51
|
Dai P, Wang X, Gou LT, Li ZT, Wen Z, Chen ZG, Hua MM, Zhong A, Wang L, Su H, Wan H, Qian K, Liao L, Li J, Tian B, Li D, Fu XD, Shi HJ, Zhou Y, Liu MF. A Translation-Activating Function of MIWI/piRNA during Mouse Spermiogenesis. Cell 2019; 179:1566-1581.e16. [PMID: 31835033 PMCID: PMC8139323 DOI: 10.1016/j.cell.2019.11.022] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 08/01/2019] [Accepted: 11/14/2019] [Indexed: 01/05/2023]
Abstract
Spermiogenesis is a highly orchestrated developmental process during which chromatin condensation decouples transcription from translation. Spermiogenic mRNAs are transcribed earlier and stored in a translationally inert state until needed for translation; however, it remains largely unclear how such repressed mRNAs become activated during spermiogenesis. We previously reported that the MIWI/piRNA machinery is responsible for mRNA elimination during late spermiogenesis in preparation for spermatozoa production. Here we unexpectedly discover that the same machinery is also responsible for activating translation of a subset of spermiogenic mRNAs to coordinate with morphological transformation into spermatozoa. Such action requires specific base-pairing interactions of piRNAs with target mRNAs in their 3' UTRs, which activates translation through coupling with cis-acting AU-rich elements to nucleate the formation of a MIWI/piRNA/eIF3f/HuR super-complex in a developmental stage-specific manner. These findings reveal a critical role of the piRNA system in translation activation, which we show is functionally required for spermatid development.
Collapse
Affiliation(s)
- Peng Dai
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences-University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences-University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Lan-Tao Gou
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences-University of Chinese Academy of Sciences, Shanghai 200031, China; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Zhi-Tong Li
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences-University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Ze Wen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences-University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zong-Gui Chen
- College of Life Sciences, Institute of Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Min-Min Hua
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences-University of Chinese Academy of Sciences, Shanghai 200031, China; NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, 200032, China
| | - Ai Zhong
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences-University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Lingbo Wang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, 200032, China; State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences-University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Haiyang Su
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Huida Wan
- Shanghai Key Laboratory of Regulatory Biology and Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Kun Qian
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lujian Liao
- Shanghai Key Laboratory of Regulatory Biology and Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences-University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Dangsheng Li
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences-University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Hui-Juan Shi
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, 200032, China.
| | - Yu Zhou
- College of Life Sciences, Institute of Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China.
| | - Mo-Fang Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences-University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China.
| |
Collapse
|
52
|
Liu Y, Dou M, Song X, Dong Y, Liu S, Liu H, Tao J, Li W, Yin X, Xu W. The emerging role of the piRNA/piwi complex in cancer. Mol Cancer 2019; 18:123. [PMID: 31399034 PMCID: PMC6688334 DOI: 10.1186/s12943-019-1052-9] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/31/2019] [Indexed: 01/08/2023] Open
Abstract
Piwi interacting RNAs (piRNAs) constitute novel small non-coding RNA molecules of approximately 24-31 nucleotides in length that often bind to members of the piwi protein family to play regulatory roles. Recently, emerging evidence suggests that in addition to the mammalian germline, piRNAs are also expressed in a tissue-specific manner in a variety of human tissues and modulate key signaling pathways at the transcriptional or post-transcriptional level. In addition, a growing number of studies have shown that piRNA and PIWI proteins, which are abnormally expressed in various cancers, may serve as novel biomarkers and therapeutic targets for tumor diagnostics and treatment. However, the functions of piRNAs in cancer and their underlying mechanisms remain incompletely understood. In this review, we discuss current findings regarding piRNA biogenetic processes, functions, and emerging roles in cancer, providing new insights regarding the potential applications of piRNAs and piwi proteins in cancer diagnosis and clinical treatment.
Collapse
Affiliation(s)
- Yongmei Liu
- Department of Inspection, The medical faculty of Qingdao University, Qingdao, 266003, China
| | - Mei Dou
- School of Public Health, Qingdao University, Qingdao, 266003, China
| | - Xuxia Song
- The Laboratory of Biomedical Center, Qingdao University, Qingdao, 266003, China
| | - Yanhan Dong
- Institute of Translational Medicine, Qingdao University, Qingdao, 266003, China
| | - Si Liu
- Department of Inspection, The medical faculty of Qingdao University, Qingdao, 266003, China
| | - Haoran Liu
- Department of Inspection, The medical faculty of Qingdao University, Qingdao, 266003, China
| | - Jiaping Tao
- Department of Inspection, The medical faculty of Qingdao University, Qingdao, 266003, China
| | - Wenjing Li
- Department of Inspection, The medical faculty of Qingdao University, Qingdao, 266003, China
| | - Xunhua Yin
- Department of Inspection, The medical faculty of Qingdao University, Qingdao, 266003, China
| | - Wenhua Xu
- Department of Inspection, The medical faculty of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
53
|
Fu K, Tian S, Tan H, Wang C, Wang H, Wang M, Wang Y, Chen Z, Wang Y, Yue Q, Xu Q, Zhang S, Li H, Xie J, Lin M, Luo M, Chen F, Ye L, Zheng K. Biological and RNA regulatory function of MOV10 in mammalian germ cells. BMC Biol 2019; 17:39. [PMID: 31088452 PMCID: PMC6515687 DOI: 10.1186/s12915-019-0659-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023] Open
Abstract
Background RNA regulation by RNA-binding proteins (RBPs) involve extremely complicated mechanisms. MOV10 and MOV10L1 are two homologous RNA helicases implicated in distinct intracellular pathways. MOV10L1 participates specifically in Piwi-interacting RNA (piRNA) biogenesis and protects mouse male fertility. In contrast, the functional complexity of MOV10 remains incompletely understood, and its role in the mammalian germline is unknown. Here, we report a study of the biological and molecular functions of the RNA helicase MOV10 in mammalian male germ cells. Results MOV10 is a nucleocytoplasmic protein mainly expressed in spermatogonia. Knockdown and transplantation experiments show that MOV10 deficiency has a negative effect on spermatogonial progenitor cells (SPCs), limiting proliferation and in vivo repopulation capacity. This effect is concurrent with a global disturbance of RNA homeostasis and downregulation of factors critical for SPC proliferation and/or self-renewal. Unexpectedly, microRNA (miRNA) biogenesis is impaired due partially to decrease of miRNA primary transcript levels and/or retention of miRNA via splicing control. Genome-wide analysis of RNA targetome reveals that MOV10 binds preferentially to mRNAs with long 3′-UTR and also interacts with various non-coding RNA species including those in the nucleus. Intriguingly, nuclear MOV10 associates with an array of splicing factors, particularly with SRSF1, and its intronic binding sites tend to reside in proximity to splice sites. Conclusions These data expand the landscape of MOV10 function and highlight a previously unidentified role initiated from the nucleus, suggesting that MOV10 is a versatile RBP involved in a broader RNA regulatory network. Electronic supplementary material The online version of this article (10.1186/s12915-019-0659-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kaiqiang Fu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Suwen Tian
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.,Department of Preventive Medicine, Heze Medical College, Heze, 274000, China
| | - Huanhuan Tan
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Caifeng Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Hanben Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Min Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yuanyuan Wang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Zhen Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Qiuling Yue
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Qiushi Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Shuya Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Haixin Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Jie Xie
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Mingyan Lin
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Mengcheng Luo
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
54
|
Anaphase-promoting complex/cyclosome regulates RdDM activity by degrading DMS3 in Arabidopsis. Proc Natl Acad Sci U S A 2019; 116:3899-3908. [PMID: 30760603 DOI: 10.1073/pnas.1816652116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During RNA-directed DNA methylation (RdDM), the DDR complex, composed of DRD1, DMS3, and RDM1, is responsible for recruiting DNA polymerase V (Pol V) to silence transposable elements (TEs) in plants. However, how the DDR complex is regulated remains unexplored. Here, we show that the anaphase-promoting complex/cyclosome (APC/C) regulates the assembly of the DDR complex by targeting DMS3 for degradation. We found that a substantial set of RdDM loci was commonly de-repressed in apc/c and pol v mutants, and that the defects in RdDM activity resulted from up-regulated DMS3 protein levels, which finally caused reduced Pol V recruitment. DMS3 was ubiquitinated by APC/C for degradation in a D box-dependent manner. Competitive binding assays and gel filtration analyses showed that a proper level of DMS3 is critical for the assembly of the DDR complex. Consistent with the importance of the level of DMS3, overaccumulation of DMS3 caused defective RdDM activity, phenocopying the apc/c and dms3 mutants. Moreover, DMS3 is expressed in a cell cycle-dependent manner. Collectively, these findings provide direct evidence as to how the assembly of the DDR complex is regulated and uncover a safeguarding role of APC/C in the regulation of RdDM activity.
Collapse
|
55
|
Pronk MCA, Majolée J, Loregger A, van Bezu JSM, Zelcer N, Hordijk PL, Kovačević I. FBXW7 regulates endothelial barrier function by suppression of the cholesterol synthesis pathway and prenylation of RhoB. Mol Biol Cell 2019; 30:607-621. [PMID: 30601691 PMCID: PMC6589702 DOI: 10.1091/mbc.e18-04-0259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Rho GTPases control both the actin cytoskeleton and adherens junction stability and are recognized as essential regulators of endothelial barrier function. They act as molecular switches and are primarily regulated by the exchange of GDP and GTP. However, posttranslational modifications such as phosphorylation, prenylation, and ubiquitination can additionally alter their localization, stability, and activity. F-box proteins are involved in the recognition of substrate proteins predestined for ubiquitination and subsequent degradation. Given the importance of ubiquitination, we studied the effect of the loss of 62 members of the F-box protein family on endothelial barrier function in human umbilical vein endothelial cells. Endothelial barrier function was quantified by electrical cell impedance sensing and macromolecule passage assay. Our RNA interference–based screen identified FBXW7 as a key regulator of endothelial barrier function. Mechanistically, loss of FBXW7 induced the accumulation of the RhoB GTPase in endothelial cells, resulting in their increased contractility and permeability. FBXW7 knockdown induced activation of the cholesterol biosynthesis pathway and changed the prenylation of RhoB. This effect was reversed by farnesyl transferase inhibitors and by the addition of geranylgeranyl pyrophosphate. In summary, this study identifies FBXW7 as a novel regulator of endothelial barrier function in vitro. Loss of FBXW7 indirectly modulates RhoB activity via alteration of the cholesterol biosynthesis pathway and, consequently, of the prenylation status and activity of RhoB, resulting in increased contractility and disruption of the endothelial barrier.
Collapse
Affiliation(s)
- Manon C A Pronk
- Department of Physiology, Amsterdam Cardiovascular Sciences, and
| | - Jisca Majolée
- Department of Physiology, Amsterdam Cardiovascular Sciences, and
| | - Anke Loregger
- Department of Medical Biochemistry, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
| | - Jan S M van Bezu
- Department of Physiology, Amsterdam Cardiovascular Sciences, and
| | - Noam Zelcer
- Department of Medical Biochemistry, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
| | - Peter L Hordijk
- Department of Physiology, Amsterdam Cardiovascular Sciences, and
| | - Igor Kovačević
- Department of Physiology, Amsterdam Cardiovascular Sciences, and
| |
Collapse
|
56
|
Weng C, Kosalka J, Berkyurek AC, Stempor P, Feng X, Mao H, Zeng C, Li WJ, Yan YH, Dong MQ, Morero NR, Zuliani C, Barabas O, Ahringer J, Guang S, Miska EA. The USTC co-opts an ancient machinery to drive piRNA transcription in C. elegans. Genes Dev 2019; 33:90-102. [PMID: 30567997 PMCID: PMC6317315 DOI: 10.1101/gad.319293.118] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/19/2018] [Indexed: 01/15/2023]
Abstract
Piwi-interacting RNAs (piRNAs) engage Piwi proteins to suppress transposons and nonself nucleic acids and maintain genome integrity and are essential for fertility in a variety of organisms. In Caenorhabditis elegans, most piRNA precursors are transcribed from two genomic clusters that contain thousands of individual piRNA transcription units. While a few genes have been shown to be required for piRNA biogenesis, the mechanism of piRNA transcription remains elusive. Here we used functional proteomics approaches to identify an upstream sequence transcription complex (USTC) that is essential for piRNA biogenesis. The USTC contains piRNA silencing-defective 1 (PRDE-1), SNPC-4, twenty-one-U fouled-up 4 (TOFU-4), and TOFU-5. The USTC forms unique piRNA foci in germline nuclei and coats the piRNA cluster genomic loci. USTC factors associate with the Ruby motif just upstream of type I piRNA genes. USTC factors are also mutually dependent for binding to the piRNA clusters and forming the piRNA foci. Interestingly, USTC components bind differentially to piRNAs in the clusters and other noncoding RNA genes. These results reveal the USTC as a striking example of the repurposing of a general transcription factor complex to aid in genome defense against transposons.
Collapse
Affiliation(s)
- Chenchun Weng
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Joanna Kosalka
- Wellcome Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Ahmet C Berkyurek
- Wellcome Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Przemyslaw Stempor
- Wellcome Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Xuezhu Feng
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Hui Mao
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Chenming Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Wen-Jun Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yong-Hong Yan
- National Institute of Biological Sciences, Beijing 102206, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Natalia Rosalía Morero
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Cecilia Zuliani
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Orsolya Barabas
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Julie Ahringer
- Wellcome Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Shouhong Guang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Eric A Miska
- Wellcome Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
- Wellcome Sanger Institute, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
57
|
Rojas-Ríos P, Simonelig M. piRNAs and PIWI proteins: regulators of gene expression in development and stem cells. Development 2018; 145:145/17/dev161786. [PMID: 30194260 DOI: 10.1242/dev.161786] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PIWI proteins and Piwi-interacting RNAs (piRNAs) have established and conserved roles in repressing transposable elements (TEs) in the germline of animals. However, in several biological contexts, a large proportion of piRNAs are not related to TE sequences and, accordingly, functions for piRNAs and PIWI proteins that are independent of TE regulation have been identified. This aspect of piRNA biology is expanding rapidly. Indeed, recent reports have revealed the role of piRNAs in the regulation of endogenous gene expression programs in germ cells, as well as in somatic tissues, challenging dogma in the piRNA field. In this Review, we focus on recent data addressing the biological and developmental functions of piRNAs, highlighting their roles in embryonic patterning, germ cell specification, stem cell biology, neuronal activity and metabolism.
Collapse
Affiliation(s)
- Patricia Rojas-Ríos
- mRNA Regulation and Development, IGH, Univ. Montpellier, CNRS, Montpellier 34396, France
| | - Martine Simonelig
- mRNA Regulation and Development, IGH, Univ. Montpellier, CNRS, Montpellier 34396, France
| |
Collapse
|
58
|
Yan W. piRNA-independent PIWI function in spermatogenesis and male fertility. Biol Reprod 2018; 96:1121-1123. [PMID: 28595264 DOI: 10.1093/biolre/iox055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/05/2017] [Indexed: 12/25/2022] Open
Affiliation(s)
- Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA.,Department of Biology, University of Nevada, Reno, Nevada, USA
| |
Collapse
|
59
|
Wu Y, Xu K, Qi H. Domain-functional analyses of PIWIL1 and PABPC1 indicate their synergistic roles in protein translation via 3′-UTRs of meiotic mRNAs†. Biol Reprod 2018; 99:773-788. [DOI: 10.1093/biolre/ioy100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 04/24/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yaoyao Wu
- School of Life Science, University of Science and Technology of China, Hefei, China
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Kaibiao Xu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Huayu Qi
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
60
|
Gopinathan L, Szmyd R, Low D, Diril MK, Chang HY, Coppola V, Liu K, Tessarollo L, Guccione E, van Pelt AMM, Kaldis P. Emi2 Is Essential for Mouse Spermatogenesis. Cell Rep 2018; 20:697-708. [PMID: 28723571 DOI: 10.1016/j.celrep.2017.06.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 05/12/2017] [Accepted: 06/12/2017] [Indexed: 12/01/2022] Open
Abstract
The meiotic functions of Emi2, an inhibitor of the APC/C complex, have been best characterized in oocytes where it mediates metaphase II arrest as a component of the cytostatic factor. We generated knockout mice to determine the in vivo functions of Emi2-in particular, its functions in the testis, where Emi2 is expressed at high levels. Male and female Emi2 knockout mice are viable but sterile, indicating that Emi2 is essential for meiosis but dispensable for embryonic development and mitotic cell divisions. We found that, besides regulating cell-cycle arrest in mouse eggs, Emi2 is essential for meiosis I progression in spermatocytes. In the absence of Emi2, spermatocytes arrest in early diplotene of prophase I. This arrest is associated with decreased Cdk1 activity and was partially rescued by a knockin mouse model of elevated Cdk1 activity. Additionally, we detected expression of Emi2 in spermatids and sperm, suggesting potential post-meiotic functions for Emi2.
Collapse
Affiliation(s)
- Lakshmi Gopinathan
- Institute of Molecular and Cell Biology (IMCB), A(∗)STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos #3-09, Singapore 138673, Republic of Singapore
| | - Radoslaw Szmyd
- Institute of Molecular and Cell Biology (IMCB), A(∗)STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos #3-09, Singapore 138673, Republic of Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore (NUS), Singapore 117456, Republic of Singapore
| | - Diana Low
- Institute of Molecular and Cell Biology (IMCB), A(∗)STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos #3-09, Singapore 138673, Republic of Singapore
| | - M Kasim Diril
- Institute of Molecular and Cell Biology (IMCB), A(∗)STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos #3-09, Singapore 138673, Republic of Singapore
| | - Heng-Yu Chang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Vincenzo Coppola
- Mouse Cancer Genetics Program, National Cancer Institute, NCI-Frederick, Building 560, 1050 Boyles Street, Frederick, MD 21702-1201, USA
| | - Kui Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, National Cancer Institute, NCI-Frederick, Building 560, 1050 Boyles Street, Frederick, MD 21702-1201, USA
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology (IMCB), A(∗)STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos #3-09, Singapore 138673, Republic of Singapore; Department of Biochemistry, National University of Singapore (NUS), Singapore 117597, Republic of Singapore
| | - Ans M M van Pelt
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), A(∗)STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos #3-09, Singapore 138673, Republic of Singapore; Department of Biochemistry, National University of Singapore (NUS), Singapore 117597, Republic of Singapore.
| |
Collapse
|
61
|
Nishimura T, Nagamori I, Nakatani T, Izumi N, Tomari Y, Kuramochi-Miyagawa S, Nakano T. PNLDC1, mouse pre-piRNA Trimmer, is required for meiotic and post-meiotic male germ cell development. EMBO Rep 2018; 19:embr.201744957. [PMID: 29444933 PMCID: PMC5836094 DOI: 10.15252/embr.201744957] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 01/05/2018] [Accepted: 01/17/2018] [Indexed: 11/09/2022] Open
Abstract
PIWI‐interacting RNAs (piRNAs) are germ cell‐specific small RNAs essential for retrotransposon gene silencing and male germ cell development. In piRNA biogenesis, the endonuclease MitoPLD/Zucchini cleaves long, single‐stranded RNAs to generate 5′ termini of precursor piRNAs (pre‐piRNAs) that are consecutively loaded into PIWI‐family proteins. Subsequently, these pre‐piRNAs are trimmed at their 3′‐end by an exonuclease called Trimmer. Recently, poly(A)‐specific ribonuclease‐like domain‐containing 1 (PNLDC1) was identified as the pre‐piRNA Trimmer in silkworms. However, the function of PNLDC1 in other species remains unknown. Here, we generate Pnldc1 mutant mice and analyze small RNAs in their testes. Our results demonstrate that mouse PNLDC1 functions in the trimming of both embryonic and post‐natal pre‐piRNAs. In addition, piRNA trimming defects in embryonic and post‐natal testes cause impaired DNA methylation and reduced MIWI expression, respectively. Phenotypically, both meiotic and post‐meiotic arrests are evident in the same individual Pnldc1 mutant mouse. The former and latter phenotypes are similar to those of MILI and MIWI mutant mice, respectively. Thus, PNLDC1‐mediated piRNA trimming is indispensable for the function of piRNAs throughout mouse spermatogenesis.
Collapse
Affiliation(s)
- Toru Nishimura
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Ippei Nagamori
- Department of Pathology, Osaka University, Suita, Osaka, Japan
| | | | - Natsuko Izumi
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| | - Yukihide Tomari
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| | - Satomi Kuramochi-Miyagawa
- Department of Pathology, Osaka University, Suita, Osaka, Japan .,CREST, Japan Science and Technology Agency (JST), Saitama, Japan
| | - Toru Nakano
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan .,Department of Pathology, Osaka University, Suita, Osaka, Japan.,CREST, Japan Science and Technology Agency (JST), Saitama, Japan
| |
Collapse
|
62
|
Guo Q, Xu L, Bi Y, Qiu L, Chen Y, Kong L, Pan R, Chang G. piRNA-19128 regulates spermatogenesis by silencing of KIT in chicken. J Cell Biochem 2018; 119:7998-8010. [PMID: 29384219 DOI: 10.1002/jcb.26695] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/22/2018] [Indexed: 11/09/2022]
Abstract
Spermatogenesis is a complex process. Some studies have shown that Piwi-interacting RNAs (piRNAs) play an important role in spermatogenesis. To verify the evaluate between piRNAs and PIWI proteins in chicken and its possible role in spermatogenesis and reproductive stem cell proliferation and differentiation, we performed immunoprecipitation and deep sequencing analyses and determined the expression profiles of small RNAs in primordial germ cells (PGCs), spermatogonial stem cells (SSCs), spermatogonia (Sa) cells, and spermatozoa. Length analysis showed that piRNAs bound to PIWIL1 mainly contained 23-30 nt. Base preference analysis showed "1U-10A"; moreover, base preference of piRNAs was obvious in all of germline cells. Here we reported the TE family of gallus gallus, and targeted by piRNA. Target gene of piRNA annotation enrichment analysis identified candidate genes KIT, SRC, WNT4, and HMGB2. Kyoto Encyclopedia of Genes and Genomes analysis showed that these genes were associated with steroid hormone biosynthesis, Notch signaling pathway, and melanogenesis. These results indicate that chicken piRNAs perform important regulatory roles during spermatogenesis similar to mice piRNAs. Chicken piRNAs interacted with PIWI proteins and regulated spermatogenesis and germ cell proliferation and differentiation. Further, we observed a negative correlation between piRNA-19128 and KIT expression. Results of dual-luciferase reporter assay confirmed that piRNA-19128 directly interacted with KIT, suggesting that it plays a key role in the regulation spermatogenesis by inhibiting KIT expression. Thus, the present study provides information on the length and base preference of chicken piRNAs and suggests that piRNA-19128 regulates spermatogenesis in chicken by silencing KIT.
Collapse
Affiliation(s)
- Qixin Guo
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lu Xu
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China.,College of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Yulin Bi
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lingling Qiu
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yin Chen
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lingling Kong
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Rui Pan
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Guobin Chang
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
63
|
Yamashiro H, Siomi MC. PIWI-Interacting RNA in Drosophila: Biogenesis, Transposon Regulation, and Beyond. Chem Rev 2017; 118:4404-4421. [PMID: 29281264 DOI: 10.1021/acs.chemrev.7b00393] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PIWI-interacting RNAs (piRNAs) are germline-enriched small RNAs that control transposons to maintain genome integrity. To achieve this, upon being processed from piRNA precursors, most of which are transcripts of intergenic piRNA clusters, piRNAs bind PIWI proteins, germline-specific Argonaute proteins, to form effector complexes. The mechanism of this piRNA-mediated transposon silencing pathway is fundamentally similar to that of siRNA/miRNA-dependent gene silencing in that a small RNA guides its partner Argonaute protein to target gene transcripts for repression via RNA-RNA base pairing. However, the uniqueness of this piRNA pathway has emerged through intensive genetic, biochemical, bioinformatic, and structural investigations. Here, we review the studies that elucidated the piRNA pathway, mainly in Drosophila, by describing both historical and recent progress. Studies in other species that have made important contributions to the field are also described.
Collapse
Affiliation(s)
- Haruna Yamashiro
- Department of Biological Sciences, Graduate School of Science , The University of Tokyo , Tokyo 113-0032 , Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science , The University of Tokyo , Tokyo 113-0032 , Japan
| |
Collapse
|
64
|
PIWI family emerging as a decisive factor of cell fate: An overview. Eur J Cell Biol 2017; 96:746-757. [DOI: 10.1016/j.ejcb.2017.09.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/20/2017] [Accepted: 09/29/2017] [Indexed: 01/04/2023] Open
|
65
|
Wu S, Li Y, Chen S, Liang S, Ren X, Guo W, Sun Q, Yang X. Effect of dietary Astragalus Polysaccharide supplements on testicular piRNA expression profiles of breeding cocks. Int J Biol Macromol 2017; 103:957-964. [DOI: 10.1016/j.ijbiomac.2017.05.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/08/2017] [Accepted: 05/19/2017] [Indexed: 01/04/2023]
|
66
|
Hasuwa H, Ishino K, Siomi H. Human PIWI (HIWI) is an azoospermia factor. SCIENCE CHINA-LIFE SCIENCES 2017; 61:348-350. [PMID: 28801861 DOI: 10.1007/s11427-017-9149-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 07/20/2017] [Indexed: 10/19/2022]
Affiliation(s)
- Hidetoshi Hasuwa
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Kyoko Ishino
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, 160-8582, Japan.
| |
Collapse
|
67
|
Gou LT, Kang JY, Dai P, Wang X, Li F, Zhao S, Zhang M, Hua MM, Lu Y, Zhu Y, Li Z, Chen H, Wu LG, Li D, Fu XD, Li J, Shi HJ, Liu MF. Ubiquitination-Deficient Mutations in Human Piwi Cause Male Infertility by Impairing Histone-to-Protamine Exchange during Spermiogenesis. Cell 2017; 169:1090-1104.e13. [PMID: 28552346 DOI: 10.1016/j.cell.2017.04.034] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/07/2016] [Accepted: 04/03/2017] [Indexed: 11/25/2022]
Abstract
Genetic studies have elucidated critical roles of Piwi proteins in germline development in animals, but whether Piwi is an actual disease gene in human infertility remains unknown. We report germline mutations in human Piwi (Hiwi) in patients with azoospermia that prevent its ubiquitination and degradation. By modeling such mutations in Piwi (Miwi) knockin mice, we demonstrate that the genetic defects are directly responsible for male infertility. Mechanistically, we show that MIWI binds the histone ubiquitin ligase RNF8 in a Piwi-interacting RNA (piRNA)-independent manner, and MIWI stabilization sequesters RNF8 in the cytoplasm of late spermatids. The resulting aberrant sperm show histone retention, abnormal morphology, and severely compromised activity, which can be functionally rescued via blocking RNF8-MIWI interaction in spermatids with an RNF8-N peptide. Collectively, our findings identify Piwi as a factor in human infertility and reveal its role in regulating the histone-to-protamine exchange during spermiogenesis.
Collapse
Affiliation(s)
- Lan-Tao Gou
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Jun-Yan Kang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Peng Dai
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Feng Li
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuang Zhao
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Man Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Min-Min Hua
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Lab of Reproduction Regulation of NPFPC-Shanghai Institute of Planned Parenthood Research, Fudan University Reproduction and Development Institution, Shanghai 200032, China
| | - Yi Lu
- Key Lab of Reproduction Regulation of NPFPC-Shanghai Institute of Planned Parenthood Research, Fudan University Reproduction and Development Institution, Shanghai 200032, China
| | - Yong Zhu
- Department of Andrology and PFD, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Zheng Li
- Department of Andrology and PFD, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Hong Chen
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Li-Gang Wu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Dangsheng Li
- Shanghai Information Center for Life Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Hui-Juan Shi
- Key Lab of Reproduction Regulation of NPFPC-Shanghai Institute of Planned Parenthood Research, Fudan University Reproduction and Development Institution, Shanghai 200032, China.
| | - Mo-Fang Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China; Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200438, China.
| |
Collapse
|
68
|
Zhao M, Zhang L, Lv S, Zhang C, Wang L, Chen H, Zhou Y, Lou J. IQGAP1 Mediates Hcp1-Promoted Escherichia coli Meningitis by Stimulating the MAPK Pathway. Front Cell Infect Microbiol 2017; 7:132. [PMID: 28469997 PMCID: PMC5395654 DOI: 10.3389/fcimb.2017.00132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/31/2017] [Indexed: 01/14/2023] Open
Abstract
Escherichia coli-induced meningitis remains a life-threatening disease despite recent advances in the field of antibiotics-based therapeutics, necessitating continued research on its pathogenesis. The current study aims to elucidate the mechanism through which hemolysin-coregulated protein 1 (Hcp1) induces the apoptosis of human brain microvascular endothelial cells (HBMEC). Co-immunoprecipitation coupled with mass spectrometric (MS) characterization led to the identification of IQ motif containing GTPase activating protein 1 (IQGAP1) as a downstream target of Hcp1. IQGAP1 was found to be up-regulated by Hcp1 treatment and mediate the stimulation of HBMEC apoptosis. It was shown that Hcp1 could compete against Smurf1 for binding to IQGAP1, thereby rescuing the latter from ubiquitin-dependent degradation. Subsequent study suggested that IQGAP1 could stimulate the MAPK signaling pathway by promoting the phosphorylation of ERK1/2, an effect that was blocked by U0126, an MAPK inhibitor. Furthermore, U0126 also demonstrated therapeutic potential against E. coli meningitis in a mouse model. Taken together, our results suggested the feasibility of targeting the MAPK pathway as a putative therapeutic strategy against bacterial meningitis.
Collapse
Affiliation(s)
- Mingna Zhao
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong UniversityShanghai, China
| | - Lingfei Zhang
- Center for RNA Research, State Key Laboratory of Molecular Biology-University of Chinese Academy of Sciences, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of SciencesShanghai, China.,Department of Anatomy, Histology and Embryology, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Shaogang Lv
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong UniversityShanghai, China
| | - Chenzi Zhang
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong UniversityShanghai, China
| | - Lin Wang
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong UniversityShanghai, China
| | - Hong Chen
- Department of Anatomy, Histology and Embryology, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Yan Zhou
- Department of Microbiology and Immunobiology, Harvard Medical SchoolBoston, MA, USA
| | - Jiatao Lou
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
69
|
Łabno A, Tomecki R, Dziembowski A. Cytoplasmic RNA decay pathways - Enzymes and mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:3125-3147. [PMID: 27713097 DOI: 10.1016/j.bbamcr.2016.09.023] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 12/14/2022]
Abstract
RNA decay plays a crucial role in post-transcriptional regulation of gene expression. Work conducted over the last decades has defined the major mRNA decay pathways, as well as enzymes and their cofactors responsible for these processes. In contrast, our knowledge of the mechanisms of degradation of non-protein coding RNA species is more fragmentary. This review is focused on the cytoplasmic pathways of mRNA and ncRNA degradation in eukaryotes. The major 3' to 5' and 5' to 3' mRNA decay pathways are described with emphasis on the mechanisms of their activation by the deprotection of RNA ends. More recently discovered 3'-end modifications such as uridylation, and their relevance to cytoplasmic mRNA decay in various model organisms, are also discussed. Finally, we provide up-to-date findings concerning various pathways of non-coding RNA decay in the cytoplasm.
Collapse
Affiliation(s)
- Anna Łabno
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Rafał Tomecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland.
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland.
| |
Collapse
|
70
|
Li Y, Li J, Fang C, Shi L, Tan J, Xiong Y, Bin Fan, Li C. Genome-wide differential expression of genes and small RNAs in testis of two different porcine breeds and at two different ages. Sci Rep 2016; 6:26852. [PMID: 27229484 PMCID: PMC4882596 DOI: 10.1038/srep26852] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/10/2016] [Indexed: 02/06/2023] Open
Abstract
Some documented evidences proved small RNAs (sRNA) and targeted genes are involved in mammalian testicular development and spermatogenesis. However, the detailed molecular regulation mechanisms of them remain largely unknown so far. In this study, we obtained a total of 10,716 mRNAs, 67 miRNAs and 16,953 piRNAs which were differentially expressed between LC and LW pig breeds or between the two sexual maturity stages. Of which, we identified 16 miRNAs and 28 targeted genes possibly related to spermatogenesis; 14 miRNA and 18 targeted genes probably associated with cell adhesion related testis development. We also annotated 579 piRNAs which could potentially regulate cell death, nucleosome organization and other basic biology process, which implied that those piRNAs might be involved in sexual maturation difference. The integrated network analysis results suggested that some differentially expressed genes were involved in spermatogenesis through the ECM-receptor interaction, focal adhesion, Wnt and PI3K-Akt signaling pathways, some particular miRNAs have the negative regulation roles and some special piRNAs have the positive and negative regulation roles in testicular development. Our data provide novel insights into the molecular expression and regulation similarities and diversities of spermatogenesis and testicular development in different pig breeds at different stages of sexual maturity.
Collapse
Affiliation(s)
- Yao Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jialian Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Guangxi Yangxiang Pig Gene Technology limited Company, Guigang, 537120, People's Republic of China
| | - Chengchi Fang
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Liang Shi
- Guangxi Yangxiang Incorporated Company, Guigang, 537100, People's Republic of China
| | - Jiajian Tan
- Guangxi Yangxiang Incorporated Company, Guigang, 537100, People's Republic of China
| | - Yuanzhu Xiong
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Bin Fan
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Guangxi Yangxiang Pig Gene Technology limited Company, Guigang, 537120, People's Republic of China
| | - Changchun Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| |
Collapse
|
71
|
Ghosheh Y, Seridi L, Ryu T, Takahashi H, Orlando V, Carninci P, Ravasi T. Characterization of piRNAs across postnatal development in mouse brain. Sci Rep 2016; 6:25039. [PMID: 27112104 PMCID: PMC4844963 DOI: 10.1038/srep25039] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/11/2016] [Indexed: 12/15/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are responsible for maintaining the genome stability by silencing retrotransposons in germline tissues– where piRNAs were first discovered and thought to be restricted. Recently, novel functions were reported for piRNAs in germline and somatic cells. Using deep sequencing of small RNAs and CAGE of postnatal development of mouse brain, we identified piRNAs only in adult mouse brain. These piRNAs have similar sequence length as those of MILI-bound piRNAs. In addition, we predicted novel candidate regulators and putative targets of adult brain piRNAs.
Collapse
Affiliation(s)
- Yanal Ghosheh
- Division of Applied Mathematics and Computer Sciences, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.,KAUST Environmental Epigenetic Program (KEEP), Division of Biological and Environmental Sciences &Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Loqmane Seridi
- Division of Applied Mathematics and Computer Sciences, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.,KAUST Environmental Epigenetic Program (KEEP), Division of Biological and Environmental Sciences &Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Taewoo Ryu
- Division of Applied Mathematics and Computer Sciences, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.,KAUST Environmental Epigenetic Program (KEEP), Division of Biological and Environmental Sciences &Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Hazuki Takahashi
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Valerio Orlando
- KAUST Environmental Epigenetic Program (KEEP), Division of Biological and Environmental Sciences &Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Piero Carninci
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Timothy Ravasi
- Division of Applied Mathematics and Computer Sciences, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.,KAUST Environmental Epigenetic Program (KEEP), Division of Biological and Environmental Sciences &Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.,Department of Medicine, Division of Genetic, University of California, San Diego. 9500 Gilman Drive La Jolla, California 92093-0688, USA
| |
Collapse
|
72
|
He XH, Zhu W, Yuan P, Jiang S, Li D, Zhang HW, Liu MF. miR-155 downregulates ErbB2 and suppresses ErbB2-induced malignant transformation of breast epithelial cells. Oncogene 2016; 35:6015-6025. [PMID: 27065318 DOI: 10.1038/onc.2016.132] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/22/2016] [Accepted: 03/11/2016] [Indexed: 12/15/2022]
Abstract
ErbB2 is a vital breast cancer gene and its overexpression has a decisive role in breast tumor initiation and malignant progression. However, the molecular mechanisms that underlie ErbB2 dysregulation in breast cancer cells remain incompletely understood. In this study, we found that ErbB2 expression is inversely correlated with the level of miR-155, a well-documented oncogenic miRNA, in ErbB2-positive breast tumors. We further determined that miR-155 potently suppresses ErbB2 in breast cancer cells. Mechanistically, miR-155 acts to downregulate ErbB2 via two distinct mechanisms. First, miR-155 represses ErbB2 transcription by targeting HDAC2, a transcriptional activator of ErbB2. Second, miR-155 directly targets ErbB2 via a regulatory element in its coding region. Intriguingly, miR-155 is upregulated by trastuzumab and in turn leads to a reduction of ErbB2 expression in trastuzumab-treated ErbB2-positive breast cancer cells. Functional studies showed that miR-155 inhibits ErbB2-induced malignant transformation of human breast epithelial cells. Thus, our findings reveal an intriguing miR-155-ErbB2 context in regulating the malignant transformation of breast epithelial cells, and thereby indicate a novel mode of action for miR-155 in ErbB2-positive breast cancer.
Collapse
Affiliation(s)
- X-H He
- Center for RNA Research, State Key Laboratory of Molecular Biology-University of Chinese Academy of Sciences, CAS Center for Excellence in Molecular Cell Science, Shanghai, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - W Zhu
- Department of General Surgery, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - P Yuan
- Center for RNA Research, State Key Laboratory of Molecular Biology-University of Chinese Academy of Sciences, CAS Center for Excellence in Molecular Cell Science, Shanghai, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - S Jiang
- Center for RNA Research, State Key Laboratory of Molecular Biology-University of Chinese Academy of Sciences, CAS Center for Excellence in Molecular Cell Science, Shanghai, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - D Li
- Shanghai Information Center for Life Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - H-W Zhang
- Department of General Surgery, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - M-F Liu
- Center for RNA Research, State Key Laboratory of Molecular Biology-University of Chinese Academy of Sciences, CAS Center for Excellence in Molecular Cell Science, Shanghai, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| |
Collapse
|
73
|
Luo LF, Hou CC, Yang WX. Small non-coding RNAs and their associated proteins in spermatogenesis. Gene 2015; 578:141-57. [PMID: 26692146 DOI: 10.1016/j.gene.2015.12.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/30/2015] [Accepted: 12/08/2015] [Indexed: 12/26/2022]
Abstract
The importance of the gene regulation roles of small non-coding RNAs and their protein partners is of increasing focus. In this paper, we reviewed three main small RNA species which appear to affect spermatogenesis. MicroRNAs (miRNAs) are single stand RNAs derived from transcripts containing stem-loops and hairpins which target corresponding mRNAs and affect their stability or translation. Many miRNA species have been found to be related to normal male germ cell development. The biogenesis of piRNAs is still largely unknown but several models have been proposed. Some piRNAs and PIWIs target transposable elements and it is these that may be active in regulating translation or stem cell maintenance. endo-siRNAs may also participate in sperm development. Some possible interactions between different kinds of small RNAs have even been suggested. We also show that male germ granules are seen to have a close relationship with a considerable number of mRNAs and small RNAs. Those special structures may also participate in sperm development.
Collapse
Affiliation(s)
- Ling-Feng Luo
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cong-Cong Hou
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
74
|
Lim RSM, Kai T. A piece of the pi(e): The diverse roles of animal piRNAs and their PIWI partners. Semin Cell Dev Biol 2015; 47-48:17-31. [PMID: 26582251 DOI: 10.1016/j.semcdb.2015.10.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Small non-coding RNAs are indispensable to many biological processes. A class of endogenous small RNAs, termed PIWI-interacting RNAs (piRNAs) because of their association with PIWI proteins, has known roles in safeguarding the genome against inordinate transposon mobilization, embryonic development, and stem cell regulation, among others. This review discusses the biogenesis of animal piRNAs and their diverse functions together with their PIWI protein partners, both in the germline and in somatic cells, and highlights the evolutionarily conserved aspects of these molecular players in animal biology.
Collapse
Affiliation(s)
- Robyn S M Lim
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | - Toshie Kai
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
75
|
Zhang LF, Lou JT, Lu MH, Gao C, Zhao S, Li B, Liang S, Li Y, Li D, Liu MF. Suppression of miR-199a maturation by HuR is crucial for hypoxia-induced glycolytic switch in hepatocellular carcinoma. EMBO J 2015; 34:2671-85. [PMID: 26346275 PMCID: PMC4641532 DOI: 10.15252/embj.201591803] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/11/2015] [Accepted: 08/20/2015] [Indexed: 01/06/2023] Open
Abstract
Glucose metabolic reprogramming is a hallmark of cancer. Cancer cells rapidly adjust their energy source from oxidative phosphorylation to glycolytic metabolism in order to efficiently proliferate in a hypoxic environment, but the mechanism underlying this switch is still incompletely understood. Here, we report that hypoxia potently induces the RNA-binding protein HuR to specifically bind primary miR-199a transcript to block miR-199a maturation in hepatocellular carcinoma (HCC) cells. We demonstrate that this hypoxia-suppressed miR-199a plays a decisive role in limiting glycolysis in HCC cells by targeting hexokinase-2 (Hk2) and pyruvate kinase-M2 (Pkm2). Furthermore, systemically delivered cholesterol-modified agomiR-199a inhibits [(18)F]-fluorodeoxyglucose uptake and attenuates tumor growth in HCC tumor-bearing mice. These data reveal a novel mechanism of reprogramming of cancer energy metabolism in which HuR suppresses miR-199a maturation to link hypoxia to the Warburg effect and suggest a promising therapeutic strategy that targets miR-199a to interrupt cancerous aerobic glycolysis.
Collapse
Affiliation(s)
- Ling-Fei Zhang
- Center for RNA Research, State Key Laboratory of Molecular Biology-University of Chinese Academy of Sciences, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jia-Tao Lou
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ming-Hua Lu
- Center for RNA Research, State Key Laboratory of Molecular Biology-University of Chinese Academy of Sciences, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chunfang Gao
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai, China
| | - Shuang Zhao
- Center for RNA Research, State Key Laboratory of Molecular Biology-University of Chinese Academy of Sciences, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Biao Li
- Department of Nuclear Medicine and Micro PET Center, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng Liang
- Department of Nuclear Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Li
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Dangsheng Li
- Shanghai Information Center for Life Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mo-Fang Liu
- Center for RNA Research, State Key Laboratory of Molecular Biology-University of Chinese Academy of Sciences, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
76
|
Zhao PP, Yao MJ, Chang SY, Gou LT, Liu MF, Qiu ZL, Yuan XB. Novel function of PIWIL1 in neuronal polarization and migration via regulation of microtubule-associated proteins. Mol Brain 2015; 8:39. [PMID: 26104391 PMCID: PMC4477296 DOI: 10.1186/s13041-015-0131-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 06/17/2015] [Indexed: 12/17/2022] Open
Abstract
Background Young neurons in the developing brain establish a polarized morphology for proper migration. The PIWI family of piRNA processing proteins are considered to be restrictively expressed in germline tissues and several types of cancer cells. They play important roles in spermatogenesis, stem cell maintenance, piRNA biogenesis, and transposon silencing. Interestingly a recent study showed that de novo mutations of PIWI family members are strongly associated with autism. Results Here, we report that PIWI-like 1 (PIWIL1), a PIWI family member known to be essential for the transition of round spermatid into elongated spermatid, plays a role in the polarization and radial migration of newborn neurons in the developing cerebral cortex. Knocking down PIWIL1 in newborn cortical neurons by in utero electroporation of specific siRNAs resulted in retardation of the transition of neurons from the multipolar stage to the bipolar stage followed by a defect in their radial migration to the proper destination. Domain analysis showed that both the RNA binding PAZ domain and the RNA processing PIWI domain in PIWIL1 were indispensable for its function in neuronal migration. Furthermore, we found that PIWIL1 unexpectedly regulates the expression of microtubule-associated proteins in cortical neurons. Conclusions PIWIL1 regulates neuronal polarization and radial migration partly via modulating the expression of microtubule-associated proteins (MAPs). Our finding of PIWIL1’s function in neuronal development implies conserved functions of molecules participating in morphogenesis of brain and germline tissue and provides a mechanism as to how mutations of PIWI may be associated with autism. Electronic supplementary material The online version of this article (doi:10.1186/s13041-015-0131-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ping-Ping Zhao
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,Graduate School of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mao-Jin Yao
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,Graduate School of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Si-Yuan Chang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,Graduate School of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lan-Tao Gou
- Graduate School of Chinese Academy of Sciences, Shanghai, 200031, China.,State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mo-Fang Liu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zi-Long Qiu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiao-Bing Yuan
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China. .,Current Affiliation: Hussman Institute for Autism, Baltimore, MD, 21201, USA.
| |
Collapse
|
77
|
Goh WSS, Falciatori I, Tam OH, Burgess R, Meikar O, Kotaja N, Hammell M, Hannon GJ. piRNA-directed cleavage of meiotic transcripts regulates spermatogenesis. Genes Dev 2015; 29:1032-44. [PMID: 25995188 PMCID: PMC4441051 DOI: 10.1101/gad.260455.115] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/28/2015] [Indexed: 11/25/2022]
Abstract
MIWI catalytic activity is required for spermatogenesis, indicating that piRNA-guided cleavage is critical for germ cell development. To identify meiotic piRNA targets, we augmented the mouse piRNA repertoire by introducing a human meiotic piRNA cluster. This triggered a spermatogenesis defect by inappropriately targeting the piRNA machinery to mouse mRNAs essential for germ cell development. Analysis of such de novo targets revealed a signature for pachytene piRNA target recognition. This enabled identification of both transposable elements and meiotically expressed protein-coding genes as targets of native piRNAs. Cleavage of genic targets began at the pachytene stage and resulted in progressive repression through meiosis, driven at least in part via the ping-pong cycle. Our data support the idea that meiotic piRNA populations must be strongly selected to enable successful spermatogenesis, both driving the response away from essential genes and directing the pathway toward mRNA targets that are regulated by small RNAs in meiotic cells.
Collapse
Affiliation(s)
- Wee Siong Sho Goh
- Howard Hughes Medical Institute, Cold Spring Harbor, New York 11724, USA; Watson School of Biological Sciences, Cold Spring Harbor, New York 11724, USA
| | - Ilaria Falciatori
- Howard Hughes Medical Institute, Cold Spring Harbor, New York 11724, USA; Watson School of Biological Sciences, Cold Spring Harbor, New York 11724, USA; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Oliver H Tam
- Watson School of Biological Sciences, Cold Spring Harbor, New York 11724, USA
| | - Ralph Burgess
- Howard Hughes Medical Institute, Cold Spring Harbor, New York 11724, USA; Watson School of Biological Sciences, Cold Spring Harbor, New York 11724, USA
| | - Oliver Meikar
- Institute of Biomedicine, Department of Physiology, University of Turku, Turku FI-20520, Finland
| | - Noora Kotaja
- Institute of Biomedicine, Department of Physiology, University of Turku, Turku FI-20520, Finland
| | - Molly Hammell
- Watson School of Biological Sciences, Cold Spring Harbor, New York 11724, USA
| | - Gregory J Hannon
- Howard Hughes Medical Institute, Cold Spring Harbor, New York 11724, USA; Watson School of Biological Sciences, Cold Spring Harbor, New York 11724, USA; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK;
| |
Collapse
|
78
|
García-López J, Alonso L, Cárdenas DB, Artaza-Alvarez H, Hourcade JDD, Martínez S, Brieño-Enríquez MA, Del Mazo J. Diversity and functional convergence of small noncoding RNAs in male germ cell differentiation and fertilization. RNA (NEW YORK, N.Y.) 2015; 21:946-962. [PMID: 25805854 PMCID: PMC4408801 DOI: 10.1261/rna.048215.114] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
The small noncoding RNAs (sncRNAs) are considered as post-transcriptional key regulators of male germ cell development. In addition to microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs), other sncRNAs generated from small nucleolar RNAs (snoRNAs), tRNAs, or rRNAs processing may also play important regulatory roles in spermatogenesis. By next-generation sequencing (NGS), we characterized the sncRNA populations detected at three milestone stages in male germ differentiation: primordial germ cells (PGCs), pubertal spermatogonia cells, and mature spermatozoa. To assess their potential transmission through the spermatozoa during fertilization, the sncRNAs of mouse oocytes and zygotes were also analyzed. Both, microRNAs and snoRNA-derived small RNAs are abundantly expressed in PGCs but transiently replaced by piRNAs in spermatozoa and endo-siRNAs in oocytes and zygotes. Exhaustive analysis of miRNA sequence variants also shows an increment of noncanonical microRNA forms along male germ cell differentiation. RNAs-derived from tRNAs and rRNAs interacting with PIWI proteins are not generated by the ping-pong pathway and could be a source of primary piRNAs. Moreover, our results strongly suggest that the small RNAs-derived from tRNAs and rRNAs are interacting with PIWI proteins, and specifically with MILI. Finally, computational analysis revealed their potential involvement in post-transcriptional regulation of mRNA transcripts suggesting functional convergence among different small RNA classes in germ cells and zygotes.
Collapse
Affiliation(s)
- Jesús García-López
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain
| | - Lola Alonso
- Department of Bioinformatics Service, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain
| | - David B Cárdenas
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain
| | - Haydeé Artaza-Alvarez
- Department of Bioinformatics Service, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain
| | - Juan de Dios Hourcade
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain
| | - Sergio Martínez
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain
| | - Miguel A Brieño-Enríquez
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain
| | - Jesús Del Mazo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain
| |
Collapse
|
79
|
Abstract
PIWI-interacting RNAs (piRNAs) are a class of small RNAs that are 24-31 nucleotides in length. They associate with PIWI proteins, which constitute a germline-specific subclade of the Argonaute family, to form effector complexes known as piRNA-induced silencing complexes, which repress transposons via transcriptional or posttranscriptional mechanisms and maintain germline genome integrity. In addition to having a role in transposon silencing, piRNAs in diverse organisms function in the regulation of cellular genes. In some cases, piRNAs have shown transgenerational inheritance to pass on the memory of "self" and "nonself," suggesting a contribution to various cellular processes over generations. Many piRNA factors have been identified; however, both the molecular mechanisms leading to the production of mature piRNAs and the effector phases of gene silencing are still enigmatic. Here, we summarize the current state of our knowledge on the biogenesis of piRNA, its biological functions, and the underlying mechanisms.
Collapse
Affiliation(s)
- Yuka W Iwasaki
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| | | | | |
Collapse
|
80
|
Zhang P, Kang JY, Gou LT, Wang J, Xue Y, Skogerboe G, Dai P, Huang DW, Chen R, Fu XD, Liu MF, He S. MIWI and piRNA-mediated cleavage of messenger RNAs in mouse testes. Cell Res 2015; 25:193-207. [PMID: 25582079 PMCID: PMC4650574 DOI: 10.1038/cr.2015.4] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 10/11/2014] [Accepted: 11/03/2014] [Indexed: 12/11/2022] Open
Abstract
The piRNA machinery is known for its role in mediating epigenetic silencing of transposons. Recent studies suggest that this function also involves piRNA-guided cleavage of transposon-derived transcripts. As many piRNAs also appear to have the capacity to target diverse mRNAs, this raises the intriguing possibility that piRNAs may act extensively as siRNAs to degrade specific mRNAs. To directly test this hypothesis, we compared mouse PIWI (MIWI)-associated piRNAs with experimentally identified cleaved mRNA fragments from mouse testes, and observed cleavage sites that predominantly occur at position 10 from the 5' end of putative targeting piRNAs. We also noted strong biases for U and A residues at nucleotide positions 1 and 10, respectively, in both piRNAs and mRNA fragments, features that resemble the pattern of piRNA amplification by the 'ping-pong' cycle. Through mapping of MIWI-RNA interactions by CLIP-seq and gene expression profiling, we found that many potential piRNA-targeted mRNAs directly interact with MIWI and show elevated expression levels in the testes of Miwi catalytic mutant mice. Reporter-based assays further revealed the importance of base pairing between piRNAs and mRNA targets and the requirement for both the slicer activity and piRNA-loading ability of MIWI in piRNA-mediated target repression. Importantly, we demonstrated that proper turnover of certain key piRNA targets is essential for sperm formation. Together, these findings reveal the siRNA-like function of the piRNA machinery in mouse testes and its central requirement for male germ cell development and maturation.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun-Yan Kang
- 1] Center for RNA Research, State Key Laboratory of Molecular Biology, University of Chinese Academy of Sciences, Shanghai 200031, China [2] Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lan-Tao Gou
- 1] Center for RNA Research, State Key Laboratory of Molecular Biology, University of Chinese Academy of Sciences, Shanghai 200031, China [2] Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiajia Wang
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanchao Xue
- 1] State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China [2] Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Geir Skogerboe
- Laboratory of Bioinformatics and Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Dai
- 1] Center for RNA Research, State Key Laboratory of Molecular Biology, University of Chinese Academy of Sciences, Shanghai 200031, China [2] Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Da-Wei Huang
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Runsheng Chen
- Laboratory of Bioinformatics and Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiang-Dong Fu
- 1] State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China [2] Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Mo-Fang Liu
- 1] Center for RNA Research, State Key Laboratory of Molecular Biology, University of Chinese Academy of Sciences, Shanghai 200031, China [2] Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shunmin He
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
81
|
Both endo-siRNAs and tRNA-derived small RNAs are involved in the differentiation of primitive eukaryote Giardia lamblia. Proc Natl Acad Sci U S A 2014; 111:14159-64. [PMID: 25225396 DOI: 10.1073/pnas.1414394111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Small RNAs (sRNAs), including microRNAs and endogenous siRNAs (endo-siRNAs), regulate most important biologic processes in eukaryotes, such as cell division and differentiation. Although sRNAs have been extensively studied in various eukaryotes, the role of sRNAs in the early emergence of eukaryotes is unclear. To address these questions, we deep sequenced the sRNA transcriptome of four different stages in the differentiation of Giardia lamblia, one of the most primitive eukaryotes. We identified a large number of endo-siRNAs in this fascinating parasitic protozoan and found that they were produced from live telomeric retrotransposons and three genomic regions (i.e., endo-siRNA generating regions [eSGRs]). eSGR-derived endo-siRNAs were proven to target mRNAs in trans. Gradual up-regulation of endo-siRNAs in the differentiation of Giardia suggested that they might be involved in the regulation of this process. This hypothesis was supported by the impairment of the differentiation ability of Giardia when GLDICER, essential for the biogenesis of endo-siRNAs, was knocked down. Endo-siRNAs are not the only sRNA regulators in Giardia differentiation, because a great number of tRNAs-derived sRNAs showed more dramatic expression changes than endo-siRNAs in this process. We totally identified five novel kinds of tRNAs-derived sRNAs and found that the biogenesis in four of them might be correlated with that of stress-induced tRNA-derived RNA (sitRNA), which was discovered in our previous studies. Our studies reveal an unexpected complex panorama of sRNA in G. lamblia and shed light on the origin and functional evolution of eukaryotic sRNAs.
Collapse
|
82
|
Castañeda J, Genzor P, van der Heijden GW, Sarkeshik A, Yates JR, Ingolia NT, Bortvin A. Reduced pachytene piRNAs and translation underlie spermiogenic arrest in Maelstrom mutant mice. EMBO J 2014; 33:1999-2019. [PMID: 25063675 DOI: 10.15252/embj.201386855] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Pachytene piRNAs are a class of Piwi-interacting small RNAs abundant in spermatids of the adult mouse testis. They are processed from piRNA primary transcripts by a poorly understood mechanism and, unlike fetal transposon-derived piRNAs, lack complementary targets in the spermatid transcriptome. We report that immunopurified complexes of a conserved piRNA pathway protein Maelstrom (MAEL) are enriched in MIWI (Piwi partner of pachytene piRNAs), Tudor-domain proteins and processing intermediates of pachytene piRNA primary transcripts. We provide evidence of functional significance of these complexes in Mael129 knockout mice that exhibit spermiogenic arrest with acrosome and flagellum malformation. Mael129-null mutant testes possess low levels of piRNAs derived from MAEL-associated piRNA precursors and exhibit reduced translation of numerous spermiogenic mRNAs including those encoding acrosome and flagellum proteins. These translation defects in haploid round spermatids are likely indirect, as neither MAEL nor piRNA precursors associate with polyribosomes, and they may arise from an imbalance between pachytene piRNAs and MIWI.
Collapse
Affiliation(s)
- Julio Castañeda
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Pavol Genzor
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | | | - Ali Sarkeshik
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Nicholas T Ingolia
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Alex Bortvin
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| |
Collapse
|
83
|
Gou LT, Dai P, Liu MF. Small noncoding RNAs and male infertility. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:733-45. [PMID: 25044449 DOI: 10.1002/wrna.1252] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/29/2014] [Accepted: 06/03/2014] [Indexed: 11/07/2022]
Abstract
Small noncoding RNAs (ncRNAs) are a novel class of gene regulators that modulate gene expression at transcriptional, post-transcriptional, and epigenetic levels, and they play crucial roles in almost all cellular processes in eukaryotes. Recent studies have indicated that several types of small noncoding RNAs, including microRNAs (miRNAs), endo-small interference RNAs (endo-siRNAs), and Piwi-interacting RNAs (piRNAs), are expressed in the male germline and are required for spermatogenesis in animals. In this review, we summarize the recent knowledge of these small noncoding RNAs in male germ cells and their biological functions and mechanisms of action in animal spermatogenesis.
Collapse
Affiliation(s)
- Lan-Tao Gou
- Center for RNA Research, State Key Laboratory of Molecular Biology-University of Chinese Academy of Sciences, Shanghai, China; Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | |
Collapse
|
84
|
Wang L, Zhang LF, Wu J, Xu SJ, Xu YY, Li D, Lou JT, Liu MF. IL-1β-mediated repression of microRNA-101 is crucial for inflammation-promoted lung tumorigenesis. Cancer Res 2014; 74:4720-30. [PMID: 24958470 DOI: 10.1158/0008-5472.can-14-0960] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inflammatory stimuli clearly contribute to lung cancer development and progression, but the underlying pathogenic mechanisms are not fully understood. We found that the proinflammatory cytokine IL-1β is dramatically elevated in the serum of patients with non-small cell lung cancer (NSCLC). In vitro studies showed that IL-1β promoted the proliferation and migration of NSCLC cells. Mechanistically, IL-1β acted through the COX2-HIF1α pathway to repress the expression of microRNA-101 (miR-101), a microRNA with an established role in tumor suppression. Lin28B was identified as critical effector target of miR-101 with its repression of Lin28B, a critical aspect of tumor suppression. Overall, IL-1β upregulated Lin28B by downregulating miR-101. Interestingly, cyclooxygenase-2 inhibition by aspirin or celecoxib abrogated IL-1β-mediated repression of miR-101 and IL-1β-mediated activation of Lin28B along with their stimulatory effects on NSCLC cell proliferation and migration. Together, our findings defined an IL-1β-miR-101-Lin28B pathway as a novel regulatory axis of pathogenic inflammatory signaling in NSCLC.
Collapse
Affiliation(s)
- Lin Wang
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China. Center for RNA Research, State Key Laboratory of Molecular Biology-University of Chinese Academy of Sciences, Shanghai, China
| | - Ling-Fei Zhang
- Center for RNA Research, State Key Laboratory of Molecular Biology-University of Chinese Academy of Sciences, Shanghai, China. Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing Wu
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shu-Jun Xu
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yang-Yang Xu
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Dangsheng Li
- Shanghai Information Center for Life Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jia-Tao Lou
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Mo-Fang Liu
- Center for RNA Research, State Key Laboratory of Molecular Biology-University of Chinese Academy of Sciences, Shanghai, China. Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
85
|
Abstract
Piwi-interacting RNAs (piRNAs) have a major function in the repression of transposable elements in the germline; in addition, they have been proposed to regulate gene expression. A recent study in Cell Research reveals a general role for piRNAs in the massive mRNA decay during mouse spermiogenesis, reinforcing this emerging function of piRNAs.
Collapse
|
86
|
Jee D, Lai EC. Alteration of miRNA activity via context-specific modifications of Argonaute proteins. Trends Cell Biol 2014; 24:546-53. [PMID: 24865524 DOI: 10.1016/j.tcb.2014.04.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 12/12/2022]
Abstract
miRNAs are enclosed within Argonaute (Ago) proteins, the downstream effectors of small RNA-mediated gene silencing. Because miRNAs mediate extensive networks of post-transcriptional control, cells have evolved multiple strategies to control their activity with precision. A growing theme of recent years is how post-translational modifications of Ago proteins, such as prolyl hydroxylation, phosphorylation, ubiquitination, and poly-ADP-ribosylation, alter miRNA activity at global or specific levels. In this review, we discuss recent advances in Ago modifications in mammalian cells and emphasize how such alterations modulate small RNA function to coordinate appropriate downstream cellular responses. These findings provide a framework to understand how Ago protein modifications are linked to reorganization of post-transcriptional regulatory networks, enabling dynamic responses to diverse external stimuli and changing environmental conditions.
Collapse
Affiliation(s)
- David Jee
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA; Program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Eric C Lai
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA.
| |
Collapse
|
87
|
Abstract
A striking finding in the past decade is the production of numerous non-coding RNAs (ncRNAs) from mammalian genomes. While it is entirely possible that many of those ncRNAs are transcription noises or by-products of RNA processing, increasing evidence suggests that a large fraction of them are functional and provide various regulatory activities in the cell. Thus, functional genomics and proteomics are incomplete without understanding functional ribonomics. As has been long suggested by the 'RNA world' hypothesis, many ncRNAs have the capacity to act like proteins in diverse biochemical processes. The enormous amount of information residing in the primary sequences and secondary structures of ncRNAs makes them particularly suited to function as scaffolds for molecular interactions. In addition, their functions appear to be stringently controlled by default via abundant nucleases when not engaged in specific interactions. This review focuses on the functional properties of regulatory ncRNAs in comparison with proteins and emphasizes both the opportunities and challenges in future ncRNA research.
Collapse
Affiliation(s)
- Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| |
Collapse
|
88
|
Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis. Cell Res 2014; 24:680-700. [PMID: 24787618 PMCID: PMC4042167 DOI: 10.1038/cr.2014.41] [Citation(s) in RCA: 289] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/26/2014] [Accepted: 03/02/2014] [Indexed: 12/12/2022] Open
Abstract
Spermatogenesis in mammals is characterized by two waves of piRNA expression: one corresponds to classic piRNAs responsible for silencing retrotransponsons and the second wave is predominantly derived from nontransposon intergenic regions in pachytene spermatocytes, but the function of these pachytene piRNAs is largely unknown. Here, we report the involvement of pachytene piRNAs in instructing massive mRNA elimination in mouse elongating spermatids (ES). We demonstrate that a piRNA-induced silencing complex (pi-RISC) containing murine PIWI (MIWI) and deadenylase CAF1 is selectively assembled in ES, which is responsible for inducing mRNA deadenylation and decay via a mechanism that resembles the action of miRNAs in somatic cells. Such a highly orchestrated program appears to take full advantage of the enormous repertoire of diversified targeting capacity of pachytene piRNAs derived from nontransposon intergenic regions. These findings suggest that pachytene piRNAs are responsible for inactivating vast cellular programs in preparation for sperm production from ES.
Collapse
|
89
|
García-López J, Hourcade JDD, Alonso L, Cárdenas DB, del Mazo J. Global characterization and target identification of piRNAs and endo-siRNAs in mouse gametes and zygotes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:463-75. [PMID: 24769224 DOI: 10.1016/j.bbagrm.2014.04.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/24/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
Abstract
A set of small RNAs known as rasRNAs (repeat-associated small RNAs) have been related to the down-regulation of Transposable Elements (TEs) to safeguard genome integrity. Two key members of the rasRNAs group are piRNAs and endo-siRNAs. We have performed a comparative analysis of piRNAs and endo-siRNAs present in mouse oocytes, spermatozoa and zygotes, identified by deep sequencing and bioinformatic analysis. The detection of piRNAs and endo-siRNAs in the spermatozoa and revealed also in zygotes, hints to their potential delivery to oocytes during fertilization. However, a comparative assessment of the three cell types indicates that both piRNAs and endo-siRNAs are mainly maternally inherited. Finally, we have assessed the role of the different rasRNA molecules in connection with amplification processes by way of the "ping-pong cycle". Our results suggest that the ping-pong cycle can act on other rasRNAs, such as tRNA- and rRNA-derived fragments, thus not only being restricted to TEs during gametogenesis.
Collapse
Affiliation(s)
- Jesús García-López
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Juan de Dios Hourcade
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Lola Alonso
- Bioinformatics Service, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - David B Cárdenas
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Jesús del Mazo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
90
|
Xu K, Yang L, Zhao D, Wu Y, Qi H. AKAP3 synthesis is mediated by RNA binding proteins and PKA signaling during mouse spermiogenesis. Biol Reprod 2014; 90:119. [PMID: 24648398 DOI: 10.1095/biolreprod.113.116111] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mammalian spermatogenesis is regulated by coordinated gene expression in a spatiotemporal manner. The spatiotemporal regulation of major sperm proteins plays important roles during normal development of the male gamete, of which the underlying molecular mechanisms are poorly understood. A-kinase anchoring protein 3 (AKAP3) is one of the major components of the fibrous sheath of the sperm tail that is formed during spermiogenesis. In the present study, we analyzed the expression of sperm-specific Akap3 and the potential regulatory factors of its protein synthesis during mouse spermiogenesis. Results showed that the transcription of Akap3 precedes its protein synthesis by about 2 wk. Nascent AKAP3 was found to form protein complex with PKA and RNA binding proteins (RBPs), including PIWIL1, PABPC1, and NONO, as revealed by coimmunoprecipitation and protein mass spectrometry. RNA electrophoretic gel mobility shift assay showed that these RBPs bind sperm-specific mRNAs, of which proteins are synthesized during the elongating stage of spermiogenesis. Biochemical and cell biological experiments demonstrated that PIWIL1, PABPC1, and NONO interact with each other and colocalize in spermatids' RNA granule, the chromatoid body. In addition, NONO was found in extracytoplasmic granules in round spermatids, whereas PIWIL1 and PABPC1 were diffusely localized in cytoplasm of elongating spermatids, indicating their participation at different steps of mRNA metabolism during spermatogenesis. Interestingly, type I PKA subunits colocalize with PIWIL1 and PABPC1 in the cytoplasm of elongating spermatids and cosediment with the RBPs in polysomal fractions on sucrose gradients. Further biochemical analyses revealed that activation of PKA positively regulates AKAP3 protein synthesis without changing its mRNA level in elongating spermatids. Taken together, these results indicate that PKA signaling directly participates in the regulation of protein translation in postmeiotic male germ cells, underscoring molecular mechanisms that regulate protein synthesis during mouse spermiogenesis.
Collapse
Affiliation(s)
- Kaibiao Xu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lele Yang
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Danyun Zhao
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yaoyao Wu
- Department of Biology, University of Science and Technology of China, Hefei, China
| | - Huayu Qi
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
91
|
Fu Q, Wang PJ. Mammalian piRNAs: Biogenesis, function, and mysteries. SPERMATOGENESIS 2014; 4:e27889. [PMID: 25077039 DOI: 10.4161/spmg.27889] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 12/23/2013] [Accepted: 01/16/2014] [Indexed: 12/20/2022]
Abstract
Piwi-interacting RNAs (piRNAs) are a distinct class of small non-coding RNAs specifically expressed in the germline of many species. They are most notably required for transposon silencing. Loss of piRNAs results in defects in germ cell development, and thus, infertility. Most studies of piRNAs have been done in Drosophila, but much progress has also been made on piRNAs in the germline of mammals and other species in the past few years. This review provides a summary of our current knowledge of the biogenesis and functions of piRNAs during mouse spermatogenesis and discusses challenges in the mammalian piRNA field.
Collapse
Affiliation(s)
- Qi Fu
- Department of Animal Biology; University of Pennsylvania School of Veterinary Medicine; Philadelphia, PA USA
| | - P Jeremy Wang
- Department of Animal Biology; University of Pennsylvania School of Veterinary Medicine; Philadelphia, PA USA
| |
Collapse
|
92
|
Ubiquitin-proteasome system in spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 759:181-213. [PMID: 25030765 DOI: 10.1007/978-1-4939-0817-2_9] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Spermatogenesis represents a complex succession of cell division and differentiation events resulting in the continuous formation of spermatozoa. Such a complex program requires precise expression of enzymes and structural proteins which is effected not only by regulation of gene transcription and translation, but also by targeted protein degradation. In this chapter, we review current knowledge about the role of the ubiquitin-proteasome system in spermatogenesis, describing both proteolytic and non-proteolytic functions of ubiquitination. Ubiquitination plays essential roles in the establishment of both spermatogonial stem cells and differentiating spermatogonia from gonocytes. It also plays critical roles in several key processes during meiosis such as genetic recombination and sex chromosome silencing. Finally, in spermiogenesis, we summarize current knowledge of the role of the ubiquitin-proteasome system in nucleosome removal and establishment of key structures in the mature spermatid. Many mechanisms remain to be precisely defined, but present knowledge indicates that research in this area has significant potential to translate into benefits that will address problems in both human and animal reproduction.
Collapse
|
93
|
Clark JP, Lau NC. Piwi Proteins and piRNAs step onto the systems biology stage. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:159-97. [PMID: 25201106 PMCID: PMC4248790 DOI: 10.1007/978-1-4939-1221-6_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Animal germ cells are totipotent because they maintain a highly unique and specialized epigenetic state for its genome. To accomplish this, germ cells express a rich repertoire of specialized RNA-binding protein complexes such as the Piwi proteins and Piwi-interacting RNAs (piRNAs): a germ-cell branch of the RNA interference (RNAi) phenomenon which includes microRNA and endogenous small interfering RNA pathways. Piwi proteins and piRNAs are deeply conserved in animal evolution and play essential roles in fertility and regeneration. Molecular mechanisms for how these ribonucleoproteins act upon the transcriptome and genome are only now coming to light with the application of systems-wide approaches in both invertebrates and vertebrates. Systems biology studies on invertebrates have revealed that transcriptional and heritable silencing is a main mechanism driven by Piwi proteins and piRNA complexes. In vertebrates, Piwi-targeting mechanisms and piRNA biogenesis have progressed, while the discovery that the nuclease activity of Piwi protein is essential for vertebrate germ cell development but not completely required in invertebrates highlights the many complexities of this pathway in different animals. This review recounts how recent systems-wide approaches have rapidly accelerated our appreciation for the broad reach of the Piwi pathway on germline genome regulation and what questions facing the field await to be unraveled.
Collapse
Affiliation(s)
- Josef P. Clark
- Department of Biology and Rosenstiel Biomedical Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Nelson C. Lau
- Department of Biology and Rosenstiel Biomedical Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| |
Collapse
|
94
|
Smibert P, Yang JS, Azzam G, Liu JL, Lai EC. Homeostatic control of Argonaute stability by microRNA availability. Nat Struct Mol Biol 2013; 20:789-95. [PMID: 23708604 PMCID: PMC3702675 DOI: 10.1038/nsmb.2606] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 05/10/2013] [Indexed: 12/18/2022]
Abstract
Homeostatic mechanisms regulate the abundance of several components in small-RNA pathways. We used Drosophila and mammalian systems to demonstrate a conserved homeostatic system in which the status of miRNA biogenesis controls Argonaute protein stability. Clonal analyses of multiple mutants of core Drosophila miRNA factors revealed that stability of the miRNA effector AGO1 is dependent on miRNA biogenesis. Reciprocally, ectopic transcription of miRNAs within in vivo clones induced accumulation of AGO1, as did genetic interference with the ubiquitin-proteasome system. In mouse cells, we found that the stability of Ago2 declined in Dicer-knockout cells and was rescued by proteasome blockade or introduction of either Dicer plasmid or Dicer-independent miRNA constructs. Notably, Dicer-dependent miRNA constructs generated pre-miRNAs that bound Ago2 but did not rescue Ago2 stability. We conclude that Argonaute levels are finely tuned by cellular availability of mature miRNAs and the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Peter Smibert
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York, USA
| | | | | | | | | |
Collapse
|
95
|
Mei Y, Clark D, Mao L. Novel dimensions of piRNAs in cancer. Cancer Lett 2013; 336:46-52. [PMID: 23603435 DOI: 10.1016/j.canlet.2013.04.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/04/2013] [Accepted: 04/10/2013] [Indexed: 12/16/2022]
Abstract
Piwi-interacting RNAs (piRNAs), a newly identified class of small non-coding RNAs, direct the Piwi-dependent transposon silencing, heterochromatin modification and germ cell maintenance. Owing to our limited knowledge regarding their biogenesis, piRNAs are considered as the most mysterious class of small regulatory RNAs, particularly in pathogenesis such as tumorigenesis. Recently, several lines of evidence have emerged to suggest that piRNAs may be dis-regulated and play crucial roles in tumorigenesis in previously unsuspected ways. In this prospective piece, we will discuss the emerging insights into the potential novel roles of piRNAs in carcinogenesis and highlight their potential implications in cancer detection, classification and therapy.
Collapse
Affiliation(s)
- Yuping Mei
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
96
|
|
97
|
Abstract
Recently in Developmental Cell, Zhao et al. (2013) reported a mechanism for the directed turnover of the mouse Piwi protein MIWI during sperm maturation. This study implicates the anaphase-promoting complex as a mediator of MIWI ubiquitination and expands the avenues for regulating small RNA processes.
Collapse
Affiliation(s)
- Yuliya Sytnikova
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Nelson C. Lau
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| |
Collapse
|