an opportunity to explore these proteins as novel targets in inflammatory disease.
Collapse
Affiliation(s)
- Laura E. Collins
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Joseph DeCourcey
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Mariana Soledad di Luca
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Keith D. Rochfort
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Christine E. Loscher
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
83
|
Armutcu F, Akyol S, Ustunsoy S, Turan FF. Therapeutic potential of caffeic acid phenethyl ester and its anti-inflammatory and immunomodulatory effects (Review). Exp Ther Med 2015; 9:1582-1588. [PMID: 26136862 DOI: 10.3892/etm.2015.2346] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 03/03/2015] [Indexed: 12/15/2022] Open
Abstract
Caffeic acid phenethyl ester (CAPE), a naturally occurring compound isolated from propolis extract, has been reported to have a number of biological and pharmacological properties, exerting antioxidant, anti-inflammatory, anticarcinogenic, antibacterial and immunomodulatory effects. Recent in vivo and in vitro study findings have provided novel insights into the molecular mechanisms involved in the anti-inflammatory and immunomodulatory activities of this natural compound. CAPE has been reported to have anti-inflammatory properties involving the inhibition of certain enzyme activities, such as xanthine oxidase, cyclooxygenase and nuclear factor-κB (NF-κB) activation. Since inflammation and immune mechanisms play a crucial role in the onset of several inflammatory diseases, the inhibition of NF-κB represents a rationale for the development of novel and safe anti-inflammatory agents. The primary goal of the present review is to highlight the anti-inflammatory and immunomodulatory activities of CAPE, and critically evaluate its potential therapeutic effects.
Collapse
Affiliation(s)
- Ferah Armutcu
- Department of Biochemistry, Cerrahpasa Medical Faculty, Istanbul University, Istanbul 34098, Turkey
| | - Sumeyya Akyol
- Department of Medical Biology, Medical Faculty, Turgut Ozal University, Ankara 06010, Turkey
| | - Seyfettin Ustunsoy
- Department of Biochemistry, Medical Faculty, Fatih University, Istanbul 34500, Turkey
| | - Fatime Filiz Turan
- Department of Biochemistry, Medical Faculty, Fatih University, Istanbul 34500, Turkey
| |
Collapse
|
84
|
Kim S, Jung J, Lee I, Jung D, Youn H, Choi K. Thyroid disruption by triphenyl phosphate, an organophosphate flame retardant, in zebrafish (Danio rerio) embryos/larvae, and in GH3 and FRTL-5 cell lines. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 160:188-96. [PMID: 25646720 DOI: 10.1016/j.aquatox.2015.01.016] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 05/03/2023]
Abstract
Triphenyl phosphate (TPP), one of the most widely used organophosphate flame retardants (OPFRs), has frequently been detected in the environment and biota. However, knowledge of its toxicological effects is limited. The present study was conducted to determine the adverse effects of TPP on the thyroid endocrine system of embryonic/larval zebrafish, and the underlying mechanisms for these effects were studied using rat pituitary (GH3) and thyroid follicular (FRTL-5) cell lines. In the GH3 cells, TPP up-regulated the expression of the tshβ, trα, and trβ genes, while T3, a positive control, down-regulated the expression of these genes. In the FRTL-5 cells, the expression of the nis and tpo genes was significantly up-regulated, suggesting that TPP stimulates thyroid hormone synthesis in the thyroid gland. In zebrafish larvae at 7 days post-fertilization (dpf), TPP exposure led to significant increases in both T3 and T4 concentrations and expression of the genes involved in thyroid hormone synthesis. Exposure to TPP also significantly up-regulated the expression of the genes related to the metabolism (dio1), transport (ttr), and elimination (ugt1ab) of thyroid hormones. The down-regulation of the crh and tshβ genes in the zebrafish larvae suggests the activation of a central regulatory feedback mechanism induced by the increased T3 levels in vivo. Taken together, our observations show that TPP could increase the thyroid hormone concentrations in the early life stages of zebrafish by disrupting the central regulation and hormone synthesis pathways.
Collapse
Affiliation(s)
- Sujin Kim
- School of Public Health, Seoul National University, Seoul 151-742, Republic of Korea
| | - Joeun Jung
- School of Public Health, Seoul National University, Seoul 151-742, Republic of Korea
| | - Inae Lee
- School of Public Health, Seoul National University, Seoul 151-742, Republic of Korea
| | - Dawoon Jung
- School of Public Health, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyewon Youn
- Department of Nuclear Medicine, Cancer Imaging Center, Seoul National University Hospital, 110-744, Republic of Korea; Tumor Microenvironment Global Core Research Center, Cancer Research Institute, College of Medicine, Seoul National University, 110-799, Republic of Korea
| | - Kyungho Choi
- School of Public Health, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
85
|
Smith AM, Sewell GW, Levine AP, Chew TS, Dunne J, O'Shea NR, Smith PJ, Harrison PJ, Macdonald CM, Bloom SL, Segal AW. Disruption of macrophage pro-inflammatory cytokine release in Crohn's disease is associated with reduced optineurin expression in a subset of patients. Immunology 2015; 144:45-55. [PMID: 24943399 PMCID: PMC4264909 DOI: 10.1111/imm.12338] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/09/2014] [Accepted: 06/16/2014] [Indexed: 12/18/2022] Open
Abstract
Crohn's disease (CD) is a complex and highly heterogeneous chronic inflammatory disorder, primarily affecting the gastrointestinal tract. Genetic and functional studies have highlighted a key role for innate immunity in its pathogenesis. Profound systemic defects in innate immunity and acute inflammation are understood to result in markedly delayed clearance of bacteria from the tissues, leading to local chronic granulomatous inflammation and compensatory adaptive immunological changes. Macrophages, key orchestrators of acute inflammation, are likely to play an important role in the initial impaired innate immune response. Monocyte-derived macrophages from CD patients stimulated with Escherichia coli were shown to release attenuated levels of tumour necrosis factor and interferon-γ with normal secretion of interleukin-8 (IL-8), IL-10 and IL-6. In controls, the secretion of these cytokines was strongly positively correlated, which was not seen with CD macrophages. The transcriptomes of CD and control macrophages were examined in an attempt to understand the molecular basis of this defect. There were no differentially expressed genes identified between the two groups, consistent with genetic heterogeneity; however, a number of molecules were found to be under-expressed in subgroups of CD patients. The most common of these was optineurin (OPTN) which was under-expressed in approximately 10% of the CD patients. Reduced OPTN expression coincided with lower intracellular protein levels and diminished cytokine secretion after bacterial stimulation both in the patients and with small interfering RNA knockdown in THP-1 cells. Identifying and studying subgroups of patients with shared defective gene expression could aid our understanding of the mechanisms underlying highly heterogeneous diseases such as CD.
Collapse
Affiliation(s)
- Andrew M Smith
- Microbial Diseases, Eastman Dental Institute, University College London, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Moon TC, Befus AD, Kulka M. Mast cell mediators: their differential release and the secretory pathways involved. Front Immunol 2014; 5:569. [PMID: 25452755 PMCID: PMC4231949 DOI: 10.3389/fimmu.2014.00569] [Citation(s) in RCA: 294] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/23/2014] [Indexed: 12/14/2022] Open
Abstract
Mast cells (MC) are widely distributed throughout the body and are common at mucosal surfaces, a major host-environment interface. MC are functionally and phenotypically heterogeneous depending on the microenvironment in which they mature. Although MC have been classically viewed as effector cells of IgE-mediated allergic diseases, they are also recognized as important in host defense, innate and acquired immunity, homeostatic responses, and immunoregulation. MC activation can induce release of pre-formed mediators such as histamine from their granules, as well as release of de novo synthesized lipid mediators, cytokines, and chemokines that play diverse roles, not only in allergic reactions but also in numerous physiological and pathophysiological responses. Indeed, MC release their mediators in a discriminating and chronological manner, depending upon the stimuli involved and their signaling cascades (e.g., IgE-mediated or Toll-like receptor-mediated). However, the precise mechanisms underlying differential mediator release in response to these stimuli are poorly known. This review summarizes our knowledge of MC mediators and will focus on what is known about the discriminatory release of these mediators dependent upon diverse stimuli, MC phenotypes, and species of origin, as well as on the intracellular synthesis, storage, and secretory processes involved.
Collapse
Affiliation(s)
- Tae Chul Moon
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - A. Dean Befus
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Marianna Kulka
- National Institute for Nanotechnology, National Research Council, Edmonton, AB, Canada
| |
Collapse
|
87
|
Blaudszun AR, Moldenhauer G, Schneider M, Philippi A. A photosensitizer delivered by bispecific antibody redirected T lymphocytes enhances cytotoxicity against EpCAM-expressing carcinoma cells upon light irradiation. J Control Release 2014; 197:58-68. [PMID: 25449805 DOI: 10.1016/j.jconrel.2014.10.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/05/2014] [Accepted: 10/28/2014] [Indexed: 01/19/2023]
Abstract
Recently conducted clinical trials have provided impressive evidence that chemotherapy resistant metastatic melanoma and several hematological malignancies can be cured using adoptive T cell therapy or T cell-recruiting bispecific antibodies. However, a significant fraction of patients did not benefit from these treatments. Here we have evaluated the feasibility of a novel combination therapy which aims to further enhance the killing potential of bispecific antibody-redirected T lymphocytes by using these cells as targeted delivery system for photosensitizing agents. For a first in vitro proof-of-concept study, ex vivo activated human donor T cells were loaded with a poly(styrene sulfonate) (PSS)-complex of the model photosensitizer 5,10,15,20-tetrakis(3-hydroxyphenyl)porphyrin (mTHPP). In the absence of light and when loading with the water-soluble PSS/mTHPP-complex occurred at a tolerable concentration, viability and cytotoxic function of loaded T lymphocytes were not impaired. When "drug-enhanced" T cells were co-cultivated with EpCAM-expressing human carcinoma cells, mTHPP was transferred to target cells. Notably, in the presence of a bispecific antibody, which cross-links effector and target cells thereby inducing the cytolytic activity of cytotoxic T lymphocytes, significantly more photosensitizer was transferred. Consequently, upon irradiation of co-cultures, redirected drug-loaded T cells were more effective in killing A549 lung and SKOV-3 ovarian carcinoma cells than retargeted unloaded T lymphocytes. Particularly, the additive approach using redirected unloaded T cells in combination with appropriate amounts of separately applied PSS/mTHPP was less efficient as well. Thus, by loading T lymphocytes with a stimulus-sensitive anti-cancer drug, we were able to enhance the cytotoxic capacity of carrier cells. Photosensitizer boosted T cells could open new perspectives for adoptive T cell therapy as well as targeted photodynamic therapy.
Collapse
Affiliation(s)
- André-René Blaudszun
- Environment and Bio Group, Korea Institute of Science and Technology (KIST) Europe Forschungsgesellschaft mbH, Saarland University, Campus E7 1, Saarbrücken D-66123, Germany.
| | - Gerhard Moldenhauer
- Department of Translational Immunology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg D-69120, Germany
| | - Marc Schneider
- Department of Pharmaceutics and Biopharmacy, Philipps-University, Ketzerbach 63, Marburg D-35037, Germany
| | - Anja Philippi
- Environment and Bio Group, Korea Institute of Science and Technology (KIST) Europe Forschungsgesellschaft mbH, Saarland University, Campus E7 1, Saarbrücken D-66123, Germany
| |
Collapse
|
88
|
Blank U, Madera-Salcedo IK, Danelli L, Claver J, Tiwari N, Sánchez-Miranda E, Vázquez-Victorio G, Ramírez-Valadez KA, Macias-Silva M, González-Espinosa C. Vesicular trafficking and signaling for cytokine and chemokine secretion in mast cells. Front Immunol 2014; 5:453. [PMID: 25295038 PMCID: PMC4170139 DOI: 10.3389/fimmu.2014.00453] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/05/2014] [Indexed: 12/31/2022] Open
Abstract
Upon activation mast cells (MCs) secrete numerous inflammatory compounds stored in their cytoplasmic secretory granules by a process called anaphylactic degranulation, which is responsible for type I hypersensitivity responses. Prestored mediators include histamine and MC proteases but also some cytokines and growth factors making them available within minutes for a maximal biological effect. Degranulation is followed by the de novo synthesis of lipid mediators such as prostaglandins and leukotrienes as well as a vast array of cytokines, chemokines, and growth factors, which are responsible for late phase inflammatory responses. While lipid mediators diffuse freely out of the cell through lipid bilayers, both anaphylactic degranulation and secretion of cytokines, chemokines, and growth factors depends on highly regulated vesicular trafficking steps that occur along the secretory pathway starting with the translocation of proteins to the endoplasmic reticulum. Vesicular trafficking in MCs also intersects with endocytic routes, notably to form specialized cytoplasmic granules called secretory lysosomes. Some of the mediators like histamine reach granules via specific vesicular monoamine transporters directly from the cytoplasm. In this review, we try to summarize the available data on granule biogenesis and signaling events that coordinate the complex steps that lead to the release of the inflammatory mediators from the various vesicular carriers in MCs.
Collapse
Affiliation(s)
- Ulrich Blank
- INSERM UMRS 1149 , Paris , France ; CNRS ERL8252 , Paris , France ; Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX , Paris , France
| | - Iris Karina Madera-Salcedo
- INSERM UMRS 1149 , Paris , France ; CNRS ERL8252 , Paris , France ; Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX , Paris , France
| | - Luca Danelli
- INSERM UMRS 1149 , Paris , France ; CNRS ERL8252 , Paris , France ; Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX , Paris , France
| | - Julien Claver
- INSERM UMRS 1149 , Paris , France ; CNRS ERL8252 , Paris , France ; Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX , Paris , France
| | - Neeraj Tiwari
- INSERM UMRS 1149 , Paris , France ; CNRS ERL8252 , Paris , France ; Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX , Paris , France
| | | | - Genaro Vázquez-Victorio
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , México City , México
| | | | - Marina Macias-Silva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , México City , México
| | | |
Collapse
|
89
|
Johnson IRD, Parkinson-Lawrence EJ, Shandala T, Weigert R, Butler LM, Brooks DA. Altered endosome biogenesis in prostate cancer has biomarker potential. Mol Cancer Res 2014; 12:1851-62. [PMID: 25080433 DOI: 10.1158/1541-7786.mcr-14-0074] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED Prostate cancer is the second most common form of cancer in males, affecting one in eight men by the time they reach the age of 70 years. Current diagnostic tests for prostate cancer have significant problems with both false negatives and false positives, necessitating the search for new molecular markers. A recent investigation of endosomal and lysosomal proteins revealed that the critical process of endosomal biogenesis might be altered in prostate cancer. Here, a panel of endosomal markers was evaluated in prostate cancer and nonmalignant cells and a significant increase in gene and protein expression was found for early, but not late endosomal proteins. There was also a differential distribution of early endosomes, and altered endosomal traffic and signaling of the transferrin receptors (TFRC and TFR2) in prostate cancer cells. These findings support the concept that endosome biogenesis and function are altered in prostate cancer. Microarray analysis of a clinical cohort confirmed the altered endosomal gene expression observed in cultured prostate cancer cells. Furthermore, in prostate cancer patient tissue specimens, the early endosomal marker and adaptor protein APPL1 showed consistently altered basement membrane histology in the vicinity of tumors and concentrated staining within tumor masses. These novel observations on altered early endosome biogenesis provide a new avenue for prostate cancer biomarker investigation and suggest new methods for the early diagnosis and accurate prognosis of prostate cancer. IMPLICATIONS This discovery of altered endosome biogenesis in prostate cancer may lead to novel biomarkers for more precise cancer detection and patient prognosis.
Collapse
Affiliation(s)
- Ian R D Johnson
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Emma J Parkinson-Lawrence
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Tetyana Shandala
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | | | - Lisa M Butler
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia. Adelaide Prostate Cancer Research Centre, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Doug A Brooks
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia.
| |
Collapse
|
90
|
Ge W, Li D, Gao Y, Cao X. The Roles of Lysosomes in Inflammation and Autoimmune Diseases. Int Rev Immunol 2014; 34:415-31. [DOI: 10.3109/08830185.2014.936587] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
91
|
Luo L, Wall AA, Yeo JC, Condon ND, Norwood SJ, Schoenwaelder S, Chen KW, Jackson S, Jenkins BJ, Hartland EL, Schroder K, Collins BM, Sweet MJ, Stow JL. Rab8a interacts directly with PI3Kγ to modulate TLR4-driven PI3K and mTOR signalling. Nat Commun 2014; 5:4407. [PMID: 25022365 DOI: 10.1038/ncomms5407] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/16/2014] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptor 4 (TLR4) is activated by bacterial lipopolysaccharide (LPS) to mount innate immune responses. The TLR4-induced release of pro- and anti-inflammatory cytokines generates robust inflammatory responses, which must then be restrained to avoid disease. New mechanisms for the critical regulation of TLR-induced cytokine responses are still emerging. Here we find TLR4 complexes localized in LPS-induced dorsal ruffles on the surface of macrophages. We discover that the small GTPase Rab8a is enriched in these ruffles and recruits phosphatidylinositol 3-kinase (PI3Kγ) as an effector by interacting directly through its Ras-binding domain. Rab8a and PI3Kγ function to regulate Akt signalling generated by surface TLR4. Rab8a and PI3Kγ do not affect TLR4 endocytosis, but instead regulate mammalian target of rapamycin signalling as a mechanism for biasing the cytokine profile to constrain inflammation in innate immunity.
Collapse
Affiliation(s)
- Lin Luo
- 1] Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia [2]
| | - Adam A Wall
- 1] Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia [2]
| | - Jeremy C Yeo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nicholas D Condon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Suzanne J Norwood
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Simone Schoenwaelder
- 1] Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia [2] Heart Research Institute & Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Kaiwen W Chen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Shaun Jackson
- 1] Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia [2] Heart Research Institute & Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, MIMR-PHI Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton, Victoria 3168, Australia
| | - Elizabeth L Hartland
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3010, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Brett M Collins
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jennifer L Stow
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
92
|
Role of main neuroendocrine pathways activated by swim stress on mast cell-dependent peritoneal TNF production after LPS administration in mice. Inflamm Res 2014; 63:757-67. [PMID: 24912751 DOI: 10.1007/s00011-014-0748-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 05/16/2014] [Accepted: 05/26/2014] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE AND DESIGN To characterize the effects of swim stress on the early mast cell (MC)-dependent peritoneal production of TNF in response to lipopolysaccharide (LPS) administration in mice, identifying the neuroendocrine mediators involved. SUBJECTS Ten to twelve-week-old Swiss Webster, C57BL/6 J or c-Kit (Wsh/Wsh) mice were used. TREATMENT Animals were intraperitoneally challenged with LPS at different times after forced swimming (FS) and peak TNF production was determined in peritoneal washes at optimal time after LPS administration. Selective blockage of main neuroendocrine pathways was performed before swim stress. METHODS TNF concentrations were determined by ELISA. RESULTS FS provoked an immediate and transient inhibition of LPS-elicited, MC-dependent TNF accumulation in peritoneum, which lasted around 30 min. Suppresive effects of FS were absent on MC-deficient c-Kit (Wsh/Wsh) mice but were recovered after reconstitution with MC. Adrenalectomy or DSP4 administration increased basal ip TNF levels and enhanced LPS-induced TNF release without any effect on stress-induced inhibitory effects, mifepristone did not produce any change on stress-induced inhibition, whereas mecamylamine administration increased basals and attenuated stress effects. CONCLUSIONS Swim stress transiently inhibits the canonical MC-dependent response of TNF production in response to LPS in murine peritoneal cavity with the main participation of the cholinergic anti-inflammatory reflex.
Collapse
|
93
|
Low PC, Manzanero S, Mohannak N, Narayana VK, Nguyen TH, Kvaskoff D, Brennan FH, Ruitenberg MJ, Gelderblom M, Magnus T, Kim HA, Broughton BRS, Sobey CG, Vanhaesebroeck B, Stow JL, Arumugam TV, Meunier FA. PI3Kδ inhibition reduces TNF secretion and neuroinflammation in a mouse cerebral stroke model. Nat Commun 2014; 5:3450. [PMID: 24625684 DOI: 10.1038/ncomms4450] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/13/2014] [Indexed: 01/01/2023] Open
Abstract
Stroke is a major cause of death worldwide and the leading cause of permanent disability. Although reperfusion is currently used as treatment, the restoration of blood flow following ischaemia elicits a profound inflammatory response mediated by proinflammatory cytokines such as tumour necrosis factor (TNF), exacerbating tissue damage and worsening the outcomes for stroke patients. Phosphoinositide 3-kinase delta (PI3Kδ) controls intracellular TNF trafficking in macrophages and therefore represents a prospective target to limit neuroinflammation. Here we show that PI3Kδ inhibition confers protection in ischaemia/reperfusion models of stroke. In vitro, restoration of glucose supply following an episode of glucose deprivation potentiates TNF secretion from primary microglia-an effect that is sensitive to PI3Kδ inhibition. In vivo, transient middle cerebral artery occlusion and reperfusion in kinase-dead PI3Kδ (p110δ(D910A/D910A)) or wild-type mice pre- or post-treated with the PI3Kδ inhibitor CAL-101, leads to reduced TNF levels, decreased leukocyte infiltration, reduced infarct size and improved functional outcome. These data identify PI3Kδ as a potential therapeutic target in ischaemic stroke.
Collapse
Affiliation(s)
- Pei Ching Low
- 1] Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia [2]
| | - Silvia Manzanero
- 1] School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia [2]
| | - Nika Mohannak
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Vinod K Narayana
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tam H Nguyen
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David Kvaskoff
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Faith H Brennan
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Marc J Ruitenberg
- 1] Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia [2] School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hyun Ah Kim
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Brad R S Broughton
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Christopher G Sobey
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Bart Vanhaesebroeck
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street London WC1E 6DD, UK
| | - Jennifer L Stow
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Thiruma V Arumugam
- 1] School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia [2]
| | - Frédéric A Meunier
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
94
|
Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol 2014; 5:491. [PMID: 25339958 PMCID: PMC4188125 DOI: 10.3389/fimmu.2014.00491] [Citation(s) in RCA: 1530] [Impact Index Per Article: 139.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/22/2014] [Indexed: 12/21/2022] Open
Abstract
The evolution of macrophages has made them primordial for both development and immunity. Their functions range from the shaping of body plans to the ingestion and elimination of apoptotic cells and pathogens. Cytokines are small soluble proteins that confer instructions and mediate communication among immune and non-immune cells. A portfolio of cytokines is central to the role of macrophages as sentries of the innate immune system that mediate the transition from innate to adaptive immunity. In concert with other mediators, cytokines bias the fate of macrophages into a spectrum of inflammation-promoting "classically activated," to anti-inflammatory or "alternatively activated" macrophages. Deregulated cytokine secretion is implicated in several disease states ranging from chronic inflammation to allergy. Macrophages release cytokines via a series of beautifully orchestrated pathways that are spatiotemporally regulated. At the molecular level, these exocytic cytokine secretion pathways are coordinated by multi-protein complexes that guide cytokines from their point of synthesis to their ports of exit into the extracellular milieu. These trafficking proteins, many of which were discovered in yeast and commemorated in the 2013 Nobel Prize in Physiology or Medicine, coordinate the organelle fusion steps that are responsible for cytokine release. This review discusses the functions of cytokines secreted by macrophages, and summarizes what is known about their release mechanisms. This information will be used to delve into how selected pathogens subvert cytokine release for their own survival.
Collapse
Affiliation(s)
- Guillermo Arango Duque
- INRS-Institut Armand-Frappier, Laval, QC, Canada
- Centre for Host-Parasite Interactions, Laval, QC, Canada
- *Correspondence: Guillermo Arango Duque and Albert Descoteaux, Institut National de la Recherche Scientifique–Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada e-mail: , ;
| | - Albert Descoteaux
- INRS-Institut Armand-Frappier, Laval, QC, Canada
- Centre for Host-Parasite Interactions, Laval, QC, Canada
- *Correspondence: Guillermo Arango Duque and Albert Descoteaux, Institut National de la Recherche Scientifique–Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada e-mail: , ;
| |
Collapse
|
95
|
Kloc M, Kubiak JZ, Li XC, Ghobrial RM. The newly found functions of MTOC in immunological response. J Leukoc Biol 2013; 95:417-30. [DOI: 10.1189/jlb.0813468] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
96
|
Nair-Gupta P, Blander JM. An updated view of the intracellular mechanisms regulating cross-presentation. Front Immunol 2013; 4:401. [PMID: 24319447 PMCID: PMC3837292 DOI: 10.3389/fimmu.2013.00401] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 11/08/2013] [Indexed: 02/05/2023] Open
Abstract
Cross-presentation involves the presentation of peptides derived from internalized cargo on major histocompatibility complex class I molecules by dendritic cells, a process critical for tolerance and immunity. Detailed studies of the pathways mediating cross-presentation have revealed that this process takes place in a specialized subcellular compartment with a unique set of proteins. In this review, we focus on the recently appreciated role for intracellular vesicular traffic, which serves to equip compartments such as endosomes and phagosomes with the necessary apparatus for conducting the various steps of cross-presentation. We also consider how these pathways may integrate with inflammatory signals particularly from pattern recognition receptors that detect the presence of microbial components during infection. We discuss the consequences of such signals on initiating cross-presentation to stimulate adaptive CD8 T cell responses.
Collapse
Affiliation(s)
- Priyanka Nair-Gupta
- Department of Medicine, Immunology Institute, Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | | |
Collapse
|
97
|
Singh SK, Sethi S, Aravamudhan S, Krüger M, Grabher C. Proteome mapping of adult zebrafish marrow neutrophils reveals partial cross species conservation to human peripheral neutrophils. PLoS One 2013; 8:e73998. [PMID: 24019943 PMCID: PMC3760823 DOI: 10.1371/journal.pone.0073998] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/30/2013] [Indexed: 11/18/2022] Open
Abstract
Neutrophil granulocytes are pivotal cells within the first line of host defense of the innate immune system. In this study, we have used a gel-based LC-MS/MS approach to explore the proteome of primary marrow neutrophils from adult zebrafish. The identified proteins originated from all major cellular compartments. Gene ontology analysis revealed significant association of proteins with different immune-related network and pathway maps. 75% of proteins identified in neutrophils were identified in neutrophils only when compared to neutrophil-free brain tissue. Moreover, cross-species comparison with human peripheral blood neutrophils showed partial conservation of immune-related proteins between human and zebrafish. This study provides the first zebrafish neutrophil proteome and may serve as a valuable resource for an understanding of neutrophil biology and innate immunity.
Collapse
Affiliation(s)
- Sachin Kumar Singh
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Sachin Sethi
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | - Marcus Krüger
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Clemens Grabher
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
- * E-mail:
| |
Collapse
|