51
|
Hopewell JC, Ibrahim M, Hill M, Shaw PM, Braunwald E, Blaustein RO, Bowman L, Landray MJ, Sabatine MS, Collins R. Impact of ADCY9 Genotype on Response to Anacetrapib. Circulation 2019; 140:891-898. [PMID: 31331193 PMCID: PMC6749971 DOI: 10.1161/circulationaha.119.041546] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/17/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Exploratory analyses of previous randomized trials generated a hypothesis that the clinical response to cholesteryl ester transfer protein (CETP) inhibitor therapy differs by ADCY9 genotype, prompting the ongoing dal-GenE trial in individuals with a particular genetic profile. The randomized placebo-controlled REVEAL trial (Randomized Evaluation of the Effects of Anacetrapib through Lipid-Modification) demonstrated the clinical efficacy of the CETP inhibitor anacetrapib among patients with preexisting atherosclerotic vascular disease. In the present study, we examined the impact of ADCY9 genotype on response to anacetrapib in the REVEAL trial. METHODS Individuals with stable atherosclerotic vascular disease who were treated with intensive atorvastatin therapy received either anacetrapib 100 mg daily or matching placebo. Cox proportional hazards models, adjusted for the first 5 principal components of ancestry, were used to estimate the effects of allocation to anacetrapib on major vascular events (a composite of coronary death, myocardial infarction, coronary revascularization, or presumed ischemic stroke) and the interaction with ADCY9 rs1967309 genotype. RESULTS Among 19 210 genotyped individuals of European ancestry, 2504 (13.0%) had a first major vascular event during 4 years median follow-up: 1216 (12.6%) among anacetrapib-allocated participants and 1288 (13.4%) among placebo-allocated participants. Proportional reductions in the risk of major vascular events with anacetrapib did not differ significantly by ADCY9 genotype: hazard ratio (HR) = 0.92 (95% CI, 0.81-1.05) for GG; HR = 0.94 (95% CI, 0.84-1.06) for AG; and HR = 0.93 (95% CI, 0.76-1.13) for AA genotype carriers, respectively; genotypic P for interaction = 0.96. Furthermore, there were no associations between ADCY9 genotype and the proportional reductions in the separate components of major vascular events or meaningful differences in lipid response to anacetrapib. CONCLUSIONS The REVEAL trial is the single largest study to date evaluating the ADCY9 pharmacogenetic interaction. It provides no support for the hypothesis that ADCY9 genotype is materially relevant to the clinical effects of the CETP inhibitor anacetrapib. The ongoing dal-GenE study will provide direct evidence as to whether there is any specific pharmacogenetic interaction with dalcetrapib. CLINICAL TRIAL REGISTRATION URL: https://www. CLINICALTRIALS gov. Unique identifier: NCT01252953. URL: http://www.isrctn.com. Unique identifier: ISRCTN48678192. URL: https://www.clinicaltrialsregister.eu. Unique identifier: 2010-023467-18.
Collapse
Affiliation(s)
- Jemma C. Hopewell
- Clinical Trial Service Unit and Epidemiological Studies Unit (J.C.H., M.I., M.H., L.B., M.J.L., R.C.), Nuffield Department of Population Health, University of Oxford, United Kingdom
| | - Maysson Ibrahim
- Clinical Trial Service Unit and Epidemiological Studies Unit (J.C.H., M.I., M.H., L.B., M.J.L., R.C.), Nuffield Department of Population Health, University of Oxford, United Kingdom
| | - Michael Hill
- Clinical Trial Service Unit and Epidemiological Studies Unit (J.C.H., M.I., M.H., L.B., M.J.L., R.C.), Nuffield Department of Population Health, University of Oxford, United Kingdom
- Medical Research Council Population Health Research Unit (M.H., L.B.), Nuffield Department of Population Health, University of Oxford, United Kingdom
| | - Peter M. Shaw
- Department of Genetics and Pharmacogenomics (P.M.S.), Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ
| | - Eugene Braunwald
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA (E.B., M.S.S.)
| | - Robert O. Blaustein
- Cardiovascular Clinical Research (R.O.B.), Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ
| | - Louise Bowman
- Clinical Trial Service Unit and Epidemiological Studies Unit (J.C.H., M.I., M.H., L.B., M.J.L., R.C.), Nuffield Department of Population Health, University of Oxford, United Kingdom
- Medical Research Council Population Health Research Unit (M.H., L.B.), Nuffield Department of Population Health, University of Oxford, United Kingdom
| | - Martin J. Landray
- Clinical Trial Service Unit and Epidemiological Studies Unit (J.C.H., M.I., M.H., L.B., M.J.L., R.C.), Nuffield Department of Population Health, University of Oxford, United Kingdom
| | - Marc S. Sabatine
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA (E.B., M.S.S.)
| | - Rory Collins
- Clinical Trial Service Unit and Epidemiological Studies Unit (J.C.H., M.I., M.H., L.B., M.J.L., R.C.), Nuffield Department of Population Health, University of Oxford, United Kingdom
| |
Collapse
|
52
|
Senoo H, Kamimura Y, Kimura R, Nakajima A, Sawai S, Sesaki H, Iijima M. Phosphorylated Rho-GDP directly activates mTORC2 kinase towards AKT through dimerization with Ras-GTP to regulate cell migration. Nat Cell Biol 2019; 21:867-878. [PMID: 31263268 PMCID: PMC6650273 DOI: 10.1038/s41556-019-0348-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 05/29/2019] [Indexed: 11/19/2022]
Abstract
mTORC2 plays critical roles in metabolism, cell survival and actin cytoskeletal dynamics through the phosphorylation of AKT. Despite its importance to biology and medicine, it is unclear how mTORC2-mediated AKT phosphorylation is controlled. Here, we identify an unforeseen principle by which a GDP-bound form of the conserved small G protein Rho GTPase directly activates mTORC2 in AKT phosphorylation in social amoebae (Dictyostelium discoideum) cells. Using biochemical reconstitution with purified proteins, we demonstrate that Rho-GDP promotes AKT phosphorylation by assembling a supercomplex with Ras-GTP and mTORC2. This supercomplex formation is controlled by the chemoattractant-induced phosphorylation of Rho-GDP at S192 by GSK-3. Furthermore, Rho-GDP rescues defects in both mTORC2-mediated AKT phosphorylation and directed cell migration in Rho-null cells in a manner dependent on phosphorylation of S192. Thus, in contrast to the prevailing view that the GDP-bound forms of G proteins are inactive, our study reveals that mTORC2-AKT signalling is activated by Rho-GDP.
Collapse
Affiliation(s)
- Hiroshi Senoo
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yoichiro Kamimura
- Laboratory for Cell Signaling Dynamics, Quantitative Biology Center, RIKEN, Suita, Japan
| | - Reona Kimura
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Akihiko Nakajima
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Satoshi Sawai
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
53
|
Abstract
Sepsis is a major health problem all over the world. Despite its existence since the time of Hippocrates (470 BC), sepsis is still a serious medical problem for physicians working in both pediatric and adult intensive care units. The most current US FDA-approved drug called recombinant human activated protein C or Drotrecogin-α is also failed in clinical trials and showed similar effects as placebo. The epidemiological data and studies have indicated sepsis as a major socioeconomic burden all over the world. Advances in immunology and genomic medicine have established different immunological mechanisms as major regulators of the pathogenesis of the sepsis. These immunological mechanisms come into action upon activation of several components of the immune system including innate and adaptive immunity. The activation of these immune cells in response to the pathogens or pathogen-associated molecular patterns (PAMPs) responsible for the onset of sepsis is regulated by the metabolic stage of the immune cells called immunometabolism. An alternation in the immunometabolism is responsible for the generation of dysregulated immune response during sepsis and plays a very important role in the process. Thus, it becomes vital to understand the immunometabolic reprograming during sepsis to design future target-based therapeutics depending on the severity. The current review is designed to highlight the importance of immune response and associated immunometabolism during sepsis and its targeting as a future therapeutic approach.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, Department of Paediatrics and Child Care, School of Clinical Medicine, Mater Research, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, QLD, 4078, Australia.
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, QLD, 4078, Australia.
| |
Collapse
|
54
|
Direct visualization of cAMP signaling in primary cilia reveals up-regulation of ciliary GPCR activity following Hedgehog activation. Proc Natl Acad Sci U S A 2019; 116:12066-12071. [PMID: 31142652 DOI: 10.1073/pnas.1819730116] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The primary cilium permits compartmentalization of specific signaling pathways, including elements of the Hedgehog (Hh) pathway. Hh transcriptional activity is thought to be negatively regulated by constitutively high ciliary cAMP maintained by the Gα(s)-coupled GPCR, GPR161. However, cilia also sequester many other Gα(s)-coupled GPCRs with unknown potential to regulate Hh. Here we used biosensors optimized for ciliary cAMP and strategies to isolate signals in the cilium from the cell body and neighboring cells. We found that ciliary cAMP was not elevated relative to cellular cAMP, inconsistent with constitutive cAMP production. Gα(s)-coupled GPCRs (e.g., the 5-HT6 serotonin and D1R dopamine receptor) had reduced ability to generate cAMP upon trafficking to the ciliary membrane. However, activation of the Hh pathway restored or amplified GPCR function to permit cAMP elevation selectively in the cilium. Hh therefore enables its own local GPCR-dependent cAMP regulatory circuit. Considering that GPCRs comprise much of the druggable genome, these data suggest alternative strategies to modify Hh signaling.
Collapse
|
55
|
Ren C, Yuan Q, Braun M, Zhang X, Petri B, Zhang J, Kim D, Guez-Haddad J, Xue W, Pan W, Fan R, Kubes P, Sun Z, Opatowsky Y, Polleux F, Karatekin E, Tang W, Wu D. Leukocyte Cytoskeleton Polarization Is Initiated by Plasma Membrane Curvature from Cell Attachment. Dev Cell 2019; 49:206-219.e7. [PMID: 30930167 PMCID: PMC6482112 DOI: 10.1016/j.devcel.2019.02.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 01/15/2019] [Accepted: 02/25/2019] [Indexed: 12/30/2022]
Abstract
Cell polarization is important for various biological processes. However, its regulation, particularly initiation, is incompletely understood. Here, we investigated mechanisms by which neutrophils break their symmetry and initiate their cytoskeleton polarization from an apolar state in circulation for their extravasation during inflammation. We show here that a local increase in plasma membrane (PM) curvature resulting from cell contact to a surface triggers the initial breakage of the symmetry of an apolar neutrophil and is required for subsequent polarization events induced by chemical stimulation. This local increase in PM curvature recruits SRGAP2 via its F-BAR domain, which in turn activates PI4KA and results in PM PtdIns4P polarization. Polarized PM PtdIns4P is targeted by RPH3A, which directs PIP5K1C90 and subsequent phosphorylated myosin light chain polarization, and this polarization signaling axis regulates neutrophil firm attachment to endothelium. Thus, this study reveals a mechanism for the initiation of cell cytoskeleton polarization.
Collapse
Affiliation(s)
- Chunguang Ren
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale University, New Haven, CT 06520, USA
| | - Qianying Yuan
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale University, New Haven, CT 06520, USA
| | - Martha Braun
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA; Nanobiology Institute, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Xia Zhang
- Department of Geriatrics, the First affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Björn Petri
- Snyder Institute for Chronic Diseases Mouse Phenomics Resource Laboratory, University of Calgary, Calgary AB T2N 4N1, Canada; Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Jiasheng Zhang
- Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Dongjoo Kim
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Julia Guez-Haddad
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Wenzhi Xue
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Weijun Pan
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Paul Kubes
- Snyder Institute for Chronic Diseases Mouse Phenomics Resource Laboratory, University of Calgary, Calgary AB T2N 4N1, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, and Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Zhaoxia Sun
- Department of Genetics, Yale University, New Haven, CT 06520, USA
| | - Yarden Opatowsky
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Franck Polleux
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10025, USA
| | - Erdem Karatekin
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA; Nanobiology Institute, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, CT 06520, USA; Centre National de la Recherche Scientifique (CNRS), Paris, France.
| | - Wenwen Tang
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale University, New Haven, CT 06520, USA.
| | - Dianqing Wu
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
56
|
Baldwin TA, Li Y, Brand CS, Watts VJ, Dessauer CW. Insights into the Regulatory Properties of Human Adenylyl Cyclase Type 9. Mol Pharmacol 2019; 95:349-360. [PMID: 30696718 PMCID: PMC6399577 DOI: 10.1124/mol.118.114595] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/23/2019] [Indexed: 11/22/2022] Open
Abstract
Membrane-bound adenylyl cyclase (AC) isoforms have distinct regulatory mechanisms that contribute to their signaling specificity and physiologic roles. Although insight into the physiologic relevance of AC9 has progressed, the understanding of AC9 regulation is muddled with conflicting studies. Currently, modes of AC9 regulation include stimulation by Gαs, protein kinase C (PKC) βII, or calcium-calmodulin kinase II (CaMKII) and inhibition by Gαi/o, novel PKC isoforms, or calcium-calcineurin. Conversely, the original cloning of human AC9 reported that AC9 is insensitive to Gαi inhibition. The purpose of our study was to clarify which proposed regulators of AC9 act directly or indirectly, particularly with respect to Gαi/o. The proposed regulators, including G proteins (Gαs, Gαi, Gαo, Gβγ), protein kinases (PKCβII, CaMKII), and forskolin, were systematically evaluated using classic in vitro AC assays and cell-based cAMP accumulation assays in COS-7 cells. Our studies show that AC9 is directly regulated by Gαs with weak conditional activation by forskolin; other modes of proposed regulation either occur indirectly or possibly require additional scaffolding proteins to facilitate regulation. We also show that AC9 contributes to basal cAMP production; knockdown or knockout of endogenous AC9 reduces basal AC activity in COS-7 cells and splenocytes. Importantly, although AC9 is not directly inhibited by Gαi/o, it can heterodimerize with Gαi/o-regulated isoforms, AC5 and AC6.
Collapse
Affiliation(s)
- Tanya A Baldwin
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas (T.A.B., Y.L., C.S.B., C.W.D.); and Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana (V.J.W.)
| | - Yong Li
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas (T.A.B., Y.L., C.S.B., C.W.D.); and Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana (V.J.W.)
| | - Cameron S Brand
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas (T.A.B., Y.L., C.S.B., C.W.D.); and Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana (V.J.W.)
| | - Val J Watts
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas (T.A.B., Y.L., C.S.B., C.W.D.); and Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana (V.J.W.)
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas (T.A.B., Y.L., C.S.B., C.W.D.); and Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana (V.J.W.)
| |
Collapse
|
57
|
Saha S, Nagy TL, Weiner OD. Joining forces: crosstalk between biochemical signalling and physical forces orchestrates cellular polarity and dynamics. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0145. [PMID: 29632270 DOI: 10.1098/rstb.2017.0145] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2017] [Indexed: 12/11/2022] Open
Abstract
Dynamic processes like cell migration and morphogenesis emerge from the self-organized interaction between signalling and cytoskeletal rearrangements. How are these molecular to sub-cellular scale processes integrated to enable cell-wide responses? A growing body of recent studies suggest that forces generated by cytoskeletal dynamics and motor activity at the cellular or tissue scale can organize processes ranging from cell movement, polarity and division to the coordination of responses across fields of cells. To do so, forces not only act mechanically but also engage with biochemical signalling. Here, we review recent advances in our understanding of this dynamic crosstalk between biochemical signalling, self-organized cortical actomyosin dynamics and physical forces with a special focus on the role of membrane tension in integrating cellular motility.This article is part of the theme issue 'Self-organization in cell biology'.
Collapse
Affiliation(s)
- Suvrajit Saha
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Tamas L Nagy
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA.,Biological and Medical Informatics Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Orion D Weiner
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA .,Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
58
|
Pergolizzi B, Panuzzo C, Ali MS, Lo Iacono M, Levron CL, Ponzone L, Prelli M, Cilloni D, Calautti E, Bozzaro S, Bracco E. Mammals and Dictyostelium rictor mutations swapping reveals two essential Gly residues for mTORC2 activity and integrity. J Cell Sci 2019; 132:jcs.236505. [DOI: 10.1242/jcs.236505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/15/2019] [Indexed: 12/27/2022] Open
Abstract
mTORC2 regulates a variety of vital cellular processes, and its aberrant functioning is often associated with various diseases. Rictor is a peculiar and distinguishing mTORC2 component playing a pivotal role in controlling its assembly and activity. Among living organisms Rictor is conserved from unicellular eukaryotes to metazoan. We replaced two distinct, but conserved, glycines in both the Dictyostelium piaA gene and its human ortholog, rictor. The two conserved residues are spaced by approximately 50 aminoacids and both are embedded within a conserved region falling in between the Ras-GEFN2 and Rictor_V domains. The effects of point mutations on the mTORC2 activity and integrity were assessed by biochemical and functional assays.In both cases, the reciprocal exchange between mammals and Dictyostelium rictor and piaA gene point mutations impaired mTORC2 activity and integrity.Our data indicate that the two Gly residues are essential for the maintenance of mTORC2 activity and integrity in organisms that appear to be distantly related, suggesting a primeval role in the assembly and proper TOR complex 2 functioning.
Collapse
Affiliation(s)
- Barbara Pergolizzi
- Department of Clinical and Biological Sciences, University of Torino, AOU S. Luigi, 10043 Orbassano (TO), Italy
| | - Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Torino, AOU S. Luigi, 10043 Orbassano (TO), Italy
| | - M. Shahzad Ali
- Department of Clinical and Biological Sciences, University of Torino, AOU S. Luigi, 10043 Orbassano (TO), Italy
| | - Marco Lo Iacono
- Department of Clinical and Biological Sciences, University of Torino, AOU S. Luigi, 10043 Orbassano (TO), Italy
| | - Chiara Levra Levron
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre, University of Torino, Via Nizza 52, Torino, Italy
| | - Luca Ponzone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre, University of Torino, Via Nizza 52, Torino, Italy
| | - Marta Prelli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre, University of Torino, Via Nizza 52, Torino, Italy
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Torino, AOU S. Luigi, 10043 Orbassano (TO), Italy
| | - Enzo Calautti
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre, University of Torino, Via Nizza 52, Torino, Italy
| | - Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Torino, AOU S. Luigi, 10043 Orbassano (TO), Italy
| | - Enrico Bracco
- Department of Oncology, University of Torino, AOU S. Luigi, 10043 Orbassano (TO), Italy
| |
Collapse
|
59
|
Hadley G, Beard DJ, Couch Y, Neuhaus AA, Adriaanse BA, DeLuca GC, Sutherland BA, Buchan AM. Rapamycin in ischemic stroke: Old drug, new tricks? J Cereb Blood Flow Metab 2019; 39:20-35. [PMID: 30334673 PMCID: PMC6311672 DOI: 10.1177/0271678x18807309] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/16/2018] [Accepted: 09/06/2018] [Indexed: 12/19/2022]
Abstract
The significant morbidity that accompanies stroke makes it one of the world's most devastating neurological disorders. Currently, proven effective therapies have been limited to thrombolysis and thrombectomy. The window for the administration of these therapies is narrow, hampered by the necessity of rapidly imaging patients. A therapy that could extend this window by protecting neurons may improve outcome. Endogenous neuroprotection has been shown to be, in part, due to changes in mTOR signalling pathways and the instigation of productive autophagy. Inducing this effect pharmacologically could improve clinical outcomes. One such therapy already in use in transplant medicine is the mTOR inhibitor rapamycin. Recent evidence suggests that rapamycin is neuroprotective, not only via neuronal autophagy but also through its broader effects on other cells of the neurovascular unit. This review highlights the potential use of rapamycin as a multimodal therapy, acting on the blood-brain barrier, cerebral blood flow and inflammation, as well as directly on neurons. There is significant potential in applying this old drug in new ways to improve functional outcomes for patients after stroke.
Collapse
Affiliation(s)
- Gina Hadley
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Daniel J Beard
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Yvonne Couch
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ain A Neuhaus
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Bryan A Adriaanse
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Gabriele C DeLuca
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Brad A Sutherland
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Alastair M Buchan
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Acute Vascular Imaging Centre, University of Oxford, Oxford University Hospitals, Oxford, UK
| |
Collapse
|
60
|
Saunders CA, Majumdar R, Molina Y, Subramanian BC, Parent CA. Genetic manipulation of PLB-985 cells and quantification of chemotaxis using the underagarose assay. Methods Cell Biol 2018; 149:31-56. [PMID: 30616826 DOI: 10.1016/bs.mcb.2018.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neutrophils are the most common leukocyte in human blood and are the first cells to respond to injury and infection. Improper neutrophil chemotaxis can have deleterious effects on human health, including autoimmune diseases, poor innate immune response, and cancer. Therefore, gaining a better understanding of the signaling pathways governing chemotactic responses in these cells is important. One of the main challenges of working with primary human neutrophils is their short lifespan (about 1 day), making genetic manipulations not feasible. PLB-985 cells, which are pluripotent hematopoietic cells that can easily be differentiated to neutrophil-like cells, are amenable to genetic manipulations, including the expression of fluorescently tagged proteins-of-interest (POI) and gene editing using the CRISPR/CAS9 system to delete genes-of-interest (GOI). The use of PLB-985 cells can therefore greatly facilitate our understanding of the molecular mechanisms governing neutrophil biology during chemotaxis and serve as a good system to complement results gained from pharmacological inhibition of primary neutrophils. To better study the role and localization of proteins during chemotaxis, the underagarose assay has become a widely used and quantitative assay for measuring several aspects of chemotaxis. The objective of this chapter is to provide protocols for (1) the generation of genetically altered PLB-985 cell lines, (2) the set-up of an underagarose chemotaxis assay, and (3) the analysis of cell movement in chemotactic gradients from an underagarose experiment.
Collapse
Affiliation(s)
- Cosmo A Saunders
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
| | - Ritankar Majumdar
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
| | - Yaniris Molina
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States; Cancer Research Summer Internship Program, Cancer Biology, University of Michigan, Ann Arbor, MI, United States
| | - Bhagawat C Subramanian
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Carole A Parent
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
61
|
Malik N, Sansom OJ, Michie AM. The role of mTOR-mediated signals during haemopoiesis and lineage commitment. Biochem Soc Trans 2018; 46:1313-1324. [PMID: 30154096 PMCID: PMC6195642 DOI: 10.1042/bst20180141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022]
Abstract
The serine/threonine protein kinase mechanistic target of rapamycin (mTOR) has been implicated in the regulation of an array of cellular functions including protein and lipid synthesis, proliferation, cell size and survival. Here, we describe the role of mTOR during haemopoiesis within the context of mTORC1 and mTORC2, the distinct complexes in which it functions. The use of conditional transgenic mouse models specifically targeting individual mTOR signalling components, together with selective inhibitors, have generated a significant body of research emphasising the critical roles played by mTOR, and individual mTOR complexes, in haemopoietic lineage commitment and development. This review will describe the profound role of mTOR in embryogenesis and haemopoiesis, underscoring the importance of mTORC1 at the early stages of haemopoietic cell development, through modulation of stem cell potentiation and self-renewal, and erythroid and B cell lineage commitment. Furthermore, the relatively discrete role of mTORC2 in haemopoiesis will be explored during T cell development and B cell maturation. Collectively, this review aims to highlight the functional diversity of mTOR signalling and underline the importance of this pathway in haemopoiesis.
Collapse
Affiliation(s)
- Natasha Malik
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, U.K
| | - Owen J Sansom
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, U.K
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, U.K
| | - Alison M Michie
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, U.K.
| |
Collapse
|
62
|
Subramanian BC, Majumdar R, Parent CA. The role of the LTB 4-BLT1 axis in chemotactic gradient sensing and directed leukocyte migration. Semin Immunol 2018; 33:16-29. [PMID: 29042024 DOI: 10.1016/j.smim.2017.07.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 06/07/2017] [Accepted: 07/13/2017] [Indexed: 12/11/2022]
Abstract
Directed leukocyte migration is a hallmark of inflammatory immune responses. Leukotrienes are derived from arachidonic acid and represent a class of potent lipid mediators of leukocyte migration. In this review, we summarize the essential steps leading to the production of LTB4 in leukocytes. We discuss the recent findings on the exosomal packaging and transport of LTB4 in the context of chemotactic gradients formation and regulation of leukocyte recruitment. We also discuss the dynamic roles of the LTB4 receptors, BLT1 and BLT2, in mediating chemotactic signaling in leukocytes and contrast them to other structurally related leukotrienes that bind to distinct GPCRs. Finally, we highlight the specific roles of the LTB4-BLT1 axis in mediating signal-relay between chemotaxing neutrophils and its potential contribution to a wide variety of inflammatory conditions including tumor progression and metastasis, where LTB4 is emerging as a key signaling component.
Collapse
Affiliation(s)
- Bhagawat C Subramanian
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, United States.
| | - Ritankar Majumdar
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, United States; Department of Pharmacology, University of Michigan School of Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Carole A Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, United States; Department of Pharmacology, University of Michigan School of Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
63
|
Pan M, Neilson MP, Grunfeld AM, Cruz P, Wen X, Insall RH, Jin T. A G-protein-coupled chemoattractant receptor recognizes lipopolysaccharide for bacterial phagocytosis. PLoS Biol 2018; 16:e2005754. [PMID: 29799847 PMCID: PMC5969738 DOI: 10.1371/journal.pbio.2005754] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/27/2018] [Indexed: 11/19/2022] Open
Abstract
Phagocytes locate microorganisms via chemotaxis and then consume them using phagocytosis. Dictyostelium amoebas are stereotypical phagocytes that prey on diverse bacteria using both processes. However, as typical phagocytic receptors, such as complement receptors or Fcγ receptors, have not been found in Dictyostelium, it remains mysterious how these cells recognize bacteria. Here, we show that a single G-protein-coupled receptor (GPCR), folic acid receptor 1 (fAR1), simultaneously recognizes the chemoattractant folate and the phagocytic cue lipopolysaccharide (LPS), a major component of bacterial surfaces. Cells lacking fAR1 or its cognate G-proteins are defective in chemotaxis toward folate and phagocytosis of Klebsiella aerogenes. Computational simulations combined with experiments show that responses associated with chemotaxis can also promote engulfment of particles coated with chemoattractants. Finally, the extracellular Venus-Flytrap (VFT) domain of fAR1 acts as the binding site for both folate and LPS. Thus, fAR1 represents a new member of the pattern recognition receptors (PRRs) and mediates signaling from both bacterial surfaces and diffusible chemoattractants to reorganize actin for chemotaxis and phagocytosis.
Collapse
Affiliation(s)
- Miao Pan
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | | | - Alexander M. Grunfeld
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | - Phillip Cruz
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xi Wen
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | | | - Tian Jin
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| |
Collapse
|
64
|
Wang X, Chen D. Purinergic Regulation of Neutrophil Function. Front Immunol 2018; 9:399. [PMID: 29545806 PMCID: PMC5837999 DOI: 10.3389/fimmu.2018.00399] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/13/2018] [Indexed: 12/28/2022] Open
Abstract
Purinergic signaling, which utilizes nucleotides (particularly ATP) and adenosine as transmitter molecules, plays an essential role in immune system. In the extracellular compartment, ATP predominantly functions as a pro-inflammatory molecule through activation of P2 receptors, whereas adenosine mostly functions as an anti-inflammatory molecule through activation of P1 receptors. Neutrophils are the most abundant immune cells in circulation and have emerged as an important component in orchestrating a complex series of events during inflammation. However, because of the destructive nature of neutrophil-derived inflammatory agents, neutrophil activation is fine-tuned, and purinergic signaling is intimately involved in this process. Indeed, shifting the balance between P2 and P1 signaling is critical for neutrophils to appropriately exert their immunologic activity. Here, we review the role of purinergic signaling in regulating neutrophil function, and discuss the potential of targeting purinergic signaling for the treatment of neutrophil-associated infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Xu Wang
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Deyu Chen
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
65
|
Reinwald M, Silva JT, Mueller NJ, Fortún J, Garzoni C, de Fijter JW, Fernández-Ruiz M, Grossi P, Aguado JM. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Intracellular signaling pathways: tyrosine kinase and mTOR inhibitors). Clin Microbiol Infect 2018; 24 Suppl 2:S53-S70. [PMID: 29454849 DOI: 10.1016/j.cmi.2018.02.009] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/08/2018] [Accepted: 02/11/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND The present review is part of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biologic therapies. AIMS To review, from an infectious diseases perspective, the safety profile of therapies targeting different intracellular signaling pathways and to suggest preventive recommendations. SOURCES Computer-based Medline searches with MeSH terms pertaining to each agent or therapeutic family. CONTENT Although BCR-ABL tyrosine kinase inhibitors modestly increase the overall risk of infection, dasatinib has been associated with cytomegalovirus and hepatitis B virus reactivation. BRAF/MEK kinase inhibitors do not significantly affect infection susceptibility. The effect of Bruton tyrosine kinase inhibitors (ibrutinib) among patients with B-cell malignancies is difficult to distinguish from that of previous immunosuppression. However, cases of Pneumocystis jirovecii pneumonia (PCP), invasive fungal infection and progressive multifocal leukoencephalopathy have been occasionally reported. Because phosphatidylinositol-3-kinase inhibitors (idelalisib) may predispose to opportunistic infections, anti-Pneumocystis prophylaxis and prevention strategies for cytomegalovirus are recommended. No increased rates of infection have been observed with venetoclax (antiapoptotic protein Bcl-2 inhibitor). Therapy with Janus kinase inhibitors markedly increases the incidence of infection. Pretreatment screening for chronic hepatitis B virus and latent tuberculosis infection must be performed, and anti-Pneumocystis prophylaxis should be considered for patients with additional risk factors. Cancer patients receiving mTOR inhibitors face an increased incidence of overall infection, especially those with additional risk factors (prior therapies or delayed wound healing). IMPLICATIONS Specific preventive approaches are warranted in view of the increased risk of infection associated with some of the reviewed agents.
Collapse
Affiliation(s)
- M Reinwald
- Department of Hematology and Oncology, Klinikum Brandenburg, Medizinische Hochschule Brandenburg Theodor Fontane, Brandenburg an der Havel, Germany.
| | - J T Silva
- Department of Infectious Diseases, University Hospital of Badajoz, Fundación para la Formación e Investigación de los Profesionales de la Salud (FundeSalud), Badajoz, Spain
| | - N J Mueller
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - J Fortún
- Department of Infectious Diseases, Hospital Universitario 'Ramon y Cajal', Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - C Garzoni
- Department of Internal Medicine, Clinica Luganese, Lugano, Switzerland; Department of Infectious Disease, Clinica Luganese, Lugano, Switzerland
| | - J W de Fijter
- Department of Medicine, Division of Nephrology, Leiden University Medical Centre, Leiden, The Netherlands
| | - M Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario '12 de Octubre', Instituto de Investigación Hospital '12 de Octubre' (i+12), School of Medicine, Universidad Complutense, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - P Grossi
- Department of Infectious and Tropical Diseases, University of Insubria, Ospedale di Circolo-Fondazioni Macchi, Varese, Italy
| | - J M Aguado
- Unit of Infectious Diseases, Hospital Universitario '12 de Octubre', Instituto de Investigación Hospital '12 de Octubre' (i+12), School of Medicine, Universidad Complutense, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
66
|
The role of mTOR-mediated signaling in the regulation of cellular migration. Immunol Lett 2018; 196:74-79. [PMID: 29408410 DOI: 10.1016/j.imlet.2018.01.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/25/2018] [Accepted: 01/31/2018] [Indexed: 12/11/2022]
Abstract
Mechanistic target for rapamycin (mTOR) is a serine/threonine protein kinase that forms two distinct complexes mTORC1 and mTORC2, integrating mitogen and nutrient signals to regulate cell survival and proliferation; processes which are commonly deregulated in human cancers. mTORC1 and mTORC2 have divergent molecular associations and cellular functions: mTORC1 regulates in mRNA translation and protein synthesis, while mTORC2 is involved in the regulation of cellular survival and metabolism. Through AKT phosphorylation/activation, mTORC2 has also been reported to regulate cell migration. Recent attention has focused on the aberrant activation of the PI3K/mTOR pathway in B cell malignancies and there is growing evidence for its involvement in disease pathogenesis, due to its location downstream of other established novel drug targets that intercept B cell receptor (BCR) signals. Shared pharmacological features of BCR signal inhibitors include a striking "lymphocyte redistribution" effect whereby patients experience a sharp increase in lymphocyte count on initiation of therapy followed by a steady decline. Chronic lymphocytic leukemia (CLL) serves as a paradigm for migration studies as lymphocytes are among the most widely travelled cells in the body, a product of their role in immunological surveillance. The subversion of normal lymphocyte movement in CLL is being elucidated; this review aims to describe the migration impairment which occurs as part of the wider context of cancer cell migration defects, with a focus on the role of mTOR in mediating migration effects downstream of BCR ligation and other microenvironmental signals.
Collapse
|
67
|
Function of Adenylyl Cyclase in Heart: the AKAP Connection. J Cardiovasc Dev Dis 2018; 5:jcdd5010002. [PMID: 29367580 PMCID: PMC5872350 DOI: 10.3390/jcdd5010002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 12/13/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP), synthesized by adenylyl cyclase (AC), is a universal second messenger that regulates various aspects of cardiac physiology from contraction rate to the initiation of cardioprotective stress response pathways. Local pools of cAMP are maintained by macromolecular complexes formed by A-kinase anchoring proteins (AKAPs). AKAPs facilitate control by bringing together regulators of the cAMP pathway including G-protein-coupled receptors, ACs, and downstream effectors of cAMP to finely tune signaling. This review will summarize the distinct roles of AC isoforms in cardiac function and how interactions with AKAPs facilitate AC function, highlighting newly appreciated roles for lesser abundant AC isoforms.
Collapse
|
68
|
Mitochondrial Stress Tests Using Seahorse Respirometry on Intact Dictyostelium discoideum Cells. Methods Mol Biol 2017; 1407:41-61. [PMID: 27271893 DOI: 10.1007/978-1-4939-3480-5_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mitochondria not only play a critical and central role in providing metabolic energy to the cell but are also integral to the other cellular processes such as modulation of various signaling pathways. These pathways affect many aspects of cell physiology, including cell movement, growth, division, differentiation, and death. Mitochondrial dysfunction which affects mitochondrial bioenergetics and causes oxidative phosphorylation defects can thus lead to altered cellular physiology and manifest in disease. The assessment of the mitochondrial bioenergetics can thus provide valuable insights into the physiological state, and the alterations to the state of the cells. Here, we describe a method to successfully use the Seahorse XF(e)24 Extracellular Flux Analyzer to assess the mitochondrial respirometry of the cellular slime mold Dictyostelium discoideum.
Collapse
|
69
|
Hong J, Dicker BL, Jayasinghe SN, De Gregorio F, Tian H, Han DY, Hudson KR. Strong inhibition of neutrophil–sperm interaction in cattle by selective phosphatidylinositol 3-kinase inhibitors†. Biol Reprod 2017; 97:671-687. [DOI: 10.1093/biolre/iox121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/01/2017] [Indexed: 12/26/2022] Open
|
70
|
Umezawa Y, Akiyama H, Okada K, Ishida S, Nogami A, Oshikawa G, Kurosu T, Miura O. Molecular mechanisms for enhancement of stromal cell-derived factor 1-induced chemotaxis by platelet endothelial cell adhesion molecule 1 (PECAM-1). J Biol Chem 2017; 292:19639-19655. [PMID: 28974577 DOI: 10.1074/jbc.m117.779603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 09/26/2017] [Indexed: 01/16/2023] Open
Abstract
Platelet endothelial cell adhesion molecule 1 (PECAM-1) is a cell adhesion protein involved in the regulation of cell adhesion and migration. Interestingly, several PECAM-1-deficient hematopoietic cells exhibit impaired chemotactic responses to stromal cell-derived factor 1 (SDF-1), a chemokine essential for B lymphopoiesis and bone marrow myelopoiesis. However, whether PECAM-1 is involved in SDF-1-regulated chemotaxis is unknown. We report here that SDF-1 induces tyrosine phosphorylation of PECAM-1 at its immunoreceptor tyrosine-based inhibition motifs in several hematopoietic cell lines via the Src family kinase Lyn, Bruton's tyrosine kinase, and JAK2 and that inhibition of these kinases reduced chemotaxis. Overexpression and knockdown of PECAM-1 enhanced and down-regulated, respectively, SDF-1-induced Gαi-dependent activation of the PI3K/Akt/mTORC1 pathway and small GTPase Rap1 in hematopoietic 32Dcl3 cells, and these changes in activation correlated with chemotaxis. Furthermore, pharmacological or genetic inhibition of the PI3K/Akt/mTORC1 pathway or Rap1, respectively, revealed that these pathways are independently activated and required for SDF-1-induced chemotaxis. When coexpressed in 293T cells, PECAM-1 physically associated with the SDF-1 receptor CXCR4. Moreover, PECAM-1 overexpression and knockdown reduced and enhanced SDF-1-induced endocytosis of CXCR4, respectively. Furthermore, when expressed in 32Dcl3 cells, an endocytosis-defective CXCR4 mutant, CXCR4-S324A/S325A, could activate the PI3K/Akt/mTORC1 pathway as well as Rap1 and induce chemotaxis in a manner similar to PECAM-1 overexpression. These findings suggest that PECAM-1 enhances SDF-1-induced chemotaxis by augmenting and prolonging activation of the PI3K/Akt/mTORC1 pathway and Rap1 and that PECAM-1, at least partly, exerts its activity by inhibiting SDF-1-induced internalization of CXCR4.
Collapse
Affiliation(s)
- Yoshihiro Umezawa
- From the Department of Hematology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo 113-8519, Japan
| | - Hiroki Akiyama
- From the Department of Hematology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo 113-8519, Japan
| | - Keigo Okada
- From the Department of Hematology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo 113-8519, Japan
| | - Shinya Ishida
- From the Department of Hematology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo 113-8519, Japan
| | - Ayako Nogami
- From the Department of Hematology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo 113-8519, Japan
| | - Gaku Oshikawa
- From the Department of Hematology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo 113-8519, Japan
| | - Tetsuya Kurosu
- From the Department of Hematology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo 113-8519, Japan
| | - Osamu Miura
- From the Department of Hematology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo 113-8519, Japan
| |
Collapse
|
71
|
Jones RG, Pearce EJ. MenTORing Immunity: mTOR Signaling in the Development and Function of Tissue-Resident Immune Cells. Immunity 2017; 46:730-742. [PMID: 28514674 DOI: 10.1016/j.immuni.2017.04.028] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/24/2017] [Accepted: 04/28/2017] [Indexed: 12/31/2022]
Abstract
Tissue-resident immune cells must balance survival in peripheral tissues with the capacity to respond rapidly upon infection or tissue damage, and in turn couple these responses with intrinsic metabolic control and conditions in the tissue microenvironment. The serine/threonine kinase mammalian/mechanistic target of rapamycin (mTOR) is a central integrator of extracellular and intracellular growth signals and cellular metabolism and plays important roles in both innate and adaptive immune responses. This review discusses the function of mTOR signaling in the differentiation and function of tissue-resident immune cells, with focus on the role of mTOR as a metabolic sensor and its impact on metabolic regulation in innate and adaptive immune cells. We also discuss the impact of metabolic constraints in tissues on immune homeostasis and disease, and how manipulating mTOR activity with drugs such as rapamycin can modulate immunity in these contexts.
Collapse
Affiliation(s)
- Russell G Jones
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada.
| | - Edward J Pearce
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
72
|
Siripurapu P, Kankanamge D, Ratnayake K, Senarath K, Karunarathne A. Two independent but synchronized Gβγ subunit-controlled pathways are essential for trailing-edge retraction during macrophage migration. J Biol Chem 2017; 292:17482-17495. [PMID: 28864771 DOI: 10.1074/jbc.m117.787838] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/27/2017] [Indexed: 12/25/2022] Open
Abstract
Chemokine-induced directional cell migration is a universal cellular mechanism and plays crucial roles in numerous biological processes, including embryonic development, immune system function, and tissue remodeling and regeneration. During the migration of a stationary cell, the cell polarizes, forms lamellipodia at the leading edge (LE), and triggers the concurrent retraction of the trailing edge (TE). During cell migration governed by inhibitory G protein (Gi)-coupled receptors (GPCRs), G protein βγ (Gβγ) subunits control the LE signaling. Interestingly, TE retraction has been linked to the activation of the small GTPase Ras homolog family member A (RhoA) by the Gα12/13 pathway. However, it is not clear how the activation of Gi-coupled GPCRs at the LE orchestrates the TE retraction in RAW264.7 macrophages. Here, using an optogenetic approach involving an opsin to activate the Gi pathway in defined subcellular regions of RAW cells, we show that in addition to their LE activities, free Gβγ subunits also govern TE retraction by operating two independent, yet synchronized, pathways. The first pathway involves RhoA activation, which prevents dephosphorylation of the myosin light chain, allowing actomyosin contractility to proceed. The second pathway activates phospholipase Cβ and induces myosin light chain phosphorylation to enhance actomyosin contractility through increasing cytosolic calcium. We further show that both of these pathways are essential, and inhibition of either one is sufficient to abolish the Gi-coupled GPCR-governed TE retraction and subsequent migration of RAW cells.
Collapse
Affiliation(s)
- Praneeth Siripurapu
- From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606
| | - Dinesh Kankanamge
- From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606
| | - Kasun Ratnayake
- From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606
| | - Kanishka Senarath
- From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606
| | - Ajith Karunarathne
- From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606
| |
Collapse
|
73
|
Huang L, Zhang Y, Xu C, Gu X, Niu L, Wang J, Sun X, Bai X, Xuan X, Li Q, Shi C, Yu B, Miller H, Yang G, Westerberg LS, Liu W, Song W, Zhao X, Liu C. Rictor positively regulates B cell receptor signaling by modulating actin reorganization via ezrin. PLoS Biol 2017; 15:e2001750. [PMID: 28821013 PMCID: PMC5562439 DOI: 10.1371/journal.pbio.2001750] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 07/25/2017] [Indexed: 01/13/2023] Open
Abstract
As the central hub of the metabolism machinery, the mammalian target of rapamycin complex 2 (mTORC2) has been well studied in lymphocytes. As an obligatory component of mTORC2, the role of Rictor in T cells is well established. However, the role of Rictor in B cells still remains elusive. Rictor is involved in B cell development, especially the peripheral development. However, the role of Rictor on B cell receptor (BCR) signaling as well as the underlying cellular and molecular mechanism is still unknown. This study used B cell-specfic Rictor knockout (KO) mice to investigate how Rictor regulates BCR signaling. We found that the key positive and negative BCR signaling molecules, phosphorylated Brutons tyrosine kinase (pBtk) and phosphorylated SH2-containing inositol phosphatase (pSHIP), are reduced and enhanced, respectively, in Rictor KO B cells. This suggests that Rictor positively regulates the early events of BCR signaling. We found that the cellular filamentous actin (F-actin) is drastically increased in Rictor KO B cells after BCR stimulation through dysregulating the dephosphorylation of ezrin. The high actin-ezrin intensity area restricts the lateral movement of BCRs upon stimulation, consequently reducing BCR clustering and BCR signaling. The reduction in the initiation of BCR signaling caused by actin alteration is associated with a decreased humoral immune response in Rictor KO mice. The inhibition of actin polymerization with latrunculin in Rictor KO B cells rescues the defects of BCR signaling and B cell differentiation. Overall, our study provides a new pathway linking cell metablism to BCR activation, in which Rictor regulates BCR signaling via actin reorganization.
Collapse
Affiliation(s)
- Lu Huang
- Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yongjie Zhang
- Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Chenguang Xu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Xiaomei Gu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Linlin Niu
- Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Jinzhi Wang
- Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyu Sun
- Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoming Bai
- Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xingtian Xuan
- Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Qubei Li
- Children’s Hospital Respiratory Center of Chongqing Medical University, Chongqing, China
| | - Chunwei Shi
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Yu
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- Department of Intracellular Pathogens, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, United States of America
| | - Gangyi Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lisa S. Westerberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Xiaodong Zhao
- Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
74
|
Loss of type 9 adenylyl cyclase triggers reduced phosphorylation of Hsp20 and diastolic dysfunction. Sci Rep 2017; 7:5522. [PMID: 28717248 PMCID: PMC5514062 DOI: 10.1038/s41598-017-05816-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/05/2017] [Indexed: 01/16/2023] Open
Abstract
Adenylyl cyclase type 9 (AC9) is found tightly associated with the scaffolding protein Yotiao and the IKs ion channel in heart. But apart from potential IKs regulation, physiological roles for AC9 are unknown. We show that loss of AC9 in mice reduces less than 3% of total AC activity in heart but eliminates Yotiao-associated AC activity. AC9−/− mice exhibit no structural abnormalities but show a significant bradycardia, consistent with AC9 expression in sinoatrial node. Global changes in PKA phosphorylation patterns are not altered in AC9−/− heart, however, basal phosphorylation of heat shock protein 20 (Hsp20) is significantly decreased. Hsp20 binds AC9 in a Yotiao-independent manner and deletion of AC9 decreases Hsp20-associated AC activity in heart. In addition, expression of catalytically inactive AC9 in neonatal cardiomyocytes decreases isoproterenol-stimulated Hsp20 phosphorylation, consistent with an AC9-Hsp20 complex. Phosphorylation of Hsp20 occurs largely in ventricles and is vital for the cardioprotective effects of Hsp20. Decreased Hsp20 phosphorylation suggests a potential baseline ventricular defect for AC9−/−. Doppler echocardiography of AC9−/− displays a decrease in the early ventricular filling velocity and ventricular filling ratio (E/A), indicative of grade 1 diastolic dysfunction and emphasizing the importance of local cAMP production in the context of macromolecular complexes.
Collapse
|
75
|
AKT/PKB Signaling: Navigating the Network. Cell 2017; 169:381-405. [PMID: 28431241 DOI: 10.1016/j.cell.2017.04.001] [Citation(s) in RCA: 2600] [Impact Index Per Article: 325.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 03/29/2017] [Accepted: 03/31/2017] [Indexed: 12/14/2022]
Abstract
The Ser and Thr kinase AKT, also known as protein kinase B (PKB), was discovered 25 years ago and has been the focus of tens of thousands of studies in diverse fields of biology and medicine. There have been many advances in our knowledge of the upstream regulatory inputs into AKT, key multifunctional downstream signaling nodes (GSK3, FoxO, mTORC1), which greatly expand the functional repertoire of AKT, and the complex circuitry of this dynamically branching and looping signaling network that is ubiquitous to nearly every cell in our body. Mouse and human genetic studies have also revealed physiological roles for the AKT network in nearly every organ system. Our comprehension of AKT regulation and functions is particularly important given the consequences of AKT dysfunction in diverse pathological settings, including developmental and overgrowth syndromes, cancer, cardiovascular disease, insulin resistance and type 2 diabetes, inflammatory and autoimmune disorders, and neurological disorders. There has also been much progress in developing AKT-selective small molecule inhibitors. Improved understanding of the molecular wiring of the AKT signaling network continues to make an impact that cuts across most disciplines of the biomedical sciences.
Collapse
|
76
|
Abstract
Cell motility is required for diverse biological processes including development, homing of immune cells, wound healing, and cancer cell invasion. Motile neutrophils exhibit a polarized morphology characterized by the formation of leading-edge pseudopods and a highly contractile cell rear known as the uropod. Although it is known that perturbing uropod formation impairs neutrophil migration, the role of the uropod in cell polarization and motility remains incompletely understood. Here we discuss cell intrinsic mechanisms that regulate neutrophil polarization and motility, with a focus on the uropod, and examine how relationships among regulatory mechanisms change when cells change their direction of migration.
Collapse
|
77
|
Kim LW. Dual TORCs driven and B56 orchestrated signaling network guides eukaryotic cell migration. BMB Rep 2017; 50:437-444. [PMID: 28571594 PMCID: PMC5625690 DOI: 10.5483/bmbrep.2017.50.9.091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Indexed: 11/20/2022] Open
Abstract
Different types of eukaryotic cells may adopt seemingly distinct modes of directional cell migration. However, several core aspects are regarded common whether the movement is either ameoboidal or mesenchymal. The region of cells facing the attractive signal is often termed leading edge where lamellipodial structures dominates and the other end of the cell called rear end is often mediating cytoskeletal F-actin contraction involving Myosin-II. Dynamic remodeling of cell-to-matrix adhesion involving integrin is also evident in many types of migrating cells. All these three aspects of cell migration are significantly affected by signaling networks of TorC2, TorC1, and PP2A/B56. Here we review the current views of the mechanistic understanding of these regulatory signaling networks and how these networks affect eukaryotic cell migration.
Collapse
Affiliation(s)
- Lou W Kim
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
78
|
Endotoxin-induced autocrine ATP signaling inhibits neutrophil chemotaxis through enhancing myosin light chain phosphorylation. Proc Natl Acad Sci U S A 2017; 114:4483-4488. [PMID: 28396412 DOI: 10.1073/pnas.1616752114] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although the neutrophil recruitment cascade during inflammation has been well described, the molecular players that halt neutrophil chemotaxis remain unclear. In this study, we found that lipopolysaccharide (LPS) was a potent stop signal for chemotactic neutrophil migration. Treatment with an antagonist of the ATP receptor (P2X1) in primary human neutrophils or knockout of the P2X1 receptor in neutrophil-like differentiated HL-60 (dHL-60) cells recovered neutrophil chemotaxis. Further observations showed that LPS-induced ATP release through connexin 43 (Cx43) hemichannels was responsible for the activation of the P2X1 receptor and the subsequent calcium influx. Increased intracellular calcium stopped neutrophil chemotaxis by activating myosin light chain (MLC) through the myosin light chain kinase (MLCK)-dependent pathway. Taken together, these data identify a previously unknown function of LPS-induced autocrine ATP signaling in inhibiting neutrophil chemotaxis by enhancing MLC phosphorylation, which provides important evidence that stoppage of neutrophil chemotaxis at infectious foci plays a key role in the defense against invading pathogens.
Collapse
|
79
|
Dessauer CW, Watts VJ, Ostrom RS, Conti M, Dove S, Seifert R. International Union of Basic and Clinical Pharmacology. CI. Structures and Small Molecule Modulators of Mammalian Adenylyl Cyclases. Pharmacol Rev 2017; 69:93-139. [PMID: 28255005 PMCID: PMC5394921 DOI: 10.1124/pr.116.013078] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adenylyl cyclases (ACs) generate the second messenger cAMP from ATP. Mammalian cells express nine transmembrane AC (mAC) isoforms (AC1-9) and a soluble AC (sAC, also referred to as AC10). This review will largely focus on mACs. mACs are activated by the G-protein Gαs and regulated by multiple mechanisms. mACs are differentially expressed in tissues and regulate numerous and diverse cell functions. mACs localize in distinct membrane compartments and form signaling complexes. sAC is activated by bicarbonate with physiologic roles first described in testis. Crystal structures of the catalytic core of a hybrid mAC and sAC are available. These structures provide detailed insights into the catalytic mechanism and constitute the basis for the development of isoform-selective activators and inhibitors. Although potent competitive and noncompetitive mAC inhibitors are available, it is challenging to obtain compounds with high isoform selectivity due to the conservation of the catalytic core. Accordingly, caution must be exerted with the interpretation of intact-cell studies. The development of isoform-selective activators, the plant diterpene forskolin being the starting compound, has been equally challenging. There is no known endogenous ligand for the forskolin binding site. Recently, development of selective sAC inhibitors was reported. An emerging field is the association of AC gene polymorphisms with human diseases. For example, mutations in the AC5 gene (ADCY5) cause hyperkinetic extrapyramidal motor disorders. Overall, in contrast to the guanylyl cyclase field, our understanding of the (patho)physiology of AC isoforms and the development of clinically useful drugs targeting ACs is still in its infancy.
Collapse
Affiliation(s)
- Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Val J Watts
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Rennolds S Ostrom
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Marco Conti
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Stefan Dove
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Roland Seifert
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| |
Collapse
|
80
|
Liao XH, Kimmel AR. A Unique High-Throughput Assay to Identify Novel Small Molecule Inhibitors of Chemotaxis and Migration. ACTA ACUST UNITED AC 2017; 74:12.11.1-12.11.13. [PMID: 28256720 DOI: 10.1002/cpcb.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chemotaxis and cell migration play pivotal roles in normal physiological processes such as embryogenesis, inflammation, and wound healing, as well as in pathological processes including chronic inflammatory disease and cancer metastasis. Novel chemotaxis/migration inhibitors are desirable for developing effective therapeutics and probing molecular mechanisms. We describe a fluorescence-based phenotypic assay in a 1536-well plate format for high-throughput screening of novel inhibitors of chemotaxis/migration within complex libraries of thousands of compounds. Although the assay utilizes the unique cellular response properties of Dictyostelium, the compounds identified are able to inhibit chemotaxis of mammalian cells. In addition, a parallel cell cytotoxicity counter-screen with an ATP content assay is described that eliminates cytotoxic compounds from the screen. This novel compound screening approach enables rapid identification of novel lead compounds that inhibit chemotaxis in human and other cells for drug development and research tools. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Xin-Hua Liao
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, and Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China
| | - Alan R Kimmel
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
81
|
Tardif JC, Rhainds D, Rhéaume E, Dubé MP. CETP. Arterioscler Thromb Vasc Biol 2017; 37:396-400. [DOI: 10.1161/atvbaha.116.307122] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/18/2017] [Indexed: 11/16/2022]
Abstract
High-density lipoproteins are involved in reverse cholesterol transport and possess anti-inflammatory and antioxidative properties. Paradoxically, CETP (cholesteryl ester transfer protein) inhibitors have been shown to increase inflammation as revealed by a raised plasma level of high-sensitivity C-reactive protein. CETP inhibitors did not improve clinical outcomes in large-scale clinical trials of unselected patients with coronary disease. Dalcetrapib is a CETP modulator for which effects on cardiovascular outcomes were demonstrated in the dal-OUTCOMES trial to be influenced by correlated polymorphisms in the
ADCY9
(adenylate cyclase type 9) gene (
P
=2.4×10
−8
for rs1967309). Patients with the AA genotype at rs1967309 had a relative reduction of 39% in the risk of presenting a cardiovascular event when treated with dalcetrapib compared with placebo (95% confidence interval, 0.41–0.92). In contrast, patients with the GG genotype had a 27% increase in risk, whereas heterozygotes (AG) presented a neutral result. Supporting evidence from the dal-PLAQUE-2 study using carotid ultrasonography revealed that the polymorphisms tested in the
ADCY9
linkage disequilibrium block were associated with disease regression for patients with the protective genotype, progression for the harmful genotype, and no effect in heterozygotes (
P
≤0.05 and ≤0.01 for 10 and 3 polymorphisms, respectively) when comparing dalcetrapib to placebo. Strikingly concordant and significant genotype-dependent effects of dalcetrapib were also obtained for changes in high-sensitivity C-reactive protein and cholesterol efflux capacity. The Dal-GenE randomized trial is currently being conducted in patients with a recent acute coronary syndrome bearing the AA genotype at rs1967309 in the
ADCY9
gene to confirm the effects of dalcetrapib on hard cardiovascular outcomes.
Collapse
Affiliation(s)
- Jean-Claude Tardif
- From the Montreal Heart Institute (J.-C.T., D.R., E.R., M.-P.D.) and Department of Medicine, Université de Montréal, Quebec, Canada (J.-C.T., E.R., M.-P.D.); and Université de Montréal Beaulieu-Saucier Pharmacogenomics Center, Quebec, Canada (M.-P.D.)
| | - David Rhainds
- From the Montreal Heart Institute (J.-C.T., D.R., E.R., M.-P.D.) and Department of Medicine, Université de Montréal, Quebec, Canada (J.-C.T., E.R., M.-P.D.); and Université de Montréal Beaulieu-Saucier Pharmacogenomics Center, Quebec, Canada (M.-P.D.)
| | - Eric Rhéaume
- From the Montreal Heart Institute (J.-C.T., D.R., E.R., M.-P.D.) and Department of Medicine, Université de Montréal, Quebec, Canada (J.-C.T., E.R., M.-P.D.); and Université de Montréal Beaulieu-Saucier Pharmacogenomics Center, Quebec, Canada (M.-P.D.)
| | - Marie-Pierre Dubé
- From the Montreal Heart Institute (J.-C.T., D.R., E.R., M.-P.D.) and Department of Medicine, Université de Montréal, Quebec, Canada (J.-C.T., E.R., M.-P.D.); and Université de Montréal Beaulieu-Saucier Pharmacogenomics Center, Quebec, Canada (M.-P.D.)
| |
Collapse
|
82
|
Vázquez-Prado J, Bracho-Valdés I, Cervantes-Villagrana RD, Reyes-Cruz G. Gβγ Pathways in Cell Polarity and Migration Linked to Oncogenic GPCR Signaling: Potential Relevance in Tumor Microenvironment. Mol Pharmacol 2016; 90:573-586. [PMID: 27638873 DOI: 10.1124/mol.116.105338] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/14/2016] [Indexed: 02/14/2025] Open
Abstract
Cancer cells and stroma cells in tumors secrete chemotactic agonists that exacerbate invasive behavior, promote tumor-induced angiogenesis, and recruit protumoral bone marrow-derived cells. In response to shallow gradients of chemotactic stimuli recognized by G protein-coupled receptors (GPCRs), Gβγ-dependent signaling cascades contribute to specifying the spatiotemporal assembly of cytoskeletal structures that can dynamically alter cell morphology. This sophisticated process is intrinsically linked to the activation of Rho GTPases and their cytoskeletal-remodeling effectors. Thus, Rho guanine nucleotide exchange factors, the activators of these molecular switches, and their upstream signaling partners are considered participants of tumor progression. Specifically, phosphoinositide-3 kinases (class I PI3Ks, β and γ) and P-Rex1, a Rac-specific guanine nucleotide exchange factor, are fundamental Gβγ effectors in the pathways controlling directionally persistent motility. In addition, GPCR-dependent chemotactic responses often involve endosomal trafficking of signaling proteins; coincidently, endosomes serve as signaling platforms for Gβγ In preclinical murine models of cancer, inhibition of Gβγ attenuates tumor growth, whereas in cancer patients, aberrant overexpression of chemotactic Gβγ effectors and recently identified mutations in Gβ correlate with poor clinical outcome. Here we discuss emerging paradigms of Gβγ signaling in cancer, which are essential for chemotactic cell migration and represent novel opportunities to develop pathway-specific pharmacologic treatments.
Collapse
Affiliation(s)
- José Vázquez-Prado
- Departments of Pharmacology (J.V.-P., R.D.C.-V.) and Cell Biology (G.R.-C.). CINVESTAV-IPN, Mexico City, and Department of Pharmacology (I.B.-V.), School of Medicine, UABC, Mexicali, B.C., Mexico
| | - Ismael Bracho-Valdés
- Departments of Pharmacology (J.V.-P., R.D.C.-V.) and Cell Biology (G.R.-C.). CINVESTAV-IPN, Mexico City, and Department of Pharmacology (I.B.-V.), School of Medicine, UABC, Mexicali, B.C., Mexico
| | - Rodolfo Daniel Cervantes-Villagrana
- Departments of Pharmacology (J.V.-P., R.D.C.-V.) and Cell Biology (G.R.-C.). CINVESTAV-IPN, Mexico City, and Department of Pharmacology (I.B.-V.), School of Medicine, UABC, Mexicali, B.C., Mexico
| | - Guadalupe Reyes-Cruz
- Departments of Pharmacology (J.V.-P., R.D.C.-V.) and Cell Biology (G.R.-C.). CINVESTAV-IPN, Mexico City, and Department of Pharmacology (I.B.-V.), School of Medicine, UABC, Mexicali, B.C., Mexico
| |
Collapse
|
83
|
Wu D, Yu D, Wang X, Yu B. F-actin rearrangement is regulated by mTORC2/Akt/Girdin in mouse fertilized eggs. Cell Prolif 2016; 49:740-750. [PMID: 27666957 PMCID: PMC6496183 DOI: 10.1111/cpr.12285] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/11/2016] [Indexed: 12/27/2022] Open
Abstract
In mouse fertilized eggs, correct assembly and distribution of the actin cytoskeleton are intimately related to cleavage in early‐stage embryos. However, in mouse fertilized eggs, mechanisms and involved factors responsible for regulating the actin cytoskeleton are poorly defined. In this study, mTORC2, PKB/Akt and Girdin were found to modulate division of mouse fertilized eggs by regulating distribution of the actin cytoskeleton. RNA interference (RNAi)‐mediated depletion of mTORC2, Akt1 or Girdin disrupted F‐actin rearrangement and strongly inhibited egg development. PKB/Akt has been proven to be a downstream target of the mTORC2 signalling pathway. Girdin, a newly found actin cross‐linker, has been proven to be a downstream target of the Akt signalling pathway. Furthermore, phosphorylation of both Akt1 and girdin was affected by knockdown of mTORC2. Akt1 positively regulated development of the mouse fertilized eggs by girdin‐mediated F‐actin rearrangement. Thus it seems that girdin could be a downstream target of the Akt1‐mediated signalling pathway. Collectively, this study aimed to prove participation of mTORC2/Akt in F‐actin assembly in early‐stage cleavage of mouse fertilized eggs via the function of girdin. Objectives In mouse fertilized eggs, the proper assembly and distribution of actin cytoskeleton is intimately related with the cleavage of early‐stage embryo. However, in mammals, especially in mouse fertilized eggs, the mechanisms and involved factors responsible for regulating the actin cytoskeleton are poorly defined. The aim of this study was to determine the role of mTORC2,PKB/Akt and Girdin in early development of fertilized mouse eggs, via regulating the distribution of actin cytoskeleton. Materials and methods Changes of F‐actin after treatting with mTORC2 shRNA, Akt siRNA or Girdin siRNA were observed by Immunofluorescence staining and laser‐scanning confocal microscopy. Levels of phosphorylated Girdin at Se1417 were detected by Western immunoblotting. Percentages of cells undergoing division were determined by counting, using a dissecting microscope. Results RNA interference (RNAi)‐mediated depletion of mTORC2, Akt1 or Girdin disrupts F‐actin rearrangement, and remarkably inhibited the development of mouse‐fertilized eggs. PKB/Akt has been proved to be a downstream target of the mTORC2 signaling pathway. Girdin, the newly found actin‐cross linker, has been proved to be a downstream target of the Akt signaling pathway. Furthermore phosphorylation of both Akt1 and Girdin were affected by knockdown of mTORC2. Akt1 positively regulates the development of mouse‐fertilized eggs by Girdin mediated F‐actin rearrangement. Girdin could be a downstream target of the Akt1‐mediated signaling pathway. Conclusions Collectively, this study aimed to prove the participation of mTORC2/Akt in F‐actin assembling in early‐stage cleavage of mouse fertilized eggs via the function of Girdin.
Collapse
Affiliation(s)
- Didi Wu
- Department of Biochemical and Molecular Biology, China Medical University, Shenyang, China
| | - Dahai Yu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Xiuxia Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China.
| | - Bingzhi Yu
- Department of Biochemical and Molecular Biology, China Medical University, Shenyang, China.
| |
Collapse
|
84
|
Diz-Muñoz A, Romanczuk P, Yu W, Bergert M, Ivanovitch K, Salbreux G, Heisenberg CP, Paluch EK. Steering cell migration by alternating blebs and actin-rich protrusions. BMC Biol 2016; 14:74. [PMID: 27589901 PMCID: PMC5010735 DOI: 10.1186/s12915-016-0294-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/08/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High directional persistence is often assumed to enhance the efficiency of chemotactic migration. Yet, cells in vivo usually display meandering trajectories with relatively low directional persistence, and the control and function of directional persistence during cell migration in three-dimensional environments are poorly understood. RESULTS Here, we use mesendoderm progenitors migrating during zebrafish gastrulation as a model system to investigate the control of directional persistence during migration in vivo. We show that progenitor cells alternate persistent run phases with tumble phases that result in cell reorientation. Runs are characterized by the formation of directed actin-rich protrusions and tumbles by enhanced blebbing. Increasing the proportion of actin-rich protrusions or blebs leads to longer or shorter run phases, respectively. Importantly, both reducing and increasing run phases result in larger spatial dispersion of the cells, indicative of reduced migration precision. A physical model quantitatively recapitulating the migratory behavior of mesendoderm progenitors indicates that the ratio of tumbling to run times, and thus the specific degree of directional persistence of migration, are critical for optimizing migration precision. CONCLUSIONS Together, our experiments and model provide mechanistic insight into the control of migration directionality for cells moving in three-dimensional environments that combine different protrusion types, whereby the proportion of blebs to actin-rich protrusions determines the directional persistence and precision of movement by regulating the ratio of tumbling to run times.
Collapse
Affiliation(s)
- Alba Diz-Muñoz
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany.
- International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland.
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany.
| | - Pawel Romanczuk
- Max Planck Institute for the Physics of Complex Systems, Dresden, 01187, Germany.
- Department of Biology, Institute of Theoretical Biology, Humboldt University, Berlin, 10115, Germany.
| | - Weimiao Yu
- Institute of Molecular and Cell Biology, A-STAR, Singapore, 138673, Singapore
| | - Martin Bergert
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
- International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, WC1E 6BT, London, UK
| | - Kenzo Ivanovitch
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, WC1E 6BT, London, UK
- Present address: Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | - Guillaume Salbreux
- Max Planck Institute for the Physics of Complex Systems, Dresden, 01187, Germany
- The Francis Crick Institute, Lincoln's Inn Fields Laboratories, 44 Lincolns Inn Fields, London, WC2A 3LY, UK
| | | | - Ewa K Paluch
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
- International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, WC1E 6BT, London, UK
| |
Collapse
|
85
|
Gera N, Swanson KD, Jin T. β-Arrestin 1-dependent regulation of Rap2 is required for fMLP-stimulated chemotaxis in neutrophil-like HL-60 cells. J Leukoc Biol 2016; 101:239-251. [PMID: 27493245 DOI: 10.1189/jlb.2a1215-572r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 06/13/2016] [Accepted: 07/15/2016] [Indexed: 01/14/2023] Open
Abstract
β-Arrestins have emerged as key regulators of cytoskeletal rearrangement that are required for directed cell migration. Whereas it is known that β-arrestins are required for formyl-Met-Leu-Phe receptor (FPR) recycling, less is known about their role in regulating FPR-mediated neutrophil chemotaxis. Here, we show that β-arrestin 1 (ArrB1) coaccumulated with F-actin within the leading edge of neutrophil-like HL-60 cells during chemotaxis, and its knockdown resulted in markedly reduced migration within fMLP gradients. The small GTPase Ras-related protein 2 (Rap2) was found to bind ArrB1 under resting conditions but dissociated upon fMLP stimulation. The FPR-dependent activation of Rap2 required ArrB1 but was independent of Gαi activity. Significantly, depletion of either ArrB1 or Rap2 resulted in reduced chemotaxis and defects in cellular repolarization within fMLP gradients. These data strongly suggest a model in which FPR is able to direct ArrB1 and other bound proteins that are required for lamellipodial extension to the leading edge in migrating neutrophils, thereby orientating and directing cell migration.
Collapse
Affiliation(s)
- Nidhi Gera
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA; and
| | - Kenneth D Swanson
- Department of Neurology, Division of Neuro-Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Tian Jin
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA; and
| |
Collapse
|
86
|
Pan M, Xu X, Chen Y, Jin T. Identification of a Chemoattractant G-Protein-Coupled Receptor for Folic Acid that Controls Both Chemotaxis and Phagocytosis. Dev Cell 2016; 36:428-39. [PMID: 26906738 DOI: 10.1016/j.devcel.2016.01.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/09/2015] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
Abstract
Eukaryotic phagocytes search and destroy invading microorganisms via chemotaxis and phagocytosis. The social amoeba Dictyostelium discoideum is a professional phagocyte that chases bacteria through chemotaxis and engulfs them as food via phagocytosis. G-protein-coupled receptors (GPCRs) are known for detecting chemoattractants and directing cell migration, but their roles in phagocytosis are not clear. Here, we developed a quantitative phosphoproteomic technique to discover signaling components. Using this approach, we discovered the long sought after folic acid receptor, fAR1, in D. discoideum. We showed that the seven-transmembrane receptor fAR1 is required for folic acid-mediated signaling events. Significantly, we discovered that fAR1 is essential for both chemotaxis and phagocytosis of bacteria, thereby representing a chemoattractant GPCR that mediates not only chasing but also ingesting bacteria. We revealed that a phagocyte is able to internalize particles via a chemoattractant-mediated engulfment process. We propose that mammalian phagocytes may also use this mechanism to engulf and ingest bacterial pathogens.
Collapse
Affiliation(s)
- Miao Pan
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD 20852, USA.
| | - Xuehua Xu
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD 20852, USA
| | - Yong Chen
- Proteomics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tian Jin
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD 20852, USA.
| |
Collapse
|
87
|
Tardif JC, Rhainds D, Brodeur M, Feroz Zada Y, Fouodjio R, Provost S, Boulé M, Alem S, Grégoire JC, L'Allier PL, Ibrahim R, Guertin MC, Mongrain I, Olsson AG, Schwartz GG, Rhéaume E, Dubé MP. Genotype-Dependent Effects of Dalcetrapib on Cholesterol Efflux and Inflammation: Concordance With Clinical Outcomes. ACTA ACUST UNITED AC 2016; 9:340-8. [PMID: 27418594 PMCID: PMC4982759 DOI: 10.1161/circgenetics.116.001405] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/23/2016] [Indexed: 01/25/2023]
Abstract
BACKGROUND Dalcetrapib effects on cardiovascular outcomes are determined by adenylate cyclase 9 gene polymorphisms. Our aim was to determine whether these clinical end point results are also associated with changes in reverse cholesterol transport and inflammation. METHODS AND RESULTS Participants of the dal-OUTCOMES and dal-PLAQUE-2 trials were randomly assigned to receive dalcetrapib or placebo in addition to standard care. High-sensitivity C-reactive protein was measured at baseline and at end of study in 5243 patients from dal-OUTCOMES also genotyped for the rs1967309 polymorphism in adenylate cyclase 9. Cholesterol efflux capacity of high-density lipoproteins from J774 macrophages after cAMP stimulation was determined at baseline and 12 months in 171 genotyped patients from dal-PLAQUE-2. Treatment with dalcetrapib resulted in placebo-adjusted geometric mean percent increases in high-sensitivity C-reactive protein from baseline to end of trial of 18.1% (P=0.0009) and 18.7% (P=0.00001) in participants with the GG and AG genotypes, respectively, but the change was -1.0% (P=0.89) in those with the protective AA genotype. There was an interaction between the treatment arm and the genotype groups (P=0.02). Although the mean change in cholesterol efflux was similar among study arms in patients with GG genotype (mean: 7.8% and 7.4%), increases were 22.3% and 3.5% with dalcetrapib and placebo for those with AA genotype (P=0.005). There was a significant genetic effect for change in efflux for dalcetrapib (P=0.02), but not with placebo. CONCLUSIONS Genotype-dependent effects on C-reactive protein and cholesterol efflux are supportive of dalcetrapib benefits on atherosclerotic cardiovascular outcomes in patients with the AA genotype at polymorphism rs1967309. CLINICAL TRIALS REGISTRATION ClinicalTrials.gov; Unique Identifiers: NCT00658515 and NCT01059682.
Collapse
Affiliation(s)
- Jean-Claude Tardif
- From the Montreal Heart Institute (J.-C.T., D.R., M. Brodeur, M. Boulé, S.A., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal, Faculty of Medicine (J.-C.T., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal Beaulieu-Saucier Pharmacogenomics Center (Y.F.Z., R.F., S.P., I.M., M.-P.D.), Montreal Health Innovations Coordinating Center (MHICC) (M.-C.G.), Montreal, Canada; Linkoping University, Department of Medicine and Health, Stockholm, Sweden (A.G.O.); and Veterans Affairs Medical Center & University of Colorado, School of Medicine, Denver, CO (G.G.S.).
| | - David Rhainds
- From the Montreal Heart Institute (J.-C.T., D.R., M. Brodeur, M. Boulé, S.A., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal, Faculty of Medicine (J.-C.T., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal Beaulieu-Saucier Pharmacogenomics Center (Y.F.Z., R.F., S.P., I.M., M.-P.D.), Montreal Health Innovations Coordinating Center (MHICC) (M.-C.G.), Montreal, Canada; Linkoping University, Department of Medicine and Health, Stockholm, Sweden (A.G.O.); and Veterans Affairs Medical Center & University of Colorado, School of Medicine, Denver, CO (G.G.S.)
| | - Mathieu Brodeur
- From the Montreal Heart Institute (J.-C.T., D.R., M. Brodeur, M. Boulé, S.A., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal, Faculty of Medicine (J.-C.T., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal Beaulieu-Saucier Pharmacogenomics Center (Y.F.Z., R.F., S.P., I.M., M.-P.D.), Montreal Health Innovations Coordinating Center (MHICC) (M.-C.G.), Montreal, Canada; Linkoping University, Department of Medicine and Health, Stockholm, Sweden (A.G.O.); and Veterans Affairs Medical Center & University of Colorado, School of Medicine, Denver, CO (G.G.S.)
| | - Yassamin Feroz Zada
- From the Montreal Heart Institute (J.-C.T., D.R., M. Brodeur, M. Boulé, S.A., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal, Faculty of Medicine (J.-C.T., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal Beaulieu-Saucier Pharmacogenomics Center (Y.F.Z., R.F., S.P., I.M., M.-P.D.), Montreal Health Innovations Coordinating Center (MHICC) (M.-C.G.), Montreal, Canada; Linkoping University, Department of Medicine and Health, Stockholm, Sweden (A.G.O.); and Veterans Affairs Medical Center & University of Colorado, School of Medicine, Denver, CO (G.G.S.)
| | - René Fouodjio
- From the Montreal Heart Institute (J.-C.T., D.R., M. Brodeur, M. Boulé, S.A., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal, Faculty of Medicine (J.-C.T., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal Beaulieu-Saucier Pharmacogenomics Center (Y.F.Z., R.F., S.P., I.M., M.-P.D.), Montreal Health Innovations Coordinating Center (MHICC) (M.-C.G.), Montreal, Canada; Linkoping University, Department of Medicine and Health, Stockholm, Sweden (A.G.O.); and Veterans Affairs Medical Center & University of Colorado, School of Medicine, Denver, CO (G.G.S.)
| | - Sylvie Provost
- From the Montreal Heart Institute (J.-C.T., D.R., M. Brodeur, M. Boulé, S.A., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal, Faculty of Medicine (J.-C.T., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal Beaulieu-Saucier Pharmacogenomics Center (Y.F.Z., R.F., S.P., I.M., M.-P.D.), Montreal Health Innovations Coordinating Center (MHICC) (M.-C.G.), Montreal, Canada; Linkoping University, Department of Medicine and Health, Stockholm, Sweden (A.G.O.); and Veterans Affairs Medical Center & University of Colorado, School of Medicine, Denver, CO (G.G.S.)
| | - Marie Boulé
- From the Montreal Heart Institute (J.-C.T., D.R., M. Brodeur, M. Boulé, S.A., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal, Faculty of Medicine (J.-C.T., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal Beaulieu-Saucier Pharmacogenomics Center (Y.F.Z., R.F., S.P., I.M., M.-P.D.), Montreal Health Innovations Coordinating Center (MHICC) (M.-C.G.), Montreal, Canada; Linkoping University, Department of Medicine and Health, Stockholm, Sweden (A.G.O.); and Veterans Affairs Medical Center & University of Colorado, School of Medicine, Denver, CO (G.G.S.)
| | - Sonia Alem
- From the Montreal Heart Institute (J.-C.T., D.R., M. Brodeur, M. Boulé, S.A., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal, Faculty of Medicine (J.-C.T., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal Beaulieu-Saucier Pharmacogenomics Center (Y.F.Z., R.F., S.P., I.M., M.-P.D.), Montreal Health Innovations Coordinating Center (MHICC) (M.-C.G.), Montreal, Canada; Linkoping University, Department of Medicine and Health, Stockholm, Sweden (A.G.O.); and Veterans Affairs Medical Center & University of Colorado, School of Medicine, Denver, CO (G.G.S.)
| | - Jean C Grégoire
- From the Montreal Heart Institute (J.-C.T., D.R., M. Brodeur, M. Boulé, S.A., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal, Faculty of Medicine (J.-C.T., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal Beaulieu-Saucier Pharmacogenomics Center (Y.F.Z., R.F., S.P., I.M., M.-P.D.), Montreal Health Innovations Coordinating Center (MHICC) (M.-C.G.), Montreal, Canada; Linkoping University, Department of Medicine and Health, Stockholm, Sweden (A.G.O.); and Veterans Affairs Medical Center & University of Colorado, School of Medicine, Denver, CO (G.G.S.)
| | - Philippe L L'Allier
- From the Montreal Heart Institute (J.-C.T., D.R., M. Brodeur, M. Boulé, S.A., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal, Faculty of Medicine (J.-C.T., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal Beaulieu-Saucier Pharmacogenomics Center (Y.F.Z., R.F., S.P., I.M., M.-P.D.), Montreal Health Innovations Coordinating Center (MHICC) (M.-C.G.), Montreal, Canada; Linkoping University, Department of Medicine and Health, Stockholm, Sweden (A.G.O.); and Veterans Affairs Medical Center & University of Colorado, School of Medicine, Denver, CO (G.G.S.)
| | - Reda Ibrahim
- From the Montreal Heart Institute (J.-C.T., D.R., M. Brodeur, M. Boulé, S.A., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal, Faculty of Medicine (J.-C.T., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal Beaulieu-Saucier Pharmacogenomics Center (Y.F.Z., R.F., S.P., I.M., M.-P.D.), Montreal Health Innovations Coordinating Center (MHICC) (M.-C.G.), Montreal, Canada; Linkoping University, Department of Medicine and Health, Stockholm, Sweden (A.G.O.); and Veterans Affairs Medical Center & University of Colorado, School of Medicine, Denver, CO (G.G.S.)
| | - Marie-Claude Guertin
- From the Montreal Heart Institute (J.-C.T., D.R., M. Brodeur, M. Boulé, S.A., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal, Faculty of Medicine (J.-C.T., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal Beaulieu-Saucier Pharmacogenomics Center (Y.F.Z., R.F., S.P., I.M., M.-P.D.), Montreal Health Innovations Coordinating Center (MHICC) (M.-C.G.), Montreal, Canada; Linkoping University, Department of Medicine and Health, Stockholm, Sweden (A.G.O.); and Veterans Affairs Medical Center & University of Colorado, School of Medicine, Denver, CO (G.G.S.)
| | - Ian Mongrain
- From the Montreal Heart Institute (J.-C.T., D.R., M. Brodeur, M. Boulé, S.A., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal, Faculty of Medicine (J.-C.T., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal Beaulieu-Saucier Pharmacogenomics Center (Y.F.Z., R.F., S.P., I.M., M.-P.D.), Montreal Health Innovations Coordinating Center (MHICC) (M.-C.G.), Montreal, Canada; Linkoping University, Department of Medicine and Health, Stockholm, Sweden (A.G.O.); and Veterans Affairs Medical Center & University of Colorado, School of Medicine, Denver, CO (G.G.S.)
| | - Anders G Olsson
- From the Montreal Heart Institute (J.-C.T., D.R., M. Brodeur, M. Boulé, S.A., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal, Faculty of Medicine (J.-C.T., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal Beaulieu-Saucier Pharmacogenomics Center (Y.F.Z., R.F., S.P., I.M., M.-P.D.), Montreal Health Innovations Coordinating Center (MHICC) (M.-C.G.), Montreal, Canada; Linkoping University, Department of Medicine and Health, Stockholm, Sweden (A.G.O.); and Veterans Affairs Medical Center & University of Colorado, School of Medicine, Denver, CO (G.G.S.)
| | - Gregory G Schwartz
- From the Montreal Heart Institute (J.-C.T., D.R., M. Brodeur, M. Boulé, S.A., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal, Faculty of Medicine (J.-C.T., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal Beaulieu-Saucier Pharmacogenomics Center (Y.F.Z., R.F., S.P., I.M., M.-P.D.), Montreal Health Innovations Coordinating Center (MHICC) (M.-C.G.), Montreal, Canada; Linkoping University, Department of Medicine and Health, Stockholm, Sweden (A.G.O.); and Veterans Affairs Medical Center & University of Colorado, School of Medicine, Denver, CO (G.G.S.)
| | - Eric Rhéaume
- From the Montreal Heart Institute (J.-C.T., D.R., M. Brodeur, M. Boulé, S.A., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal, Faculty of Medicine (J.-C.T., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal Beaulieu-Saucier Pharmacogenomics Center (Y.F.Z., R.F., S.P., I.M., M.-P.D.), Montreal Health Innovations Coordinating Center (MHICC) (M.-C.G.), Montreal, Canada; Linkoping University, Department of Medicine and Health, Stockholm, Sweden (A.G.O.); and Veterans Affairs Medical Center & University of Colorado, School of Medicine, Denver, CO (G.G.S.)
| | - Marie-Pierre Dubé
- From the Montreal Heart Institute (J.-C.T., D.R., M. Brodeur, M. Boulé, S.A., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal, Faculty of Medicine (J.-C.T., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal Beaulieu-Saucier Pharmacogenomics Center (Y.F.Z., R.F., S.P., I.M., M.-P.D.), Montreal Health Innovations Coordinating Center (MHICC) (M.-C.G.), Montreal, Canada; Linkoping University, Department of Medicine and Health, Stockholm, Sweden (A.G.O.); and Veterans Affairs Medical Center & University of Colorado, School of Medicine, Denver, CO (G.G.S.).
| |
Collapse
|
88
|
Diz-Muñoz A, Thurley K, Chintamen S, Altschuler SJ, Wu LF, Fletcher DA, Weiner OD. Membrane Tension Acts Through PLD2 and mTORC2 to Limit Actin Network Assembly During Neutrophil Migration. PLoS Biol 2016; 14:e1002474. [PMID: 27280401 PMCID: PMC4900667 DOI: 10.1371/journal.pbio.1002474] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/04/2016] [Indexed: 11/18/2022] Open
Abstract
For efficient polarity and migration, cells need to regulate the magnitude and spatial distribution of actin assembly. This process is coordinated by reciprocal interactions between the actin cytoskeleton and mechanical forces. Actin polymerization-based protrusion increases tension in the plasma membrane, which in turn acts as a long-range inhibitor of actin assembly. These interactions form a negative feedback circuit that limits the magnitude of membrane tension in neutrophils and prevents expansion of the existing front and the formation of secondary fronts. It has been suggested that the plasma membrane directly inhibits actin assembly by serving as a physical barrier that opposes protrusion. Here we show that efficient control of actin polymerization-based protrusion requires an additional mechanosensory feedback cascade that indirectly links membrane tension with actin assembly. Specifically, elevated membrane tension acts through phospholipase D2 (PLD2) and the mammalian target of rapamycin complex 2 (mTORC2) to limit actin nucleation. In the absence of this pathway, neutrophils exhibit larger leading edges, higher membrane tension, and profoundly defective chemotaxis. Mathematical modeling suggests roles for both the direct (mechanical) and indirect (biochemical via PLD2 and mTORC2) feedback loops in organizing cell polarity and motility—the indirect loop is better suited to enable competition between fronts, whereas the direct loop helps spatially organize actin nucleation for efficient leading edge formation and cell movement. This circuit is essential for polarity, motility, and the control of membrane tension. A mechanosensory biochemical cascade involving phospholipase D2 and mTORC2 coordinates physical forces and cytoskeletal rearrangements to allow efficient polarization and migration of neutrophils. How cells regulate the size and number of their protrusions for efficient polarity and motility is a fundamental question in cell biology. We recently found that immune cells known as neutrophils use physical forces to regulate this process. Actin polymerization-based protrusion stretches the plasma membrane, and this increased membrane tension acts as a long-range inhibitor of actin-based protrusions elsewhere in the cell. Here we investigate how membrane tension limits protrusion. We demonstrate that the magnitude of actin network assembly in neutrophils is determined by a mechanosensory biochemical cascade that converts increases in membrane tension into decreases in protrusion. Specifically, we show that increasing plasma membrane tension acts through a pathway containing the phospholipase D2 (PLD2) and the mammalian target of rapamycin complex 2 (mTORC2) to limit actin network assembly. Without this negative feedback pathway, neutrophils exhibit larger leading edges, higher membrane tension, and profoundly defective chemotaxis. Mathematical modeling indicates that this feedback circuit is a favorable topology to enable competition between protrusions during neutrophil polarization. Our work shows how biochemical signals, physical forces, and the cytoskeleton can collaborate to generate large-scale cellular organization.
Collapse
Affiliation(s)
- Alba Diz-Muñoz
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- Bioengineering Department and Biophysics Program, University of California Berkeley, Berkeley, California, United States of America
| | - Kevin Thurley
- Dept. of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Sana Chintamen
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Steven J. Altschuler
- Dept. of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Lani F. Wu
- Dept. of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Daniel A. Fletcher
- Bioengineering Department and Biophysics Program, University of California Berkeley, Berkeley, California, United States of America
- * E-mail: (DAF); (ODW)
| | - Orion D. Weiner
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (DAF); (ODW)
| |
Collapse
|
89
|
Granata S, Dalla Gassa A, Carraro A, Brunelli M, Stallone G, Lupo A, Zaza G. Sirolimus and Everolimus Pathway: Reviewing Candidate Genes Influencing Their Intracellular Effects. Int J Mol Sci 2016; 17:ijms17050735. [PMID: 27187382 PMCID: PMC4881557 DOI: 10.3390/ijms17050735] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/21/2016] [Accepted: 05/06/2016] [Indexed: 02/07/2023] Open
Abstract
Sirolimus (SRL) and everolimus (EVR) are mammalian targets of rapamycin inhibitors (mTOR-I) largely employed in renal transplantation and oncology as immunosuppressive/antiproliferative agents. SRL was the first mTOR-I produced by the bacterium Streptomyces hygroscopicus and approved for several medical purposes. EVR, derived from SRL, contains a 2-hydroxy-ethyl chain in the 40th position that makes the drug more hydrophilic than SRL and increases oral bioavailability. Their main mechanism of action is the inhibition of the mTOR complex 1 and the regulation of factors involved in a several crucial cellular functions including: protein synthesis, regulation of angiogenesis, lipid biosynthesis, mitochondrial biogenesis and function, cell cycle, and autophagy. Most of the proteins/enzymes belonging to the aforementioned biological processes are encoded by numerous and tightly regulated genes. However, at the moment, the polygenic influence on SRL/EVR cellular effects is still not completely defined, and its comprehension represents a key challenge for researchers. Therefore, to obtain a complete picture of the cellular network connected to SRL/EVR, we decided to review major evidences available in the literature regarding the genetic influence on mTOR-I biology/pharmacology and to build, for the first time, a useful and specific “SRL/EVR genes-focused pathway”, possibly employable as a starting point for future in-depth research projects.
Collapse
Affiliation(s)
- Simona Granata
- Renal Unit, Department of Medicine, University/Hospital of Verona, 37126 Verona, Italy.
| | | | - Amedeo Carraro
- Liver Transplant Unit, Department of General Surgery and Odontoiatrics, University/Hospital of Verona, 37126 Verona, Italy.
| | - Matteo Brunelli
- Department of Pathology and Diagnostics, University of Verona, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy.
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, University of Foggia, 71122 Foggia, Italy.
| | - Antonio Lupo
- Renal Unit, Department of Medicine, University/Hospital of Verona, 37126 Verona, Italy.
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University/Hospital of Verona, 37126 Verona, Italy.
| |
Collapse
|
90
|
Ziegler ME, Hatch MMS, Wu N, Muawad SA, Hughes CCW. mTORC2 mediates CXCL12-induced angiogenesis. Angiogenesis 2016; 19:359-71. [PMID: 27106789 DOI: 10.1007/s10456-016-9509-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 04/03/2016] [Indexed: 01/26/2023]
Abstract
The chemokine CXCL12, through its receptor CXCR4, positively regulates angiogenesis by promoting endothelial cell (EC) migration and tube formation. However, the relevant downstream signaling pathways in EC have not been defined. Similarly, the upstream activators of mTORC2 signaling in EC are also poorly defined. Here, we demonstrate for the first time that CXCL12 regulation of angiogenesis requires mTORC2 but not mTORC1. We find that CXCR4 signaling activates mTORC2 as indicated by phosphorylation of serine 473 on Akt and does so through a G-protein- and PI3K-dependent pathway. Significantly, independent disruption of the mTOR complexes by drugs or multiple independent siRNAs reveals that mTORC2, but not mTORC1, is required for microvascular sprouting in a 3D in vitro angiogenesis model. Importantly, in a mouse model, both tumor angiogenesis and tumor volume are significantly reduced only when mTORC2 is inhibited. Finally, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), which is a key regulator of glycolytic flux, is required for microvascular sprouting in vitro, and its expression is reduced in vivo when mTORC2 is targeted. Taken together, these findings identify mTORC2 as a critical signaling nexus downstream of CXCL12/CXCR4 that represents a potential link between mTORC2, metabolic regulation, and angiogenesis.
Collapse
Affiliation(s)
- Mary E Ziegler
- The Department of Molecular Biology and Biochemistry, University of California Irvine, 3219 McGaugh Hall, Mail Code: 3900, Irvine, CA, 92697, USA
| | - Michaela M S Hatch
- The Department of Molecular Biology and Biochemistry, University of California Irvine, 3219 McGaugh Hall, Mail Code: 3900, Irvine, CA, 92697, USA
| | - Nan Wu
- The Department of Molecular Biology and Biochemistry, University of California Irvine, 3219 McGaugh Hall, Mail Code: 3900, Irvine, CA, 92697, USA
| | - Steven A Muawad
- The Department of Molecular Biology and Biochemistry, University of California Irvine, 3219 McGaugh Hall, Mail Code: 3900, Irvine, CA, 92697, USA
| | - Christopher C W Hughes
- The Department of Molecular Biology and Biochemistry, University of California Irvine, 3219 McGaugh Hall, Mail Code: 3900, Irvine, CA, 92697, USA. .,The Department of Biomedical Engineering, University of California Irvine, Irvine, CA, 92697, USA. .,The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
91
|
A High-Throughput, Multi-Cell Phenotype Assay for the Identification of Novel Inhibitors of Chemotaxis/Migration. Sci Rep 2016; 6:22273. [PMID: 26956526 PMCID: PMC4783656 DOI: 10.1038/srep22273] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/09/2016] [Indexed: 02/06/2023] Open
Abstract
Chemotaxis and cell migration are fundamental, universal eukaryotic processes essential for biological functions such as embryogenesis, immunity, cell renewal, and wound healing, as well as for pathogenesis of many diseases including cancer metastasis and chronic inflammation. To identify novel chemotaxis inhibitors as probes for mechanistic studies and leads for development of new therapeutics, we developed a unique, unbiased phenotypic chemotaxis-dependent Dictyostelium aggregation assay for high-throughput screening using rapid, laser-scanning cytometry. Under defined conditions, individual Dictyostelium secrete chemoattractants, migrate, and aggregate. Chemotaxis is quantified by laser-scanning cytometry with a GFP marker expressed only in cells after chemotaxis/multi-cell aggregation. We applied the assay to screen 1,280 known compounds in a 1536-well plate format and identified two chemotaxis inhibitors. The chemotaxis inhibitory activities of both compounds were confirmed in both Dictyostelium and in human neutrophils in a directed EZ-TAXIscan chemotaxis assay. The compounds were also shown to inhibit migration of two human cancer cell lines in monolayer scratch assays. This test screen demonstrated that the miniaturized assay is extremely suited for high-throughput screening of very large libraries of small molecules to identify novel classes of chemotaxis/migratory inhibitors for drug development and research tools for targeting chemotactic pathways universal to humans and other systems.
Collapse
|
92
|
Surve CR, To JY, Malik S, Kim M, Smrcka AV. Dynamic regulation of neutrophil polarity and migration by the heterotrimeric G protein subunits Gαi-GTP and Gβγ. Sci Signal 2016; 9:ra22. [PMID: 26905427 DOI: 10.1126/scisignal.aad8163] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Activation of the Gi family of heterotrimeric guanine nucleotide-binding proteins (G proteins) releases βγ subunits, which are the major transducers of chemotactic G protein-coupled receptor (GPCR)-dependent cell migration. The small molecule 12155 binds directly to Gβγ and activates Gβγ signaling without activating the Gαi subunit in the Gi heterotrimer. We used 12155 to examine the relative roles of Gαi and Gβγ activation in the migration of neutrophils on surfaces coated with the integrin ligand intercellular adhesion molecule-1 (ICAM-1). We found that 12155 suppressed basal migration by inhibiting the polarization of neutrophils and increasing their adhesion to ICAM-1-coated surfaces. GPCR-independent activation of endogenous Gαi and Gβγ with the mastoparan analog Mas7 resulted in normal migration. Furthermore, 12155-treated cells expressing a constitutively active form of Gαi1 became polarized and migrated. The extent and duration of signaling by the second messenger cyclic adenosine monophosphate (cAMP) were enhanced by 12155. Inhibiting the activity of cAMP-dependent protein kinase (PKA) restored the polarity of 12155-treated cells but did not decrease their adhesion to ICAM-1 and failed to restore migration. Together, these data provide evidence for a direct role of activated Gαi in promoting cell polarization through a cAMP-dependent mechanism and in inhibiting adhesion through a cAMP-independent mechanism.
Collapse
Affiliation(s)
- Chinmay R Surve
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14642, USA
| | - Jesi Y To
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | - Sundeep Malik
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | - Minsoo Kim
- Department of Immunology and Microbiology, University of Rochester, Rochester, NY 14642, USA
| | - Alan V Smrcka
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14642, USA. Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
93
|
Aerbajinai W, Liu L, Zhu J, Kumkhaek C, Chin K, Rodgers GP. Glia Maturation Factor-γ Regulates Monocyte Migration through Modulation of β1-Integrin. J Biol Chem 2016; 291:8549-64. [PMID: 26895964 DOI: 10.1074/jbc.m115.674200] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Indexed: 12/30/2022] Open
Abstract
Monocyte migration requires the dynamic redistribution of integrins through a regulated endo-exocytosis cycle, but the complex molecular mechanisms underlying this process have not been fully elucidated. Glia maturation factor-γ (GMFG), a novel regulator of the Arp2/3 complex, has been shown to regulate directional migration of neutrophils and T-lymphocytes. In this study, we explored the important role of GMFG in monocyte chemotaxis, adhesion, and β1-integrin turnover. We found that knockdown of GMFG in monocytes resulted in impaired chemotactic migration toward formyl-Met-Leu-Phe (fMLP) and stromal cell-derived factor 1α (SDF-1α) as well as decreased α5β1-integrin-mediated chemoattractant-stimulated adhesion. These GMFG knockdown impaired effects could be reversed by cotransfection of GFP-tagged full-length GMFG. GMFG knockdown cells reduced the cell surface and total protein levels of α5β1-integrin and increased its degradation. Importantly, we demonstrate that GMFG mediates the ubiquitination of β1-integrin through knockdown or overexpression of GMFG. Moreover, GMFG knockdown retarded the efficient recycling of β1-integrin back to the plasma membrane following normal endocytosis of α5β1-integrin, suggesting that the involvement of GMFG in maintaining α5β1-integrin stability may occur in part by preventing ubiquitin-mediated degradation and promoting β1-integrin recycling. Furthermore, we observed that GMFG interacted with syntaxin 4 (STX4) and syntaxin-binding protein 4 (STXBP4); however, only knockdown of STXBP4, but not STX4, reduced monocyte migration and decreased β1-integrin cell surface expression. Knockdown of STXBP4 also substantially inhibited β1-integrin recycling in human monocytes. These results indicate that the effects of GMFG on monocyte migration and adhesion probably occur through preventing ubiquitin-mediated proteasome degradation of α5β1-integrin and facilitating effective β1-integrin recycling back to the plasma membrane.
Collapse
Affiliation(s)
- Wulin Aerbajinai
- From the Molecular and Clinical Hematology Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Lunhua Liu
- the Laboratory of Cellular and Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Jianqiong Zhu
- From the Molecular and Clinical Hematology Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Chutima Kumkhaek
- From the Molecular and Clinical Hematology Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Kyung Chin
- From the Molecular and Clinical Hematology Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Griffin P Rodgers
- From the Molecular and Clinical Hematology Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892 and
| |
Collapse
|
94
|
Majumdar R, Tavakoli Tameh A, Parent CA. Exosomes Mediate LTB4 Release during Neutrophil Chemotaxis. PLoS Biol 2016; 14:e1002336. [PMID: 26741884 PMCID: PMC4704783 DOI: 10.1371/journal.pbio.1002336] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/19/2015] [Indexed: 01/21/2023] Open
Abstract
Leukotriene B4 (LTB4) is secreted by chemotactic neutrophils, forming a secondary gradient that amplifies the reach of primary chemoattractants. This strategy increases the recruitment range for neutrophils and is important during inflammation. Here, we show that LTB4 and its synthesizing enzymes localize to intracellular multivesicular bodies that, upon stimulation, release their content as exosomes. Purified exosomes can activate resting neutrophils and elicit chemotactic activity in a LTB4 receptor-dependent manner. Inhibition of exosome release leads to loss of directional motility with concomitant loss of LTB4 release. Our findings establish that the exosomal pool of LTB4 acts in an autocrine fashion to sensitize neutrophils towards the primary chemoattractant, and in a paracrine fashion to mediate the recruitment of neighboring neutrophils in trans. We envision that this mechanism is used by other signals to foster communication between cells in harsh extracellular environments.
Collapse
Affiliation(s)
- Ritankar Majumdar
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Aidin Tavakoli Tameh
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Carole A. Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
95
|
Bao Y, Ledderose C, Graf AF, Brix B, Birsak T, Lee A, Zhang J, Junger WG. mTOR and differential activation of mitochondria orchestrate neutrophil chemotaxis. J Cell Biol 2015; 210:1153-64. [PMID: 26416965 PMCID: PMC4586745 DOI: 10.1083/jcb.201503066] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Neutrophil chemotaxis is regulated by opposing autocrine purinergic signaling mechanisms, which are stimulated by mitochondrial ATP formation that is up-regulated via mTOR and P2Y2 receptors at the front and down-regulated via A2a receptors and cAMP/PKA signaling at the back of cells. Neutrophils use chemotaxis to locate invading bacteria. Adenosine triphosphate (ATP) release and autocrine purinergic signaling via P2Y2 receptors at the front and A2a receptors at the back of cells regulate chemotaxis. Here, we examined the intracellular mechanisms that control these opposing signaling mechanisms. We found that mitochondria deliver ATP that stimulates P2Y2 receptors in response to chemotactic cues, and that P2Y2 receptors promote mTOR signaling, which augments mitochondrial activity near the front of cells. Blocking mTOR signaling with rapamycin or PP242 or mitochondrial ATP production (e.g., with CCCP) reduced mitochondrial Ca2+ uptake and membrane potential, and impaired cellular ATP release and neutrophil chemotaxis. Autocrine stimulation of A2a receptors causes cyclic adenosine monophosphate accumulation at the back of cells, which inhibits mTOR signaling and mitochondrial activity, resulting in uropod retraction. We conclude that mitochondrial, purinergic, and mTOR signaling regulates neutrophil chemotaxis and may be a pharmacological target in inflammatory diseases.
Collapse
Affiliation(s)
- Yi Bao
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Carola Ledderose
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Amelie F Graf
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Bianca Brix
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Theresa Birsak
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Albert Lee
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Jingping Zhang
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Wolfgang G Junger
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 Ludwig Boltzmann Institute for Traumatology, Vienna A-1200, Austria
| |
Collapse
|
96
|
Eiden AM, Zhang S, Gary JM, Simmons JK, Mock BA. Molecular Pathways: Increased Susceptibility to Infection Is a Complication of mTOR Inhibitor Use in Cancer Therapy. Clin Cancer Res 2015; 22:277-83. [PMID: 26607598 DOI: 10.1158/1078-0432.ccr-14-3239] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/04/2015] [Indexed: 12/20/2022]
Abstract
As one of the earliest examples of "chemical biology," the M: echanistic T: arget of R: apamycin (mTOR) protein and its chemical inhibitors have been extensively studied across a spectrum of physiologic and pathologic processes at the molecular, organismal, and patient population levels. There are several FDA-approved mTOR inhibitors (sirolimus, everolimus, and temsirolimus) with indications for cancer treatment and for prevention of solid organ rejection. Dozens of mTOR inhibitors are currently being evaluated in hundreds of ongoing clinical trials across a spectrum of diseases, including numerous cancer indications, autoimmune diseases, and a number of congenital disorders. As many of the approved and investigational indications for mTOR inhibitors require long-term treatment, the magnitude and incidence of particular side effects differ from those observed in shorter-term treatments. Here, we focus on the increased risk of infections in patients being treated with mTOR inhibitors. While increased infection rates might be expected from a class of drugs approved as posttransplant immunosuppressants, we review reports from clinical, mechanistic, and genetically engineered mouse model studies detailing a much more nuanced view of mTOR inhibitor drug action and target biology.
Collapse
Affiliation(s)
- Adrian M Eiden
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Shuling Zhang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Joy M Gary
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - John K Simmons
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Beverly A Mock
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
97
|
The Novel Functions of the PLC/PKC/PKD Signaling Axis in G Protein-Coupled Receptor-Mediated Chemotaxis of Neutrophils. J Immunol Res 2015; 2015:817604. [PMID: 26605346 PMCID: PMC4641950 DOI: 10.1155/2015/817604] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/05/2015] [Indexed: 12/16/2022] Open
Abstract
Chemotaxis, a directional cell migration guided by extracellular chemoattractant gradients, plays an essential role in the recruitment of neutrophils to sites of inflammation. Chemotaxis is mediated by the G protein-coupled receptor (GPCR) signaling pathway. Extracellular stimuli trigger activation of the PLC/PKC/PKD signaling axis, which controls several signaling pathways. Here, we concentrate on the novel functions of PLC/PKC/PKD signaling in GPCR-mediated chemotaxis of neutrophils.
Collapse
|
98
|
Abstract
The innate immune system is central for the maintenance of tissue homeostasis and quickly responds to local or systemic perturbations by pathogenic or sterile insults. This rapid response must be metabolically supported to allow cell migration and proliferation and to enable efficient production of cytokines and lipid mediators. This Review focuses on the role of mammalian target of rapamycin (mTOR) in controlling and shaping the effector responses of innate immune cells. mTOR reconfigures cellular metabolism and regulates translation, cytokine responses, antigen presentation, macrophage polarization and cell migration. The mTOR network emerges as an integrative rheostat that couples cellular activation to the environmental and intracellular nutritional status to dictate and optimize the inflammatory response. A detailed understanding of how mTOR metabolically coordinates effector responses by myeloid cells will provide important insights into immunity in health and disease.
Collapse
Affiliation(s)
- Thomas Weichhart
- Medical University of Vienna, Institute of Medical Genetics, Währingerstrasse 10, 1090 Vienna, Austria
| | - Markus Hengstschläger
- Medical University of Vienna, Institute of Medical Genetics, Währingerstrasse 10, 1090 Vienna, Austria
| | - Monika Linke
- Medical University of Vienna, Institute of Medical Genetics, Währingerstrasse 10, 1090 Vienna, Austria
| |
Collapse
|
99
|
Parkhitko AA, Favorova OO, Khabibullin DI, Anisimov VN, Henske EP. Kinase mTOR: regulation and role in maintenance of cellular homeostasis, tumor development, and aging. BIOCHEMISTRY (MOSCOW) 2015; 79:88-101. [PMID: 24794724 DOI: 10.1134/s0006297914020023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Serine/threonine protein kinase mTOR regulates the maintenance of cellular homeostasis by coordinating transcription, translation, metabolism, and autophagy with availability of amino acids, growth factors, ATP, and oxygen. The mTOR kinase is a component of two protein complexes, mTORC1 and mTORC2, which are different in their composition and regulate different cellular processes. An uncontrolled activation of the mTOR kinase is observed in cells of the majority of tumors, as well as in diabetes and neurodegenerative and some other diseases. At present, inhibitors of the kinase complex mTORC1 are undergoing clinical trials. This review focuses on different aspects of the regulation of the mTORC1 and mTORC2 complexes, on their role in the regulation of protein synthesis, metabolism, and autophagy, as well as on using mTOR inhibitors for treatment of tumors and slowing of aging.
Collapse
Affiliation(s)
- A A Parkhitko
- Department of Genetics, Harvard Medical School, Boston, 02155, USA.
| | | | | | | | | |
Collapse
|
100
|
Abstract
SUMMARY Stimuli that promote cell migration, such as chemokines, cytokines, and growth factors in metazoans and cyclic AMP in Dictyostelium, activate signaling pathways that control organization of the actin cytoskeleton and adhesion complexes. The Rho-family GTPases are a key convergence point of these pathways. Their effectors include actin regulators such as formins, members of the WASP/WAVE family and the Arp2/3 complex, and the myosin II motor protein. Pathways that link to the Rho GTPases include Ras GTPases, TorC2, and PI3K. Many of the molecules involved form gradients within cells, which define the front and rear of migrating cells, and are also established in related cellular behaviors such as neuronal growth cone extension and cytokinesis. The signaling molecules that regulate migration can be integrated to provide a model of network function. The network displays biochemical excitability seen as spontaneous waves of activation that propagate along the cell cortex. These events coordinate cell movement and can be biased by external cues to bring about directed migration.
Collapse
Affiliation(s)
- Peter Devreotes
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Alan Rick Horwitz
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| |
Collapse
|