51
|
Wang H, Khor TO, Shu L, Su Z, Fuentes F, Lee JH, Kong ANT. Plants vs. cancer: a review on natural phytochemicals in preventing and treating cancers and their druggability. Anticancer Agents Med Chem 2012; 12:1281-305. [PMID: 22583408 PMCID: PMC4017674 DOI: 10.2174/187152012803833026] [Citation(s) in RCA: 318] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 03/06/2012] [Accepted: 03/06/2012] [Indexed: 11/22/2022]
Abstract
Cancer remains to be one of the leading causes of death in the United States and around the world. The advent of modern drug-targeted therapies has undeniably improved cancer patients' cares. However, advanced metastasized cancer remains untreatable. Hence, continued searching for a safer and more effective chemoprevention and treatment is clearly needed for the improvement of the efficiency and to lower the treatment cost for cancer care. Cancer chemoprevention with natural phytochemical compounds is an emerging strategy to prevent, impede, delay, or cure cancer. This review summarizes the latest research in cancer chemoprevention and treatment using the bioactive components from natural plants. Relevant molecular mechanisms involved in the pharmacological effects of these phytochemicals are discussed. Pharmaceutical developmental challenges and opportunities in bringing the phytochemicals into the market are also explored. The authors wish to expand this research area not only for their scientific soundness, but also for their potential druggability.
Collapse
Affiliation(s)
- Hu Wang
- Graduate Program in Pharmaceutical Sciences, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Tin Oo Khor
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Limin Shu
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Zhengyuen Su
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Francisco Fuentes
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Jong-Hun Lee
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Ah-Ng Tony Kong
- Graduate Program in Pharmaceutical Sciences, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| |
Collapse
|
52
|
CEP90 is required for the assembly and centrosomal accumulation of centriolar satellites, which is essential for primary cilia formation. PLoS One 2012; 7:e48196. [PMID: 23110211 PMCID: PMC3480484 DOI: 10.1371/journal.pone.0048196] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/26/2012] [Indexed: 01/17/2023] Open
Abstract
Centriolar satellites are PCM-1-positive granules surrounding centrosomes. Proposed functions of the centriolar satellites include protein targeting to the centrosome, as well as communication between the centrosome and surrounding cytoplasm. CEP90 is a centriolar satellite protein that is critical for spindle pole integrity in mitotic cells. In this study, we examined the biological functions of CEP90 in interphase cells. CEP90 physically interacts with PCM-1 at centriolar satellites, and this interaction is essential for centrosomal accumulation of the centriolar satellites and eventually for primary cilia formation. CEP90 is also required for BBS4 loading on centriolar satellites and its localization in primary cilia. Our results imply that the assembly and transport of centriolar satellites are critical steps for primary cilia formation and ciliary protein recruitment.
Collapse
|
53
|
Hehnly H, Chen CT, Powers CM, Liu HL, Doxsey S. The centrosome regulates the Rab11- dependent recycling endosome pathway at appendages of the mother centriole. Curr Biol 2012; 22:1944-50. [PMID: 22981775 DOI: 10.1016/j.cub.2012.08.022] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 07/16/2012] [Accepted: 08/13/2012] [Indexed: 12/19/2022]
Abstract
The recycling endosome localizes to a pericentrosomal region via microtubule-dependent transport. We previously showed that Sec15, an effector of the recycling endosome component, Rab11-GTPase, interacts with the mother centriole appendage protein, centriolin, suggesting an interaction between endosomes and centrosomes. Here we show that the recycling endosome associates with the appendages of the mother (older) centriole. We show that two mother centriole appendage proteins, centriolin and cenexin/ODF2, regulate association of the endosome components Rab11, the Rab11 GTP-activating protein Evi5, and the exocyst at the mother centriole. Development of an in vitro method for reconstituting endosome protein complexes onto isolated membrane-free centrosomes demonstrates that purified GTP-Rab11 but not GDP-Rab11 binds to mother centriole appendages in the absence of membranes. Moreover, centriolin depletion displaces the centrosomal Rab11 GAP, Evi5, and increases mother-centriole-associated Rab11; depletion of Evi5 also increases centrosomal Rab11. This indicates that centriolin localizes Evi5 to centriolar appendages to turn off centrosomal Rab11 activity. Finally, centriolin depletion disrupts recycling endosome organization and function, suggesting a role for mother centriole proteins in the regulation of Rab11 localization and activity at the mother centriole.
Collapse
Affiliation(s)
- Heidi Hehnly
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech 2, Suite 206, 373 Plantation Street, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
54
|
A Wnt/beta-catenin pathway antagonist Chibby binds Cenexin at the distal end of mother centrioles and functions in primary cilia formation. PLoS One 2012; 7:e41077. [PMID: 22911743 PMCID: PMC3401179 DOI: 10.1371/journal.pone.0041077] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 06/18/2012] [Indexed: 11/25/2022] Open
Abstract
The mother centriole of the centrosome is distinguished from immature daughter centrioles by the presence of accessory structures (distal and subdistal appendages), which play an important role in the organization of the primary cilium in quiescent cells. Primary cilia serve as sensory organelles, thus have been implicated in mediating intracellular signal transduction pathways. Here we report that Chibby (Cby), a highly conserved antagonist of the Wnt/β-catenin pathway, is a centriolar component specifically located at the distal end of the mother centriole and essential for assembly of the primary cilium. Cby appeared as a discrete dot in the middle of a ring-like structure revealed by staining with a distal appendage component of Cep164. Cby interacted with one of the appendage components, Cenexin (Cnx), which thereby abrogated the inhibitory effect of Cby on β-catenin-mediated transcriptional activation in a dose-dependent manner. Cby and Cnx did not precisely align, as Cby was detected at a more distal position than Cnx. Cnx emerged earlier than Cby during the cell cycle and was required for recruitment of Cby to the mother centriole. However, Cby was dispensable for Cnx localization to the centriole. During massive centriogenesis in in vitro cultured mouse tracheal epithelial cells, Cby and Cnx were expressed in a similar pattern, which was coincident with the expression of Foxj1. Our results suggest that Cby plays an important role in organization of both primary and motile cilia in collaboration with Cnx.
Collapse
|
55
|
Seeger-Nukpezah T, Liebau MC, Höpker K, Lamkemeyer T, Benzing T, Golemis EA, Schermer B. The centrosomal kinase Plk1 localizes to the transition zone of primary cilia and induces phosphorylation of nephrocystin-1. PLoS One 2012; 7:e38838. [PMID: 22701722 PMCID: PMC3372538 DOI: 10.1371/journal.pone.0038838] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 05/11/2012] [Indexed: 01/13/2023] Open
Abstract
Polo-like kinase (Plk1) plays a central role in regulating the cell cycle. Plk1-mediated phosphorylation is essential for centrosome maturation, and for numerous mitotic events. Although Plk1 localizes to multiple subcellular sites, a major site of action is the centrosomes, which supports mitotic functions in control of bipolar spindle formation. In G0 or G1 untransformed cells, the centriolar core of the centrosome differentiates into the basal body of the primary cilium. Primary cilia are antenna-like sensory organelles dynamically regulated during the cell cycle. Whether Plk1 has a role in ciliary biology has never been studied. Nephrocystin-1 (NPHP1) is a ciliary protein; loss of NPHP1 in humans causes nephronophthisis (NPH), an autosomal-recessive cystic kidney disease. We here demonstrate that Plk1 colocalizes with nephrocystin-1 to the transition zone of primary cilia in epithelial cells. Plk1 co-immunoprecipitates with NPHP1, suggesting it is part of the nephrocystin protein complex. We identified a candidate Plk1 phosphorylation motif (D/E-X-S/T-φ-X-D/E) in nephrocystin-1, and demonstrated in vitro that Plk1 phosphorylates the nephrocystin N-terminus, which includes the specific PLK1 phosphorylation motif. Further, induced disassembly of primary cilia rapidly evoked Plk1 kinase activity, while small molecule inhibition of Plk1 activity or RNAi-mediated downregulation of Plk1 limited the first and second phase of ciliary disassembly. These data identify Plk1 as a novel transition zone signaling protein, suggest a function of Plk1 in cilia dynamics, and link Plk1 to the pathogenesis of NPH and potentially other cystic kidney diseases.
Collapse
Affiliation(s)
- Tamina Seeger-Nukpezah
- Department of Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Max C. Liebau
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Department of Pediatrics, University of Cologne, Cologne, Germany
| | - Katja Höpker
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Tobias Lamkemeyer
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Erica A. Golemis
- Department of Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| |
Collapse
|
56
|
Lee KH, Johmura Y, Yu LR, Park JE, Gao Y, Bang JK, Zhou M, Veenstra TD, Yeon Kim B, Lee KS. Identification of a novel Wnt5a-CK1ɛ-Dvl2-Plk1-mediated primary cilia disassembly pathway. EMBO J 2012; 31:3104-17. [PMID: 22609948 PMCID: PMC3400010 DOI: 10.1038/emboj.2012.144] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 04/18/2012] [Indexed: 01/17/2023] Open
Abstract
Non-motile primary cilium is an antenna-like structure whose defect is associated with a wide range of pathologies, including developmental disorders and cancer. Although mechanisms regulating cilia assembly have been extensively studied, how cilia disassembly is regulated remains poorly understood. Here, we report unexpected roles of Dishevelled 2 (Dvl2) and interphase polo-like kinase 1 (Plk1) in primary cilia disassembly. We demonstrated that Dvl2 is phosphorylated at S143 and T224 in a manner that requires both non-canonical Wnt5a ligand and casein kinase 1 epsilon (CK1ɛ), and that this event is critical to interact with Plk1 in early stages of the cell cycle. The resulting Dvl2-Plk1 complex mediated Wnt5a-CK1ɛ-Dvl2-dependent primary cilia disassembly by stabilizing the HEF1 scaffold and activating its associated Aurora-A (AurA), a kinase crucially required for primary cilia disassembly. Thus, via the formation of the Dvl2-Plk1 complex, Plk1 plays an unanticipated role in primary cilia disassembly by linking Wnt5a-induced biochemical steps to HEF1/AurA-dependent cilia disassembly. This study may provide new insights into the mechanism underlying ciliary disassembly processes and various cilia-related disorders.
Collapse
Affiliation(s)
- Kyung Ho Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Yoshikazu Johmura
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Li-Rong Yu
- Division of Systems Biology, Center for Proteomics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Jung-Eun Park
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Yuan Gao
- Division of Systems Biology, Center for Proteomics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Jeong K Bang
- Division of Magnetic Resonance, Korea Basic Science Institute, Chung-Buk, Republic of Korea
| | - Ming Zhou
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Timothy D Veenstra
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bo Yeon Kim
- Chemical Biology Research Center and World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Chung-Buk, Republic of Korea
| | - Kyung S Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
57
|
TCTP in development and cancer. Biochem Res Int 2012; 2012:105203. [PMID: 22649730 PMCID: PMC3357502 DOI: 10.1155/2012/105203] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 02/24/2012] [Accepted: 02/24/2012] [Indexed: 01/01/2023] Open
Abstract
The translationally controlled tumor protein (TCTP) is highly conserved among animal species. It is widely expressed in many different tissues. It is involved in regulating many fundamental processes, such as cell proliferation and growth, apoptosis, pluripotency, and the cell cycle. Hence, it is not surprising that it is essential for normal development and, if misregulated, can lead to cancer. Provided herein is an overview of the diverse functions of TCTP, with a focus on development. Furthermore, we discuss possible ways by which TCTP misregulation or mutation could result in cancer.
Collapse
|
58
|
Carlisle FA, Steel KP, Lewis MA. Specific expression of Kcna10, Pxn and Odf2 in the organ of Corti. Gene Expr Patterns 2012; 12:172-9. [PMID: 22446089 PMCID: PMC3368262 DOI: 10.1016/j.gep.2012.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 02/21/2012] [Accepted: 03/07/2012] [Indexed: 11/24/2022]
Abstract
The development of the organ of Corti and the highly specialized cells required for hearing involves a multitude of genes, many of which remain unknown. Here we describe the expression pattern of three genes not previously studied in the inner ear in mice at a range of ages both embryonic and early postnatal. Kcna10, a tetrameric Shaker-like potassium channel, is expressed strongly in the hair cells themselves. Odf2, as its centriolar isoform Cenexin, marks the dendrites extending to and contacting hair cells, and Pxn, a focal adhesion scaffold protein, is most strongly expressed in pillar cells during the ages studied. The roles of these genes are yet to be elucidated, but their specific expression patterns imply potential functional significance in the inner ear.
Collapse
Affiliation(s)
| | | | - Morag A. Lewis
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| |
Collapse
|
59
|
Coordinated ciliary beating requires Odf2-mediated polarization of basal bodies via basal feet. Cell 2012; 148:189-200. [PMID: 22265411 DOI: 10.1016/j.cell.2011.10.052] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 06/15/2011] [Accepted: 10/31/2011] [Indexed: 01/09/2023]
Abstract
Coordinated beating of cilia in the trachea generates a directional flow of mucus required to clear the airways. Each cilium originates from a barrel-shaped basal body, from the side of which protrudes a structure known as the basal foot. We generated mice in which exons 6 and 7 of Odf2, encoding a basal body and centrosome-associated protein Odf2/cenexin, are disrupted. Although Odf2(ΔEx6,7/ΔEx6,7) mice form cilia, ciliary beating is uncoordinated, and the mice display a coughing/sneezing phenotype. Whereas residual expression of the C-terminal region of Odf2 in these mice is sufficient for ciliogenesis, the resulting basal bodies lack basal feet. Loss of basal feet in ciliated epithelia disrupted the polarized organization of apical microtubule lattice without affecting planar cell polarity. The requirement for Odf2 in basal foot formation, therefore, reveals a crucial role of this structure in the polarized alignment of basal bodies and coordinated ciliary beating.
Collapse
|
60
|
Mahen R, Venkitaraman AR. Pattern formation in centrosome assembly. Curr Opin Cell Biol 2012; 24:14-23. [PMID: 22245706 DOI: 10.1016/j.ceb.2011.12.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 12/21/2011] [Accepted: 12/23/2011] [Indexed: 01/01/2023]
Abstract
A striking but poorly explained feature of cell division is the ability to assemble and maintain organelles not bounded by membranes, from freely diffusing components in the cytosol. This process is driven by information transfer across biological scales such that interactions at the molecular scale allow pattern formation at the scale of the organelle. One important example of such an organelle is the centrosome, which is the main microtubule organising centre in the cell. Centrosomes consist of two centrioles surrounded by a cloud of proteins termed the pericentriolar material (PCM). Profound structural and proteomic transitions occur in the centrosome during specific cell cycle stages, underlying events such as centrosome maturation during mitosis, in which the PCM increases in size and microtubule nucleating capacity. Here we use recent insights into the spatio-temporal behaviour of key regulators of centrosomal maturation, including Polo-like kinase 1, CDK5RAP2 and Aurora-A, to propose a model for the assembly and maintenance of the PCM through the mobility and local interactions of its constituent proteins. We argue that PCM structure emerges as a pattern from decentralised self-organisation through a reaction-diffusion mechanism, with or without an underlying template, rather than being assembled from a central structural template alone. Self-organisation of this kind may have broad implications for the maintenance of mitotic structures, which, like the centrosome, exist stably as supramolecular assemblies on the micron scale, based on molecular interactions at the nanometer scale.
Collapse
Affiliation(s)
- Robert Mahen
- The Medical Research Council Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge, CB2 OXZ, United Kingdom.
| | | |
Collapse
|
61
|
Lee K, Rhee K. PLK1 phosphorylation of pericentrin initiates centrosome maturation at the onset of mitosis. J Cell Biol 2011; 195:1093-101. [PMID: 22184200 PMCID: PMC3246884 DOI: 10.1083/jcb.201106093] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 11/21/2011] [Indexed: 11/22/2022] Open
Abstract
The microtubule-organizing activity of the centrosome oscillates during the cell cycle, reaching its highest level at mitosis. At the onset of mitosis, the centrosome undergoes maturation, which is characterized by a drastic expansion of the pericentriolar matrix (PCM) and a robust increase in microtubule-organizing activity. It is known that PLK1 is critical for the initiation of centrosome maturation. In this paper, we report that pericentrin (PCNT), a PCM protein, was specifically phosphorylated by PLK1 during mitosis. Phosphoresistant point mutants of PCNT did not recruit centrosomal proteins, such as CEP192, GCP-WD (γ-complex protein with WD repeats), γ-tubulin, Aurora A, and PLK1, into the centrosome during mitosis. However, centrosomal recruitment of CEP215 depended on PCNT irrespective of its phosphorylation status. Furthermore, ectopic expression of PLK1-PCNT fusion proteins induced the centrosomal accumulation of CEP192, GCP-WD, and γ-tubulin even in interphase cells, mimicking centrosome maturation. Based on these results, we propose that PLK1-mediated phosphorylation of PCNT initiates centrosome maturation by organizing the spindle pole-specific PCM lattice.
Collapse
Affiliation(s)
- Kwanwoo Lee
- Department of Biological Sciences, Seoul National University, Seoul 151-747, South Korea
| | | |
Collapse
|
62
|
Abstract
With the exception of the final stages of spermatogenesis in butterfly and some unicellular ciliates and flagellates, ciliated cells undergo cell division without cilia. This reciprocal relationship between cilia formation and cell division has prompted investigators to propose that ciliogenesis and cell cycle progression are mutually exclusive processes. Early work in fibroblasts showed that deciliation occurs in two waves, as cells depart from quiescence. The first wave of deciliation occurs before entry into S, while the second wave occurs between S and mitosis. Since then, it has remained a mystery whether and how (de)ciliation is coupled to the cell cycle and further, whether ciliation can affect cell cycle progression. Several recent publications provide evidence for a causative role of ciliary resorption in influencing the duration of the G1 phase of the cell cycle impacting on several developmental processes, including left-right patterning, kidney, skeletal and brain development. This body of work argues for the existence of a molecular crosstalk between ciliary factors and regulators of the cell cycle. Here, we review the evidence connecting primary cilia and the cell cycle and evaluate the idea that the primary cilium may function as a physical checkpoint in cell cycle re-entry.
Collapse
Affiliation(s)
- Sehyun Kim
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | |
Collapse
|
63
|
Ibi M, Zou P, Inoko A, Shiromizu T, Matsuyama M, Hayashi Y, Enomoto M, Mori D, Hirotsune S, Kiyono T, Tsukita S, Goto H, Inagaki M. Trichoplein controls microtubule anchoring at the centrosome by binding to Odf2 and ninein. J Cell Sci 2011; 124:857-64. [PMID: 21325031 DOI: 10.1242/jcs.075705] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The keratin cytoskeleton performs several functions in epithelial cells and provides regulated interaction sites for scaffold proteins, including trichoplein. Previously, we found that trichoplein was localized on keratin intermediate filaments and desmosomes in well-differentiated, non-dividing epithelia. Here, we report that trichoplein is widely expressed and has a major function in the correct localization of the centrosomal protein ninein in epithelial and non-epithelial cells. Immunocytochemical analysis also revealed that this protein is concentrated at the subdistal to medial zone of both mother and daughter centrioles. Trichoplein binds the centrosomal proteins Odf2 and ninein, which are localized at the distal to subdistal ends of the mother centriole. Trichoplein depletion abolished the recruitment of ninein, but not Odf2, specifically at the subdistal end. However, Odf2 depletion inhibited the recruitment of trichoplein to a mother centriole, whereas ninein depletion did not. In addition, the depletion of each molecule impaired MT anchoring at the centrosome. These results suggest that trichoplein has a crucial role in MT-anchoring activity at the centrosome in proliferating cells, probably through its complex formation with Odf2 and ninein.
Collapse
Affiliation(s)
- Miho Ibi
- Division of Biochemistry, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya 464-8681, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Lens SMA, Voest EE, Medema RH. Shared and separate functions of polo-like kinases and aurora kinases in cancer. Nat Rev Cancer 2010; 10:825-41. [PMID: 21102634 DOI: 10.1038/nrc2964] [Citation(s) in RCA: 497] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Large numbers of inhibitors for polo-like kinases and aurora kinases are currently being evaluated as anticancer drugs. Interest in these drugs is fuelled by the idea that these kinases have unique functions in mitosis. Within the polo-like kinase family, the emphasis for targeted therapies has been on polo-like kinase 1 (PLK1), and in the aurora kinase family drugs have been developed to specifically target aurora kinase A (AURKA; also known as STK6) and/or aurora kinase B (AURKB; also known as STK12). Information on the selectivity of these compounds in vivo is limited, but it is likely that off-target effects within the same kinase families will affect efficacy and toxicity profiles. In addition, it is becoming clear that interplay between polo-like kinases and aurora kinases is much more extensive than initially anticipated, and that both kinase families are important factors in the response to classical chemotherapeutics that damage the genome or the mitotic spindle. In this Review we discuss the implications of these novel insights on the clinical applicability of polo-like kinase and aurora kinase inhibitors.
Collapse
Affiliation(s)
- Susanne M A Lens
- Department of Medical Oncology and Cancer Genomics Centre, UMC Utrecht, Universiteitsweg 100, Stratenum 2. 118, Utrecht 3584 CG, The Netherlands.
| | | | | |
Collapse
|
65
|
Tarnasky H, Cheng M, Ou Y, Thundathil JC, Oko R, van der Hoorn FA. Gene trap mutation of murine outer dense fiber protein-2 gene can result in sperm tail abnormalities in mice with high percentage chimaerism. BMC DEVELOPMENTAL BIOLOGY 2010; 10:67. [PMID: 20550699 PMCID: PMC2894780 DOI: 10.1186/1471-213x-10-67] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 06/15/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Outer dense fiber protein 2, Odf2, is a major component of the outer dense fibers, ODF, in the flagellum of spermatozoa. ODF are associated with microtubule doublets that form the axoneme. We recently demonstrated that tyrosine phosphorylation of Odf2 is important for sperm motility. In the course of a study of Odf2 using Odf2 mouse knockout lines we observed that males of a high percentage chimaerism, made using XL169 embryonic stem cells, were infertile, whereas mice of low-medium percentage chimaerism were fertile. RESULTS XL169 ES cells have a beta-geo gene trap cassette inserted in the Odf2 gene. To determine possible underlying mechanisms resulting in infertility we analyzed epididymal sperm and observed that >50% displayed bent tails. We next performed ultrastructural analyses on testis of high percentage XL169 chimaeric mice. This analysis showed that high percentage XL169 chimaeric mice produce elongating spermatids that miss one or more entire outer dense fibers in their midpiece and principal piece. In addition, we observed elongating spermatids that show thinning of outer dense fibers. No other obvious abnormalities or defects are present in elongating spermatids. Spermatozoa from the caput and cauda epididymis of XL169 mice of high percentage chimaerism show additional tail defects, including absence of one or more axonemal microtubule doublets and bent tails. Sperm with bent tails display abnormal motility. CONCLUSIONS Our results document the possible impact of loss of one Odf2 allele on sperm tail structure and function, resulting in a novel sperm tail phenotype.
Collapse
Affiliation(s)
- Heide Tarnasky
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
| | - Min Cheng
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
| | - Young Ou
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
| | - Jacob C Thundathil
- Department of Production Animal Health, University of Calgary, Calgary, Canada
| | - Richard Oko
- Department of Anatomy & Cell Biology, Queen's University, Kingston, Canada
| | - Frans A van der Hoorn
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
| |
Collapse
|
66
|
Smith TC, Fang Z, Luna EJ. Novel interactors and a role for supervillin in early cytokinesis. Cytoskeleton (Hoboken) 2010; 67:346-64. [PMID: 20309963 PMCID: PMC2901166 DOI: 10.1002/cm.20449] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 03/15/2010] [Indexed: 01/05/2023]
Abstract
Supervillin, the largest member of the villin/gelsolin/flightless family, is a peripheral membrane protein that regulates each step of cell motility, including cell spreading. Most known interactors bind within its amino (N)-terminus. We show here that the supervillin carboxy (C)-terminus can be modeled as supervillin-specific loops extending from gelsolin-like repeats plus a villin-like headpiece. We have identified 27 new candidate interactors from yeast two-hybrid screens. The interacting sequences from 12 of these proteins (BUB1, EPLIN/LIMA1, FLNA, HAX1, KIF14, KIFC3, MIF4GD/SLIP1, ODF2/Cenexin, RHAMM, STARD9/KIF16A, Tks5/SH3PXD2A, TNFAIP1) co-localize with and mis-localize EGFP-supervillin in mammalian cells, suggesting associations in vivo. Supervillin-interacting sequences within BUB1, FLNA, HAX1, and MIF4GD also mimic supervillin over-expression by inhibiting cell spreading. Most new interactors have known roles in supervillin-associated processes, e.g. cell motility, membrane trafficking, ERK signaling, and matrix invasion; three (KIF14, KIFC3, STARD9/KIF16A) have kinesin motor domains; and five (EPLIN, KIF14, BUB1, ODF2/cenexin, RHAMM) are important for cell division. GST fusions of the supervillin G2-G3 or G4-G6 repeats co-sediment KIF14 and EPLIN, respectively, consistent with a direct association. Supervillin depletion leads to increased numbers of bi- and multi-nucleated cells. Cytokinesis failure occurs predominately during early cytokinesis. Supervillin localizes with endogenous myosin II and EPLIN in the cleavage furrow, and overlaps with the oncogenic kinesin, KIF14, at the midbody. We conclude that supervillin, like its interactors, is important for efficient cytokinesis. Our results also suggest that supervillin and its interaction partners coordinate actin and microtubule motor functions throughout the cell cycle.
Collapse
Affiliation(s)
- Tara C. Smith
- Department of Cell Biology and Cell Dynamics Program, University of Massachusetts Medical School, Worcester, MA 01605
| | - Zhiyou Fang
- Department of Cell Biology and Cell Dynamics Program, University of Massachusetts Medical School, Worcester, MA 01605
| | - Elizabeth J. Luna
- Department of Cell Biology and Cell Dynamics Program, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
67
|
Park JE, Soung NK, Johmura Y, Kang YH, Liao C, Lee KH, Park CH, Nicklaus MC, Lee KS. Polo-box domain: a versatile mediator of polo-like kinase function. Cell Mol Life Sci 2010; 67:1957-70. [PMID: 20148280 PMCID: PMC2877763 DOI: 10.1007/s00018-010-0279-9] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 01/13/2010] [Accepted: 01/19/2010] [Indexed: 12/23/2022]
Abstract
Members of the polo subfamily of protein kinases have emerged as important regulators in diverse aspects of the cell cycle and cell proliferation. A large body of evidence suggests that a highly conserved polo-box domain (PBD) present in the C-terminal non-catalytic region of polo kinases plays a pivotal role in the function of these enzymes. Recent advances in our comprehension of the mechanisms underlying mammalian polo-like kinase 1 (Plk1)-dependent protein-protein interactions revealed that the PBD serves as an essential molecular mediator that brings the kinase domain of Plk1 into proximity with its substrates, mainly through phospho-dependent interactions with its target proteins. In this review, current understanding of the structure and functions of PBD, mode of PBD-dependent interactions and substrate phosphorylation, and other phospho-independent functions of PBD are discussed.
Collapse
Affiliation(s)
- Jung-Eun Park
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bldg. 37, Rm. 3118, Bethesda, MD 20892-4258 USA
| | - Nak-Kyun Soung
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bldg. 37, Rm. 3118, Bethesda, MD 20892-4258 USA
| | - Yoshikazu Johmura
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bldg. 37, Rm. 3118, Bethesda, MD 20892-4258 USA
| | - Young H. Kang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bldg. 37, Rm. 3118, Bethesda, MD 20892-4258 USA
| | - Chenzhong Liao
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD 21702 USA
| | - Kyung H. Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bldg. 37, Rm. 3118, Bethesda, MD 20892-4258 USA
| | - Chi Hoon Park
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bldg. 37, Rm. 3118, Bethesda, MD 20892-4258 USA
| | - Marc C. Nicklaus
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD 21702 USA
| | - Kyung S. Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bldg. 37, Rm. 3118, Bethesda, MD 20892-4258 USA
| |
Collapse
|
68
|
Anderson CT, Stearns T. Centriole age underlies asynchronous primary cilium growth in mammalian cells. Curr Biol 2009; 19:1498-502. [PMID: 19682908 PMCID: PMC3312602 DOI: 10.1016/j.cub.2009.07.034] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2009] [Revised: 07/09/2009] [Accepted: 07/09/2009] [Indexed: 12/19/2022]
Abstract
Primary cilia are microtubule-based sensory organelles that play important roles in development and disease . They are required for Sonic hedgehog (Shh) and platelet-derived growth factor (PDGF) signaling. Primary cilia grow from the older of the two centrioles of the centrosome, referred to as the mother centriole. In cycling cells, the cilium typically grows in G1 and is lost before mitosis, but the regulation of its growth is poorly understood. Centriole duplication at G1/S results in two centrosomes, one with an older mother centriole and one with a new mother centriole, that are segregated in mitosis. Here we report that primary cilia grow asynchronously in sister cells resulting from a mitotic division and that the sister cell receiving the older mother centriole usually grows a primary cilium first. We also show that the signaling proteins inversin and PDGFRalpha localize asynchronously to sister cell primary cilia and that sister cells respond asymmetrically to Shh. These results suggest that the segregation of differently aged mother centrioles, an asymmetry inherent to every animal cell division, can influence the ability of sister cells to respond to environmental signals, potentially altering the behavior or fate of one or both sister cells.
Collapse
Affiliation(s)
| | - Tim Stearns
- Department of Biology, Stanford University, Stanford, CA 94305
- Department of Genetics, Stanford University Medical School, Stanford, CA 94305
| |
Collapse
|