51
|
Zhang Y, Liu X, Klionsky DJ, Lu B, Zhong Q. Manipulating autophagic degradation in human diseases: from mechanisms to interventions. LIFE MEDICINE 2022; 1:120-148. [PMID: 39871921 PMCID: PMC11749641 DOI: 10.1093/lifemedi/lnac043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/08/2022] [Indexed: 01/29/2025]
Abstract
Targeted degradation, having emerged as a powerful and promising strategy in drug discovery in the past two decades, has provided a solution for many once undruggable targets involved in various diseases. While earlier targeted degradation tools, as exemplified by PROteolysis-TArgeting Chimera (PROTAC), focused on harnessing the ubiquitin-proteasome system, novel approaches that aim to utilize autophagy, a potent, lysosome-dependent degradation pathway, have also surfaced recently as promising modalities. In this review, we first introduce the mechanisms that establish selectivity in autophagy, which provides the rationales for autophagy-based targeted degradation; we also provide an overview on the panoply of cellular machinery involved in this process, an arsenal that could be potentially harnessed. On this basis, we propose four strategies for designing autophagy-based targeted degraders, including Tagging Targets, Directly Engaging Targets, Initiating Autophagy at Targets, and Phagophore-Tethering to Targets. We introduce the current frontiers in this field, including AUtophagy-TArgeting Chimera (AUTAC), Targeted Protein Autophagy (TPA), AUTOphagy-TArgeting Chimera (AUTOTAC, not to be confused with AUTAC), AuTophagosome TEthering Compound (ATTEC), and other experimental approaches as case studies for each strategy. Finally, we put forward a workflow for generating autophagy-based degraders and some important questions that may guide and inspire the process.
Collapse
Affiliation(s)
- Yiqing Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 20025, China
| | - Xiaoxia Liu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 20025, China
| | - Daniel J Klionsky
- Department of Molecular, Cellular, and Developmental Biology, and the Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Boxun Lu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 20025, China
| |
Collapse
|
52
|
Wan T, Wang Y, Wang C, Wang H, Li X, Li Y. Overexpression of TRIM32 promotes pancreatic β-cell autophagic cell death through Akt/mTOR pathway under high glucose conditions. Cell Biol Int 2022; 46:2095-2106. [PMID: 36040726 DOI: 10.1002/cbin.11897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 07/25/2022] [Accepted: 08/10/2022] [Indexed: 11/09/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a growing worldwide epidemic and is characterized by progressive pancreatic β-cell dysfunction and insulin resistance. Tripartite motif protein 32 (TRIM32) belongs to the TRIM family protein and has been shown to be involve in insulin resistance in skeletal muscle and the liver. However, the effect of TRIM32 on pancreatic β-cell dysfunction and its mechanism remains unknown. In the current study, we found that serum TRIM32 concentrations of T2DM in patients were significantly elevated compared to those in healthy controls, which indicated that TRIM32 might be used as a diagnostic biomarker in T2DM patients. In INS-1 cells, exposure to high glucose (HG) conditions caused a significant elevation in TRIM32 expression and TRIM32 was located in the nucleus. Overexpression of TRIM32 in INS-1 cells exacerbated the effects of HG-induced autophagy and impaired insulin secretion. In contrast, the silencing of TRIM32 produced the opposite effect. Furthermore, TRIM32 overexpression decreased the phosphorylation levels of Akt and mTOR under HG conditions. However, the activation of Akt/mTOR by MHY1485 reversed the effects of TRIM32 on HG-treated INS-1 cells. Collectively, the present results suggested that TRIM32 participates in the development of T2DM by modulating autophagic cell death and insulin secretion, which might occur through the Akt/mTOR pathway. Thus, TRIM32 might be a promising target in T2DM therapy.
Collapse
Affiliation(s)
- Tingting Wan
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, Heilongjiang, China
| | - Yidan Wang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, Heilongjiang, China
| | - Chunxu Wang
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, Heilongjiang, China.,Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongjie Wang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiudan Li
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, Heilongjiang, China
| | - Yanbo Li
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
53
|
Zhou F, Liu Y, Ai W, Wang Y, Gan M, Jiang Q, Han T, Wang JB. GNIP1 functions both as a scaffold protein and an E3 ubiquitin ligase to regulate autophagy in lung cancer. Cell Commun Signal 2022; 20:133. [PMID: 36042481 PMCID: PMC9426035 DOI: 10.1186/s12964-022-00936-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/08/2022] [Indexed: 01/18/2023] Open
Abstract
Background Glycogen-Interacting Protein 1 (GNIP1), an E3 ligase, is a member of the tripartite motif (TRIM) family proteins. Current studies on GNIP1 mainly focus on glycogen metabolism. However, the function and molecular mechanisms of GNIP1 in regulating autophagy still remains unclear. This study aimed to investigate the regulatory mechanism of GNIP1 in regulating autophagy in non-small cell lung cancer (NSCLC). Methods Crystal violet staining assays were used to evaluate the ability of cell growth and proliferation. Transwell and scratch wound healing assays were used to evaluate the cell migration ability. The protein expressions were measured by western blot and immunohistochemistry. Co-immunoprecipitation assays determined the protein–protein interactions. The in vivo effect of GNIP1 on tumor growth was determined by xenograft assay. Results We found that GNIP1 was overexpressed in tumor tissues and the expression level of GNIP1 was related to the poor prognosis and the survival time of NSCLC patients. In non-small cell lung cancer (NSCLC), GNIP1 increased proliferation and migration of cancer cells by promoting autophagy. Mechanistic studies indicated that GNIP1, as a scaffold protein, recruited BECN1 and LC3B to promote the formation of autophagosomes. Besides, GNIP1 mediated the degradation of 14-3-3ζ, the negative regulator of VPS34 complex, thus promoting autophagy. Overexpressing GNIP1 promoted tumorigenesis and enhanced autophagy in xenograft models. Conclusion GNIP1 promotes proliferation and migration of NSCLC cells through mediating autophagy, which provides theoretical basis for targeting GNIP1 as anti-cancer drugs. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00936-x.
Collapse
Affiliation(s)
- Feifei Zhou
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330031, People's Republic of China.,Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Yufeng Liu
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Wenqian Ai
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Yanan Wang
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Mingxi Gan
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Qingkun Jiang
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Tianyu Han
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.
| | - Jian-Bin Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330031, People's Republic of China.
| |
Collapse
|
54
|
Tozawa T, Matsunaga K, Izumi T, Shigehisa N, Uekita T, Taoka M, Ichimura T. Ubiquitination-coupled liquid phase separation regulates the accumulation of the TRIM family of ubiquitin ligases into cytoplasmic bodies. PLoS One 2022; 17:e0272700. [PMID: 35930602 PMCID: PMC9355226 DOI: 10.1371/journal.pone.0272700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
Many members of the tripartite motif (TRIM) family of ubiquitin ligases localize in spherical, membrane-free structures collectively referred to as cytoplasmic bodies (CBs) in a concentration-dependent manner. These CBs may function as aggresome precursors or storage compartments that segregate potentially harmful excess TRIM molecules from the cytosolic milieu. However, the manner in which TRIM proteins accumulate into CBs is unclear. In the present study, using TRIM32, TRIM5α and TRIM63 as examples, we demonstrated that CBs are in a liquid droplet state, resulting from liquid-liquid phase separation (LLPS). This finding is based on criteria that defines phase-separated structures, such as recovery after photobleaching, sensitivity to hexanediol, and the ability to undergo fusion. CB droplets, which contain cyan fluorescent protein (CFP)-fused TRIM32, were purified from HEK293 cells using a fluorescence-activated cell sorter and analyzed by LC-MS/MS. We found that in addition to TRIM32, these droplets contain a variety of endogenous proteins and enzymes including ubiquitin. Localization of ubiquitin within CBs was further verified by fluorescence microscopy. We also found that the activation of the intracellular ubiquitination cascade promotes the assembly of TRIM32 molecules into CBs, whereas inhibition causes suppression. Regulation is dependent on the intrinsic E3 ligase activity of TRIM32. Similar regulation by ubiquitination on the TRIM assembly was also observed with TRIM5α and TRIM63. Our findings provide a novel mechanical basis for the organization of CBs that couples compartmentalization through LLPS with ubiquitination.
Collapse
Affiliation(s)
- Takafumi Tozawa
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa, Japan
| | - Kohichi Matsunaga
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Tetsuro Izumi
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Naotake Shigehisa
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa, Japan
| | - Takamasa Uekita
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa, Japan
| | - Masato Taoka
- Department of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Tohru Ichimura
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
55
|
Zhu Y, Afolabi LO, Wan X, Shim JS, Chen L. TRIM family proteins: roles in proteostasis and neurodegenerative diseases. Open Biol 2022; 12:220098. [PMID: 35946309 PMCID: PMC9364147 DOI: 10.1098/rsob.220098] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Neurodegenerative diseases (NDs) are a diverse group of disorders characterized by the progressive degeneration of the structure and function of the central or peripheral nervous systems. One of the major features of NDs, such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD), is the aggregation of specific misfolded proteins, which induces cellular dysfunction, neuronal death, loss of synaptic connections and eventually brain damage. By far, a great amount of evidence has suggested that TRIM family proteins play crucial roles in the turnover of normal regulatory and misfolded proteins. To maintain cellular protein quality control, cells rely on two major classes of proteostasis: molecular chaperones and the degradative systems, the latter includes the ubiquitin-proteasome system (UPS) and autophagy; and their dysfunction has been established to result in various physiological disorders including NDs. Emerging evidence has shown that TRIM proteins are key players in facilitating the clearance of misfolded protein aggregates associated with neurodegenerative disorders. Understanding the different pathways these TRIM proteins employ during episodes of neurodegenerative disorder represents a promising therapeutic target. In this review, we elucidated and summarized the diverse roles with underlying mechanisms of members of the TRIM family proteins in NDs.
Collapse
Affiliation(s)
- Yan Zhu
- Shenzhen Laboratory of Tumor Cell Biology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100864, People's Republic of China
| | - Lukman O. Afolabi
- Shenzhen Laboratory of Tumor Cell Biology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100864, People's Republic of China
| | - Xiaochun Wan
- Shenzhen Laboratory of Tumor Cell Biology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100864, People's Republic of China
| | - Joong Sup Shim
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, People's Republic of China
| | - Liang Chen
- Shenzhen Laboratory of Tumor Cell Biology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100864, People's Republic of China
| |
Collapse
|
56
|
Wang S, Atkinson GRS, Hayes WB. SANA: cross-species prediction of Gene Ontology GO annotations via topological network alignment. NPJ Syst Biol Appl 2022; 8:25. [PMID: 35859153 PMCID: PMC9300714 DOI: 10.1038/s41540-022-00232-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 05/20/2022] [Indexed: 12/31/2022] Open
Abstract
Topological network alignment aims to align two networks node-wise in order to maximize the observed common connection (edge) topology between them. The topological alignment of two protein-protein interaction (PPI) networks should thus expose protein pairs with similar interaction partners allowing, for example, the prediction of common Gene Ontology (GO) terms. Unfortunately, no network alignment algorithm based on topology alone has been able to achieve this aim, though those that include sequence similarity have seen some success. We argue that this failure of topology alone is due to the sparsity and incompleteness of the PPI network data of almost all species, which provides the network topology with a small signal-to-noise ratio that is effectively swamped when sequence information is added to the mix. Here we show that the weak signal can be detected using multiple stochastic samples of "good" topological network alignments, which allows us to observe regions of the two networks that are robustly aligned across multiple samples. The resulting network alignment frequency (NAF) strongly correlates with GO-based Resnik semantic similarity and enables the first successful cross-species predictions of GO terms based on topology-only network alignments. Our best predictions have an AUPR of about 0.4, which is competitive with state-of-the-art algorithms, even when there is no observable sequence similarity and no known homology relationship. While our results provide only a "proof of concept" on existing network data, we hypothesize that predicting GO terms from topology-only network alignments will become increasingly practical as the volume and quality of PPI network data increase.
Collapse
Affiliation(s)
- Siyue Wang
- Department of Computer Science, University of California, Irvine, CA, 92697-3435, USA
| | - Giles R S Atkinson
- Department of Computer Science, University of California, Irvine, CA, 92697-3435, USA
| | - Wayne B Hayes
- Department of Computer Science, University of California, Irvine, CA, 92697-3435, USA.
| |
Collapse
|
57
|
Deretic V, Lazarou M. A guide to membrane atg8ylation and autophagy with reflections on immunity. J Cell Biol 2022; 221:e202203083. [PMID: 35699692 PMCID: PMC9202678 DOI: 10.1083/jcb.202203083] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 12/11/2022] Open
Abstract
The process of membrane atg8ylation, defined herein as the conjugation of the ATG8 family of ubiquitin-like proteins to membrane lipids, is beginning to be appreciated in its broader manifestations, mechanisms, and functions. Classically, membrane atg8ylation with LC3B, one of six mammalian ATG8 family proteins, has been viewed as the hallmark of canonical autophagy, entailing the formation of characteristic double membranes in the cytoplasm. However, ATG8s are now well described as being conjugated to single membranes and, most recently, proteins. Here we propose that the atg8ylation is coopted by multiple downstream processes, one of which is canonical autophagy. We elaborate on these biological outputs, which impact metabolism, quality control, and immunity, emphasizing the context of inflammation and immunological effects. In conclusion, we propose that atg8ylation is a modification akin to ubiquitylation, and that it is utilized by different systems participating in membrane stress responses and membrane remodeling activities encompassing autophagy and beyond.
Collapse
Affiliation(s)
- Vojo Deretic
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Michael Lazarou
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
58
|
Noh SH, Kim YJ, Lee MG. Autophagy-Related Pathways in Vesicular Unconventional Protein Secretion. Front Cell Dev Biol 2022; 10:892450. [PMID: 35774225 PMCID: PMC9237382 DOI: 10.3389/fcell.2022.892450] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/26/2022] [Indexed: 12/14/2022] Open
Abstract
Cellular proteins directed to the plasma membrane or released into the extracellular space can undergo a number of different pathways. Whereas the molecular mechanisms that underlie conventional ER-to-Golgi trafficking are well established, those associated with the unconventional protein secretion (UPS) pathways remain largely elusive. A pathway with an emerging role in UPS is autophagy. Although originally known as a degradative process for maintaining intracellular homeostasis, recent studies suggest that autophagy has diverse biological roles besides its disposal function and that it is mechanistically involved in the UPS of various secretory cargos including both leaderless soluble and Golgi-bypassing transmembrane proteins. Here, we summarize current knowledge of the autophagy-related UPS pathways, describing and comparing diverse features in the autophagy-related UPS cargos and autophagy machineries utilized in UPS. Additionally, we also suggest potential directions that further research in this field can take.
Collapse
Affiliation(s)
- Shin Hye Noh
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Ye Jin Kim
- Department of Pharmacology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Min Goo Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
- Department of Pharmacology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
59
|
Dong Y, Xiong Y, Zhou D, Yao M, Wang X, Bi W, Zhang J. TRIM56 Reduces Radiosensitization of Human Glioblastoma by Regulating FOXM1-Mediated DNA Repair. Mol Neurobiol 2022; 59:5312-5325. [PMID: 35696011 DOI: 10.1007/s12035-022-02898-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/21/2022] [Indexed: 12/01/2022]
Abstract
Recurrent glioblastoma is characterized by resistance to radiotherapy or chemotherapy. In this study, we investigated the role of TRIM56 in radiosensitization and its potential underlying molecular mechanism. TRIM56 expression levels were measured in glioblastoma tissues and cell lines by immunohistochemical staining, western blot, and qRT-PCR. MTT assay, colony formation assay, and TUNEL assay were used to investigate the effect of TRIM56 on cell viability, cell proliferation, and cell apoptosis. Co-immunoprecipitation was used to clarify the interaction between TRIM56 and FOXM1. Finally, tumor xenograft experiments were performed to analyze the effect of TRIM56 on tumor growth in vivo. The expression of TRIM56 was significantly increased in glioblastoma tissues and cell lines and its expression was associated with poor prognosis of patients with glioblastoma. Moreover, TRIM56 reduced the radiosensitivity of glioblastoma cells and promoted DNA repairment. Mechanistically, TRIM56 promoted FOXM1 protein level, enhanced the stability of FOXM1 by de-ubiquitination, and promoted DNA damage repair through FOXM1 in glioblastoma cells. TRIM56 could reduce the radiosensitivity of glioblastoma in vivo. TRIM56 may suppress the radiosensitization of human glioblastoma by regulating FOXM1-mediated DNA repair. Targeting the TRIM56 may be an effective method to reverse radiotherapy-resistant in glioblastoma recurrent.
Collapse
Affiliation(s)
- Yun Dong
- School of Pharmacy and Food Sciences, Zhuhai College of Science and Technology, Zhuhai, 519040, Guangdong Province, China.,School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Nanshan District, No.1066, Xueyuan Road, Shenzhen City, 518055, Guangdong Province, China
| | - Yiping Xiong
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Nanshan District, No.1066, Xueyuan Road, Shenzhen City, 518055, Guangdong Province, China
| | - Duanyang Zhou
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Nanshan District, No.1066, Xueyuan Road, Shenzhen City, 518055, Guangdong Province, China
| | - Min Yao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Nanshan District, No.1066, Xueyuan Road, Shenzhen City, 518055, Guangdong Province, China
| | - Xiao Wang
- Department of Pharmacy, Shenzhen People's Hospital, Shenzhen City, 815020, Guangdong Province, China
| | - Wenchuan Bi
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Nanshan District, No.1066, Xueyuan Road, Shenzhen City, 518055, Guangdong Province, China.
| | - Jian Zhang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Nanshan District, No.1066, Xueyuan Road, Shenzhen City, 518055, Guangdong Province, China.
| |
Collapse
|
60
|
Zou L, Liao M, Zhen Y, Zhu S, Chen X, Zhang J, Hao Y, Liu B. Autophagy and beyond: Unraveling the complexity of UNC-51-like kinase 1 (ULK1) from biological functions to therapeutic implications. Acta Pharm Sin B 2022; 12:3743-3782. [PMID: 36213540 PMCID: PMC9532564 DOI: 10.1016/j.apsb.2022.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 12/13/2022] Open
Abstract
UNC-51-like kinase 1 (ULK1), as a serine/threonine kinase, is an autophagic initiator in mammals and a homologous protein of autophagy related protein (Atg) 1 in yeast and of UNC-51 in Caenorhabditis elegans. ULK1 is well-known for autophagy activation, which is evolutionarily conserved in protein transport and indispensable to maintain cell homeostasis. As the direct target of energy and nutrition-sensing kinase, ULK1 may contribute to the distribution and utilization of cellular resources in response to metabolism and is closely associated with multiple pathophysiological processes. Moreover, ULK1 has been widely reported to play a crucial role in human diseases, including cancer, neurodegenerative diseases, cardiovascular disease, and infections, and subsequently targeted small-molecule inhibitors or activators are also demonstrated. Interestingly, the non-autophagy function of ULK1 has been emerging, indicating that non-autophagy-relevant ULK1 signaling network is also linked with diseases under some specific contexts. Therefore, in this review, we summarized the structure and functions of ULK1 as an autophagic initiator, with a focus on some new approaches, and further elucidated the key roles of ULK1 in autophagy and non-autophagy. Additionally, we also discussed the relationships between ULK1 and human diseases, as well as illustrated a rapid progress for better understanding of the discovery of more candidate small-molecule drugs targeting ULK1, which will provide a clue on novel ULK1-targeted therapeutics in the future.
Collapse
Affiliation(s)
- Ling Zou
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongqi Zhen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiou Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiya Chen
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| | - Yue Hao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| |
Collapse
|
61
|
Liu Y, Zhou T, Hu J, Jin S, Wu J, Guan X, Wu Y, Cui J. Targeting Selective Autophagy as a Therapeutic Strategy for Viral Infectious Diseases. Front Microbiol 2022; 13:889835. [PMID: 35572624 PMCID: PMC9096610 DOI: 10.3389/fmicb.2022.889835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022] Open
Abstract
Autophagy is an evolutionarily conserved lysosomal degradation system which can recycle multiple cytoplasmic components under both physiological and stressful conditions. Autophagy could be highly selective to deliver different cargoes or substrates, including protein aggregates, pathogenic proteins or superfluous organelles to lysosome using a series of cargo receptor proteins. During viral invasion, cargo receptors selectively target pathogenic components to autolysosome to defense against infection. However, viruses not only evolve different strategies to counteract and escape selective autophagy, but also utilize selective autophagy to restrict antiviral responses to expedite viral replication. Furthermore, several viruses could activate certain forms of selective autophagy, including mitophagy, lipophagy, aggrephagy, and ferritinophagy, for more effective infection and replication. The complicated relationship between selective autophagy and viral infection indicates that selective autophagy may provide potential therapeutic targets for human infectious diseases. In this review, we will summarize the recent progress on the interplay between selective autophagy and host antiviral defense, aiming to arouse the importance of modulating selective autophagy as future therapies toward viral infectious diseases.
Collapse
Affiliation(s)
- Yishan Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tao Zhou
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiajia Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shouheng Jin
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianfeng Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiangdong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yaoxing Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Cui
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
62
|
Saha B, Salemi M, Williams GL, Oh S, Paffett ML, Phinney B, Mandell MA. Interactomic analysis reveals a homeostatic role for the HIV restriction factor TRIM5α in mitophagy. Cell Rep 2022; 39:110797. [PMID: 35545034 PMCID: PMC9136943 DOI: 10.1016/j.celrep.2022.110797] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/16/2022] [Accepted: 04/15/2022] [Indexed: 12/13/2022] Open
Abstract
The protein TRIM5α has multiple roles in antiretroviral defense, but the mechanisms underlying TRIM5α action are unclear. Here, we employ APEX2-based proteomics to identify TRIM5α-interacting partners. Our proteomics results connect TRIM5 to other proteins with actions in antiviral defense. Additionally, they link TRIM5 to mitophagy, an autophagy-based mode of mitochondrial quality control that is compromised in several human diseases. We find that TRIM5 is required for Parkin-dependent and -independent mitophagy pathways where TRIM5 recruits upstream autophagy regulators to damaged mitochondria. Expression of a TRIM5 mutant lacking ubiquitin ligase activity is unable to rescue mitophagy in TRIM5 knockout cells. Cells lacking TRIM5 show reduced mitochondrial function under basal conditions and are more susceptible to immune activation and death in response to mitochondrial damage than are wild-type cells. Taken together, our studies identify a homeostatic role for a protein previously recognized exclusively for its antiviral actions. The protein TRIM5α is well known for its roles in antiretroviral defense. Saha et al. show that TRIM5α also has key homeostatic functions. They report that TRIM5α helps to maintain mitochondrial quality control by enabling the autophagy-dependent removal of damaged mitochondria (mitophagy).
Collapse
Affiliation(s)
- Bhaskar Saha
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Michelle Salemi
- UC Davis Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Geneva L Williams
- Biomedical Sciences Graduate Program, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Seeun Oh
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Michael L Paffett
- Fluorescence Microscopy and Cell Imaging Shared Resource, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| | - Brett Phinney
- UC Davis Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Michael A Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
63
|
Quan L, Ren G, Liu L, Huang W, Li M. Circular RNA circ_0002594 regulates PDGF-BB-induced proliferation and migration of human airway smooth muscle cells via sponging miR-139-5p/TRIM8 in asthma. Autoimmunity 2022; 55:339-350. [PMID: 35470728 DOI: 10.1080/08916934.2022.2062596] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Asthma is a chronic respiratory disease characterised by the contraction of smooth muscle and remodelling of the airway wall, which is correlated with increased airway smooth muscle mass. Circular RNA (circRNA) circ_0002594 has been reported as a pro-inflammatory factor in allergic asthma. Therefore, this study is designed to explore the role and mechanism of circ_0002594 in human airway smooth muscle cells (HASMC) proliferation and metastasis. METHODS Cell proliferative ability, invasion, and migration were detected by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), Transwell, and Wound healing assays. The protein levels of E-cadherin, N-cadherin, and tripartite motif 8 (TRIM8) were detected by western blot assay. The levels of interleukin-6 (IL-6) and IL-13 were detected using Enzyme-linked immunosorbent assays (ELISA). Levels of circ_0002594, microRNA-139-5p (miR-139-5p), TRIM8 were determined by real-time quantitative polymerase chain reaction (RT-qPCR). The binding between miR-139-5p and circ_0002594 or TRIM8 was predicted by Circinteractome or Starbase v2.0, and then verified by a dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. RESULTS Platelet-derived growth factor-BB (PDGF-BB) could trigger HASMC proliferation, metastasis, and inflammation. Circ_0002594 and TRIM8 were elevated in asthma patients and PDGF-BB-treated HASMC, and the miR-139-5p level was decreased. Furthermore, circ_0002594 knockdown could suppress PDGF-BB- stimulated HASMC damage. Mechanism analysis exhibited that circ_0002594 could regulate TRIM8 expression through sponging miR-139-5p. CONCLUSION Our findings revealed that circ_0002594 could act as a regulator in the airway remodelling during asthma development partly by the miR-139-5p/TRIM8 axis, hinting at an underlying therapeutic strategy for asthma.
Collapse
Affiliation(s)
- Liyuan Quan
- Department of Pediatrics, Qinghuangdao First Hospital, Qinhuangdao, China
| | - Gaowei Ren
- Department of Pediatrics, Qinghuangdao First Hospital, Qinhuangdao, China
| | - Ling Liu
- Department of Pediatrics, Qinghuangdao First Hospital, Qinhuangdao, China
| | - Wei Huang
- Department of Pediatrics, Qinghuangdao First Hospital, Qinhuangdao, China
| | - Mingli Li
- Department of Pediatrics, Qinghuangdao First Hospital, Qinhuangdao, China
| |
Collapse
|
64
|
Wang XY, Mao HW, Guan XH, Huang QM, Yu ZP, Wu J, Tan HL, Zhang F, Huang X, Deng KY, Xin HB. TRIM65 Promotes Cervical Cancer Through Selectively Degrading p53-Mediated Inhibition of Autophagy and Apoptosis. Front Oncol 2022; 12:853935. [PMID: 35402260 PMCID: PMC8987532 DOI: 10.3389/fonc.2022.853935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/01/2022] [Indexed: 12/25/2022] Open
Abstract
Tripartite motif containing 65 (TRIM65) is an E3 ubiquitin ligase that has been implicated in a variety of cellular processes as well as tumor progression, but its biological role and the underlying mechanism in cervical cancer is unclear. Here, we reported that TRIM65 expression in human cervical cancer tissues was significantly higher than that in the adjacent normal cervical tissues, and TRIM65 knockdown enhanced autophagic flux and cell apoptosis, but not cell cycle, to dramatically inhibit the proliferation and migration of cervical cancer cells. Furthermore, our experiments showed that TRIM65 exhibited oncogenic activities via directly targeting p53, a tumor suppressor and a common upsteam regulator between autophagy and apoptosis, promoting ubiquitination and proteasomal degradation of p53. Taken together, our studies demonstrated that TRIM65 knockdown promotes cervical cancer cell death through enhancing autophagy and apoptosis, suggesting that TRIM65 may be a potential therapeutic target for cervical cancer clinically.
Collapse
Affiliation(s)
- Xiao-Yu Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- College of Life Science, Nanchang University, Nanchang, China
- Institute of Geriatrics, Jiangxi Provincial People’s Hospital, Nanchang, China
| | - Hai-Wei Mao
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- Outpatient Department, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao-Hui Guan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Qi-Ming Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- College of Life Science, Nanchang University, Nanchang, China
| | - Zhen-Ping Yu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- College of Life Science, Nanchang University, Nanchang, China
| | - Jie Wu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- College of Life Science, Nanchang University, Nanchang, China
| | - Hui-Lan Tan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- College of Life Science, Nanchang University, Nanchang, China
| | - Feng Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- College of Life Science, Nanchang University, Nanchang, China
- *Correspondence: Hong-Bo Xin, ; Ke-Yu Deng,
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- College of Life Science, Nanchang University, Nanchang, China
- *Correspondence: Hong-Bo Xin, ; Ke-Yu Deng,
| |
Collapse
|
65
|
Su H, Tang Y, Nie K, Wang Z, Wang H, Dong H, Chen G. Identification Prognostic Value and Correlation with Tumor-Infiltrating Immune Cells of Tripartite-Motif Family Genes in Hepatocellular Carcinoma. Int J Gen Med 2022; 15:1349-1363. [PMID: 35173473 PMCID: PMC8841487 DOI: 10.2147/ijgm.s341018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/19/2022] [Indexed: 12/30/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common and mortality types of malignant tumors in the world. The Tripartite-Motif (TRIM) protein family consists of more than 80 proteins with E3 ubiquitin ligase activity. Increasing studies have found that TRIM family proteins play an extremely important role in the occurrence and development of tumors. However, the expression and prognostic values of TRIMs in HCC have not been clarified. Methods We used bioinformatic methods to explore the potential function of TRIM family genes in the HCC. Web servers ONCOMINE, UALCAN, GEPIA, cBioPortal, STRING, DAVID 6.8 and TIMER were used in this research. Results We screened TRIM1-76 and found the expressions of TRIM6, TRIM11, TRIM16, TRIM18(MID1), TRIM24, TRIM28, TRIM31, TRIM37, TRIM45, TRIM52, TRIM59, TRIM66 were significantly changed in HCC. Among them, TRIM24, TRIM28, TRIM37, TRIM45 and TRIM59 had significant effects on pathological stages, overall survival and disease free survival. Functions of these genes are primarily related to transcriptional misregulation in cancer, p53 signaling pathway, alcoholism and viral carcinogenesis, FoxO signal pathway, PI3K-AKT pathway, cell cycle, microRNAs in cancer. Our results showed the significant correlation between TRIMs expression and infiltration of innate immune cells (macrophages, neutrophils, and dendritic cells). Conclusion Our result provides novel insights into the function of TRIM family genes, which may be used as potential references for drug targets and accurate survival predictions in patients with HCC.
Collapse
Affiliation(s)
- Hao Su
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Yueheng Tang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Zhi Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Gang Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
- Correspondence: Gang Chen, Department of Integration Traditional Chinese Medicine and Western Medicine, TongJi Hospital, Huazhong University of Science and Technology, 1095Jiefang Avenue, Wuhan, Hubei Province, 430030, People’s Republic of China, Email
| |
Collapse
|
66
|
Wu W, Luo X, Ren M. Clearance or Hijack: Universal Interplay Mechanisms Between Viruses and Host Autophagy From Plants to Animals. Front Cell Infect Microbiol 2022; 11:786348. [PMID: 35047417 PMCID: PMC8761674 DOI: 10.3389/fcimb.2021.786348] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022] Open
Abstract
Viruses typically hijack the cellular machinery of their hosts for successful infection and replication, while the hosts protect themselves against viral invasion through a variety of defense responses, including autophagy, an evolutionarily ancient catabolic pathway conserved from plants to animals. Double-membrane vesicles called autophagosomes transport trapped viral cargo to lysosomes or vacuoles for degradation. However, during an ongoing evolutionary arms race, viruses have acquired a strong ability to disrupt or even exploit the autophagy machinery of their hosts for successful invasion. In this review, we analyze the universal role of autophagy in antiviral defenses in animals and plants and summarize how viruses evade host immune responses by disrupting and manipulating host autophagy. The review provides novel insights into the role of autophagy in virus–host interactions and offers potential targets for the prevention and control of viral infection in both plants and animals.
Collapse
Affiliation(s)
- Wenxian Wu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou, China.,Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou, China.,Hainan Yazhou Bay Seed Laboratory, Sanya, China.,Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou, China.,Hainan Yazhou Bay Seed Laboratory, Sanya, China
| |
Collapse
|
67
|
Xu X, Liu X, Dong X, Qiu H, Yang Y, Liu L. Secretory Autophagosomes from Alveolar Macrophages Exacerbate Acute Respiratory Distress Syndrome by Releasing IL-1β. J Inflamm Res 2022; 15:127-140. [PMID: 35027836 PMCID: PMC8752069 DOI: 10.2147/jir.s344857] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Activated alveolar macrophages (AMs) secrete extracellular vesicles and particles to mediate the inflammatory response in the acute respiratory distress syndrome (ARDS) although the underlying mechanisms are poorly understood. This study investigated whether secretory autophagosomes (SAPs) from AMs contribute to the inflammation-mediated lung injury of ARDS. Methods We first isolated SAPs from cell culture supernatants of RAW264.7 cells and AMs and quantified Interleukin (IL)-1β levels in SAPs. Next, we employed a lipopolysaccharide (LPS)-induced ARDS model to investigate whether SAP-derived IL-1β could exacerbate lung injury. Finally, we used siRNA to knockdown Rab8a, both in vitro and in vivo, to investigate the effect of Rab8a on SAP secretion and lung injury in ARDS. Results We found that AMs play an important role in ARDS by releasing a novel type of proinflammatory vesicles called SAPs that could exacerbate lung injury. SAPs are characterized as double-membrane vesicles (diameter ~200 nm) with the expression of light chain 3 (LC3). IL-1β in SAPs is the key factor that contributes to the inflammation and lung injury in ARDS. We found that Rab8a is necessary for AMs to release SAPs with IL-1β, and Rab8a knockdown alleviated lung injury in ARDS. Conclusion This study showed the novel finding that SAPs released from AMs play a vital role in ARDS by promoting an inflammatory response and the underlying mechanism was associated with IL-1β secretion.
Collapse
Affiliation(s)
- Xinyi Xu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Xu Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Xuecheng Dong
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Haibo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| |
Collapse
|
68
|
He J, Zhang W, Zhou X, Yan W, Wang Z. Aloin induced apoptosis by enhancing autophagic flux through the PI3K/AKT axis in osteosarcoma. Chin Med 2021; 16:123. [PMID: 34819120 PMCID: PMC8611986 DOI: 10.1186/s13020-021-00520-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Background Osteosarcoma is a malignant tumor of bone and soft tissue in adolescents. Due to its tumor biological behavior pattern, osteosarcoma usually generates poor prognosis. Autophagy is an important self-defense mechanism in osteosarcoma. Methods Cell viability in IC50 testing and reverse assays was examined by the MTT assay. Cell apoptosis conditions were examined by flow cytometry, Hoechst 33,342 staining and apoptosis-related protein immunoblotting. Autophagy conditions were tested by autophagy-related protein immunoblotting, transmission electron microscopic observation and dual fluorescence autophagy flux detection. The possible targets of aloin were screened out by network pharmacology and bioinformatic methods. Osteosarcoma xenografts in nude BALB/c mice were the model for in vivo research on tumor suppression, autophagy induction, pathway signaling and toxicity tests. In vivo bioluminescence imaging systems, immunohistochemical assays, and gross tumor volume comparisons were applied as the main research methods in vivo. Results Aloin induced osteosarcoma apoptosis in a dose-dependent manner. Its possible effects on the PI3K/AKT pathway were screened out by network pharmacology methods. Aloin increased autophagic flux in osteosarcoma by downregulating the PI3K/AKT pathway. Aloin promoted autophagic flux in the osteosarcoma cell lines HOS and MG63 in a dose-dependent manner by promoting autophagosome formation. Chloroquine reversed the apoptosis-promoting and autophagy-enhancing effects of aloin. Autophagy induced by starvation and rapamycin significantly enhanced the autophagic flux and apoptosis induced by aloin, which verified the role of the PI3K/AKT axis in the pharmacological action of aloin. Therapeutic effects, autophagy enhancement and regulatory effects on the PI3K/AKT/mTOR pathway were demonstrated in a nude mouse xenogeneic osteosarcoma transplantation model. Conclusions Aloin inhibited the proliferation of osteosarcoma by inhibiting the PI3K/AKT/mTOR pathway, increasing autophagic flux and promoting the apoptosis of osteosarcoma cells. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00520-4.
Collapse
Affiliation(s)
- Jiaming He
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Wenkan Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Xiaozhong Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Weiqi Yan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China.
| | - Zhan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
69
|
MicroRNA-376b-3p Promotes Porcine Reproductive and Respiratory Syndrome Virus Replication by Targeting Viral Restriction Factor TRIM22. J Virol 2021; 96:e0159721. [PMID: 34757838 DOI: 10.1128/jvi.01597-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus is a major economically significant pathogen and has evolved several strategies to evade host's antiviral response and provide favorable conditions for survival. In the present study, we demonstrated that a host microRNA, miR-376b-3p, was upregulated by PRRSV infection through the viral components, nsp4 and nsp11, and miR-376b-3p can directly target tripartite motif-containing 22 (TRIM22) to impair its anti-PRRSV activity, thus facilitating the replication of PRRSV. Meanwhile, we found that TRIM22 induced degradation of the nucleocapsid protein (N) of PRRSV by interacting with N protein to inhibit PRRSV replication, and further study indicated that TRIM22 could enhance the activation of lysosomal pathway by interacting with LC3 to induce lysosomal degradation of N protein. In conclusion, PRRSV increased miR-376b-3p expression and hijacked the host miR-376b-3p to promote PRRSV replication by impairing the antiviral effect of TRIM22. Therefore, our finding outlines a novel strategy of immune evasion exerted by PRRSV, which is helpful for better understanding the pathogenesis of PRRSV. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) causes enormous economic losses each year in the swine industry worldwide. MicroRNAs (miRNAs) play important roles during viral infections via modulating the expression of viral or host genes at post-transcriptional level. TRIM22 has recently been identified as a key restriction factor that inhibited the replication of a number of human virus such as HIV, ECMV, HCV, HBV, IAV, and RSV. Here we showed that host miR-376b-3p could be up-regulated by PRRSV and functioned to impair the anti-PRRSV role of TRIM22 to facilitate PRRSV replication. Meanwhile, we found that TRIM22 inhibited the replication of PRRSV by interacting with viral N protein and accelerating its degradation through the lysosomal pathway. Collectively, the paper described a novel mechanism that PRRSV exploited the host miR-376b-3p to evade antiviral responses and provided a new insight into the study of virus-host interactions.
Collapse
|
70
|
Zaongo SD, Wang Y, Ma P, Song FZ, Chen YK. Selective elimination of host cells harboring replication-competent human immunodeficiency virus reservoirs: a promising therapeutic strategy for HIV cure. Chin Med J (Engl) 2021; 134:2776-2787. [PMID: 34620750 PMCID: PMC8667983 DOI: 10.1097/cm9.0000000000001797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Indexed: 10/27/2022] Open
Abstract
ABSTRACT Many seminal advances have been made in human immunodeficiency virus (HIV)/AIDS research over the past four decades. Treatment strategies, such as gene therapy and immunotherapy, are yielding promising results to effectively control HIV infection. Despite this, a cure for HIV/AIDS is not envisioned in the near future. A recently published academic study has raised awareness regarding a promising alternative therapeutic option for HIV/AIDS, referred to as "selective elimination of host cells capable of producing HIV" (SECH). Similar to the "shock and kill strategy," the SECH approach requires the simultaneous administration of drugs targeting key mechanisms in specific cells to efficiently eliminate HIV replication-competent cellular reservoirs. Herein, we comprehensively review the specific mechanisms targeted by the SECH strategy. Briefly, the suggested cocktail of drugs should contain (i) latency reversal agents to promote the latency reversal process in replication-competent reservoir cells, (ii) pro-apoptotic and anti-autophagy drugs to induce death of infected cells through various pathways, and finally (iii) drugs that eliminate new cycles of infection by prevention of HIV attachment to host cells, and by HIV integrase inhibitor drugs. Finally, we discuss three major challenges that are likely to restrict the application of the SECH strategy in HIV/AIDS patients.
Collapse
Affiliation(s)
- Silvere D. Zaongo
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing 400036, China
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yue Wang
- Institute for Medical Device Standardization Administration; National Institutes for Food and Drug Control, Beijing 100050, China
| | - Ping Ma
- Department of Infectious Diseases, Tianjin Second People Hospital, Tianjin 300192, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Fang-Zhou Song
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yao-Kai Chen
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing 400036, China
| |
Collapse
|
71
|
Peng C, Zhao C, Wang PF, Yan LL, Fan SG, Qiu LH. Identification of a TRIM32 from Penaeus monodon is involved in autophagy and innate immunity during white spot syndrome virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104169. [PMID: 34118280 DOI: 10.1016/j.dci.2021.104169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
Many tripartite motif (TRIM) family proteins played an important role in regulating innate immune and autophagy pathway and were important for host defenses against viral pathogens. However, the role of TRIM proteins in autophagy and innate immunity during virus infection was seldom studied in crustaceans. In this study, a novel TRIM32 homolog was identified from Penaeus monodon (named PmTRIM32). PmTRIM32 was significantly upregulated by rapamycin stimulation and WSSV infection. RNA interference experiments showed that PmTRIM32 could restrict WSSV replication and lead P. monodon more resistance to WSSV challenge. Autophagy could be induced by WSSV or rapamycin challenge and has been proved to play a positive role in restricting WSSV replication in P. monodon. The autophagy activity induced by WSSV or rapamycin challenge could be obviously inhibited by silence of PmTRIM32 in P. monodon. Further studies revealed that PmTRIM32 positively regulated the expression of nuclear transcription factor (NF-κB) and it mediated antimicrobial peptides. Moreover, Pull-down and in vitro ubiquitination assay demonstrated that PmTRIM32 could interact with WSSV envelope protein and target it for ubiquitination in vitro. Collectively, this study demonstrated that PmTRIM32 restricted WSSV replication and was involved in positively regulating autophagy and NF-κB pathway during WSSV infection in P. monodon.
Collapse
Affiliation(s)
- Chao Peng
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Key Laboratory of Exploration and Utilization of Aquatic Resources, Ministry of Education; National Demonstration Center for Experimental Fisheries Science Education; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Chao Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China
| | - Peng-Fei Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China
| | - Lu-Lu Yan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China
| | - Si-Gang Fan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China
| | - Li-Hua Qiu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Science, Guangzhou, Guangdong Province, China.
| |
Collapse
|
72
|
Shang M, Weng L, Xu G, Wu S, Liu B, Yin X, Mao A, Zou X, Wang Z. TRIM11 suppresses ferritinophagy and gemcitabine sensitivity through UBE2N/TAX1BP1 signaling in pancreatic ductal adenocarcinoma. J Cell Physiol 2021; 236:6868-6883. [PMID: 33629745 DOI: 10.1002/jcp.30346] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/01/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022]
Abstract
Gemcitabine is first-line chemotherapy for pancreatic cancer, however, the development of resistance limits its effectiveness. The tripartite motif-containing 11 (TRIM11) protein plays crucial roles in tumor development and undergoes auto-polyubiquitination to promote interactions in selective autophagy. Therefore, Understanding whether TRIM11 is involved in ferritinophagy and gemcitabine resistance in pancreatic cancer is critical in developing pancreatic cancer therapeutics. TRIM11 expression was validated by Western blot analysis, real-time polymease chain reaction, and immunohistochemical staining. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Colony formation assays were performed to investigate pancreatic ductal adenocarcinomas (PDAC) cell viability. Mouse xenograft model of PDAC cells was established to verify the role of TRIM11 in vivo. Coimmunoprecipitation was used to identify the reciprocal regulation between TRIM11 and UBE2N. In this study, we found that TRIM11 expression were higher in PDAC cells and tissues. TRIM11 overexpression promotes PDAC cell proliferation in vitro and tumor growth in vivo. Decreased expression of TRIM11 in PDAC patients is associated with decreased UBE2N and increased TAX1BP1 expression. Coimmunoprecipitation established that TRIM11 interacts and colocalizes with UBE2N. Mechanistically, TRIM11 promoted gemcitabine resistance and suppressed ferritinophagy through UBE2N-TAX1BP1 signaling. Our findings identify TRIM11 as a key regulator of TAX1BP1 signaling with a crucial role in ferritinophagy and gemcitabine resistance in PDAC.
Collapse
MESH Headings
- Animals
- Antimetabolites, Antineoplastic/pharmacology
- Autophagy/drug effects
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Drug Resistance, Neoplasm
- Female
- Ferroptosis/drug effects
- Gene Expression Regulation, Neoplastic
- Humans
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Signal Transduction
- Tripartite Motif Proteins/genetics
- Tripartite Motif Proteins/metabolism
- Tumor Burden/drug effects
- Ubiquitin-Conjugating Enzymes/genetics
- Ubiquitin-Conjugating Enzymes/metabolism
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
- Xenograft Model Antitumor Assays
- Gemcitabine
- Mice
Collapse
Affiliation(s)
- Mingyi Shang
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Li Weng
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guifang Xu
- Department of gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Shaoqiu Wu
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bingyan Liu
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiang Yin
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Aiwu Mao
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoping Zou
- Department of interventional radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongmin Wang
- Department of gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
73
|
Roy M, Singh R. TRIMs: selective recruitment at different steps of the NF-κB pathway-determinant of activation or resolution of inflammation. Cell Mol Life Sci 2021; 78:6069-6086. [PMID: 34283248 PMCID: PMC11072854 DOI: 10.1007/s00018-021-03900-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/04/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022]
Abstract
TNF-α-induced NF-κB pathway is an essential component of innate and adaptive immune pathway, and it is tightly regulated by various post-translational modifications including ubiquitination. Oscillations in NF-κB activation and temporal gene expression are emerging as critical determinants of inflammatory response, however, the regulators of unique outcomes in different patho-physiological conditions are not well understood. Tripartite Motif-containing proteins (TRIMs) are RING domain-containing E3 ligases involved in the regulation of cellular homeostasis, metabolism, cell death, inflammation, and host defence. Emerging reports suggest that TRIMs are recruited at different steps of TNF-α-induced NF-κB pathway and modulate via their E3 ligase activity. TRIMs show synergy and antagonism in the regulation of the NF-κB pathway and also regulate it in a feedback manner. TRIMs also regulate pattern recognition receptors (PRRs) mediated inflammatory pathways and may have evolved to directly regulate a specific arm of immune signalling. The review emphasizes TRIM-mediated ubiquitination and modulation of TNF-α-regulated temporal and NF-κB signaling and its possible impact on unique transcriptional and functional outcomes.
Collapse
Affiliation(s)
- Milton Roy
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
- Institute for Cell Engineering, The Johns Hopkins University School of Medicine, 733 North Broadway, MRB 731, Baltimore, MD, 21205, USA
| | - Rajesh Singh
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
74
|
Hadpech S, Moonmuang S, Chupradit K, Yasamut U, Tayapiwatana C. Updating on Roles of HIV Intrinsic Factors: A Review of Their Antiviral Mechanisms and Emerging Functions. Intervirology 2021; 65:67-79. [PMID: 34464956 DOI: 10.1159/000519241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Host restriction factors are cellular proteins that inhibit specific steps of the viral life cycle. Since the 1970s, several new factors have been identified, including human immunodeficiency virus-1 (HIV-1) replication restriction. Evidence accumulated in the last decade has substantially broadened our understanding of the molecular mechanisms utilized to abrogate the HIV-1 life cycle. SUMMARY In this review, we focus on the interaction between host restriction factors participating in the early phase of HIV-1 infection, particularly CA-targeting proteins. Host factors involved in the late phase of the replication cycle, such as viral assembly and egress factors, are also described. Additionally, current reports on well-known antiviral intrinsic factors, as well as other viral restriction factors with their emerging roles, are included. CONCLUSION A comprehensive understanding of the interactions between viruses and hosts is expected to provide insight into the design of novel HIV-1 therapeutic interventions.
Collapse
Affiliation(s)
- Sudarat Hadpech
- Division of Pharmacology and Biopharmacy, Faculty of Pharmaceutical Sciences, Burapha University, Chon Buri, Thailand
| | - Sutpirat Moonmuang
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Koollawat Chupradit
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Siriraj Center for Regenerative Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Umpa Yasamut
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Center of Innovative Immunodiagnostic Development, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Chatchai Tayapiwatana
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Center of Innovative Immunodiagnostic Development, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
75
|
Li C, Ou R, Hou Y, Chen Y, Gu X, Wei Q, Cao B, Zhang L, Liu K, Chen X, Song W, Zhao B, Wu Y, Shang H. Genetic analysis of TRIM family genes for early-onset Parkinson's disease in Chinese population. Parkinsonism Relat Disord 2021; 90:105-113. [PMID: 34419804 DOI: 10.1016/j.parkreldis.2021.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Amounting evidence has suggested the Tripartite Motif (TRIM) family proteins as related to Parkinson's disease (PD). However, many of the risk genes were still awaiting further explorations, and their genetic role in PD has not been investigated yet. METHODS Here, we aimed to systematically evaluate the genetic associations of TRIMs with PD in a large Chinese early-onset PD (EOPD, age at onset < 50 years) cohort. We identified rare variants (minor allele frequency < 0.01) in 743 unrelated EOPD patients using whole exome sequencing, and evaluated the association between rare variants and EOPD at allele and gene levels. RESULTS Totally 123 rare variants were identified in 13 TRIM protein family members, including TRIM3, TRIM6, TRIM8, TRIM9, TRIM10, TRIM11, TRIM17, TRIM24, TRIM27, TRIM28, TRIM34, TRIM40 and TRIM41. At the allele level, three variants were nominally associated with PD, namely p.R65H in TRIM10, p.P467S in TRIM11, and p.I425V in TRIM24. Gene-based burden analysis showed a clear enrichment of rare variants of TRIM24 in EOPD. CONCLUSION These results demonstrate TRIM24 as a potential risk gene for PD, provide a better understanding for the genetic involvement of TRIM protein family members in EOPD and broaden the current mutation spectrum of PD.
Collapse
Affiliation(s)
- ChunYu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - RuWei Ou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - YanBing Hou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - YongPing Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - XiaoJing Gu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - QianQian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bei Cao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - LingYu Zhang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - KunCheng Liu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - XuePing Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Song
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bi Zhao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Wu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - HuiFang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
76
|
Lyu L, Chen Z, McCarty N. TRIM44 links the UPS to SQSTM1/p62-dependent aggrephagy and removing misfolded proteins. Autophagy 2021; 18:783-798. [PMID: 34382902 PMCID: PMC9037492 DOI: 10.1080/15548627.2021.1956105] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Until recently, the ubiquitin-proteasome system (UPS) and macroautophagy/autophagy were considered to be two independent systems that target proteins for degradation by proteasomes or via lysosomes, respectively. Here, we report that TRIM44 (tripartite motif containing 44) is a novel link that connects the UPS system with the autophagy degradation pathway. Suppressing the UPS degradation pathway leads to TRIM44 upregulation, which further promotes aggregated protein clearance through the binding of K48 ubiquitin chains on proteins. TRIM44 expression activates autophagy via promoting SQSTM1/p62 oligomerization, which rapidly increases the rate of aggregate protein removal. Overall, our data reveal that TRIM44 is a newly identified link between the UPS system and the autophagy pathway. Delineating the cross-talk between these two degradation pathways may reveal new mechanisms of targeting aggregate-prone diseases, such as cancer and neurodegenerative disease. Abbreviations: 3-MA: 3-methyladenine; ACTB: actin beta; ATG5: autophagy related 5; BB: B-box domain; BECN1: beclin1; BM: bone marrow; CC: coiled-coil domain; CFTR: cystic fibrosis transmembrane conductance regulator; CON: control; CQ: chloroquine; DOX: doxycycline; DSP: dithiobis(succinimidly propionate); ER: endoplasmic reticulum; FI: fluorescence intensity; FL: full length; HIF1A/HIF-1#x3B1;: hypoxia inducible factor 1 subunit alpha; HSC: hematopoietic stem cells; HTT: huntingtin; KD: knockdown; KD-CON: knockdown construct control; MM: multiple myeloma; MTOR: mechanistic target of rapamycin kinase; NP-40: nonidet P-40; NFE2L2/NRF2: nuclear factor, erythroid 2 like 2; OE: overexpression; OE-CON: overexpression construct control; PARP: poly (ADP-ribose) polymerase; SDS: sodium dodecyl sulfate; SQSTM1/p62: sequestosome 1; Tet-on: tetracycline; TRIM44: tripartite motif containing 44; UPS: ubiquitin-proteasome system; ZF: zinc-finger
Collapse
Affiliation(s)
- Lin Lyu
- Center for Stem Cell and Regenerative Disease, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), the University of Texas-Health Science Center at Houston, Houston, Texas, USA
| | - Zheng Chen
- Center for Stem Cell and Regenerative Disease, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), the University of Texas-Health Science Center at Houston, Houston, Texas, USA
| | - Nami McCarty
- Center for Stem Cell and Regenerative Disease, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), the University of Texas-Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
77
|
Campbell GR, Spector SA. Induction of Autophagy to Achieve a Human Immunodeficiency Virus Type 1 Cure. Cells 2021; 10:cells10071798. [PMID: 34359967 PMCID: PMC8307643 DOI: 10.3390/cells10071798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Effective antiretroviral therapy has led to significant human immunodeficiency virus type 1 (HIV-1) suppression and improvement in immune function. However, the persistence of integrated proviral DNA in latently infected reservoir cells, which drive viral rebound post-interruption of antiretroviral therapy, remains the major roadblock to a cure. Therefore, the targeted elimination or permanent silencing of this latently infected reservoir is a major focus of HIV-1 research. The most studied approach in the development of a cure is the activation of HIV-1 expression to expose latently infected cells for immune clearance while inducing HIV-1 cytotoxicity—the “kick and kill” approach. However, the complex and highly heterogeneous nature of the latent reservoir, combined with the failure of clinical trials to reduce the reservoir size casts doubt on the feasibility of this approach. This concern that total elimination of HIV-1 from the body may not be possible has led to increased emphasis on a “functional cure” where the virus remains but is unable to reactivate which presents the challenge of permanently silencing transcription of HIV-1 for prolonged drug-free remission—a “block and lock” approach. In this review, we discuss the interaction of HIV-1 and autophagy, and the exploitation of autophagy to kill selectively HIV-1 latently infected cells as part of a cure strategy. The cure strategy proposed has the advantage of significantly decreasing the size of the HIV-1 reservoir that can contribute to a functional cure and when optimised has the potential to eradicate completely HIV-1.
Collapse
Affiliation(s)
- Grant R. Campbell
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA;
- Correspondence: ; Tel.: +1-858-534-7477
| | - Stephen A. Spector
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA;
- Rady Children’s Hospital, San Diego, CA 92123, USA
| |
Collapse
|
78
|
Cui W, Yang X, Chen X, Xiao D, Zhu J, Zhang M, Qin X, Ma X, Lin Y. Treating LRRK2‐Related Parkinson's Disease by Inhibiting the mTOR Signaling Pathway to Restore Autophagy. ADVANCED FUNCTIONAL MATERIALS 2021. [DOI: 10.1002/adfm.202105152] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Weitong Cui
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
| | - Xiao Yang
- Psychiatric Laboratory and Mental Health Center West China Hospital of Sichuan University Chengdu 610041 China
| | - Xingyu Chen
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
| | - Junyao Zhu
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
| | - Xin Qin
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
| | - Xiaohong Ma
- Psychiatric Laboratory and Mental Health Center West China Hospital of Sichuan University Chengdu 610041 China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- College of Biomedical Engineering Sichuan University Chengdu 610041 P. R. China
| |
Collapse
|
79
|
Rana T, Behl T, Sehgal A, Mehta V, Singh S, Bhatia S, Al-Harrasi A, Bungau S. Exploring the Role of Autophagy Dysfunction in Neurodegenerative Disorders. Mol Neurobiol 2021; 58:4886-4905. [PMID: 34212304 DOI: 10.1007/s12035-021-02472-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022]
Abstract
Autophagy is a catabolic pathway by which misfolded proteins or damaged organelles are engulfed by autophagosomes and then transported to lysosomes for degradation. Recently, a great improvement has been done to explain the molecular mechanisms and roles of autophagy in several important cellular metabolic processes. Besides being a vital clearance pathway or a cell survival pathway in response to different stresses, autophagy dysfunction, either upregulated or down-regulated, has been suggested to be linked with numerous neurodegenerative disorders like Alzheimer's disease, Parkinson's disease, Huntington's disease, and Amyotrophic lateral sclerosis. Impairment at different stages of autophagy results in the formation of large protein aggregates and damaged organelles, which leads to the onset and progression of different neurodegenerative disorders. This article elucidates the recent progress about the role of autophagy in neurodegenerative disorders and explains how autophagy dysfunction is linked with the pathogenesis of such disorders as well as the novel potential autophagy-associated therapies for treating them.
Collapse
Affiliation(s)
- Tarapati Rana
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
- Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Vineet Mehta
- Government College of Pharmacy, Rohru, Distt. Shimla, Himachal Pradesh, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Haryana, India
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
80
|
Zheng Y, Zhou Z, Han F, Chen Z. Special issue: Neuroinflammatory pathways as treatment targets in brain disorders autophagic regulation of neuroinflammation in ischemic stroke. Neurochem Int 2021; 148:105114. [PMID: 34192589 DOI: 10.1016/j.neuint.2021.105114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/12/2021] [Accepted: 06/22/2021] [Indexed: 01/01/2023]
Abstract
Despite the high lethality and increasing prevalence, effective therapy for ischemic stroke is still limited. As a crucial pathophysiological mechanism underlying ischemic injury, neuroinflammation remains a promising target for novel anti-ischemic strategies. However, the potential adverse effects limit the applications of traditional anti-inflammatory therapies. Recent explorations into the mechanisms of inflammation reveal that autophagy acts as a critical part in inflammation regulation. Autophagy refers to the hierarchically organized process resulting in the lysosomal degradation of intracellular components. Autophagic clearance of intracellular danger signals (DAMPs) suppresses the inflammation activation. Alternatively, autophagy blunts inflammation by removing either inflammasomes or the transcriptional modulators of cytokines. Interestingly, several compounds have been proved to alleviate neuroinflammatory responses and protect against ischemic injury by activating autophagy, highlighting autophagy as a promising target for the regulation of ischemia-induced neuroinflammation. Nonetheless, the molecular mechanism underlying autophagic regulation of neuroinflammation in the central nervous system is less clear and further explorations are still needed.
Collapse
Affiliation(s)
- Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhuchen Zhou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Feng Han
- Key Lab of Cardiovascular and Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
81
|
Deretic V, Kroemer G. Autophagy in metabolism and quality control: opposing, complementary or interlinked functions? Autophagy 2021; 18:283-292. [PMID: 34036900 DOI: 10.1080/15548627.2021.1933742] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The sensu stricto autophagy, macroautophagy, is considered to be both a metabolic process as well as a bona fide quality control process. The question as to how these two aspects of autophagy are coordinated and whether and why they overlap has implications for fundamental aspects, pathophysiological effects, and pharmacological manipulation of autophagy. At the top of the regulatory cascade controlling autophagy are master regulators of cellular metabolism, such as MTOR and AMPK, which render the system responsive to amino acid and glucose starvation. At the other end exists a variety of specific autophagy receptors, engaged in the selective removal of a diverse array of intracellular targets, from protein aggregates/condensates to whole organelles such as mitochondria, ER, peroxisomes, lysosomes and lipid droplets. Are the roles of autophagy in metabolism and quality control mutually exclusive, independent or interlocked? How are priorities established? What are the molecular links between both phenomena? This article will provide a starting point to formulate these questions, the responses to which should be taken into consideration in future autophagy-based interventions.
Collapse
Affiliation(s)
- Vojo Deretic
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.,Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
82
|
Abstract
Selective autophagy is the lysosomal degradation of specific intracellular components sequestered into autophagosomes, late endosomes, or lysosomes through the activity of selective autophagy receptors (SARs). SARs interact with autophagy-related (ATG)8 family proteins via sequence motifs called LC3-interacting region (LIR) motifs in vertebrates and Atg8-interacting motifs (AIMs) in yeast and plants. SARs can be divided into two broad groups: soluble or membrane bound. Cargo or substrate selection may be independent or dependent of ubiquitin labeling of the cargo. In this review, we discuss mechanisms of mammalian selective autophagy with a focus on the unifying principles employed in substrate recognition, interaction with the forming autophagosome via LIR-ATG8 interactions, and the recruitment of core autophagy components for efficient autophagosome formation on the substrate. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Trond Lamark
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, 9037 Tromsø, Norway; ,
| | - Terje Johansen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, 9037 Tromsø, Norway; ,
| |
Collapse
|
83
|
Model-based analysis uncovers mutations altering autophagy selectivity in human cancer. Nat Commun 2021; 12:3258. [PMID: 34059679 PMCID: PMC8166871 DOI: 10.1038/s41467-021-23539-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Autophagy can selectively target protein aggregates, pathogens, and dysfunctional organelles for the lysosomal degradation. Aberrant regulation of autophagy promotes tumorigenesis, while it is far less clear whether and how tumor-specific alterations result in autophagic aberrance. To form a link between aberrant autophagy selectivity and human cancer, we establish a computational pipeline and prioritize 222 potential LIR (LC3-interacting region) motif-associated mutations (LAMs) in 148 proteins. We validate LAMs in multiple proteins including ATG4B, STBD1, EHMT2 and BRAF that impair their interactions with LC3 and autophagy activities. Using a combination of transcriptomic, metabolomic and additional experimental assays, we show that STBD1, a poorly-characterized protein, inhibits tumor growth via modulating glycogen autophagy, while a patient-derived W203C mutation on LIR abolishes its cancer inhibitory function. This work suggests that altered autophagy selectivity is a frequently-used mechanism by cancer cells to survive during various stresses, and provides a framework to discover additional autophagy-related pathways that influence carcinogenesis. Although autophagy has been linked to tumourigenesis, it is unclear how genomic alterations affect autophagy selectivity in tumours. Here, the authors establish a pipeline that integrates computational and experimental approaches to show that altered autophagy selectivity is frequent in cancer cells and link glycogen autophagy with tumourigenesis.
Collapse
|
84
|
Myospryn deficiency leads to impaired cardiac structure and function and schizophrenia-associated symptoms. Cell Tissue Res 2021; 385:675-696. [PMID: 34037836 DOI: 10.1007/s00441-021-03447-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/02/2021] [Indexed: 12/25/2022]
Abstract
The desmin-associated protein myospryn, encoded by the cardiomyopathy-associated gene 5 (CMYA5), is a TRIM-like protein associated to the BLOC-1 (Biogenesis of Lysosomes Related Organelles Complex 1) protein dysbindin. Human myospryn mutations are linked to both cardiomyopathy and schizophrenia; however, there is no evidence of a direct causative link of myospryn to these diseases. Therefore, we sought to unveil the role of myospryn in heart and brain. We have genetically inactivated the myospryn gene by homologous recombination and demonstrated that myospryn null hearts have dilated phenotype and compromised cardiac function. Ultrastructural analyses revealed that the sarcomere organization is not obviously affected; however, intercalated disk (ID) integrity is impaired, along with mislocalization of ID and sarcoplasmic reticulum (SR) protein components. Importantly, cardiac and skeletal muscles of myospryn null mice have severe mitochondrial defects with abnormal internal vacuoles and extensive cristolysis. In addition, swollen SR and T-tubules often accompany the mitochondrial defects, strongly implying a potential link of myospryn together with desmin to SR- mitochondrial physical and functional cross-talk. Furthermore, given the reported link of human myospryn mutations to schizophrenia, we performed behavioral studies, which demonstrated that myospryn-deficient male mice display disrupted startle reactivity and prepulse inhibition, asocial behavior, decreased exploratory behavior, and anhedonia. Brain neurochemical and ultrastructural analyses revealed prefrontal-striatal monoaminergic neurotransmitter defects and ultrastructural degenerative aberrations in cerebellar cytoarchitecture, respectively, in myospryn-deficient mice. In conclusion, myospryn is essential for both cardiac and brain structure and function and its deficiency leads to cardiomyopathy and schizophrenia-associated symptoms.
Collapse
|
85
|
Basu-Shrivastava M, Kozoriz A, Desagher S, Lassot I. To Ubiquitinate or Not to Ubiquitinate: TRIM17 in Cell Life and Death. Cells 2021; 10:1235. [PMID: 34069831 PMCID: PMC8157266 DOI: 10.3390/cells10051235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/17/2022] Open
Abstract
TRIM17 is a member of the TRIM family, a large class of RING-containing E3 ubiquitin-ligases. It is expressed at low levels in adult tissues, except in testis and in some brain regions. However, it can be highly induced in stress conditions which makes it a putative stress sensor required for the triggering of key cellular responses. As most TRIM members, TRIM17 can act as an E3 ubiquitin-ligase and promote the degradation by the proteasome of substrates such as the antiapoptotic protein MCL1. Intriguingly, TRIM17 can also prevent the ubiquitination of other proteins and stabilize them, by binding to other TRIM proteins and inhibiting their E3 ubiquitin-ligase activity. This duality of action confers several pivotal roles to TRIM17 in crucial cellular processes such as apoptosis, autophagy or cell division, but also in pathological conditions as diverse as Parkinson's disease or cancer. Here, in addition to recent data that endorse this duality, we review what is currently known from public databases and the literature about TRIM17 gene regulation and expression, TRIM17 protein structure and interactions, as well as its involvement in cell physiology and human disorders.
Collapse
Affiliation(s)
| | - Alina Kozoriz
- Institut de Génétique Moléculaire de Montpellier, University Montpellier, CNRS, Montpellier, France
| | - Solange Desagher
- Institut de Génétique Moléculaire de Montpellier, University Montpellier, CNRS, Montpellier, France
| | - Iréna Lassot
- Institut de Génétique Moléculaire de Montpellier, University Montpellier, CNRS, Montpellier, France
| |
Collapse
|
86
|
Ciccosanti F, Corazzari M, Casetti R, Amendola A, Collalto D, Refolo G, Vergori A, Taibi C, D’Offizi G, Antinori A, Agrati C, Fimia GM, Ippolito G, Piacentini M, Nardacci R. High Levels of TRIM5α Are Associated with Xenophagy in HIV-1-Infected Long-Term Nonprogressors. Cells 2021; 10:cells10051207. [PMID: 34069225 PMCID: PMC8156091 DOI: 10.3390/cells10051207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy is a lysosomal-dependent degradative mechanism essential in maintaining cellular homeostasis, but it is also considered an ancient form of innate eukaryotic fighting against invading microorganisms. Mounting evidence has shown that HIV-1 is a critical target of autophagy that plays a role in HIV-1 replication and disease progression. In a special subset of HIV-1-infected patients that spontaneously and durably maintain extremely low viral replication, namely, long-term nonprogressors (LTNP), the resistance to HIV-1-induced pathogenesis is accompanied, in vivo, by a significant increase in the autophagic activity in peripheral blood mononuclear cells. Recently, a new player in the battle of autophagy against HIV-1 has been identified, namely, tripartite motif protein 5α (TRIM5α). In vitro data demonstrated that TRIM5α directly recognizes HIV-1 and targets it for autophagic destruction, thus protecting cells against HIV-1 infection. In this paper, we analyzed the involvement of this factor in the control of HIV-1 infection through autophagy, in vivo, in LTNP. The results obtained showed significantly higher levels of TRIM5α expression in cells from LTNP with respect to HIV-1-infected normal progressor patients. Interestingly, the colocalization of TRIM5α and HIV-1 proteins in autophagic vacuoles in LTNP cells suggested the participation of TRIM5α in the autophagy containment of HIV-1 in LTNP. Altogether, our results point to a protective role of TRIM5α in the successful control of the chronic viral infection in HIV-1-controllers through the autophagy mechanism. In our opinion, these findings could be relevant in fighting against HIV-1 disease, because autophagy inducers might be employed in combination with antiretroviral drugs.
Collapse
Affiliation(s)
- Fabiola Ciccosanti
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases, Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (F.C.); (M.C.); (R.C.); (A.A.); (D.C.); (G.R.); (C.A.); (G.M.F.); (G.I.); (M.P.)
| | - Marco Corazzari
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases, Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (F.C.); (M.C.); (R.C.); (A.A.); (D.C.); (G.R.); (C.A.); (G.M.F.); (G.I.); (M.P.)
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease, School of Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Rita Casetti
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases, Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (F.C.); (M.C.); (R.C.); (A.A.); (D.C.); (G.R.); (C.A.); (G.M.F.); (G.I.); (M.P.)
| | - Alessandra Amendola
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases, Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (F.C.); (M.C.); (R.C.); (A.A.); (D.C.); (G.R.); (C.A.); (G.M.F.); (G.I.); (M.P.)
| | - Diletta Collalto
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases, Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (F.C.); (M.C.); (R.C.); (A.A.); (D.C.); (G.R.); (C.A.); (G.M.F.); (G.I.); (M.P.)
| | - Giulia Refolo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases, Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (F.C.); (M.C.); (R.C.); (A.A.); (D.C.); (G.R.); (C.A.); (G.M.F.); (G.I.); (M.P.)
| | - Alessandra Vergori
- Clinical Department, National Institute for Infectious Diseases, Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (A.V.); (C.T.); (G.D.); (A.A.)
| | - Chiara Taibi
- Clinical Department, National Institute for Infectious Diseases, Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (A.V.); (C.T.); (G.D.); (A.A.)
| | - Gianpiero D’Offizi
- Clinical Department, National Institute for Infectious Diseases, Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (A.V.); (C.T.); (G.D.); (A.A.)
| | - Andrea Antinori
- Clinical Department, National Institute for Infectious Diseases, Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (A.V.); (C.T.); (G.D.); (A.A.)
| | - Chiara Agrati
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases, Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (F.C.); (M.C.); (R.C.); (A.A.); (D.C.); (G.R.); (C.A.); (G.M.F.); (G.I.); (M.P.)
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases, Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (F.C.); (M.C.); (R.C.); (A.A.); (D.C.); (G.R.); (C.A.); (G.M.F.); (G.I.); (M.P.)
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Giuseppe Ippolito
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases, Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (F.C.); (M.C.); (R.C.); (A.A.); (D.C.); (G.R.); (C.A.); (G.M.F.); (G.I.); (M.P.)
| | - Mauro Piacentini
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases, Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (F.C.); (M.C.); (R.C.); (A.A.); (D.C.); (G.R.); (C.A.); (G.M.F.); (G.I.); (M.P.)
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Roberta Nardacci
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases, Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (F.C.); (M.C.); (R.C.); (A.A.); (D.C.); (G.R.); (C.A.); (G.M.F.); (G.I.); (M.P.)
- Correspondence:
| |
Collapse
|
87
|
Zhao C, Peng C, Wang P, Yan L, Fan S, Qiu L. Identification of a Shrimp E3 Ubiquitin Ligase TRIM50-Like Involved in Restricting White Spot Syndrome Virus Proliferation by Its Mediated Autophagy and Ubiquitination. Front Immunol 2021; 12:682562. [PMID: 34046043 PMCID: PMC8144704 DOI: 10.3389/fimmu.2021.682562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/26/2021] [Indexed: 12/03/2022] Open
Abstract
Most tripartite motif (TRIM) family proteins are critical components of the autophagy machinery and play important roles in host defense against viral pathogens in mammals. However, the roles of TRIM proteins in autophagy and viral infection have not been studied in lower invertebrates, especially crustaceans. In this study, we first identified a TRIM50-like gene from Penaeus monodon (designated PmTRIM50-like), which, after a white spot syndrome virus (WSSV) challenge, was significantly upregulated at the mRNA and protein levels in the intestine and hemocytes. Knockdown of PmTRIM50-like led to an increase in the WSSV quantity in shrimp, while its overexpression led to a decrease compared with the controls. Autophagy can be induced by WSSV or rapamycin challenge and has been shown to play a positive role in restricting WSSV replication in P. monodon. The mRNA and protein expression levels of PmTRIM50-like significantly increased with the enhancement of rapamycin-induced autophagy. The autophagy activity induced by WSSV or rapamycin challenge could be inhibited by silencing PmTRIM50-like in shrimp. Further studies showed that rapamycin failed to induce autophagy or inhibit WSSV replication after knockdown of PmTRIM50-like. Moreover, pull-down and in vitro ubiquitination assays demonstrated that PmTRIM50-like could interact with WSSV envelope proteins and target them for ubiquitination in vitro. Collectively, this study demonstrated that PmTRIM50-like is required for autophagy and is involved in restricting the proliferation of WSSV through its ubiquitination. This is the first study to report the role of a TRIM family protein in virus infection and host autophagy in crustaceans.
Collapse
Affiliation(s)
- Chao Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Chao Peng
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Pengfei Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Lulu Yan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Sigang Fan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Lihua Qiu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Sanya Tropical Fisheries Research Institute, Sanya, China.,Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Science, Beijing, China
| |
Collapse
|
88
|
Castro-Gonzalez S, Simpson S, Shi Y, Chen Y, Benjamin J, Serra-Moreno R. HIV Nef-mediated Ubiquitination of BCL2: Implications in Autophagy and Apoptosis. Front Immunol 2021; 12:682624. [PMID: 34025682 PMCID: PMC8134690 DOI: 10.3389/fimmu.2021.682624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/21/2021] [Indexed: 11/13/2022] Open
Abstract
Ubiquitination is a process that acts upon every step of the HIV replication cycle. The activity, subcellular localization, and stability of HIV dependency factors as well as negative modulators can be affected by ubiquitination. These modifications consequently have an impact on the progression and outcome of infection. Additionally, recent findings suggest new roles for ubiquitination in the interplay between HIV and the cellular environment, specifically in the interactions between HIV, autophagy and apoptosis. On one hand, autophagy is a defense mechanism against HIV that promotes the degradation of the viral protein Gag, likely through ubiquitination. Gag is an essential structural protein that drives virion assembly and release. Interestingly, the ubiquitination of Gag is vital for HIV replication. Hence, this post-translational modification in Gag represents a double-edged sword: necessary for virion biogenesis, but potentially detrimental under conditions of autophagy activation. On the other hand, HIV uses Nef to circumvent autophagy-mediated restriction by promoting the ubiquitination of the autophagy inhibitor BCL2 through Parkin/PRKN. Although the Nef-promoted ubiquitination of BCL2 occurs in both the endoplasmic reticulum (ER) and mitochondria, only ER-associated ubiquitinated BCL2 arrests the progression of autophagy. Importantly, both mitochondrial BCL2 and PRKN are tightly connected to mitochondrial function and apoptosis. Hence, by enhancing the PRKN-mediated ubiquitination of BCL2 at the mitochondria, HIV might promote apoptosis. Moreover, this effect of Nef might account for HIV-associated disorders. In this article, we outline our current knowledge and provide perspectives of how ubiquitination impacts the molecular interactions between HIV, autophagy and apoptosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Ruth Serra-Moreno
- Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
89
|
Wang Y, Wang P, Liu M, Zhang X, Si Q, Yang T, Ye H, Song C, Shi J, Wang K, Wang X, Zhang J, Dai L. Identification of tumor-associated antigens of lung cancer: SEREX combined with bioinformatics analysis. J Immunol Methods 2021; 492:112991. [PMID: 33587914 DOI: 10.1016/j.jim.2021.112991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 11/26/2022]
Abstract
The aim of this study is to identify novel tumor-associated antigens (TAAs) of lung cancer by using serological analysis of recombinant cDNA expression library (SEREX) and bioinformatics analysis as well as to explore their humoral immune response. SEREX and pathway enrichment analysis were used to immunoscreen TAAs of lung cancer and elaborate their function in biological pathways, respectively. Subsequently, the sera level of autoantibodies against the selected TAAs (TOP2A, TRIM37, HSP90AB1, EEF1G and TPP1) was detected by immunoserological analysis to explore the immune response of these antigens. The Gene Expression Profiling Interactive Analysis (GEPIA) and Human Protein Atlas (HPA) database were applied to explore the mRNA and protein expression level of TOP2A, TRIM37 and HSP90AB1 in tissues, respectively. Seventy positive clones were identified by SEREX which contain 63 different genes, and 35 genes of them have been reported. These 35 genes were mainly related to regulation of different transcription factor and performed enrichment in legionellosis, RNA transport, IL-17 signaling pathway via enrichment analysis. Additionally, the positive rate of autoantibodies against TOP2A, TRIM37 and HSP90AB1 in lung cancer patients were typically higher than normal control (NC; P < 0.05). Moreover, the combination of the autoantibodies against TOP2A, TRIM37 and HSP90AB1 possessed an excellent diagnostic performance with sensitivity of 84% and specificity of 60%. The mRNA expression level of TOP2A was obviously unregulated in squamous cell carcinoma (SCC) tissues and adenocarcinoma (ADC) tissues compared to normal tissues (P < 0.05). In addition, TRIM37 and HSP90AB1 also showed a significant difference between SCC and NC at the mRNA expression level (P < 0.05). This study combining comprehensive autoantibody and gene expression assays has added to the growing list of lung cancer antigens, which may aid the development of diagnostic and immunotherapeutic targets for lung cancer patients.
Collapse
MESH Headings
- Adenocarcinoma of Lung/blood
- Adenocarcinoma of Lung/diagnosis
- Adenocarcinoma of Lung/genetics
- Adenocarcinoma of Lung/immunology
- Adult
- Aged
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Autoantibodies/blood
- Autoantibodies/immunology
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/immunology
- Carcinoma, Squamous Cell/blood
- Carcinoma, Squamous Cell/diagnosis
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/immunology
- Case-Control Studies
- Computational Biology
- DNA Topoisomerases, Type II/genetics
- DNA Topoisomerases, Type II/immunology
- Datasets as Topic
- Diagnosis, Differential
- Female
- Gene Expression Profiling
- Gene Library
- HSP90 Heat-Shock Proteins/genetics
- HSP90 Heat-Shock Proteins/immunology
- Healthy Volunteers
- Humans
- Lung Neoplasms/blood
- Lung Neoplasms/diagnosis
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Male
- Middle Aged
- Poly-ADP-Ribose Binding Proteins/genetics
- Poly-ADP-Ribose Binding Proteins/immunology
- Sensitivity and Specificity
- Serologic Tests/methods
- Tripartite Motif Proteins/genetics
- Tripartite Motif Proteins/immunology
- Tripeptidyl-Peptidase 1
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/immunology
- Young Adult
Collapse
Affiliation(s)
- Yulin Wang
- School of Basic Medical Sciences & Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Peng Wang
- Department of Epidemiology and Biostatistics in School of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Man Liu
- School of Basic Medical Sciences & Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xue Zhang
- School of Basic Medical Sciences & Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Qiufang Si
- BGI, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Ting Yang
- School of Basic Medical Sciences & Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China; BGI, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Hua Ye
- Department of Epidemiology and Biostatistics in School of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Chunhua Song
- Department of Epidemiology and Biostatistics in School of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jianxiang Shi
- School of Basic Medical Sciences & Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China; BGI, Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Kaijuan Wang
- Department of Epidemiology and Biostatistics in School of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xiao Wang
- School of Basic Medical Sciences & Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jianying Zhang
- School of Basic Medical Sciences & Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China; Department of Epidemiology and Biostatistics in School of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Liping Dai
- School of Basic Medical Sciences & Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China; BGI, Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou 450052, Henan, China.
| |
Collapse
|
90
|
Cabrera-Rodríguez R, Pérez-Yanes S, Estévez-Herrera J, Márquez-Arce D, Cabrera C, Espert L, Blanco J, Valenzuela-Fernández A. The Interplay of HIV and Autophagy in Early Infection. Front Microbiol 2021; 12:661446. [PMID: 33995324 PMCID: PMC8113651 DOI: 10.3389/fmicb.2021.661446] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
HIV/AIDS is still a global threat despite the notable efforts made by the scientific and health communities to understand viral infection, to design new drugs or to improve existing ones, as well as to develop advanced therapies and vaccine designs for functional cure and viral eradication. The identification and analysis of HIV-1 positive individuals that naturally control viral replication in the absence of antiretroviral treatment has provided clues about cellular processes that could interact with viral proteins and RNA and define subsequent viral replication and clinical progression. This is the case of autophagy, a degradative process that not only maintains cell homeostasis by recycling misfolded/old cellular elements to obtain nutrients, but is also relevant in the innate and adaptive immunity against viruses, such as HIV-1. Several studies suggest that early steps of HIV-1 infection, such as virus binding to CD4 or membrane fusion, allow the virus to modulate autophagy pathways preparing cells to be permissive for viral infection. Confirming this interplay, strategies based on autophagy modulation are able to inhibit early steps of HIV-1 infection. Moreover, autophagy dysregulation in late steps of the HIV-1 replication cycle may promote autophagic cell-death of CD4+ T cells or control of HIV-1 latency, likely contributing to disease progression and HIV persistence in infected individuals. In this scenario, understanding the molecular mechanisms underlying HIV/autophagy interplay may contribute to the development of new strategies to control HIV-1 replication. Therefore, the aim of this review is to summarize the knowledge of the interplay between autophagy and the early events of HIV-1 infection, and how autophagy modulation could impair or benefit HIV-1 infection and persistence, impacting viral pathogenesis, immune control of viral replication, and clinical progression of HIV-1 infected patients.
Collapse
Affiliation(s)
- Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Daniel Márquez-Arce
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Cecilia Cabrera
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Lucile Espert
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Julià Blanco
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Barcelona, Spain.,Universitat de Vic-Central de Catalunya (UVIC-UCC), Catalonia, Spain
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| |
Collapse
|
91
|
Hu J, Ding X, Tian S, Chu Y, Liu Z, Li Y, Li X, Wang G, Wang L, Wang Z. TRIM39 deficiency inhibits tumor progression and autophagic flux in colorectal cancer via suppressing the activity of Rab7. Cell Death Dis 2021; 12:391. [PMID: 33846303 PMCID: PMC8041807 DOI: 10.1038/s41419-021-03670-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022]
Abstract
The biological function of TRIM39, a member of TRIM family, remains largely unexplored in cancer, especially in colorectal cancer (CRC). In this study, we show that TRIM39 is upregulated in tumor tissues compared to adjacent normal tissues and associated with poor prognosis in CRC. Functional studies demonstrate that TRIM39 deficiency restrains CRC progression in vitro and in vivo. Our results further find that TRIM39 is a positive regulator of autophagosome–lysosome fusion. Mechanistically, TRIM39 interacts with Rab7 and promotes its activity via inhibiting its ubiquitination at lysine 191 residue. Depletion of TRIM39 inhibits CRC progression and autophagic flux in a Rab7 activity-dependent manner. Moreover, TRIM39 deficiency suppresses CRC progression through inhibiting autophagic degradation of p53. Thus, our findings uncover the roles as well as the relevant mechanisms of TRIM39 in CRC and establish a functional relationship between autophagy and CRC progression, which may provide promising approaches for the treatment of CRC.
Collapse
Affiliation(s)
- Jia Hu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Xueliang Ding
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Shaobo Tian
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yanan Chu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Zhibo Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yuqin Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Xiaoqiong Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China. .,Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China. .,Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| |
Collapse
|
92
|
Miller DR, Thorburn A. Autophagy and organelle homeostasis in cancer. Dev Cell 2021; 56:906-918. [PMID: 33689692 PMCID: PMC8026727 DOI: 10.1016/j.devcel.2021.02.010] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/11/2021] [Accepted: 02/09/2021] [Indexed: 12/16/2022]
Abstract
Beginning with the earliest studies of autophagy in cancer, there have been indications that autophagy can both promote and inhibit cancer growth and progression; autophagy regulation of organelle homeostasis is similarly complicated. In this review we discuss pro- and antitumor effects of organelle-targeted autophagy and how this contributes to several hallmarks of cancer, such as evading cell death, genomic instability, and altered metabolism. Typically, the removal of damaged or dysfunctional organelles prevents tumor development but can also aid in proliferation or drug resistance in established tumors. By better understanding how organelle-specific autophagy takes place and can be manipulated, it may be possible to go beyond the brute-force approach of trying to manipulate all autophagy in order to improve therapeutic targeting of this process in cancer.
Collapse
Affiliation(s)
- Dannah R Miller
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Andrew Thorburn
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
93
|
Toccafondi E, Lener D, Negroni M. HIV-1 Capsid Core: A Bullet to the Heart of the Target Cell. Front Microbiol 2021; 12:652486. [PMID: 33868211 PMCID: PMC8046902 DOI: 10.3389/fmicb.2021.652486] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/15/2021] [Indexed: 12/21/2022] Open
Abstract
The first step of the intracellular phase of retroviral infection is the release of the viral capsid core in the cytoplasm. This structure contains the viral genetic material that will be reverse transcribed and integrated into the genome of infected cells. Up to recent times, the role of the capsid core was considered essentially to protect this genetic material during the earlier phases of this process. However, increasing evidence demonstrates that the permanence inside the cell of the capsid as an intact, or almost intact, structure is longer than thought. This suggests its involvement in more aspects of the infectious cycle than previously foreseen, particularly in the steps of viral genomic material translocation into the nucleus and in the phases preceding integration. During the trip across the infected cell, many host factors are brought to interact with the capsid, some possessing antiviral properties, others, serving as viral cofactors. All these interactions rely on the properties of the unique component of the capsid core, the capsid protein CA. Likely, the drawback of ensuring these multiple functions is the extreme genetic fragility that has been shown to characterize this protein. Here, we recapitulate the busy agenda of an HIV-1 capsid in the infectious process, in particular in the light of the most recent findings.
Collapse
Affiliation(s)
| | - Daniela Lener
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, Strasbourg, France
| | - Matteo Negroni
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
94
|
Shen Z, Wei L, Yu ZB, Yao ZY, Cheng J, Wang YT, Song XT, Li M. The Roles of TRIMs in Antiviral Innate Immune Signaling. Front Cell Infect Microbiol 2021; 11:628275. [PMID: 33791238 PMCID: PMC8005608 DOI: 10.3389/fcimb.2021.628275] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/02/2021] [Indexed: 01/06/2023] Open
Abstract
The Tripartite motif (TRIM) protein family, which contains over 80 members in human sapiens, is the largest subfamily of the RING-type E3 ubiquitin ligase family. It is implicated in regulating various cellular functions, including cell cycle process, autophagy, and immune response. The dysfunction of TRIMs may lead to numerous diseases, such as systemic lupus erythematosus (SLE). Lots of studies in recent years have demonstrated that many TRIM proteins exert antiviral roles. TRIM proteins could affect viral replication by regulating the signaling pathways of antiviral innate immune responses. Besides, TRIM proteins can directly target viral components, which can lead to the degradation or functional inhibition of viral protein through degradative or non-degradative mechanisms and consequently interrupt the viral lifecycle. However, new evidence suggests that some viruses may manipulate TRIM proteins for their replication. Here, we summarize the latest discoveries on the interactions between TRIM protein and virus, especially TRIM proteins’ role in the signaling pathway of antiviral innate immune response and the direct “game” between them.
Collapse
Affiliation(s)
- Zhou Shen
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Center Laboratory, Affiliated Hospital of Hebei University, Baoding, China
| | - Lin Wei
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Zhi-Bo Yu
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Zhi-Yan Yao
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Jing Cheng
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Yu-Tong Wang
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Xiao-Tian Song
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Miao Li
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
95
|
Rose KM, Spada SJ, Broeckel R, McNally KL, Hirsch VM, Best SM, Bouamr F. From Capsids to Complexes: Expanding the Role of TRIM5α in the Restriction of Divergent RNA Viruses and Elements. Viruses 2021; 13:v13030446. [PMID: 33801908 PMCID: PMC7998678 DOI: 10.3390/v13030446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 01/26/2023] Open
Abstract
An evolutionary arms race has been ongoing between retroviruses and their primate hosts for millions of years. Within the last century, a zoonotic transmission introduced the Human Immunodeficiency Virus (HIV-1), a retrovirus, to the human population that has claimed the lives of millions of individuals and is still infecting over a million people every year. To counteract retroviruses such as this, primates including humans have evolved an innate immune sensor for the retroviral capsid lattice known as TRIM5α. Although the molecular basis for its ability to restrict retroviruses is debated, it is currently accepted that TRIM5α forms higher-order assemblies around the incoming retroviral capsid that are not only disruptive for the virus lifecycle, but also trigger the activation of an antiviral state. More recently, it was discovered that TRIM5α restriction is broader than previously thought because it restricts not only the human retroelement LINE-1, but also the tick-borne flaviviruses, an emergent group of RNA viruses that have vastly different strategies for replication compared to retroviruses. This review focuses on the underlying mechanisms of TRIM5α-mediated restriction of retroelements and flaviviruses and how they differ from the more widely known ability of TRIM5α to restrict retroviruses.
Collapse
Affiliation(s)
- Kevin M. Rose
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Rockville, MD 20894, USA; (K.M.R.); (S.J.S.); (V.M.H.)
| | - Stephanie J. Spada
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Rockville, MD 20894, USA; (K.M.R.); (S.J.S.); (V.M.H.)
| | - Rebecca Broeckel
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, MT 59840, USA; (R.B.); (K.L.M.); (S.M.B.)
| | - Kristin L. McNally
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, MT 59840, USA; (R.B.); (K.L.M.); (S.M.B.)
| | - Vanessa M. Hirsch
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Rockville, MD 20894, USA; (K.M.R.); (S.J.S.); (V.M.H.)
| | - Sonja M. Best
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, MT 59840, USA; (R.B.); (K.L.M.); (S.M.B.)
| | - Fadila Bouamr
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Rockville, MD 20894, USA; (K.M.R.); (S.J.S.); (V.M.H.)
- Correspondence:
| |
Collapse
|
96
|
Deretic V. Autophagy in inflammation, infection, and immunometabolism. Immunity 2021; 54:437-453. [PMID: 33691134 PMCID: PMC8026106 DOI: 10.1016/j.immuni.2021.01.018] [Citation(s) in RCA: 451] [Impact Index Per Article: 112.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/05/2020] [Accepted: 01/25/2021] [Indexed: 12/21/2022]
Abstract
Autophagy is a quality-control, metabolic, and innate immunity process. Normative autophagy affects many cell types, including hematopoietic as well as non-hematopoietic, and promotes health in model organisms and humans. When autophagy is perturbed, this has repercussions on diseases with inflammatory components, including infections, autoimmunity and cancer, metabolic disorders, neurodegeneration, and cardiovascular and liver diseases. As a cytoplasmic degradative pathway, autophagy protects from exogenous hazards, including infection, and from endogenous sources of inflammation, including molecular aggregates and damaged organelles. The focus of this review is on the role of autophagy in inflammation, including type I interferon responses and inflammasome outputs, from molecules to immune cells. A special emphasis is given to the intersections of autophagy with innate immunity, immunometabolism, and functions of organelles such as mitochondria and lysosomes that act as innate immunity and immunometabolic signaling platforms.
Collapse
Affiliation(s)
- Vojo Deretic
- Autophagy Inflammation and Metabolism (AIM) Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
97
|
Viret C, Duclaux-Loras R, Nancey S, Rozières A, Faure M. Selective Autophagy Receptors in Antiviral Defense. Trends Microbiol 2021; 29:798-810. [PMID: 33678557 DOI: 10.1016/j.tim.2021.02.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Autophagy ensures the degradation of cytosolic substrates by the lysosomal pathway. Cargoes destined to be eliminated are confined within double-membrane vesicles called autophagosomes, prior to fusion with endolysosomal vacuoles. Autophagy receptors selectively interact with cargoes and route them to elongating autophagic membranes, a process referred to as selective autophagy. Besides contributing to cell homeostasis, selective autophagy constitutes an important cell-autonomous defense mechanism against viruses. We review observations related to selective autophagy receptor engagement during host cell responses to virus infection. We examine the distinct roles of autophagy receptors in antiviral autophagy, consider the strategies viruses have evolved to escape or oppose such restrictions, and delineate the contributions of selective autophagy to the tailoring of antiviral innate responses. Finally, we mention some open and emerging questions in the field.
Collapse
Affiliation(s)
- Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Team Autophagy Infection Immunity, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Rémi Duclaux-Loras
- CIRI, Centre International de Recherche en Infectiologie, Team Autophagy Infection Immunity, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France; Department of Pediatric Hepatology, Gastroenterology and Nutrition, Femme-Mère-Enfant Hospital, Hospices Civils de Lyon, Bron, France
| | - Stéphane Nancey
- CIRI, Centre International de Recherche en Infectiologie, Team Autophagy Infection Immunity, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France; Department of Gastroenterology, Lyon Sud Hospital, Hospices Civils de Lyon, Lyon, France
| | - Aurore Rozières
- CIRI, Centre International de Recherche en Infectiologie, Team Autophagy Infection Immunity, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Team Autophagy Infection Immunity, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France; Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM, France.
| |
Collapse
|
98
|
Wang HT, Hur S. Substrate recognition by TRIM and TRIM-like proteins in innate immunity. Semin Cell Dev Biol 2021; 111:76-85. [PMID: 33092958 PMCID: PMC7572318 DOI: 10.1016/j.semcdb.2020.09.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 12/23/2022]
Abstract
TRIM (Tripartite motif) and TRIM-like proteins have emerged as an important class of E3 ligases in innate immunity. Their functions range from activation or regulation of innate immune signaling pathway to direct detection and restriction of pathogens. Despite the importance, molecular mechanisms for many TRIM/TRIM-like proteins remain poorly characterized, in part due to challenges of identifying their substrates. In this review, we discuss several TRIM/TRIM-like proteins in RNA sensing pathways and viral restriction functions. We focus on those containing PRY-SPRY, the domain most frequently used for substrate recognition, and discuss emerging mechanisms that are commonly utilized by several TRIM/TRIM-like proteins to tightly control their interaction with the substrates.
Collapse
Affiliation(s)
- Hai-Tao Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
99
|
Human TRIM5α: Autophagy Connects Cell-Intrinsic HIV-1 Restriction and Innate Immune Sensor Functioning. Viruses 2021; 13:v13020320. [PMID: 33669846 PMCID: PMC7923229 DOI: 10.3390/v13020320] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/12/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) persists as a global health concern, with an incidence rate of approximately 2 million, and estimated global prevalence of over 35 million. Combination antiretroviral treatment is highly effective, but HIV-1 patients that have been treated still suffer from chronic inflammation and residual viral replication. It is therefore paramount to identify therapeutically efficacious strategies to eradicate viral reservoirs and ultimately develop a cure for HIV-1. It has been long accepted that the restriction factor tripartite motif protein 5 isoform alpha (TRIM5α) restricts HIV-1 infection in a species-specific manner, with rhesus macaque TRIM5α strongly restricting HIV-1, and human TRIM5α having a minimal restriction capacity. However, several recent studies underscore human TRIM5α as a cell-dependent HIV-1 restriction factor. Here, we present an overview of the latest research on human TRIM5α and propose a novel conceptualization of TRIM5α as a restriction factor with a varied portfolio of antiviral functions, including mediating HIV-1 degradation through autophagy- and proteasome-mediated mechanisms, and acting as a viral sensor and effector of antiviral signaling. We have also expanded on the protective antiviral roles of autophagy and outline the therapeutic potential of autophagy modulation to intervene in chronic HIV-1 infection.
Collapse
|
100
|
Wang B, Zhu Y, Liu L, Wang B, Chen M, Wang J, Yang L, Liu J. Enterovirus 71 induces autophagy in mice via mTOR inhibition and ERK pathway activation. Life Sci 2021; 271:119188. [PMID: 33581126 DOI: 10.1016/j.lfs.2021.119188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
AIMS Enterovirus 71 (EV71) is one of the main viruses that cause hand-foot-mouth disease; however, its pathogenic mechanism remains unclear. This study characterized the relationship between EV71 infection and autophagy in vivo and explored the molecular mechanism underlying EV71-induced autophagy. MATERIALS AND METHODS A mouse model of EV71 infection was prepared by intraperitoneally injecting one-day-old BALB/c suckling mice with 30 μL/g of EV71 virus stock solution for 3 days. The behavior, fur condition, weight, and mice mortality were monitored, and disease scores were calculated. The pathological damage to the brain, lung, and muscle tissues after the viral infection was assessed by hematoxylin and eosin staining. Western blot and immunofluorescence analyses were used to detect the expression levels of viral protein 1, Beclin-1, microtubule-associated protein light chain 3B, mammalian target of rapamycin (mTOR), phosphorylated (p)-mTOR, extracellular signal-regulated protein kinase (ERK) 1/2, and p-ERK. KEY FINDINGS EV71 infection can trigger autophagy in the brains, lungs, and muscles of infected mice. The autophagy response triggered by EV71 is achieved by the simultaneous mTOR inhibition and the ERK pathway activation. Blocking the mTOR pathway may aggravate autophagy, whereas ERK inhibition alleviates autophagy but cannot completely prevent it. SIGNIFICANCE EV71 infection can induce autophagy in mice, involving mTOR and ERK signaling pathways. These two signaling pathways are independent and do not interfere with each other.
Collapse
Affiliation(s)
- Baixin Wang
- School of Basic Medicine, Jiamusi University, Jiamusi 154007, China
| | - Yuanzhi Zhu
- School of Basic Medicine, Jiamusi University, Jiamusi 154007, China
| | - Lei Liu
- School of Basic Medicine, Jiamusi University, Jiamusi 154007, China
| | - Binshan Wang
- School of Basic Medicine, Jiamusi University, Jiamusi 154007, China
| | - Mei Chen
- School of Basic Medicine, Jiamusi University, Jiamusi 154007, China
| | - Jingtao Wang
- School of Basic Medicine, Jiamusi University, Jiamusi 154007, China
| | - Limin Yang
- School of Medicine, Dalian University, Dalian 116622, China.
| | - JiGuang Liu
- School of Basic Medicine, Jiamusi University, Jiamusi 154007, China.
| |
Collapse
|