51
|
Le D, Pan J, Xing H. The Cell Adhesion and Proliferation Enhancement Impact of Low-Temperature Atmospheric Pressure Plasma-Polymerized Heptylamine on the Surface of Ti6Al4V Alloy. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6450. [PMID: 37834587 PMCID: PMC10573206 DOI: 10.3390/ma16196450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
To chemically functionalize the Ti6Al4V alloy surface, a custom-made low-temperature atmospheric pressure plasma reactor device was used to polymerize heptylamine on it. The effect of different deposition times, an important process parameter, was also investigated. For each deposition time group, the surface morphology was observed via scanning electron microscopy (SEM). The surface chemical content was analyzed via X-ray photoelectron spectroscopy, and surface hydrophilicity was measured via water contact angle. The adhesion of bone marrow stromal cells (BMSCs) on the modified Ti6Al4V alloy surfaces was also observed via SEM. A quantitative evaluation of cell proliferation was performed via the Cell Counting Kit-8 assay. The results revealed that amino groups were introduced on the Ti6Al4V alloy surface via plasma-polymerized heptylamine (PPHA). The percentages of NH2/C for various deposition times (0 s, 30 s, 45 s, 60 s, 90 s, and 120 s) were 3.39%, 5.14%, 6.71%, 6.72%, 7.31%, and 7.65%. A 30 s, 45 s, and 60 s deposition time could significantly increase surface hydrophilicity with a mean water contact angle of 62.1 ± 1.6°, 65.7 ± 1.1°, and 88.2 ± 1.4°, respectively. Meanwhile, a 60 s, 90 s, and 120 s deposition time promoted BMSCs cell adhesion and proliferation. However, this promotion effect differed non-significantly among the three groups. In conclusion, the introduction of amino groups on the Ti6Al4V alloy surface exhibited surface modification and enhancement of cell adhesion and proliferation, which was partially associated with deposition time.
Collapse
Affiliation(s)
| | | | - Haixia Xing
- Department of General Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (D.L.); (J.P.)
| |
Collapse
|
52
|
Traver-Méndez V, Camps-Font O, Ventura F, Nicolau-Sansó MA, Subirà-Pifarré C, Figueiredo R, Valmaseda-Castellón E. In Vitro Characterization of an Anodized Surface of a Dental Implant Collar and Dental Abutment on Peri-Implant Cellular Response. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6012. [PMID: 37687706 PMCID: PMC10489139 DOI: 10.3390/ma16176012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 09/10/2023]
Abstract
The purpose of this paper was to determine the effect of anodization on the in vitro proliferation and adhesion of immortalized human keratinocytes (HaCats) and mouse bone marrow-derived mesenchymal stem cells (BM-MSCs) in Titanium Grade 23 (Ti6Al4V ELI) discs and to describe the surface topography, roughness, and composition of dental implants (body and collar) and abutments submitted to an area-specific anodization process. HaCat cells and BM-MSCs were seeded onto discs with three different surface treatments: machined, area-specific anodization for abutments, and area-specific anodization for implant collars. Cell proliferation was assessed using a resazurin-based fluorescent dye on days 1, 3, and 7, while cell adhesion was examined using scanning electron microscopy (SEM). Surface topography, roughness, and composition were evaluated for six implant bodies with an anodized rough surface, six anodized implant smooth collars, and six anodized prosthetic abutments. Both HaCats and BM-MSCs showed increased viability over time (p < 0.001) with no statistically significant differences among the different surfaces (p = 0.447 HaCats and p = 0.631 BM-MSCs). SEM analysis revealed an enhanced presence and adhesion of HaCat cells on the anodized surface for the implant collars and an increased adhesion of BM-MSCs on both the anodized and machined surface abutments. The topography characteristics of the treated implants and abutments varied depending on the specific implant region. Chemical analysis confirmed the presence of oxygen, calcium, phosphorus, and sodium on the anodized surfaces. The area-specific anodization process can be utilized to create variable topography, increase the specific surface area, and introduce oxygen, calcium, phosphorus, and sodium to dental implants and abutments. While BM-MSCs and HaCat cells showed similar adhesion and proliferation on anodized and machined surfaces, a positive interaction between anodized Ti6Al4V ELI surfaces and these two cell lines present in the peri-implant mucosa was observed. Due to the limitations of the present study, further research is necessary to confirm these findings.
Collapse
Affiliation(s)
- Valeria Traver-Méndez
- Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain; (V.T.-M.); (R.F.); (E.V.-C.)
| | - Octavi Camps-Font
- Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain; (V.T.-M.); (R.F.); (E.V.-C.)
- IDIBELL Institute, 08907 L’Hospitalet de Llobregat, Spain;
| | - Francesc Ventura
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain;
| | - Miquel Angel Nicolau-Sansó
- Adult Comprehensive Dentistry, Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain;
| | - Carles Subirà-Pifarré
- IDIBELL Institute, 08907 L’Hospitalet de Llobregat, Spain;
- Adult Comprehensive Dentistry, Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain;
| | - Rui Figueiredo
- Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain; (V.T.-M.); (R.F.); (E.V.-C.)
- IDIBELL Institute, 08907 L’Hospitalet de Llobregat, Spain;
| | - Eduard Valmaseda-Castellón
- Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain; (V.T.-M.); (R.F.); (E.V.-C.)
- IDIBELL Institute, 08907 L’Hospitalet de Llobregat, Spain;
| |
Collapse
|
53
|
Tang K, Luo ML, Zhou W, Niu LN, Chen JH, Wang F. The integration of peri-implant soft tissues around zirconia abutments: Challenges and strategies. Bioact Mater 2023; 27:348-361. [PMID: 37180640 PMCID: PMC10172871 DOI: 10.1016/j.bioactmat.2023.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/23/2023] [Accepted: 04/09/2023] [Indexed: 05/16/2023] Open
Abstract
Stable soft tissue integration around the implant abutment attenuates pathogen penetration, protects underlying bone tissue, prevents peri-implantitis and is essential in maintaining long-term implant stability. The desire for "metal free" and "aesthetic restoration" has favored zirconia over titanium abutments, especially for implant restorations in the anterior region and for patients with thin gingival biotype. Soft tissue attachment to the zirconia abutment surface remains a challenge. A comprehensive review of advances in zirconia surface treatment (micro-design) and structural design (macro-design) affecting soft tissue attachment is presented and strategies and research directions are discussed. Soft tissue models for abutment research are described. Guidelines for development of zirconia abutment surfaces that promote soft tissue integration and evidence-based references to inform clinical choice of abutment structure and postoperative maintenance are presented.
Collapse
Affiliation(s)
- Kai Tang
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Meng-Lin Luo
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, The First Medical Center, Chinese PLA General Hospital & Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wei Zhou
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Li-Na Niu
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ji-Hua Chen
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Corresponding author.
| | - Fu Wang
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Corresponding author.
| |
Collapse
|
54
|
Kunrath MF, Rubensam G, Rodrigues FVF, Marinowic DR, Sesterheim P, de Oliveira SD, Teixeira ER, Hubler R. Nano-scaled surfaces and sustainable-antibiotic-release from polymeric coating for application on intra-osseous implants and trans-mucosal abutments. Colloids Surf B Biointerfaces 2023; 228:113417. [PMID: 37356139 DOI: 10.1016/j.colsurfb.2023.113417] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Multifunctional surfaces may display the potential to accelerate and promote the healing process around dental implants. However, the initial cellular biocompatibility, molecular activity, and the release of functionalized molecules from these novel surfaces require extensive investigation for clinical use. Aiming to develop and compare innovative surfaces for application in dental implants, the present study utilized titanium disks, which were treated and divided into four groups: machined (Macro); acid-etched (Micro); anodized-hydrophilic surface (TNTs); and anodized surface coated with a rifampicin-loaded polymeric layer (poly(lactide-co-glycolide), PLGA) (TNTsRIMP). The samples were characterized regarding their physicochemical properties and the cumulative release of rifampicin (RIMP), investigated at different pH values. Additionally, differentiated osteoblasts from mesenchymal cells were used for cell viability and qRT-PCR analysis. Antibacterial properties of each surface treatment were investigated against Staphylococcus epidermidis. TNTsRIMP demonstrated controlled drug release for up to 7 days in neutral pH environments. Osteogenic cell cultures indicated that all the evaluated surfaces showed biocompatibility. The TNTs group revealed up-regulated values for bone-related gene quantification in 7 days, followed by the TNTsRIMP group. Furthermore, the antibiotic-functionalized surface revealed effectiveness to inhibit S. epidermidis and stimulate promising conditions for osteogenic cell behavior. Characteristics such as nanomorphology and hydrophilicity were determinants for the up-regulated quantification of osteogenic biomarkers related to early bone maturation, encouraging application in intra-osseous implant surfaces; in addition, antibiotic-functionalized surfaces demonstrated significant higher antibacterial properties compared to the other groups. Our findings suggest that polymeric-antibiotic-loaded coating might be applied for the prevention of early infections, favoring its application in multifunctional surfaces for intra- and/or trans-mucosal components of dental implants, while, hydrophilic nanotextured surfaces promoted optimistic properties to stimulate early bone-related cell responses, favoring its application in bone-anchored surfaces.
Collapse
Affiliation(s)
- Marcel F Kunrath
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, P.O. Box 412, SE 405 30 Göteborg, Sweden; School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Toxicology and Pharmacology Research Center (INTOX),School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil; School of Technology, Post-Graduate Program in Materials Technology and Engineering, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Gabriel Rubensam
- Toxicology and Pharmacology Research Center (INTOX),School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Felipe V F Rodrigues
- Brain Institute of Rio Grande do Sul (InsCer), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniel R Marinowic
- Brain Institute of Rio Grande do Sul (InsCer), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia Sesterheim
- Experimental Cardiology Center, Institute of Cardiology of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Sílvia D de Oliveira
- School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Eduardo R Teixeira
- School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roberto Hubler
- School of Technology, Post-Graduate Program in Materials Technology and Engineering, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
55
|
Gulati K, Chopra D, Kocak-Oztug NA, Verron E. Fit and forget: The future of dental implant therapy via nanotechnology. Adv Drug Deliv Rev 2023; 199:114900. [PMID: 37263543 DOI: 10.1016/j.addr.2023.114900] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 06/03/2023]
Abstract
Unlike orthopedic implants, dental implants require the orchestration of both osseointegration at the bone-implant interface and soft-tissue integration at the transmucosal region in a complex oral micro-environment with ubiquitous pathogenic bacteria. This represents a very challenging environment for early acceptance and long-term survival of dental implants, especially in compromised patient conditions, including aged, smoking and diabetic patients. Enabling advanced local therapy from the surface of titanium-based dental implants via novel nano-engineering strategies is emerging. This includes anodized nano-engineered implants eluting growth factors, antibiotics, therapeutic nanoparticles and biopolymers to achieve maximum localized therapeutic action. An important criterion is balancing bioactivity enhancement and therapy (like bactericidal efficacy) without causing cytotoxicity. Critical research gaps still need to be addressed to enable the clinical translation of these therapeutic dental implants. This review informs the latest developments, challenges and future directions in this domain to enable the successful fabrication of clinically-translatable therapeutic dental implants that would allow for long-term success, even in compromised patient conditions.
Collapse
Affiliation(s)
- Karan Gulati
- The University of Queensland, School of Dentistry, Herston, QLD 4006, Australia.
| | - Divya Chopra
- The University of Queensland, School of Dentistry, Herston, QLD 4006, Australia
| | - Necla Asli Kocak-Oztug
- The University of Queensland, School of Dentistry, Herston, QLD 4006, Australia; Istanbul University, Faculty of Dentistry, Department of Periodontology, 34116 Istanbul, Turkey
| | - Elise Verron
- Nantes Université, CNRS, CEISAM, UMR 6230, 44000 Nantes, France
| |
Collapse
|
56
|
Konatu RT, Domingues DD, França R, Alves APR. XPS Characterization of TiO 2 Nanotubes Growth on the Surface of the Ti15Zr15Mo Alloy for Biomedical Applications. J Funct Biomater 2023; 14:353. [PMID: 37504848 PMCID: PMC10381681 DOI: 10.3390/jfb14070353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Ti15Zr15Mo (TMZ alloy) has been studied in recent years for biomedical applications, mainly due to phase beta formation. From the surface modification, it is possible to associate the volume and surface properties with a better biomedical response. This study aimed to evaluate the possibility of using anodization to obtain TiO2 nanotubes due to the presence of valve-type metal (Zr) in their composition. X-ray photoelectron spectroscopy (XPS) was performed to determine the surface chemical composition in both after-processing conditions (passive layer) and after-processing plus anodization (TiO2 nanotube growth). The anodization resulted in nanotubes with diameters and thicknesses of 126 ± 35 and 1294 ± 193 nm, respectively, and predominated anatase phase. Compared to the passive layer of titanium, which is less than ~10 nm, the oxide layer formed was continuous and thicker. High-resolution spectra revealed that the oxide layer of the element alloys contained different oxidation states. The major phase in all depths for the nanotube samples was TiO2. While the stable form of each oxide was found to predominate on the surface, the inner part of the oxide layer consisted of suboxides and metallic forms. This composition included different oxidation states of the substrate elements Ti, Zr, and Mo.
Collapse
Affiliation(s)
- Reginaldo Toshihiro Konatu
- School of Engineering and Sciences, Guaratingueta Campus, São Paulo State University (UNESP), Guaratinguetá 12516-410, Brazil
| | - Danielle Duque Domingues
- School of Engineering, Ilha Solteira Campus, São Paulo State University (UNESP), São Paulo 15385-000, Brazil
| | - Rodrigo França
- Department of Restorative Dentistry, University of Manitoba, Winnipeg, MB R3E0W2, Canada
| | - Ana Paula Rosifini Alves
- School of Engineering and Sciences, Guaratingueta Campus, São Paulo State University (UNESP), Guaratinguetá 12516-410, Brazil
- School of Engineering, Ilha Solteira Campus, São Paulo State University (UNESP), São Paulo 15385-000, Brazil
| |
Collapse
|
57
|
Zara S, Fioravanti G, Ciuffreda A, Annicchiarico C, Quaresima R, Mastrangelo F. Evaluation of Human Gingival Fibroblasts (HGFs) Behavior on Innovative Laser Colored Titanium Surfaces. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4530. [PMID: 37444844 DOI: 10.3390/ma16134530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023]
Abstract
The use of ytterbium laser to obtain colored titanium surfaces is a suitable strategy to improve the aesthetic soft tissue results and reduce implant failures in oral rehabilitation. To investigate the relationship between novel laser-colored surfaces and peri-implant soft tissues, Human Gingival Fibroblasts (HGFs) were cultured onto 12 colored titanium grade 1 light fuchsia, dark fuchsia, light gold, and dark gold disks and their viability (MTT Assay), cytotoxicity (lactate dehydrogenase release), and collagen I secretion were compared to the machined surface used as control. Optical and electronic microscopies showed a HGF growth directly correlated to the roughness and wettability of the colored surfaces. A higher viability percentage on dark fuchsia (125%) light gold (122%), and dark gold (119%) samples with respect to the machined surface (100%) was recorded. All specimens showed a statistically significant reduction of LDH release compared to the machined surface. Additionally, a higher collagen type I secretion, responsible for an improved adhesion process, in light fuchsia (3.95 μg/mL) and dark gold (3.61 μg/mL) compared to the machined surface (3.59 μg) was recorded. The in vitro results confirmed the innovative physical titanium improvements due to laser treatment and represent interesting perspectives of innovation in order to ameliorate aesthetic dental implant performance and to obtain more predictable osteo and perio-osteointegration long term implant prognosis.
Collapse
Affiliation(s)
- Susi Zara
- Department of Pharmacy, University G. D'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Giulia Fioravanti
- Department of Physical and Chemical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Angelo Ciuffreda
- Clinical and Experimental Medicine Department, University of Foggia, 71122 Foggia, Italy
| | | | - Raimondo Quaresima
- Department of Civil, Construction-Architectural and Environmental Engineering, University of L'Aquila, 67100 L'Aquila, Italy
| | - Filiberto Mastrangelo
- Clinical and Experimental Medicine Department, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
58
|
Robles D, Brizuela A, Fernández-Domínguez M, Gil J. Osteoblastic and Bacterial Response of Hybrid Dental Implants. J Funct Biomater 2023; 14:321. [PMID: 37367285 DOI: 10.3390/jfb14060321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/10/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023] Open
Abstract
Bacterial infections in dental implants generate peri-implantitis disease that causes bone loss and the mobility of the dental implant. It is well known that specific ranges of roughness favor the proliferation of bacteria, and it is for this reason that new dental implants called hybrids have appeared. These implants have a smooth area in the coronal part and a rough surface in the apical part. The objective of this research is the physico-chemical characterization of the surface and the osteoblastic and microbiological behavior. One-hundred and eighty discs of titanium grade 3 with three different surfaces (smooth, smooth-rough, and completely rough) were studied. The roughness was determined by white light interferometry, and the wettability and surface energy by the sessile drop technique and the application of Owens and Wendt equations. Human osteoblast SaOS-2 was cultured to determine cell adhesion, proliferation, and differentiation. Microbiological studies were performed with two common bacterial strains in oral infection, E. faecalis and S. gordonii, at different times of culture. The roughness obtained for the smooth surface was Sa = 0.23 and for the rough surface it was 1.98 μm. The contact angles were more hydrophilic for the smooth surface (61.2°) than for the rough surface (76.1°). However, the surface energy was lower for the rough surface (22.70 mJ/m2) in both its dispersive and polar components than the smooth surface (41.77 mJ/m2). Cellular activity in adhesion, proliferation, and differentiation was much higher on rough surfaces than on smooth surfaces. After 6 h of incubation, the osteoblast number in rough surfaces was more than 32% higher in relation to the smooth surface. The cell area in smooth surfaces was higher than rough surfaces. The proliferation increased and the alkaline phosphatase presented a maximum after 14 days, with the mineral content of the cells being higher in rough surfaces. In addition, the rough surfaces showed greater bacterial proliferation at the times studied and in the two strains used. Hybrid implants sacrifice the good osteoblast behavior of the coronal part of the implant in order to obstruct bacterial adhesion. The following fact should be considered by clinicians: there is a possible loss of bone fixation when preventing peri-implantitis.
Collapse
Affiliation(s)
- Daniel Robles
- Department of Translational Medicine, CEU San Pablo University, Urbanización Montepríncipe, 28925 Madrid, Spain
- Facultad de Odontología, Universidad Europea Miguel de Cervantes, C/del Padre Julio Chevalier 2, 47012 Valladolid, Spain
| | - Aritza Brizuela
- Facultad de Odontología, Universidad Europea Miguel de Cervantes, C/del Padre Julio Chevalier 2, 47012 Valladolid, Spain
| | - Manuel Fernández-Domínguez
- Department of Oral and Maxillofacial Surgery, University Hospital Monteprincipe, University CEU San Pablo, Av. de Montepríncipe, s/n, 28668 Madrid, Spain
| | - Javier Gil
- Bioengineering Institute of Technology, Facultad de Medicina y Ciencias de la Salud, Universidad Internacional de Catalunya, Josep Trueta s/n. Sant Cugat del Vallés, 08195 Barcelona, Spain
| |
Collapse
|
59
|
Malheiros SS, Nagay BE, Bertolini MM, de Avila ED, Shibli JA, Souza JGS, Barão VAR. Biomaterial engineering surface to control polymicrobial dental implant-related infections: focusing on disease modulating factors and coatings development. Expert Rev Med Devices 2023:1-17. [PMID: 37228179 DOI: 10.1080/17434440.2023.2218547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/29/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023]
Abstract
INTRODUCTION Peri-implantitis is the leading cause of dental implant loss and is initiated by a polymicrobial dysbiotic biofilm formation on the implant surface. The destruction of peri-implant tissue by the host immune response and the low effectiveness of surgical or non-surgical treatments highlight the need for new strategies to prevent, modulate and/or eliminate biofilm formation on the implant surface. Currently, several surface modifications have been proposed using biomolecules, ions, antimicrobial agents, and topography alterations. AREAS COVERED Initially, this review provides an overview of the etiopathogenesis and host- and material-dependent modulating factors of peri-implant disease. In addition, a critical discussion about the antimicrobial surface modification mechanisms and techniques employed to modify the titanium implant material is provided. Finally, we also considered the future perspectives on the development of antimicrobial surfaces to narrow the bridge between idea and product and favor the clinical application possibility. EXPERT OPINION Antimicrobial surface modifications have demonstrated effective results; however, there is no consensus about the best modification strategy and in-depth information on the safety and longevity of the antimicrobial effect. Modified surfaces display recurring challenges such as short-term effectiveness, the burst release of drugs, cytotoxicity, and lack of reusability. Stimulus-responsive surfaces seem to be a promising strategy for a controlled and precise antimicrobial effect, and future research should focus on this technology and study it from models that better mimic clinical conditions.
Collapse
Affiliation(s)
- Samuel S Malheiros
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Bruna E Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Martinna M Bertolini
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15106, USA
| | - Erica D de Avila
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araçatuba, São Paulo State University (UNESP), Araçatuba, Sao Paulo 16015-050, Brazil
| | - Jamil A Shibli
- Dental Research Division, Guarulhos University, Guarulhos, São Paulo 07023-070, Brazil
| | - João Gabriel S Souza
- Dental Research Division, Guarulhos University, Guarulhos, São Paulo 07023-070, Brazil
- Dental Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Minas Gerais39401-303, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| |
Collapse
|
60
|
Wu C, Yang M, Ma K, Zhang Q, Bai N, Liu Y. Improvement implant osseointegration through nonthermal Ar/O 2 plasma. Dent Mater J 2023. [PMID: 37032105 DOI: 10.4012/dmj.2022-158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
This study investigated the effects of nonthermal Ar/O2 plasma on the osseointegration of titanium implants. Through 8 weeks' in vivo evaluation of implants inserted into femoral bones of male Sprague-Dawley rats, the new bone mineralization apposition rate (MAR) is increased by 1.87 and 2.14 times for implants of smooth machined (SM) and sand-blasted and acid-etched (SLA) after plasma treatment. The bone volume fraction (bone volume/total volume, BV/TV) and bone-implant contact (BIC) ratios are improved by 1.31, 1.26 times and 1.35, 1.15 times after 90 s plasma treatment. The improved hydrophilicity rather than implant surface morphology is believed to play a critical role for the osseointegration improvement.
Collapse
Affiliation(s)
- Chengzan Wu
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University
| | - Min Yang
- Department of Oral and Maxillofacial Surgery, Shanxi Provincial People's Hospital
| | - Kai Ma
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University
| | - Qian Zhang
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University
| | - Na Bai
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University
| | - Yanshan Liu
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University
| |
Collapse
|
61
|
Walther JT, Illing B, Kimmerle-Müller E, Theurer A, Rupp F. Advanced co-culture model: Soft tissue cell and bacteria interactions at the transgingival dental implant interface. Dent Mater 2023; 39:504-512. [PMID: 37019744 DOI: 10.1016/j.dental.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 04/07/2023]
Abstract
OBJECTIVES To better simulate and understand the clinical situation in which tissue cells and bacteria compete for settlement on an implant surface, the aim was to develop an improved transgingival co-culture model. METHODS For this model human gingival fibroblasts (HGF) were seeded on different titanium surfaces in the presence of the early colonizer Streptococcus gordonii or mixed oral bacteria. Subsequently adhesion and viability of HGF cells was analyzed. RESULTS Simultaneous co-culture showed no decrease in the viability of HGF cells at early stages compared to the control group. However, a moderate impact on HGF viability (76 ± 23 %) was observed after 4 h of co-culture, which then significantly decreased after 5 h (21 ± 2 %) of co-cultivation, resulting in cell death and detachment from the surface. Further experiments including saliva pre-treatment of smooth and structured titanium surfaces with Streptococcus gordonii or mixed oral bacteria suggested a cell-protective property of saliva. SIGNIFICANCE Our study revealed that during simultaneous co-culture of cells and bacteria, which resembles the clinical situation the closest, the viability of gingival cells is considerably high in the early phase, suggesting that increasing initial cell adhesion rather than antibacterial functionality is a major goal and a relevant aspect in the development and testing of transgingival implant and abutment surface modifications.
Collapse
Affiliation(s)
- Jacqueline Thy Walther
- University Hospital Tübingen, Section Medical Materials Science & Technology, Osianderstr. 2-8, Tübingen D-72076, Germany
| | - Barbara Illing
- University Hospital Tübingen, Section Medical Materials Science & Technology, Osianderstr. 2-8, Tübingen D-72076, Germany.
| | - Evi Kimmerle-Müller
- University Hospital Tübingen, Section Medical Materials Science & Technology, Osianderstr. 2-8, Tübingen D-72076, Germany
| | - Antonia Theurer
- University Hospital Tübingen, Section Medical Materials Science & Technology, Osianderstr. 2-8, Tübingen D-72076, Germany
| | - Frank Rupp
- University Hospital Tübingen, Section Medical Materials Science & Technology, Osianderstr. 2-8, Tübingen D-72076, Germany
| |
Collapse
|
62
|
Osteogenic and anti-inflammatory effects of SLA titanium substrates doped with chitosan-stabilized selenium nanoparticles via a covalent coupling strategy. Colloids Surf B Biointerfaces 2023; 224:113217. [PMID: 36868181 DOI: 10.1016/j.colsurfb.2023.113217] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023]
Abstract
Osseointegration is a prerequisite for the function of dental implants, and macrophage-dominated immune responses triggered by implantation determine the outcome of ultimate bone healing mediated by osteogenic cells. The present study aimed to develop a modified titanium (Ti) surface by covalently immobilizing chitosan-stabilized selenium nanoparticles (CS-SeNPs) to sandblasted, large grit, and acid-etched (SLA) Ti substrates and further explore its surface characteristics as well as osteogenic and anti-inflammatory activities in vitro. CS-SeNPs were successfully prepared by chemical synthesis and characterized their morphology, elemental composition, particle size, and Zeta potential. Subsequently, three different concentrations of CS-SeNPs were loaded to SLA Ti substrates (Ti-Se1, Ti-Se5, and Ti-Se10) using a covalent coupling strategy, and the SLA Ti surface (Ti-SLA) was used as a control. Scanning electron microscopy images revealed different amounts of CS-SeNPs, and the roughness and wettability of Ti surfaces were less susceptible to Ti substrate pretreatment and CS-SeNP immobilization. Besides, X-ray photoelectron spectroscopy analysis showed that CS-SeNPs were successfully anchored to Ti surfaces. The results of in vitro study showed that the four as-prepared Ti surfaces exhibited good biocompatibility, with Ti-Se1 and Ti-Se5 groups showing enhanced adhesion and differentiation of MC3T3-E1 cells compared with the Ti-SLA group. In addition, Ti-Se1, Ti-Se5, and Ti-Se10 surfaces modulated the secretion of pro-/anti-inflammatory cytokines by inhibiting the nuclear factor kappa B pathway in Raw 264.7 cells. In conclusion, doping SLA Ti substrates with a modest amount of CS-SeNPs (1-5 mM) may be a promising strategy to improve the osteogenic and anti-inflammatory activities of Ti implants.
Collapse
|
63
|
da Silva IR, Barreto ATDS, Seixas RS, Paes PNG, Lunz JDN, Thiré RMDSM, Jardim PM. Novel Strategy for Surface Modification of Titanium Implants towards the Improvement of Osseointegration Property and Antibiotic Local Delivery. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2755. [PMID: 37049048 PMCID: PMC10095684 DOI: 10.3390/ma16072755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
The topography and chemical composition modification of titanium (Ti) implants play a decisive role in improving biocompatibility and bioactivity, accelerating osseointegration, and, thus, determining clinical success. In spite of the development of surface modification strategies, bacterial contamination is a common cause of failure. The use of systemic antibiotic therapy does not guarantee action at the contaminated site. In this work, we proposed a surface treatment for Ti implants that aim to improve their osseointegration and reduce bacterial colonization in surgery sites due to the local release of antibiotic. The Ti discs were hydrothermally treated with 3M NaOH solution to form a nanostructured layer of titanate on the Ti surface. Metronidazole was impregnated on these nanostructured surfaces to enable its local release. The samples were coated with poly(vinyl alcohol)-PVA films with different thickness to evaluate a possible control of drug release. Gamma irradiation was used to crosslink the polymer chains to achieve hydrogel layer formation and to sterilize the samples. The samples were characterized by XRD, SEM, FTIR, contact angle measurements, "in vitro" bioactivity, and drug release analysis. The alkaline hydrothermal treatment successfully produced intertwined, web-like nanostructures on the Ti surface, providing wettability and bioactivity to the Ti samples (Ti + TTNT samples). Metronidazole was successfully loaded and released from the Ti + TTNT samples coated or not with PVA. Although the polymeric film acted as a physical barrier to drug delivery, all groups reached the minimum inhibitory concentration for anaerobic bacteria. Thus, the surface modification method presented is a potential approach to improve the osseointegration of Ti implants and to associate local drug delivery with dental implants, preventing early infections and bone failure.
Collapse
Affiliation(s)
- Isabela Rocha da Silva
- COPPE/Program of Metallurgical and Materials Engineering (PEMM), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, RJ, Brazil
| | - Aline Tavares da Silva Barreto
- Graduation Program in Nanobiosystems, Universidade Federal do Rio de Janeiro (UFRJ), Duque de Caxias 25240-005, RJ, Brazil
| | - Renata Santos Seixas
- COPPE/Program of Metallurgical and Materials Engineering (PEMM), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, RJ, Brazil
| | - Paula Nunes Guimarães Paes
- Faculdade de Odontologia, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, RJ, Brazil
| | - Juliana do Nascimento Lunz
- Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Xerem 25250-020, RJ, Brazil
| | - Rossana Mara da Silva Moreira Thiré
- COPPE/Program of Metallurgical and Materials Engineering (PEMM), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, RJ, Brazil
| | - Paula Mendes Jardim
- COPPE/Program of Metallurgical and Materials Engineering (PEMM), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, RJ, Brazil
| |
Collapse
|
64
|
Areid N, Riivari S, Abushahba F, Shahramian K, Närhi T. Influence of Surface Characteristics of TiO 2 Coatings on the Response of Gingival Cells: A Systematic Review of In Vitro Studies. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2533. [PMID: 36984413 PMCID: PMC10056999 DOI: 10.3390/ma16062533] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
The soft tissue-implant interface requires the formation of epithelium and connective tissue seal to hinder microbial infiltration and prevent epithelial down growth. Nanoporous titanium dioxide (TiO2) surface coatings have shown good potential for promoting soft tissue attachment to implant surfaces. However, the impact of their surface properties on the biological response of gingival cells needs further investigation. This systematic review aimed to investigate the cellular behavior of gingival cells on TiO2-implant abutment coatings based on in vitro studies. The review was performed to answer the question: "How does the surface characteristic of TiO2 coatings influence the gingival cell response in in vitro studies?". A search in MEDLINE/PubMed and the web of science databases from 1990 to 2022 was performed using keywords. A quality assessment of the studies selected was performed using the SciRAP method. A total of 11 publications were selected from the 289 studies that fulfilled the inclusion criteria. The mean reporting and methodologic quality SciRAP scores were 82.7 ± 6.4/100 and 87 ± 4.2/100, respectively. Within the limitations of this in vitro systematic review, it can be concluded that the TiO2 coatings with smooth nano-structured surface topography and good wettability improve gingival cell response compared to non-coated surfaces.
Collapse
Affiliation(s)
- Nagat Areid
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, FI-20014 Turku, Finland
| | - Sini Riivari
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, FI-20014 Turku, Finland
| | - Faleh Abushahba
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, FI-20014 Turku, Finland
| | - Khalil Shahramian
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, FI-20014 Turku, Finland
- Turku Clinical Biomaterials Center (TCBC), University of Turku, FI-20014 Turku, Finland
| | - Timo Närhi
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, FI-20014 Turku, Finland
- Turku Clinical Biomaterials Center (TCBC), University of Turku, FI-20014 Turku, Finland
- Oral Health Care, Wellbeing services county of Southwest Finland, P.O. Box 52, FIN-20521 Turku, Finland
| |
Collapse
|
65
|
Sun AR, Sun Q, Wang Y, Hu L, Wu Y, Ma F, Liu J, Pang X, Tang B. Surface modifications of titanium dental implants with strontium eucommia ulmoides to enhance osseointegration and suppress inflammation. Biomater Res 2023; 27:21. [PMID: 36927570 PMCID: PMC10022180 DOI: 10.1186/s40824-023-00361-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 03/05/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Titanium (Ti) is now widely used as implant material due to its excellent mechanical properties and superior biocompatibilities, while its inert bioactivities might lead to insufficient osseointegration, and limit its performance in dental applications. METHODS We introduced a robust and simple approach of modifying titanium surfaces with polysaccharide complexes. Titanium samples were subjected to hydrothermal treatment to create a uniform porous structure on the surface, followed by coating with a bioinspired and self-assembly polydopamine layer. Strontium Eucommia Ulmoides Polysaccharide (EUP-Sr) complexes are then introduced to the polydopamine-coated porous titanium. Multiple morphological and physiochemical characterizations are employed for material evaluation, while cell proliferation and gene expression tests using macrophages, primary alveolar bone osteoblasts, and vascular endothelial cells are used to provide an overall insight into the functions of the product. The significances of statistical differences were analyzed using student's t-test. RESULTS Microscopic and spectrometric characterizations confirmed that the Ti surface formed a porous structure with an adequate amount of EUP-Sr loading. The attachment was attributed to hydrogen bonding between the ubiquitous glycosidic linkage of the polysaccharide complex and the ring structure of polydopamine, yet the loaded EUP-Sr complex can be gradually released, consequently benefiting the neighboring microenvironment. Cell experiments showed no cytotoxicity of the material, and the product showed promising anti-inflammation, osseointegration, and angiogenesis properties, which were further confirmed by in vivo evaluations. CONCLUSION We believe the EUP-Sr modified titanium implant is a promising candidate to be used in dental applications with notable osteoimmunomodulation and angiogenesis functions. And the novel technique proposed in this study would benefit the modification of metal/inorganic surfaces with polysaccharides for future research.
Collapse
Affiliation(s)
- Avery Rui Sun
- Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China.,Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore, Singapore.,Mechanobiology Institute (MBI), National University of Singapore, 117411, Singapore, Singapore
| | - Qili Sun
- Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yansong Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Liqiu Hu
- Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yutong Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Fenbo Ma
- Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Jiayi Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Xiangchao Pang
- Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China. .,College of Materials Science and Engineering, Central South University of Forestry and Technology, 410004, Changsha, China.
| | - Bin Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China. .,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Guangdong, China. .,Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, China.
| |
Collapse
|
66
|
Draenert G, Mitov G. A new technology for the removal of corundum residues on dental implants. Br J Oral Maxillofac Surg 2023; 61:278-283. [PMID: 37024361 DOI: 10.1016/j.bjoms.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 03/14/2023]
Abstract
Surface modification is an important measure to improve dental implants. Corundum residues, which are part of current dental implant blasting, on Straumann dental implants, were found to have disappeared in recent publications. We further evaluated this new cleaning technology by evaluating the surface of four different Straumann implants using scanning electron microscopy (SEM) and energy-dispersive radiographic spectroscopy (EDX). The involved technology fits to a Straumann patent involving a dextran coating allowing easy corundum particle removal by aqueous solution.
Collapse
|
67
|
Mosaddad SA, Abdollahi Namanloo R, Ghodsi R, Salimi Y, Taghva M, Naeimi Darestani M. Oral rehabilitation with dental implants in patients with systemic sclerosis: A systematic review. Immun Inflamm Dis 2023; 11:e812. [PMID: 36988245 PMCID: PMC10022424 DOI: 10.1002/iid3.812] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
OBJECTIVE To assess the influence of systemic sclerosis (SSc) on the survival rate of dental implants in SSc patients receiving implant-supported treatments. METHODS The Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) Statement and the Cochrane Collaboration's guiding principles were followed during the study's execution. The data from three databases, PubMed, Google Scholar, and Scopus, available until January 2023, were used to compile the material for our research. Only English-language publications were submitted for this research and evaluated based on their titles, abstracts, and full texts. For performing a quality assessment, quality scores were calculated. RESULTS The total number of patients and implants studied were 37 and 153, respectively, all having had scleroderma. The patients' ages ranged from 28 to 77 years old, with a mean (SD) age of 58.16 (12.88). All the patients in the case reports and most in the case series study were female. The range of follow-up duration was from 1 to 10 years. In case report studies, the survival rate was 100%; in case series, it was 89.2%. CONCLUSION The SSc status had no discernible impact on the implant survival rate. Implant-based treatments in SSc patients should not worsen the overall morbidity and should not conflict with systemic treatments. Before starting implant therapy, a thorough risk assessment is essential, though.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Student Research Committee, School of DentistryShiraz University of Medical SciencesShirazIran
| | | | - Raziye Ghodsi
- Department of Periodontics, Dental SchoolShiraz University of Medical SciencesShirazIran
| | - Yasaman Salimi
- Student Research CommitteeKermanshah University of Medical SciencesKermanshahIran
| | - Masumeh Taghva
- Department of Prosthodontics, School of DentistryShiraz University of Medical SciencesShirazIran
| | | |
Collapse
|
68
|
Wen Y, Dong H, Lin J, Zhuang X, Xian R, Li P, Li S. Response of Human Gingival Fibroblasts and Porphyromonas gingivalis to UVC-Activated Titanium Surfaces. J Funct Biomater 2023; 14:jfb14030137. [PMID: 36976061 PMCID: PMC10051447 DOI: 10.3390/jfb14030137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
Ultraviolet (UV) photofunctionalization has been demonstrated to synergistically improve the osteoblast response and reduce biofilm formation on titanium (Ti) surfaces. However, it remains obscure how photofunctionalization affects soft tissue integration and microbial adhesion on the transmucosal part of a dental implant. This study aimed to investigate the effect of UVC (100–280 nm) pretreatment on the response of human gingival fibroblasts (HGFs) and Porphyromonas gingivalis (P. g.) to Ti-based implant surfaces. The smooth and anodized nano-engineered Ti-based surfaces were triggered by UVC irradiation, respectively. The results showed that both smooth and nano-surfaces acquired super hydrophilicity without structural alteration after UVC photofunctionalization. UVC-activated smooth surfaces enhanced the adhesion and proliferation of HGFs compared to the untreated smooth ones. Regarding the anodized nano-engineered surfaces, UVC pretreatment weakened the fibroblast attachment but had no adverse effects on proliferation and the related gene expression. Additionally, both Ti-based surfaces could effectively inhibit P. g. adhesion after UVC irradiation. Therefore, the UVC photofunctionalization could be more potentially favorable to synergistically improve the fibroblast response and inhibit P. g. adhesion on the smooth Ti-based surfaces.
Collapse
Affiliation(s)
- Yin Wen
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Hao Dong
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Jiating Lin
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Xianxian Zhuang
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Ruoting Xian
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Ping Li
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
- Correspondence: (P.L.); (S.L.)
| | - Shaobing Li
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
- First Clinical Medical College, Xinjiang Medical University, Urumqi 830011, China
- The First People’s Hospital of Kashgar Region, Kashgar 844000, China
- Correspondence: (P.L.); (S.L.)
| |
Collapse
|
69
|
In-Vitro Evaluation of Photofunctionalized Implant Surfaces in a High-Glucose Microenvironment Simulating Diabetics. J Funct Biomater 2023; 14:jfb14030130. [PMID: 36976054 PMCID: PMC10056823 DOI: 10.3390/jfb14030130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
The present study aimed to assess the efficacy of photofunctionalization on commercially available dental implant surfaces in a high-glucose environment. Discs of three commercially available implant surfaces were selected with various nano- and microstructural alterations (Group 1—laser-etched implant surface, Group 2—titanium–zirconium alloy surface, Group 3—air-abraded, large grit, acid-etched surface). They were subjected to photo-functionalization through UV irradiation for 60 and 90 min. X-ray photoelectron spectroscopy (XPS) was used to analyze the implant surface chemical composition before and after photo-functionalization. The growth and bioactivity of MG63 osteoblasts in the presence of photofunctionalized discs was assessed in cell culture medium containing elevated glucose concentration. The normal osteoblast morphology and spreading behavior were assessed under fluorescence and phase-contrast microscope. MTT (3-(4,5 Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and alizarin red assay were performed to assess the osteoblastic cell viability and mineralization efficiency. Following photofunctionalization, all three implant groups exhibited a reduced carbon content, conversion of Ti4+ to Ti3+, increased osteoblastic adhesion, viability, and increased mineralization. The best osteoblastic adhesion in the medium with increased glucose was seen in Group 3. Photofunctionalization altered the implant surface chemistry by reducing the surface carbon content, probably rendering the surfaces more hydrophilic and conducive for osteoblastic adherence and subsequent mineralization in high-glucose environment.
Collapse
|
70
|
Assunção MA, Botelho J, Machado V, Proença L, Matos APA, Mendes JJ, Bessa LJ, Taveira N, Santos A. Dental Implant Surface Decontamination and Surface Change of an Electrolytic Method versus Mechanical Approaches: A Pilot In Vitro Study. J Clin Med 2023; 12:jcm12041703. [PMID: 36836238 PMCID: PMC9967341 DOI: 10.3390/jcm12041703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023] Open
Abstract
Dental implants are the preferred fixed oral rehabilitation for replacing lost teeth. When peri-implant tissues become inflamed, the removal of plaque accumulating around the implant becomes imperative. Recently, several new strategies have been developed for this purpose, with electrolytic decontamination showing increased potential compared to traditional mechanical strategies. In this in vitro pilot study, we compare the efficacy of an electrolytic decontaminant (Galvosurge®) with an erythritol jet system (PerioFlow®) and two titanium brushes (R-Brush™ and i-Brush™) in removing Pseudomonas aeruginosa PAO1 biofilms from implants. Changes in the implant surface after each approach were also evaluated. Twenty titanium SLA implants were inoculated with P. aeruginosa and then randomly assigned to each treatment group. After treatment, decontamination efficacy was assessed by quantifying colony-forming units (log10 CFU/cm2) from each implant surface. Scanning electron microscopy was used to analyse changes in the implant surface. With the exception of R-Brush, all treatment strategies were similarly effective in removing P. aeruginosa from implants. Major surface changes were observed only in implants treated with titanium brushes. In conclusion, this pilot study suggests that electrolytic decontamination, erythritol-chlorhexidine particle jet system and i-Brush™ brushing have similar performance in removing P. aeruginosa biofilm from dental implants. Further studies are needed to evaluate the removal of more complex biofilms. Titanium brushes caused significant changes to the implant surface, the effects of which need to be evaluated.
Collapse
Affiliation(s)
| | - João Botelho
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz—School of Health and Science, 2829-511 Almada, Portugal
| | - Vanessa Machado
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz—School of Health and Science, 2829-511 Almada, Portugal
| | - Luís Proença
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz—School of Health and Science, 2829-511 Almada, Portugal
| | - António P. A. Matos
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz—School of Health and Science, 2829-511 Almada, Portugal
| | - José João Mendes
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz—School of Health and Science, 2829-511 Almada, Portugal
| | - Lucinda J. Bessa
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz—School of Health and Science, 2829-511 Almada, Portugal
| | - Nuno Taveira
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz—School of Health and Science, 2829-511 Almada, Portugal
- Correspondence: (N.T.); (A.S.)
| | - Alexandre Santos
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz—School of Health and Science, 2829-511 Almada, Portugal
- Correspondence: (N.T.); (A.S.)
| |
Collapse
|
71
|
Hartshorn JE, Nair RU. Dental innovations which will influence the oral health care of baby boomers. SPECIAL CARE IN DENTISTRY 2023; 43:359-369. [PMID: 36782274 DOI: 10.1111/scd.12835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/13/2023] [Accepted: 01/27/2023] [Indexed: 02/15/2023]
Abstract
From the widespread use of smartphones and tablets to the multitude of applications available, older adults are showing an interest in utilizing technology to maintain their independence and to improve their quality of life. As technology continues to advance and be incorporated into many day-to-day activities, the baby boom generation will see these changes affecting the way they access and utilize dental services. Innovative toothbrushes and chemotherapeutics are continuing to be developed and utilized by many older adults. Within the dental office, older adults are seeing greater application of technology in every day dental procedures. These include the use of teledentistry, artificial intelligence (AI), innovative restorative materials, digitization of fixed and removable prosthodontics, cone beam computed tomography (CBCT) scans to guide dental implant placement and endodontic procedures. There is also new technology to aid in cancer detection and shielding during cancer treatment. Improved communication between the medical and dental fields has become increasingly necessary to facilitate effective patient care and a few innovative healthcare systems have begun to consolidate these services. Overall, the baby boom generation will continue to see dental innovations that will change the way they experience everyday life and dental services.
Collapse
Affiliation(s)
- Jennifer E Hartshorn
- Department of Preventive and Community Dentistry, The University of Iowa College of Dentistry and Dental Clinics, Iowa City, Iowa, USA
| | - Rohit U Nair
- Department of Preventive and Community Dentistry, The University of Iowa College of Dentistry and Dental Clinics, Iowa City, Iowa, USA
| |
Collapse
|
72
|
Jiao J, Hong Q, Zhang D, Wang M, Tang H, Yang J, Qu X, Yue B. Influence of porosity on osteogenesis, bone growth and osteointegration in trabecular tantalum scaffolds fabricated by additive manufacturing. Front Bioeng Biotechnol 2023; 11:1117954. [PMID: 36777251 PMCID: PMC9911888 DOI: 10.3389/fbioe.2023.1117954] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Porous tantalum implants are a class of materials commonly used in clinical practice to repair bone defects. However, the cumbersome and problematic preparation procedure have limited their widespread application. Additive manufacturing has revolutionized the design and process of orthopedic implants, but the pore architecture feature of porous tantalum scaffolds prepared from additive materials for optimal osseointegration are unclear, particularly the influence of porosity. We prepared trabecular bone-mimicking tantalum scaffolds with three different porosities (60%, 70% and 80%) using the laser powder bed fusing technique to examine and compare the effects of adhesion, proliferation and osteogenic differentiation capacity of rat mesenchymal stem cells on the scaffolds in vitro. The in vivo bone ingrowth and osseointegration effects of each scaffold were analyzed in a rat femoral bone defect model. Three porous tantalum scaffolds were successfully prepared and characterized. In vitro studies showed that scaffolds with 70% and 80% porosity had a better ability to osteogenic proliferation and differentiation than scaffolds with 60% porosity. In vivo studies further confirmed that tantalum scaffolds with the 70% and 80% porosity had a better ability for bone ingrowh than the scaffold with 60% porosity. As for osseointegration, more bone was bound to the material in the scaffold with 70% porosity, suggesting that the 3D printed trabecular tantalum scaffold with 70% porosity could be the optimal choice for subsequent implant design, which we will further confirm in a large animal preclinical model for better clinical use.
Collapse
Affiliation(s)
- Juyang Jiao
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qimin Hong
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dachen Zhang
- Shenzhen Dazhou Medical Technology Co., Ltd., Shenzhen, Guangdong, China
- Center of Biomedical Materials 3D Printing, National Engineering Laboratory for Polymer Complex Structure Additive Manufacturing, Baoding, Hebei, China
| | - Minqi Wang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haozheng Tang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingzhou Yang
- Shenzhen Dazhou Medical Technology Co., Ltd., Shenzhen, Guangdong, China
- Center of Biomedical Materials 3D Printing, National Engineering Laboratory for Polymer Complex Structure Additive Manufacturing, Baoding, Hebei, China
- School of Mechanical and Automobile Engineering, Qingdao University of Technology, Qingdao, Shandong, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
73
|
Nascimento MD, Souza BMD, Posch AT. peri-implant ligament. BRAZILIAN JOURNAL OF ORAL SCIENCES 2023. [DOI: 10.20396/bjos.v22i00.8671269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The peri-implant ligament is formed from the interface of bone tissue, through the anchoring of proteins and the surface of the dental implant. In this sense, it is relevant to understand the extent to which this ligament is structured and biomimics the periodontal ligament functions. Aim: The goal of this scoping review is to present and analyze the peri-implant ligament composition and compare the extent to which this ligament is structured and biomimics the periodontal ligament functions. Methods: This scoping review was performed according to the Joanna Briggs Institute methodology for scoping reviews and following the Preferred Reporting Items for Systematic Reviews and Meta-analyses extension for scoping review. Two independent researchers searched Pubmed, Cochrane, Embase, Virtual Health Library, Scielo, Scopus, Web of Science, Brazilian Bibliography of Dentistry, Latin American and Caribbean Literature in Health Sciences, Digital Library of Theses and Dissertations from the University of São Paulo and Portal Capes. Studies published in English, Portuguese and Spanish, over the last 21 years (2000-2021). Results: A total of 330 titles were identified and after applying inclusion and exclusion factors, 27 studies were included in this review. All proteins were identified regarding their tissue function and classified into 6 major protein groups. After that this new protein ligament was compared with the periodontal ligament regarding its function and composition. The main proteins associated with osseointegration, and thus, with the peri-implant ligament are recognized as belonging to the periodontal ligament. Conclusion: This scoping review results suggest evidence of the composition and function of the periimplant ligament. However, variations may still exist due to the existence of several modulants of the osseointegration process.
Collapse
|
74
|
Digital Planning for Immediate Implants in Anterior Esthetic Area: Immediate Result and Follow-Up after 3 Years of Clinical Outcome-Case Report. Dent J (Basel) 2023; 11:dj11010015. [PMID: 36661552 PMCID: PMC9857787 DOI: 10.3390/dj11010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/14/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
In this case report, we demonstrate how the correct positioning of implants, associated with optimal gingival conditioning, and the correct choice of biomaterial can yield very predictable and fantastic aesthetic results. OBJECTIVE We aimed to use dental implants to rehabilitate the area of elements #11 and #21 in a satisfactory surgical and prosthetic manner, using guided surgery, connective tissue, nano-biomaterials, and a porcelain prosthesis. CASE REPORT A 32-year-old male patient presented with bone loss of elements #11 and #21, which was proven radiographically and clinically. Thus, oral rehabilitation with the use of dental implants was required. It was decided to proceed via digital planning with the DSD program (Digital smile design) and with the software Exoplan, (Smart Dent-Germany) whenever it was possible to plan immediate provisional and accurate dental implant positioning through reverse diagnostics (Software Exoplan, Smart Dent-German). The dental elements were extracted atraumatically; then, a guide was established, the implants were positioned, the prosthetic components were placed, the conjunctive tissue was removed from the palate and redirected to the vestibular wall of the implants, the nano-graft (Blue Bone®) was conditioned in the gaps between the vestibular wall and the implants, and, finally, the cemented provision was installed. RESULTS After a 5-month accompaniment, an excellent remodeling of the tissues had been achieved by the implants; consequently, the final prosthetic stage could begin, which also achieved a remarkable aesthetic result. CONCLUSIONS This report demonstrates that the correct planning of dental implants, which is associated with appropriate soft tissue and bone manipulation, allows for the achievement of admirable clinical results.
Collapse
|
75
|
Jiang Z, Li N, Shao Q, Zhu D, Feng Y, Wang Y, Yu M, Ren L, Chen Q, Yang G. Light-controlled scaffold- and serum-free hard palatal-derived mesenchymal stem cell aggregates for bone regeneration. Bioeng Transl Med 2023; 8:e10334. [PMID: 36684075 PMCID: PMC9842060 DOI: 10.1002/btm2.10334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 01/25/2023] Open
Abstract
Cell aggregates that mimic in vivo cell-cell interactions are promising and powerful tools for tissue engineering. This study isolated a new, easily obtained, population of mesenchymal stem cells (MSCs) from rat hard palates named hard palatal-derived mesenchymal stem cells (PMSCs). The PMSCs were positive for CD90, CD44, and CD29 and negative for CD34, CD45, and CD146. They exhibited clonogenicity, self-renewal, migration, and multipotent differentiation capacities. Furthermore, this study fabricated scaffold-free 3D aggregates using light-controlled cell sheet technology and a serum-free method. PMSC aggregates were successfully constructed with good viability. Transplantation of the PMSC aggregates and the PMSC aggregate-implant complexes significantly enhanced bone formation and implant osseointegration in vivo, respectively. This new cell resource is easy to obtain and provides an alternative strategy for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| | - Na Li
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| | - Qin Shao
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| | - Danji Zhu
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| | - Yuting Feng
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| | - Yang Wang
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| | - Mengjia Yu
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| | - Lingfei Ren
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| | - Qianming Chen
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| | - Guoli Yang
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| |
Collapse
|
76
|
López-Valverde N, Aragoneses J, López-Valverde A, Rodríguez C, Aragoneses JM. Role of BMP-7 on biological parameters osseointegration of dental implants: Preliminary results of a preclinical study. Front Bioeng Biotechnol 2023; 11:1153631. [PMID: 36926685 PMCID: PMC10011441 DOI: 10.3389/fbioe.2023.1153631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
The aim of this work was to analyze and compare the effect of bone morphogenetic protein-7 on biological parameters related to implant osseointegration in an experimental animal model. Sixteen dental implants were placed in the tibias of four randomly selected minipigs for the following dental implant surface treatments: Group A: conventional treatment of the dental implant surface by SLA (n = 8) and Group B: treatment of the dental implant surface with carboxyethylphosphonic acid and bone morphogenetic protein-7 (n = 8). The animals were sacrificed one month after dental implants placement and a histomorphometric study was performed for the evaluation of bone-to-implant contact, corrected bone-to-implant contact, new bone formation, interthread bone density and peri-implant density using Student's t-test and the non-parametric Mann-Whitney test. The histomorphometric parameters bone-to-implant contact and corrected bone-to-implant contact showed statistically significant differences between the study groups; 34.00% ± 9.92% and 50.02% ± 10.94%, respectively (p = 0.004) for SLA and 43.08% ± 10.76% and 63.30% ± 11.30%, respectively (p = 0.003) for BMP-7. The parameters new bone formation, interthread bone density and peri-implant density did not show statistically significant differences between the study groups (p = 0.951, p = 0.967 and p = 0.894, respectively). Dental implant surfaces treated with carboxyethylphosphonic acid and BMP-7 improve the biological response of dental implants to osseointegration.
Collapse
Affiliation(s)
- Nansi López-Valverde
- Department of Medicine and Medical Specialties, Faculty of Health Sciences, Universidad Alcalá de Henares, Madrid, Spain
| | - Javier Aragoneses
- Department of Medicine and Medical Specialties, Faculty of Health Sciences, Universidad Alcalá de Henares, Madrid, Spain
| | - Antonio López-Valverde
- Department of Surgery, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Cinthia Rodríguez
- Department of Dentistry, Universidad Federico Henríquez y Carvajal, Santo Domingo, Dominican Republic
| | | |
Collapse
|
77
|
Tang S, Ding N, Zhang Z. Polycrystalline particulates synthesized on zirconia for enhanced bioactivity: An in vitro study. J Biomed Mater Res B Appl Biomater 2023; 111:117-126. [PMID: 35841321 DOI: 10.1002/jbm.b.35138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 11/06/2022]
Abstract
Zirconia is a promising material for dental implant with its excellent biocompatibility, good mechanical properties, and esthetic effect similar to natural teeth. To improve the bioactivity and osteogenic properties of zirconia, pre-sintered zirconia discs were divided into C, T3 , T5 , and T7 group. Group C was as control. T3 , T5 , and T7 groups were soaked in hydrofluoric acid (HF) for 30, 50, and 70 s, respectively. Then, they were placed into CaCl2 solution and heated in NaOH solution. After sintering, the samples were characterized by scanning electron microscopy, energy dispersive spectrometry, and X-ray diffraction, which confirmed the ZrO2 polycrystalline particulates in situ synthesized on the treated sample discs. The surface roughness of the treated samples was increased with the prolonged of acid treatment time (p < .05), while the three-point bending strength did not decrease significantly (p > .05). MC3T3-E1 cells were cultured on zirconia discs to evaluate the bioactivity and osteogenic effect of modified zirconia. The living&dead fluorescence staining and CCK-8 assay showed that the specimens were non-toxic and significantly promoted cell proliferation. In addition, the cell proliferation was enhanced with the increase of zirconia surface roughness. Polycrystalline particles modified zirconia were beneficial to cell spreading. After osteogenic induction, MC3T3-E1 cells inoculated on modified zirconia exhibited higher alkaline phosphatase activity, mineralization activity and up-regulated osteogenesis-related gene expression. Above all, in situ synthesized polycrystalline particulates significantly improve the biological activity of zirconia, which will promote the widespread application of zirconia implants.
Collapse
Affiliation(s)
- Shuang Tang
- Beijing Institute of Dental Research, School of Stomatology, Capital Medical University, Beijing, China
| | - Ning Ding
- Beijing Institute of Dental Research, School of Stomatology, Capital Medical University, Beijing, China
| | - Zutai Zhang
- Beijing Institute of Dental Research, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
78
|
Muniz FWMG, Fernandez MDS, Pacheco KE, Martins MW, Trevisan TC, Zatt FP, Colussi PRG. Use of dental implants among older adults of two southern Brazilian cities: A population-based cross-sectional study. SPECIAL CARE IN DENTISTRY 2023; 43:56-66. [PMID: 35666997 DOI: 10.1111/scd.12736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/17/2022] [Accepted: 05/13/2022] [Indexed: 01/21/2023]
Abstract
AIM To assess the prevalence and associated factors with use of dental implants among older adults. METHODS This cross-sectional study was performed with home dwelling older adults from the cities Cruz Alta and Veranópolis, Brazil. The main outcome was obtained by a clinical oral examination, considering those with at least one dental implant. Independent variables were collected by a structured questionnaire. Crude and adjusted analysis was performed by Poisson regression with robust variance estimation; results are presented in prevalence ratio (PR) and 95% confidence interval. RESULTS It was included 569 participants. The overall prevalence of using at least one dental implant was 16.7%. Higher PR for the use of dental implants was observed in white individuals (PR:5.147; 95% CI:2.033-3.034), in those with at least medium income (PR:3.202; 95% CI:1.196-5.572) and in those with access to dental care in the last 12 months (RP:1.595; 95% CI:1.087-2.340). Older adults with a medium level of education (RP:0.484; 95% CI:0.240-0.978) and those that did not use dental floss (RP:0.627; 95% CI:0.240-0.978) demonstrated a significantly lower PR for use of dental implants. CONCLUSION A substantial prevalence of use of dental implants was observed among older adults. In addition, white ones, those with a better financial situation and users of dental floss presented higher use of dental implants.
Collapse
Affiliation(s)
| | | | - Karen Eymael Pacheco
- Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | | | | | | | | |
Collapse
|
79
|
Liao M, Shi Y, Chen E, Shou Y, Dai D, Xian W, Ren B, Xiao S, Cheng L. The Bio-Aging of Biofilms on Behalf of Various Oral Status on Different Titanium Implant Materials. Int J Mol Sci 2022; 24:332. [PMID: 36613775 PMCID: PMC9820730 DOI: 10.3390/ijms24010332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The properties of titanium implants are affected by bio-aging due to long-term exposure to the oral microenvironment. This study aimed to investigate probable changes in titanium plates after different biofilm bio-aging processes, representing various oral status. Titanium plates with different surface treatments were used, including polish, sandblasted with large grit and acid etched (SLA), microarc oxidation (MAO), and hydroxyapatite coating (HA). We established dual-species biofilms of Staphylococcus aureus (S. aureus)-Candida albicans (C. albicans) and saliva biofilms from the healthy and patients with stage III-IV periodontitis, respectively. After bio-aging with these biofilms for 30 days, the surface morphology, chemical composition, and water contact angles were measured. The adhesion of human gingival epithelial cells, human gingival fibroblasts, and three-species biofilms (Streptococcus sanguis, Porphyromonas gingivalis, and Fusobacterium nucleatum) were evaluated. The polished specimens showed no significant changes after bio-aging with these biofilms. The MAO- and SLA-treated samples showed mild corrosion after bio-aging with the salivary biofilms. The HA-coated specimens were the most vulnerable. Salivary biofilms, especially saliva from patients with periodontitis, exhibited a more distinct erosion on the HA-coating than the S. aureus-C. albicans dual-biofilms. The coating became thinner and even fell from the substrate. The surface became more hydrophilic and more prone to the adhesion of bacteria. The S. aureus-C. albicans dual-biofilms had a comparatively mild corrosion effect on these samples. The HA-coated samples showed more severe erosion after bio-aging with the salivary biofilms from patients with periodontitis compared to those of the healthy, which emphasized the importance of oral hygiene and periodontal health to implants in the long run.
Collapse
Affiliation(s)
- Min Liao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610064, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yangyang Shi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610064, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Enni Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610064, China
- Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuke Shou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610064, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dongyue Dai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610064, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenpan Xian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610064, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610064, China
| | - Shimeng Xiao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610064, China
- Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610064, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
80
|
Selective Grafting of Protease-Resistant Adhesive Peptides on Titanium Surfaces. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248727. [PMID: 36557865 PMCID: PMC9781125 DOI: 10.3390/molecules27248727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
In orthopedic, dental, and maxillofacial fields, joint prostheses, plates, and screws are widely used in the treatment of problems related to bone tissue. However, the use of these prosthetic systems is not free from complications: the fibrotic encapsulation of endosseous implants often prevents optimal integration of the prostheses with the surrounding bone. To overcome these issues, biomimetic titanium implants have been developed where synthetic peptides have been selectively grafted on titanium surfaces via Schiff base formation. We used the retro-inverted sequence (DHVPX) from [351-359] human Vitronectin and its dimer (D2HVP). Both protease-resistant peptides showed increased human osteoblast adhesion and proliferation, an augmented number of focal adhesions, and cellular spreading with respect to the control. D2HVP-grafted samples significantly enhance Secreted Phosphoprotein 1, Integrin Binding Sialoprotein, and Vitronectin gene expression vs. control. An estimation of peptide surface density was determined by Two-photon microscopy analysis on a silanized glass model surface labeled with a fluorescent analog.
Collapse
|
81
|
Terranova ML. Key Challenges in Diamond Coating of Titanium Implants: Current Status and Future Prospects. Biomedicines 2022; 10:biomedicines10123149. [PMID: 36551907 PMCID: PMC9775193 DOI: 10.3390/biomedicines10123149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Over past years, the fabrication of Ti-based permanent implants for fracture fixation, joint replacement and bone or tooth substitution, has become a routine task. However, it has been found that some degradation phenomena occurring on the Ti surface limits the life or the efficiency of the artificial constructs. The task of avoiding such adverse effects, to prevent microbial colonization and to accelerate osteointegration, is being faced by a variety of approaches in order to adapt Ti surfaces to the needs of osseous tissues. Among the large set of biocompatible materials proposed as an interface between Ti and the hosting tissue, diamond has been proven to offer bioactive and mechanical properties able to match the specific requirements of osteoblasts. Advances in material science and implant engineering are now enabling us to produce micro- or nano-crystalline diamond coatings on a variety of differently shaped Ti constructs. The aim of this paper is to provide an overview of the research currently ongoing in the field of diamond-coated orthopedic Ti implants and to examine the evolution of the concepts that are accelerating the full transition of such technology from the laboratory to clinical applications.
Collapse
Affiliation(s)
- Maria Letizia Terranova
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Roma, Italy; or
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Roma, Italy
| |
Collapse
|
82
|
Veiko V, Karlagina Y, Zernitckaia E, Egorova E, Radaev M, Yaremenko A, Chernenko G, Romanov V, Shchedrina N, Ivanova E, Chichkov B, Odintsova G. Laser-Induced µ-Rooms for Osteocytes on Implant Surface: An In Vivo Study. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4229. [PMID: 36500852 PMCID: PMC9737095 DOI: 10.3390/nano12234229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Laser processing of dental implant surfaces is becoming a more widespread replacement for classical techniques due to its undeniable advantages, including control of oxide formation and structure and surface relief at the microscale. Thus, using a laser, we created several biomimetic topographies of various shapes on the surface of titanium screw-shaped implants to research their success and survival rates. A distinctive feature of the topographies is the presence of "µ-rooms", which are special spaces created by the depressions and elevations and are analogous to the µ-sized room in which the osteocyte will potentially live. We conducted the comparable in vivo study using dental implants with continuous (G-topography with µ-canals), discrete (S-topography with μ-cavities), and irregular (I-topography) laser-induced topographies. A histological analysis performed with the statistical method (with p-value less than 0.05) was conducted, which showed that G-topography had the highest BIC parameter and contained the highest number of mature osteocytes, indicating the best secondary stability and osseointegration.
Collapse
Affiliation(s)
- Vadim Veiko
- Institute of Laser Technologies, ITMO University, Saint-Petersburg 197101, Russia
| | - Yuliya Karlagina
- Institute of Laser Technologies, ITMO University, Saint-Petersburg 197101, Russia
| | - Ekaterina Zernitckaia
- Department of Dental Surgery and Maxillofacial Surgery, Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg 197022, Russia
| | - Elena Egorova
- Institute of Laser Technologies, ITMO University, Saint-Petersburg 197101, Russia
| | - Maxim Radaev
- Institute of Laser Technologies, ITMO University, Saint-Petersburg 197101, Russia
| | - Andrey Yaremenko
- Department of Dental Surgery and Maxillofacial Surgery, Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg 197022, Russia
| | - Gennadiy Chernenko
- Lenmiriot Dental Implant Prosthetics Manufacture, Saint-Petersburg 193079, Russia
| | - Valery Romanov
- Institute of Laser Technologies, ITMO University, Saint-Petersburg 197101, Russia
| | - Nadezhda Shchedrina
- Institute of Laser Technologies, ITMO University, Saint-Petersburg 197101, Russia
| | - Elena Ivanova
- STEM, School of Science, RMIT University, Melbourne 3000, Australia
| | - Boris Chichkov
- Institute of Quantum Optics, Leibniz University of Hanover, 30167 Hannover, Germany
| | - Galina Odintsova
- Institute of Laser Technologies, ITMO University, Saint-Petersburg 197101, Russia
| |
Collapse
|
83
|
Chen C, Huang B, Liu Y, Liu F, Lee IS. Functional engineering strategies of 3D printed implants for hard tissue replacement. Regen Biomater 2022; 10:rbac094. [PMID: 36683758 PMCID: PMC9845531 DOI: 10.1093/rb/rbac094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2022] Open
Abstract
Three-dimensional printing technology with the rapid development of printing materials are widely recognized as a promising way to fabricate bioartificial bone tissues. In consideration of the disadvantages of bone substitutes, including poor mechanical properties, lack of vascularization and insufficient osteointegration, functional modification strategies can provide multiple functions and desired characteristics of printing materials, enhance their physicochemical and biological properties in bone tissue engineering. Thus, this review focuses on the advances of functional engineering strategies for 3D printed biomaterials in hard tissue replacement. It is structured as introducing 3D printing technologies, properties of printing materials (metals, ceramics and polymers) and typical functional engineering strategies utilized in the application of bone, cartilage and joint regeneration.
Collapse
Affiliation(s)
- Cen Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Bo Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yi Liu
- Department of Orthodontics, School of Stomatology, China Medical University, Shenyang 110002, PR China
| | - Fan Liu
- Department of Orthodontics, School of Stomatology, China Medical University, Shenyang 110002, PR China
| | | |
Collapse
|
84
|
Ayşeşek N, Arısan V, Balcıoğlu NB, Erol A, Kuruoğlu F, Tekkeşin MS, Ersanlı S. Boron- and Boric Acid-Treated Titanium Implant Surfaces in Sheep Tibia: A Histologic, Histomorphometric and Mechanical Study. Bioengineering (Basel) 2022; 9:bioengineering9110705. [PMID: 36421106 PMCID: PMC9687523 DOI: 10.3390/bioengineering9110705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/17/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to compare the topographical, chemical and osseointegration characteristics of sandblasting and acid-etching (SLA) surfaces and dental implants treated by boron compounds. Titanium (Ti) disks (n = 20) were modified using boron (B) and boric acid (H3BO3) and then compared with the conventional SLA surface via surface topographic characterizations. Dental implants (3.5 mm in diameter and 8 mm in length) with the experimental surfaces (n = 96) were inserted into the tibias of six sheep, which were left to heal for 3 and 7 weeks. Histologic, histomorphometric (bone−implant contact (BIC%)) and mechanical tests (removal torque value (RTV)) were performed. The boron-coated surface (BC group) was smoother (Rz: 4.51 μm ± 0.13) than the SLA (5.86 μm ± 0.80) and the SLA-B (5.75 μm ± 0.64) groups (p = 0.033). After 3 weeks, the highest mean RTV was found in the SLA group (37 N/cm ± 2.87), and the difference compared with the BC group (30 N/cm ± 2.60) was statistically significant (p = 0.004). After 7 weeks, the mean RTV was >80 N/cm in all groups; the highest was measured in the H3BO3-treated (BS) group (89 N/cm ± 1.53) (p < 0.0001). No statistically significant differences were found in the BIC%s during both healing periods between the groups. H3BO3 seems to be a promising medium for dental implant osseointegration.
Collapse
Affiliation(s)
- Nazlı Ayşeşek
- Department of Oral Implantology, Faculty of Dentistry, İstanbul University, Fatih, 34452 İstanbul, Türkiye
| | - Volkan Arısan
- Department of Oral Implantology, Faculty of Dentistry, İstanbul University, Fatih, 34452 İstanbul, Türkiye
- Correspondence:
| | | | - Ayşe Erol
- Department of Physics, Faculty of Science, İstanbul University, Fatih, 34452 İstanbul, Türkiye
| | - Furkan Kuruoğlu
- Department of Physics, Faculty of Science, İstanbul University, Fatih, 34452 İstanbul, Türkiye
| | - Merva Soluk Tekkeşin
- Department of Tumor Pathology, Institute of Oncology, İstanbul University, Fatih, 34452 İstanbul, Türkiye
| | - Selim Ersanlı
- Department of Oral Implantology, Faculty of Dentistry, İstanbul University, Fatih, 34452 İstanbul, Türkiye
| |
Collapse
|
85
|
Peptides for Coating TiO 2 Implants: An In Silico Approach. Int J Mol Sci 2022; 23:ijms232214048. [PMID: 36430525 PMCID: PMC9693858 DOI: 10.3390/ijms232214048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Titanium is usually used in the manufacturing of metal implants due to its biocompatibility and high resistance to corrosion. A structural and functional connection between the living bone and the surface of the implant, a process called osseointegration, is mandatory for avoiding prolonged healing, infections, and tissue loss. Therefore, osseointegration is crucial for the success of the implantation procedure. Osseointegration is a process mediated by bone-matrix progenitor cells' proteins, named integrins. In this study, we used an in silico approach to assemble and test peptides that can be strategically used in sensitizing TiO2 implants in order to improve osseointegration. To do so, we downloaded PDB structures of integrins α5β1, αvβ3, and αIIbβ3; their biological ligands; and low-cost proteins from the Protein Data Bank, and then we performed a primary (integrin-protein) docking analysis. Furthermore, we modeled complex peptides with the potential to bind to the TiO2 surface on the implant, as well as integrins in the bone-matrix progenitor cells. Then we performed a secondary (integrin-peptide) docking analysis. The ten most promising integrin-peptide docking results were further verified by molecular dynamics (MD) simulations. We recognized 82 peptides with great potential to bind the integrins, and therefore to be used in coating TiO2 implants. Among them, peptides 1 (GHTHYHAVRTQTTGR), 3 (RKLPDATGR), and 8 (GHTHYHAVRTQTLKA) showed the highest binding stability during the MD simulations. This bioinformatics approach saves time and more effectively directs in vitro studies.
Collapse
|
86
|
Lee H, Jeon HJ, Jung A, Kim J, Kim JY, Lee SH, Kim H, Yeom MS, Choe W, Gweon B, Lim Y. Improvement of osseointegration efficacy of titanium implant through plasma surface treatment. Biomed Eng Lett 2022; 12:421-432. [PMID: 36238369 PMCID: PMC9551159 DOI: 10.1007/s13534-022-00245-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/30/2022] [Accepted: 08/17/2022] [Indexed: 11/27/2022] Open
Abstract
A novel plasma treatment source for generating cylindrical plasma on the surface of titanium dental implants is developed herein. Using the titanium implant as an electrode and the packaging wall as a dielectric barrier, a dielectric barrier discharge (DBD) plasma was generated, allowing the implant to remain sterile. Numerical and experimental investigations were conducted to determine the optimal discharge conditions for eliminating hydrocarbon impurities, which are known to degrade the bioactivity of the implant. XPS measurement confirmed that plasma treatment reduced the amount of carbon impurities on the implant surface by approximately 60%. Additionally, in vitro experiments demonstrated that the surface treatment significantly improved cell adhesion, proliferation, and differentiation. Collectively, we proposed a plasma treatment source for dental implants that successfully removes carbon impurities and facilitate the osseointegration of SLA implants.
Collapse
Affiliation(s)
- Hyungyu Lee
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), 34141 Daejeon, Republic of Korea
| | - Hyun Jeong Jeon
- Plasmapp Co., Ltd, 372 Dongbu-daero, 18151 Osan-si, Gyeonggi-do Republic of Korea
| | - Ara Jung
- Department of Mechanical Engineering, Sejong University, 05006 Seoul, Republic of Korea
| | - Jinwoo Kim
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), 34141 Daejeon, Republic of Korea
| | - Jun Young Kim
- Plasmapp Co., Ltd, 372 Dongbu-daero, 18151 Osan-si, Gyeonggi-do Republic of Korea
| | - Seung Hun Lee
- Plasmapp Co., Ltd, 372 Dongbu-daero, 18151 Osan-si, Gyeonggi-do Republic of Korea
| | - Hosu Kim
- Plasmapp Co., Ltd, 372 Dongbu-daero, 18151 Osan-si, Gyeonggi-do Republic of Korea
| | - Moon Seop Yeom
- Seoul Top Dental Clinic, 345 Omok-ro, Yangchun-gu, 07999 Seoul, Republic of Korea
| | - Wonho Choe
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), 34141 Daejeon, Republic of Korea
| | - Bomi Gweon
- Department of Mechanical Engineering, Sejong University, 05006 Seoul, Republic of Korea
| | - Youbong Lim
- Plasmapp Co., Ltd, 372 Dongbu-daero, 18151 Osan-si, Gyeonggi-do Republic of Korea
| |
Collapse
|
87
|
Long L, Zhang M, Gan S, Zheng Z, He Y, Xu J, Fu R, Guo Q, Yu D, Chen W. Comparison of early osseointegration of non-thermal atmospheric plasma-functionalized/ SLActive titanium implant surfaces in beagle dogs. Front Bioeng Biotechnol 2022; 10:965248. [DOI: 10.3389/fbioe.2022.965248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Hydrophilic dental implants are gaining increasing interest for their ability to accelerate bone formation. However, commercially available hydrophilic implants, such as SLActive™, have some major limitations due to their time-dependent biological aging and lower cost-effectiveness. The non-thermal atmospheric plasma (NTAP) treatment is a reliable way to gain a hydrophilic surface and enhance osseointegration. However, a few studies have been carried out to compare the osseointegration of NTAP-functionalized titanium implants and commercially available hydrophilic implants.Purpose: In this study, we compare the osseointegration abilities of the NTAP-functionalized titanium implant and Straumann SLActive.Material and methods: The NTAP effectiveness was examined using in vitro cell experiments. Then, six beagle dogs were included in the in vivo experiment. Straumann SLActive implants, SLA implants, and SLA implants treated with NTAP were implanted in the mandibular premolar area of dogs. After 2 w, 4 w, and 8 w, the animals were sacrificed and specimens were collected. Radiographic and histological analyses were used to measure osseointegration.Results: NTAP treatment accelerated the initial attachment and differentiation of MC3T3-E1 cells. In the in vivo experiment, bone parameters (e.g., BIC value and BV/TV) and volume of new bone of NTAP groups were close to those of the SLActive group. Additionally, although there was no statistical difference, the osseointegration of SLActive and NTAP groups was evidently superior to that of the SLA group.Conclusion: NTAP-functionalized implants enhanced cell interaction with material and subsequent bone formation. The osseointegration of the NTAP-functionalized implant was comparable to that of the SLActive implant at the early osseointegration stage.
Collapse
|
88
|
Two Gingival Cell Lines Response to Different Dental Implant Abutment Materials: An In Vitro Study. Dent J (Basel) 2022; 10:dj10100192. [PMID: 36286002 PMCID: PMC9600692 DOI: 10.3390/dj10100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Objectives: This study aimed to investigate the response of human gingival fibroblasts (HGFB) and human gingival keratinocytes (HGKC) towards different dental implant abutment materials. Methods: Five materials were investigated: (1) titanium (Ti), (2) titanium nitride (TiN), (3) cobalt-chromium (CoCr), (4) zirconia (ZrO2), and (5) modified polyether ether ketone (m-PEEK). Both cell lines were cultured, expanded, and seeded in accordance with the protocol of their supplier. Cell proliferation and cytotoxicity were evaluated at days 1, 3, 5, and 10 using colourimetric viability and cytotoxicity assays. Data were analysed via two-way ANOVA, one-way ANOVA, and Tukey’s post hoc test (p < 0.05 for all tests). Results: There was a statistically significant difference in cell proliferation of HGKC and HGFB cells in contact with different abutment materials at different time points, with no significant interaction between different materials. There was a significant effect on cell proliferation and cytotoxicity with different exposure times (p < 0.0001) for each material. Cell proliferation rates were comparable for both cell lines at the beginning of the study, however, HGFB showed higher proliferation rates for all materials at day 10 with better proliferation activities with ZrO and m-PEEK (40.27%) and (48.38%) respectively. HGKC showed significant interactions (p < 0.0001) in cytotoxicity between different materials. Conclusion: The present in vitro assessment investigated the biocompatibility of different abutment materials with soft tissue cells (HGFB and HGKC). The findings suggest that m-PEEK and TiN are biologically compatible materials with human cells that represent the soft tissue and can be considered as alternative implant abutment materials to Ti and ZrO2, especially when the aesthetic is of concern.
Collapse
|
89
|
Hasan J, Bright R, Hayles A, Palms D, Zilm P, Barker D, Vasilev K. Preventing Peri-implantitis: The Quest for a Next Generation of Titanium Dental Implants. ACS Biomater Sci Eng 2022; 8:4697-4737. [PMID: 36240391 DOI: 10.1021/acsbiomaterials.2c00540] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Titanium and its alloys are frequently the biomaterial of choice for dental implant applications. Although titanium dental implants have been utilized for decades, there are yet unresolved issues pertaining to implant failure. Dental implant failure can arise either through wear and fatigue of the implant itself or peri-implant disease and subsequent host inflammation. In the present report, we provide a comprehensive review of titanium and its alloys in the context of dental implant material, and how surface properties influence the rate of bacterial colonization and peri-implant disease. Details are provided on the various periodontal pathogens implicated in peri-implantitis, their adhesive behavior, and how this relationship is governed by the implant surface properties. Issues of osteointegration and immunomodulation are also discussed in relation to titanium dental implants. Some impediments in the commercial translation for a novel titanium-based dental implant from "bench to bedside" are discussed. Numerous in vitro studies on novel materials, processing techniques, and methodologies performed on dental implants have been highlighted. The present report review that comprehensively compares the in vitro, in vivo, and clinical studies of titanium and its alloys for dental implants.
Collapse
Affiliation(s)
- Jafar Hasan
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Richard Bright
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Andrew Hayles
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Dennis Palms
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Peter Zilm
- Adelaide Dental School, University of Adelaide, Adelaide, 5005, South Australia, Australia
| | - Dan Barker
- ANISOP Holdings, Pty. Ltd., 101 Collins St, Melbourne VIC, 3000 Australia
| | - Krasimir Vasilev
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| |
Collapse
|
90
|
Abstract
Surface characteristics are an important factor for long-term clinical success of dental implants. Alterations of implant surface characteristics accelerate or improve osseointegration by interacting with the physiology of bone healing. Dental implant surfaces have been traditionally modified at the microlevel. Recently, researchers have actively investigated nano-modifications in dental implants. This review explores implant surface modifications that enhance biological response at the interface between a bone and the implant.
Collapse
Affiliation(s)
- In-Sung Luke Yeo
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-Ro, Jongro-Gu, Seoul 03080, Korea.
| |
Collapse
|
91
|
Gehrke P, Riebe O, Fischer C, Weinhold O, Dhom G, Sader R, Weigl P. Microbiological cleaning and disinfection efficacy of a three-stage ultrasonic processing protocol for CAD-CAM implant abutments. J Adv Prosthodont 2022; 14:273-284. [PMID: 36452367 PMCID: PMC9672693 DOI: 10.4047/jap.2022.14.5.273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 09/22/2023] Open
Abstract
PURPOSE Computer-aided design and manufacturing (CAD-CAM) of implant abutments has been shown to result in surface contamination from site-specific milling and fabrication processes. If not removed, these contaminants can have a potentially adverse effect and may trigger inflammatory responses of the peri-implant tissues. The aim of the present study was to evaluate the bacterial disinfection and cleaning efficacy of ultrasonic reprocessing in approved disinfectants to reduce the microbial load of CAD-CAM abutments. MATERIALS AND METHODS Four different types of custom implant abutments (total N = 32) with eight specimens in each test group (type I to IV) were CAD-CAM manufactured. In two separate contamination experiments, specimens were contaminated with heparinized sheep blood alone and with heparinized sheep blood and the test bacterium Enterococcus faecium. Abutments in the test group were processed according to a three-stage ultrasonic protocol and assessed qualitatively and quantitatively by determination of residual protein. Ultrasonicated specimens contaminated with sheep blood and E. faecium were additionally eluted and the dilutions were incubated on agar plates for seven days. The determined bacterial counts were expressed as colony-forming units (CFU). RESULTS Ultrasonic reprocessing resulted in a substantial decrease in residual bacterial protein to less than 80 µg and a reduction in microbiota of more than 7 log levels of CFU for all abutment types, exceeding the effect required for disinfection. CONCLUSION A three-stage ultrasonic cleaning and disinfection protocol results in effective bacterial decontamination. The procedure is reproducible and complies with the standardized reprocessing and disinfection specifications for one- or two-piece CAD-CAM implant abutments.
Collapse
Affiliation(s)
- Peter Gehrke
- Department of Postgraduate Education, Master of Oral Implantology, Center for Dentistry and Oral Medicine (Carolinum), Johann Wolfgang Goethe University, Frankfurt, Germany
- Private Practice for Oral Surgery and Implant Dentistry, Ludwigshafen, Germany
| | - Oliver Riebe
- HygCen Germany GmbH, Laboratory, Schwerin, Germany
| | | | - Octavio Weinhold
- Private Practice for Oral Surgery and Implant Dentistry, Ludwigshafen, Germany
| | - Günter Dhom
- Private Practice for Oral Surgery and Implant Dentistry, Ludwigshafen, Germany
| | - Robert Sader
- Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University Frankfurt, Germany
| | - Paul Weigl
- Department of Prosthodontics and Head of Department of Postgraduate Education, Master of Oral Implantology, Center for Dentistry and Oral Medicine (Carolinum), Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
92
|
Mechanical micromodeling of stress-shielding at the bone-implant interphase under shear loading. Med Biol Eng Comput 2022; 60:3281-3293. [DOI: 10.1007/s11517-022-02657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/22/2022] [Indexed: 10/14/2022]
|
93
|
John P, Antony IR, Whenish R, Jinoop AN. A review on fabrication of 3D printed biomaterials using optical methodologies for tissue engineering applications. Proc Inst Mech Eng H 2022; 236:1583-1594. [DOI: 10.1177/09544119221122856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human body comprises of different internal and external biological components. Human organs tend to fail due to continuous or sudden stress which leads to deterioration, failure, and dislocation. The choice of selection and fabrication of materials for tissue engineering play a key role in terms of suitability, sensitivity, and functioning with other organs as a replacement for failed organs. The progressive improvement of the additive manufacturing (AM) approach in healthcare made it possible to print multi-material and customized complex/intricate geometries in a layer-by-layer fashion. The customized or patient-specific implant fabrication can be easily produced with a high success rate due to the development of AM technologies with tailorable properties. The structural behavior of 3D printed biomaterials is a crucial factor in tissue engineering as they affect the functionality of the implants. Various techniques have been developed in appraising the important features and the effects of the subsequent design of the biomaterial implants. The behavior of the AM built biomaterial implants can be understood visually by an imaging system with a high spatial and spectral resolution. This review intends to present an overview of various biomaterials used in implants, followed by a detailed description of optical 3D printing procedures and evaluation of the performance of 3D printed biomaterials using optical characterization.
Collapse
Affiliation(s)
- Pauline John
- Department of Biomedical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, TN, India
| | - Irene Rose Antony
- School of Bio-sciences and Technology, Vellore Institute of Technology, Vellore, TN, India
| | - Ruban Whenish
- Center for Biomaterials, Cellular and molecular Theranostics, Vellore Institute of Technology, Vellore, TN, India
| | - Arackal Narayanan Jinoop
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
94
|
Kim H, Lee YH, Kim NK, Kang IK. Bioactive Surface of Zirconia Implant Prepared by Nano-Hydroxyapatite and Type I Collagen. COATINGS 2022; 12:1335. [DOI: 10.3390/coatings12091335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Zirconia, with its excellent mechanical strength and esthetics, has a growing potential for applications in dentistry and orthopedics. However, in order for zirconia to have a high affinity with bone tissue, the bioactivity of the surface must be further increased. In order to increase the bioactivity of zirconia, research was conducted to make a porous support or to fill the porous structure with nano-hydroxyapatite (nHA). In this case, there is a risk that physically filled nHA could be released depending on the living environment. In this study, nHA and type I collagen were introduced to the zirconia surface by chemical covalent bonding to increase bioactivity and ensure safety in the body. The chemical reaction of the surface was confirmed by X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM) and Fourier transform infrared (FT-IR) spectroscopy. In addition, the biological activity was evaluated by examining the cytotoxicity and bone formation ability of the modified zirconia using osteoblasts. As a result, it was found that the bioactivity of the zirconia surface was greatly improved by immobilizing nHA and type I collagen.
Collapse
|
95
|
Liu Y, Wu Z, Chen C, Lu T, Song M, Qi X, Jiang Z, Liu S, Tang Z. The hybrid crosslinking method improved the stability and anti-calcification properties of the bioprosthetic heart valves. Front Bioeng Biotechnol 2022; 10:1008664. [PMID: 36159659 PMCID: PMC9500414 DOI: 10.3389/fbioe.2022.1008664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Abstract
The bioprosthetic heart valves (BHVs) are the best option for the treatment of valvular heart disease. Glutaraldehyde (Glut) is commonly used as the golden standard reagent for the crosslinking of BHVs. However, the obvious defects of Glut, including residual aldehyde toxicity, degradation and calcification, increase the probability of valve failure in vivo and motivated the exploration of alternatives. Thus, the aim of this study is to develop a non-glutaraldehyde hybrid cross-linking method composed of Neomycin Trisulfate, Polyethylene glycol diglycidyl ether and Tannic acid as a substitute for Glut, which was proven to reduce calcification, degradation, inflammation of the biomaterial. Evaluations of the crosslinked bovine pericardial included histological and ultrastructural characterization, biomechanical performance, biocompatibility and structural stability test, and in vivo anti-inflammation and anti-calcification assay by subcutaneous implantation in juvenile Sprague Dawley rats. The results revealed that the hybrid crosslinked bovine pericardial were superior to Glut crosslinked biomaterial in terms of better hydrophilicity, thermodynamics stability, hemocompatibility and cytocompatibility, higher Young’s Modulus, better stability and resistance to enzymatic hydrolysis, and lower inflammation, degradation and calcification levels in subcutaneous implants. Considering all above performances, it indicates that the hybrid cross-linking method is appropriate to replace Glut as the method for BHV preparation, and particularly this hybrid crosslinked biomaterials may be a promising candidate for next-generation BHVs.
Collapse
Affiliation(s)
- Yuhong Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Engineering Laboratory of Human Province for Cardiovascular Biomaterials, Changsha, Hunan, China
| | - Zhongshi Wu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Engineering Laboratory of Human Province for Cardiovascular Biomaterials, Changsha, Hunan, China
| | - Chunyang Chen
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ting Lu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mingzhe Song
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoke Qi
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhenlin Jiang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Sixi Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Engineering Laboratory of Human Province for Cardiovascular Biomaterials, Changsha, Hunan, China
| | - Zhenjie Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Engineering Laboratory of Human Province for Cardiovascular Biomaterials, Changsha, Hunan, China
- *Correspondence: Zhenjie Tang,
| |
Collapse
|
96
|
Effects of Different Titanium Surface Treatments on Adhesion, Proliferation and Differentiation of Bone Cells: An In Vitro Study. J Funct Biomater 2022; 13:jfb13030143. [PMID: 36135578 PMCID: PMC9503392 DOI: 10.3390/jfb13030143] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
The objective of this study was to evaluate the impacts of different sandblasting procedures in acid etching of Ti6Al4V surfaces on osteoblast cell behavior, regarding various physicochemical and topographical parameters. Furthermore, differences in osteoblast cell behavior between cpTi and Ti6Al4V SA surfaces were evaluated. Sandblasting and subsequent acid etching of cpTi and Ti6Al4V discs was performed with Al2O3 grains of different sizes and with varying blasting pressures. The micro- and nano-roughness of the experimental SA surfaces were analyzed via confocal, atomic force and scanning electron microscopy. Surface free energy and friction coefficients were determined. hFOB 1.19 cells were seeded to evaluate adhesion, proliferation and osteoblastic differentiation for up to 12 d via crystal violet assays, MTT assays, ALP activity assays and Alizarin Red staining assays. Differences in blasting procedures had significant impacts on surface macro- and micro-topography. The crystal violet assay revealed a significant inverse relationship between blasting grain size and hFOB cell growth after 7 days. This trend was also visible in the Alizarin Red assays staining after 12 d: there was significantly higher biomineralization visible in the group that was sandblasted with smaller grains (F180) when compared to standard-grain-size groups (F70). SA samples treated with reduced blasting pressure exhibited lower hFOB adhesion and growth capabilities at initial (2 h) and later time points for up to 7 days, when compared to the standard SA surface, even though micro-roughness and other relevant surface parameters were similar. Overall, etched-only surfaces consistently exhibited equivalent or higher adhesion, proliferation and differentiation capabilities when compared to all other sandblasted and etched surfaces. No differences were found between cpTi and Ti6Al4V SA surfaces. Subtle modifications in the blasting protocol for Ti6Al4V SA surfaces significantly affect the proliferative and differentiation behavior of human osteoblasts. Surface roughness parameters are not sufficient to predict osteoblast behavior on etched Ti6Al4V surfaces.
Collapse
|
97
|
Osman MA, Alamoush RA, Kushnerev E, Seymour KG, Shawcross S, Yates JM. Human osteoblasts response to different dental implant abutment materials: An in-vitro study. Dent Mater 2022; 38:1547-1557. [PMID: 35909000 DOI: 10.1016/j.dental.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVES This study aimed to investigate human osteoblasts (HOB) response towards different dental implant abutment materials. METHODS Five dental implant abutment materials were investigated: (1) titanium (Ti), (2) titanium coated nitride (TiN), (3) cobalt chromium (CoCr), (4) zirconia (ZrO₂), and (5) modified polyether ether ketone (m-PEEK). HOBs were cultured, expanded, and seeded according to the supplier's protocol (PromoCell, UK). Cell proliferation and cytotoxicity were evaluated at days 1, 3, 5, and 10 using Alamar Blue (alamarBlue) and lactate dehydrogenase (LDH) colorimetric assays. Data were analysed via two-way ANOVA, one-way ANOVA and Tukey's post hoc test (significance was determined as p < 0.05 for all tests). RESULTS All the investigated materials showed high and comparable initial proliferation activities apart from ZrO₂ (46.92%), with P% of 79.91%, 68.77%, 73.20%, and 65.46% for Ti, TiN, CoCr, and m-PEEK, respectively. At day 10, all materials exhibited comparable and lower P% than day 1 apart from TiN (70.90%) with P% of 30.22%, 40.64%, 37.27%, and 50.65% for Ti, CoCr, ZrO₂, and m-PEEK, respectively. The cytotoxic effect of the investigated materials was generally low throughout the whole experiment. At day 10, the cytotoxicity % was 7.63%, 0.21%, 13.30%, 5.32%, 8.60% for Ti, TiN, CoCr, ZrO₂, and m-PEEK. The Two-way ANOVA and Tukey's Multiple Comparison Method highlighted significant material and time effects on cell proliferation and cytotoxicity, and a significant interaction (p < 0.0001) between the tested materials. Notably, TiN and m-PEEK showed improved HOB proliferation activity and cytotoxic levels than the other investigated materials. In addition, a non-significant negative correlation between viability and cytotoxicity was found for all tested materials. Ti (p = 0.07), TiN (p = 0.28), CoCr (p = 0.15), ZrO₂ (p = 0.17), and m-PEEK (p = 0.12). SIGNIFICANCE All the investigated materials showed excellent biocompatibility properties with more promising results for the newly introduced TiN and m-PEEK as alternatives to the traditionally used dental implant and abutment materials.
Collapse
Affiliation(s)
- Muataz A Osman
- Division of Dentistry, School of Medical Sciences, University of Manchester, Coupland 3 Building, Oxford Road, Manchester M13 9PL, United Kingdom; Periodontology Department, Faculty of Dentistry, The University of Benghazi, Benghazi, Libya; Restorative Department, Faculty of Dentistry, Libyan International Medical University, Benghazi, Libya; Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, 3.106 Stopford Building, Oxford Road, Manchester M13 9PT, United Kingdom.
| | - Rasha A Alamoush
- Prosthodontic Department, School of Dentistry, University of Jordan, Amman, Jordan
| | - Evgeny Kushnerev
- Division of Dentistry, School of Medical Sciences, University of Manchester, Coupland 3 Building, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Kevin G Seymour
- Division of Dentistry, School of Medical Sciences, University of Manchester, Coupland 3 Building, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Susan Shawcross
- Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, 3.106 Stopford Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Julian M Yates
- Division of Dentistry, School of Medical Sciences, University of Manchester, Coupland 3 Building, Oxford Road, Manchester M13 9PL, United Kingdom.
| |
Collapse
|
98
|
Osman MA, Alamoush RA, Kushnerev E, Seymour KG, Watts DC, Yates JM. Biological response of epithelial and connective tissue cells to titanium surfaces with different ranges of roughness: An in-vitro study. Dent Mater 2022; 38:1777-1788. [DOI: 10.1016/j.dental.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022]
|
99
|
Lu Y, Yang Y, Liu S, Ge S. Biomaterials constructed for MSC-derived extracellular vesicle loading and delivery—a promising method for tissue regeneration. Front Cell Dev Biol 2022; 10:898394. [PMID: 36092710 PMCID: PMC9454000 DOI: 10.3389/fcell.2022.898394] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have become the preferred seed cells for tissue regeneration. Nevertheless, due to their immunogenicity and tumorigenicity, MSC transplantation remains questionable. Extracellular vesicles (EVs) derived from MSCs are becoming a promising substitute for MSCs. As a route of the MSC paracrine, EVs have a nano-sized and bilayer lipid-enclosed structure, which can guarantee the integrity of their cargoes, but EVs cannot obtain full function in vivo because of the rapid biodegradation and clearance by phagocytosis. To improve the efficacy and targeting of EVs, methods have been proposed and put into practice, especially engineered vesicles and EV-controlled release systems. In particular, EVs can be cell or tissue targeting because they have cell-specific ligands on their surfaces, but their targeting ability may be eliminated by the biodegradation of the phagocytic system during circulation. Novel application strategies have been proposed beyond direct injecting. EV carriers such as biodegradable hydrogels and other loading systems have been applied in tissue regeneration, and EV engineering is also a brand-new method for higher efficacy. In this review, we distinctively summarize EV engineering and loading system construction methods, emphasizing targeting modification methods and controlled release systems for EVs, which few literature reviews have involved.
Collapse
Affiliation(s)
- Yu Lu
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu Yang
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Shaohua Ge
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Shaohua Ge,
| |
Collapse
|
100
|
Formation of Oxide Layer and Wettability on the Surface of Electrical Discharge Machining-Based Implant Engineered by Micro-Finishing. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2022. [DOI: 10.4028/p-8u998r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability to promote rapid osseointegration is an important criterion on the titanium implant surface. This performance is greatly determined by the roughness, wettability, and composition of the implant surface. This study aims to investigate the oxide layer formation and wettability on the EDM-titanium implant surface engineered by different micro-finishing methods (i.e. mechanical, physical, and chemical processes). The oxide layer formation was investigated by observing the wt% of oxygen formed while the wettability criterion was studied by determining the contact angle between the liquid and solid surface. The result reveals that the oxide layers formed on the sample surface, excepting Sulfuric acid (H2SO4) 95%-etched, show an interaction with the surface roughness and its wettability. The smoother the surface roughness of the sample, the lower the percentage of the oxide layer and the contact angle formed on the sample surface. In this aspect, the ultrasonic cleaning benchmark has the highest percentage by altering 18.84% of the oxide layer formed by the EDM process while the decrease of 75.89% generated by the H2SO4-etching is the lowest one. On the other hand, the higher the percentage of the oxide layer formation, the lower the wettability of the sample surface. In this aspect, the ultrasonic cleaning benchmark has the lowest wettability with a contact angle of 124º (hydrophilic) while HCl-etching is the lowest with 45º (hydrophobic). The results are notable that the ultrasonic cleaning method is able to alter wt% of the oxygen on the EDM-titanium implant surface, whereas the acid etching method can be recommended as a worthy method of the surface finishing for the semi-permanent type of implant.
Collapse
|