51
|
Zhang W, Yang SL, Yang M, Herrlinger S, Shao Q, Collar JL, Fierro E, Shi Y, Liu A, Lu H, Herring BE, Guo ML, Buch S, Zhao Z, Xu J, Lu Z, Chen JF. Modeling microcephaly with cerebral organoids reveals a WDR62-CEP170-KIF2A pathway promoting cilium disassembly in neural progenitors. Nat Commun 2019; 10:2612. [PMID: 31197141 PMCID: PMC6565620 DOI: 10.1038/s41467-019-10497-2] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 04/26/2019] [Indexed: 01/31/2023] Open
Abstract
Primary microcephaly is caused by mutations in genes encoding centrosomal proteins including WDR62 and KIF2A. However, mechanisms underlying human microcephaly remain elusive. By creating mutant mice and human cerebral organoids, here we found that WDR62 deletion resulted in a reduction in the size of mouse brains and organoids due to the disruption of neural progenitor cells (NPCs), including outer radial glia (oRG). WDR62 ablation led to retarded cilium disassembly, long cilium, and delayed cell cycle progression leading to decreased proliferation and premature differentiation of NPCs. Mechanistically, WDR62 interacts with and promotes CEP170’s localization to the basal body of primary cilium, where CEP170 recruits microtubule-depolymerizing factor KIF2A to disassemble cilium. WDR62 depletion reduced KIF2A’s basal body localization, and enhanced KIF2A expression partially rescued deficits in cilium length and NPC proliferation. Thus, modeling microcephaly with cerebral organoids and mice reveals a WDR62-CEP170-KIF2A pathway promoting cilium disassembly, disruption of which contributes to microcephaly. Mutations in WDR62 are the second most common genetic cause of autosomal recessive primary microcephaly, yet the molecular mechanisms underlying this pathogenesis remain unclear. Here, authors demonstrate that WDR62 depletion leads to neural precursor cell depletion and microcephaly via WDR62-CEP170-KIF2A pathway that promotes cilium disassembly.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Si-Lu Yang
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Mei Yang
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | | | - Qiang Shao
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - John L Collar
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Edgar Fierro
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Yanhong Shi
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Aimin Liu
- Department of Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Hui Lu
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, 20037, USA
| | - Bruce E Herring
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Ming-Lei Guo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Zhen Zhao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jian Xu
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Zhipeng Lu
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, 90033, USA.
| |
Collapse
|
52
|
Abstract
Cerebral organoids are an emerging cutting-edge technology to model human brain
development and neurodevelopmental disorders, for which mouse models exhibit significant
limitations. In the human brain, synaptic connections define neural circuits, and synaptic
deficits account for various neurodevelopmental disorders. Thus, harnessing the full power
of cerebral organoids for human brain modeling requires the ability to visualize and
analyze synapses in cerebral organoids. Previously, we devised an optimized method to
generate human cerebral organoids, and showed that optimal organoids express mature-neuron
markers, including synaptic proteins and neurotransmitter receptors and transporters.
Here, we give evidence for synaptogenesis in cerebral organoids, via microscopical
visualization of synapses. We also describe multiple approaches to quantitatively analyze
synapses in cerebral organoids. Collectively, our work provides sufficient evidence for
the possibility of modeling synaptogenesis and synaptic disorders in cerebral organoids,
and may help advance the use of cerebral organoids in molecular neuroscience and studies
of neurodevelopmental disorders such as autism.
Collapse
Affiliation(s)
- Abraam M Yakoub
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark Sadek
- Department of Pharmaceutical Biotechnology, University of Illinois College of Pharmacy, Chicago, IL, USA.,Department of Research and Development, Akorn Pharmaceuticals, Vernon Hills, IL, USA
| |
Collapse
|
53
|
Zaqout S, Blaesius K, Wu YJ, Ott S, Kraemer N, Becker LL, Rosário M, Rosenmund C, Strauss U, Kaindl AM. Altered inhibition and excitation in neocortical circuits in congenital microcephaly. Neurobiol Dis 2019; 129:130-143. [PMID: 31102767 DOI: 10.1016/j.nbd.2019.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/15/2019] [Accepted: 05/11/2019] [Indexed: 02/06/2023] Open
Abstract
Congenital microcephaly is highly associated with intellectual disability. Features of autosomal recessive primary microcephaly subtype 3 (MCPH3) also include hyperactivity and seizures. The disease is caused by biallelic mutations in the Cyclin-dependent kinase 5 regulatory subunit-associated protein 2 gene CDK5RAP2. In the mouse, Cdk5rap2 mutations similar to the human condition result in reduced brain size and a strikingly thin neocortex already at early stages of neurogenesis that persists through adulthood. The microcephaly phenotype in MCPH arises from a neural stem cell proliferation defect. Here, we report a novel role for Cdk5rap2 in the regulation of dendritic development and synaptogenesis of neocortical layer 2/3 pyramidal neurons. Cdk5rap2-deficient murine neurons show poorly branched dendritic arbors and an increased density of immature thin spines and glutamatergic synapses in vivo. Moreover, the excitatory drive is enhanced in ex vivo brain slice preparations of Cdk5rap2 mutant mice. Concurrently, we show that pyramidal neurons receive fewer inhibitory inputs. Together, these findings point towards a shift in the excitation - inhibition balance towards excitation in Cdk5rap2 mutant mice. Thus, MCPH3 is associated not only with a neural progenitor proliferation defect but also with altered function of postmitotic neurons and hence with altered connectivity.
Collapse
Affiliation(s)
- Sami Zaqout
- Charité - Universitätsmedizin Berlin, Institute of Cell- and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Augustenburger Platz 1, 13353 Berlin, Germany; Charité - Universitätsmedizin Berlin, Department of Pediatric Neurology, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch Strasse 2, 10178 Berlin, Germany
| | - Kathrin Blaesius
- Charité - Universitätsmedizin Berlin, Institute of Cell- and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Augustenburger Platz 1, 13353 Berlin, Germany; Charité - Universitätsmedizin Berlin, Department of Pediatric Neurology, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch Strasse 2, 10178 Berlin, Germany
| | - Yuan-Ju Wu
- Charité - Universitätsmedizin Berlin, NeuroCure, Charitéplatz 1, 10117 Berlin, Germany
| | - Stefanie Ott
- Charité - Universitätsmedizin Berlin, Institute of Cell- and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Nadine Kraemer
- Charité - Universitätsmedizin Berlin, Institute of Cell- and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Augustenburger Platz 1, 13353 Berlin, Germany; Charité - Universitätsmedizin Berlin, Department of Pediatric Neurology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Lena-Luise Becker
- Charité - Universitätsmedizin Berlin, Institute of Cell- and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Augustenburger Platz 1, 13353 Berlin, Germany; Charité - Universitätsmedizin Berlin, Department of Pediatric Neurology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Marta Rosário
- Charité - Universitätsmedizin Berlin, Institute of Cell- and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian Rosenmund
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch Strasse 2, 10178 Berlin, Germany; Charité - Universitätsmedizin Berlin, NeuroCure, Charitéplatz 1, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Institute of Neurophysiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Ulf Strauss
- Charité - Universitätsmedizin Berlin, Institute of Cell- and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Angela M Kaindl
- Charité - Universitätsmedizin Berlin, Institute of Cell- and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Augustenburger Platz 1, 13353 Berlin, Germany; Charité - Universitätsmedizin Berlin, Department of Pediatric Neurology, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch Strasse 2, 10178 Berlin, Germany.
| |
Collapse
|
54
|
Busselez J, Chichón FJ, Rodríguez MJ, Alpízar A, Gharbi SI, Franch M, Melero R, Paradela A, Carrascosa JL, Carazo JM. Cryo-Electron Tomography and Proteomics studies of centrosomes from differentiated quiescent thymocytes. Sci Rep 2019; 9:7187. [PMID: 31076588 PMCID: PMC6510768 DOI: 10.1038/s41598-019-43338-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/08/2019] [Indexed: 02/02/2023] Open
Abstract
We have used cryo Electron Tomography, proteomics and immunolabeling to study centrosomes isolated from the young lamb thymus, an efficient source of quiescent differentiated cells. We compared the proteome of thymocyte centrosomes to data published for KE37 cells, focusing on proteins associated with centriole disengagement and centrosome separation. The data obtained enhances our understanding of the protein system joining the centrioles, a system comprised of a branched network of fibers linked to an apparently amorphous density that was partially characterized here. A number of proteins were localized to the amorphous density by immunolabeling (C-NAP1, cohesin SMC1, condensin SMC4 and NCAPD2), yet not DNA. In conjuction, these data not only extend our understanding of centrosomes but they will help refine the model that focus on the protein system associated with the centriolar junction.
Collapse
Affiliation(s)
- Johan Busselez
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain. .,Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries, 67400, Illkirch-Graffenstaden, France.
| | - Francisco Javier Chichón
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain
| | - Maria Josefa Rodríguez
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain
| | - Adan Alpízar
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain
| | - Séverine Isabelle Gharbi
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain
| | - Mònica Franch
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain
| | - Roberto Melero
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain
| | - Alberto Paradela
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain
| | - José L Carrascosa
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain
| | - José-Maria Carazo
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain.
| |
Collapse
|
55
|
Lin HC, Ching YH, Huang CC, Pao PC, Lee YH, Chang WC, Kao TJ, Lee YC. Promyelocytic leukemia zinc finger is involved in the formation of deep layer cortical neurons. J Biomed Sci 2019; 26:30. [PMID: 31027502 PMCID: PMC6485146 DOI: 10.1186/s12929-019-0519-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/11/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Promyelocytic leukemia zinc finger (Plzf), a transcriptional regulator involved in a lot of important biological processes during development, has been implied to maintain neural stem cells and inhibit their differentiation into neurons. However, the effects of Plzf on brain structures and functions are still not clarified. RESULTS We showed that Plzf expression was detected as early as embryonic day (E) 9.5 in Pax6+ cells in the mouse brain, and was completely disappeared in telencephalon before the initiation of cortical neurogenesis. Loss of Plzf resulted in a smaller cerebral cortex with a decrease in the number of Tbr1+ deep layer neurons due to a decrease of mitotic cell number in the ventricular zone of forebrain at early developmental stage. Microarray, qRT-PCR, and flow cytometry analysis identified dysregulation of Mash1 proneural gene expression. We also observed an impairment of recognition memory in Plzf-deficient mice. CONCLUSIONS Plzf is expressed at early stages of brain development and involved in the formation of deep layer cortical neurons. Loss of Plzf results in dysregulation of Mash1, microcephaly with reduced numbers of early-born neurons, and impairment of recognition memory.
Collapse
Affiliation(s)
- Hsin-Chuan Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Hao Ching
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Chi-Chen Huang
- PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan
| | - Ping-Chieh Pao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Hua Lee
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chang Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Jen Kao
- PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan. .,Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan.
| | - Yi-Chao Lee
- PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan. .,Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan. .,Ph.D Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
56
|
Logan S, Arzua T, Canfield SG, Seminary ER, Sison SL, Ebert AD, Bai X. Studying Human Neurological Disorders Using Induced Pluripotent Stem Cells: From 2D Monolayer to 3D Organoid and Blood Brain Barrier Models. Compr Physiol 2019; 9:565-611. [PMID: 30873582 PMCID: PMC6705133 DOI: 10.1002/cphy.c180025] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurological disorders have emerged as a predominant healthcare concern in recent years due to their severe consequences on quality of life and prevalence throughout the world. Understanding the underlying mechanisms of these diseases and the interactions between different brain cell types is essential for the development of new therapeutics. Induced pluripotent stem cells (iPSCs) are invaluable tools for neurological disease modeling, as they have unlimited self-renewal and differentiation capacity. Mounting evidence shows: (i) various brain cells can be generated from iPSCs in two-dimensional (2D) monolayer cultures; and (ii) further advances in 3D culture systems have led to the differentiation of iPSCs into organoids with multiple brain cell types and specific brain regions. These 3D organoids have gained widespread attention as in vitro tools to recapitulate complex features of the brain, and (iii) complex interactions between iPSC-derived brain cell types can recapitulate physiological and pathological conditions of blood-brain barrier (BBB). As iPSCs can be generated from diverse patient populations, researchers have effectively applied 2D, 3D, and BBB models to recapitulate genetically complex neurological disorders and reveal novel insights into molecular and genetic mechanisms of neurological disorders. In this review, we describe recent progress in the generation of 2D, 3D, and BBB models from iPSCs and further discuss their limitations, advantages, and future ventures. This review also covers the current status of applications of 2D, 3D, and BBB models in drug screening, precision medicine, and modeling a wide range of neurological diseases (e.g., neurodegenerative diseases, neurodevelopmental disorders, brain injury, and neuropsychiatric disorders). © 2019 American Physiological Society. Compr Physiol 9:565-611, 2019.
Collapse
Affiliation(s)
- Sarah Logan
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Thiago Arzua
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Scott G. Canfield
- Department of Cellular & Integrative Physiology, IU School of Medicine-Terre Haute, Terre Haute, IN, USA
| | - Emily R. Seminary
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Samantha L. Sison
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Allison D. Ebert
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Xiaowen Bai
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
57
|
Watanabe K, Takao D, Ito KK, Takahashi M, Kitagawa D. The Cep57-pericentrin module organizes PCM expansion and centriole engagement. Nat Commun 2019; 10:931. [PMID: 30804344 PMCID: PMC6389942 DOI: 10.1038/s41467-019-08862-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/31/2019] [Indexed: 02/07/2023] Open
Abstract
Centriole duplication occurs once per cell cycle to ensure robust formation of bipolar spindles and chromosome segregation. Each newly-formed daughter centriole remains connected to its mother centriole until late mitosis. The disengagement of the centriole pair is required for centriole duplication. However, the mechanisms underlying centriole engagement remain poorly understood. Here, we show that Cep57 is required for pericentriolar material (PCM) organization that regulates centriole engagement. Depletion of Cep57 causes PCM disorganization and precocious centriole disengagement during mitosis. The disengaged daughter centrioles acquire ectopic microtubule-organizing-center activity, which results in chromosome mis-segregation. Similar defects are observed in mosaic variegated aneuploidy syndrome patient cells with cep57 mutations. We also find that Cep57 binds to the well-conserved PACT domain of pericentrin. Microcephaly osteodysplastic primordial dwarfism disease pericentrin mutations impair the Cep57-pericentrin interaction and lead to PCM disorganization. Together, our work demonstrates that Cep57 provides a critical interface between the centriole core and PCM. Centriole disengagement occurs towards mitotic exit and involves cleavage of pericentrin, a component of the pericentriolar material. Here the authors show that depletion of the centrosomal protein Cep57 leads to precocious centriole disengagement, and that Cep57 binds pericentrin.
Collapse
Affiliation(s)
- Koki Watanabe
- Division of Centrosome Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.,Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, 240-0193, Japan.,Department of Physiological Chemistry, Graduate school of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Daisuke Takao
- Division of Centrosome Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.,Department of Physiological Chemistry, Graduate school of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Kei K Ito
- Department of Physiological Chemistry, Graduate school of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Mikiko Takahashi
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo, 164-8530, Japan
| | - Daiju Kitagawa
- Division of Centrosome Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan. .,Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, 240-0193, Japan. .,Department of Physiological Chemistry, Graduate school of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
58
|
Kim J, Kim J, Rhee K. PCNT is critical for the association and conversion of centrioles to centrosomes during mitosis. J Cell Sci 2019; 132:jcs.225789. [DOI: 10.1242/jcs.225789] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 02/14/2019] [Indexed: 01/28/2023] Open
Abstract
A centrosome consists of a pair of centrioles and pericentriolar material (PCM). We manipulated expression of PCNT, a key PCM protein, and investigated roles of PCM in centriole behavior during mitosis. Deletion of PCNT had little effect on the interphase centrosomes. However, centrioles in PCNT-deleted mitotic cells prematurely separated and frequently amplified, revealing that centrioles are limited within the spindle poles by PCNT during mitosis. It is known that specific cleavage of PCNT is necessary for centriole separation during mitotic exit. Delayed centriole separation was observed in G0 phase when a noncleavable PCNT was removed or when PCNT was artificially cleaved by TEV protease. Furthermore, a daughter centriole converts to a mother centriole only after experiencing both mitotic exit and specific PCNT cleavage. Based on the results, we propose that a centriole pair disengages upon entering mitosis but remains associated with the surrounding PCM proteins throughout mitosis. During mitotic exit, specific cleavage of PCNT induces PCM disintegration. As a result, a daughter centriole separates from the mother centriole and converts to a young mother centriole.
Collapse
Affiliation(s)
- Jaeyoun Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jeongjin Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Kunsoo Rhee
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
59
|
Amin ND, Paşca SP. Building Models of Brain Disorders with Three-Dimensional Organoids. Neuron 2018; 100:389-405. [DOI: 10.1016/j.neuron.2018.10.007] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022]
|
60
|
Xie S, Reinecke JB, Farmer T, Bahl K, Yeow I, Nichols BJ, McLamarrah TA, Naslavsky N, Rogers GC, Caplan S. Vesicular trafficking plays a role in centriole disengagement and duplication. Mol Biol Cell 2018; 29:2622-2631. [PMID: 30188792 PMCID: PMC6249839 DOI: 10.1091/mbc.e18-04-0241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Centrosomes are the major microtubule-nucleating and microtubule-organizing centers of cells and play crucial roles in microtubule anchoring, organelle positioning, and ciliogenesis. At the centrosome core lies a tightly associated or “engaged” mother–daughter centriole pair. During mitotic exit, removal of centrosomal proteins pericentrin and Cep215 promotes “disengagement” by the dissolution of intercentriolar linkers, ensuring a single centriole duplication event per cell cycle. Herein, we explore a new mechanism involving vesicular trafficking for the removal of centrosomal Cep215. Using small interfering RNA and CRISPR/Cas9 gene-edited cells, we show that the endocytic protein EHD1 regulates Cep215 transport from centrosomes to the spindle midbody, thus facilitating disengagement and duplication. We demonstrate that EHD1 and Cep215 interact and show that Cep215 displays increased localization to vesicles containing EHD1 during mitosis. Moreover, Cep215-containing vesicles are positive for internalized transferrin, demonstrating their endocytic origin. Thus, we describe a novel relationship between endocytic trafficking and the centrosome cycle, whereby vesicles of endocytic origin are used to remove key regulatory proteins from centrosomes to control centriole duplication.
Collapse
Affiliation(s)
- Shuwei Xie
- Department of Biochemistry and Molecular Biology and Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870
| | - James B Reinecke
- Department of Biochemistry and Molecular Biology and Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870
| | - Trey Farmer
- Department of Biochemistry and Molecular Biology and Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870
| | - Kriti Bahl
- Department of Biochemistry and Molecular Biology and Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870
| | - Ivana Yeow
- MRC-Laboratory of Molecular Biology, Cambridge CB2 2QH, United Kingdom
| | | | - Tiffany A McLamarrah
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Naava Naslavsky
- Department of Biochemistry and Molecular Biology and Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870
| | - Gregory C Rogers
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Steve Caplan
- Department of Biochemistry and Molecular Biology and Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870
| |
Collapse
|
61
|
Aziz K, Sieben CJ, Jeganathan KB, Hamada M, Davies BA, Velasco ROF, Rahman N, Katzmann DJ, van Deursen JM. Mosaic-variegated aneuploidy syndrome mutation or haploinsufficiency in Cep57 impairs tumor suppression. J Clin Invest 2018; 128:3517-3534. [PMID: 30035751 PMCID: PMC6063474 DOI: 10.1172/jci120316] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/06/2018] [Indexed: 12/29/2022] Open
Abstract
A homozygous truncating frameshift mutation in CEP57 (CEP57T/T) has been identified in a subset of mosaic-variegated aneuploidy (MVA) patients; however, the physiological roles of the centrosome-associated protein CEP57 that contribute to disease are unknown. To investigate these, we have generated a mouse model mimicking this disease mutation. Cep57T/T mice died within 24 hours after birth with short, curly tails and severely impaired vertebral ossification. Osteoblasts in lumbosacral vertebrae of Cep57T/T mice were deficient for Fgf2, a Cep57 binding partner implicated in diverse biological processes, including bone formation. Furthermore, a broad spectrum of tissues of Cep57T/T mice had severe aneuploidy at birth, consistent with the MVA patient phenotype. Cep57T/T mouse embryonic fibroblasts and patient-derived skin fibroblasts failed to undergo centrosome maturation in G2 phase, causing premature centriole disjunction, centrosome amplification, aberrant spindle formation, and high rates of chromosome missegregation. Mice heterozygous for the truncating frameshift mutation or a Cep57-null allele were overtly indistinguishable from WT mice despite reduced Cep57 protein levels, yet prone to aneuploidization and cancer, with tumors lacking evidence for loss of heterozygosity. This study identifies Cep57 as a haploinsufficient tumor suppressor with biologically diverse roles in centrosome maturation and Fgf2-mediated bone formation.
Collapse
Affiliation(s)
- Khaled Aziz
- Department of Biochemistry and Molecular Biology and
| | | | - Karthik B. Jeganathan
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Masakazu Hamada
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Nazneen Rahman
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | | | - Jan M. van Deursen
- Department of Biochemistry and Molecular Biology and
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
62
|
Wang Z, Wang SN, Xu TY, Miao ZW, Su DF, Miao CY. Organoid technology for brain and therapeutics research. CNS Neurosci Ther 2018; 23:771-778. [PMID: 28884977 DOI: 10.1111/cns.12754] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/11/2017] [Accepted: 08/18/2017] [Indexed: 12/30/2022] Open
Abstract
Brain is one of the most complex organs in human. The current brain research is mainly based on the animal models and traditional cell culture. However, the inherent species differences between humans and animals as well as the gap between organ level and cell level make it difficult to study human brain development and associated disorders through traditional technologies. Recently, the brain organoids derived from pluripotent stem cells have been reported to recapitulate many key features of human brain in vivo, for example recapitulating the zone of putative outer radial glia cells. Brain organoids offer a new platform for scientists to study brain development, neurological diseases, drug discovery and personalized medicine, regenerative medicine, and so on. Here, we discuss the progress, applications, advantages, limitations, and prospects of brain organoid technology in neurosciences and related therapeutics.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Shu-Na Wang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Tian-Ying Xu
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Zhu-Wei Miao
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Ding-Feng Su
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University, Shanghai, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
63
|
Quadrato G, Arlotta P. Present and future of modeling human brain development in 3D organoids. Curr Opin Cell Biol 2017; 49:47-52. [PMID: 29227864 DOI: 10.1016/j.ceb.2017.11.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/26/2017] [Indexed: 12/13/2022]
Abstract
Three-dimensional (3D) brain organoids derived from human pluripotent stem cells hold great potential to investigate complex human genetic states and to model aspects of human brain development and pathology. However, the field of brain organoids is still in its infancy, and their use has been limited by their variability and their inability to differentiate into 3D structures with reproducible anatomical organization. Here, starting from a review of basic principles of in vitro 'brain organogenesis', we discuss which aspects of human brain development and disease can be faithfully modeled with current brain organoid protocols, and discuss improvements that would allow them to become reliable tools to investigate complex features of human brain development and disease.
Collapse
Affiliation(s)
- Giorgia Quadrato
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
64
|
Fry AM, Bayliss R, Roig J. Mitotic Regulation by NEK Kinase Networks. Front Cell Dev Biol 2017; 5:102. [PMID: 29250521 PMCID: PMC5716973 DOI: 10.3389/fcell.2017.00102] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/17/2017] [Indexed: 12/24/2022] Open
Abstract
Genetic studies in yeast and Drosophila led to identification of cyclin-dependent kinases (CDKs), Polo-like kinases (PLKs) and Aurora kinases as essential regulators of mitosis. These enzymes have since been found in the majority of eukaryotes and their cell cycle-related functions characterized in great detail. However, genetic studies in another fungal species, Aspergillus nidulans, identified a distinct family of protein kinases, the NEKs, that are also widely conserved and have key roles in the cell cycle, but which remain less well studied. Nevertheless, it is now clear that multiple NEK family members act in networks to regulate specific events of mitosis, including centrosome separation, spindle assembly and cytokinesis. Here, we describe our current understanding of how the NEK kinases contribute to these processes, particularly through targeted phosphorylation of proteins associated with the microtubule cytoskeleton. We also present the latest findings on molecular events that control the activation state of the NEKs and how these are revealing novel modes of enzymatic regulation relevant not only to other kinases but also to pathological mechanisms of disease.
Collapse
Affiliation(s)
- Andrew M. Fry
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Richard Bayliss
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Joan Roig
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Spain
| |
Collapse
|
65
|
Kolobova E, Roland JT, Lapierre LA, Williams JA, Mason TA, Goldenring JR. The C-terminal region of A-kinase anchor protein 350 (AKAP350A) enables formation of microtubule-nucleation centers and interacts with pericentriolar proteins. J Biol Chem 2017; 292:20394-20409. [PMID: 29054927 DOI: 10.1074/jbc.m117.806018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/06/2017] [Indexed: 11/06/2022] Open
Abstract
Microtubules in animal cells assemble (nucleate) from both the centrosome and the cis-Golgi cisternae. A-kinase anchor protein 350 kDa (AKAP350A, also called AKAP450/CG-NAP/AKAP9) is a large scaffolding protein located at both the centrosome and Golgi apparatus. Previous findings have suggested that AKAP350 is important for microtubule dynamics at both locations, but how this scaffolding protein assembles microtubule nucleation machinery is unclear. Here, we found that overexpression of the C-terminal third of AKAP350A, enhanced GFP-AKAP350A(2691-3907), induces the formation of multiple microtubule-nucleation centers (MTNCs). Nevertheless, these induced MTNCs lacked "true" centriole proteins, such as Cep135. Mapping analysis with AKAP350A truncations demonstrated that AKAP350A contains discrete regions responsible for promoting or inhibiting the formation of multiple MTNCs. Moreover, GFP-AKAP350A(2691-3907) recruited several pericentriolar proteins to MTNCs, including γ-tubulin, pericentrin, Cep68, Cep170, and Cdk5RAP2. Proteomic analysis indicated that Cdk5RAP2 and Cep170 both interact with the microtubule nucleation-promoting region of AKAP350A, whereas Cep68 interacts with the distal C-terminal AKAP350A region. Yeast two-hybrid assays established a direct interaction of Cep170 with AKAP350A. Super-resolution and deconvolution microscopy analyses were performed to define the association of AKAP350A with centrosomes, and these studies disclosed that AKAP350A spans the bridge between centrioles, co-localizing with rootletin and Cep68 in the linker region. siRNA-mediated depletion of AKAP350A caused displacement of both Cep68 and Cep170 from the centrosome. These results suggest that AKAP350A acts as a scaffold for factors involved in microtubule nucleation at the centrosome and coordinates the assembly of protein complexes associating with the intercentriolar bridge.
Collapse
Affiliation(s)
- Elena Kolobova
- From the Departments of Surgery and.,the Epithelial Biology Center, Vanderbilt University School of Medicine, and
| | - Joseph T Roland
- From the Departments of Surgery and.,the Epithelial Biology Center, Vanderbilt University School of Medicine, and
| | - Lynne A Lapierre
- From the Departments of Surgery and.,the Epithelial Biology Center, Vanderbilt University School of Medicine, and
| | | | - Twila A Mason
- the Epithelial Biology Center, Vanderbilt University School of Medicine, and.,Cell and Developmental Biology
| | - James R Goldenring
- From the Departments of Surgery and .,the Epithelial Biology Center, Vanderbilt University School of Medicine, and.,Cell and Developmental Biology.,the Nashville Department of Veterans Affairs Medical Center and
| |
Collapse
|
66
|
Kinetochore-microtubule interactions in chromosome segregation: lessons from yeast and mammalian cells. Biochem J 2017; 474:3559-3577. [PMID: 29046344 DOI: 10.1042/bcj20170518] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/24/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023]
Abstract
Chromosome congression and segregation require robust yet dynamic attachment of the kinetochore with the spindle microtubules. Force generated at the kinetochore-microtubule interface plays a vital role to drive the attachment, as it is required to move chromosomes and to provide signal to sense correct attachments. To understand the mechanisms underlying these processes, it is critical to describe how the force is generated and how the molecules at the kinetochore-microtubule interface are organized and assembled to withstand the force and respond to it. Research in the past few years or so has revealed interesting insights into the structural organization and architecture of kinetochore proteins that couple kinetochore attachment to the spindle microtubules. Interestingly, despite diversities in the molecular players and their modes of action, there appears to be architectural similarity of the kinetochore-coupling machines in lower to higher eukaryotes. The present review focuses on the most recent advances in understanding of the molecular and structural aspects of kinetochore-microtubule interaction based on the studies in yeast and vertebrate cells.
Collapse
|
67
|
Duerinckx S, Abramowicz M. The genetics of congenitally small brains. Semin Cell Dev Biol 2017; 76:76-85. [PMID: 28912110 DOI: 10.1016/j.semcdb.2017.09.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/05/2017] [Accepted: 09/08/2017] [Indexed: 12/14/2022]
Abstract
Primary microcephaly (PM) refers to a congenitally small brain, resulting from insufficient prenatal production of neurons, and serves as a model disease for brain volumic development. Known PM genes delineate several cellular pathways, among which the centriole duplication pathway, which provide interesting clues about the cellular mechanisms involved. The general interest of the genetic dissection of PM is illustrated by the convergence of Zika virus infection and PM gene mutations on congenital microcephaly, with CENPJ/CPAP emerging as a key target. Physical (protein-protein) and genetic (digenic inheritance) interactions of Wdr62 and Aspm have been demonstrated in mice, and should now be sought in humans using high throughput parallel sequencing of multiple PM genes in PM patients and control subjects, in order to categorize mutually interacting genes, hence delineating functional pathways in vivo in humans.
Collapse
Affiliation(s)
- Sarah Duerinckx
- IRIBHM, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium.
| | - Marc Abramowicz
- IRIBHM, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium; Department of Medical Genetics, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium.
| |
Collapse
|
68
|
Chen D, Ito S, Hyodo T, Asano-Inami E, Yuan H, Senga T. Phosphorylation of DEPDC1 at Ser110 is required to maintain centrosome organization during mitosis. Exp Cell Res 2017; 358:101-110. [DOI: 10.1016/j.yexcr.2017.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/25/2017] [Accepted: 06/07/2017] [Indexed: 11/15/2022]
|
69
|
Fry AM, Sampson J, Shak C, Shackleton S. Recent advances in pericentriolar material organization: ordered layers and scaffolding gels. F1000Res 2017; 6:1622. [PMID: 29026530 PMCID: PMC5583744 DOI: 10.12688/f1000research.11652.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/01/2017] [Indexed: 12/11/2022] Open
Abstract
The centrosome is an unusual organelle that lacks a surrounding membrane, raising the question of what limits its size and shape. Moreover, while electron microscopy (EM) has provided a detailed view of centriole architecture, there has been limited understanding of how the second major component of centrosomes, the pericentriolar material (PCM), is organized. Here, we summarize exciting recent findings from super-resolution fluorescence imaging, structural biology, and biochemical reconstitution that together reveal the presence of ordered layers and complex gel-like scaffolds in the PCM. Moreover, we discuss how this is leading to a better understanding of the process of microtubule nucleation, how alterations in PCM size are regulated in cycling and differentiated cells, and why mutations in PCM components lead to specific human pathologies.
Collapse
Affiliation(s)
- Andrew M Fry
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Josephina Sampson
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Caroline Shak
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Sue Shackleton
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| |
Collapse
|
70
|
Lee CT, Bendriem RM, Wu WW, Shen RF. 3D brain Organoids derived from pluripotent stem cells: promising experimental models for brain development and neurodegenerative disorders. J Biomed Sci 2017; 24:59. [PMID: 28822354 PMCID: PMC5563385 DOI: 10.1186/s12929-017-0362-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/09/2017] [Indexed: 02/07/2023] Open
Abstract
Three-dimensional (3D) brain organoids derived from human pluripotent stem cells (hPSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), appear to recapitulate the brain's 3D cytoarchitectural arrangement and provide new opportunities to explore disease pathogenesis in the human brain. Human iPSC (hiPSC) reprogramming methods, combined with 3D brain organoid tools, may allow patient-derived organoids to serve as a preclinical platform to bridge the translational gap between animal models and human clinical trials. Studies using patient-derived brain organoids have already revealed novel insights into molecular and genetic mechanisms of certain complex human neurological disorders such as microcephaly, autism, and Alzheimer's disease. Furthermore, the combination of hiPSC technology and small-molecule high-throughput screening (HTS) facilitates the development of novel pharmacotherapeutic strategies, while transcriptome sequencing enables the transcriptional profiling of patient-derived brain organoids. Finally, the addition of CRISPR/Cas9 genome editing provides incredible potential for personalized cell replacement therapy with genetically corrected hiPSCs. This review describes the history and current state of 3D brain organoid differentiation strategies, a survey of applications of organoids towards studies of neurodevelopmental and neurodegenerative disorders, and the challenges associated with their use as in vitro models of neurological disorders.
Collapse
Affiliation(s)
- Chun-Ting Lee
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research, FDA, Silver Spring, MD 20993 USA
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Building 52, Rm 1121, 10903 New Hampshire Avenue, Silver Spring, MD 20993 USA
| | - Raphael M. Bendriem
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021 USA
| | - Wells W. Wu
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research, FDA, Silver Spring, MD 20993 USA
| | - Rong-Fong Shen
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research, FDA, Silver Spring, MD 20993 USA
| |
Collapse
|
71
|
Centrosomal MCM7 strengthens the Cep68-VHL interaction and excessive MCM7 leads to centrosome splitting resulting from increase in Cep68 ubiquitination and proteasomal degradation. Biochem Biophys Res Commun 2017; 489:497-502. [DOI: 10.1016/j.bbrc.2017.05.180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 05/30/2017] [Indexed: 12/11/2022]
|
72
|
Chen JV, Buchwalter RA, Kao LR, Megraw TL. A Splice Variant of Centrosomin Converts Mitochondria to Microtubule-Organizing Centers. Curr Biol 2017; 27:1928-1940.e6. [PMID: 28669756 DOI: 10.1016/j.cub.2017.05.090] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 05/02/2017] [Accepted: 05/31/2017] [Indexed: 11/25/2022]
Abstract
Non-centrosomal microtubule organizing centers (MTOCs) direct microtubule (MT) organization to exert diverse cell-type-specific functions. In Drosophila spermatids, the giant mitochondria provide structural platforms for MT reorganization to support elongation of the extremely long sperm. However, the molecular basis for this mitochondrial MTOC and other non-centrosomal MTOCs has not been discerned. Here we report that Drosophila centrosomin (cnn) expresses two major protein variants: the centrosomal form (CnnC) and a non-centrosomal form in testes (CnnT). CnnC is established as essential for functional centrosomes, the major MTOCs in animal cells. We show that CnnT is expressed exclusively in testes by alternative splicing and localizes to giant mitochondria in spermatids. In cell culture, CnnT targets to the mitochondrial surface, recruits the MT nucleator γ-tubulin ring complex (γ-TuRC), and is sufficient to convert mitochondria to MTOCs independent of core pericentriolar proteins that regulate MT assembly at centrosomes. We mapped two separate domains in CnnT: one that is necessary and sufficient to target it to mitochondria and another that is necessary and sufficient to recruit γ-TuRCs and nucleate MTs. In elongating spermatids, CnnT forms speckles on the giant mitochondria that are required to recruit γ-TuRCs to organize MTs and support spermiogenesis. This molecular characterization of the mitochondrial MTOC defines a minimal molecular requirement for MTOC generation and implicates the potent role of Cnn (or its related) proteins in the direct regulation of MT assembly and organization of non-centrosomal MTOCs.
Collapse
Affiliation(s)
- Jieyan V Chen
- Department of Biomedical Sciences, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA.
| | - Rebecca A Buchwalter
- Department of Biomedical Sciences, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Ling-Rong Kao
- Department of Biomedical Sciences, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Timothy L Megraw
- Department of Biomedical Sciences, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA.
| |
Collapse
|
73
|
Yin H, Zheng L, Liu W, Zhang D, Li W, Yuan L. Rootletin prevents Cep68 from VHL-mediated proteasomal degradation to maintain centrosome cohesion. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:645-654. [DOI: 10.1016/j.bbamcr.2017.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/05/2017] [Accepted: 01/11/2017] [Indexed: 01/22/2023]
|
74
|
Nano M, Basto R. Consequences of Centrosome Dysfunction During Brain Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1002:19-45. [PMID: 28600781 DOI: 10.1007/978-3-319-57127-0_2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Development requires cell proliferation, differentiation and spatial organization of daughter cells to occur in a highly controlled manner. The mode of cell division, the extent of proliferation and the spatial distribution of mitosis allow the formation of tissues of the right size and with the correct structural organization. All these aspects depend on cell cycle duration, correct chromosome segregation and spindle orientation. The centrosome, which is the main microtubule-organizing centre (MTOC) of animal cells, contributes to all these processes. As one of the most structurally complex organs in our body, the brain is particularly susceptible to centrosome dysfunction. Autosomal recessive primary microcephaly (MCPH), primordial dwarfism disease Seckel syndrome (SCKS) and microcephalic osteodysplastic primordial dwarfism type II (MOPD-II) are often connected to mutations in centrosomal genes. In this chapter, we discuss the consequences of centrosome dysfunction during development and how they can contribute to the etiology of human diseases.
Collapse
Affiliation(s)
- Maddalena Nano
- Institut Curie, PSL Research University, CNRS UMR144, 12 rue Lhomond, 75005, Paris, France
| | - Renata Basto
- Institut Curie, PSL Research University, CNRS UMR144, 12 rue Lhomond, 75005, Paris, France.
| |
Collapse
|
75
|
Sukumaran SK, Stumpf M, Salamon S, Ahmad I, Bhattacharya K, Fischer S, Müller R, Altmüller J, Budde B, Thiele H, Tariq M, Malik NA, Nürnberg P, Baig SM, Hussain MS, Noegel AA. CDK5RAP2 interaction with components of the Hippo signaling pathway may play a role in primary microcephaly. Mol Genet Genomics 2016; 292:365-383. [PMID: 28004182 PMCID: PMC5357305 DOI: 10.1007/s00438-016-1277-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/28/2016] [Indexed: 12/21/2022]
Abstract
Autosomal recessive primary microcephaly (MCPH) is characterized by a substantial reduction in brain size but with normal architecture. It is often linked to mutations in genes coding for centrosomal proteins; however, their role in brain size regulation is not completely understood. By combining homozygosity mapping and whole-exome sequencing in an MCPH family from Pakistan, we identified a novel mutation (XM_011518861.1; c.4114C > T) in CDK5RAP2, the gene associated with primary microcephaly-3 (MCPH3), leading to a premature stop codon (p.Arg1372*). CDK5RAP2 is a component of the pericentriolar material important for the microtubule-organizing function of the centrosome. Patient-derived primary fibroblasts had strongly decreased CDK5RAP2 amounts, showed centrosomal and nuclear abnormalities and exhibited changes in cell size and migration. We further identified an interaction of CDK5RAP2 with the Hippo pathway components MST1 kinase and the transcriptional regulator TAZ. This finding potentially provides a mechanism through which the Hippo pathway with its roles in the regulation of centrosome number is linked to the centrosome. In the patient fibroblasts, we observed higher levels of TAZ and YAP. However, common target genes of the Hippo pathway were downregulated as compared to the control with the exception of BIRC5 (Survivin), which was significantly upregulated. We propose that the centrosomal deficiencies and the altered cellular properties in the patient fibroblasts can also result from the observed changes in the Hippo pathway components which could thus be relevant for MCPH and play a role in brain size regulation and development.
Collapse
Affiliation(s)
- Salil K Sukumaran
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Köln, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Köln, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Köln, Germany
| | - Maria Stumpf
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Köln, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Köln, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Köln, Germany
| | - Sarah Salamon
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Köln, Germany
| | - Ilyas Ahmad
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Köln, Germany.,Cologne Center for Genomics (CCG), University of Cologne, 50931, Cologne, Germany
| | - Kurchi Bhattacharya
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Köln, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Köln, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Köln, Germany
| | - Sarah Fischer
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Köln, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Köln, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Köln, Germany
| | - Rolf Müller
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Köln, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Köln, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Köln, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, 50931, Cologne, Germany
| | - Birgit Budde
- Cologne Center for Genomics (CCG), University of Cologne, 50931, Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne, 50931, Cologne, Germany
| | - Muhammad Tariq
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Naveed Altaf Malik
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Peter Nürnberg
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Köln, Germany. .,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Köln, Germany. .,Cologne Center for Genomics (CCG), University of Cologne, 50931, Cologne, Germany.
| | - Shahid Mahmood Baig
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.
| | - Muhammad Sajid Hussain
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Köln, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Köln, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Köln, Germany.,Cologne Center for Genomics (CCG), University of Cologne, 50931, Cologne, Germany
| | - Angelika A Noegel
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Köln, Germany. .,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Köln, Germany. .,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Köln, Germany.
| |
Collapse
|
76
|
Abstract
The centrosome is the main microtubule organizing center of animal cells. It contributes to spindle assembly and orientation during mitosis and to ciliogenesis in interphase. Numerical and structural defects in this organelle are known to be associated with developmental disorders such as dwarfism and microcephaly, but only recently, the molecular mechanisms linking centrosome aberrations to altered physiology are being elucidated. Defects in centrosome number or structure have also been described in cancer. These opposite clinical outcomes--arising from reduced proliferation and overproliferation respectively--can be explained in light of the tissue- and developmental-specific requirements for centrosome functions. The pathological outcomes of centrosome deficiencies have become clearer when considering its consequences. Among them, there are genetic instability (mainly aneuploidy, a defect in chromosome number), defects in the symmetry of cell division (important for cell fate specification and tissue architecture) and impaired ciliogenesis. In this review, we discuss the origins and the consequences of centrosome flaws, with particular attention on how they contribute to developmental diseases.
Collapse
Affiliation(s)
- Maddalena Nano
- Institut Curie, PSL Research University, CNRS UMR144, 12 rue Lhomond, 75005, Paris, France
| | - Renata Basto
- Institut Curie, PSL Research University, CNRS UMR144, 12 rue Lhomond, 75005, Paris, France.
| |
Collapse
|
77
|
Cervenka I, Valnohova J, Bernatik O, Harnos J, Radsetoulal M, Sedova K, Hanakova K, Potesil D, Sedlackova M, Salasova A, Steinhart Z, Angers S, Schulte G, Hampl A, Zdrahal Z, Bryja V. Dishevelled is a NEK2 kinase substrate controlling dynamics of centrosomal linker proteins. Proc Natl Acad Sci U S A 2016; 113:9304-9. [PMID: 27486244 PMCID: PMC4995965 DOI: 10.1073/pnas.1608783113] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dishevelled (DVL) is a key scaffolding protein and a branching point in Wnt signaling pathways. Here, we present conclusive evidence that DVL regulates the centrosomal cycle. We demonstrate that DVL dishevelled and axin (DIX) domain, but not DIX domain-mediated multimerization, is essential for DVL's centrosomal localization. DVL accumulates during the cell cycle and associates with NIMA-related kinase 2 (NEK2), which is able to phosphorylate DVL at a multitude of residues, as detected by a set of novel phospho-specific antibodies. This creates interfaces for efficient binding to CDK5 regulatory subunit-associated protein 2 (CDK5RAP2) and centrosomal Nek2-associated protein 1 (C-NAP1), two proteins of the centrosomal linker. Displacement of DVL from the centrosome and its release into the cytoplasm on NEK2 phosphorylation is coupled to the removal of linker proteins, an event necessary for centrosomal separation and proper formation of the mitotic spindle. Lack of DVL prevents NEK2-controlled dissolution of loose centrosomal linker and subsequent centrosomal separation. Increased DVL levels, in contrast, sequester centrosomal NEK2 and mimic monopolar spindle defects induced by a dominant negative version of this kinase. Our study thus uncovers molecular crosstalk between centrosome and Wnt signaling.
Collapse
Affiliation(s)
- Igor Cervenka
- Department of Experimental Biology, Faculty of Science, Masaryk University, 61 137 Brno, Czech Republic
| | - Jana Valnohova
- Department of Experimental Biology, Faculty of Science, Masaryk University, 61 137 Brno, Czech Republic
| | - Ondrej Bernatik
- Department of Experimental Biology, Faculty of Science, Masaryk University, 61 137 Brno, Czech Republic; Institute of Biophysics, Academy of Sciences of Czech Republic, 61 200 Brno, Czech Republic
| | - Jakub Harnos
- Department of Experimental Biology, Faculty of Science, Masaryk University, 61 137 Brno, Czech Republic
| | - Matej Radsetoulal
- Department of Experimental Biology, Faculty of Science, Masaryk University, 61 137 Brno, Czech Republic
| | - Katerina Sedova
- Research Group Proteomics, Central European Institute of Technology, 62 500 Brno, Czech Republic
| | - Katerina Hanakova
- Research Group Proteomics, Central European Institute of Technology, 62 500 Brno, Czech Republic
| | - David Potesil
- Research Group Proteomics, Central European Institute of Technology, 62 500 Brno, Czech Republic
| | - Miroslava Sedlackova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62 500 Brno, Czech Republic
| | - Alena Salasova
- Department of Experimental Biology, Faculty of Science, Masaryk University, 61 137 Brno, Czech Republic; Department of Biochemistry and Biophysics, Karolinska Institutet Stockholm, 171 77, Sweden
| | - Zachary Steinhart
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Stephane Angers
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Gunnar Schulte
- Department of Experimental Biology, Faculty of Science, Masaryk University, 61 137 Brno, Czech Republic; Receptor Biology and Signaling, Department of Physiology and Pharmacology, Karolinska Institutet, 17 177 Stockholm, Sweden
| | - Ales Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62 500 Brno, Czech Republic
| | - Zbynek Zdrahal
- Research Group Proteomics, Central European Institute of Technology, 62 500 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Vitezslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, 61 137 Brno, Czech Republic; Institute of Biophysics, Academy of Sciences of Czech Republic, 61 200 Brno, Czech Republic;
| |
Collapse
|
78
|
Shimada M, Matsuzaki F, Kato A, Kobayashi J, Matsumoto T, Komatsu K. Induction of Excess Centrosomes in Neural Progenitor Cells during the Development of Radiation-Induced Microcephaly. PLoS One 2016; 11:e0158236. [PMID: 27367050 PMCID: PMC4930206 DOI: 10.1371/journal.pone.0158236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/12/2016] [Indexed: 11/19/2022] Open
Abstract
The embryonic brain is one of the tissues most vulnerable to ionizing radiation. In this study, we showed that ionizing radiation induces apoptosis in the neural progenitors of the mouse cerebral cortex, and that the surviving progenitor cells subsequently develop a considerable amount of supernumerary centrosomes. When mouse embryos at Day 13.5 were exposed to γ-rays, brains sizes were reduced markedly in a dose-dependent manner, and these size reductions persisted until birth. Immunostaining with caspase-3 antibodies showed that apoptosis occurred in 35% and 40% of neural progenitor cells at 4 h after exposure to 1 and 2 Gy, respectively, and this was accompanied by a disruption of the apical layer in which mitotic spindles were positioned in unirradiated mice. At 24 h after 1 Gy irradiation, the apoptotic cells were completely eliminated and proliferation was restored to a level similar to that of unirradiated cells, but numerous spindles were localized outside the apical layer. Similarly, abnormal cytokinesis, which included multipolar division and centrosome clustering, was observed in 19% and 24% of the surviving neural progenitor cells at 48 h after irradiation with 1 and 2 Gy, respectively. Because these cytokinesis aberrations derived from excess centrosomes result in growth delay and mitotic catastrophe-mediated cell elimination, our findings suggest that, in addition to apoptosis at an early stage of radiation exposure, radiation-induced centrosome overduplication could contribute to the depletion of neural progenitors and thereby lead to microcephaly.
Collapse
Affiliation(s)
- Mikio Shimada
- Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Fumio Matsuzaki
- Laboratory for Cell Asymmetry, Center for Developmental Biology, RIKEN, Kobe, Japan
| | - Akihiro Kato
- Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Junya Kobayashi
- Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Tomohiro Matsumoto
- Department of Radiation System Biology, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Kenshi Komatsu
- Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
79
|
Abstract
The microcephaly protein, Cep215, contributes to the engagement of duplicated centrioles in interphase. Now two distinct pools of Cep215 at centrosomes are identified, one bound to Cep68 and the other to pericentrin. Plk1-mediated degradation of Cep68 and separase-mediated cleavage of pericentrin release both pools of Cep215, thereby promoting centriole disengagement.
Collapse
|
80
|
Chavali PL, Chandrasekaran G, Barr AR, Tátrai P, Taylor C, Papachristou EK, Woods CG, Chavali S, Gergely F. A CEP215-HSET complex links centrosomes with spindle poles and drives centrosome clustering in cancer. Nat Commun 2016; 7:11005. [PMID: 26987684 PMCID: PMC4802056 DOI: 10.1038/ncomms11005] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 02/10/2016] [Indexed: 01/09/2023] Open
Abstract
Numerical centrosome aberrations underlie certain developmental abnormalities and may promote cancer. A cell maintains normal centrosome numbers by coupling centrosome duplication with segregation, which is achieved through sustained association of each centrosome with a mitotic spindle pole. Although the microcephaly- and primordial dwarfism-linked centrosomal protein CEP215 has been implicated in this process, the molecular mechanism responsible remains unclear. Here, using proteomic profiling, we identify the minus end-directed microtubule motor protein HSET as a direct binding partner of CEP215. Targeted deletion of the HSET-binding domain of CEP215 in vertebrate cells causes centrosome detachment and results in HSET depletion at centrosomes, a phenotype also observed in CEP215-deficient patient-derived cells. Moreover, in cancer cells with centrosome amplification, the CEP215-HSET complex promotes the clustering of extra centrosomes into pseudo-bipolar spindles, thereby ensuring viable cell division. Therefore, stabilization of the centrosome-spindle pole interface by the CEP215-HSET complex could promote survival of cancer cells containing supernumerary centrosomes.
Collapse
Affiliation(s)
- Pavithra L. Chavali
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Gayathri Chandrasekaran
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Alexis R. Barr
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Péter Tátrai
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Chris Taylor
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Evaggelia K. Papachristou
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - C. Geoffrey Woods
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Sreenivas Chavali
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
81
|
Cheung K, Senese S, Kuang J, Bui N, Ongpipattanakul C, Gholkar A, Cohn W, Capri J, Whitelegge JP, Torres JZ. Proteomic Analysis of the Mammalian Katanin Family of Microtubule-severing Enzymes Defines Katanin p80 subunit B-like 1 (KATNBL1) as a Regulator of Mammalian Katanin Microtubule-severing. Mol Cell Proteomics 2016; 15:1658-69. [PMID: 26929214 PMCID: PMC4858946 DOI: 10.1074/mcp.m115.056465] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Indexed: 11/24/2022] Open
Abstract
The Katanin family of microtubule-severing enzymes is critical for remodeling microtubule-based structures that influence cell division, motility, morphogenesis and signaling. Katanin is composed of a catalytic p60 subunit (A subunit, KATNA1) and a regulatory p80 subunit (B subunit, KATNB1). The mammalian genome also encodes two additional A-like subunits (KATNAL1 and KATNAL2) and one additional B-like subunit (KATNBL1) that have remained poorly characterized. To better understand the factors and mechanisms controlling mammalian microtubule-severing, we have taken a mass proteomic approach to define the protein interaction module for each mammalian Katanin subunit and to generate the mammalian Katanin family interaction network (Katan-ome). Further, we have analyzed the function of the KATNBL1 subunit and determined that it associates with KATNA1 and KATNAL1, it localizes to the spindle poles only during mitosis and it regulates Katanin A subunit microtubule-severing activity in vitro. Interestingly, during interphase, KATNBL1 is sequestered in the nucleus through an N-terminal nuclear localization signal. Finally KATNB1 was able to compete the interaction of KATNBL1 with KATNA1 and KATNAL1. These data indicate that KATNBL1 functions as a regulator of Katanin A subunit microtubule-severing activity during mitosis and that it likely coordinates with KATNB1 to perform this function.
Collapse
Affiliation(s)
- Keith Cheung
- From the ‡Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095
| | - Silvia Senese
- From the ‡Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095
| | - Jiaen Kuang
- From the ‡Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095
| | - Ngoc Bui
- From the ‡Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095
| | - Chayanid Ongpipattanakul
- From the ‡Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095
| | - Ankur Gholkar
- From the ‡Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095
| | - Whitaker Cohn
- §Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Joseph Capri
- §Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Julian P Whitelegge
- §Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California 90095; ¶Molecular Biology Institute, University of California, Los Angeles, California, 90095; ‖Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, 90095
| | - Jorge Z Torres
- From the ‡Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095; ¶Molecular Biology Institute, University of California, Los Angeles, California, 90095; ‖Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, 90095
| |
Collapse
|
82
|
Ohta S, Hamada M, Sato N, Toramoto I. Polyglutamylated Tubulin Binding Protein C1orf96/CSAP Is Involved in Microtubule Stabilization in Mitotic Spindles. PLoS One 2015; 10:e0142798. [PMID: 26562023 PMCID: PMC4642972 DOI: 10.1371/journal.pone.0142798] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/27/2015] [Indexed: 12/13/2022] Open
Abstract
The centrosome-associated C1orf96/Centriole, Cilia and Spindle-Associated Protein (CSAP) targets polyglutamylated tubulin in mitotic microtubules (MTs). Loss of CSAP causes critical defects in brain development; however, it is unclear how CSAP association with MTs affects mitosis progression. In this study, we explored the molecular mechanisms of the interaction of CSAP with mitotic spindles. Loss of CSAP caused MT instability in mitotic spindles and resulted in mislocalization of Nuclear protein that associates with the Mitotic Apparatus (NuMA), with defective MT dynamics. Thus, CSAP overload in the spindles caused extensive MT stabilization and recruitment of NuMA. Moreover, MT stabilization by CSAP led to high levels of polyglutamylation on MTs. MT depolymerization by cold or nocodazole treatment was inhibited by CSAP binding. Live-cell imaging analysis suggested that CSAP-dependent MT-stabilization led to centrosome-free MT aster formation immediately upon nuclear envelope breakdown without γ-tubulin. We therefore propose that CSAP associates with MTs around centrosomes to stabilize MTs during mitosis, ensuring proper bipolar spindle formation and maintenance.
Collapse
Affiliation(s)
- Shinya Ohta
- From the Center for Innovative and Translational Medicine, Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi, Japan
- * E-mail:
| | - Mayako Hamada
- From the Center for Innovative and Translational Medicine, Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi, Japan
| | - Nobuko Sato
- From the Center for Innovative and Translational Medicine, Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi, Japan
| | - Iyo Toramoto
- From the Center for Innovative and Translational Medicine, Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi, Japan
| |
Collapse
|
83
|
Homem CCF, Repic M, Knoblich JA. Proliferation control in neural stem and progenitor cells. Nat Rev Neurosci 2015; 16:647-59. [PMID: 26420377 DOI: 10.1038/nrn4021] [Citation(s) in RCA: 250] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neural circuit function can be drastically affected by variations in the number of cells that are produced during development or by a reduction in adult cell number owing to disease. For this reason, unique cell cycle and cell growth control mechanisms operate in the developing and adult brain. In Drosophila melanogaster and in mammalian neural stem and progenitor cells, these mechanisms are intricately coordinated with the developmental age and the nutritional, metabolic and hormonal state of the animal. Defects in neural stem cell proliferation that result in the generation of incorrect cell numbers or defects in neural stem cell differentiation can cause microcephaly or megalencephaly.
Collapse
Affiliation(s)
- Catarina C F Homem
- Institute of Molecular Biotechnology, Dr. Bohr Gasse 3, 1030, Vienna, Austria.,Chronic Diseases Research Center, NOVA Medical School, Rua Camara Pestana, 6, 1150-082 Lisbon, Portugal
| | - Marko Repic
- Institute of Molecular Biotechnology, Dr. Bohr Gasse 3, 1030, Vienna, Austria
| | - Jürgen A Knoblich
- Institute of Molecular Biotechnology, Dr. Bohr Gasse 3, 1030, Vienna, Austria
| |
Collapse
|
84
|
Abstract
It has become clear that the role of centrosomes extends well beyond that of important microtubule organizers. There is increasing evidence that they also function as coordination centres in eukaryotic cells, at which specific cytoplasmic proteins interact at high concentrations and important cell decisions are made. Accordingly, hundreds of proteins are concentrated at centrosomes, including cell cycle regulators, checkpoint proteins and signalling molecules. Nevertheless, several observations have raised the question of whether centrosomes are essential for many cell processes. Recent findings have shed light on the functions of centrosomes in animal cells and on the molecular mechanisms of centrosome assembly, in particular during mitosis. These advances should ultimately allow the in vitro reconstitution of functional centrosomes from their component proteins to unlock the secrets of these enigmatic organelles.
Collapse
|
85
|
Kraemer N, Issa-Jahns L, Neubert G, Ravindran E, Mani S, Ninnemann O, Kaindl AM. Novel Alternative Splice Variants of Mouse Cdk5rap2. PLoS One 2015; 10:e0136684. [PMID: 26322982 PMCID: PMC4556188 DOI: 10.1371/journal.pone.0136684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/10/2015] [Indexed: 11/18/2022] Open
Abstract
Autosomal recessive primary microcephaly (MCPH) is a rare neurodevelopmental disorder characterized by a pronounced reduction of brain volume and intellectual disability. A current model for the microcephaly phenotype invokes a stem cell proliferation and differentiation defect, which has moved the disease into the spotlight of stem cell biology and neurodevelopmental science. Homozygous mutations of the Cyclin-dependent kinase-5 regulatory subunit-associated protein 2 gene CDK5RAP2 are one genetic cause of MCPH. To further characterize the pathomechanism underlying MCPH, we generated a conditional Cdk5rap2 LoxP/hCMV Cre mutant mouse. Further analysis, initiated on account of a lack of a microcephaly phenotype in these mutant mice, revealed the presence of previously unknown splice variants of the Cdk5rap2 gene that are at least in part accountable for the lack of microcephaly in the mice.
Collapse
Affiliation(s)
- Nadine Kraemer
- Institute of Cell Biology and Neurobiology, Charité –Universitätsmedizin Berlin, Berlin, Germany
- Department of Pediatric Neurology, Charité –Universitätsmedizin Berlin, Berlin, Germany
- * E-mail: (AMK); (NK)
| | - Lina Issa-Jahns
- Institute of Cell Biology and Neurobiology, Charité –Universitätsmedizin Berlin, Berlin, Germany
- Department of Pediatric Neurology, Charité –Universitätsmedizin Berlin, Berlin, Germany
| | - Gerda Neubert
- Institute of Cell Biology and Neurobiology, Charité –Universitätsmedizin Berlin, Berlin, Germany
- Department of Pediatric Neurology, Charité –Universitätsmedizin Berlin, Berlin, Germany
| | - Ethiraj Ravindran
- Institute of Cell Biology and Neurobiology, Charité –Universitätsmedizin Berlin, Berlin, Germany
- Department of Pediatric Neurology, Charité –Universitätsmedizin Berlin, Berlin, Germany
| | - Shyamala Mani
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Olaf Ninnemann
- Institute of Cell Biology and Neurobiology, Charité –Universitätsmedizin Berlin, Berlin, Germany
| | - Angela M. Kaindl
- Institute of Cell Biology and Neurobiology, Charité –Universitätsmedizin Berlin, Berlin, Germany
- Department of Pediatric Neurology, Charité –Universitätsmedizin Berlin, Berlin, Germany
- Sozialpädiatrisches Zentrum (SPZ), Charité –Universitätsmedizin Berlin, Berlin, Germany
- * E-mail: (AMK); (NK)
| |
Collapse
|
86
|
Kodani A, Yu TW, Johnson JR, Jayaraman D, Johnson TL, Al-Gazali L, Sztriha L, Partlow JN, Kim H, Krup AL, Dammermann A, Krogan NJ, Walsh CA, Reiter JF. Centriolar satellites assemble centrosomal microcephaly proteins to recruit CDK2 and promote centriole duplication. eLife 2015; 4:e07519. [PMID: 26297806 PMCID: PMC4574112 DOI: 10.7554/elife.07519] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/21/2015] [Indexed: 12/23/2022] Open
Abstract
Primary microcephaly (MCPH) associated proteins CDK5RAP2, CEP152, WDR62 and CEP63 colocalize at the centrosome. We found that they interact to promote centriole duplication and form a hierarchy in which each is required to localize another to the centrosome, with CDK5RAP2 at the apex, and CEP152, WDR62 and CEP63 at sequentially lower positions. MCPH proteins interact with distinct centriolar satellite proteins; CDK5RAP2 interacts with SPAG5 and CEP72, CEP152 with CEP131, WDR62 with MOONRAKER, and CEP63 with CEP90 and CCDC14. These satellite proteins localize their cognate MCPH interactors to centrosomes and also promote centriole duplication. Consistent with a role for satellites in microcephaly, homozygous mutations in one satellite gene, CEP90, may cause MCPH. The satellite proteins, with the exception of CCDC14, and MCPH proteins promote centriole duplication by recruiting CDK2 to the centrosome. Thus, centriolar satellites build a MCPH complex critical for human neurodevelopment that promotes CDK2 centrosomal localization and centriole duplication.
Collapse
Affiliation(s)
- Andrew Kodani
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Timothy W Yu
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
| | - Jeffrey R Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Divya Jayaraman
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
| | - Tasha L Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Lihadh Al-Gazali
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Lāszló Sztriha
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Jennifer N Partlow
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
| | - Hanjun Kim
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Alexis L Krup
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | | | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Christopher A Walsh
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
87
|
Zebrowski DC, Vergarajauregui S, Wu CC, Piatkowski T, Becker R, Leone M, Hirth S, Ricciardi F, Falk N, Giessl A, Just S, Braun T, Weidinger G, Engel FB. Developmental alterations in centrosome integrity contribute to the post-mitotic state of mammalian cardiomyocytes. eLife 2015; 4. [PMID: 26247711 PMCID: PMC4541494 DOI: 10.7554/elife.05563] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 07/30/2015] [Indexed: 12/23/2022] Open
Abstract
Mammalian cardiomyocytes become post-mitotic shortly after birth. Understanding how this occurs is highly relevant to cardiac regenerative therapy. Yet, how cardiomyocytes achieve and maintain a post-mitotic state is unknown. Here, we show that cardiomyocyte centrosome integrity is lost shortly after birth. This is coupled with relocalization of various centrosome proteins to the nuclear envelope. Consequently, postnatal cardiomyocytes are unable to undergo ciliogenesis and the nuclear envelope adopts the function as cellular microtubule organizing center. Loss of centrosome integrity is associated with, and can promote, cardiomyocyte G0/G1 cell cycle arrest suggesting that centrosome disassembly is developmentally utilized to achieve the post-mitotic state in mammalian cardiomyocytes. Adult cardiomyocytes of zebrafish and newt, which are able to proliferate, maintain centrosome integrity. Collectively, our data provide a novel mechanism underlying the post-mitotic state of mammalian cardiomyocytes as well as a potential explanation for why zebrafish and newts, but not mammals, can regenerate their heart. DOI:http://dx.doi.org/10.7554/eLife.05563.001 Muscle cells in the heart contract in regular rhythms to pump blood around the body. In humans, rats and other mammals, the vast majority of heart muscle cells lose the ability to divide shortly after birth. Therefore, the heart is unable to replace cells that are lost over the life of the individual, for example, during a heart attack. If too many of these cells are lost, the heart will be unable to pump effectively, which can lead to heart failure. Currently, the only treatment option in humans with heart failure is to perform a heart transplant. Some animals, such as newts and zebrafish, are able to replace lost heart muscle cells throughout their lifetimes. Thus, these species are able to fully regenerate their hearts even after 20% has been removed. This suggests that it might be possible to manipulate human heart muscle cells to make them divide and regenerate the heart. Recent research has suggested that structures called centrosomes, known to be required to separate copies of the DNA during cell division, are used as a hub to integrate the initial signals that determine whether a cell should divide or not. Here, Zebrowski et al. studied the centrosomes of heart muscle cells in rats, newts and zebrafish. The experiments show that the centrosomes in rat heart muscle cells are dissembled shortly after birth. Centrosomes are made of several proteins and, in the rat cells, these proteins moved to the membrane that surrounded the nucleus. On the other hand, the centrosomes in the heart muscle cells of the adult newts and zebrafish remained intact. Further experiments found that that breaking apart the centrosomes of heart muscle cells taken from newborn rats stops these cells from dividing. Zebrowski et al.'s findings suggest that the loss of centrosomes after birth is a possible reason why the hearts of adult humans and other mammals are unable to regenerate after injury. In the future, these findings may aid the development of methods to regenerate human heart muscle and new treatments that may limit division of cancer cells. DOI:http://dx.doi.org/10.7554/eLife.05563.002
Collapse
Affiliation(s)
- David C Zebrowski
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Silvia Vergarajauregui
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Chi-Chung Wu
- Institute for Biochemistry and Molecular Biology, University of Ulm, Ulm, Germany
| | - Tanja Piatkowski
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Robert Becker
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marina Leone
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sofia Hirth
- Department of Medicine II, University of Ulm, Ulm, Germany
| | - Filomena Ricciardi
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Nathalie Falk
- Department of Biology, Animal Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Giessl
- Department of Biology, Animal Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Steffen Just
- Department of Medicine II, University of Ulm, Ulm, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Gilbert Weidinger
- Institute for Biochemistry and Molecular Biology, University of Ulm, Ulm, Germany
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
88
|
Richens JH, Barros TP, Lucas EP, Peel N, Pinto DMS, Wainman A, Raff JW. The Drosophila Pericentrin-like-protein (PLP) cooperates with Cnn to maintain the integrity of the outer PCM. Biol Open 2015; 4:1052-61. [PMID: 26157019 PMCID: PMC4542290 DOI: 10.1242/bio.012914] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Centrosomes comprise a pair of centrioles surrounded by a matrix of pericentriolar material (PCM). In vertebrate cells, Pericentrin plays an important part in mitotic PCM assembly, but the Drosophila Pericentrin-like protein (PLP) appears to have a more minor role in mitotic fly cells. Here we investigate the function of PLP during the rapid mitotic cycles of the early Drosophila embryo. Unexpectedly, we find that PLP is specifically enriched in the outer-most regions of the PCM, where it largely co-localizes with the PCM scaffold protein Cnn. In the absence of PLP the outer PCM appears to be structurally weakened, and it rapidly disperses along the centrosomal microtubules (MTs). As a result, centrosomal MTs are subtly disorganized in embryos lacking PLP, although mitosis is largely unperturbed and these embryos develop and hatch at near-normal rates. Y2H analysis reveals that PLP can potentially form multiple interactions with itself and with the PCM recruiting proteins Asl, Spd-2 and Cnn. A deletion analysis suggests that PLP participates in a complex network of interactions that ultimately help to strengthen the PCM.
Collapse
Affiliation(s)
- Jennifer H Richens
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Teresa P Barros
- The Gurdon Institute, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QN, UK
| | - Eliana P Lucas
- The Gurdon Institute, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QN, UK
| | - Nina Peel
- The Gurdon Institute, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QN, UK
| | - David Miguel Susano Pinto
- Micron Oxford Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| |
Collapse
|
89
|
Shi L, Lin Q, Su B. Estrogen regulation of microcephaly genes and evolution of brain sexual dimorphism in primates. BMC Evol Biol 2015; 15:127. [PMID: 26123139 PMCID: PMC4487212 DOI: 10.1186/s12862-015-0398-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/29/2015] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Sexual dimorphism in brain size is common among primates, including humans, apes and some Old World monkeys. In these species, the brain size of males is generally larger than that of females. Curiously, this dimorphism has persisted over the course of primate evolution and human origin, but there is no explanation for the underlying genetic controls that have maintained this disparity in brain size. RESULTS In the present study, we tested the effect of the female hormone (estradiol) on seven genes known to be related to brain size in both humans and nonhuman primates, and we identified half estrogen responsive elements (half EREs) in the promoter regions of four genes (MCPH1, ASPM, CDK5RAP2 and WDR62). Likewise, at sequence level, it appears that these half EREs are generally conserved across primates. Later testing via a reporter gene assay and cell-based endogenous expression measurement revealed that estradiol could significantly suppress the expression of the four affected genes involved in brain size. More intriguingly, when the half EREs were deleted from the promoters, the suppression effect disappeared, suggesting that the half EREs mediate the regulation of estradiol on the brain size genes. We next replicated these experiments using promoter sequences from chimpanzees and rhesus macaques, and observed a similar suppressive effect of estradiol on gene expression, suggesting that this mechanism is conserved among primate species that exhibit brain size dimorphism. CONCLUSIONS Brain size dimorphism among certain primates, including humans, is likely regulated by estrogen through its sex-dependent suppression of brain size genes during development.
Collapse
Affiliation(s)
- Lei Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiao-Chang Road, Kunming, 650223, Yunnan, PR China. .,Yunnan Key Laboratory of Primate Biomedical Research, Kunming, 650000, China.
| | - Qiang Lin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiao-Chang Road, Kunming, 650223, Yunnan, PR China. .,Yunnan Key Laboratory of Primate Biomedical Research, Kunming, 650000, China. .,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiao-Chang Road, Kunming, 650223, Yunnan, PR China. .,Yunnan Key Laboratory of Primate Biomedical Research, Kunming, 650000, China.
| |
Collapse
|
90
|
Yigit G, Brown KE, Kayserili H, Pohl E, Caliebe A, Zahnleiter D, Rosser E, Bögershausen N, Uyguner ZO, Altunoglu U, Nürnberg G, Nürnberg P, Rauch A, Li Y, Thiel CT, Wollnik B. Mutations in CDK5RAP2 cause Seckel syndrome. Mol Genet Genomic Med 2015; 3:467-80. [PMID: 26436113 PMCID: PMC4585455 DOI: 10.1002/mgg3.158] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/22/2015] [Accepted: 04/22/2015] [Indexed: 11/08/2022] Open
Abstract
Seckel syndrome is a heterogeneous, autosomal recessive disorder marked by prenatal proportionate short stature, severe microcephaly, intellectual disability, and characteristic facial features. Here, we describe the novel homozygous splice-site mutations c.383+1G>C and c.4005-9A>G in CDK5RAP2 in two consanguineous families with Seckel syndrome. CDK5RAP2 (CEP215) encodes a centrosomal protein which is known to be essential for centrosomal cohesion and proper spindle formation and has been shown to be causally involved in autosomal recessive primary microcephaly. We establish CDK5RAP2 as a disease-causing gene for Seckel syndrome and show that loss of functional CDK5RAP2 leads to severe defects in mitosis and spindle organization, resulting in cells with abnormal nuclei and centrosomal pattern, which underlines the important role of centrosomal and mitotic proteins in the pathogenesis of the disease. Additionally, we present an intriguing case of possible digenic inheritance in Seckel syndrome: A severely affected child of nonconsanguineous German parents was found to carry heterozygous mutations in CDK5RAP2 and CEP152. This finding points toward a potential additive genetic effect of mutations in CDK5RAP2 and CEP152.
Collapse
Affiliation(s)
- Gökhan Yigit
- Institute of Human Genetics, University of Cologne Cologne, Germany ; Center for Molecular Medicine Cologne (CMMC), University of Cologne Cologne, Germany ; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne Cologne, Germany
| | - Karen E Brown
- Chromosome Biology Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital London, W12 0NN, UK
| | - Hülya Kayserili
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University Istanbul, Turkey
| | - Esther Pohl
- Institute of Human Genetics, University of Cologne Cologne, Germany ; Center for Molecular Medicine Cologne (CMMC), University of Cologne Cologne, Germany ; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne Cologne, Germany
| | - Almuth Caliebe
- Institute of Human Genetics, Christian-Albrechts-University of Kiel Kiel, Germany
| | - Diana Zahnleiter
- Institute of Human Genetics, Friedrich-Alexander University Erlangen-Nuremberg Erlangen, Germany
| | - Elisabeth Rosser
- Department of Clinical Genetics, Great Ormond Street Hospital for Children London, WC1N 3EH, UK
| | - Nina Bögershausen
- Institute of Human Genetics, University of Cologne Cologne, Germany ; Center for Molecular Medicine Cologne (CMMC), University of Cologne Cologne, Germany ; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne Cologne, Germany
| | - Zehra Oya Uyguner
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University Istanbul, Turkey
| | - Umut Altunoglu
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University Istanbul, Turkey
| | - Gudrun Nürnberg
- Center for Molecular Medicine Cologne (CMMC), University of Cologne Cologne, Germany ; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne Cologne, Germany ; Cologne Center for Genomics, University of Cologne Cologne, Germany
| | - Peter Nürnberg
- Center for Molecular Medicine Cologne (CMMC), University of Cologne Cologne, Germany ; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne Cologne, Germany ; Cologne Center for Genomics, University of Cologne Cologne, Germany
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich Schwerzenbach-Zurich, Switzerland
| | - Yun Li
- Institute of Human Genetics, University of Cologne Cologne, Germany ; Center for Molecular Medicine Cologne (CMMC), University of Cologne Cologne, Germany ; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne Cologne, Germany
| | - Christian Thomas Thiel
- Institute of Human Genetics, Friedrich-Alexander University Erlangen-Nuremberg Erlangen, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University of Cologne Cologne, Germany ; Center for Molecular Medicine Cologne (CMMC), University of Cologne Cologne, Germany ; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne Cologne, Germany
| |
Collapse
|
91
|
Targeting of γ-tubulin complexes to microtubule organizing centers: conservation and divergence. Trends Cell Biol 2015; 25:296-307. [DOI: 10.1016/j.tcb.2014.12.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/25/2014] [Accepted: 12/01/2014] [Indexed: 11/29/2022]
|
92
|
Katanin p80 regulates human cortical development by limiting centriole and cilia number. Neuron 2015; 84:1240-57. [PMID: 25521379 DOI: 10.1016/j.neuron.2014.12.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2014] [Indexed: 11/20/2022]
Abstract
Katanin is a microtubule-severing complex whose catalytic activities are well characterized, but whose in vivo functions are incompletely understood. Human mutations in KATNB1, which encodes the noncatalytic regulatory p80 subunit of katanin, cause severe microlissencephaly. Loss of Katnb1 in mice confirms essential roles in neurogenesis and cell survival, while loss of zebrafish katnb1 reveals specific roles for katnin p80 in early and late developmental stages. Surprisingly, Katnb1 null mutant mouse embryos display hallmarks of aberrant Sonic hedgehog signaling, including holoprosencephaly. KATNB1-deficient human cells show defective proliferation and spindle structure, while Katnb1 null fibroblasts also demonstrate a remarkable excess of centrioles, with supernumerary cilia but deficient Hedgehog signaling. Our results reveal unexpected functions for KATNB1 in regulating overall centriole, mother centriole, and cilia number, and as an essential gene for normal Hedgehog signaling during neocortical development.
Collapse
|
93
|
Agircan FG, Schiebel E, Mardin BR. Separate to operate: control of centrosome positioning and separation. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0461. [PMID: 25047615 DOI: 10.1098/rstb.2013.0461] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The centrosome is the main microtubule (MT)-organizing centre of animal cells. It consists of two centrioles and a multi-layered proteinaceous structure that surrounds the centrioles, the so-called pericentriolar material. Centrosomes promote de novo assembly of MTs and thus play important roles in Golgi organization, cell polarity, cell motility and the organization of the mitotic spindle. To execute these functions, centrosomes have to adopt particular cellular positions. Actin and MT networks and the association of the centrosomes to the nuclear envelope define the correct positioning of the centrosomes. Another important feature of centrosomes is the centrosomal linker that connects the two centrosomes. The centrosome linker assembles in late mitosis/G1 simultaneously with centriole disengagement and is dissolved before or at the beginning of mitosis. Linker dissolution is important for mitotic spindle formation, and its cell cycle timing has profound influences on the execution of mitosis and proficiency of chromosome segregation. In this review, we will focus on the mechanisms of centrosome positioning and separation, and describe their functions and mechanisms in the light of recent findings.
Collapse
Affiliation(s)
- Fikret G Agircan
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Balca R Mardin
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| |
Collapse
|
94
|
Ohta S, Wood L, Toramoto I, Yagyu KI, Fukagawa T, Earnshaw WC. CENP-32 is required to maintain centrosomal dominance in bipolar spindle assembly. Mol Biol Cell 2015; 26:1225-37. [PMID: 25657325 PMCID: PMC4454171 DOI: 10.1091/mbc.e14-09-1366] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
CENP-32 depletion releases centrosomes from spindles after initiating spindle assembly. The free centrosomes do not interfere with the structure or function of the bipolar anastral spindle. The asters appear to be able to interact with the surface of the spindle but are unable to incorporate into it. Centrosomes nucleate spindle formation, direct spindle pole positioning, and are important for proper chromosome segregation during mitosis in most animal cells. We previously reported that centromere protein 32 (CENP-32) is required for centrosome association with spindle poles during metaphase. In this study, we show that CENP-32 depletion seems to release centrosomes from bipolar spindles whose assembly they had previously initiated. Remarkably, the resulting anastral spindles function normally, aligning the chromosomes to a metaphase plate and entering anaphase without detectable interference from the free centrosomes, which appear to behave as free asters in these cells. The free asters, which contain reduced but significant levels of CDK5RAP2, show weak interactions with spindle microtubules but do not seem to make productive attachments to kinetochores. Thus CENP-32 appears to be required for centrosomes to integrate into a fully functional spindle that not only nucleates astral microtubules, but also is able to nucleate and bind to kinetochore and central spindle microtubules. Additional data suggest that NuMA tethers microtubules at the anastral spindle poles and that augmin is required for centrosome detachment after CENP-32 depletion, possibly due to an imbalance of forces within the spindle.
Collapse
Affiliation(s)
- Shinya Ohta
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Laura Wood
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Iyo Toramoto
- Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Ken-Ichi Yagyu
- Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Tatsuo Fukagawa
- Department of Molecular Genetics, National Institute of Genetics and the Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| |
Collapse
|
95
|
Gaume X, Tassin AM, Ugrinova I, Mongelard F, Monier K, Bouvet P. Centrosomal nucleolin is required for microtubule network organization. Cell Cycle 2015; 14:902-19. [PMID: 25590348 PMCID: PMC4614815 DOI: 10.1080/15384101.2014.1000197] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 12/22/2022] Open
Abstract
Nucleolin is a pleiotropic protein involved in a variety of cellular processes. Although multipolar spindle formation has been observed after nucleolin depletion, the roles of nucleolin in centrosome regulation and functions have not been addressed. Here we report using immunofluorescence and biochemically purified centrosomes that nucleolin co-localized only with one of the centrioles during interphase which was further identified as the mature centriole. Upon nucleolin depletion, cells exhibited an amplification of immature centriole markers surrounded by irregular pericentrin staining; these structures were exempt from maturation markers and unable to nucleate microtubules. Furthermore, the microtubule network was disorganized in these cells, exhibiting frequent non-centrosomal microtubules. At the mature centriole a reduced kinetics in the centrosomal microtubule nucleation phase was observed in live silenced cells, as well as a perturbation of microtubule anchoring. Immunoprecipitation experiments showed that nucleolin belongs to protein complexes containing 2 key centrosomal proteins, γ-tubulin and ninein, involved in microtubule nucleation and anchoring steps. Altogether, our study uncovered a new role for nucleolin in restricting microtubule nucleation and anchoring at centrosomes in interphase cells.
Collapse
Affiliation(s)
- Xavier Gaume
- Université de Lyon; Ecole Normale Supérieure de Lyon; CNRS USR 3010; Laboratoire Joliot-Curie; Lyon, France
| | - Anne-Marie Tassin
- Institute for Integrative Biology of the Cell (I2BC); CEA, CNRS, Université Paris Sud; Gif sur Yvette, France
| | - Iva Ugrinova
- Institute of Molecular Biology “Acad. Roumen Tsanev”; Bulgarian Academy of Sciences; Sofia, Bulgaria
| | - Fabien Mongelard
- Université de Lyon; Ecole Normale Supérieure de Lyon; CNRS USR 3010; Laboratoire Joliot-Curie; Lyon, France
| | - Karine Monier
- Université de Lyon; Ecole Normale Supérieure de Lyon; CNRS USR 3010; Laboratoire Joliot-Curie; Lyon, France
| | - Philippe Bouvet
- Université de Lyon; Ecole Normale Supérieure de Lyon; CNRS USR 3010; Laboratoire Joliot-Curie; Lyon, France
| |
Collapse
|
96
|
Pagan JK, Marzio A, Jones MJ, Saraf A, Jallepalli PV, Florens L, Washburn MP, Pagano M. Degradation of Cep68 and PCNT cleavage mediate Cep215 removal from the PCM to allow centriole separation, disengagement and licensing. Nat Cell Biol 2015; 17:31-43. [PMID: 25503564 PMCID: PMC4415623 DOI: 10.1038/ncb3076] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 10/31/2014] [Indexed: 02/06/2023]
Abstract
An intercentrosomal linker keeps a cell's two centrosomes joined together until it is dissolved at the onset of mitosis. A second connection keeps daughter centrioles engaged to their mothers until they lose their orthogonal arrangement at the end of mitosis. Centriole disengagement is required to license centrioles for duplication. We show that the intercentrosomal linker protein Cep68 is degraded in prometaphase through the SCF(βTrCP) (Skp1-Cul1-F-box protein) ubiquitin ligase complex. Cep68 degradation is initiated by PLK1 phosphorylation of Cep68 on Ser 332, allowing recognition by βTrCP. We also found that Cep68 forms a complex with Cep215 (also known as Cdk5Rap2) and PCNT (also known as pericentrin), two PCM (pericentriolar material) proteins involved in centriole engagement. Cep68 and PCNT bind to different pools of Cep215. We propose that Cep68 degradation allows Cep215 removal from the peripheral PCM preventing centriole separation following disengagement, whereas PCNT cleavage mediates Cep215 removal from the core of the PCM to inhibit centriole disengagement and duplication.
Collapse
Affiliation(s)
- Julia K. Pagan
- Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Antonio Marzio
- Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Mathew J.K. Jones
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Anita Saraf
- The Stowers Institute of Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Prasad V. Jallepalli
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Laurence Florens
- The Stowers Institute of Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Michael P. Washburn
- The Stowers Institute of Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA
| | - Michele Pagano
- Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
- Howard Hughes Medical Institute, 522 First Avenue, New York, NY 10016, USA
| |
Collapse
|
97
|
Molecular and cellular basis of autosomal recessive primary microcephaly. BIOMED RESEARCH INTERNATIONAL 2014; 2014:547986. [PMID: 25548773 PMCID: PMC4274849 DOI: 10.1155/2014/547986] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/18/2014] [Accepted: 09/18/2014] [Indexed: 01/23/2023]
Abstract
Autosomal recessive primary microcephaly (MCPH) is a rare hereditary neurodevelopmental disorder characterized by a marked reduction in brain size and intellectual disability. MCPH is genetically heterogeneous and can exhibit additional clinical features that overlap with related disorders including Seckel syndrome, Meier-Gorlin syndrome, and microcephalic osteodysplastic dwarfism. In this review, we discuss the key proteins mutated in MCPH. To date, MCPH-causing mutations have been identified in twelve different genes, many of which encode proteins that are involved in cell cycle regulation or are present at the centrosome, an organelle crucial for mitotic spindle assembly and cell division. We highlight recent findings on MCPH proteins with regard to their role in cell cycle progression, centrosome function, and early brain development.
Collapse
|
98
|
The centrosome duplication cycle in health and disease. FEBS Lett 2014; 588:2366-72. [DOI: 10.1016/j.febslet.2014.06.030] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/06/2014] [Accepted: 06/07/2014] [Indexed: 12/25/2022]
|
99
|
Microcephaly disease gene Wdr62 regulates mitotic progression of embryonic neural stem cells and brain size. Nat Commun 2014; 5:3885. [PMID: 24875059 PMCID: PMC4216695 DOI: 10.1038/ncomms4885] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/14/2014] [Indexed: 12/21/2022] Open
Abstract
Human genetic studies have established a link between a class of centrosome proteins and microcephaly. Current studies of microcephaly focus on defective centrosome/spindle orientation. Mutations in WDR62 are associated with microcephaly and other cortical abnormalities in humans. Here we create a mouse model of Wdr62 deficiency and find that the mice exhibit reduced brain size due to decreased neural progenitor cells (NPCs). Wdr62 depleted cells show spindle instability, spindle assembly checkpoint (SAC) activation, mitotic arrest and cell death. Mechanistically, Wdr62 associates and genetically interacts with Aurora A to regulate spindle formation, mitotic progression and brain size. Our results suggest that Wdr62 interacts with Aurora A to control mitotic progression, and loss of these interactions leads to mitotic delay and cell death of NPCs, which could be a potential cause of human microcephaly.
Collapse
|
100
|
Sun T, Hevner RF. Growth and folding of the mammalian cerebral cortex: from molecules to malformations. Nat Rev Neurosci 2014; 15:217-32. [PMID: 24646670 DOI: 10.1038/nrn3707] [Citation(s) in RCA: 357] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The size and extent of folding of the mammalian cerebral cortex are important factors that influence a species' cognitive abilities and sensorimotor skills. Studies in various animal models and in humans have provided insight into the mechanisms that regulate cortical growth and folding. Both protein-coding genes and microRNAs control cortical size, and recent progress in characterizing basal progenitor cells and the genes that regulate their proliferation has contributed to our understanding of cortical folding. Neurological disorders linked to disruptions in cortical growth and folding have been associated with novel neurogenetic mechanisms and aberrant signalling pathways, and these findings have changed concepts of brain evolution and may lead to new medical treatments for certain disorders.
Collapse
Affiliation(s)
- Tao Sun
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, BOX 60, New York, New York 10065, USA
| | - Robert F Hevner
- Department of Neurological Surgery and Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101, USA
| |
Collapse
|