51
|
Zacharek SJ, Kribakaran S, Kitt ER, Gee DG. Leveraging big data to map neurodevelopmental trajectories in pediatric anxiety. Dev Cogn Neurosci 2021; 50:100974. [PMID: 34147988 PMCID: PMC8225701 DOI: 10.1016/j.dcn.2021.100974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022] Open
Abstract
Anxiety disorders are the most prevalent psychiatric condition among youth, with symptoms commonly emerging prior to or during adolescence. Delineating neurodevelopmental trajectories associated with anxiety disorders is important for understanding the pathophysiology of pediatric anxiety and for early risk identification. While a growing literature has yielded valuable insights into the nature of brain structure and function in pediatric anxiety, progress has been limited by inconsistent findings and challenges common to neuroimaging research. In this review, we first discuss these challenges and the promise of ‘big data’ to map neurodevelopmental trajectories in pediatric anxiety. Next, we review evidence of age-related differences in neural structure and function among anxious youth, with a focus on anxiety-relevant processes such as threat and safety learning. We then highlight large-scale cross-sectional and longitudinal studies that assess anxiety and are well positioned to inform our understanding of neurodevelopment in pediatric anxiety. Finally, we detail relevant challenges of ‘big data’ and propose future directions through which large publicly available datasets can advance knowledge of deviations from normative brain development in anxiety. Leveraging ‘big data’ will be essential for continued progress in understanding the neurobiology of pediatric anxiety, with implications for identifying markers of risk and novel treatment targets.
Collapse
Affiliation(s)
- Sadie J Zacharek
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences, Cambridge, MA, 02139, United States; Yale University, Department of Psychology, New Haven, CT, 06511, United States
| | - Sahana Kribakaran
- Yale University, Department of Psychology, New Haven, CT, 06511, United States
| | - Elizabeth R Kitt
- Yale University, Department of Psychology, New Haven, CT, 06511, United States
| | - Dylan G Gee
- Yale University, Department of Psychology, New Haven, CT, 06511, United States.
| |
Collapse
|
52
|
Baranger DAA, Lindenmuth M, Nance M, Guyer AE, Keenan K, Hipwell AE, Shaw DS, Forbes EE. The longitudinal stability of fMRI activation during reward processing in adolescents and young adults. Neuroimage 2021; 232:117872. [PMID: 33609668 PMCID: PMC8238413 DOI: 10.1016/j.neuroimage.2021.117872] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The use of functional neuroimaging has been an extremely fruitful avenue for investigating the neural basis of human reward function. This approach has included identification of potential neurobiological mechanisms of psychiatric disease and examination of environmental, experiential, and biological factors that may contribute to disease risk via effects on the reward system. However, a central and largely unexamined assumption of much of this research is that neural reward function is an individual difference characteristic that is relatively stable and trait-like over time. METHODS In two independent samples of adolescents and young adults studied longitudinally (Ns = 145 & 139, 100% female and 100% male, ages 15-21 and 20-22, 2-4 scans and 2 scans respectively), we tested within-person stability of reward-task BOLD activation, with a median of 1 and 2 years between scans. We examined multiple commonly used contrasts of active states and baseline in both the anticipation and feedback phases of a card-guessing reward task. We examined the effects of cortical parcellation resolution, contrast, network (reward regions and resting-state networks), region-size, and activation strength and variability on the stability of reward-related activation. RESULTS In both samples, contrasts of an active state relative to a baseline were more stable (ICC: intra-class correlation; e.g., Win>Baseline; mean ICC = 0.13 - 0.33) than contrasts of two active states (e.g., Win>Loss; mean ICC = 0.048 - 0.05). Additionally, activation in reward regions was less stable than in many non-task networks (e.g., dorsal attention), and activation in regions with greater between-subject variability showed higher stability in both samples. CONCLUSIONS These results show that some contrasts from functional neuroimaging activation during a card guessing reward task have partially trait-like properties in adolescent and young adult samples over 1-2 years. Notably, results suggest that contrasts intended to map cognitive function and show robust group-level effects (i.e. Win > Loss) may be less effective in studies of individual differences and disease risk. The robustness of group-level activation should be weighed against other factors when selecting regions of interest in individual difference fMRI studies.
Collapse
Affiliation(s)
- David A A Baranger
- University of Pittsburgh School of Medicine, Department of Psychiatry, 121 Meyran Avenue, Pittsburgh, PA 15213, United States.
| | - Morgan Lindenmuth
- University of Pittsburgh School of Medicine, Department of Psychiatry, 121 Meyran Avenue, Pittsburgh, PA 15213, United States
| | - Melissa Nance
- University of Pittsburgh School of Medicine, Department of Psychiatry, 121 Meyran Avenue, Pittsburgh, PA 15213, United States
| | - Amanda E Guyer
- Center for Mind and Brain, University of California Davis, Davis, CA, United States; Department of Human Ecology, University of California Davis, Davis, CA, United States
| | - Kate Keenan
- University of Chicago, Department of Psychiatry and Behavioral Neuroscience, Chicago, IL, United States
| | - Alison E Hipwell
- University of Pittsburgh School of Medicine, Department of Psychiatry, 121 Meyran Avenue, Pittsburgh, PA 15213, United States
| | - Daniel S Shaw
- University of Pittsburgh, Department of Psychology, Pittsburgh, PA, United States
| | - Erika E Forbes
- University of Pittsburgh School of Medicine, Department of Psychiatry, 121 Meyran Avenue, Pittsburgh, PA 15213, United States; University of Pittsburgh, Department of Psychology, Pittsburgh, PA, United States
| |
Collapse
|
53
|
Kim-Spoon J, Herd T, Brieant A, Elder J, Lee J, Deater-Deckard K, King-Casas B. A 4-year longitudinal neuroimaging study of cognitive control using latent growth modeling: developmental changes and brain-behavior associations. Neuroimage 2021; 237:118134. [PMID: 33951508 PMCID: PMC8316755 DOI: 10.1016/j.neuroimage.2021.118134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
Despite theoretical models suggesting developmental changes in neural substrates of cognitive control in adolescence, empirical research has rarely examined intraindividual changes in cognitive control-related brain activation using multi-wave multivariate longitudinal data. We used longitudinal repeated measures of brain activation and behavioral performance during the multi-source interference task (MSIT) from 167 adolescents (53% male) who were assessed annually over four years from ages 13 to 17 years. We applied latent growth modeling to delineate the pattern of brain activation changes over time and to examine longitudinal associations between brain activation and behavioral performance. We identified brain regions that showed differential change patterns: (1) the fronto-parietal regions that involved bilateral insula, bilateral middle frontal gyrus, left pre-supplementary motor area, left inferior parietal lobule, and right precuneus; and (2) the rostral anterior cingulate cortex (rACC) region. Longitudinal confirmatory factor analyses of the fronto-parietal regions revealed strong measurement invariance across time implying that multivariate functional magnetic resonance imaging data during cognitive control can be measured reliably over time. Latent basis growth models indicated that fronto-parietal activation decreased over time, whereas rACC activation increased over time. In addition, behavioral performance data, age-related improvement was indicated by a decreasing trajectory of intraindividual variability in response time across four years. Testing longitudinal brain-behavior associations using multivariate growth models revealed that better behavioral cognitive control was associated with lower fronto-parietal activation, but the change in behavioral performance was not related to the change in brain activation. The current findings suggest that reduced effects of cognitive interference indicated by fronto-parietal recruitment may be a marker of a maturing brain that underlies better cognitive control performance during adolescence.
Collapse
Affiliation(s)
| | - Toria Herd
- Department of Psychology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Alexis Brieant
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Jacob Elder
- Department of Psychology, University of California, Riverside, CA 92521, USA
| | - Jacob Lee
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| | - Kirby Deater-Deckard
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Brooks King-Casas
- Department of Psychology, Virginia Tech, Blacksburg, VA 24061, USA; Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| |
Collapse
|
54
|
Yokum S, Bohon C, Berkman E, Stice E. Test-retest reliability of functional MRI food receipt, anticipated receipt, and picture tasks. Am J Clin Nutr 2021; 114:764-779. [PMID: 33851199 PMCID: PMC8326039 DOI: 10.1093/ajcn/nqab096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Functional MRI (fMRI) tasks are increasingly being used to advance knowledge of the etiology and maintenance of obesity and eating disorders. Thus, understanding the test-retest reliability of BOLD signal contrasts from these tasks is important. OBJECTIVES To evaluate test-retest reliability of responses in reward-related brain regions to food receipt paradigms (palatable tastes, anticipated palatable tastes), food picture paradigms (high-calorie food pictures), a monetary reward paradigm (winning money and anticipating winning money), and a thin female model picture paradigm (thin female model pictures). METHOD We conducted secondary univariate contrast-based analyses in data drawn from 4 repeated-measures fMRI studies. Participants (Study 1: N = 60, mean [M] age = 15.2 ± 1.1 y; Study 2: N = 109, M age = 15.1 ± 0.9 y; Study 3: N = 39, M age = 21.2 ± 3.7 y; Study 4: N = 62, M age = 29.7 ± 6.2 y) completed the same tasks over 3-wk to 3-y test-retest intervals. Studies 3 and 4 included participants with eating disorders and obesity, respectively. RESULTS Test-retest reliability of the food receipt and food picture paradigms was poor, with average ICC values ranging from 0.07 to 0.20. The monetary reward paradigm and the thin female model picture paradigm also showed poor test-retest reliability: average ICC values 0.21 and 0.12, respectively. Although several regions demonstrated moderate to good test-retest reliability, these results did not replicate across studies using similar paradigms. In Studies 3 and 4, but not Study 1, test-retest reliability in visual processing regions was moderate to good when contrasting single conditions with a low-level baseline. CONCLUSIONS Results underscore the importance of examining the temporal reliability of fMRI tasks and call for the development and use of well-validated standardized fMRI tasks in eating- and obesity-related studies that can provide more reliable measures of neural activation. The trials were registered at clinicaltrials.gov as NCT02084836, NCT01949636, NCT03261050, and NCT03375853.
Collapse
Affiliation(s)
| | - Cara Bohon
- Department of Psychiatry, Stanford University, Stanford, CA, USA
| | - Elliot Berkman
- Department of Psychology, Center for Translational Neuroscience, University of Oregon, Eugene, OR, USA
| | - Eric Stice
- Department of Psychiatry, Stanford University, Stanford, CA, USA
| |
Collapse
|
55
|
The endocannabinoid system in humans: significant associations between anandamide, brain function during reward feedback and a personality measure of reward dependence. Neuropsychopharmacology 2021; 46:1020-1027. [PMID: 33007775 PMCID: PMC8114914 DOI: 10.1038/s41386-020-00870-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 01/24/2023]
Abstract
Preclinical evidence indicates that the endocannabinoid system is involved in neural responses to reward. This study aimed to investigate associations between basal serum concentrations of the endocannabinoids anandamide (AEA) and 2-arachidonylglycerol (2-AG) with brain functional reward processing. Additionally, a personality measure of reward dependence was obtained. Brain functional data were obtained of 30 right-handed adults by conducting fMRI at 3 Tesla using a reward paradigm. Reward dependence was obtained using the subscale reward dependence of the Tridimensional Personality Questionnaire (TPQ). Basal concentrations of AEA and 2-AG were determined in serum. Analyzing the fMRI data, for AEA and 2-AG ANCOVAs were calculated using a full factorial model, with condition (reward > control, loss > control) and concentrations for AEA and 2-AG as factors. Regression analyses were conducted for AEA and 2-AG on TPQ-RD scores. A whole-brain analysis showed a significant interaction effect of AEA concentration by condition (positive vs. negative) within the putamen (x = 26, y = 16, z = -8, F13.51, TFCE(1, 54) = 771.68, k = 70, PFWE = 0.044) resulting from a positive association of basal AEA concentrations and putamen activity to rewarding stimuli, while this association was absent in the loss condition. AEA concentrations were significantly negatively correlated with TPQ reward dependence scores (rspearman = -0.56, P = 0.001). These results show that circulating AEA may modulate brain activation during reward feedback and that the personality measure reward dependence is correlated with AEA concentrations in healthy human volunteers. Future research is needed to further characterize the nature of the lipids' influence on reward processing, the impact on reward anticipation and outcome, and on vulnerability for psychiatric disorders.
Collapse
|
56
|
Klapwijk ET, van den Bos W, Tamnes CK, Raschle NM, Mills KL. Opportunities for increased reproducibility and replicability of developmental neuroimaging. Dev Cogn Neurosci 2021; 47:100902. [PMID: 33383554 PMCID: PMC7779745 DOI: 10.1016/j.dcn.2020.100902] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 11/19/2020] [Accepted: 12/08/2020] [Indexed: 01/08/2023] Open
Abstract
Many workflows and tools that aim to increase the reproducibility and replicability of research findings have been suggested. In this review, we discuss the opportunities that these efforts offer for the field of developmental cognitive neuroscience, in particular developmental neuroimaging. We focus on issues broadly related to statistical power and to flexibility and transparency in data analyses. Critical considerations relating to statistical power include challenges in recruitment and testing of young populations, how to increase the value of studies with small samples, and the opportunities and challenges related to working with large-scale datasets. Developmental studies involve challenges such as choices about age groupings, lifespan modelling, analyses of longitudinal changes, and data that can be processed and analyzed in a multitude of ways. Flexibility in data acquisition, analyses and description may thereby greatly impact results. We discuss methods for improving transparency in developmental neuroimaging, and how preregistration can improve methodological rigor. While outlining challenges and issues that may arise before, during, and after data collection, solutions and resources are highlighted aiding to overcome some of these. Since the number of useful tools and techniques is ever-growing, we highlight the fact that many practices can be implemented stepwise.
Collapse
Affiliation(s)
- Eduard T Klapwijk
- Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, the Netherlands; Institute of Psychology, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands.
| | - Wouter van den Bos
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Max Planck Institute for Human Development, Center for Adaptive Rationality, Berlin, Germany
| | - Christian K Tamnes
- PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatry, Diakonhjemmet Hospital, Oslo, Norway
| | - Nora M Raschle
- Jacobs Center for Productive Youth Development at the University of Zurich, Zurich, Switzerland
| | - Kathryn L Mills
- PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; Department of Psychology, University of Oregon, Eugene, OR, USA
| |
Collapse
|
57
|
Korucuoglu O, Harms MP, Astafiev SV, Golosheykin S, Kennedy JT, Barch DM, Anokhin AP. Test-Retest Reliability of Neural Correlates of Response Inhibition and Error Monitoring: An fMRI Study of a Stop-Signal Task. Front Neurosci 2021; 15:624911. [PMID: 33584190 PMCID: PMC7875883 DOI: 10.3389/fnins.2021.624911] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
Response inhibition (RI) and error monitoring (EM) are important processes of adaptive goal-directed behavior, and neural correlates of these processes are being increasingly used as transdiagnostic biomarkers of risk for a range of neuropsychiatric disorders. Potential utility of these purported biomarkers relies on the assumption that individual differences in brain activation are reproducible over time; however, available data on test-retest reliability (TRR) of task-fMRI are very mixed. This study examined TRR of RI and EM-related activations using a stop signal task in young adults (n = 56, including 27 pairs of monozygotic (MZ) twins) in order to identify brain regions with high TRR and familial influences (as indicated by MZ twin correlations) and to examine factors potentially affecting reliability. We identified brain regions with good TRR of activations related to RI (inferior/middle frontal, superior parietal, and precentral gyri) and EM (insula, medial superior frontal and dorsolateral prefrontal cortex). No subcortical regions showed significant TRR. Regions with higher group-level activation showed higher TRR; increasing task duration improved TRR; within-session reliability was weakly related to the long-term TRR; motion negatively affected TRR, but this effect was abolished after the application of ICA-FIX, a data-driven noise removal method.
Collapse
Affiliation(s)
- Ozlem Korucuoglu
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Michael P. Harms
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Serguei V. Astafiev
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Semyon Golosheykin
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - James T. Kennedy
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Deanna M. Barch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
- Department of Psychological and Brain Sciences, Washington University, St. Louis, MO, United States
| | - Andrey P. Anokhin
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
58
|
Weiss B, Jahn A, Hyatt CS, Owens MM, Carter NT, Sweet LH, Miller JD, Haas BW. Investigating the neural substrates of Antagonistic Externalizing and social-cognitive Theory of Mind: an fMRI examination of functional activity and synchrony. PERSONALITY NEUROSCIENCE 2021; 4:e1. [PMID: 33954274 PMCID: PMC8057509 DOI: 10.1017/pen.2020.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022]
Abstract
Recently developed quantitative models of psychopathology (i.e., Hierarchical Taxonomy of Psychopathology) identify an Antagonistic Externalizing spectrum that captures the psychological disposition toward criminal and antisocial behavior. The purpose of the present study was to examine relations between Antagonistic psychopathology (and associated Five-Factor model Antagonism/Agreeableness) and neural functioning related to social-cognitive Theory of Mind using a large sample (N = 973) collected as part of the Human Connectome Project (Van Essen et al., 2013a). No meaningful relations between Antagonism/Antagonistic Externalizing and Theory of Mind-related neural activity or synchrony were observed (p < .005). We conclude by outlining methodological considerations (e.g., validity of social cognition task and low test-retest reliability of functional biomarkers) that may account for these null results, and present recommendations for future research.
Collapse
Affiliation(s)
- Brandon Weiss
- University of Georgia Franklin, College of Arts and Sciences, Psychology, Athens, Georgia
| | - Andrew Jahn
- University of Michigan, fMRI Laboratory, Ann Arbor, Michigan
| | - Courtland S. Hyatt
- University of Georgia Franklin, College of Arts and Sciences, Psychology, Athens, Georgia
| | | | - Nathan T. Carter
- University of Georgia Franklin, College of Arts and Sciences, Psychology, Athens, Georgia
| | - Lawrence H. Sweet
- University of Georgia Franklin, College of Arts and Sciences, Psychology, Athens, Georgia
| | - Joshua D. Miller
- University of Georgia Franklin, College of Arts and Sciences, Psychology, Athens, Georgia
| | - Brian W. Haas
- University of Georgia Franklin, College of Arts and Sciences, Psychology, Athens, Georgia
| |
Collapse
|
59
|
Coronado C, Wade NE, Aguinaldo LD, Mejia MH, Jacobus J. Neurocognitive Correlates of Adolescent Cannabis Use: An Overview of Neural Activation Patterns in Task-Based Functional MRI Studies. JOURNAL OF PEDIATRIC NEUROPSYCHOLOGY 2021; 6:1-13. [PMID: 33425663 DOI: 10.1007/s40817-020-00076-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adolescence is dynamic and comprises physiological, psychological, and neurocognitive changes. Notably, many developmentally associated neurobiological changes (e.g., synaptic pruning, myelination) coincide with peak substances use prevalence rates, particularly for cannabis use. Cannabis remains the most commonly used illicit drug among adolescents with 23.9% reporting cannabis use in the last year (Johnston et al., 2019). Adolescents who engage in cannabis use often show poorer neurocognitive performance and alterations in structural and functional brain development as compared to their non-using peers (Jacobus & Tapert, 2014). Over the past several decades, the cognitive domains most consistently associated with cannabis use among adolescents are learning and memory and several facets of executive functioning (e.g., inhibitory control, decision-making). Functional magnetic resonance imaging (fMRI) is a non-invasive method for probing the neural substrates underlying possible cannabis-related changes in cognition. This brief review aims to synthesize recent findings on the relationship between adolescent (≤25 years old) cannabis use and neural response during task-based functional magnetic resonance imaging (fMRI). Findings thus far suggest aberrant, often hyperactive, response to task-based stimuli in youth cannabis users. When considering the future directions of fMRI research with cannabis-using youth, review of existing studies also highlights the need for more prospective research with diverse samples.
Collapse
Affiliation(s)
- Clarisa Coronado
- Department of Psychiatry, University of California, San Diego, California, USA
| | - Natasha E Wade
- Department of Psychiatry, University of California, San Diego, California, USA
| | - Laika D Aguinaldo
- Department of Psychiatry, University of California, San Diego, California, USA
| | | | - Joanna Jacobus
- Department of Psychiatry, University of California, San Diego, California, USA
| |
Collapse
|
60
|
Zhang Y, Hua Y, Bai Y. Applications of Functional Magnetic Resonance Imaging in Determining the Pathophysiological Mechanisms and Rehabilitation of Spatial Neglect. Front Neurol 2020; 11:548568. [PMID: 33281698 PMCID: PMC7688780 DOI: 10.3389/fneur.2020.548568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) is a neuroimaging tool which has been applied extensively to explore the pathophysiological mechanisms of neurological disorders. Spatial neglect is considered to be the failure to attend or respond to stimuli on the side of the space or body opposite a cerebral lesion. In this review, we summarize and analyze fMRI studies focused specifically on spatial neglect. Evidence from fMRI studies have highlighted the role of dorsal and ventral attention networks in the pathophysiological mechanisms of spatial neglect, and also support the concept of interhemispheric rivalry as an explanatory model. fMRI studies have shown that several rehabilitation methods can induce activity changes in brain regions implicated in the control of spatial attention. Future investigations with large study cohorts and appropriate subgroup analyses should be conducted to confirm the possibility that fMRI might offer an objective standard for predicting spatial neglect and tracking the response of brain activity to clinical treatment, as well as provide biomarkers to guide rehabilitation for patients with SN.
Collapse
Affiliation(s)
- Yuqian Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Hua
- Department of Rehabilitation Medicine, Huashan Hospital North, Fudan University, Shanghai, China
| | - Yulong Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
61
|
Hyatt CS, Hallowell ES, Owens MM, Weiss BM, Sweet LH, Miller JD. An fMRI investigation of the relations between Extraversion, internalizing psychopathology, and neural activation following reward receipt in the Human Connectome Project sample. PERSONALITY NEUROSCIENCE 2020; 3:e13. [PMID: 33354651 PMCID: PMC7737192 DOI: 10.1017/pen.2020.11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/22/2022]
Abstract
Quantitative models of psychopathology (i.e., HiTOP) propose that personality and psychopathology are intertwined, such that the various processes that characterize personality traits may be useful in describing and predicting manifestations of psychopathology. In the current study, we used data from the Human Connectome Project (N = 1050) to investigate neural activation following receipt of a reward during an fMRI task as one shared mechanism that may be related to the personality trait Extraversion (specifically its sub-component Agentic Extraversion) and internalizing psychopathology. We also conducted exploratory analyses on the links between neural activation following reward receipt and the other Five-Factor Model personality traits, as well as separate analyses by gender. No significant relations (p < .005) were observed between any personality trait or index of psychopathology and neural activation following reward receipt, and most effect sizes were null to very small in nature (i.e., r < |.05|). We conclude by discussing the appropriate interpretation of these null findings, and provide suggestions for future research that spans psychological and neurobiological levels of analysis.
Collapse
Affiliation(s)
| | | | - Max M. Owens
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Brandon M. Weiss
- Department of Psychology, University of Georgia, Athens, GA, USA
| | | | - Joshua D. Miller
- Department of Psychology, University of Georgia, Athens, GA, USA
| |
Collapse
|
62
|
Buimer EEL, Pas P, Brouwer RM, Froeling M, Hoogduin H, Leemans A, Luijten P, van Nierop BJ, Raemaekers M, Schnack HG, Teeuw J, Vink M, Visser F, Hulshoff Pol HE, Mandl RCW. The YOUth cohort study: MRI protocol and test-retest reliability in adults. Dev Cogn Neurosci 2020; 45:100816. [PMID: 33040972 PMCID: PMC7365929 DOI: 10.1016/j.dcn.2020.100816] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/09/2020] [Accepted: 07/02/2020] [Indexed: 11/30/2022] Open
Abstract
The YOUth cohort study is a unique longitudinal study on brain development in the general population. As part of the YOUth study, 2000 children will be included at 8, 9 or 10 years of age and planned to return every three years during adolescence. Magnetic resonance imaging (MRI) brain scans are collected, including structural T1-weighted imaging, diffusion-weighted imaging (DWI), resting-state functional MRI and task-based functional MRI. Here, we provide a comprehensive report of the MR acquisition in YOUth Child & Adolescent including the test-retest reliability of brain measures derived from each type of scan. To measure test-retest reliability, 17 adults were scanned twice with a week between sessions using the full YOUth MRI protocol. Intraclass correlation coefficients were calculated to quantify reliability. Global brain measures derived from structural T1-weighted and DWI scans were reliable. Resting-state functional connectivity was moderately reliable, as well as functional brain measures for both the inhibition task (stop versus go) and the emotion task (face versus house). Our results complement previous studies by presenting reliability results of regional brain measures collected with different MRI modalities. YOUth facilitates data sharing and aims for reliable and high-quality data. Here we show that using the state-of-the art YOUth MRI protocol brain measures can be estimated reliably.
Collapse
Affiliation(s)
- Elizabeth E L Buimer
- UMCU Brain Center, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Pascal Pas
- UMCU Brain Center, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Rachel M Brouwer
- UMCU Brain Center, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Martijn Froeling
- Image Sciences Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Hans Hoogduin
- Image Sciences Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Peter Luijten
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Bastiaan J van Nierop
- Image Sciences Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands; Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Mathijs Raemaekers
- UMCU Brain Center, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Hugo G Schnack
- UMCU Brain Center, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Jalmar Teeuw
- UMCU Brain Center, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Matthijs Vink
- UMCU Brain Center, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands; Department of Psychology, Utrecht University, Utrecht, the Netherlands
| | | | - Hilleke E Hulshoff Pol
- UMCU Brain Center, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - René C W Mandl
- UMCU Brain Center, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
63
|
Crone EA, Achterberg M, Dobbelaar S, Euser S, van den Bulk B, der Meulen MV, van Drunen L, Wierenga LM, Bakermans-Kranenburg MJ, van IJzendoorn MH. Neural and behavioral signatures of social evaluation and adaptation in childhood and adolescence: The Leiden consortium on individual development (L-CID). Dev Cogn Neurosci 2020; 45:100805. [PMID: 33040969 PMCID: PMC7390777 DOI: 10.1016/j.dcn.2020.100805] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/31/2022] Open
Abstract
The transition period between early childhood and late adolescence is characterized by pronounced changes in social competence, or the capacity for flexible social adaptation. Here, we propose that two processes, self-control and prosociality, are crucial for social adaptation following social evaluation. We present a neurobehavioral model showing commonalities in neural responses to experiences of social acceptance and rejection, and multiple pathways for responding to social context. The Leiden Consortium on Individual Development (L-CID) provides a comprehensive approach towards understanding the longitudinal developmental pathways of, and social enrichment effects on, social competence, taking into account potential differential effects of such enrichment. Using Neurosynth based brain maps we point towards the medial prefrontal cortex as an important region integrating social cognition, self-referential processing and self-control for learning to respond flexibly to changing social contexts. Based on their role in social evaluation processing, we suggest to examine medial prefrontal cortex connections with lateral prefrontal cortex and the ventral striatum as potential neural differential susceptibility markers, in addition to previously established markers of differential susceptibility.
Collapse
Affiliation(s)
- Eveline A Crone
- Institute of Psychology, Leiden University, The Netherlands; Leiden Institute for Brain and Cognition, Leiden University, The Netherlands; Department of Psychology, Education and Child Studies, Erasmus University, The Netherlands.
| | - Michelle Achterberg
- Institute of Psychology, Leiden University, The Netherlands; Leiden Institute for Brain and Cognition, Leiden University, The Netherlands; Department of Psychology, Education and Child Studies, Erasmus University, The Netherlands
| | - Simone Dobbelaar
- Institute of Psychology, Leiden University, The Netherlands; Leiden Institute for Brain and Cognition, Leiden University, The Netherlands; Department of Psychology, Education and Child Studies, Erasmus University, The Netherlands
| | - Saskia Euser
- Institute of Psychology, Leiden University, The Netherlands; Leiden Institute for Brain and Cognition, Leiden University, The Netherlands
| | - Bianca van den Bulk
- Institute of Psychology, Leiden University, The Netherlands; Leiden Institute for Brain and Cognition, Leiden University, The Netherlands
| | - Mara van der Meulen
- Institute of Psychology, Leiden University, The Netherlands; Leiden Institute for Brain and Cognition, Leiden University, The Netherlands
| | - Lina van Drunen
- Institute of Psychology, Leiden University, The Netherlands; Leiden Institute for Brain and Cognition, Leiden University, The Netherlands; Department of Psychology, Education and Child Studies, Erasmus University, The Netherlands
| | - Lara M Wierenga
- Institute of Psychology, Leiden University, The Netherlands; Leiden Institute for Brain and Cognition, Leiden University, The Netherlands
| | - Marian J Bakermans-Kranenburg
- Leiden Institute for Brain and Cognition, Leiden University, The Netherlands; Department of Clinical Child and Family Studies, VU Amsterdam, The Netherlands
| | - Marinus H van IJzendoorn
- Department of Psychology, Education and Child Studies, Erasmus University, The Netherlands; School of Clinical Medicine, University of Cambridge, United Kingdom
| |
Collapse
|
64
|
Baker AE, Galván A. Threat or thrill? the neural mechanisms underlying the development of anxiety and risk taking in adolescence. Dev Cogn Neurosci 2020; 45:100841. [PMID: 32829216 PMCID: PMC7451699 DOI: 10.1016/j.dcn.2020.100841] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022] Open
Abstract
Anxiety is common in adolescence and has been linked to a plethora of negative outcomes across development. While previous studies of anxiety have focused on threat sensitivity, less work has considered the concurrent development of threat- and reward-related neural circuitry and how these circuits interact and compete during puberty to influence typical adolescent behaviors such as increased risk taking and exploration. The current review integrates relevant findings from clinical and developmental neuroimaging studies to paint a multidimensional picture of adolescent-onset anxiety against the backdrop of typical adolescent development. Ultimately, this paper argues that longitudinal neuroimaging studies tracking approach and avoidance motivations across development are needed to fully understand the mechanisms underlying the development of anxiety in adolescence and to identify and provide effective interventions for at-risk youth.
Collapse
Affiliation(s)
- Amanda E Baker
- Department of Psychology, University of California, 502 Portola Plaza, Los Angeles, CA, 90095, United States
| | - Adriana Galván
- Department of Psychology, University of California, 502 Portola Plaza, Los Angeles, CA, 90095, United States; Department of Psychiatry and Biobehavioral Sciences, University of California, 757 Westwood Plaza, Los Angeles, CA, 90095, United States.
| |
Collapse
|
65
|
Sanchez-Alonso S, Aslin RN. Predictive modeling of neurobehavioral state and trait variation across development. Dev Cogn Neurosci 2020; 45:100855. [PMID: 32942148 PMCID: PMC7501421 DOI: 10.1016/j.dcn.2020.100855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 11/24/2022] Open
Abstract
A key goal of human neurodevelopmental research is to map neural and behavioral trajectories across both health and disease. A growing number of developmental consortia have begun to address this gap by providing open access to cross-sectional and longitudinal 'big data' repositories. However, it remains challenging to develop models that enable prediction of both within-subject and between-subject neurodevelopmental variation. Here, we present a conceptual and analytical perspective of two essential ingredients for mapping neurodevelopmental trajectories: state and trait components of variance. We focus on mapping variation across a range of neural and behavioral measurements and consider concurrent alterations of state and trait variation across development. We present a quantitative framework for combining both state- and trait-specific sources of neurobehavioral variation across development. Specifically, we argue that non-linear mixed growth models that leverage state and trait components of variance and consider environmental factors are necessary to comprehensively map brain-behavior relationships. We discuss this framework in the context of mapping language neurodevelopmental changes in early childhood, with an emphasis on measures of functional connectivity and their reliability for establishing robust neurobehavioral relationships. The ultimate goal is to statistically unravel developmental trajectories of neurobehavioral relationships that involve a combination of individual differences and age-related changes.
Collapse
|
66
|
Flournoy JC, Vijayakumar N, Cheng TW, Cosme D, Flannery JE, Pfeifer JH. Improving practices and inferences in developmental cognitive neuroscience. Dev Cogn Neurosci 2020; 45:100807. [PMID: 32759026 PMCID: PMC7403881 DOI: 10.1016/j.dcn.2020.100807] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/13/2020] [Accepted: 06/19/2020] [Indexed: 01/19/2023] Open
Abstract
The past decade has seen growing concern about research practices in cognitive neuroscience, and psychology more broadly, that shake our confidence in many inferences in these fields. We consider how these issues affect developmental cognitive neuroscience, with the goal of progressing our field to support strong and defensible inferences from our neurobiological data. This manuscript focuses on the importance of distinguishing between confirmatory versus exploratory data analysis approaches in developmental cognitive neuroscience. Regarding confirmatory research, we discuss problems with analytic flexibility, appropriately instantiating hypotheses, and controlling the error rate given how we threshold data and correct for multiple comparisons. To counterbalance these concerns with confirmatory analyses, we present two complementary strategies. First, we discuss the advantages of working within an exploratory analysis framework, including estimating and reporting effect sizes, using parcellations, and conducting specification curve analyses. Second, we summarize defensible approaches for null hypothesis significance testing in confirmatory analyses, focusing on transparent and reproducible practices in our field. Specific recommendations are given, and templates, scripts, or other resources are hyperlinked, whenever possible.
Collapse
Affiliation(s)
- John C Flournoy
- Department of Psychology, University of Oregon, United States; Department of Psychology, Harvard University, United States
| | - Nandita Vijayakumar
- Department of Psychology, University of Oregon, United States; School of Psychology, Deakin University, Australia
| | - Theresa W Cheng
- Department of Psychology, University of Oregon, United States
| | - Danielle Cosme
- Department of Psychology, University of Oregon, United States; Annenberg School for Communication, University of Pennsylvania, United States
| | | | | |
Collapse
|
67
|
Patterns and predictors of language representation and the influence of epilepsy surgery on language reorganization in children and young adults with focal lesional epilepsy. PLoS One 2020; 15:e0238389. [PMID: 32898166 PMCID: PMC7478845 DOI: 10.1371/journal.pone.0238389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/14/2020] [Indexed: 11/19/2022] Open
Abstract
Mapping brain functions is crucial for neurosurgical planning in patients with drug-resistant seizures. However, presurgical language mapping using either functional or structural networks can be challenging, especially in children. In fact, most of the evidence on this topic derives from cross-sectional or retrospective studies in adults submitted to anterior temporal lobectomy. In this prospective study, we used fMRI and DTI to explore patterns of language representation, their predictors and impact on cognitive performances in 29 children and young adults (mean age at surgery: 14.6 ± 4.5 years) with focal lesional epilepsy. In 20 of them, we also assessed the influence of epilepsy surgery on language lateralization. All patients were consecutively enrolled at a single epilepsy surgery center between 2009 and 2015 and assessed with preoperative structural and functional 3T brain MRI during three language tasks: Word Generation (WG), Rhyme Generation (RG) and a comprehension task. We also acquired DTI data on arcuate fasciculus in 24 patients. We first assessed patterns of language representation (relationship of activations with the epileptogenic lesion and Laterality Index (LI)) and then hypothesized a causal model to test whether selected clinical variables would influence the patterns of language representation and the ensuing impact of the latter on cognitive performances. Twenty out of 29 patients also underwent postoperative language fMRI. We analyzed possible changes of fMRI and DTI LIs and their clinical predictors. Preoperatively, we found atypical language lateralization in four patients during WG task, in one patient during RG task and in seven patients during the comprehension task. Diffuse interictal EEG abnormalities predicted a more atypical language representation on fMRI (p = 0.012), which in turn correlated with lower attention (p = 0.036) and IQ/GDQ scores (p = 0.014). Postoperative language reorganization implied shifting towards atypical language representation. Abnormal postoperative EEG (p = 0.003) and surgical failures (p = 0.015) were associated with more atypical language lateralization, in turn correlating with worsened fluency. Neither preoperative asymmetry nor postoperative DTI LI changes in the arcuate fasciculus were observed. Focal lesional epilepsy associated with diffuse EEG abnormalities may favor atypical language lateralization and worse cognitive performances, which are potentially reversible after successful surgery.
Collapse
|
68
|
Elliott ML, Knodt AR, Ireland D, Morris ML, Poulton R, Ramrakha S, Sison ML, Moffitt TE, Caspi A, Hariri AR. What Is the Test-Retest Reliability of Common Task-Functional MRI Measures? New Empirical Evidence and a Meta-Analysis. Psychol Sci 2020; 31:792-806. [PMID: 32489141 DOI: 10.1177/0956797620916786] [Citation(s) in RCA: 421] [Impact Index Per Article: 84.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Identifying brain biomarkers of disease risk is a growing priority in neuroscience. The ability to identify meaningful biomarkers is limited by measurement reliability; unreliable measures are unsuitable for predicting clinical outcomes. Measuring brain activity using task functional MRI (fMRI) is a major focus of biomarker development; however, the reliability of task fMRI has not been systematically evaluated. We present converging evidence demonstrating poor reliability of task-fMRI measures. First, a meta-analysis of 90 experiments (N = 1,008) revealed poor overall reliability-mean intraclass correlation coefficient (ICC) = .397. Second, the test-retest reliabilities of activity in a priori regions of interest across 11 common fMRI tasks collected by the Human Connectome Project (N = 45) and the Dunedin Study (N = 20) were poor (ICCs = .067-.485). Collectively, these findings demonstrate that common task-fMRI measures are not currently suitable for brain biomarker discovery or for individual-differences research. We review how this state of affairs came to be and highlight avenues for improving task-fMRI reliability.
Collapse
Affiliation(s)
| | | | - David Ireland
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago
| | | | - Richie Poulton
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago
| | - Sandhya Ramrakha
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago
| | - Maria L Sison
- Department of Psychology & Neuroscience, Duke University
| | - Terrie E Moffitt
- Department of Psychology & Neuroscience, Duke University.,Social, Genetic, & Developmental Psychiatry Research Centre, Institute of Psychiatry, Psychology, & Neuroscience, King's College London.,Department of Psychiatry & Behavioral Sciences, Duke University School of Medicine.,Center for Genomic and Computational Biology, Duke University
| | - Avshalom Caspi
- Department of Psychology & Neuroscience, Duke University.,Social, Genetic, & Developmental Psychiatry Research Centre, Institute of Psychiatry, Psychology, & Neuroscience, King's College London.,Department of Psychiatry & Behavioral Sciences, Duke University School of Medicine.,Center for Genomic and Computational Biology, Duke University
| | - Ahmad R Hariri
- Department of Psychology & Neuroscience, Duke University
| |
Collapse
|
69
|
Smith AR, White LK, Leibenluft E, McGlade AL, Heckelman AC, Haller SP, Buzzell GA, Fox NA, Pine DS. The Heterogeneity of Anxious Phenotypes: Neural Responses to Errors in Treatment-Seeking Anxious and Behaviorally Inhibited Youths. J Am Acad Child Adolesc Psychiatry 2020; 59:759-769. [PMID: 31128266 PMCID: PMC7690456 DOI: 10.1016/j.jaac.2019.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 05/07/2019] [Accepted: 05/17/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Although behaviorally inhibited (BI) temperament predicts risk for anxiety, anxiety in BI may involve distinct neural responses to errors. The current study examines the relations between anxiety and neural correlates of error processing both in youths identified as BI in early childhood and in youths seeking treatment for an anxiety disorder. METHOD All participants underwent functional magnetic resonance imaging using a flanker task to assess responses to errors. A study in healthy subjects assessed test-retest reliability to inform analyses in two other samples. For one sample, a cohort of BI youths (Low BI, n = 28; High BI, n = 27) was followed into adolescence. For the other, participants were recruited based on the presence or absence of an anxiety disorder. Using identical methods in medication-free subjects, analyses compared relations between anxiety and error processing across the two samples. RESULTS Error-processing exhibited acceptable reliability. Within a ventromedial-prefrontal-cortex (vmPFC) cluster, anxiety related to error processing only in youths whose early-life BI status was known. In the high BI group, anxiety related to reduced neural response to errors. No such associations manifested in treatment-seeking youths. Other analyses mapped relations between error-processing and anxiety in each sample on its own. However, only the vmPFC cluster statistically differentiated the neural correlates of anxiety in BI. CONCLUSION BI temperament may define a unique pathway into anxiety involving perturbed neural responding to errors. Although BI is a risk factor for later anxiety, the neural and associated features of anxiety in BI youths may differ from those in treatment-seeking youths.
Collapse
Affiliation(s)
| | - Lauren K. White
- Lifespan Brain Institute, Children’s Hospital of Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Rakesh D, Allen NB, Whittle S. Balancing act: Neural correlates of affect dysregulation in youth depression and substance use - A systematic review of functional neuroimaging studies. Dev Cogn Neurosci 2020; 42:100775. [PMID: 32452461 PMCID: PMC7139159 DOI: 10.1016/j.dcn.2020.100775] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/22/2022] Open
Abstract
Both depression and substance use problems have their highest incidence during youth (i.e., adolescence and emerging adulthood), and are characterized by emotion regulation deficits. Influential neurodevelopmental theories suggest that alterations in the function of limbic and frontal regions render youth susceptible to these deficits. However, whether depression and substance use in youth are associated with similar alterations in emotion regulation neural circuitry is unknown. In this systematic review we synthesized the results of functional magnetic resonance imaging (fMRI) studies investigating the neural correlates of emotion regulation in youth depression and substance use. Resting-state fMRI studies focusing on limbic connectivity were also reviewed. While findings were largely inconsistent within and between studies of depression and substance use, some patterns emerged. First, youth depression appears to be associated with exaggerated amygdala activity in response to negative stimuli; second, both depression and substance use appear to be associated with lower functional connectivity between the amygdala and prefrontal cortex during rest. Findings are discussed in relation to support for existing neurodevelopmental models, and avenues for future work are suggested, including studying neurodevelopmental trajectories from a network perspective.
Collapse
Affiliation(s)
- Divyangana Rakesh
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia
| | - Nicholas B Allen
- Department of Psychology, University of Oregon, Eugene, Oregon, USA
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia; Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
71
|
Longitudinal changes in DLPFC activation during childhood are related to decreased aggression following social rejection. Proc Natl Acad Sci U S A 2020; 117:8602-8610. [PMID: 32234781 PMCID: PMC7165424 DOI: 10.1073/pnas.1915124117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Regulating aggression after social feedback is an important prerequisite for developing and maintaining social relations, especially in the current times with larger emphasis on online social evaluation. Studies in adults highlighted the role of the dorsolateral prefrontal cortex (DLPFC) in regulating aggression. Little is known about the development of aggression regulation following social feedback during childhood, while this is an important period for both brain maturation and social relations. The current study used a longitudinal design, with 456 twins undergoing two functional MRI sessions across the transition from middle (7 to 9 y) to late (9 to 11 y) childhood. Aggression regulation was studied using the Social Network Aggression Task. Behavioral aggression after social evaluation decreased over time, whereas activation in the insula, dorsomedial PFC and DLPFC increased over time. Brain-behavior analyses showed that increased DLPFC activation after negative feedback was associated with decreased aggression. Change analyses further revealed that children with larger increases in DLPFC activity from middle to late childhood showed stronger decreases in aggression over time. These findings provide insights into the development of social evaluation sensitivity and aggression control in childhood.
Collapse
|
72
|
Horn SR, Fisher PA, Pfeifer JH, Allen NB, Berkman ET. Levers and barriers to success in the use of translational neuroscience for the prevention and treatment of mental health and promotion of well-being across the lifespan. JOURNAL OF ABNORMAL PSYCHOLOGY 2020; 129:38-48. [PMID: 31868386 DOI: 10.1037/abn0000465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neuroscientific tools and approaches such as neuroimaging, measures of neuroendocrine and psychoneuroimmune activity, and peripheral physiology are increasingly used in clinical science and health psychology research. We define translational neuroscience (TN) as a systematic, theory-driven approach that aims to develop and leverage basic and clinical neuroscientific knowledge to aid the development and optimization of clinical and public health interventions. There is considerable potential across basic and clinical science fields for this approach to provide insights into mental and physical health pathology that had previously been inaccessible. For example, TN might hold the potential to enhance diagnostic specificity, better recognize increased vulnerability in at-risk populations, and augment intervention efficacy. Despite this potential, there has been limited consideration of the advantages and limitations of such an approach. In this article, we articulate extant challenges in defining TN and propose a unifying conceptualization. We illustrate how TN can inform the application of neuroscientific tools to realistically guide clinical research and inform intervention design. We outline specific leverage points of the TN approach and barriers to progress. Ten principles of TN are presented to guide and shape the emerging field. We close by articulating ongoing issues facing TN research. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
|
73
|
Specht K. Current Challenges in Translational and Clinical fMRI and Future Directions. Front Psychiatry 2020; 10:924. [PMID: 31969840 PMCID: PMC6960120 DOI: 10.3389/fpsyt.2019.00924] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/20/2019] [Indexed: 12/15/2022] Open
Abstract
Translational neuroscience is an important field that brings together clinical praxis with neuroscience methods. In this review article, the focus will be on functional neuroimaging (fMRI) and its applicability in clinical fMRI studies. In the light of the "replication crisis," three aspects will be critically discussed: First, the fMRI signal itself, second, current fMRI praxis, and, third, the next generation of analysis strategies. Current attempts such as resting-state fMRI, meta-analyses, and machine learning will be discussed with their advantages and potential pitfalls and disadvantages. One major concern is that the fMRI signal shows substantial within- and between-subject variability, which affects the reliability of both task-related, but in particularly resting-state fMRI studies. Furthermore, the lack of standardized acquisition and analysis methods hinders the further development of clinical relevant approaches. However, meta-analyses and machine-learning approaches may help to overcome current shortcomings in the methods by identifying new, and yet hidden relationships, and may help to build new models on disorder mechanisms. Furthermore, better control of parameters that may have an influence on the fMRI signal and that can easily be controlled for, like blood pressure, heart rate, diet, time of day, might improve reliability substantially.
Collapse
Affiliation(s)
- Karsten Specht
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital, Bergen, Norway
- Department of Education, UiT/The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
74
|
Maggioni E, Squarcina L, Dusi N, Diwadkar VA, Brambilla P. Twin MRI studies on genetic and environmental determinants of brain morphology and function in the early lifespan. Neurosci Biobehav Rev 2020; 109:139-149. [PMID: 31911159 DOI: 10.1016/j.neubiorev.2020.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/19/2019] [Accepted: 01/02/2020] [Indexed: 02/04/2023]
Abstract
Neurodevelopment represents a period of increased opportunity and vulnerability, during which a complex confluence of genetic and environmental factors influences brain growth trajectories, cognitive and mental health outcomes. Recently, magnetic resonance imaging (MRI) studies on twins have increased our knowledge of the extent to which genes, the environment and their interactions shape inter-individual brain variability. The present review draws from highly salient MRI studies in young twin samples to provide a robust assessment of the heritability of structural and functional brain changes during development. The available studies suggest that (as with many other traits), global brain morphology and network organization are highly heritable from early childhood to young adulthood. Conversely, genetic correlations among brain regions exhibit heterogeneous trajectories, and this heterogeneity reflects the progressive, experience-related increase in brain network complexity. Studies also support the key role of environment in mediating brain network differentiation via changes of genetic expression and hormonal levels. Thus, rest- and task-related functional brain circuits seem to result from a contextual and dynamic expression of heritability.
Collapse
Affiliation(s)
- Eleonora Maggioni
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via F. Sforza 28, Milano, Italy
| | - Letizia Squarcina
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, via Don Luigi Monza 20, Bosisio Parini, LC, Italy
| | - Nicola Dusi
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via F. Sforza 28, Milano, Italy
| | - Vaibhav A Diwadkar
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University, 42 W Warren Ave, Detroit, MI, United States
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via F. Sforza 28, Milano, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| |
Collapse
|
75
|
Seghier ML, Fahim MA, Habak C. Educational fMRI: From the Lab to the Classroom. Front Psychol 2019; 10:2769. [PMID: 31866920 PMCID: PMC6909003 DOI: 10.3389/fpsyg.2019.02769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/25/2019] [Indexed: 12/23/2022] Open
Abstract
Functional MRI (fMRI) findings hold many potential applications for education, and yet, the translation of fMRI findings to education has not flowed. Here, we address the types of fMRI that could better support applications of neuroscience to the classroom. This 'educational fMRI' comprises eight main challenges: (1) collecting artifact-free fMRI data in school-aged participants and in vulnerable young populations, (2) investigating heterogenous cohorts with wide variability in learning abilities and disabilities, (3) studying the brain under natural and ecological conditions, given that many practical topics of interest for education can be addressed only in ecological contexts, (4) depicting complex age-dependent associations of brain and behaviour with multi-modal imaging, (5) assessing changes in brain function related to developmental trajectories and instructional intervention with longitudinal designs, (6) providing system-level mechanistic explanations of brain function, so that useful individualized predictions about learning can be generated, (7) reporting negative findings, so that resources are not wasted on developing ineffective interventions, and (8) sharing data and creating large-scale longitudinal data repositories to ensure transparency and reproducibility of fMRI findings for education. These issues are of paramount importance to the development of optimal fMRI practices for educational applications.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Cognitive Neuroimaging Unit, Emirates College for Advanced Education (ECAE), Abu Dhabi, United Arab Emirates
| | - Mohamed A Fahim
- Cognitive Neuroimaging Unit, Emirates College for Advanced Education (ECAE), Abu Dhabi, United Arab Emirates
| | - Claudine Habak
- Cognitive Neuroimaging Unit, Emirates College for Advanced Education (ECAE), Abu Dhabi, United Arab Emirates
| |
Collapse
|
76
|
Blankenstein NE, Telzer EH, Do KT, van Duijvenvoorde ACK, Crone EA. Behavioral and Neural Pathways Supporting the Development of Prosocial and Risk-Taking Behavior Across Adolescence. Child Dev 2019; 91:e665-e681. [PMID: 31452199 PMCID: PMC7317487 DOI: 10.1111/cdev.13292] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study tested the pathways supporting adolescent development of prosocial and rebellious behavior. Self‐report and structural brain development data were obtained in a three‐wave, longitudinal neuroimaging study (8–29 years, N = 210 at Wave 3). First, prosocial and rebellious behavior assessed at Wave 3 were positively correlated. Perspective taking and intention to comfort uniquely predicted prosocial behavior, whereas fun seeking (current levels and longitudinal changes) predicted both prosocial and rebellious behaviors. These changes were accompanied by developmental declines in nucleus accumbens and medial prefrontal cortex (MPFC) volumes, but only faster decline of MPFC (faster maturity) related to less rebellious behavior. These findings point toward a possible differential susceptibility marker, fun seeking, as a predictor of both prosocial and rebellious developmental outcomes.
Collapse
Affiliation(s)
| | | | - Kathy T Do
- University of North Carolina at Chapel Hill
| | | | | |
Collapse
|
77
|
van Duijvenvoorde ACK, Westhoff B, de Vos F, Wierenga LM, Crone EA. A three-wave longitudinal study of subcortical-cortical resting-state connectivity in adolescence: Testing age- and puberty-related changes. Hum Brain Mapp 2019; 40:3769-3783. [PMID: 31099959 PMCID: PMC6767490 DOI: 10.1002/hbm.24630] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 04/22/2019] [Accepted: 05/02/2019] [Indexed: 12/20/2022] Open
Abstract
Adolescence is the transitional period between childhood and adulthood, characterized by substantial changes in reward‐driven behavior. Although reward‐driven behavior is supported by subcortical‐medial prefrontal cortex (PFC) connectivity, the development of these circuits is not well understood. Particularly, while puberty has been hypothesized to accelerate organization and activation of functional neural circuits, the relationship between age, sex, pubertal change, and functional connectivity has hardly been studied. Here, we present an analysis of resting‐state functional connectivity between subcortical structures and the medial PFC, in 661 scans of 273 participants between 8 and 29 years, using a three‐wave longitudinal design. Generalized additive mixed model procedures were used to assess the effects of age, sex, and self‐reported pubertal status on connectivity between subcortical structures (nucleus accumbens, caudate, putamen, hippocampus, and amygdala) and cortical medial structures (dorsal anterior cingulate, ventral anterior cingulate, subcallosal cortex, frontal medial cortex). We observed an age‐related strengthening of subcortico‐subcortical and cortico‐cortical connectivity. Subcortical–cortical connectivity, such as, between the nucleus accumbens—frontal medial cortex, and the caudate—dorsal anterior cingulate cortex, however, weakened across age. Model‐based comparisons revealed that for specific connections pubertal development described developmental change better than chronological age. This was particularly the case for changes in subcortical–cortical connectivity and distinctively for boys and girls. Together, these findings indicate changes in functional network strengthening with pubertal development. These changes in functional connectivity may maximize the neural efficiency of interregional communication and set the stage for further inquiry of biological factors driving adolescent functional connectivity changes.
Collapse
Affiliation(s)
- Anna C K van Duijvenvoorde
- Institute of Psychology, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Bianca Westhoff
- Institute of Psychology, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Frank de Vos
- Institute of Psychology, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Lara M Wierenga
- Institute of Psychology, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Eveline A Crone
- Institute of Psychology, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| |
Collapse
|
78
|
Ofen N, Tang L, Yu Q, Johnson EL. Memory and the developing brain: From description to explanation with innovation in methods. Dev Cogn Neurosci 2019; 36:100613. [PMID: 30630777 PMCID: PMC6529263 DOI: 10.1016/j.dcn.2018.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 12/13/2018] [Accepted: 12/26/2018] [Indexed: 11/12/2022] Open
Abstract
Recent advances in human cognitive neuroscience show great promise in extending our understanding of the neural basis of memory development. We briefly review the current state of knowledge, highlighting that most work has focused on describing the neural correlates of memory in cross-sectional studies. We then delineate three examples of the application of innovative methods in addressing questions that go beyond description, towards a mechanistic understanding of memory development. First, structural brain imaging and the harmonization of measurements across laboratories may uncover ways in which the maturation of the brain constrains the development of specific aspects of memory. Second, longitudinal designs and sophisticated modeling of the data may identify age-driven changes and the factors that determine individual developmental trajectories. Third, recording memory-related activity directly from the developing brain presents an unprecedented opportunity to examine how distinct brain structures support memory in real time. Finally, the growing prevalence of data sharing offers additional means to tackle questions that demand large-scale datasets, ambitious designs, and access to rare samples. We propose that the use of such innovative methods will move our understanding of memory development from a focus on describing trends to explaining the causal factors that shape behavior.
Collapse
Affiliation(s)
- Noa Ofen
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, Detroit, Michigan, United States; Department of Psychology, Wayne State University, Detroit, Michigan, United States; Merrill Palmer Skillman Institute for Child & Family Development, Wayne State University, Detroit, Michigan, United States; Neurobiology Department, Weizmann Institute of Science, Rehovot, Israel.
| | - Lingfei Tang
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, Detroit, Michigan, United States; Department of Psychology, Wayne State University, Detroit, Michigan, United States
| | - Qijing Yu
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, Detroit, Michigan, United States; Department of Psychology, Wayne State University, Detroit, Michigan, United States
| | - Elizabeth L Johnson
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, Detroit, Michigan, United States; Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States
| |
Collapse
|
79
|
Vanderwal T, Eilbott J, Castellanos FX. Movies in the magnet: Naturalistic paradigms in developmental functional neuroimaging. Dev Cogn Neurosci 2019; 36:100600. [PMID: 30551970 PMCID: PMC6969259 DOI: 10.1016/j.dcn.2018.10.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/13/2018] [Accepted: 10/08/2018] [Indexed: 11/28/2022] Open
Abstract
The use of movie-watching as an acquisition state for functional connectivity (FC) MRI has recently enabled multiple groups to obtain rich data sets in younger children with both substantial sample sizes and scan durations. Using naturalistic paradigms such as movies has also provided analytic flexibility for these developmental studies that extends beyond conventional resting state approaches. This review highlights the advantages and challenges of using movies for developmental neuroimaging and explores some of the methodological issues involved in designing pediatric studies with movies. Emerging themes from movie-watching studies are discussed, including an emphasis on intersubject correlations, developmental changes in network interactions under complex naturalistic conditions, and dynamic age-related changes in both sensory and higher-order network FC even in narrow age ranges. Converging evidence suggests an enhanced ability to identify brain-behavior correlations in children when using movie-watching data relative to both resting state and conventional tasks. Future directions and cautionary notes highlight the potential and the limitations of using movies to study FC in pediatric populations.
Collapse
Affiliation(s)
- Tamara Vanderwal
- University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 2A1, Canada; Yale Child Study Center, 230 South Frontage Road, New Haven CT, 06519, United States.
| | - Jeffrey Eilbott
- Yale Child Study Center, 230 South Frontage Road, New Haven CT, 06519, United States
| | - F Xavier Castellanos
- The Child Study Center at New York University Langone Medical Center, 1 Park Avenue, New York, NY, 10016, United States; Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, 10962, United States
| |
Collapse
|
80
|
Heckendorf E, Bakermans-Kranenburg MJ, van Ijzendoorn MH, Huffmeijer R. Neural responses to children's faces: Test-retest reliability of structural and functional MRI. Brain Behav 2019; 9:e01192. [PMID: 30739395 PMCID: PMC6422824 DOI: 10.1002/brb3.1192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/15/2018] [Accepted: 11/19/2018] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION Functional MRI (fMRI) is commonly used to investigate the neural mechanisms underlying psychological processes and behavioral responses. However, to draw well-founded conclusions from fMRI studies, more research on the reliability of fMRI is needed. METHODS We invited a sample of 41 female students to participate in two identical fMRI sessions, separated by 5 weeks on average. To investigate the potential effect of left-handedness on the stability of neural activity, we oversampled left-handed participants (N = 20). Inside the scanner, we presented photographs of familiar and unfamiliar children's faces preceded by neutral and threatening primes to the participants. We calculated intraclass correlations (ICCs) to investigate the test-retest reliability of peak activity in areas that showed significant activity during the first session (primary visual cortex, fusiform face area, inferior frontal gyrus, and superior temporal gyrus). In addition, we examined how many trials were needed to reliably measure the effects. RESULTS Across all participants, only fusiform face area activity in response to faces showed good test-retest reliability (ICC = 0.71). All other test-retest reliabilities were low (0.01 ≤ ICC ≤ 0.35). Reliabilities varied only slightly with increasing numbers of trials, with no consistent increase in ICCs. Test-retest reliabilities for left-handed participants (0.28 ≤ ICC ≤0.66) were generally somewhat higher than for right-handed participants (-0.13 ≤ ICC ≤0.75), but not statistically significant. CONCLUSION Our study shows good test-retest reliability for fusiform facer area activity in response to faces, but low test-retest reliability for other contrasts and areas.
Collapse
Affiliation(s)
- Esther Heckendorf
- Department of Education and Child Studies, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands
| | - Marian J Bakermans-Kranenburg
- Department of Education and Child Studies, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands.,Clinical Child and Family Studies, Vrije Universiteit, Amsterdam, The Netherlands
| | - Marinus H van Ijzendoorn
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands.,Department of Psychology, Education and Child Studies, Erasmus University, Rotterdam, The Netherlands
| | - Rens Huffmeijer
- Department of Education and Child Studies, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands
| |
Collapse
|
81
|
Telzer EH, McCormick EM, Peters S, Cosme D, Pfeifer JH, van Duijvenvoorde ACK. Methodological considerations for developmental longitudinal fMRI research. Dev Cogn Neurosci 2018; 33:149-160. [PMID: 29456104 PMCID: PMC6345379 DOI: 10.1016/j.dcn.2018.02.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/31/2018] [Accepted: 02/05/2018] [Indexed: 11/18/2022] Open
Abstract
There has been a large spike in longitudinal fMRI studies in recent years, and so it is essential that researchers carefully assess the limitations and challenges afforded by longitudinal designs. In this article, we provide an overview of important considerations for longitudinal fMRI research in developmental samples, including task design, sampling strategies, and group-level analyses. We first discuss considerations for task designs, weighing the pros and cons of many commonly used tasks, as well as outlining how the tasks may be impacted by repeated exposure. Secondly, we review the types of group-level analyses that can be conducted on longitudinal fMRI data, analyses which must account for repeated measures. Finally, we review and critique recent longitudinal studies that have emerged in the past few years.
Collapse
Affiliation(s)
| | | | - Sabine Peters
- Leiden University, The Netherlands; Institute of Psychology, Leiden University, Leiden, The Netherlands
| | | | | | | |
Collapse
|
82
|
Inter-trial variability in brain activity as an indicator of synergistic effects of HIV-1 and drug abuse. Drug Alcohol Depend 2018; 191:300-308. [PMID: 30170301 PMCID: PMC10127228 DOI: 10.1016/j.drugalcdep.2018.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND The objective of this investigation was to detect evidence of the synergism in the effects of HIV-1 and drug abuse on brain function that has been hypothesized but rarely shown. The investigation incorporated several noteworthy improvements in the approach. It used urine toxicology tests to exclude participants complicated by recent methadone use and illicit drug use. Also, it defined drug abuse on a scale that considered symptom severity. Most importantly, it examined inter-trial variability in brain activity as a potentially more sensitive indicator of group differences and functional impairment than the across-trial average. METHODS 173 participants were assigned to groups defined by their HIV-1 serostatus and Drug Abuse Screening Test score (DAST < vs. > = 6). They completed a simple letter discrimination task including rare target and rare nontarget stimuli. Event-related electroencephalographic responses and key press responses were measured on each trial. During a separate assessment, posturographic measures were recorded. RESULTS The inter-trial standard deviation of P300-like activity was superior to the mean amplitude of this activity in differentiating the groups. Unlike the mean, it revealed synergistic statistical effects of HIV and drug abuse. It also correlated significantly with static ataxia. CONCLUSIONS Inter-trial variability in P300-like activity is a useful marker for detecting subtle and episodic disruptions in brain function. It demonstrates greater sensitivity than the mean amplitude for detecting differences across groups. Also, as a putative indicator of a disruption in the attentional monitoring of behavior, it predicts subtle impairments in gross motor function.
Collapse
|
83
|
Keren H, Chen G, Benson B, Ernst M, Leibenluft E, Fox NA, Pine DS, Stringaris A. Is the encoding of Reward Prediction Error reliable during development? Neuroimage 2018; 178:266-276. [PMID: 29777827 PMCID: PMC7518449 DOI: 10.1016/j.neuroimage.2018.05.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 04/22/2018] [Accepted: 05/15/2018] [Indexed: 11/23/2022] Open
Abstract
Reward Prediction Errors (RPEs), defined as the difference between the expected and received outcomes, are integral to reinforcement learning models and play an important role in development and psychopathology. In humans, RPE encoding can be estimated using fMRI recordings, however, a basic measurement property of RPE signals, their test-retest reliability across different time scales, remains an open question. In this paper, we examine the 3-month and 3-year reliability of RPE encoding in youth (mean age at baseline = 10.6 ± 0.3 years), a period of developmental transitions in reward processing. We show that RPE encoding is differentially distributed between the positive values being encoded predominantly in the striatum and negative RPEs primarily encoded in the insula. The encoding of negative RPE values is highly reliable in the right insula, across both the long and the short time intervals. Insula reliability for RPE encoding is the most robust finding, while other regions, such as the striatum, are less consistent. Striatal reliability appeared significant as well once covarying for factors, which were possibly confounding the signal to noise ratio. By contrast, task activation during feedback in the striatum is highly reliable across both time intervals. These results demonstrate the valence-dependent differential encoding of RPE signals between the insula and striatum, and the consistency of RPE signals or lack thereof, during childhood and into adolescence. Characterizing the regions where the RPE signal in BOLD fMRI is a reliable marker is key for estimating reward-processing alterations in longitudinal designs, such as developmental or treatment studies.
Collapse
Affiliation(s)
- Hanna Keren
- Mood Brain and Development Unit, Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, 9000, Rockville Pike, Bethesda, MD, USA.
| | - Gang Chen
- Scientific and Statistical Computing Core, National Institute of Mental Health, National Institutes of Health, 9000, Rockville Pike, Bethesda, MD, USA
| | - Brenda Benson
- Section on Development and Affective Neuroscience, Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, 9000, Rockville Pike, Bethesda, MD, USA
| | - Monique Ernst
- Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, 9000, Rockville Pike, Bethesda, MD, USA
| | - Ellen Leibenluft
- Section on Mood Dysregulation and Neuroscience, Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, 9000, Rockville Pike, Bethesda, MD, USA
| | - Nathan A Fox
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, 9000, Rockville Pike, Bethesda, MD, USA
| | - Daniel S Pine
- Section on Development and Affective Neuroscience, Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, 9000, Rockville Pike, Bethesda, MD, USA
| | - Argyris Stringaris
- Mood Brain and Development Unit, Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, 9000, Rockville Pike, Bethesda, MD, USA
| |
Collapse
|
84
|
Bielczyk NZ, Walocha F, Ebel PW, Haak KV, Llera A, Buitelaar JK, Glennon JC, Beckmann CF. Thresholding functional connectomes by means of mixture modeling. Neuroimage 2018; 171:402-414. [PMID: 29309896 PMCID: PMC5981009 DOI: 10.1016/j.neuroimage.2018.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/30/2017] [Accepted: 01/02/2018] [Indexed: 12/19/2022] Open
Abstract
Functional connectivity has been shown to be a very promising tool for studying the large-scale functional architecture of the human brain. In network research in fMRI, functional connectivity is considered as a set of pair-wise interactions between the nodes of the network. These interactions are typically operationalized through the full or partial correlation between all pairs of regional time series. Estimating the structure of the latent underlying functional connectome from the set of pair-wise partial correlations remains an open research problem though. Typically, this thresholding problem is approached by proportional thresholding, or by means of parametric or non-parametric permutation testing across a cohort of subjects at each possible connection. As an alternative, we propose a data-driven thresholding approach for network matrices on the basis of mixture modeling. This approach allows for creating subject-specific sparse connectomes by modeling the full set of partial correlations as a mixture of low correlation values associated with weak or unreliable edges in the connectome and a sparse set of reliable connections. Consequently, we propose to use alternative thresholding strategy based on the model fit using pseudo-False Discovery Rates derived on the basis of the empirical null estimated as part of the mixture distribution. We evaluate the method on synthetic benchmark fMRI datasets where the underlying network structure is known, and demonstrate that it gives improved performance with respect to the alternative methods for thresholding connectomes, given the canonical thresholding levels. We also demonstrate that mixture modeling gives highly reproducible results when applied to the functional connectomes of the visual system derived from the n-back Working Memory task in the Human Connectome Project. The sparse connectomes obtained from mixture modeling are further discussed in the light of the previous knowledge of the functional architecture of the visual system in humans. We also demonstrate that with use of our method, we are able to extract similar information on the group level as can be achieved with permutation testing even though these two methods are not equivalent. We demonstrate that with both of these methods, we obtain functional decoupling between the two hemispheres in the higher order areas of the visual cortex during visual stimulation as compared to the resting state, which is in line with previous studies suggesting lateralization in the visual processing. However, as opposed to permutation testing, our approach does not require inference at the cohort level and can be used for creating sparse connectomes at the level of a single subject.
Collapse
Affiliation(s)
- Natalia Z Bielczyk
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, Geert Groteplein Zuid 10, 6525GA Nijmegen, The Netherlands.
| | - Fabian Walocha
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands; University of Osnabrück, Neuer Graben 29/Schloss, 49074 Osnabrück, Germany
| | - Patrick W Ebel
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands; Radboud University Nijmegen, Comeniuslaan 4, 6525 HP Nijmegen, The Netherlands
| | - Koen V Haak
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, Geert Groteplein Zuid 10, 6525GA Nijmegen, The Netherlands
| | - Alberto Llera
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands; Radboud University Nijmegen, Comeniuslaan 4, 6525 HP Nijmegen, The Netherlands
| | - Jan K Buitelaar
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, Geert Groteplein Zuid 10, 6525GA Nijmegen, The Netherlands
| | - Jeffrey C Glennon
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, Geert Groteplein Zuid 10, 6525GA Nijmegen, The Netherlands
| | - Christian F Beckmann
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, Geert Groteplein Zuid 10, 6525GA Nijmegen, The Netherlands; Oxford Centre for Functional MRI of the Brain, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
85
|
Morris AS, Squeglia LM, Jacobus J, Silk JS. Adolescent Brain Development: Implications for Understanding Risk and Resilience Processes Through Neuroimaging Research. JOURNAL OF RESEARCH ON ADOLESCENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR RESEARCH ON ADOLESCENCE 2018; 28:4-9. [PMID: 29460349 PMCID: PMC6474358 DOI: 10.1111/jora.12379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This special section focuses on research that utilizes neuroimaging methods to examine the impact of social relationships and socioemotional development on adolescent brain function. Studies include novel neuroimaging methods that further our understanding of adolescent brain development. This special section has a particular focus on how study findings add to our understanding of risk and resilience. In this introduction to the special section, we discuss the role of neuroimaging in developmental science and provide a brief review of neuroimaging methods. We present key themes that are covered in the special section articles including: (1) emerging methods in developmental neuroscience, (2) emotion-cognition interaction, and (3) the role of social relationships in brain function. We conclude our introduction with future directions for integrating developmental neuroscience into the study of adolescence, and highlight key points from the special section's commentaries which include information on the landmark Adolescent Brain Cognitive Development (ABCD) study.
Collapse
|
86
|
Foulkes L, Blakemore SJ. Studying individual differences in human adolescent brain development. Nat Neurosci 2018; 21:315-323. [PMID: 29403031 DOI: 10.1038/s41593-018-0078-4] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/04/2018] [Indexed: 12/19/2022]
Abstract
Adolescence is a period of social, psychological and biological development. During adolescence, relationships with others become more complex, peer relationships are paramount and social cognition develops substantially. These psychosocial changes are paralleled by structural and functional changes in the brain. Existing research in adolescent neurocognitive development has focused largely on averages, but this obscures meaningful individual variation in development. In this Perspective, we propose that the field should now move toward studying individual differences. We start by discussing individual variation in structural and functional brain development. To illustrate the importance of considering individual differences in development, we consider three sources of variation that contribute to neurocognitive processing: socioeconomic status, culture and peer environment. To assess individual differences in neurodevelopmental trajectories, large-scale longitudinal datasets are required. Future developmental neuroimaging studies should attempt to characterize individual differences to move toward a more nuanced understanding of neurocognitive changes during adolescence.
Collapse
Affiliation(s)
- Lucy Foulkes
- UCL Institute of Cognitive Neuroscience, London, UK.,Department of Education, University of York, York, UK
| | | |
Collapse
|